PLEASE SCAN AS ONE FILE (VOL I &II)

The electronic version of this file/report should have the file name:

Type of document.Spill Number.Year-Month.File Year-Year or Report name.pdf

letter.______.<u>File spillfile</u>.pdf

report. hw961005 1994 - 02-01. PRELIMINARY .pdf SITE ASSESSMENT (VOL I !II)

Project Site numbers will be proceeded by the following:

Municipal Brownfields - b

Superfund - hw

Spills - sp

ERP - e

VCP - v

BCP - c

non-releasable - put .nf.pdf

Example: letter.sp9875693.1998-01.Filespillfile.nf.pdf

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES

PRELIMINARY SITE ASSESSMENT

MAIN REPORT VOLUME I

ETE Sanitation and Landfill Gainesville Township

Site No. 961005 Wyoming County

RECEIVED

MAY 0 5 1994

N.Y.S. DEPT. OF ENVIRONMENTAL CONSERVATION REGION 9

Prepared for:

New York State Department of

Environmental Conservation

50 Wolf Road, Albany, New York 12233 Thomas C. Jorling, Commissioner

Division of Hazardous Waste Remediation Michael J. O'Toole, Jr., P.E., Director

BY:

ENGINEERING-SCIENCE, INC. LIVERPOOL, NEW YORK

FEBRUARY 1994

VOLUME 1 - MAIN REPORT

ETE SANITATION AND LANDFILL SITE NYSDEC SITE NO. 961005 GAINESVILLE TOWNSHIP WYOMING COUNTY, NEW YORK

PRELIMINARY SITE ASSESSMENT WORK ASSIGNMENT NO. D002478-17 NEW YORK STATE SUPERFUND STANDBY CONTRACT

Prepared for

DIVISION OF HAZARDOUS WASTE REMEDIATION
NEW YORK STATE
DEPARTMENT OF ENVIRONMENTAL CONSERVATION
50 WOLF ROAD
ALBANY, NEW YORK

Prepared by

Engineering-Science, Inc. 290 Elwood Davis Road Liverpool, N.Y. 13088

FEBRUARY 1994

723800.05060 (SY327.05)

57570

PARESSYR01\WOL1:WP\723800.05060\23800R01.DOC

C. D. 24 . 1004

NOTICE

This Preliminary Site Assessment report about the ETE Sanitation and Landfill Site (NYSDEC Site No. 961005), located in the Town of Gainesville, Wyoming County, New York, was prepared for the New York State Department of Environmental Conservation (NYSDEC) under a Superfund Standby Contract (No. D002478, Work Assignment No. 17). The purpose of this report is to provide information necessary for NYSDEC to reclassify the site according to the Classes 2, 3, and D described in Section 2 of this report.

To achieve the study objectives stated in this report, Engineering-Science, Inc. (ES) was required to base conclusions on the best information available during this investigation and within the limits prescribed by NYSDEC in the contract agreement.

No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information. Thus, ES cannot guarantee that the investigation completely defined the degree or extent of any contamination by hazardous or otherwise harmful substances described in the report or, if no such contamination was found, its absolute absence. Professional judgment was exercised in gathering and analyzing the information obtained, and ES is committed to the usual care, thoroughness, and competence of the engineering profession.

Conclusions in this report are based on record reviews, interviews, and limited sampling performed by ES personnel. The health-based regulatory standards discussed in this report may change in the future. Levels of environmental contamination that are "acceptable" by current standards may not be so in the future.

Consistent with the objectives of the PSA investigation, this report includes an assessment of the presence of hazardous waste as defined by Title 6, Part 371 of the New York Codes, Rules, and Regulations (6NYCRR, Part 371) and "significant threat" to public health and environment as defined by 6NYCRR, Part 375. As such, the report does not include an evaluation of the presence of hazardous wastes regulated under federal law, except when federal and New York State regulations are identical. In particular, the presence of hazardous waste having the characteristic of toxicity as determined by the Toxicity Characteristic Leaching Procedure (TCLP) under 40CFR, Part 261.24 is not formally evaluated in this report. The characteristic of toxicity is currently determined by the Extraction Procedure Toxicity (EP Tox) test under 6NYCRR, Part 371.

Information contained in this report may not be suitable for any other use without adaptation for the specific purpose intended. Any such reuse of or reliance on the information, assessments, or conclusions in this report without adaptation will be at the sole risk and liability of the party undertaking the reuse.

TABLE OF CONTENTS

SECTIO	ON 1 - EXECUTIVE SUMMARY	1-1
1.1	Background Summary	1-1
1.2	Site Investigation Summary	1-2
1.3	Presence of Hazardous Wastes	1-2
1.4	Presence of Significant Threat	1-3
1.5	Recommendations	1-3
SECTIO	ON 2 - INTRODUCTION	2-1
2.1	Purpose	2-1
2.2	Report Organization	2-1
2.2	Preliminary Site Assessment Investigation	2-2
SECTIO	ON 3 - SCOPE OF WORK	3-1
3.1	Introduction	3-1
3.2	Initial Environmental Sampling	3-1
	3.2.1 Sediment Samples	3-1
	3.2.2 Leachate Samples	3-2
	3.2.3 Surficial Soil Samples	3-2
3.3	Subsurface Environmental Sampling	3-2
	3.3.1 Monitoring Wells	3-2
	3.3.2 Subsurface Soil Samples and Grain-Size	2.2
	Analysis	
	3.3.3 Groundwater Samples	
	3.3.4 Survey	
	3.3.5 Data Validation	
2 1	3.3.6 Slug Test	
3.4	Report Preparation.	
	3.4.1 Site Assessment	
	3.4.2 Report Preparation	3-5
SECTIO	N 4 - SITE ASSESSMENT	4-1
4.1	Site Description	4-1
4.2	Site History	4-1
4.3	Site Vicinity	4-3

TABLE OF CONTENTS-CONTINUED

4.4 Regional Environmental Setting	4-4
4.4.1 Regional Geology and Soils	4-4
4.4.2 Regional Groundwater Hydrology	4-5
4.4.3 Regional Surface Water Hydrology	4-5
4.5 Site Environmental Setting	4-6
4.5.1 Site Geology	4-6
4.5.2 Site Groundwater Hydrology	4-6
4.5.3 Site Surface Water Hydrology	4-7
4.6 Site Contamination Assessment	4-8
4.6.1 Sediment Sample	4-8
4.6.2 Leachate Sample	4-10
4.6.3 Soil Samples	
4.6.4 Groundwater Samples	4-13
4.6.5 Presence of Hazardous Wastes	
4.6.6 Presence of Significant Threat	4-16
SECTION 5 - RECOMMENDATIONS	5-1
5.1 Recommended Site Classification	
5.2 Future Work	5-1
SECTION 6 - LIST OF REFERENCES	6-1
APPENDIX A INSPECTION REPORT USEPA FORM 2070-13	
APPENDIX B PA SCORE SHEETS	
APPENDIX C GEOLOGIC DATA	
APPENDIX D LABORATORY ANALYSES	
APPENDIX E SELECTED REFERENCES	

TABLE OF CONTENTS-CONTINUED

LIST OF TABLES

Table 3.1 - Summary of PSA Tasks	3-6
Table 3.2 - Sample Summary	3-9
Table 3.3 - Monitoring Well Locations and Specifications	3-11
Table 3.4 - Split Spoon Sample Description	3-12
Table 4.1 - Grain Size Characteristics	4-23
Table 4.2 - Water Level Data	4-24
Table 4.3 - Sediment Data Summary	4-25
Table 4.4 - Leachate Data Summary	4-28
Table 4.5 - Surface Soil Data Summary	4-30
Table 4.6 - Subsurface Soil Data Summary	4-33
Table 4.7 - Groundwater Data Summary	4-35

TABLE OF CONTENTS-CONTINUED

LIST OF FIGURES

Figure 1.1 - Site Location Map	1-5
Figure 1.2 - Site Plan	1-6
Figure 2.1 - Site Classification Decision Tree	2-3
Figure 3.1 - Sample Location Map	3-13
Figure 4.1 - Site Location Map	4-17
Figure 4.2 - Sample Location Map	4-18
Figure 4.3 - Cross Section Location Map	4-19
Figure 4.4 - Cross Section AA'	4-20
Figure 4.5 - Shallow Groundwater Water Contours	4-21
Figure 4.6 - Deep Groundwater Water Contours	4-22

SECTION 1

EXECUTIVE SUMMARY

1.1 BACKGROUND SUMMARY

The ETE Sanitation and Landfill Site (NYSDEC No. 961005) is an inactive landfill listed as a Class 2a site on the State Registry of Inactive Hazardous Waste Sites. This site is under investigation by the NYSDEC because of reported on-site disposal of leaded paint sludges, and alleged disposal of chlorinated solvents and plating wastes (NYSDEC, 1989).

