MAY 2021

GROUNDWATER MONITORING REPORT

For

MAIN STREET RIGHT-OF-WAY NYSDEC SPILL #9500234 CITY OF BUFFALO, ERIE COUNTY, NEW YORK

Prepared by:

C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203

Prepared on Behalf of:

KALEIDA HEALTH LARKIN BUILDING, SUITE 200 726 Exchange Street Buffalo, New York 14210

OCTOBER 2021

TABLE OF CONTENTS

<u>1.</u>	INTRODUCTION	1
<u>2.</u>	SUBSURFACE CONDITIONS	2
2.1.	GEOLOGY	2
2.2.	Hydrogeology	2
2.3.	CONTAMINANT TRANSPORT	2
<u>3.</u>	ISCO TREATMENT	3
3.1.	GROUNDWATER SAMPLING EVENTS	4
3.2.	GROUNDWATER SAMPLING METHODS	4
3.3.	GROUNDWATER LEVELS	2
3.4.	BTEX MONITORING	2
<u>4.</u>	CONCLUSION AND RECOMMENDATIONS	3
FIGI	URES	
Figu	re 1 – Groundwater Contour	
Figu	RE 2 – BTEX CONCENTRATIONS	
тап		

TABLES

 TABLE 4-2 - GROUNDWATER ANALYTICAL RESULTS

APPENDICES

 $\label{eq:appendix} \textbf{A} \textbf{-} \textbf{L} \textbf{aboratory} \ \textbf{analytical results}$

 $\label{eq:appendix} Appendix \ B-Groundwater \ Monitoring \ Construction \ \& \ Sampling \ Logs$

Appendix C – In-situ Product Information

ACRONYM LIST

C&S	C&S Engineers, Inc.
NYSDEC	New York State Department of Environmental Conservation
LUST	LEAKING UNDERGROUND STORAGE TANK
BCP	BROWNFIELD CLEANUP PROGRAM
SPH	SEPARATE PHASE HYDROCARBONS
RI/IRM	Remedial Investigation / Interim Remedial Measures
BTEX	BENZENE, TOLUENE, ETHYLBENZENE AND TOTAL XYLENE
LNAPL	LIGHT NON AQUEOUS PHASE LIQUID
VOC	VOLATILE ORGANIC COMPOUNDS
SCO	SOIL CLEANUP OBJECTIVES
PID	PHOTO-IONIZATION DETECTOR

As part of the 2013 Stipulation Agreement between the New York State Department of Environmental Conservation (NYSDEC) and the Kaleida Health, C&S Engineers, Inc. (C&S) is providing this report detailing ongoing groundwater monitoring and remedial work that addresses the presence of residual petroleum contamination within the Main Street and Goodrich Street Right-of-Way (ROW). This report describes the methods and results of the May 2021 sampling event.

1. INTRODUCTION

For over 30 years, leaking underground storage tanks (LUSTs) formerly located at a Mobil Service Station at the corner of Main and High Streets released petroleum products into the subsurface soils and groundwater. The source area surrounded the former LUSTs, where contaminated soils were observed from 10 feet below ground surface (bgs), with the bulk of the contamination in the range of 20 feet bgs to approximately to 40 feet bgs. From the main release area, historic migration of petroleum product entered into a semi-confined coarse sand and gravel lens observed approximately 32 to 35 feet bgs. Petroleum product within this lens generally moved horizontally with groundwater flow.

While much of the contamination was located on the Conventus Site (Brownfield Site No. C915260), an off-site investigation was conducted as part of the Brownfield Cleanup Program (BCP) remedial activities in December 2012. The intent of the off-site investigation was to assess the presence of petroleum contamination that may have migrated from the Conventus Site to the adjacent Main Street Right-of-Way (ROW). That work indicated that the groundwater contaminant plume had indeed migrated to the Main Street ROW and the results were provided to the NYSDEC in August 2013.

While the BCP program does not require the remediation of off-site contamination, Kaleida Health voluntarily entered into the stipulation with the NYSDEC to address off-site contamination concerns. The stipulation requires Kaleida Health to remediate contamination resulting from the former Mobil Service Station release in the area identified as the Main Street Right-of-Way. Because of the depth of contamination and documented low soil contamination levels (Restricted Residential Use SCOs or below), off-site concerns were limited to the presence of dissolved phase petroleum hydrocarbons above NYSDEC groundwater standards. The concentration and extent of the off-site contaminant plume has been well documented to extend off-site to west under the Main Street ROW.

Throughout this report the term "Conventus Site" will refer to the BCP Site No. C915260 located at 1001 Main Street. The term "ROW Site" will refer to the areas outside of the BCP area along Main Street.

Known contaminants include petroleum compounds, primarily gasoline and associated BTEX compounds¹. Separate Phase Hydrocarbons (SPH) have been observed in several wells on-site, including former MW-24, which is located less than 30 feet from the Main Street ROW. Based on the presence of SPH in former MW-24, contaminated soil and groundwater may extend to the west under the Main Street ROW.

This report presents results of ongoing remediation work for the contamination within the Main Street Right-of -Way.

¹ Benzene, Toluene, Ethylbenzene and total Xylene ("BTEX")

2. <u>Subsurface Conditions</u>

2.1. Geology

Geologic information is based on observations made during site excavations for the Conventus Site remedial efforts, as well as numerous previous studies such as the *Supplemental Subsurface Investigation and Quarterly Groundwater Monitoring Report*, (December 9, 2008, Groundwater & Environmental Service, Inc.) and the *Geotechnical Engineering Report, 1001 Main Street Medical Office Building, Buffalo New York*; (November 2010; McMahon and Mann Consulting Engineers).

The Conventus Site contained urban fill of varying depths. Fill depths ranged from 3 feet of parking lot subgrade and mixed stone to more urban fill ranging from 6 -12 feet of bricks concrete and miscellaneous building rubble, which at times was contained within old building basements.

Underlying the fill were native deposits of fine dense sand with silt with discrete clay lenses. Within this formation is a discrete, discontinuous water bearing zone comprised of coarse sand and fine to medium gravel. This zone is generally found between 32 and 35 feet bgs and ranging in thickness between 6-inches to several feet (GES, 2008).

Below this zone is the dry to moist fine sand and silt formation extends to nearly 70 feet bgs. Below this massive sand and silt formation is a coarse sand and gravel layer that grades to a sand, gravel; and clay till formation. Underlying the overburden is a grey cherty limestone formation at approximately 90 feet bgs (M&M, 2010).

2.2. Hydrogeology

The principal groundwater bearing zone beneath the Conventus Site is located within the coarse sand and gravel layer that is generally present between 32 and 35 feet bgs. This layer is of variable thickness (generally six inches to three feet) but is horizontally discontinuous. The layer is located within the central and northeastern portions of the Conventus Site, but does not extend completely to the southern, northwestern or southeastern areas of the Conventus Site (GES, 2008) and is confined by the dense fine sands and silt above and below the groundwater bearing zone.

Groundwater beneath the Conventus Site flows from the west to the northeast, following the depositional area of the confined groundwater bearing zone. The preferential flow of groundwater within this confined zone serves as the transport media for the petroleum release that occurred on the ROWs.

2.3. Contaminant Transport

For over 40 years, light non-aqueous phase liquid (LNAPL) has filtered downward from the base of the former underground storage tanks to a depth of approximately 40 feet bgs. LNAPL intercepted the groundwater at approximately 32 feet bgs. The water table is present within a semi-confined coarse sand and gravel lens. This lens varies in thickness (1/2 to 3 feet) and extends to the northeast, confined laterally to the east and west. Because of low carbon in the fine sand silt and gravel formations, the breakdown of the BTEX compounds was slow. This resulted in high concentrations of volatile organic compound (VOC) soil gas in the unsaturated zone below the release area and the continual loading of BTEX into the groundwater from the LNAPL. Soil contamination (at concentrations exceeding the Residential Use SCOS), below the LNAPL layer was noted to extend to a depth

of 35 to 40 feet bgs. This area has been identified as the Source Area for groundwater contamination.

The Source Area was removed during field activities conducted under the NYSDEC's BCP. Groundwater flows to the northeast, and has extended slightly west on the Main Street sidewalk from the former source (1001 Main Street) to the north Side of Goodrich Street.

In addition, recent investigations confirmed that the contaminated groundwater plume extends under the Main Street sidewalk (generally opposite of the documented groundwater flow direction in the area). The majority of Main Street is underlain by the Niagara Frontier Transportation Authority (NFTA) Light Rail Tunnel. The presence of contamination beneath the Main Street sidewalk may be due to its close proximity to the original source within 1001 Main Street property, or it may be a result of local influence from rail tunnel present under Main Street. The underground rail tunnel and associated drain system acts as a sink for groundwater along the Main Street ROW. Over time, contaminated groundwater on the western BCP boundary has slowly migrated underneath the Main Street sidewalk. The presence of contamination further west of the rail tunnel has not been determined.

The NFTA rail system has three sections:

- The surface tracks that run from the Inner Harbor to West Tupper Street;
- The shallow tunnels (constructed by digging through the overburden) which run from West Tupper Street to W/E Ferry Streets; and
- The deep bored tunnels (bored through the bedrock) which runs from Ferry Street to the end of the line at the University at Buffalo Station.

The project area along Main Street is located in the shallow tunnel section. Per the NFTA, the groundwater seepage into the rail tunnel is directed along the bottom of the tunnel between and along the track base. The water drains into sumps located at the transition to the deep bored tunnels near Ferry Street. These sumps pump the water into the nearby city sanitary sewer system. Therefore, the water collected in the tunnel drainage system in the area of 1001 Main Street runs along the base of the tunnel until it discharges into a sump near Ferry Street, providing no discrete access to the water collection along that length.

3. **ISCO TREATMENT**

The remedial method selected for ROW Site was in-situ chemical oxidation (ISCO) using RegenOX manufactured by Regenesis. RegenOX is sodium percarbonate formulated to degrade petroleum hydrocarbons through direct oxidation and through the generation of free radical compounds which will also oxidize contaminants. RegenOx produces minimal heat and pressure and is non-corrosive, making it a relatively safe chemical oxidant that is compatible for use in direct contact with underground infrastructure such as utilities, tanks, piping, and communication lines. This was an important characteristic when selecting the ISCO product due to the close proximity of the monitoring wells to the earth retention sheeting for the Conventus Building.

The amount of RegenOX used was calculated based on ROW Site specific data and professional experience of C&S and Regenesis. RegenOX was mixed with tap water in 55 gallon drums at a concentration of 100 pounds of RegenOX with 110 gallons of water for each location.

In-situ treatment consisted of gravity-feeding a chemical oxidizer mixed with water directly into monitoring wells MSMW-2, MSMW-3, and MSMW-4. Groundwater samples were collected approximately three months after treatment. The first ISCO treatment was conducted on January 29, 2017.

At the same time of the first ISCO event, C&S placed five oxygen release compound (ORC) socks linked in series in three of the four groundwater monitoring wells. ORC was used to provide long term controlled-release oxygen for aerobic microbes to flourish and accelerate aerobic biodegradation.

The third ISCO event was conducted on November 20-21, 2017. Rather than gravity feeding the treatment solution into each monitoring well, the PVC riser was modified to allow for a hose to be connected and treatment solution injected under pressure. Nature's Way Environmental performed the injections using a truck mounted mixer and pump.

As the surrounding formation became saturated with treatment solution, the injection rate decreased. Monitoring wells were then given approximately 25 gallon increments of treatment solution and left to allow the treatment solution time to infiltrate into the waterbearing zone. This process was repeated until the targeted 100 pounds of RegenOX per monitoring well was achieved.

For this reporting period, the last in-situ treatment was completed on June 1 to June 4, 2021.

GROUNDWATER MONITORING

3.1. Groundwater Sampling Events

Previously, groundwater samples were collected from the wells on following dates:

- December 21, 2012
- July 23, 2014
- August 21, 2015
- December 16, 2015
- April 28, 2016
- December 9, 2016
- April 20, 2017
- July 6, 2017

- September 11, 2017
- January 10, 2018
- August 17, 2018
- November 30, 2018
- July 29, 2019
- May 13, 2020
- November 24, 2020
- May 7, 2021

For this reporting period, the groundwater sampling was completed on May 7, 2021.

3.2. Groundwater Sampling Methods

Before purging the wells, water levels were measured using an electric water level sounder capable of measuring to the 0.01-foot accuracy. Peristaltic or bladder pumps using manufacturer-specified tubing was used for purging and sampling groundwater.

Calibration, purging and sampling procedures was performed as specified by the USEPA² for low-flow sampling. Decontamination was conducted after each well is sampled to reduce the likelihood of cross contamination. Groundwater sampling equipment including the in-well pump, flow cell and water level meter was cleaned with Alconox, a phosphate free cleaner.

Samples were collected for VOCs in three 40 ml glass vials. Groundwater filled each vial until it formed a meniscus and no air bubbles were inside the vial. The cap was placed on the vial and turned over to check if any air bubbles were in the sample. Groundwater samples were kept at 4°C until the laboratory took custody of the samples.

3.3. Groundwater Levels

Groundwater levels were measured from the top of the monitoring well casing an electric water level sounder capable of measuring to the 0.01-foot accuracy. Lidar data, downloaded from the New York State GIS Clearinghouse, was used to obtain ground elevations for each monitoring well. The Lidar dataset, developed in 2008, covers Erie County and achieves a vertical accuracy of 18.5 cm on open bare terrain and 37.0 cm for obscured areas. Ground elevations for each monitoring well are provided in **Table 4-1** below.

MONITORING WELL ID	GROUND ELEVATION (FT.)	WATER LEVEL (FT.)	GROUNDWATER ELEVATION (FT.)
MSMW-1	639.665	23.73	615.935
MSMW-2	632.265	29.0	603.265
MSMW-3	632.495	31.63	600.865
MSMW-4	632.985	31.15	601.835

Table 4-1: Monitoring Well Ground Elevations

Note: Ground elevations from Lidar Dataset.

Figure 1 presents groundwater elevation contours.

3.4. BTEX Monitoring

Table 4-2 attached to the end of this report presents detected VOC concentrations from December 2012 to May 2021. **Figure 2** presents total BTEX concentrations from each monitoring well.

<u> MSMW-1</u>

² U.S. EPA Region 1 Low Stress (low-flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, January 19, 2010.

VOC concentrations in this well have remained below NYSDEC groundwater standards since May 2015.

<u>MSMW-2</u>

MSMW-2 initially (2012) contained no detectable concentrations of contaminants, then in July 2014 results indicate a significant number of VOCs at elevated concentrations. This significant change in VOC concentrations maybe due to multiple factors, including the disturbance of natural groundwater flow by the shoring of the Conventus Building, and/or the excavation and removal of contaminated soil and groundwater from the Conventus Site.

The May 2021 sampling event showed an increase in overall VOCs as well as total BTEX concentrations. Total VOC concentrations were 11,241 ug/l, and total BTEX concentration was 8,280 ug/l which is an increase to levels detected in 2018.

<u>MSMW-3</u>

Initial analytical results (2012) from MSMW-3 showed total BTEX concentrations at 19,863 ug/L. Groundwater results indicate this well has shown a significant decrease in BTEX concentrations from the initial sampling event to the 2018 event. Total BTEX concentrations from the August 2018 sampling event are 13 ug/L, which is a 99.9% decrease in BTEX concentrations since December 2012.