The ETE Site is located in a rural agricultural area in the Town of Gainesville, Wyoming County, New York, approximately 2 miles west of Silver Springs and 1 mile north of the Village of Gainesville (Figure 1.1) (USGS, 1972a; USGS, 1972b). The site is approximately 20 acres in size and is bordered by a pond and Broughton Road to the south; a tributary, farm land, and Route 19 to the west; farm land to the north; and a seasonal tributary, undeveloped land, farm land, and Jordan Road to the east. The Town of Gainesville Highway Department Garage is located southeast of the fill area (Figure 1.2). Leachate discharges west and north, and drains to an on-site leachate collection pond. The leachate pond discharges to a tributary of Cotton Creek.

The ETE Sanitation and Landfill Site operated from 1972 to 1979 as a nonpermitted landfill that accepted municipal and industrial waste from six surrounding towns in Wyoming County. Industrial waste included paint sludge, plating wastes, and salt (URS, 1990).

Several site inspections conducted by the NYSDEC between 1987 and 1990 included sampling and analysis of on-site soils, surface water, and wastes, as well as tap water samples from residences in the vicinity of the site (URS, 1990). Results of these inspections are as follows:

- · Cyanide was detected in the leachate sample at 0.01 milligrams per kilogram (mg/kg) and in the sediment sample at 1.6 mg/kg.
- A drum sample had concentrations of 1,1,1-trichloroethane, isophorone, phenol, and bis(2-chloroethyl)ether at 42,000 mg/kg, 8,142 mg/kg, 133.8 mg/kg, and 181.7 mg/kg respectively (URS, 1990).
- · Two drums were labelled "Cholorothene-V6" (unknown, 1989).
- · Chlorinated solvents were detected in soil samples at concentrations ranging from 1.0 to 2.8 micrograms per kilogram (ug/kg) (URS, 1990).
- Four drum samples failed an ignitability test, one drum contained lead in excess of the Extraction Procedure Toxicity testing (EP Tox) standard, and three drums had concentrations in exceedance of Toxicity Characteristic Leaching Procedure (TCLP) regulatory action levels, resulting in the wastes being classified as hazardous waste. TCLP exceedances included 1,2-dichloroethane, carbon tetrachloride, trichloroethene, and methyl ethyl ketone.
- · VOCs detected in an inlet to the leachate pond included chloroethane at 9 ug/i, methylene chloride at 14 ug/i, acetone at 240 ug/l, 2-butanone at 470 ug/i, benzene

- at 2 ug/l, 4-methyl-2-pentanone at 27 ug/l, toluene at 31 ug/l, chlorobenzene at 2 ug/l, ethylbenzene at 95 ug/l, and total xylenes at 330 ug/l.
- Analytical results for tap water samples from upgradient and downgradient sources had no organic compounds detected in the samples. A representative of the Wyoming County Health Department indicated that the department had no concern about the water (URS, 1990).

1.2 SITE INVESTIGATION SUMMARY

ES was directed by NYSDEC to conduct field studies and complete the PSA investigation for reclassification of the site. The site investigation was conducted in accordance with the Technical Work Plans provided by the NYSDEC and field modifications as directed by the NYSDEC. Field work was conducted between March 22 and May 11, 1993. The environmental sampling effort consisted of the installation of seven monitoring wells and the collection of (Table 1.1):

- · one leachate sample,
- · one sediment sample,
- three surface soil samples (including one composite),
- · four composite subsurface soil samples, and
- · seven groundwater samples.

All of the samples were analyzed for Target Compound List (TCL) organics, Target Analyte List (TAL) metals, and cyanide. The sediment sample and the three surface soil samples were also analyzed using the EP Tox testing method. Environmental sample analyses was conducted by Recra Environmental, Inc. (Recra) of Amherst, New York in accordance with NYSDEC Analytical Service Protocols (ASP) (December 1991) and the QAPP.

Preliminary assessment (PA) evaluation scoring was conducted using the USEPA PA-Score (version 2.1) program. The ETE Sanitation and Landfill Site had a score of 34, indicating that HRS scoring may be warranted.

1.3 PRESENCE OF HAZARDOUS WASTES

Title 6 of the New York Codes, Rules, and Regulations (6NYCRR), Part 371 establishes two categories of hazardous wastes: (1) listed hazardous wastes, and (2) characteristic hazardous wastes. Listed hazardous wastes are generated by certain industrial processes, or are judged to have an acute hazard or toxicity associated with exposure to them. Listed hazardous wastes are assigned USEPA hazardous waste numbers with "F", "K", "P", "U", or "B" prefixes.

Characteristic hazardous wastes are identified using analytical methods specified in 6NYCRR, Part 371, and are assigned "D" prefixes. The hazardous waste characteristics include toxicity, reactivity, corrosivity, and ignitability. The EP Tox method is used in New York State to identify hazardous wastes having the toxicity characteristic.

Many of the analytes detected in the field samples collected during the PSA investigation are listed potential hazardous wastes (Sections 4.6.1 to 4.6.5). However, the

presence of these listed compounds on-site can not be used to establish the presence of hazardous waste at the site because: (1) they cannot be directly attributed to documented specific or non-specific sources as required by 6NYCRR, Part 371.4(b) and (c); or (2) they cannot be directly attributed to the disposal of a "commercial chemical product, manufacturing chemical intermediates, or off-specification commercial chemical products" as required by 6NYCRR, Part 371.4(d), based on limited information obtained to date. The determination of toxicity by the TCLP Method is not an approved method under 6NYCRR 371. However, the EP Tox results for lead and the ignitability results for drum wastes provide the documentation necessary to show the presence of hazardous wastes as defined by 6NYCRR, Part 371.

Preliminary assessment (PA) evaluation scoring was conducted using the USEPA PA-Score (version 2.1) program. The ETE Sanitation and Landfill Site had a score of 34, indicating that HRS scoring may be warranted.

1.4 PRESENCE OF SIGNIFICANT THREAT

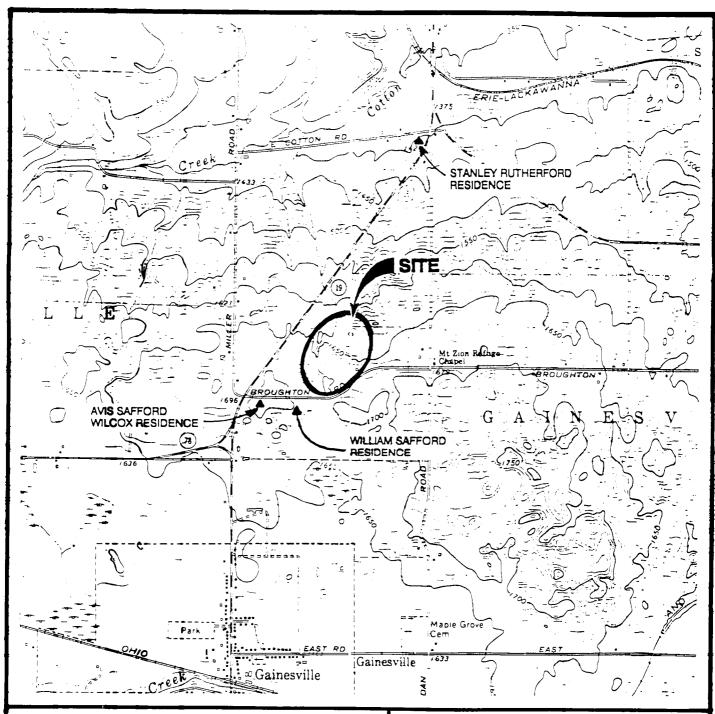
The presence of a "significant threat" to public health or the environment, as defined by 6NYCRR, Part 375, may be established by analytical data showing that hazardous substances: (1) have been released to environmental media from hazardous waste disposed at the site, and (2) are present in concentrations exceeding accepted health or environmental standards or guidance values. The criteria used to establish releases is discussed in the introduction to Section 4.6.

Although the on-site disposal of hazardous waste has been determined, a significant threat resulting from the hazardous waste has not been identified. Explosive and/or fire concerns have been determined not to exist (URS, 1990). Although components of the ignitable wastes were never determined to allow that correlation to be made.

The groundwater exceedance for lead in MW-25 appears to be insufficient for showing significant threat; the concentration only slightly exceeded the standard and it is questionable whether MW-2 accurately reflects site impacts (MW-2 was originally designated an upgradient well).

A significant threat attributable to hazardous waste disposed on-site, as defined by 6NYCRR 371, cannot be established. However, the exceedance of groundwater standards by chlorinated organics indicates that a significant threat could be shown to exist if the components of the ignitable wastes correlated with the exceedances of groundwater standards.

Additional concern may also be warranted for copper, iron, zinc, and cyanide Class C surface water quality standard exceedances (leachate samples).

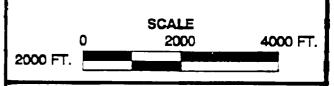

1.5 RECOMMENDATIONS

Analytical data collected during this investigation indicate that hazardous wastes have been disposed on-site. Analytical data also indicate that the hazardous waste disposed on site does not present a significant threat to public health or environment. These two factors alone would qualify the site as a Class 3 site. However, the analytical data (exceedance of groundwater standards by chlorinated organics) also indicate that on-site hazardous substances are resulting in conditions that would warrant the determination of significant threat if the source could be determined to be a hazardous waste, as defined by

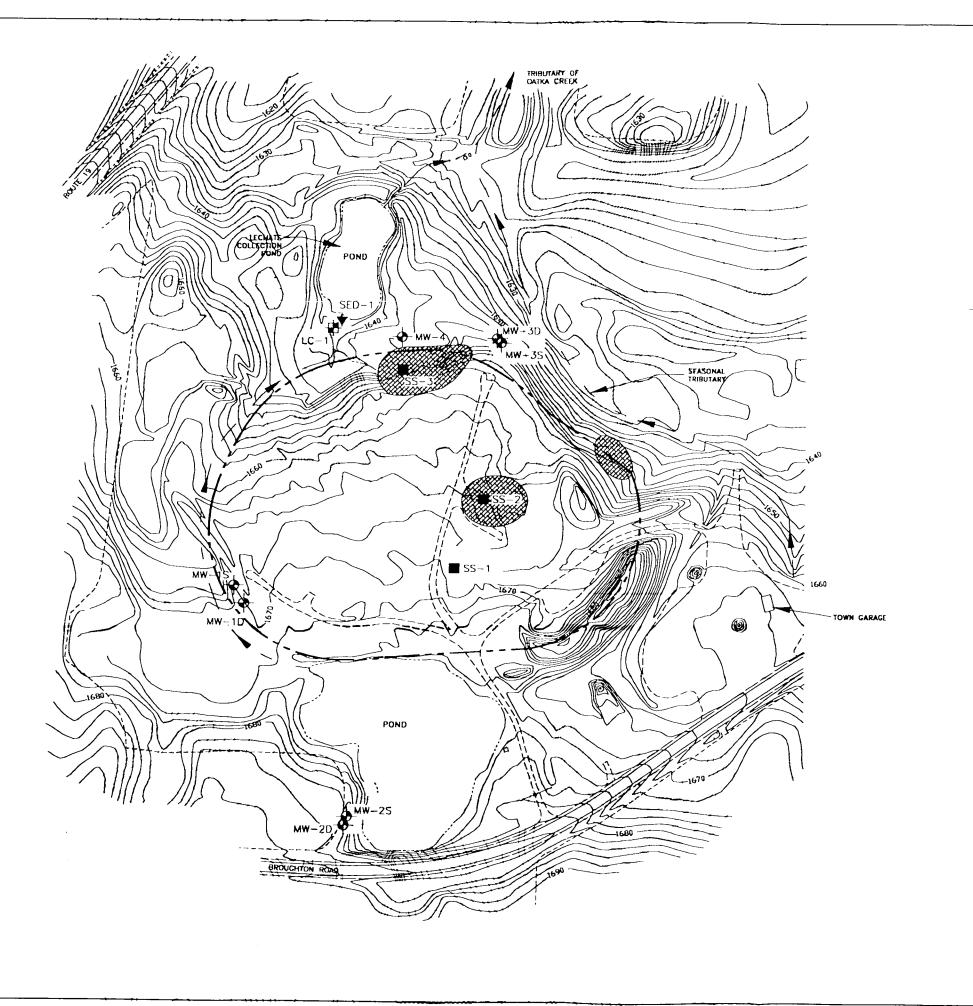
6NYCRR 371. Although the results of this PSA investigation indicate a reclassification to a Class 2 site is warranted, the required documentation obtained to date is insufficient to completely justify this action.

ES recommends conducting a limited drum sampling effort to identify ignitable wastes and to identify the components of the ignitable wastes in an attempt to establish a correlation between hazardous waste disposed on-site and chlorinated organic groundwater exceedances, thus establishing a significant threat to public health or environment from hazardous wastes.

The drum sampling effort should include removal, overpacking, sampling, and disposal of partially-buried drums. Additional sampling of wells may also be warranted to assist in determination of significant threat, if any. Laboratory analysis should include, at a minimum, analysis for characteristics of ignitability, characteristics of toxicity (EP Tox metals) (primarily to address the potential for lead), TCL VOCs (for determination of significant threat), and TCLP (for drum disposal).



SOURCE: U.S.G.S. 7.5 MINUTE SERIES TOPOGRAPHIC MAP; WARSAW, NY 1972, CASTILE, NY 1972.



LONGITUDE: 78°07'30" LATITUDE: 42°38'58"

ENGINEERING - SCIENCE

SITE LOCATION MAP ETE SANITATION GAINESVILLE, NEW YORK

_LEGEND

APPROXIMATE LANDFILL BOUNDARY

DRUM LOCATIONS

--- DRAINAGE/TRIBUTARY

w - 10 -v -

MONITORING WELL
SOIL SAMPLE

1C−1 ♣

LECHATE SAMPLE

SED−1 🛡

SEDIMENT SAMPLE

NOTE: TRIBUTARIES AND DRUM LOCATIONS ARE APPROXIMATE.

200' 100' 0

Approximate Scale in Feet

CONTOUR INTERVAL: 2"

MAPPING COMPILED BY STEREOPHOTOGRAMETRIC METHODS
FROM 1"=400" SCALE AERIAL PHOTOGRAPHY FLOWN 05/10/93.

MAPPING COMPILED VITHOUT BENEFIT OF A FIELD EDIT.

AREAS DUTLINED AND NOTED INDICATE AREAS OF DOUBTFUL
ACCURACY.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PRELIMINARY SITE ASSESSMENT

SITE PLAN ETE SANITATION AND LANDFILL SITE

ENGINEERING-SCIENCE

DESIGN • RESEARCH • PLANNING 280 ELBODO DAMS ROAD • LIVERPOOL, MEN YORK 13008 • 319/451-1980 OFFICES IN PRINCIPAL CITES ES

200'

SECTION 2

INTRODUCTION

2.1 PURPOSE

This report presents the results of the Preliminary Site Assessment (PSA) of the ETE Sanitation and Landfill Site (NYSDEC Site No. 961005), located in the Town of Gainesville, Wyoming County, New York. The field investigations and report preparation were conducted by Engineering-Science, Inc. (ES) under Work Assignment No. D002478-17 of a Superfund Standby Contract between the New York State Department of Environmental Conservation (NYSDEC) and ES. The ETE Sanitation and Landfill Site is an inactive landfill listed as a Class 2a site on the state Registry of Inactive Hazardous Waste Sites. The site is under investigation because of on-site disposal of leaded paint sludge, and alleged disposal of chlorinated solvents and plating wastes. Results from the Task 1 investigation, conducted by URS Consultants, Inc., concluded that insufficient information was available for site reclassification. ES was directed by NYSDEC to conduct field studies and complete the PSA investigation process to allow reclassification of the site.