Water level readings indicated a minimal amount of water in this well. A bailer was used in an attempt to purge out enough water to collect a VOC sample; however, no enough water could be collected. This well was not sampled for the May 2021 event.

<u>MSMW-4</u>

In December 2012, MSMW-4 contained the highest BTEX concentrations at 27,169 ug/L, while BTEX concentrations from August 2018 are 94.2 ug/L, a 99.7% reduction in petroleum contaminant concentrations.

The May 2021 sampling event showed a concentration of 16.1 ug/l for total VOCs and 2.3 ug/l for total BTEX concentrations; these concentrations are consistent with the last sample event on November 2020.

4. CONCLUSION AND RECOMMENDATIONS

To address the presence of residual petroleum contamination within the Main Street ROW, C&S has conducted groundwater monitoring and multiple quarterly chemical oxidant treatments. Groundwater sampling results indicate that groundwater contamination in the Main Street ROW is limited to the southwest corner of the Conventus Building. Likely due to the removal of the source material on the Conventus Site as well as the effects of natural attenuation, contaminant concentrations have significantly decreased over time in three out of the four monitoring wells.

The residual groundwater contaminant plume has been continually treated and monitored. Contaminant concentrations have shown mixed results from in-situ treatments. Multiple factors complicate the treatment of the remaining groundwater contamination. Some of these factors include:

1. Limited Treatment Options

- In Situ or Enhanced In-Situ Bioremediation Previous work at the Site demonstrated that the groundwater contains very little carbon due to the nature of the surrounding soils. This has resulted in a dearth of microbes available to treat the groundwater in situ. This lack of microbes eliminates the viability of this approach for the Site.
- Pump and Treat Pump and Treat Pilot Studies conducted on the Conventus site has not resulted in reduced contaminants in the wells, suggesting that long-term pumping will not likely have a significant impact on the groundwater quality at the Site.
- Chemical Oxidant Injections Three rounds of gravity fed chemical oxidation injections have already occurred at the Site, as reported to the NYSDEC in periodic reports. The injections were not effective in significantly reducing contaminant concentrations in groundwater. The fourth and fifth rounds of chemical oxidation injections in borings under pressure have shown limited effectiveness.
- 2. The installation of the steel shoring system has benefited the Site by reducing groundwater migration; however, this prevents the installation of additional monitoring wells to the east.
- 3. A major utility corridor and NFTA subway lies immediately west of the monitoring wells, preventing the installation of any additional wells in this direction.

At this time, pressurized in-situ injections are the most efficient method to apply chemical oxidants into the subsurface, but the effectiveness of using chemical oxidants to reduce contaminant concentrations is limited by the factors described above.

Based on the accumulated data collected to date and the conversation with the NYSDEC on October 1, 2021, C&S recommends the remediation (chemical injections) be halted and the groundwater monitoring schedule be reduced to annual sampling on MS-MW02 only. The sampling program will be terminated after 5-years unless contaminant levels significantly increase.

F:\Project\K11 - Kaleida Health\K11.005.004 - General Environmental Cleanup Services 2018-2021\Planning-Study\Reports\2021-Groundwater Monitoring Reports\May 2021\May 2021 - ROW Groundwater Monitoring Report.docx

TABLES

Location ID		MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01
Sample Matrix	NYSDEC T.O.G.S.	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
Date Sampled	GROUNDWATER	12/21/2012	7/23/2014	5/4/2015	8/21/2015	12/16/2015	4/28/2016	12/9/2016	4/20/2017	7/6/2017	9/11/2017	1/10/2018	8/17/2018
Units	STANDARDS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Volatile Organic Compound													
Acetone	50										1.5		
Benzene	1												
Bromodichloromethane	50												
Dibromochloromethane	50												
Ethylbenzene	5		1.1										
p-Isopropytoluene	5												
Toluene	5												
Xylene, Total	5		7.2										
n-Butylbenzene	5												
sec-Butylbenzene	5												
1,2,4,5-Tetramethylbenzene	5												
1,2,4-Trimethylbenzene	5												
1,3,5-Trimethylbenzene	5												
Trichloroethylene (TCE)	5												
Naphthalene	10												
2-Hexanone	50												
2-Butanone (MEK)	N/S												
Carbon disulfide	N/S												
Chloroform	N/S		0.4	J									
Cyclohexane	N/S		0.4	J									
Isopropylbenzene	N/S												
Methylcyclohexane	N/S		0.2	J									
Methylene Chloride	N/S												
n-Propylbenzene	N/S												
4-Methyl-2-pentanone	N/S												
1,4-Diethylbenzene	N/S												
Total VOC			9.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.0	0.0
Total BTEX			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Location ID		MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01	MSMW-01
Sample Matrix	NYSDEC T.O.G.S.	WG	WG	WG	WG	WG	WG
Date Sampled	GROUNDWATER	11/30/2018	7/29/2019	12/12/2019	5/13/2020	11/24/2020	5/7/2021
Units	STANDARDS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Volatile Organic Compound							
Acetone	50		3.6	J 1.5	J		
Benzene	1						
Bromodichloromethane	50						
Dibromochloromethane	50						
Ethylbenzene	5						
p-Isopropytoluene	5						
Toluene	5						
Xylene, Total	5						
n-Butylbenzene	5						
sec-Butylbenzene	5						
1,2,4,5-Tetramethylbenzene	5						
1,2,4-Trimethylbenzene	5						
1,3,5-Trimethylbenzene	5						
Trichloroethylene (TCE)	5		0.24	J			
Naphthalene	10						1.3 J
2-Hexanone	50						
2-Butanone (MEK)	N/S						
Carbon disulfide	N/S						
Chloroform	N/S						
Cyclohexane	N/S						
Isopropylbenzene	N/S						
Methylcyclohexane	N/S						
Methylene Chloride	N/S						
n-Propylbenzene	N/S						
4-Methyl-2-pentanone	N/S						
1,4-Diethylbenzene	N/S						
Total VOC		0.0	3.84	1.5	0.0	0.0	1.3
Total BTEX		0.0	0.0	0.0	0.0	0.0	0.0

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Location ID		MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	MSMW-02	
Sample Matrix	NYSDEC T.O.G.S.	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	
Date Sampled	GROUNDWATER	12/21/2012	7/23/2014	8/21/2015	12/16/2015	4/28/2016	12/9/2016	4/20/2017	7/6/2017	9/11/2017	1/10/2018	8/17/2018	11/30/2018	
Units	STANDARDS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	
Volatile Organic Compound														
Acetone	50								60.7				77.0	
Benzene	1		400	350	310	160	551	563	64.2	470.0	740.0	280.0	180.0	
Bromodichloromethane	50													
Dibromochloromethane	50													
Ethylbenzene	5		2,900	1,200	1,500	1,400	1,410	782	478	460	1,100	1,000	700.0	
p-Isopropytoluene	5								5.0					
Toluene	5		2,400	1,500	1,900	2,700	386	939	1,320	590	550	300	490.0	
Xylene, Total	5		13,000	DL 13,000	10,000	15,000	9,060	11,570	10,200	11,600	4,800	4,700	4,700	
n-Butylbenzene	5								39.1				8.1	
sec-Butylbenzene	5													
1,2,4,5-Tetramethylbenzene	5													
1,2,4-Trimethylbenzene	5								12,600			1,700	<mark>960.0</mark>	
1,3,5-Trimethylbenzene	5								713			630	700.0	
Trichloroethylene (TCE)	5													
Naphthalene	10								376			380	490.0	
2-Hexanone	50		92	J		130	J		111					
2-Butanone (MEK)	N/S								22.5					
Carbon disulfide	N/S								1.1					
Chloroform	N/S													
Cyclohexane	N/S		660	450		440	430	430		370	310	210	140.0	
Isopropylbenzene	N/S		58						13.4		32.0	24.0	J 20.0	J
Methylcyclohexane	N/S		250	170	J 150	J 220	163	163		260	130	120	J 78.0	J
Methylene Chloride	N/S		160	240	B 210									
n-Propylbenzene	N/S								37.6			130.0	70.0	
4-Methyl-2-pentanone	N/S								34.7				28.0	J
1,4-Diethylbenzene	N/S								282					
Total VOC		0.0	19,920	16,910	14,070	20,050	12,000	14,447	26,358	13,750	7,662	9,474	8,641.1	
Total BTEX		0.0	18,700	16,050	13,710	19,260	11,407	13,854	12,062	13,120	7,190	6,280	6,070.0	

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Location ID		MSMW-02	MSMW-02		MSMW-02		MSMW-02		MSMW-02
Sample Matrix	NYSDEC T.O.G.S.	WG	WG		WG		WG		WG
Date Sampled	GROUNDWATER	7/29/2019	12/12/2019		5/13/2020		11/24/2020		5/7/2021
Units	STANDARDS	ug/L	ug/L		ug/L		ug/L		ug/L
Volatile Organic Compound									
Acetone	50	170.0	53.0				26.0		
Benzene	1	230.0	79.0		510.0		62.0		310.0
Bromodichloromethane	50								
Dibromochloromethane	50								
Ethylbenzene	5	94.0	23.0		400.0		100.0		610.0
p-Isopropytoluene	5		3.7	J					
Toluene	5	550.0	390.0		610.0		490.0		960.0
Xylene, Total	5	4,800.0	3,100.0		3,400.0		2,500.0		6,400.0
n-Butylbenzene	5				8.0	J			
sec-Butylbenzene	5								
1,2,4,5-Tetramethylbenzene	5								
1,2,4-Trimethylbenzene	5		<u>620.0</u>		610.0		320.0		1,400.0
1,3,5-Trimethylbenzene	5		560.0		760.0		350.0		620.0
Trichloroethylene (TCE)	5								
Naphthalene	10		380.0		350.0		140.0		580.0
2-Hexanone	50	10.0	J		15.0	J			
2-Butanone (MEK)	N/S								
Carbon disulfide	N/S								
Chloroform	N/S								
Cyclohexane	N/S	150.0	120.0		170.0		71.0		160.0
Isopropylbenzene	N/S		9.8	J	15.0	J	3.6	J	20.0
Methylcyclohexane	N/S		83.0		130.0		51.0		110.0
Methylene Chloride	N/S								
n-Propylbenzene	N/S		11.0	J	42.0		6.3		71.0
4-Methyl-2-pentanone	N/S	26.0	J 22.0	J	23.0	J			
1,4-Diethylbenzene	N/S								
Total VOC		6,030.0	5,454.5		7,043.0		4,119.9		11,241.0
Total BTEX		5,810.0	3,592.0		4,920.0		3,152.0		8,280.0

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Sample Matrix Date Sampled UnitsNYSDEC T.O.G.S. GROUNDWATER STANDARDSWG 12/21/2012WG 7/23/2014WG 4/28/2016WG 4/28/2016WG 12/9/2016WG 4/20/2017WG 9/11/2017WG 9/11/2017WG 1/10/2018WG 8/17/2018WG 8/17/2018WG 11/30/2018Volatile Organic Compound	WG 7/29/2019 ug/L 0.18 1.1 0.76	WG 12/12/2019 ug/L 24.0 0.3	WG 5/13/2020 ug/L 41.0 1.9
Date Sampled Units GROUNDWATER STANDARDS 12/21/2012 ug/L 7/23/2014 ug/L 4/28/2016 ug/L 12/9/2016 ug/L 4/20/2017 ug/L 7/6/2017 ug/L 9/11/2017 ug/L 1/10/2018 ug/L 8/17/2018 ug/L 11/30/2018 ug/L Volatile Organic Compound 50 3,000 B 22 J 206 83.2 51.0 28.0 J J 62.0 Benzene 1 123 80 78 184 184 140 72 67 3.6 2.0	7/29/2019 ug/L 0.18 1.1 0.76	12/12/2019 ug/L 24.0 0.3	5/13/2020 ug/L 41.0 1.9
UnitsSTANDARDSug/Lug/Lug/Lug/Lug/Lug/Lug/Lug/Lug/Lug/Lug/LVolatile Organic Compound503,000B22J20683.251.028.0JJ62.0Benzene1123807818418414072673.62.0	ug/L 0.18 1.1 0.76	ug/L 24.0 0.3	ug/L 41.0 1.9
Volatile Organic Compound Vo	0.18 1.1 0.76	24.0	41.0 1.9
Acetone 50 3,000 B 22 J 206 83.2 51.0 28.0 J 62.0 Benzene 1 123 80 78 184 184 140 72 67 3.6 2.0	0.18 1.1 0.76	24.0 0.3	41.0 1.9
Benzene 1 123 80 78 184 184 140 72 67 3.6 2.0	0.18 1.1 0.76	0.3	1.9
	1.1 0.76	0.3	I 0.0
Bromodichloromethane 50	0.76		J 0.9
Dibromochloromethane 50		J 0.4	J 0.5
Ethylbenzene 5 2,370 190 990 982 679 66.4 200.0 150.0 7.7	6.8	2.8	4.3
p-Isopropytoluene 5			
Toluene 5 2,920 34.0 60.0 42.7 50.2 15.7 57.0 14.0 J 2.0 J 1.6 J			2.0
Xylene, Total 5 14,450 360 570 127 145.5 129.0 415.0 45.0 J 7.0 J 10.2 J	7.03	J 8.8	11.1
n-Butylbenzene 5			
sec-Butylbenzene 5			
1,2,4,5-Tetramethylbenzene 5			
1,2,4-Trimethylbenzene 5 4,710 5.2			
1,3,5-Trimethylbenzene 5 1,430 63.7 0.9 14.0		6.1	6.1
Trichloroethylene (TCE) 5	0.28	J	
Naphthalene 10 1,180 0.8 J		4.0	0.8
2-Hexanone 50 447 J 8.3 29.6 29.6 22.0			
2-Butanone (MEK) N/S 12.0 J 11.0 115.0	3.6	J	
Carbon disulfide N/S			1.3
Chloroform N/S 0.9 J	2.1	J 1.1	J 1.5
Cyclohexane N/S 1,130 52 260 284 219 130 150 56 9.2 J	8.3	J 3.0	J 2.1
Isopropylbenzene N/S 6.6 27.0 22.2 11.4 12.9 8.0 J J			
Methylcyclohexane N/S 678 25.0 78.0 108 108 108 47 J 9 J 2.3 J	1.3	J 0.8	J 0.6
Methylene Chloride N/S 9.8			
n-Propylbenzene N/S 467 3.6 0.9 J			
4-Methyl-2-pentanone N/S 16.0			1.2
1,4-Diethylbenzene N/S 37.9			
Total VOC 32,905 791.4 2,082.3 1,749.9 1,747.7 814.2 963 509 78 111.6	31.5	51.3	75.3
Total BTEX 19,863 664 1,698 1,335.7 1,058.7 351.1 744 276 13 21.5	14.0	11.6	19.3