The primary purpose of the PSA investigation was to assign one of the following three site classifications provided by Article 27, Title 13 of the Environmental Conservation Law to the site:

- · Class 2 Significant threat to public health or environment action required;
- · Class 3 Does not present a significant threat to public health or environment action may be deferred; or
- · Class D Site delisted from Registry of Inactive Hazardous Waste Sites.

Classification is based on a determination of:

- 1. The documented presence of hazardous waste, as defined under Title 6, Part 371 of the New York Code of Rules and Regulations (NYCRR); and
- 2. The threat posed by hazardous waste on-site to the public health and environment.

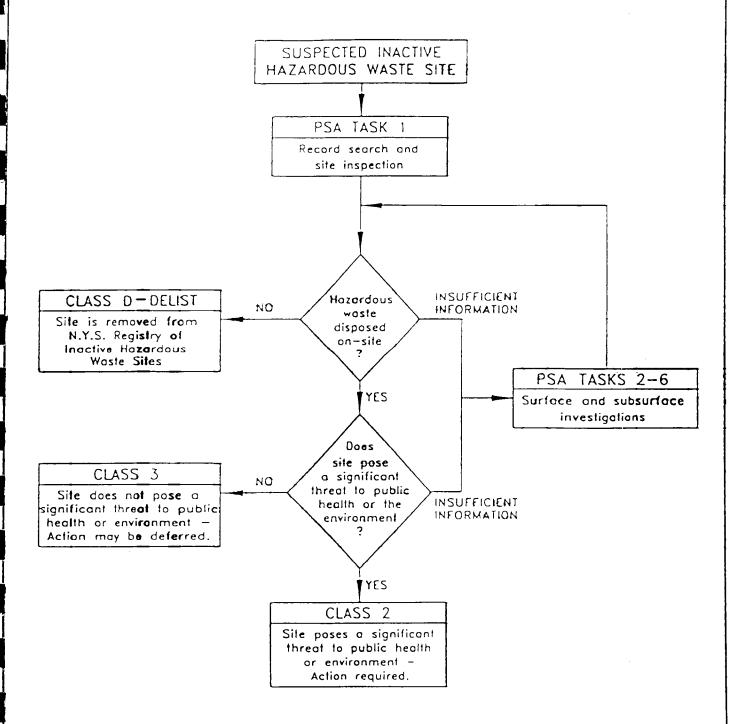
In the event that insufficient data are developed for the determination of the presence or threat posed by hazardous waste at the sites, recommendations for further work will be made to obtain sufficient data.

2.2 REPORT ORGANIZATION

This report consists of six sections and five appendices. Section 1 provides an executive summary of the results of the investigation, including recommendations for further work at the sites if warranted. Section 2 presents an introduction to the PSA investigation and the PSA program at the NYSDEC. Section 3 presents a description of the scope of work for the PSA investigation. Section 4 presents an assessment of the data gathered during the investigation. Section 5 presents recommendations for reclassification

of the site or further work at the site. Section 6 presents a list of cited references. Appendix A contains U.S. Environmental Protection Agency (USEPA) Form 2070-13, completed with the data gathered during this investigation.

Appendix B contains the results of USEPA Preliminary Scoring (PA Score). Appendix C contains boring logs and well construction data. Appendix D contains laboratory analytical data in data base format. Appendix E contains selected references.


2.2 PRELIMINARY SITE ASSESSMENT INVESTIGATION

PSA investigations are generally comprised of six tasks as follows:

- Task 1 Records Search, Site Inspection, and Assessment;
- Task 2 Site Work Plan Development;
- Task 3 Surface Field Investigation;
- Task 4 Subsurface Field Investigation;
- Task 5 Draft PSA Report; and
- Task 6 Revised PSA Report.

PSA investigations are intended to be completed with the minimum number of tasks required to generate sufficient information for classification under the Environmental Conservation Law. Figure 2.1 provides a decision tree used for classification of sites.

SITE CLASSIFICATION DECISION TREE

SECTION 3

SCOPE OF WORK

3.1 INTRODUCTION

The scope of work for the PSA investigation (Tasks 2 through 6) at the ETE Sanitation and Landfill Site consisted of developing a Project Management Plan for the entire work assignment (Task 2); initial environmental sampling, including sediment, leachate, and shallow soil samples (Task 3); subsurface environmental sampling and grain-size analysis, including installation of monitoring wells, subsurface soil sampling, and groundwater sampling (Task 4); site assessment and preparing a draft report (Task 5), and completing a final report (Task 6). The record search and initial site inspection (Task 1) were conducted by others. Task 2 was presented in the Project Management Plan dated February 1993. Tasks 3 and 4 were conducted in accordance with the Technical Work Plans provided by the NYSDEC (dated December 8, 1992) and later modifications as directed by the NYSDEC. The site specific-tasks are described below and summarized in Table 3.1.

Environmental sampling was conducted in accordance with the Technical Work Plans provided by NYSDEC and the Quality Assurance Project Plan (QAPP) dated November 1992. Environmental sample analyses was conducted by Recra Environmental, Inc. (Recra) of Amherst, New York in accordance with the NYSDEC Analytical Service Protocols (ASP) (December 1991) and the QAPP. Recra is one of three laboratory Standby subcontractors for ES. As directed by the NYSDEC, data validation was not conducted on analytical results for the ETE Sanitation and Landfill Site. However, ES did conduct sample tracking and contract compliance screening on all samples. Grain-size analyses were performed by Huntingdon Empire Soils Investigation, Inc., Groton, New York, using ASTM method D422-63 (1990).

Air monitoring was conducted using a Photoionization Detector (PID) and Draeger Tubes as warranted and/or as called for in the Health and Safety Plan. In general, air in the breathing zone was monitored during drilling and sampling activities. Soil samples were also screened, as was the headspace over each monitoring well, as a means of determining the presence of volatile organic compounds.

3.2 INITIAL ENVIRONMENTAL SAMPLING

3.2.1 Sediment Samples

One sediment sample (SD001) was collected from the inlet at the southern end of the leachate collection pond on May 11, 1993 (Figure 3.1 and Table 3.2). The sediment sample was collected by ES using a stainless steel spoon and bowl. The leachate collection pond is located at the base of the northwest corner of the landfill and receives surface water and leachate runoff from the northern and western portions of the landfill. Sediments were described as rust brown in color.

The sediment sample was analyzed for Target Compound List (TCL) volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL pesticides, TCL polychlorinated biphenyls (PCBs), Target Analyte List (TAL) metals, cyanide and

for hazardous waste characteristics by EP Tox testing. No matrix spike, matrix spike duplicate (MS/MSD) or field duplicate samples were collected for the sediment sample location.

3.2.2 Leachate Samples

One leachate sample (LC001) was collected from the inlet at the southern end of the leachate collection pond on May 11, 1993 (Figure 3.1 and Table 3.2). The leachate sample was collected by ES directly into the sample bottles. The leachate sample was analyzed for TCL VOCs, SVOCs, pesticides, PCBs; TAL metals; and cyanide. No MS/MSD or field duplicate samples were collected for the leachate sample location.

3.2.3 Surficial Soil Samples

Three surficial soil samples were collected in the vicinity of crushed drums, partially buried intact drums, and/or from stained or otherwise suspect soils on May 10, 1993 (Figure 3.1 and Table 3.2). Samples were collected by ES using a stainless steel spoon and bowl. Sample SS001 was collected from a stained former seep area at the southern end of the landfill, adjacent to metal debris. Sample SS002 was a composite sample of soils from the vicinity of where crushed drums are stored in the central portion of the landfill. SS003 was collected along the northern perimeter of the landfill where partially buried drums were observed in the slope. Duplicate sample SS004 was collected from sample location SS001.

All samples, except SS004, were analyzed for TCL organics, TAL metals, and cyanide. Duplicate sample SS004 was analyzed for TCL organics only. Samples SS001/SS004 and SS003 were analyzed for hazardous waste characteristics by EP Tox. MS and MSD samples were collected from sample location SS001.