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Location ID			MSMW-03		MSMW-03	
Sample Matrix	NYSDEC T.O.G.S.		WG		WG	
Date Sampled	GROUNDWATER		11/24/2020		5/7/2021	
Units	STANDARDS		ug/L		ug/L	
Volatile Organic Compound						
Acetone	50		19.0	J		
Benzene	1					
Bromodichloromethane	50					
Dibromochloromethane	50	J				
Ethylbenzene	5					
p-Isopropytoluene	5					
Toluene	5					
Xylene, Total	5					
n-Butylbenzene	5					
sec-Butylbenzene	5					
1,2,4,5-Tetramethylbenzene	5					
1,2,4-Trimethylbenzene	5				A	
1,3,5-Trimethylbenzene	5				TE	
Trichloroethylene (TCE)	5				MP	
Naphthalene	10	J	28.0		SA	
2-Hexanone	50				DT	
2-Butanone (MEK)	N/S	_		_	ž	
Carbon disulfide	N/S	J				
Chloroform	N/S	J				
Cyclohexane	N/S	J				
Isopropylbenzene	N/S					
Methylcyclohexane	N/S	J				
Methylene Chloride	N/S					
n-Propylbenzene	N/S					
4-Methyl-2-pentanone	N/S	J				
1,4-Diethylbenzene	N/S					
Total VOC			47.0			
Total BTEX			0.0			

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Location ID		MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04	MSMW-04
Sample Matrix	NYSDEC T.O.G.S.	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG	WG
Date Sampled	GROUNDWATER	12/28/2012	7/23/2014	8/21/2015	12/16/2015	4/28/2016	12/9/2016	4/20/2017	7/6/2017	9/11/2017	1/10/2018	8/17/2018	11/30/2018
Units	STANDARDS	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Volatile Organic Compound													
Acetone	50	< 1000	22.0	26.0					25.7		9.1	J 9.1	J 6.7
Benzene	1	<u>59.9</u>	J 150.0	140	180	71.0	119	80.4	121	69	27	2	1.3
Bromodichloromethane	50												
Dibromochloromethane	50												
Ethylbenzene	5	2,370	180	140	420	510	496	395	175	260	94	14	3.7
p-Isopropytoluene	5												
Toluene	5	<mark>9,890</mark>	39.0	5.8	48.0	46.0	23.9	7.5	2.5			3.4	
Xylene, Total	5	14,850	160	64.0	190	210	68.9	75.4	23.2		19.5	J 75.0	J 1.5 J
n-Butylbenzene	5								2.6				
sec-Butylbenzene	5								1.0				
1,2,4,5-Tetramethylbenzene	5								29.2				
1,2,4-Trimethylbenzene	5	2,300							3.7			29.0	1.4 J
1,3,5-Trimethylbenzene	5	668							1.6			8.5	0.7 J
Trichloroethylene (TCE)	5												
Naphthalene	10	686							38.0			7.4	
2-Hexanone	50	< 500											
2-Butanone (MEK)	N/S		7.2	J									
Carbon disulfide	N/S												
Chloroform	N/S												
Cyclohexane	N/S	< 1000	52.0	100	170	190	245	215	215	77	43	5.7	4.6 J
Isopropylbenzene	N/S		8.1	5.9	14.0	13.0	17.4	8.3	5.7		3.6	J	J
Methylcyclohexane	N/S	165	J 33.0	43.0	70.0	58.0	96.6	67.3	67.3	29.0	11.0	J 2.3	J 1.0 J
Methylene Chloride	N/S		6.6	23.0	В								
n-Propylbenzene	N/S	205							18.6			1.6	0.7 J
4-Methyl-2-pentanone	N/S												
1,4-Diethylbenzene	N/S								7.5				
Total VOC		31,194	657.9	547.7	1,092	1,098	1,066.8	848.8	737.6	435	207.2	157.8	21.6
Total BTEX		27,170	529	349.8	838	837	707.8	558.2	321.7	329	140.5	94.2	6.5

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

Location ID Sample Matrix	NYSDEC T O G S	MSMW-04	М	SMW-04		MSMW-04		MSMW-04		MSMW-04
Date Sampled	GROUNDWATER	7/29/2019		12/12/20 ⁻	19	5/13/202	n	11/24/2020)	5/7/2021
Units	STANDARDS	ug/L		ug/L		ug/L		ug/L		ug/L
		0		0		0		0		0
Volatile Organic Compound										
Acetone	50			3.7	J	6.0		3.3	J	
Benzene	1	2.5		0.5	J	2.6		0.4	J	1.0
Bromodichloromethane	50	0.66		0.29	J	0.78		0.21	J	
Dibromochloromethane	50	0.48	J	0.2	J	0.39	J	0.18	J	
Ethylbenzene	5	2.5		1.2	J	4.0				1.2
p-Isopropytoluene	5									
Toluene	5									
Xylene, Total	5	1.1	J	0.9	J	2.4	J	1.9	J	
n-Butylbenzene	5									
sec-Butylbenzene	5									
1,2,4,5-Tetramethylbenzene	5									
1,2,4-Trimethylbenzene	5									
1,3,5-Trimethylbenzene	5					0.8	J			
Trichloroethylene (TCE)	5	0.45	J							
Naphthalene	10			1.4	J	0.8	J	1.9	J	
2-Hexanone	50									
2-Butanone (MEK)	N/S									
Carbon disulfide	N/S									
Chloroform	N/S	0.96	J			1.2	J			
Cyclohexane	N/S	1.6	J	3.6	J	0.5	J	2.9	J	13.0
Isopropylbenzene	N/S									
Methylcyclohexane	N/S			0.6	J			0.4	J	0.9
Methylene Chloride	N/S									
n-Propylbenzene	N/S					0.8	J			
4-Methyl-2-pentanone	N/S									
1,4-Diethylbenzene	N/S									
Total VOC		10.3		12.4		20.3		11.2		16.1
Total BTEX		2.5		2.6		9.0		2.3		2.2

Notes:

NYSDEC T.O.G.S. Groundwater Standards in ug/L.

Only analytes detected in one or more samples shown.

Blank space indicates compound not detected.

J - Estimated value due to either the compound was detected below the reporting limit or estimated concentration for Tentatively Identified Compound.

B - Compound was also detected in associated Method Blank.

P- Indicates a pesticide/aroclor target analyte had a percent difference greater than 25% between the two gc columns the lower of the two results is reported.

WG - groundwater

FIGURES

МÖ

2021

2021

ů

005.004

ž

\$\2021 BTEX.mxd 1/Figu 202 202 p 8-2021\P Ś 005.004 K1

APPENDICES

APPENDIX A LABORATORY ANALYTICAL RESULTS

ANALYTICAL REPORT

Lab Number:	L2123976
Client:	C&S Companies 141 Elm Street, Suite 100 Buffalo, NY 14203
ATTN: Phone:	Cody Martin (716) 847-1630
Project Name: Project Number:	MAIN STREET/CONVENTUS Not Specified
Report Date:	05/19/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Lab Number:
 L2123976

 Report Date:
 05/19/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2123976-01	MSMW-01-050721	WATER	BUFFALO, NY	05/07/21 10:45	05/07/21
L2123976-02	MSMW-02-050721	WATER	BUFFALO, NY	05/07/21 12:00	05/07/21
L2123976-03	MSMW-04-050721	WATER	BUFFALO, NY	05/07/21 11:30	05/07/21

Lab Number: L2123976 Report Date: 05/19/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Lab Number: L2123976 **Report Date:** 05/19/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2123976-02D and -03 were received in the proper acid-preserved containers; however, upon analysis, the pH was determined to be greater than 2, and thus the method required holding time was exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

M 20A Jennifer L Clements

Title: Technical Director/Representative

Date: 05/19/21

ORGANICS

VOLATILES

		Serial_No:	05192114:10
MAIN STREET/CONVENTUS		Lab Number:	L2123976
Not Specified		Report Date:	05/19/21
S	AMPLE RESULTS		
L2123976-01		Date Collected:	05/07/21 10:45
MSMW-01-050721		Date Received:	05/07/21
BUFFALO, NY		Field Prep:	Not Specified
Water			
1,8260C			
05/15/21 15:31			
PD			
	MAIN STREET/CONVENTUS Not Specified L2123976-01 MSMW-01-050721 BUFFALO, NY Water 1,8260C 05/15/21 15:31 PD	MAIN STREET/CONVENTUS Not Specified SAMPLE RESULTS L2123976-01 MSMW-01-050721 BUFFALO, NY Water 1,8260C 05/15/21 15:31 PD	MAIN STREET/CONVENTUS Lab Number: Not Specified Report Date: L2123976-01 MSMW-01-050721 BUFFALO, NY Vater 1,8260C 05/15/21 15:31 PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	ND		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	ND		ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Trichloroethene	ND		ug/l	0.50	0.18	1				
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1				

		Serial_No:05192114:10					
Project Name:	MAIN STREET/CONVE	Lab Nu	umber:	L2123976			
Project Number:	Not Specified				Report	Date:	05/19/21
-	·	SAMP	LE RESULT	S	-		
Lab ID: Client ID: Sample Location:	L2123976-01 MSMW-01-050721 BUFFALO, NY				Date Co Date Re Field Pre	llected: ceived: ep:	05/07/21 10:45 05/07/21 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics I	by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane)	ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropro	ppane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-lsopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		1.3	J	ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	9
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	100	70-130	
Dibromofluoromethane	108	70-130	

				Serial_No	:05192114:10
Project Name:	MAIN STREET/CON	VENTU	IS	Lab Number:	L2123976
Project Number:	Not Specified			Report Date:	05/19/21
			SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2123976-02 MSMW-02-050721 BUFFALO, NY	D		Date Collected: Date Received: Field Prep:	05/07/21 12:00 05/07/21 Not Specified
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	05/15/21 15:08				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	50	14.	20				
1,1-Dichloroethane	ND		ug/l	50	14.	20				
Chloroform	ND		ug/l	50	14.	20				
Carbon tetrachloride	ND		ug/l	10	2.7	20				
1,2-Dichloropropane	ND		ug/l	20	2.7	20				
Dibromochloromethane	ND		ug/l	10	3.0	20				
1,1,2-Trichloroethane	ND		ug/l	30	10.	20				
Tetrachloroethene	ND		ug/l	10	3.6	20				
Chlorobenzene	ND		ug/l	50	14.	20				
Trichlorofluoromethane	ND		ug/l	50	14.	20				
1,2-Dichloroethane	ND		ug/l	10	2.6	20				
1,1,1-Trichloroethane	ND		ug/l	50	14.	20				
Bromodichloromethane	ND		ug/l	10	3.8	20				
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20				
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20				
Bromoform	ND		ug/l	40	13.	20				
1,1,2,2-Tetrachloroethane	ND		ug/l	10	3.3	20				
Benzene	310		ug/l	10	3.2	20				
Toluene	960		ug/l	50	14.	20				
Ethylbenzene	610		ug/l	50	14.	20				
Chloromethane	ND		ug/l	50	14.	20				
Bromomethane	ND		ug/l	50	14.	20				
Vinyl chloride	ND		ug/l	20	1.4	20				
Chloroethane	ND		ug/l	50	14.	20				
1,1-Dichloroethene	ND		ug/l	10	3.4	20				
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20				
Trichloroethene	ND		ug/l	10	3.5	20				
1,2-Dichlorobenzene	ND		ug/l	50	14.	20				

					:	Serial_No	p:05192114:10				
Project Name: MAIN STREET/CONVENTUS						mber:	L2123976				
Project Number:	Not Specified				Report	Date:	05/19/21				
		SAMP		S							
Lab ID: Client ID: Sample Location:	L2123976-02 MSMW-02-050721 BUFFALO, NY	D			Date Collected: Date Received: Field Prep:		05/07/21 12:00 05/07/21 Not Specified				
Sample Depth:											
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics I	by GC/MS - Westboroug	jh Lab									
1.3-Dichlorobenzene		ND		ua/l	50	14.	20				
1.4-Dichlorobenzene		ND		ug/l	50	14.	20				
Methyl tert butyl ether		ND		ua/l	50	14.	20				
p/m-Xylene		4100		ug/l	50	14.	20				
o-Xylene		2300		ug/l	50	14.	20				
cis-1,2-Dichloroethene		ND		ug/l	50	14.	20				
Styrene		ND		ug/l	50	14.	20				
Dichlorodifluoromethane		ND		ug/l	100	20.	20				
Acetone		ND		ug/l	100	29.	20				
Carbon disulfide		ND		ug/l	100	20.	20				
2-Butanone		ND		ug/l	100	39.	20				
4-Methyl-2-pentanone		ND		ug/l	100	20.	20				
2-Hexanone		ND		ug/l	100	20.	20				
1,2-Dibromoethane		ND		ug/l	40	13.	20				
n-Butylbenzene		ND		ug/l	50	14.	20				
sec-Butylbenzene		ND		ug/l	50	14.	20				
tert-Butylbenzene		ND		ug/l	50	14.	20				
1,2-Dibromo-3-chloropro	pane	ND		ug/l	50	14.	20				
Isopropylbenzene		20	J	ug/l	50	14.	20				
p-Isopropyltoluene		ND		ug/l	50	14.	20				
Naphthalene		580		ug/l	50	14.	20	_			
n-Propylbenzene		71		ug/l	50	14.	20				
1,2,4-Trichlorobenzene		ND		ug/l	50	14.	20				
1,3,5-Trimethylbenzene		620		ug/l	50	14.	20				
1,2,4-Trimethylbenzene		1400		ug/l	50	14.	20				
Methyl Acetate		ND		ug/l	40	4.7	20				
Cyclohexane		160	J	ug/l	200	5.4	20				
Freon-113		ND		ug/l	50	14.	20				
Methyl cyclohexane		110	J	ug/l	200	7.9	20				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	95	70-130	

			Serial_No:	05192114:10
Project Name:	MAIN STREET/CONVENTUS	I	Lab Number:	L2123976
Project Number:	Not Specified		Report Date:	05/19/21
	SA	MPLE RESULTS		
Lab ID:	L2123976-03	D	ate Collected:	05/07/21 11:30
Client ID:	MSMW-04-050721	D	ate Received:	05/07/21
Sample Location:	BUFFALO, NY	F	ield Prep:	Not Specified
Sample Depth:				
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	05/15/21 15:54			
Analyst:	PD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Methylene chloride	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1				
Chloroform	ND		ug/l	2.5	0.70	1				
Carbon tetrachloride	ND		ug/l	0.50	0.13	1				
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1				
Dibromochloromethane	ND		ug/l	0.50	0.15	1				
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1				
Tetrachloroethene	ND		ug/l	0.50	0.18	1				
Chlorobenzene	ND		ug/l	2.5	0.70	1				
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1				
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1				
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1				
Bromodichloromethane	ND		ug/l	0.50	0.19	1				
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1				
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1				
Bromoform	ND		ug/l	2.0	0.65	1				
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1				
Benzene	1.0		ug/l	0.50	0.16	1				
Toluene	ND		ug/l	2.5	0.70	1				
Ethylbenzene	1.2	J	ug/l	2.5	0.70	1				
Chloromethane	ND		ug/l	2.5	0.70	1				
Bromomethane	ND		ug/l	2.5	0.70	1				
Vinyl chloride	ND		ug/l	1.0	0.07	1				
Chloroethane	ND		ug/l	2.5	0.70	1				
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1				
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1				
Trichloroethene	ND		ug/l	0.50	0.18	1				
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1				

					Serial_No:05192114:10		
Project Name:	MAIN STREET/CONVE	T/CONVENTUS			Lab Number		L2123976
Project Number:	Not Specified				Report	Date:	05/19/21
-	·	SAMP		S	-		
Lab ID: Client ID: Sample Location:	L2123976-03 MSMW-04-050721 BUFFALO, NY	23976-03Date Collected:MW-04-050721Date Received:FFALO, NYField Prep:		05/07/21 11:30 05/07/21 Not Specified			
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics I	by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	1	ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
n-Butylbenzene		ND		ug/l	2.5	0.70	1
sec-Butylbenzene		ND		ug/l	2.5	0.70	1
tert-Butylbenzene		ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropro	ppane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
p-Isopropyltoluene		ND		ug/l	2.5	0.70	1
Naphthalene		ND		ug/l	2.5	0.70	1
n-Propylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,3,5-Trimethylbenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trimethylbenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		13		ug/l	10	0.27	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		0.89	J	ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	100	70-130	

Project Name: MAIN STREET/CONVENTUS

Project Number: Not Specified

cified

Lab Number: L2123976 Report Date: 05/19/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/15/21 10:50Analyst:LAC

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG1499983-5	
Methylene chloride	ND	ug/l	2.5	0.70	
1,1-Dichloroethane	ND	ug/l	2.5	0.70	
Chloroform	ND	ug/l	2.5	0.70	
Carbon tetrachloride	ND	ug/l	0.50	0.13	
1,2-Dichloropropane	ND	ug/l	1.0	0.14	
Dibromochloromethane	ND	ug/l	0.50	0.15	
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50	
Tetrachloroethene	ND	ug/l	0.50	0.18	
Chlorobenzene	ND	ug/l	2.5	0.70	
Trichlorofluoromethane	ND	ug/l	2.5	0.70	
1,2-Dichloroethane	ND	ug/l	0.50	0.13	
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70	
Bromodichloromethane	ND	ug/l	0.50	0.19	
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16	
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14	
Bromoform	ND	ug/l	2.0	0.65	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17	
Benzene	ND	ug/l	0.50	0.16	
Toluene	ND	ug/l	2.5	0.70	
Ethylbenzene	ND	ug/l	2.5	0.70	
Chloromethane	ND	ug/l	2.5	0.70	
Bromomethane	ND	ug/l	2.5	0.70	
Vinyl chloride	ND	ug/l	1.0	0.07	
Chloroethane	ND	ug/l	2.5	0.70	
1,1-Dichloroethene	ND	ug/l	0.50	0.17	
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Trichloroethene	ND	ug/l	0.50	0.18	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	

Project Name: MAIN STREET/CONVENTUS

Project Number: Not Specified

 Lab Number:
 L2123976

 Report Date:
 05/19/21

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:05/15/21 10:50Analyst:LAC

Parameter	Result	Qualifier Units	s RL	MDL	
/olatile Organics by GC/MS	- Westborough Lab	o for sample(s):	01-03 Batch:	WG1499983-5	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	
Methyl tert butyl ether	ND	ug/l	2.5	0.70	
p/m-Xylene	ND	ug/l	2.5	0.70	
o-Xylene	ND	ug/l	2.5	0.70	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	
Styrene	ND	ug/l	2.5	0.70	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	
Acetone	ND	ug/l	5.0	1.5	
Carbon disulfide	ND	ug/l	5.0	1.0	
2-Butanone	ND	ug/l	5.0	1.9	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	
2-Hexanone	ND	ug/l	5.0	1.0	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	
n-Butylbenzene	ND	ug/l	2.5	0.70	
sec-Butylbenzene	ND	ug/l	2.5	0.70	
tert-Butylbenzene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
Methyl Acetate	ND	ug/l	2.0	0.23	
Cyclohexane	ND	ug/l	10	0.27	
Freon-113	ND	ug/l	2.5	0.70	
Methyl cyclohexane	ND	ug/I	10	0.40	

Project Name: MAIN STREET/CONVENTUS

Project Number: Not Specified

Lab Number: L2123976 **Report Date:** 05/19/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/15/21 10:50 Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lat	o for sample	e(s): 01-03	Batch:	WG1499983-5

Surrogate	%Recovery	م Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	105		70-130	

Lab Control Sample Analysis Batch Quality Control

Project Number: Not Specified Lab Number: L2123976

Report Date: 05/19/21

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS	- Westborough Lab Associated	sample(s):	01-03 Batch:	WG1499983-3	WG1499983-4				
Methylene chloride	100		100		70-130	0		20	
1,1-Dichloroethane	110		100		70-130	10		20	
Chloroform	96		92		70-130	4		20	
Carbon tetrachloride	98		93		63-132	5		20	
1,2-Dichloropropane	110		100		70-130	10		20	
Dibromochloromethane	96		93		63-130	3		20	
1,1,2-Trichloroethane	98		95		70-130	3		20	
Tetrachloroethene	98		94		70-130	4		20	
Chlorobenzene	100		97		75-130	3		20	
Trichlorofluoromethane	100		95		62-150	5		20	
1,2-Dichloroethane	92		90		70-130	2		20	
1,1,1-Trichloroethane	98		93		67-130	5		20	
Bromodichloromethane	94		91		67-130	3		20	
trans-1,3-Dichloropropene	82		80		70-130	2		20	
cis-1,3-Dichloropropene	93		90		70-130	3		20	
Bromoform	88		87		54-136	1		20	
1,1,2,2-Tetrachloroethane	100		100		67-130	0		20	
Benzene	97		92		70-130	5		20	
Toluene	100		96		70-130	4		20	
Ethylbenzene	99		93		70-130	6		20	
Chloromethane	120		110		64-130	9		20	
Bromomethane	94		85		39-139	10		20	
Vinyl chloride	130		120		55-140	8		20	

Lab Control Sample Analysis Batch Quality Control

Project Number: Not Specified Lab Number: L2123976 05/19/21

Report Date:

_	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual L	imits
Volatile Organics by GC/MS -	- Westborough Lab Associated	sample(s):	01-03 Batch:	WG1499983-3	WG1499983-4			
Chloroethane	120		110		55-138	9		20
1,1-Dichloroethene	120		100		61-145	18		20
trans-1,2-Dichloroethene	110		100		70-130	10		20
Trichloroethene	93		90		70-130	3		20
1,2-Dichlorobenzene	100		97		70-130	3		20
1,3-Dichlorobenzene	100		96		70-130	4		20
1,4-Dichlorobenzene	100		97		70-130	3		20
Methyl tert butyl ether	87		85		63-130	2		20
p/m-Xylene	100		95		70-130	5		20
o-Xylene	100		95		70-130	5		20
cis-1,2-Dichloroethene	110		100		70-130	10		20
Styrene	100		95		70-130	5		20
Dichlorodifluoromethane	110		100		36-147	10		20
Acetone	86		84		58-148	2		20
Carbon disulfide	110		95		51-130	15		20
2-Butanone	95		100		63-138	5		20
4-Methyl-2-pentanone	100		100		59-130	0		20
2-Hexanone	120		120		57-130	0		20
1,2-Dibromoethane	96		94		70-130	2		20
n-Butylbenzene	100		98		53-136	2		20
sec-Butylbenzene	100		96		70-130	4		20
tert-Butylbenzene	100		100		70-130	0		20
1,2-Dibromo-3-chloropropane	100		97		41-144	3		20

Lab Control Sample Analysis Batch Quality Control

Project Number: Not Specified Lab Number: L2123976 Report Date: 05/19/21

Parameter	LCS %Recovery	Qual	%R	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG1499983-3	WG1499983-4				
Isopropylbenzene	100			97		70-130	3		20	
p-Isopropyltoluene	110			100		70-130	10		20	
Naphthalene	110			110		70-130	0		20	
n-Propylbenzene	100			97		69-130	3		20	
1,2,4-Trichlorobenzene	92			90		70-130	2		20	
1,3,5-Trimethylbenzene	97			94		64-130	3		20	
1,2,4-Trimethylbenzene	97			94		70-130	3		20	
Methyl Acetate	110			100		70-130	10		20	
Cyclohexane	120			120		70-130	0		20	
Freon-113	110			96		70-130	14		20	
Methyl cyclohexane	100			98		70-130	2		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	93	93	70-130
Toluene-d8	102	102	70-130
4-Bromofluorobenzene	103	103	70-130
Dibromofluoromethane	96	95	70-130

Serial_No:05192114:10 Lab Number: L2123976 Report Date: 05/19/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2123976-01A	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-01B	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-01C	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-02A	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-02B	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-02C	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-03A	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-03B	Vial HCl preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)
L2123976-03C	Vial HCI preserved	А	NA		3.0	Y	Absent		NYTCL-8260-R2(14)

Project Name: MAIN STREET/CONVENTUS

Project Number: Not Specified

Lab Number: L2123976

Report Date: 05/19/21

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: MAIN STREET/CONVENTUS

Project Number: Not Specified Lab Number: L2123976

Report Date: 05/19/21

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- М - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: MAIN STREET/CONVENTUS

Project Number: Not Specified

Lab Number: L2123976

Report Date: 05/19/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

 Lab Number:
 L2123976

 Report Date:
 05/19/21

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane. Toxaphene. Aldrin. alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Агрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	y Rd, Suite 5 Way soper Ave, Suite 10	55		e If (Date Rec' in Lab	d 578	slai		ALPHA JOD# L212397(٥
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information		a se		the same	Deliv	erables				Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Mai	n Stre	et 1	solver	Hus		ASP-A	Þ	ASP-E	3	Same as Client Info	1
PAA: 006-096-9195	FAA: 500-622-3266	Project Location:		1		10 - A - 4	X	EQuIS (1 F	File)	EQuis	S (4 File)	PO#	
Client Information		Project #						Other					
Client: CESE	ngineers Inc	Use Project name as P	roject #)				Regu	latory Requ	irement			Disposal Site Information	
Address: 141 Z	Hy St.	Project Manager:					X	NY TOGS	Г	NY Par	rt 375	Please identify below location	n of
		ALPHAQuote #:			-			AWQ Standa	ards	NY CP	-51	applicable disposal facilities.	
Phone:		Turn-Around Time	THE R. S.			170 Per		NY Restricte	d Use	Other		Disposal Facility:	
Fax:	0	Standar	d	Due Date:			1 n	NY Unrestric	ted Use				
Email: CMartin	VCSCOS.CO	Rush (only if pre approved	a) 🔲	# of Days:	с. С		IH	NYC Sewer	Discharge			C Other	
These samples have h	een previously analyz	red by Alpha		in or bayo.				VSIS	choendige	-		Sample Filtration	15 M
Other project specific	c requirements/com	ments:			_				T T	-			- 0
							0					Done Debte de	1
							5					Preservation	-1-
Please specify Metals	s or TAL.						-<					Lab to do	
	C. S. G. M. G. M						0						0
			0.1		-	1	2					(Please Specify below)	t
ALPHA Lab ID	S	ample ID	Colle	ection	Sample	Sampler's	s						_
(cab obc only)	Mandal A	12.201	Date	Time	Maurix	iniuais	-					Sample Specific Comments	e e
23976-01	MSMW-01	-050121	67121	10:45	GW	CM	5						3
02	MDMW-0	6-05072		12:00		1	1			_			3
	Manto 0	3 050721					25	_					3
03	MSMW-04	-050721		11:30			X						3
							1	1					
Child State													
C. C													
			1										
Preservative Code:	Container Code	Westboro: Certification	No: MA935		0		1					Plassa print clearly, los	iblu
B = HCI	A = Amber Glass	Mansfield: Certification I	No: MA015		Cor	ntainer Type	· V					and completely. Sampl	es can
$C = HNO_3$	V = Vial					200000000000000000000000000000000000000	1					not be logged in and	
$D = H_2SO_4$ $E = N_2OH$	G = Glass B = Bacteria Cup	1000				Preservative	0					turnaround time clock v	vill not
F = MeOH	C = Cube	Relippuished	By	Date/	Time		Recei	ed By:		Date/	Time	resolved. BY EXECUT	es are
G = NaHSO4	C = Other E = Encore	1 marth MI	Lab	6/2/21	214	1 (1		A Drip	r r	111	INLIE	THIS COC, THE CLIEN	VT
K/E = Zn Ac/NaOH	D = BOD Bottle	VI LY U	AAD	445	1 TYLE		L	201 -	00	211	214	HAS READ AND AGR	EES
O = Other		0-0-0	21110	2140	100	100	1	11-42	X7	0/0/	0/150	TERMS & CONDITION	PHA'S
Form No: 01-25 HC (rev. 3	0-Sept-2013)	1				1	-		2			(See reverse side.)	

APPENDIX B GROUNDWATER MONITORING CONSTRUCTION & SAMPLING LOGS

1¼" = 0.08

4" = 0.66

C&S Engineers, Inc. 141 Elm Street Buffalo, New York 14203 Phone: 716-847-1630 Fax: 716-847-1454

3" = 0.38

8" = 2.6

Well Casing Unit Volume (gal/l.f.)

2" = 0.17

6" = 1.5

Well Sampling Field **Data Sheet**

Client Nam
Site Name:
Project No.
Field Staff:

à.