3.3 SUBSURFACE ENVIRONMENTAL SAMPLING

3.3.1 Monitoring Wells

Seven monitoring wells were installed in accordance with the Technical Work Plans and as directed by the NYSDEC field personnel between March 24, 1993 and April 8, 1993 (Figure 3.1). Six of the monitoring wells were installed as well pairs (MW-1S/D, MW-2S/D, and MW-3S/D) and one monitoring well was installed as a single well (MW-4). Shallow wells ranged in depth from 15 to 17.5 feet below ground surface (bgs). Deep wells ranged from 42 to 47.5 feet bgs. Monitoring well installation was conducted by SJB Services, Inc. of Buffalo, New York, with oversight from ES and the NYSDEC.

The initial boring for the upgradient shallow well, MW-2S, was installed east of the on-site pond, as directed by the NYSDEC. However, due to objections by the adjacent property owner, the MW-2S/2D well pair was relocated to the west side of the pond. The initial boring for MW-2S was redesignated BW-2SA and abandoned using portland cement and granular bentonite.

The initial boring for MW-1D was drilled to approximately 84 feet; however abandonment was required due to collapse of the boring during installation of the PVC riser. The initial boring for MW-1D was redesignated B-1D, and abandoned using portland cement and bentonite. The MW-1D/1S well pair was relocated approximately 30 feet further east.

The boring for monitoring well MW-3D was drilled to 78 feet, but was backfilled to 42 feet, after subsurface soil sample collection, to ensure a consistent depth with the other deep monitoring wells.

Bedrock wells were not installed as originally planned because bedrock was deeper than anticipated during work plan development. Shallow and deep wells were installed in the overburden, as directed by the NYSDEC, to determine vertical flow potential and to determine the extent of shallow and deep contamination, if any.

The monitoring wells were drilled and constructed in accordance with the Technical Work Plans and the QAPP. All wells are overburden monitoring wells constructed of 2-inch inner diameter threaded PVC flush-joint casing with 0.010-inch slot screen. The annulus around the outside of the screen was backfilled with clean silica sand with the sand pack extended to at least 2 feet above the top of the well screen. Bentonite slurry was placed above the sand pack to form a minimum 2-foot thick seal. Vented caps and 4-inch diameter, steel casing with hinged locking caps were installed over the monitoring wells. The protective casings extend at least 2 feet above the ground surface and were cemented in place. A summary of well specifications is presented in Table 3.3. Boring logs and geotechnical analyses are included in Appendix C. Chemical analytical results are discussed in Section 4 and analytical data sheets are presented in Appendix D.

Well development was conducted by ES on April 20 and April 28, using dedicated bailers and a Waterra Inertial Pump system (tubing was decontaminated between wells). Wells were developed by the removal of at least three well volumes. Well development continued until a turbidity reading of less than 50 NTU was achieved or until consistent pH, temperature, and conductivity were achieved, up to a maximum of 4 hours.

3.3.2 Subsurface Soil Samples and Grain-Size Analysis

Subsurface soil was sampled with split spoon samplers. Split spoons were collected continuously throughout the depth of each well. One sample from each of the three well pairs (SSMW1S, SSMW3D, and SSMW2) and one from MW-4 (SSMW4) were selected for TCL organics, TAL metals, and cyanide analyses based on visual observations and PID readings (Table 3.4). Subsurface soil sample identifications consist of the monitoring well identification with a "SS" prefix. Subsurface soil sample intervals were:

- **SS**MW1S: 4-10 feet bgs;
- · SSMW2S: 2-22 feet bgs (VOC sample was collected from 6 to 22 feet bgs to accommodate volume requirements for MS/MSD samples);
- · SSMW3D: 71-78 feet bgs; and
- · **SSMW4**: 2-8 feet bgs.

VOC samples were collected as grab samples from selected subintervals within the intervals listed above. Samples for remaining analyses consisted of composited soils from these intervals.

One sample from within the 10-foot screened interval of each well was selected from the split spoon samples for grain-size characterization. Grain-size sample intervals were:

- · SSMW-1S: 10-14 feet bgs;
- · SSMW-2S: 14-18 feet bgs;

SSMW-3S: 8-10 feet bgs; and

• **SSMW**-4: 10-14 feet bgs.

3.3.3 Groundwater Samples

Groundwater samples and water level data were collected from each of the seven wells on May 10 and 11, 1993. The groundwater samples were collected using dedicated, disposable polyethylene bailers and prolypropylene lines. Groundwater samples were collected in accordance with the QAPP and were analyzed for TCL organics, TAL metals, and cyanide. A duplicate was collected from MW01S (GW005); this sample was not analyzed for metals or cyanide. MS/MSD samples were collected from MW01S. Groundwater was noted to be light brown to dirty in appearance. With the exception of MW-2D, turbidity readings for the groundwater were consistently above 50 NTUs, and above 200 NTU for monitoring wells MW-1S, MW-2S, MW-3D, MW-3S, and MW-4 during well development. The wells with turbidity readings consistently above 50 NTU were developed until steady pH, conductivity, and temperature readings were achieved.

3.3.4 Survey

Surveying and mapping was conducted in accordance with the Technical Work Plans. The control survey was performed by a New York State-licensed surveyor. Modi Associates. Aerial photography and AutoCAD mapping was conducted by TVGA of Lansing, Pennsylvania, under subcontract to Modi Associates.

3.3.5 Data Validation

As requested by NYSDEC, data validation was conducted only on analytical results from the first sample delivery group (SDG) for the six sites under this work assignment. Data validation was conducted by ES on subsurface soil samples from the Warsaw Village Landfill Site (SDG MW1), the first set of samples submitted to the laboratory from this set of site investigations. Full data packages were collected for all SDGs for the ETE Sanitation and Landfill Site; however, "validation" of analytical results was limited to sample tracking and contract compliance screening.

Data validation was performed on SDG MW1 from the Warsaw Village Landfill Site by ES following guidelines in the most recent USEPA documents adapted to the QA/QC criteria in the NYSDEC ASP and in accordance with the QAPP. Data validation was performed by trained and experienced data validators who meet the NYSDEC approval criteria.

Use of non-validated data is assumed to be adequate, based on satisfactory results from validation of the Warsaw Village Landfill SDG MW1 because all analyses were conducted by the same laboratory, RECRA, within a limited time-frame (approximately 73-days). It is also assumed that within this period all quality assurance/quality control protocols were followed in a similar manner and with similar results as for SDG MW1.

3.3.6 Slug Test

Rising and falling head in-situ hydraulic conductivity tests were budgeted as optional tasks, but, as directed by the NYSDEC, were not conducted at the ETE Sanitation and Landfill Site.

3.4 REPORT PREPARATION

3.4.1 Site Assessment

The site assessment subtask included data evaluation and the collection of background data as necessary to complete report documentation.

3.4.2 Report Preparation

This report was prepared to present a summary of background information, results of the field investigation, and recommendations for site reclassification. Preliminary assessment (PA) evaluation scoring was conducted using the USEPA PA-Score (version 2.1) program. PA-Score performs PA scoring calculations from raw data to generate PA score sheets, documentation, and EPA's Potential Hazardous Waste Site Preliminary Assessment form. A score of 28.5 or greater indicates the site is potentially eligible for National Priority List (NPL) nomination, subject to Hazardous Ranking System (HRS) scoring.

TABLE 3.1

SUMMARY OF PSA TASKS ETE SANITATION AND LANDFILL SITE GAINESVILLE, NEW YORK

Tas k	Description of Task			
Initial Environmental Sampling				
Sediment Sample	One sediment sample was collected from the leachate collection pond inlet and analyzed for TCL organics, TAL metals, cyanide and for hazardous waste characteristics by EP Toxicity testing procedures.			
Leachate Sample	One leachate sample was collected from the leachate collection pond inlet and analyzed for TCL organics, TAL metals, and cyanide.			
Shallow Soil Samples	Three shallow soil samples were collected from stained or otherwise suspect soils. All three samples were analyzed for TCL organic compounds, TAL metals, and cyanide. Samples SS001 and SS003 were also analyzed for hazardous waste characteristics by EP Tox testing procedures.			