Chefit Name
Site Name:
Project No.:
Field Staff:

ie:	Kaliela Health
	Main Street Right of
.:]	KIL 005,004 0
	C. Martin

Way

WELL DATA

Date	517				-		
Well Number	NGMW-01	MSMWE	2 MSNWO	B MSMW	04		
Diameter (inches)	2"	2",	2"	2"			
Total Sounded Depth (feet)	35.75	35,5	32.5	35,00)		
Static Water Level (feet)	23.73	29	31.3	31.15			
H ₂ O Column (feet)							
Pump Intake (feet)							
Well Volume (gallons)					~		
Amount to Evacuate (gallons)	2	1	0,25	0.7			
Amount Evacuated (gallons)	2	Z	X	2		1	

	'n	NSMW-	1			10010)-L	t		
	1		FIEL	D READIN	IGS IVC	> 10/00	-		
Date	Stabilization	517,	a			-0			
Time	Criteria	in:44	10:47	1051		11:01			
Volume Extracted	gallons	0	1	2		D			
Static Water Level (feet)	NA		1 1 1	2					
pH (Std. Units)	+/-0.1	10,72	6.54	10.47		8.49			
Conductivity (mS/cm)	3%	5.71	5.79	10.06		12.1			
Turbidity (NTU)	10%	331	50	6.		100			
D.O. (mg/L)	10%	8.09	7.10	7.44		11.41.			
Temperature (°C) (°F)	3%	11.75	11,83	1180		10.74			
ORP ³ (mV)	+/-10 mv	222	128	731		175			
Appearance		C	C	C		4251			
Free Product (Yes/No)		Ň	Ň/	N		N			
Odor		N	XI	N		NO			
Comments	MW-3	dry	no s	ample	colle	cted			cour c
	MW-2	2 not	enough	volum	e F05-	the pu	mpt 7	ning i	SHUS
	MW-2	2 and	MWY	t Colle	ded 1	with	bailer		

C = Clear T = Turbid ST = Semi Turbid VT = Very Turbid

	C&S Engineers, Inc.	G	ROUND	WATE	२		Well No	MSMW_1
	90 Broadway Buffalo, New York 14203	ORS	FRVAT		=1 1			
COMPANIES	Phone: 716-847-1630					Р	roject No.:	K11.002.001
COMPANIES	www.cscos.com	CON	ISTRUC	TION L	.0G	Sur	face Elev.:	664.41
Project Name: Main	Street Right-of-Way Monitoring W	/ells					Datum:	NAVD 88
Location: 1001	Main Street, Buffalo, New York						Start Date:	3/6/14
Client: Kalie	da Health		•			Fi	inish Date:	3/7/14
Drilling Firm: SJB,	Inc						Inspector:	C. Martin
			Drill Rig:				Casing:	2.25"
_	0'-0" Top Protective Cas	ing	Notes:	(provide deso development	cription of ob method and	servation wel any other inf	I location, me	ethod of construction,
	Top of Riser		Monitoring	well was inst	alled appro	ximately 20"	from the co	Instruction edge of
	0'-0" Ground Surface		sidewalk; w	ithin a 4-5 fo	ot deep trer	nch between	the sidewal	k and Medical Office
			Building. M	onitoring we	Ils were ins	stalled with 2	-3 foot riser	above construction
	Surface Backfill Materia	<u> </u>	grade. After	tinish grade	is complete	e protective (casing will b	be installed flush with
ГЦГ	Soil Cuttings		ground sur					
	Bentonite Slurry							
	Cement/Bentonite G	Grout						
	 8" Bore Hole Diamete 	r						
I ÖK	Well Diameter							
	Stoiploop Stool							
	Rackfill Material			Groundwate	er Measure	ement Data		
	Soil Cuttings			Croanawak	Denth to	Water	Tide	
	Bentonite Slurry		Date	Time	Water	Elevation	Status	
	Cement/Bentonite G	Grout	3/7/2014	11:30 AM	23.9	640.51	014140	
	🔨 Depth To:							
	< <u>24'-0</u> " Top of Seal							
	Seal Material							
	x Bentonite Chips/Pel	lets						
	Bentonite Slurry							
	Cement/Bentonite G	orout						
	26'-0" Top of Filter Pa	ck						
	26'-0" Top of Screen							
	Screen Slot Size							
	025 in							
	Filter Material							
	00 Sand Pack							
	x 0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	36'-0" Bottom of Scree	en						
	36'-0" Bottom of Bore	Hole						

	C&S Engineers, Inc.	G	ROUND	WATE	२		Well No	MSMW-2
	90 Broadway Buffalo, New York 14203	ORS	SERVAT		=1 1			WISIWIW-2
COMPANIES	Phone: 716-847-1630					Р	roject No.:	K11.002.001
COMPANIES	WWW.CSCOS.COM	CON	ISTRUC	TION L	.0G	Sur	face Elev.:	663.47
Project Name: Main S	Street Right-of-Way Monitoring V	/ells					Datum:	NAVD 88
Location: 1001 M	Main Street, Buffalo, New York						Start Date:	3/4/14
Client: Kalied	a Health			1		F	inish Date:	3/4/14
Drilling Firm: SJB, I	nc						Inspector:	C. Martin
			Drill Rig:				Casing:	2.25"
	0'-0" Top Protective Cas	sing	Notes:	(provide deso development	cription of ob method and	servation wel any other inf	I location, me formation)	ethod of construction,
	Top of Riser		Monitoring	well was inst	alled appro	ximately 20"	from the co	Instruction edge of
	0'-0" Ground Surface		sidewalk; w	ithin a 4-5 fo	ot deep trer	nch between	the sidewal	k and Medical Office
			Building. M	onitoring we	ells were ins	stalled with 2	-3 foot riser	above construction
	Surface Backfill Materia	<u> </u>	grade. After	tinish grade	is complete	e protective (casing will b	be installed flush with
	Soil Cuttings		ground sun					
	Bentonite Slurry							
	Cement/Bentonite G	Grout						
	8" Bore Hole Diamete	r						
	Vell Diameter							
	Stainless Steel							
	Backfill Matorial		I	Groundwate	or Mossure	mont Data	1	
				Siounawat	Dopth to	Wator	Tido	
	Bentonite Slurry		Date	Time	Water	Flevation	Status	
	Cement/Bentonite C	frout	3/5/2014	7:30 AM	27.7	635 77	Olalus	
			0,0,2011					
	Depth To:							
	23'-6" Top of Seal					1		
	Seal Material							
	x Bentonite Chips/Pel	lets						
	Bentonite Slurry							
	Cement/Bentonite G	Grout						
	25'-6" Top of Filter Pa	ck						
	25'-6" Top of Screen							
	Saraan Slat Siza							
	015 in							
	020 in							
	025 in		I ,					
	Filter Material							
	00 Sand Pack							
	x 0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	35'-6" Bottom of Scre	en						
	35'-6 " Bottom of Bore	Hole						

	C&S Engineers, Inc.	G	ROUND	WATE	२		Well No	MSMW-3
	90 Broadway Buffalo, New York 14203	OBS	FRVAT		=11		Wen No.	
COMPANIES	Phone: 716-847-1630 Fax: 716-847-1454	000			~~	P	roject No.:	K11.002.001
	www.cscos.com		151 KUU		.06	Sur	face Elev.:	663.28
Project Name: Main	n Street Right-of-Way Monitoring v	Vells				<u> </u>	Datum:	NAVD 88
Location: 1001	1 Main Street, Butfalo, New York					<u> </u>	Start Date:	3/5/14
Client: Kalle	eda Health			·		<u>н</u>	nish Date:	3/5/14
Drilling Firm: SJB,	, Inc		Duill Dieu			L	Inspector:	C. Martin
		İ	Drill Kig:	(arealdo door			Casing:	2.25"
_	0'-0" Top Protective Cas	sing	Notes:	development	method and	any other inf	formation)	Sthoa of construction,
	Top of Riser	İ	Monitoring	well was inst	alled appro	ximately 20"	from the co	Instruction edge of
	0'-0" Ground Surface		Sidewalk; w	ithin a 4-5 too	ot deep trer	ich between	the sidewai	k and Medical Office
		-	grade After	finish grade	is complete	e protective (-3 1001 Haer	above construction
	Surface Backfill Materia	<u>al</u>	around surf	ace.	15 compies	5 proteoure .	aoing an a	e installed hush man
	Soil Cuttings	I	3					
	Bentonite Slurry	`						
		Fout						
		I						
	× 8" Bore Hole Diamete	er						
	X 2" Well Diameter							
	Well Material							
	X PVC							
	Stainless Steel							
			I	- 1				I
	Backfill Material			Groundwate	er Measure	ent Data		l
	X Soil Cuttings	İ			Depth to	Water	Tide	
	Bentonite Siurry	2	Date		Water	Elevation	Status	
		JIOUL	3/3/2014	11.00 AW	27.0	033.00		
						<u> </u>		
	No.	İ		P		<u>├───</u>		
	21'-6" Top of Seal	İ				<u> </u>		l
	Seal Material					 		
	Bentonite Chips/Pel	llets				<u> </u>		
	Bentonite Slurry	I						
	Cement/Bentonite G	Grout						l
	23'-6" Top of Filter Pa	lck						
	23'-6" Top of Screen	İ				+		
		Ì				+		
	Screen Slot Size					 		
	x 010 in	İ				† †		l
	015 in					1		l
	020 in	İ						
	025 in					<u></u>		
	Filter Material							
	00 Sand Pack							
	x 0 Sand Pack							
	1 Sand Pack							
	2 Sand Pack							
	3 Sand Pack							
	4 Sand Pack							
	33'-6" Bottom of Scree	en						
	35'-0" Bottom of Bore	Hole						

	- 12	C&S Engineers, Inc.	G	ROUND	WATE	2			MSMW_4
	-	90 Broadway Buffalo, New York 14203	ORS			=1 1		wen no.	101310100-4
COMPANIE	5	Phone: 716-847-1630					Р	roject No.:	K11.002.001
COMPANIE.	.5	rax: 710-847-1454 www.cscos.com	CON	ISTRUC	TION L	.OG	Sur	face Elev.:	662.97
Project Name: Ma	ain Str	eet Right-of-Way Monitoring V	/ells					Datum:	NAVD 88
Location: 100	01 Ma	in Street, Buffalo, New York					:	Start Date:	3/5/14
Client: Kal	alieda	Health					Fi	nish Date:	3/5/14
Drilling Firm: SJE	JB, Inc							Inspector:	C. Martin
				Drill Rig:				Casing:	2.25"
				Notes:	(provide desc	cription of ob	servation wel	l location, me	ethod of construction,
		0'-0" Top Protective Cas	sing		development	method and	any other inf	ormation)	
		Top of Riser		Monitoring	well was inst	alled appro	ximately 20"	from the co	nstruction edge of
		0'-0" Ground Surface		SIdewalk; W	Ithin a 4-5 to	ot deep trer	talled with 2	the sidewal	k and Medical Office
				arade After	finish grade	is complete	e protective (asing will h	e installed flush with
		Surface Backfill Materia	<u> </u>	around surf	ace.	io complete			
		Soil Cuttings		Ŭ					
	Č	Bentonite Slurry							
		X Cement/Bentonite	irout						
	\sim	Concrete							
	Ŏ								
	Ň	8" Bore Hole Diamete	r						
	\sim								
	Ô								
	Õ								
	\bigcirc	Stainless Steel							
	\bigcirc	Rockfill Motorial		I	Groundwate	or Moseure	amont Data		
	\bigcirc			· · · · · · · · · · · · · · · · · · ·	Giounuwate	Dopth to	Wator	Tido	
	\sim	Bentonite Slurry		Date	Time	Wator	Flovation	Status	
	\sim	Cement/Bentonite G	Grout	3/6/2014	11.00 AM	27.5	635.47	Status	
	\sim	Concrete	loat	0/0/2011	11.007.00	21.0	000.17		
	\mathbf{x}	Depth To:							
		25'-0" Top of Seal							
		Seal Material							
		x Bentonite Chips/Pel	lets						
		Bentonite Slurry							
		Cement/Bentonite G	Grout						
		27'-0" Top of Filter Pa	ck						
		27'-0" Top of Screen							
		Screen Slot Size							
		x 010 in							
		015 in							
		020 in							
		025 in							
		Filter Motorial							
		Filler Material							
		V O Sand Pack							
		1 Sand Pack							
		2 Sand Pack							
		3 Sand Pack							
		4 Sand Pack							
		37'-0" Rottom of Scre	en						
	-	35'-0" Bottom of Bore	Hole						
		Bottom of Bote							

				&S Engi	neers, Inc.				В	oring No.	MSMW-01
	3	tì	Bu	ffalo, New	York 14203	BORING LOG					
C	OMP	AN	IIES Fa	one: 716-84 x: 716-847-	47-1630 -1454			heet 1 of:	2		
Dreie	t Nom		ww 1001 Main S	w.cscos.com		Agin Stragt Mall	Installation	Pro	Dject No.:	K11.002.001	
Proje		e: n:	Main Street	Dight of \		viain Street weir	Installation	Suna	Dotum:		
-	Clie	11. ht:	Kalieda Hea	alth	way				s	tart Date:	3/6/14
Drilli	ng Firi	n:	SJB, Inc						Fin	ish Date:	3/6/14
	Grou	ndv	vater	Depth	Date & Time	Drill Rig:	Track Mounted CME		l	nspector:	C. Martin
		Wh	ile Drilling:			Casing:	2.25"	Rock Core:		Undist:	
Befo	ore Cas	sinę	g Removal:			Sampler:	2" Split Spoon	Other:			
Af	ter Cas	sinę	g Removal:			Hammer:	Auto				
	1		(N N	lo. of blow	vs to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	V D-1586, Stand	ard Pene	tration Test)
Image: transmission of transmissindex developed and transmission of transmissio									COMMENTS alue, recovery, relative e, core run, RQD, % recovered)		
1											
-				BORING	INSTALLED APPI	ROXIMATELY 20	INCHES FROM THE				
2				CONSTR	RUCTION EDGE O	F SIDEWALK. B	ORING WAS INSTAL	LED			
				INSIDE T	FRENCH BETWEE	N EDGE OF SI	DEWALK AND BUILDI	NG. TRENCH			
3				WAS BA	CKFILLED WITH	CRUSHED STOP	NE TO PROVIDE A PL	ACE FOR			
				DRILLER	RS TO STAND.						
4											
5				AUGERE		LOW GROUND (SURFACE.				
			7								
6			8	19 in-	Sandy SILT -brow	wn - trace fine S	and - moist			0 ppm	
			7								
7			6								
8				ALICEDE							
9				AUGERE	DSFEET						
10											
			4	<u>18 in-</u>	SILT -brown - mo	<u>pist</u>				0 ppm	
11			12								
10			20								
12			20								
13											
				AUGERE	ED 5 FEET						
14											
15			10	45 in		1				0	
16			13	<u>13 IN-</u>	SILI -Drown - MO	nst				o ppm	
10			16								
17			19								
18											
40				AUGERE	D 5 FEET						
19											
20											
	1		15	<u>18 in-</u>	SILT -brown - mo	oist				0 ppm	
21			22	<u>18 in-</u>	Sandy SILT -brow	wn - trace fine S	and - saturated				
			26								
22			30	4110555							
22				AUGERE	DSFEEL						
20		í								1	

	8		S Ca 14 Bu	&S Engineers, Inc. 1 Elm Street Iffalo, New York 14203	BORING LOG	B	oring No.	MSMW-01
C	OMP		IIES Fa	one: 716-847-1630 x: 716-847-1454		S	heet 2 of:	2
			ww	w.cscos.com		Pro	oject No.:	K11.002.001
Projec	t Nam	e:	1001 Main S	Street Brownfield Cleanup - I	Main Street Well Installation	S	tart Date:	3/6/14
L	ocatio	n:	Main Street	Right-of-Way		Fin	ish Date:	3/6/14
	Clier	nt:	Kalieda Hea	alth		Ir	nspector:	C.Martin
ft)	e	Ы	Blows on		- hee - e	35-50%	(COMMENTS
с) Ц	jd .	nbo	Sampler	c - coarse m - medium	MATERIAL DESCRIPTION S - some -	20-35%	(e.g.,	N-value, recovery,
ept	San	Syr	per 6"	f - fine	t - trace	10-20% · 0-10%	moistur	e, core run, RQD, %
Δ	•	••	P	5 - Sano	a, \$-Sill, G-Glavel, C-Clay, Cly-Clayey			recovered)
24								
25								
			10					
26			14	No Recovery				
			19					
27			21					
			12	10 in- Silty SAND-brow	n - fine Sand trace Silt - saturated		0 ppm	
28			14	<u>3 in-</u> SILT -brown - sa	turated			
			15					
29			21					
			3	<u>15 in-</u> SILT -brown - sa	turated		0 ppm	
30			11					
			17					
31			23					
			25	15 in- Sandy SILT -brow	wn - trace fine Sand - saturated		0 ppm	
32			33					
			50/3					
33								
			17	19 in- Clay SILT -brown	<u>n - some Clay - wet</u>		0 ppm	
34			13					
			12					
35			15					
36				END OF BORING	AT 35 FEET BELOW GROUND SURFACE			
07								
37								
00								
38								
00								
39								
40								
40								
A1								
42								
- 74								
43				l				
44								
45								
46								
47								
48								
49								
				1				

	ا ر	-		&S Engi 1 Elm Stree	neers, Inc.	_		-	В	oring No.	MSMW-02
	C		Pr	none: 716-8	47-1630	E	SORING LOO	j	S	heet 1 of:	2
C	OMP	Ar		IX: 716-847- /w.cscos.com	-1454 1				Pro	oject No.:	K11.002.001
Proje	ct Nam	ne:	1001 Main \$	Street Bro	wnfield Cleanup - I	Main Street Well	Installation		Surfa	ace Elev.:	663.47
L	ocatio	n:	Main Street	Right-of-\	Way					Datum:	NAVD 88
	Clie	nt:	Kalieda Hea	alth					S	tart Date:	3/4/14
Drilli	ng Fir	m:	SJB, Inc						Fin	nish Date:	3/4/14
	Grou	nd١	water	Depth	Date & Time	Drill Rig:	Track Mounted CME		-	nspector:	C. Martin
		Wh	ile Drilling:			Casing:	2.25"	Rock Core:		Undist:	
Befo	ore Ca	sin	g Removal:			Sampler:	2" Split Spoon	Other:			
Af	ter Ca	sin	g Removal:			Hammer:	Auto				
	1	1	(N N	lo. of blow	vs to drive sampler	12" w/140 lb. ha	Immer falling 30" ASTI	M D-1586, Stand	ard Pene	tration Test)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION /el, C - Clay, cly - clayey	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
1											
				BORING	INSTALLED APP	ROXIMATELY 20) INCHES FROM THE	:			
2				CONSTR	RUCTION EDGE O	F SIDEWALK. B	ORING WAS INSTAL	LED			
				INSIDE 1	TRENCH BETWEE	N EDGE OF SI	DEWALK AND BUILDI	NG. TRENCH			
3				WAS BA	CKFILLED WITH	CRUSHED STOP	NE TO PROVIDE A PL	ACE FOR			
				DRILLEF	RS TO STAND.						
4											
5				AUGERE	ED TO 5 FEET BEI	LOW GROUND :	SURFACE.				
			12								
6			20	6 in -	Silty CLAY - red	brown				0 ppm	
			8								
7			7								
8											
٩				AUGERE	ED 5 FEET						
10											
			5	<u>17 in-</u>	Silty SAND - bro	wn - dry - fine S	and - trace Silt			0 ppm	
11			19	-							
10			22								
12			24								
13											
				AUGERE	ED 5 FEET						
14											
15										_	
16			9	<u>17 in-</u>	Silty SAND - bro	wn - dry - fine S	and - trace Silt			0 ppm	
10			10								
17			13								
18											
				AUGERE	ED 5 FEET						
19											
20											
	1		8	17 in-	Silty SAND - bro	wn - dry - fine S	and - trace Silt			117 ppm	
21			11	1		· ····· •					
	1		11								
22			10								
				AUGERE	ED 5 FEET						
23										1	

ſ	Ē		14 Bu	&S Engineers, Inc. 1 Elm Street ffalo, New York 14203	BORINGLOG	В	oring No.	MSMW-02
			Ph UES Fo	one: 716-847-1630	BORING LOG	S	heet 2 of:	2
C	JIVIP	410		X: 710-847-1454 w.cscos.com		Pro	oject No.:	K11.002.001
Proje	ct Nam	e:	1001 Main S	Street Brownfield Clear	up - Main Street Well Installation	S	tart Date:	3/4/14
L	ocatio	n:	Main Street	Right-of-Way		Fin	ish Date:	3/4/14
	Clie	nt:	Kalieda Hea	alth		lı	nspector:	C.Martin
÷	-							COMMENTS
h (f	ple	po	Blows on	c - coarse	a - and -: S - some -:	35-50% 20-35%	(e.g.,	N-value, recovery,
spt	Nc an	ym	Sampler	f - fine	MATERIAL DESCRIPTION I - little -	10-20%	moistur	e, core run, RQD, %
ă	S	S	pero	S	- Sand, \$ - Silt, G - Gravel, C - Clay, cly - clayey	0-1070		recovered)
24								
25								
			5	17 in- Silty SAND	· brown - moist - fine Sand - trace Silt		132 ppm	
26			7					
			9					
27			12					
			5	13 in- Siltv SAND	· brown - moist - fine Sand - trace Silt		242 ppm	
28			7	6 in- Silty SAND	· brown - moist - med Sand - trace Silt			
			9	2 in- SILT - brow	n - moist			
29			12		<u> </u>			
			3	16 in- Silty CLAY	red brown - moist		0 ppm	
30			4	3 in- Sandy SII T	trace fine Sand - moist		o ppin	
00			9					
31			13					
51			12	13 in- Sand & Gra	vel - grey - coarse sand and 25 in rounded gravel grey -		300 ppm	
22			14	<u>13 III-</u> Salid & Ola	ver- grey - coarse sand and .25 in rounded graver grey -		500 ppm	
52			14	Saturateu				
22			10					
- 33			11	Gin Cond & Cra	val black, economic and 25 in rounded group group		150	
24			4	<u>o III-</u> <u>Saliu & Gia</u>	ver- black - coarse sand and .25 in rounded gravel grey -		150 ppm	
54			4 0	Saturateu				
25			0					
30			12	9 in Sond 9 Gra	vol black accrea cand and 25 in rounded group grou		90 nnm	
26			1	<u>o III-</u> Sand & Gra	ver- black - coarse sand and .25 in rounded gravel grey -		60 ppm	
30			0	saturateo				
27			0					
37			8		al black a second and of in some dad many land		100	
20			12	24 In- Sand & Gra	vel- black - coarse sand and .25 in rounded gravel grey -		400 ppm	
38			12	saturated				
20			11					
39			11					
40								
40				END OF BC	RING AT 39 FEET DELOW GROUND SURFACE			
14								
41								
40								
42								
40								
43								
4.4								
44								
45								
45								
40								
46								
47								
48								
49								

			C	&S Engi	neers, Inc.				в	oring No	MSMW_03
	-8	P	14 Bu	1 Elm Stree ffalo, New	et York 14203	F		5		oning No.	
c	OMP		HES Fa	one: 716-84 x: 716-847-	47-1630 -1454	-		5	S	heet 1 of:	2
			ww	w.cscos.com					Pro	oject No.:	K11.002.001
Proje	ct Nam	e:	1001 Main S	Street Bro	wnfield Cleanup - I	Main Street Well	Installation		Surfa	ace Elev.:	663.28
L	ocatio	n:	Main Street	Right-of-V	Nay					Datum:	NAVD 88
Drilli	Cile	nt: m:	Kalleda Hea	aith					S	tart Date:	3/5/14
Driili		n: ndv	SJB, Inc	Donth	Data & Tima	Drill Pig:	Track Mounted CME		FIN	nsh Date:	C Martin
	Grou	Wh	ile Drilling:	Depth	Date & Time	Casing:	2 25"	Bock Core:		Indist.	C. Martin
Befo	ore Ca	sind	a Removal:			Sampler:	2" Split Spoon	Other:		onuist.	
Af	ter Ca	sing	Removal:			Hammer:	Auto				
			(N N	lo. of blow	vs to drive sampler	12" w/140 lb. ha	mmer falling 30" ASTI	M D-1586, Stand	ard Pene	tration Test	:)
ft)	ø	2	Plaws on					a - and -	25-50%		COMMENTS
E) (I	o ble	nbc	Sampler	c - coarse m - mediun	n	MATERIAL	DESCRIPTION	s - some -	20-35%	(e.g., N-v	alue, recovery, relative
ept	San	Syr	per 6"	f - fine	S - San	4 \$ - Silt G - Grav	vel C - Clay, cly - clayev	, I - little - t - trace	10-20% - 0-10%	moistur	re, core run, RQD, %
			•		0 - Gan		vei, C - Clay, Cly - Clayey				recovered)
1											
	-			BORING		ROXIMATELY 20		:			
2				CONSTR		F SIDEWALK, B	ORING WAS INSTAL	I FD			
_				INSIDE 1	RENCH BETWEE	EN EDGE OF SIL	DEWALK AND BUILDI	NG. TRENCH			
3				WAS BA	CKFILLED WITH	CRUSHED STOP	NE TO PROVIDE A PL	ACE FOR			
	1			DRILLER	RS TO STAND.						
4											
				AUGERE	ED TO 5 FEET BEI	LOW GROUND	SURFACE.				
5											
			23								
6			24	<u>16 in-</u>	Silty SAND -It bro	own - fine sand	some silt - moist			0 ppm	
-			21	<u>7 in-</u>	Silty CLAY -dark	grey - dense 40	<u> 1% Silt - moist</u>				
/	-		26								
8											
0	1			AUGERE	D 5 FEET						
9											
	1										
10											
			6	<u>24 in-</u>	Silty CLAY -red b	prown - dense n	nassive high pl - moi	<u>st</u>		0 ppm	
11			12								
			13								
12			19								
12											
13				AUGERE	D 5 FFFT						
14											
	1										
15											
]		4	24 in-	Clay SILT -red br	rown - silt with s	some clay - low pl - tr	race fine Sand -		0 ppm	
16	ļ		4		moist						
			8								
17			8								
40											
18	4			ALIGERS							
19				AUGERE							
- 10	1										
20											
	1		13	24 in-	Silty SAND -brov	vn - fine Sand 2	0-30% Silt - moist			0 ppm	
21			22								
	1		22								
22	ļ		19								
				AUGERE	D 5 FEET						
23		1									

ſ	-		S 14 Bu	&S Engi 1 Elm Stre íffalo, New	n eers, Inc. et v York 14203	BORINGLOG	В	oring No.	MSMW-03
C	OMP		Ph IIES Ea	one: 716-8	347-1630 7-1454		S	heet 2 of:	2
5				w.cscos.con	n		Pre	oject No.:	K11.002.001
Projec	ct Nam	e:	1001 Main S	Street Bro	ownfield Cleanup - I	Main Street Well Installation	S	tart Date:	3/5/14
L	ocatio.	n:	Main Street	Right-of-	Way		Fir	nish Date:	3/5/14
	Clier	nt:	Kalieda Hea	alth			l	nspector:	C.Martin
ŧ	e		Blows on			a - and -	35-50%	9	COMMENTS
th (ld o	nbe	Sampler	c - coarse m - mediu	m	MATERIAL DESCRIPTION S - some -	20-35%	(e.g.,	N-value, recovery,
Dep	Sar	Syı	per 6"	f - fine	S - San	t - trace	- 0-10%	moistur	e, core run, RQD, %
					o ouri				recovered)
0.4									
24									
25									
25			6	24 in-	Silty SAND -brow	vn - fing Sand 20-20% Silt - wat		1 7 nnm	
26			10	<u> 24 III-</u>	Sity SAND -DIO	in - ine Said 20-50 /i Sitt - wet			
20			10						
27			10						
			12	7 in-	SAND -It grev - n	ned Sand - wet		18 ppm	
28			13	14 in-	Sandy SILT-brow	vn - trace fine Sand - saturated			
			16						
29			18						
			6	24 in-	Sandy SILT -brow	wn - trace fine Sand some staining last 4" -		470 ppm	
30			14		saturated	8			
			17						
31			22						
	1		12	17 in-	Coarse Sand & C	Gravel -dk grey to black - coarse rounded and		130 ppm	
32			14		angular Sand wit	h 1" smller gravek subrounded - saturated			
			18						
33			17						
			10	<u>24 in-</u>	Coarse Sand & C	Gravel -dk grey to black - coarse rounded and		370 ppm	
34			12		angular Sand wit	h 1" smller gravek subrounded - saturated			
			12						
35			16						
36					END OF BORING	AT 35 FEET BELOW GROUND SURFACE			
07									
37									
20									
30									
30									
33									
40									
41									
	1			1					
42									
	1								
43									
44									
45									
46									
47									
40									
48									
40									
49	I							I	