TABLE 3.1 (CONTINUED)

SUMMARY OF PSA TASKS ETE SANITATION AND LANDFILL SITE GAINESVILLE, NEW YORK

Task	Description of Task			
Subsurface Environmental Sampling				
Monitoring Well Installation	Three monitoring well pairs and a single well were installed. All wells were installed in unconsolidated sand and silt (overburden). Shallow wells ranged in depth from 15 to 17.5 feet bgs. Deep wells ranged from 42 to 47.5 feet bgs. Wells were constructed of 2-inch ID PVC casing with 10 feet of 0.010-inch slotted well screen.			
Subsurface Soil Samples	Split spoon samples were collected continuously from the ground surface to the bottom of the monitoring well borings. Four subsurface soil samples were collected, one each from MW-1S, MW-2S, MW-3D, and MW-4, based on PID readings and field observations. The samples were analyzed for TCL organic compounds, TAL metals, and cyanide. One sample was also collected from the screened portion of each of the shallow wells for grain-size analysis.			
Well Development	Well development was conducted using dedicated bailers and a Waterra Inertial Pump system.			

TABLE 3.1 (CONT.)

SUMMARY OF PSA TASKS ETE SANITATION AND LANDFILL SITE GAINESVILLE, NEW YORK

Task	Description of Task			
Subsurface Environmental Sampling (Continued)				
Groundwater Samples	Seven groundwater samples were collected and analyzed for TCL organic compounds, TAL metals, and cyanide.			
S ur ve yi ng	Monitoring well elevations and locations, and sample locations were surveyed relative to fixed datum. The surveying task included aerial photography and AutoCAD mapping.			
Da ta Validation	Data validation was conducted only on analytical results on SDG MW1 from the Warsaw Village Landfill Site, the first sample set submitted to the laboratory. Review of analytical results from the ETE Site was limited to sample tracking and contract compliance screening.			
Report Preparation				
Site Assessment	A preliminary site contamination assessment was conducted prior to report preparation for evaluation of background data and data from the field investigation.			
Report Preparation	A report was prepared containing a summary of background information, field data, and a site assessment. PA scoring was conducted using the USEPA PA-Score program (version 2.1)			

TABLE 3.2

SAMPLE SUMMARY ETE SANITATION AND LANDFILL GAINESVILLE, NEW YORK

SAMPLE CATEGORY	SAMPLE ID	SAMPLE DEPTH (FT)	SAMPLE DATE	ANALYSES	FIELD CREW	MS/MSD (Y/)	DESCRIPTION OF LOCATION/SAMPLE
SEDIMENT	SD001	0 - 0.5	05/11/93	1 – 7	KAP, DRD		Leachate collection pond inlet
LEACHATE	LC001		05/11/93	1 - 6	KAP, DRD		eachate collection pond inlet
SURFACE SOIL	\$\$001	0 - 0.5	05/10/93	1 - 7	KAP, ORD	Y	Seep area south end of landfill adjacent to metal debris.
SURFACE SOIL	SS004	0 - 0.5	05/10/93	1-4,7	KAP, DRD		Duplicate for SS001
SURFACE SOIL	SS002	0 ~ 0.5	05/10/93	1 – 6	KAP, DRD		Composite from former overpack drum storage area.
SURFACE SOIL	\$\$003	0 - 0.5	05/10/93	1 – 7	KAP, DRD		North end of landfill along bank where drums are visible.
SUB-SURFACE SOIL	SSMW4	2-8	03/24/93	1 – 6	NAS		Northern boundary of landfil.
SUB-SURFACE SOIL	SSMW1S	4-10	03/24/93	1 – 6	NAS		Southwest corner of landfill.
SUB-SURFACE SOIL	DEWMSS	71-78	04/06/93	1 – 6	NAS		Northeast corner of landfill.
SUB-SURFACE SOIL	SSB3	71-78	04/06/93	1 - 4	NAS		Duplicate for SSMW3D.
SUB-SURFACE SOIL	SSMW2S SSMW2S	6-22 2-22	04/08/93 04/08/93	1 2 - 6	NAS NAS	Y	Upgradient well, west of pond.
DRILL WATER	DR-1		04/08/93	1 - 6	NAS		

* ANALYSES:

1. TCL VOCs
2. TCL SVOCs

3. TCL PCBs

4. TOL PESTICIDES

5. TAL METALS

6. CYANIDE

7. EP Tox

TABLE 3.2 (CONT.)

SAMPLE SUMMARY ETE SANITATION AND LANDFILL GAINESVILLE, NEW YORK

SAMPLE CATEGORY	SAMPLE ID	SAMPLE DEPTH (FT)	SAMPLE DATE	ANALYSES	FIELD CREW	MS/MSD (Y/)	DESCRIPTION OF LOCATION/SAMPLE
GROUNDWATER	GW01S		05/10/93	1 - 6	KAP, DRD	Y	Southwest comer of landfill.
GROUNDWATER	GW005		05/10/93	1-4	KAP, DRD		Duplicate for GW01S.
GROUNDWATER	GW01D		05/10/93	1 ~ 6	KAP, DRD		Southwest corner of landfill.
GROUNDWATER	GW03D		05/11/93	1 - 6	KAP, DRD		Northeast corner of landfill.
GROUNDWATER	сwoзs		05/11/93	1 – 6	KAP, DRD		Northeast corner of landfil.
GROUNDWATER	GW004		05/11/93	1 - 6	KAP, DRD		Northern boundary of landfill.
GROUNDWATER	GW02S		05/11/93	1 - 6	KAP, DRD	Y	Jpgradient well, southwest of pond.
GROUNDWATER	GW02D		05/11/93	1 – 6	KAP, DRD		Jpgradient well, southwest of pond.
GROUNDWATER	TRIP BLANK		05/10/93	1	KAP, DRD		

^{*} ANALYSES:

^{1.} TCL VOCs 2. TCL SVOCs

^{3.} TCL PCBs

^{4.} TCL PESTICIDES

^{5.} TAL METAL\$

^{6.} CYANIDE

TABLE 3.3 MONITORING WELL LOCATIONS AND SPECIFICATIONS ETE SANITATION AND LANDFILL SITE GAINESVILLE, NEW YORK

WELL/ BORING	UNIT SCREENED	LOCATION	TOP OF SCREEN		BOTTOM OF SCREEN		
NUMBER			DEPTH (FEET) *	ELEVATION (FEET) **	DEPTH (FEET) *	ELEVATION (FEET) **	
MW - 1 S MW - 1 D	OVERBURDEN	SOUTHWEST OF MAIN FILL AREA	7.0 32.5	1662.7 1637.1	17.0 42.5	1652.7 1627.1	
MW - 25 MW - 2D	OVERBURDEN	SOUTH OF MAIN FILL AREA NEAR MAIN ROAD	7. 5 37.5	1 6 74.4 1644.5	17.5 47.5	1664.4 1634.5	
MW - 3 S MW - 3 D	OVERBURDEN	TOE OF FILL NORTH OF MAIN FILL AREA	7.5 32.0	1638.6 1614.1	17.5 42.0	1628.6 1604.1	
MW - 4	OVERBURDEN	NORTH OF MAIN FILL AREA BETWEEN TOE AND LEACH POND	5	1638.8	15	1628.8	

NOTE: REFER TO FIGURES 4.3 AND 4.4 FOR CROSS SECTIONS AND LITHOLOGIC SUMMARY

^{*} DEPTHS IN FEET BELOW GROUND SURFACE

^{**} ELEVATIONS IN FEET ABOVE MEAN SEA LEVEL

TABLE 3.4
SPLIT SPOON SAMPLE LOCATIONS
ETE SANITATION AND LANDFILL SITE
GAINESVILLE, NEW YORK

SAMPLE ID NUMBER	WELL/ BORING NUMBER	MATRIX	SAMPLE DEPTH (FEET)	LOCATION
SSMW1S	MW - 1 S	SOIL	4 10	SOUTHWEST OF MAIN FILL AREA
SSMW2S	MW - 2S	SOIL	6 – 22 FOR VOCs 2 – 22 FOR OTHER	SOUTH OF MAIN FILL AREA NEAR MAIN ROAD
SSMW3D / SSB3	MW 3 D	SOIL	71 – 78	TOE OF FILL NORTH OF MAIN FILL AREA
SSMW4	MW – 4	SOIL	2 - 8	NORTH OF MAIN FILL BETWEEN TOE AND LEACH PON

LEGEND

APPROXIMATE LANDFILL BOUNDARY

DRUM LOCATIONS

— DRAINAGE/TRIBUTARY

MONITORING WELL

SS−2 ■

SOIL SAMPLE

LC-1 🖶

LECHATE SAMPLE

SED−1 🛡

SEDIMENT SAMPLE

NOTE: TRIBUTARIES AND DRUM LOCATIONS ARE APPROXIMATE.