Contraction Building BORING LOG Sheet 1 of: 2 Project Name: 1001 Main Street Brownfield Clearup - Main Street Well Installation Startace Elev.: 62.37 Location: Main Street Brownfield Clearup - Main Street Well Installation Startace Elev.: 62.37 Location: Main Street Brownfield Clearup - Main Street Well Installation Startace Elev.: 62.37 Location: Main Street Brownfield Clearup - Main Street Well Installation Startace Elev.: 62.37 Location: Main Street Brownfield Clearup - Main Street Well Installation Starta Clearup - Main Street Well Installation Startace Elev.: 62.37 Identity Table Street Distreet Main Street Well Installation Startace Elev.: 62.37 Rock Kore: Undist: Before Casing Removal: Amontor: Amontor: Amontor: Amontor: Main Street Well Meint Distreet Main Street Well Installation Street Distreet Meint Distreet Distreet Meint Distreet Di			3		C a 14	&S Engi 1 Elm Stree	neers, Inc. et				В	oring No.	MSMW-04
COMPANUE Ex: 716-847-1434 (max. 1001) Main Street Brownfield Cleanup - Main Street Well Installation Project No.: K11.002.001 Project Name: 1001 Main Street Brownfield Cleanup - Main Street Well Installation Surface Text. 662.57 Coeation: Main Street Brownfield Cleanup - Main Street Well Installation Surface Text. 662.57 Coeation: Main Street Brownfield Cleanup - Main Street Well Installation Surface Text. 662.57 Other Cleanup - Main Street Brownfield Cleanup - Main Street Well Installation Surface Text. 767.00 Other Cleanup - Main Street Brownfield Cleanup - Main Street Well Installation Surface Text. 767.00 Other Cleanup - Main Street Brownfield Cleanup - Main Street Brownfield Cleanup - Main Street Brownfield Cleanup - Main Street Brownfield Cleanup - Main Street Brown - Surface -		_((J		Bu Ph	ffalo, New one: 716-8	York 14203 47-1630	E	BORING LOO	G	S	heet 1 of:	2
Project catorin: Main: Street Brownfield Cleanup - Main: Street Well Installation Surface Elev: 662:97 Location: Main: Street Right-of-Way Datum: NAVD 88 Client: Kalicida Healin Start Date: 3/5/14 Drilling firm: SLB, Inc. Finish Date: 3/5/14 Groundwater Depth Date: Sampler: 2/5/1 Refore Casing Removal: Hanmer: Auto: 2/5/1 Rock Core: Undist: Refore Casing Removal: Hanmer: Auto: 2/5/1 Rock Core: Undist: Refore Casing Removal: Hanmer: Auto: 2/5/1 Rock Core: Undist: Refore Casing Removal: No. of blows to drive sampler 12: w140 to. hanmer falling 50' ASTM D-1586, Standard Penetration Test) COMMENTS Solardia: Sand. 5. Sit. G - Orwell. C- Clay: dy- diayay =	C	омі	PAI	NIE:	S Fai	x: 716-847-	-1454				Pr	oiect No.:	K11.002.001
Location: Main Street Right-of-Way Datum: NAVD 86 Client: Kalleda Health Start Date: 3/5/14 Brilling Firm; Start Date: 3/5/14 Finish Date: 3/5/14 Groundwater Depth Date & Time Drill Rig: Track Mounted CME Finish Date: 3/5/14 Before Casing Removat: Sampler: 2:501 Spoon Other: Undist: Sampler: 2:01 Spoon Other: Undist: Sampler: Sampler: 2:01 Spoon Other: Undist: Sampler: Sample: Sample: Sample: Sample: Sample: <	Proje	ct Nai	me:	100	1 Main S	Street Bro	wnfield Cleanup -	Main Street Well	Installation		Surfa	ace Elev.:	662.97
Other: Kaleds Health Start Date: 35/14 Drilling Firm: S.B., Inc Finish Date: 35/5/14 Groundwater Depth Date & Time Drill Rig: Tack Mounted CME Inspector: C. Martin Before Casing Removal: Sampler: 2: Split Spoon Other: Undist: Educe Casing Removal: Mammer: Auto (N - No. of bows to drive sampler 12: wr140 lb. hammer failing 30' ASTM D-1586, Standard Penetration Test) (N - No. of bows to drive sampler 12: wr140 lb. hammer failing 30' ASTM D-1586, Standard Penetration Test) COMMENT E Sampler ::::::::::::::::::::::::::::::::::::	L	ocati	on:	Mai	n Street	Right-of-\	Way					Datum:	NAVD 88
Drilling Firm: S.J.B. Inc Image: Construction of the second seco		Clie	ent:	Kal	ieda Hea	alth					s	tart Date:	3/5/14
Groundwater Depth Date & Time Drill Rig; Track Mounted CME Inspector: C. Martin While Drilling: Casing: 2.25' Rock Core: Undist:	Drilli	ng Fi	rm:	SJE	3, Inc						Fir	nish Date:	3/5/14
While Drilling: Casing: 2.25' Rock Core: Undist: Before Casing Removat: Hammer: 2.25' Rock Core: Undist: After Casing Removat: Hammer: Auto Hammer: Auto Image: State Sta		Gro	und	wate	er	Depth	Date & Time	Drill Rig:	Track Mounted CME		l	nspector:	C. Martin
Before Casing Removal: Sampler: 2? Split Spoon Other: After Casing Removal: Harmer: Auto (N - No. of blows to drive sampler 12' wi140 ib. hammer falling 30' ASTM D-1586. Standard Penetration Test) COMMENTS (S) g			W	hile [Drilling:			Casing:	2.25"	Rock Core:		Undist:	
Atter Casing Removal: Hammer: Auto (N - No. of blows to drive sampler 12" w/140 lb. hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS (See See See See See See See See See See	Befo	ore Ca	asir	ig Re	emoval:			Sampler:	2" Split Spoon	Other:			
No No. of blows to drive sampler 12" wir40 lb. hammer falling 30" ASTM D-1586, Standard Penetration Test) COMMENTS 9	Af	ter Ca	asir	ig Re	emoval:			Hammer:	Auto				
E B B COMMENTS E Sompler Some Some Some Some Some Some Some Some		1		1	(N N	lo. of blow	ws to drive sample	r 12" w/140 lb. ha	immer falling 30" ASTI	M D-1586, Stand	ard Pene	tration Test)
1 BORING INSTALLED APPROXIMATELY 20 INCHES FROM THE Image: construction edge of sidewalk. BORING WAS INSTALLED 3 CONSTRUCTION EDGE OF SIDEwalk. BORING WAS INSTALLED Image: construction edge of sidewalk. AND BUILDING. TRENCH 4 WAS BACKFILLED WITH CRUSHED STONE TO PROVIDE A PLACE FOR Image: construction edge of sidewalk. BORING WAS INSTALLED 4 DRILLERS TO STAND. Image: construction edge of sidewalk. BORING WAS INSTALLED 5 DRILLERS TO STAND. Image: construction edge of sidewalk. BORING WAS INSTALLED 6 DRILLERS TO STAND. Image: construction edge of sidewalk. BORING WAS INSTALLED 6 DRILLERS TO STAND. Image: construction edge of sidewalk. BORING WAS INSTALLED 6 Image: construction edge of sidewalk. BORING WAS INSTALLED Image: construction edge of sidewalk. BORING WAS INSTALLED 6 Image: construction edge of sidewalk. BORING WAS INSTALLED Image: construction edge of sidewalk. BORING WAS INSTALLED 7 B Image: construction edge of sidewalk. BORING WAS INSTALLED Image: construction edge of sidewalk. BORING WAS INSTALLED 7 B Image: construction edge of sidewalk. BORING WAS INSTALLED Image: construction edge of sidewalk. BORING WAS INSTALLED 10 Image: constructin edge of sidewalk. BORING WAS INSTA	Depth (ft)	Sample	Svmbol	Blo Sa F	ows on ampler ber 6"	c - coarse m - mediun f - fine	m S - San	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION /el, C - Clay, cly - clayey	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-v moistur	alue, recovery, relative e, core run, RQD, % recovered)
Image: construction space of spectrum is a spectr	1												
2 CONSTRUCTION EDGE OF SIDEWALK. BORING WAS INSTALLED 3 INSIDE TRENCH BETWEEN EDGE OF SIDEWALK AND BUILDING. TRENCH 4 WAS BACKFILLED WITH CRUSHED STONE TO PROVIDE A PLACE FOR 4 DRILLERS TO STAND. 5 AUGERED TO 5 FEET BELOW GROUND SURFACE. 6 10 10 14 in: 9	- ·					BORING	INSTALLED APP	ROXIMATELY 20	INCHES FROM THE				
INSIDE TRENCH BETWEEN EDGE OF SIDEWALK AND BUILDING. TRENCH WAS BACKFILLED WITH CRUSHED STONE TO PROVIDE A PLACE FOR DRILLERS TO STAND. AUGERED TO 5 FEET BELOW GROUND SURFACE. 11 6 10 14 9 4 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 12 13 14 15 16 17 18 19	2					CONSTR	RUCTION EDGE C	OF SIDEWALK. B	ORING WAS INSTAL	LED			
3 WAS BACKFILLED WITH CRUSHED STONE TO PROVIDE A PLACE FOR 4 DRILLERS TO STAND. Image: Constraint of the stand standar		1				INSIDE 1	TRENCH BETWEI	EN EDGE OF SI	DEWALK AND BUILDI	NG. TRENCH			
4 DRILLERS TO STAND. 4 AUGERED TO 5 FEET BELOW GROUND SURFACE. 5 11 6 10 10 14 in- SILT-brown - wet 10 14 in- SILT-brown - wet 9	3					WAS BA	CKFILLED WITH	CRUSHED STOP	NE TO PROVIDE A PL	ACE FOR			
4 AUGERED TO 5 FEET BELOW GROUND SURFACE.						DRILLEF	RS TO STAND.						
AUGERED 10'S PEET BELOW GROUND SURACE.	4												
0 11 0 6 10 14 in- 0 ppm 10 14 in- 0 9 0 0 8 0 0 9 0 0 10 13 18 in- 10 11 25 0 0 12 31 0 0 13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 0 ppm 12 31 0 0 13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 2.7 ppm 14 0 0 0 0 15 0 0 0 0 16 50/4 0 0 0 17 0 0 0 0 18 0 0 0 0 19 0 0 0 0	5					AUGERE	ED TO 5 FEET BE	LOW GROUND (SURFACE.				
6 10 14 in: Silt -brown - wet 0 ppm 7 9		1		11									
10 9	6			10		14 in-	SILT -brown - w	et				0 ppm	
7 9		1		10									
8 AUGERED 5 FEET Image: constraint of the stand source of the stand s	7			9									
a AUGERED 5 FEET Image: constraint of the second seco	0												
9 10 11 10 13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 0 ppm 11 25 0 0 12 35 0 0 13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 0 ppm 14 0 0 0 15 0 0 0 16 50/4 0 0 17 0 0 0 0 18 0 0 0 0 19 0 0 0 0	0			-		AUGERE	D 5 FEFT						
10 13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 0 ppm 11 25 0 12 35 0 13 14 0 14 0 0 15 0 0 16 50/4 0 17 0 0 18 0 0 19 0 0	9					/ OOEIIL							
10 13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 0 ppm 11 25		1											
13 18 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 0 ppm 11 25	10												
11 25					13	<u>18 in-</u>	Silty SAND -bro	wn - fine Sand 3	<u>0-40% Silt - moist</u>			0 ppm	
12 31	11				25								
12 0.1 0.1 13 0.1 0.1 13 0.1 0.1 14 0.1 0.1 15 0.1 0.1 16 50/4 0.1 17 0.1 0.1 18 0.1 0.1 19 0.1 0.1	12				30 31								
13		1			01								
14 AUGERED 5 FEET Image: constraint of the stand source of the st	13												
14]				AUGERE	ED 5 FEET						
15	14												
13 29 10 in- Silty SAND -brown - fine Sand 30-40% Silt - moist 2.7 ppm 16 50/4 2.7 ppm 17 - - - 18 - - - 19 - - -	15												
16 50/4 20 pm 17 10 10 18 10 10 19 4UGERED 5 FEET 10	15	1			29	10 in-	Silty SAND -broy	wn - fine Sand 3	0-40% Silt - moist			2 7 ppm	
17	16				50/4	<u></u>	only of the bio					2.1 pp://	
17		1											
18	17	l											
18 AUGERED 5 FEET 19													
	18	ł		<u> </u>									
	19			\vdash		AUGERE							
		1											
20	20												
24 16 in- Silty SAND -brown - fine Sand 20-30% Silt - moist 1.7 ppm					24	<u>16 in-</u>	Silty SAND -bro	wn - fine Sand 2	0-30% Silt - moist			1.7 ppm	
	21	ł			44								
22 50/4	22			 	50/4								
AUGERED 5 FEET		1		-		AUGERE	ED 5 FFFT						
23	23												

ſ	-		S 14 Bu	&S Engi 1 Elm Stree iffalo, New	neers, Inc. ^{et} York 14203	BORINGLOG	В	oring No.	MSMW-04
C	OMP		Ph JIES Ea	one: 716-8	47-1630 -1454	BORING LOG	S	heet 2 of:	2
C	OIVIE	-		w.cscos.com	- 1454 า		Pre	oject No.:	K11.002.001
Projec	ct Nam	e:	1001 Main S	Street Bro	wnfield Cleanup - I	Main Street Well Installation	S	tart Date:	3/5/14
L	ocatio.	n:	Main Street	Right-of-	Way		Fir	ish Date:	3/5/14
	Clie	nt:	Kalieda Hea	alth			l	nspector:	C.Martin
ft)	e	Ы	Blows on			a - and -	35-50%	<u>(</u>	COMMENTS
th (ld .o	nbe	Sampler	c - coarse m - mediur	m	MATERIAL DESCRIPTION S - some -	20-35%	(e.g.,	N-value, recovery,
Jep	Sar	Syı	per 6"	f - fine	S - Sano	t - fille - t- trace	0-10%	moistur	e, core run, RQD, %
			•		0 Curr				recovered)
0.4									
24									
25									
			12	18 in-	SII T -brown - tra	ce fine Sand - moist		1 7 nnm	
26			24	<u></u>					
			24						
27			16						
			12	18 in-	SILT -brown - Sil	t some Clay layers - moist		3.2 ppm	
28			12	<u>5 in-</u>	Coarse Sand & C	Gravel -black - coarse rounded and angular Sand wit	<u>h_</u>	522 ppm	
			21		1" smaller grave	subrounded - saturated			
29			16						
			8	<u> 16 in-</u>	Coarse Sand & C	Fravel -dk grey - coarse rounded and angular Sand		122 ppm	
30			11		with 1" smaller g	ravel subrounded - saturated			
			12						
31			10						
			9	<u>13 in-</u>	Coarse Sand & C	Gravel -dk grey - coarse rounded and angular Sand		90 ppm	
32			10		with 1" smaller g	ravel subrounded - saturated			
			13						
33			12	44 :	Coores Courd 8 C			005	
24			0 10	<u>11 in-</u>	vith 1" smaller of	Fravel - ok grey - coarse rounded and angular Sand		685 ppm	
54			10		with i Shaherg	lavel Sublounded - Saturated			
35			6						
			-						
36					END OF BORING	AT 35 FEET BELOW GROUND SURFACE			
37									
38									
20									
39									
40									
	1								
41									
]								
42									
43									
лл									
45									
	1								
46									
47									
48									
40									
49	I								

		- /	Ca	&S Engi	neers, Inc.				В	orina No.	MW-02R
	3	1	Bu	ffalo, New	York 14203	F	BORING LOO	3			
C	OMP	AN	NIES Fa	one: 716-84 x: 716-847-	47-1630 -1454	-			S	heet 1 of:	2
			ww	w.cscos.com			he e te lle C e e		Pro	oject No.:	K11.002.001
Projec	ct Nam	ne:	1001 Main S	Street Bro	while Cleanup - I	Vain Street Well	Installation		Surfa	ace Elev.:	661.38
L	Ocatio	n:	Main Street	Right-of-V	Ivay				6	Datum:	NAVD 88
Drilli	na Fir	m·	SIB Inc	attri					Fin	ish Date:	3/6/14
Dim	Grou	nd\	vater	Depth	Date & Time	Drill Ria:	Track Mounted CME			spector:	C. Martin
	0.00	Wh	ile Drillina:	Deptil		Casing:	2.25"	Rock Core:		Undist:	0
Befo	ore Ca	sing	g Removal:			Sampler:	2" Split Spoon	Other:	1		
Af	ter Ca	sin	g Removal:			Hammer:	Auto				
			(N N	lo. of blow	vs to drive sampler	12" w/140 lb. ha	mmer falling 30" AST	M D-1586, Stand	ard Penet	ration Test	·)
Depth (ft)	Sample No.	Symbol	Blows on Sampler per 6"	c - coarse m - mediun f - fine	n S - Sano	MATERIAL d, \$ - Silt, G - Grav	DESCRIPTION vel, C - Clay, cly - clayey	a - and - s - some - l - little - t - trace	35-50% 20-35% 10-20% - 0-10%	(e.g., N-v moistur	COMMENTS alue, recovery, relative e, core run, RQD, % recovered)
1											
- ·				BORING	INSTALLED APP	ROXIMATELY 20) INCHES FROM THE	:			
2				CONSTR	RUCTION EDGE C	F SIDEWALK. B	ORING WAS INSTAL	LED			
				INSIDE T	FRENCH BETWEE	N EDGE OF SI	DEWALK AND BUILDI	NG. TRENCH			
3				WAS BA	CKFILLED WITH	CRUSHED STOP	NE TO PROVIDE A PL	ACE FOR			
				DRILLER	RS TO STAND.						
4											
5				AUGERE	DIO5FEEIBEI	LOW GROUND S	SURFACE.				
			7								
6			7	<u>12 in-</u>	silty SAND - brow	wn - fine to med	Sand trace Silt - mo	ist		0 ppm	
-			8								
- /			18								
8											
0				AUGERE	ED 5 FEET						
9											
10											
			3		No Recovery						
11			5								
40			12								
12			18								
13											
				AUGERE	D 5 FEET						
14											
15			10	16 in		up fine to mod	Sand trace Silt ma	lot		0 nnm	
16			25	10 111-	SILY SAND - DIO		Sanu u ace Siit - MO	<u>iət</u>		o bhiii	
- Ť		1	33								
17			38								
18				4110555							
19				AUGERE	D5FEEI						
00											
20			8	<u>9 in-</u>	SAND - It brown	- med with trace	e Silt - moist			0 ppm	
21			20	<u>5 in-</u>	SILT - red brown	- moist					
			23								
22			20								
23				AUGERE	DOFEEL						

ſ	-		S I4 Bu	&S Engi 1 Elm Stre iffalo, New	neers, Inc. et Y York 14203		В	oring No.	MW-02R
C	OMP		Ph UES Ea	one: 716-8	847-1630 -1454	BORING LOG	S	heet 2 of:	2
				w.cscos.com	1-0-1 1		Pro	oject No.:	K11.002.001
Proje	ct Nam	e:	1001 Main S	Street Bro	wnfield Cleanup - I	Main Street Well Installation	S	tart Date:	3/6/14
L	ocatio	n:	Main Street	Right-of-	Way		Fin	ish Date:	3/6/14
	Clier	nt:	Kalieda Hea	alth			l	nspector:	C.Martin
(ft)	e	ō	Blows on	c - coarse		a - and -	35-50%	(COMMENTS
oth	d S.	dm'	Sampler	m - mediu	m	MATERIAL DESCRIPTION s - some - I - little -	20-35% 10-20%	(e.g., moistur	N-value, recovery,
Dep	_ Sa	sy	per 6"	t - tine	S - Sano	d, \$ - Silt, G - Gravel, C - Clay, cly - clayey t - trace	- 0-10%	moistai	recovered)
									,
24									
25									
	1		11	8 in-	SILT - red brown	- wet		0 ppm	
26			18						
			37						
27			42						
			38	<u>20 in-</u>	Silty SAND - bro	wn - fine to med Sand 10-20% Silt - saturated		0 ppm	
28			21						
			24						
29			33						
			15	<u>16 in-</u>	sandy SILT - bro	wn - trace fine Sand - saturated		0 ppm	
30			17						
			17						
31			28	0.1		una tracca fina Ocurda cotunata d			
00			21	<u>8 in-</u>	sandy SILT - bro	wn - trace fine Sand - saturated		4.4	
32			34	<u>2 in-</u>	Sandy SILT - Dia	ck - trace fine Sand - saturated	(J _	14 ppm	
22			48	<u>8 in-</u>	Coarse Sand & C	Gravel - black - coarse rounded and angular Sand wi	<u>in</u>	120 ppm	
- 33			40	18 in-	silty CLAX - rod	subrown - some Silt med al. trace embedded gravel		24 nnm	
34			7 10	<u>10 III-</u>	35 " smaller sub	rounded - wet		54 ppm	
54			10		.55 Smaller Sur				
35			14						
36					END OF BORING	AT 35 FEET BELOW GROUND SURFACE			
	1								
37									
38									
39	l								
40									
41									
40									
42	{								
43									
43	1								
44									
45									
	1								
46									
	1								
47									
	1								
48									
49									

	C		C a 14	&S Engi i 1 Elm Stree	neers, Inc. et				В	oring No.	MW-02R-1
	3	1	Bu Ph	ffalo, New	York 14203 47-1630	E	BORING LOO	G	s	heet 1 of	2
C	OMP	AN	IIES Fa	x: 716-847-	1454				Br	nieet No ·	Z K11 005 001
Proje	ct Nam	6.	Goodrich St	w.cscos.com	Replacement				Surf	ace Flev :	665.54
1 10,00	ocatio	n. n.	818 Ellicott	Street	replacement				Ourie	Datum:	NAVD 88
	Clier	nt.	Kalieda Hea	alth					s	tart Date:	2/5/16
Drilli	na Firi	n:	Nature's Wa	av Environ	mental				Fin	ish Date:	2/5/16
	Grou	ndv	vater	Depth	Date & Time	Drill Ria:	Mobile B-57		h	nspector:	C. Martin
		Whi	ile Drilling:	200		Casing:	2.25"	Rock Core:		Undist:	
Befo	ore Cas	sing	Removal:			Sampler:	2" Split Spoon	Other:			
Af	ter Cas	sing	g Removal:			Hammer:	Auto				
			(N N	lo. of blow	vs to drive sampler	12" w/140 lb. ha	mmer falling 30" ASTI	M D-1586, Stand	ard Pene	tration Test)
ft)	ð		Blows on					a - and -	35-50%		COMMENTS
th (j	jo n	nba	Sampler	c - coarse m - mediun	n	MATERIAL	DESCRIPTION	s - some -	20-35%	(e.g., N-v	alue, recovery, relative
Geb	Sar	Syı	per 6"	f - fine	S - San	d. \$ - Silt. G - Grav	vel. C - Clav. clv - clavev	, t - trace	- 0-10%	moistur	e, core run, RQD, %
		H			Asphalt & Gravo	l Sub-baso	-,,, -, -, -,				
1					Augered to 24 Fe	et below groun	d surface				
-					Drill Cuttings: Si	Ity SAND - brow	n drv				
2					<u></u>		<u></u>				
3											
4											
F											
5	-										
6					Drill Cuttings: Si	Ity SAND - brow	/n moist				
					<u></u>						
7											
		[
8											
_											
9	-										
10											
11					Drill Cuttings: Si	Ity SAND - brow	/n moist				
		[
12											
4.0											
13											
14											
	1										
15											
	1										
16	1	[Drill Cuttings: Si	Ity SAND - brow	/n moist				
17	4										
10											
10	1										
19											
	1										
20		[
21					Drill Cuttings: Si	Ity SAND - brow	<u>/n moist</u>				
20											
	1										
23											

	8		S 14' Bu	&S Engineers, Inc. 1 Elm Street ffalo, New York 14203	BORING LOG	B	oring No.	MW-02R-1
c	OMP		JIES Fax	one: 716-847-1630 x: 716-847-1454		S	heet 2 of:	2
			ww	w.cscos.com		Pro	oject No.:	K11.005.001
Projec	ct Nam	e:	Goodrich St	reet Well Replacement		S	tart Date:	2/5/16
L	ocatio	n:	818 Ellicott	Street		Fin	ish Date:	2/5/16
	Clier	nt:	Kalieda Hea	lth		lı	nspector:	C.Martin
÷								COMMENTS
) (fi	ple.	po	Blows on	c - coarse	a - and - s - some -	35-50% 20-35%	(e.g.,	N-value, recovery,
pth	Nc a	ym	Sampler	m - medium f - fine	MATERIAL DESCRIPTION I - little -	10-20%	moistur	e, core run, RQD, %
De	s	S	per 6"	S - San	id, \$ - Silt, G - Gravel, C - Clay, cly - clayey	- 0-10%		recovered)
24								
			21	12" Silty SAND - bro	wn: fine 10-20% Silt: maist		0 ppm	
25			42	12 Silly SAND - Did			o ppin	
25			43					
			65					
26			60					
			8	12" <u>Silty SAND - bro</u>	own; fine 20-35% Silt; moist		0 ppm	
27			36					
			100/5					
28								
			6	14" Silty SAND - bro	own; fine 20-35% Silt; wet		0 ppm	
29			42					
			60					
20			70					
30			12				0	
			10	18" Silty SAND - bro	own; fine 20-35% Silt; wet to saturated		0 ppm	
31			25					
			42					
32			37					
			9	0-4" Silty SAND - bro	own; fine 20-35% Silt; loose; saturated			
33			19	4-10" Black medium S	AND; no fines; some 0.5 inch round Gravel		10 ppm	
			24	10-19" CLAY - brown -	wet			
34			23					
• •			8	0-5" SAND - medium	- no fines: grey: saturated: loose		0 ppm	
25			16	5 19" Clay SILT - Jow	plasticity: brown: wet		o ppin	
- 55			10		Diasticity, Drown, wet			
00			33					
30			20				<u> </u>	
			15	18" Silty CLAY - bro	wn; soft		0 ppm	
37			29					
			16					
38			20					
			31	NO RECOVERY				
39			23				1	
			42					
40			34					
			24	10" Siltv CLAY - bro	wn: wet: soft: trace embedded Gravel		0 ppm	
41			23	<u></u>			·	
			10					
40			19					
42			21				0	
40			0	20 SIILY CLAY - Dro	with, wet; soit; trace embedded Gravel		u ppm	
43			11					
			16					
44			20					
1								
45				END OF BORING	G AT 44 FEET			
46				BOTTOM OF MC	DNITORING WELL SET AT 43 FEET			
47								
48								
40								
43								

APPENDIX C IN SITU PRODUCT INFORMATION

CHEMICAL OXIDATION REDEFINED...

RegenOx[™] is an advanced in situ chemical oxidation technology^{*} designed to treat organic contaminants including high concentration source areas in the saturated and vadose zones

PRODUCT FEATURES:

- Rapid and sustained oxidation of target compounds
- Easily applied with readily available equipment
- Destroys a broad range of contaminants
- More efficient than other solid oxidants
- Enhances subsequent bioremediation
- Avoids detrimental impacts to groundwater aquifers

RegenOx product application

HOW IT WORKS:

RegenOx maximizes in situ performance using a solid alkaline oxidant that employs a sodium percarbonate complex with a multi-part catalytic formula. The product is delivered as two parts that are combined and injected into the subsurface using common drilling or direct-push equipment. Once in the subsurface, the combined product produces an effective oxidation reaction comparable to that of Fenton's Reagent without a violent exothermic reaction. RegenOx safely, effectively and rapidly destroys a wide range of contaminants in both soil and groundwater (Table 1).

ACHIEVES RAPID OXIDATION VIA A NUMBER OF MECHANISMS

RegenOx directly oxidizes contaminants while its unique catalytic complex generates a suite of highly charged, oxidative free radicals that are responsible for the rapid destruction of contaminants. The mechanisms by which RegenOx operates are:

- Surface- Mediated Oxidation: (see Figure 1 and description below)
- Direct Oxidation: C₂Cl₄ + 2 Na₂CO₃ 3 H₂O₂ + 2 H₂O ↔ 2CO₂ + 4 NaCl + 4 H₂O + 2 H₂CO₃

Free Radical Oxidation:

- Perhydroxyl Radical (HO₂•)
- Hydroxyl Radical (OH•)
- Superoxide Radical (O₂•)

Figure 1. Surface-Mediated Oxidation is responsible for the majority of RegenOx contaminant destruction. This process takes place in two stages. First, the RegenOx activator complex coats the subsurface. Second, the oxidizer complex and contaminant react with the activator complex surface destroying the contaminant.

Figure 1. RegenOx[™] Surface-Mediated Oxidation

From Mass Reduction to Bioremediation:

RegenOx[™] is an effective and rapid contaminant mass reduction technology. A single injection will remove significant amounts of target contaminants from the subsurface. Strategies employing multiple Regenox injections coupled with follow-on accelerated bioremediation can be used to treat highly contaminated sites to regulatory closure. In fact, RegenOx was designed specifically to allow for a seamless transition to low-cost accelerated bioremediation using any of Regenesis controlled release compounds.

Significant Longevity:

RegenOx has been shown to destroy contaminants for periods of up to one month.

Product Application Made Safe and Easy:

RegenOx produces minimal heat and as with all oxidants proper health and safety procedures must be followed. The necessary safety guidance accompanies all shipments of RegenOx and additional resources are available on request. Through the use of readily available, highly mobile, direct-push equipment and an array of pumps, RegenOx has been designed to be as easy to install as other Regenesis products like ORC[®] and HRC[®].

Effective on a Wide Range of Contaminants:

RegenOx has been rigorously tested in both the laboratory and the field on petroleum hydrocarbons (aliphatics and aromatics), gasoline oxygenates (e.g., MTBE and TAME), polyaromatic hydrocarbons (e.g., naphthalene and phenanthrene) and chlorinated hydrocarbons (e.g., PCE, TCE, TCA).

Oxidant Effectiveness vs. Contaminant Type:

		Та	ble 1			
Contaminant	RegenOx™	Fenton's Reagent	Permanganate	Persulfate	Activated Persulfate	Ozone
Petroleum Hydrocarbons	А	А	В	В	В	Α
Benzene	Α	Α	D	В	В	Α
МТВЕ	Α	В	В	С	В	В
Phenols	Α	Α	В	С	В	Α
Chlorinated Ethenes (PCE, TCE, DCE, VC)	Α	Α	A	В	Α	Α
Chlorinated Ethanes (TCA, DCA)	Α	В	С	D	С	В
Polycyclic Aromatic Hydrocarbons (PAHs)	Α	Α	В	В	Α	А
Polychlorinated Biphenyls (PCBs)	В	С	D	D	D	В
Explosives (RDX, HMX)	Α	Α	A	Α	А	Α

Based on laboratory kinetic data, thermodynamic calculations, and literature reports.

Oxidant Effectiveness Key:

A = Short half life, low free energy (most energetically favored), most complete

B = Intermediate half life, low free energy, intermediate degree of completion

C = Intermediate half life, intermediate free energy, low degree of completion

D = Long half life, high free energy (least favored), very low degree of completion

Advanced Technologies for Groundwater Resources

1011 Calle Sombra / San Clemente / California 92673-6244 Tel: 949/366-8000 / Fax: 949/366-8090 / www.regenesis.com

The original Oxygen Release Compound (ORC[®]) is a fine, powdery material comprised of a patented formulation of phosphate-intercalated magnesium peroxide. The intercalation or embedding of phosphates within the magnesium peroxide is Regenesis' patented, controlled-release mechanism. Upon hydration, ORC is designed to produce a controlled-release of oxygen (10% by weight) into the subsurface in accordance with the following reaction:

$\mathrm{MgO}_{2} + \mathrm{H_{2}O} \rightarrow 1/2 \mathrm{O}_{2} + \mathrm{Mg(OH)}_{2}$

This process can proceed for periods of up to one year depending on site conditions. In the presence of this long-lasting oxygen source, aerobic microbes flourish - accelerating the naturally slow rates of aerobic biodegradation.

Product Benefits

By enhancing bioremediation using ORC, in-situ treatment of contaminants can result in an efficient, simple and costeffective alternative to traditional technologies. With low capital costs, no operations and maintenance, minimal site disturbance and proven effectiveness, ORC can restore water quality and property values at a reasonable cost.

Subsurface Emplacement

• Direct - Push Injection

• Trenches

• Hollow Stem Augers

- Ex Situ biophiles
- Replaceable Filter Socks (existing wells)
- Excavations

Treatable Contaminants

ORC can treat a wide range of contaminants and most any aerobically degradable compound including: gasoline and fuel additives (BTEX and MTBE), diesel, kerosene, jet fuel, gas condensates, fuel oils, lubricants, bunker oil, PAHs, certain pesticides/herbicides and certain industrial solvents (alcohols and ketones).

Material Application

Most contaminated sites are treated using ORC slurry which is a prescribed and easily injectable water and ORC mixture (Figure 2). The direct-push injection of ORC slurry maximizes ORC and oxygen distribution in the subsurface increasing the range of enhanced biodegradation. ORC is dosed in pounds per vertical foot of material treated. The amount of ORC recommended depends greatly on various factors such as contaminant concentrations, oxygen sinks, groundwater flow rates and subsurface geology. It is recommended that a Regenesis Technical Services Representative be contacted for detailed design information. ORC treatment approaches or designs may consist of one, or combinations of the following: Source Area Grids, Plume Area Grids or Barriers, Excavations and Biopiles.