200' 100' 0

Approximate Scale in Feet

CONTOUR INTERVAL: 10'
MAPPING COMPILED BY STEREOPHOTOGRAMMETRIC METHODS
FROM 1'=400' SCALE AERIAL PHOTOGRAMMY FLOWN 05/10/93.
MAPPING COMPILED WITHOUT BENEFIT OF A FIELD EDIT.
AREAS OUTLINED AND NOTED INDICATE AREAS OF DOUBTFUL
ACCURACY.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PRELIMINARY SITE ASSESSMENT SAMPLE LOCATION MAP ETE SANITATION AND LANDFILL SITE

ENGINEERING-SCIENCE

DESIGN • RESEARCH • PLANNING
280 ELHOOD DAMS ROAD • LIVERPOOL, NEW YORK 13088 • 315/451-8580
OFFICES IN PRINCIPAL CITIES

ES

200'

REVISED: 2/2/94 001250| D:\723800\ETE.DWG

SECTION 4

SITE ASSESSMENT

4.1 SITE DESCRIPTION

The ETE Sanitation and Landfill Site (NYSDEC No. 961005) is an inactive landfill listed as a Class 2a site on the State Registry of Inactive Hazardous Waste Sites. This site is under investigation by the NYSDEC because of reported on-site disposal of leaded paint sludges, and alleged disposal of chlorinated solvents and plating wastes (NYSDEC, 1989; URS, 1990). The soil sample had concentrations of 1,1,1-trichloroethane, carbon tetrachloride, 1,2-dichloropropene, trichloroethene, tetrachloroethene, and 1,1,2,2-tetrachloroethane detected at 2,464 mg/kg, 2,922 mg/kg, 4,125 mg/kg, 3123 mg/kg, displayed 1,562 mg/kg, and 2,132 mg/kg respectively.

The ETE Site is located in a rural agricultural area in the Town of Gainesville, Wyoming County, New York, approximately 2 miles west of Silver Springs and 1 mile north of the Village of Gainesville (Figure 4.1) (USGS, 1972a; USGS, 1972b).

The site is approximately 20 acres in size and is bordered by undeveloped land, a pond, and Broughton Road to the south; a drainage ditch extending from the south pond to the leachate collection pond, farm land and Route 19 to the west; undeveloped land and farm land to the north; and a seasonal tributary, farm land, and Jordan Road to the east. A leachate collection pond is located at the base of the north slope of the landfill. The Town of Gainesville Highway Department Garage is located southeast of the fill area (Figure 4.2).

The landfill portion of the property is elevated relative to the surrounding land. The site is vegetated with grasses and trees; however, debris protrudes through the ground cover in portions of the landfill. Three drum areas were identified during the 1993 PSA investigation, including a pile of crushed drums covered with plastic in the center of the landfill, and half buried drums along the east and north slopes of the landfill. One of the drums along the east slope of the landfill had a partial label indicating the contents were a type of lacquer.

Leachate seeps discharging to the leachate collection pond were noted along the north and west slopes of the landfill. The ground surface in the vicinity of the leachate collection pond is void of vegetation, with stressed vegetation further away. A small, former leachate seep was also noted in the southern portion of the landfill.

Vehicular access is restricted by gates at the entrance from Broughton Road and from the Gainesville Highway Department property, but the remainder of the property is not fenced.

4.2 SITE HISTORY

The ETE Sanitation and Landfill Site was operated by ETE Corporation from 1972 to 1979 (URS, 1990). The ETE Site was a nonpermitted, private landfill that accepted municipal and industrial waste from six surrounding towns in Wyoming County. Industrial waste included leaded paint sludge, salt, and possibly plating wastes. Waste solvent drums have been observed on-site. The property was owned by ETE Corporation.

ja!

which declared bankruptcy in 1979 after a suit was brought against the corporation for defying a New York State Supreme Court Order to cease any and all landfill operations — (URS, 1990). Refuse Unlimited. Inc. was named as the successor in interest to ETE Sanitation Landfill, Inc. (Wyoming County Clerk's office Liber 554 Page 222). Tax — records indicate the site is currently owned by ETE Corporation, with a Donald Iwanicki named as Trustee. Documented closure of the landfill has not been identified to date.

The landfill was in violation of NYSDEC regulations for sanitary landfills for the entire time of its operation (URS, 1990). Violations cited by NYSDEC included refuse burned on-site; refuse not spread, compacted, and covered; refuse protruding through cover; insufficient grading; uncontrolled release of leachate; and blowing paper (URS, 1990; NYSDEC, 1977).

Almor Corporation of Warsaw, New York, disposed approximately 150 tons of leaded paint sludge on-site (D008) (Almor, 1984). Plating wastes from Mallory Timers in Warsaw, New York may also have been disposed on-site (URS, 1990). Additional industrial waste included halite (table salt) and possibly other salts produced by Morton Salt. An estimated 4 to 5 truckloads of salt were disposed per week for an undetermined length of time (URS, 1990).

Several site inspections conducted by the NYSDEC between 1987 and 1990 included sampling and analysis of on-site soils, surface water, and wastes, as well as tap water samples from residences in the vicinity of the site (URS, 1990). These inspections included:

- March 1987 -- Samples were collected from the leachate pond and leachate pond sludge (NYSDEC, 1987). These samples were analyzed for inorganics (certain metals and cyanide) by Cambridge Analytical Associates; only cyanide was detected (URS, 1990). Cyanide was detected in the leachate sample at 0.01 milligrams per kilogram (mg/kg) and in the sediment sample at 1.6 mg/kg.
- September 2, 1987 -- NYSDEC sampled a "thick, black-red oily substance" from one drum (sample number 960801-02) and soil around a pile of leaking drums (sample number 96801-03) (NYSDEC, 1987). Reportedly, a pond sample was also collected and analyzed; however analytical results were not located during the record search (URS, 1990). The drum sample had concentrations of 1,1,1-trichloroethane, isophorone, phenoi, and bis(2-chloroethyl)ether at 42,000 mg/kg, 8,142 mg/kg, 133.8 mg/kg, and 181.7 mg/kg respectively (URS, 1990). The soil sample had concentrations of 1,1,1-trichloroethane, carbon tetrachloride, 1,2-dichloropropane, trichloroethene, tetrachloroethene, and 1,1,2,2-tetrachloroethane detected at 2,464 mg/kg, 2,922 mg/kg, 4,125 mg/kg, 3123 mg/kg, 1,562 mg/kg, and 2,132 mg/kg respectively.
- 1989 -- New York State Department of Health (NYSDOH) sampled soils in the vicinity of the drum disposal area and analyzed for metals. The highest concentration of metals detected was iron at 24,100 mg/kg.
- November 14, 1989 -- Two soil samples were collected from the eastern portion of fill where numerous 55-gallon drums had been disposed. These samples were analyzed by the NYSDOH laboratory (URS, 1990). Two drums were labelled "Cholorothene-V6" (unknown, 1989). 1,1,1-Trichloroethane, trichloroethene, and

- tetrachloroethene were detected in the soil samples at 2.8 ug/kg, 1.0 ug/kg, and 1.2 ug/kg, respectively (URS, 1990).
- November 14, 1989 -- Three residential wells were sampled. Two were located on Broughton Road, less than 1,500 feet southwest of the landfill (A. Stafford and W. Stafford) and one was located approximately 0.75 miles northeast of the landfill (Rutherford) (URS, 1990). The analytical reports indicated that no organic compounds were detected in the samples. A representative of the Wyoming County Health Department indicated that the department had no concern about the water (URS, 1990).
- April 4, 5, and 9, 1990 -- Marcon, Inc. of Rochester, NY, under contract to NYSDEC, collected and crushed approximately 100 empty drums which were stockpiled on-site in plastic. An additional 19 full drums were overpacked and stored on-site. Thirteen of the drums contained solids and six contained liquids. Four of the drum samples failed the ignitability test, and one (drum 4) contained lead in excess of the EP Tox standard (ES, 1993).
- January 1991 to September 1991 -- Marcon, Inc. of Rochester, NY, under contract to NYSDEC, conducted additional drum sampling on the 19 overpacked drums for determination of appropriate disposal (ES, 1993; Lozier, 1991). Lozier Laboratories performed analysis using the TCLP method 1. Three of the overpacked drums had concentrations in exceedance of federal regulatory limits, resulting in the wastes being classified as hazardous waste. TCLP exceedances included 1,2-dichloroethane, carbon tetrachloride, trichloroethene, and methyl ethyl ketone.
- May 1992 -- NYSDEC collected three samples at the inlet and outlet of the leachate collection pond and at the creek on the "east side of the road (Pond discharge)" (NYSDEC, 1992a). The sample numbers are 186001 (effluent), 186002 (influent), and 186003 (creek). The samples were analyzed by Recra Environmental. VOCs detected in the inlet to the leachate pond included chloroethane at 9 ug/l, methylene chloride at 14 ug/l, acetone at 240 ug/l, 2-butanone at 470 ug/l, benzene at 2 ug/l, 4-methyl-2-pentanone at 27 ug/l, toluene at 31 ug/l, chlorobenzene at 2 ug/l, ethylbenzene at 95 ug/l, and total xylenes at 330 ug/l. VOCs detected at the outlet of this pond included acetone, 2-butanone, ethylbenzene, and total xylenes, all at significantly lower concentrations than at the inlet. Only acetone (at 1 microgram per liter or ug/l) was detected in the creek.
- October 14, 1993 -- Three residential tap water samples were collected (from same locations as collected in November 1989). No VOCs or SVOCs were detected in any of the samples (NYSDOH, 1993a; NYSDOH, 1993b; NYSDOH, 1993c).

4.3 SITE VICINITY

Wyoming County lies near the northern border of the Appalachian Plateau (USDA, 1974). The ETE Site lies in the east, central portion of the county. Streams and rivers in

The USEPA has replaced the EP Tox method with the TCLP method for determining characteristics of toxicity. Although the methods are similar, the TCLP method addresses 25 constituents, in addition to the 14 addressed by the EP Tox method.

the northern portion of the county occupy deep, narrow valleys. In the southern portion of the county, streams, except for the Genesee River, generally flow at elevations that are more equivalent to the plateau. Land between the streams is gently rolling with broad, flat-topped hills. The northeastern portion of the county contains numerous drumlins which are glacial features consisting of small, elongated hills made up of sand and gravel. The southern half of the county contains large areas of rolling, hummocky topography. About one-third of the county is wooded, and two-thirds occupied by farms and villages. The highest elevation in the county, 2,100 feet above mean sea level, is in the southern portion of the county near the Allegany County line. Elevations of 1,000 feet are common in the valley floors of the northern portion of the county, and the lowest elevation is 627 feet where the Genesee River flows east into Livingston County.

Wyoming County is predominantly agricultural. Dairy farming and grain and forage used in dairy farming are the predominant agricultural enterprises (USGS, 1974). Other agricultural activities include maple products, dried beans, and potatoes. The principal manufacturing industries located in the county within the last 25 years include cutlery, time clocks, knit goods, electronic parts, and manufacturers of various other metal, wood, and plastic parts. In addition, a salt mine is located in the Village of Silver Spring, less than 5 miles northeast of Gainesville.

4.4 REGIONAL ENVIRONMENTAL SETTING

4.4.1 Regional Geology and Soils

Wyoming County is in the Appalachian Plateau physiographic province of New York State (USGS, 1974). The boundary of the Appalachian Plateau with the Ontario Lowlands physiographic province is located in the extreme northeastern corner of the county.

The entire county was covered by glacial ice during the Wisconsin Stage of the Pleistocene Epoch (between 1 million and 10 thousand years ago). The unconsolidated geologic material deposited by the ice sheets and by water associated with melting ice has created a gently rolling topography which is sharply dissected by streams and rivers in the northern portion of the county. The entire county has been covered by multiple ice advances during this time. Some of the sand, silt, clay, and gravel deposited during each advance was subsequently eroded by glacial meltwater and redeposited by the flowing water.

Valleys also contain thick deposits of stratified glacial outwash, which are made up of sand and gravel with very little silt and clay. The stratified outwash deposits were formed during periods when significant quantities of flowing water were produced by melting ice. During periods of high water flow, the finer-grained silt and clay was transported by the water current, and the heavier sands and gravels were deposited on valley floors. During periods of low water flow, layers of silt and clay settled out of the water and covered the sand and gravel, forming a vertical stratification of the material (alternating layers of sand/gravel and silt/clay). In larger valleys, such as the Genesee, lakes were formed by ponded, glacial meltwater. In these valleys, extensive deposits of clay, silt and very fine sand characterize the former lake bottoms.

The unconsolidated geologic material in Wyoming County is underlain by bedrock of the Devonian age (USGS, 1974). Rocks of Middle Devonian age (deposited 387-374)

million years before the present) are at lower elevations and more predominant in the northern portion of the county, while those of the Late Devonian Age (374-360 million years before the present) are at higher elevations and further to the south. The bedrock orientation is almost horizontal, with a slight southerly inclination of approximately 60 feet per mile. The formations at the lowest elevations are predominantly Hamilton Group shales which have a high carbonate content. The carbonate content decreases as the age of the units decreases. The younger rocks consist of interlayered beds of sandstone and shale of the Canadaway Group.

4.4.2 Regional Groundwater Hydrology

Groundwater is derived from precipitation which is able to infiltrate through the surface of the ground, where some is retained as soil moisture in the vadose zone, and the remainder percolates downward to the water table, or saturated zone. Groundwater moves at varying rates to points of discharge, which are generally lakes, streams, or springs.

Groundwater in bedrock is located in fractures, or breaks in the bedrock, which create void spaces known as secondary porosity. The most common fractures occur along the horizontal bedding planes of the shale and sandstone. Vertical fractures also provide major conduits for groundwater.

Groundwater in the unconsolidated glacial material is most plentiful in the stratified sand and gravel deposits located in valleys. The poorest sources of groundwater are the clay deposits derived from lake beds (lacustrine deposits) and the upland till deposits. The till deposits, however, because of their variable sand and gravel content are capable of supplying small quantities of water which may be sufficient for domestic purposes.

Regional information indicates that yields from wells in till are generally very low, usually less than 1 gallon per minute (Kammerer and Hobba, 1986). Yields from individual wells in bedrock underlying the till are usually less than 50 gallons per minute, although higher yields have been reported in some places. Most municipal supplies are furnished by reservoirs; however, others are supplied by drilled wells or developed springs (USDA, 1974).

4.4.3 Regional Surface Water Hydrology

Wyoming County is in the Erie-Ontario drainage basin. The eastern portion, where the ETE Site is located, drains into Lake Ontario through Cotton, Oatka, Wiscoy, and East Koy Creeks, and the Genesee River. The surface water in the western portion of the county drains into Lake Erie through Cattaraugus, Buffalo, Cayuga, and Tonawanda Creeks.

Silver Lake, located approximately 4 miles northeast of the ETE Sanitation and Landfill Site, is a water source for the Village of Perry and for several other communities in neighboring counties (NYSDOH, 1961; USDA, 1974). The Village of Warsaw obtains its water from Cotton Creek located approximately 2.25 miles northwest of the ETE Site (NYSDOH, 1982).

4.5 SITE ENVIRONMENTAL SETTING

4.5.1 Site Geology

Soils in the vicinity of the ETE Site are derived from till and glacial outwash or old alluvial deposits. Drilling logs from the monitoring well borings conducted during the 1993 PSA indicate that the subsurface material predominantly consists of stratified glacial outwash (sand, silt and gravel) with interlayered clay lenses (Figures 4.3 and 4.4). The strata are generally less than 4 to 6 feet thick and many are less than 1 to 2 feet thick. Grain size characteristics measured in samples from selected screened intervals indicate that the material consists primarily of silty sand with permeability ranging from 1 x 10-5 to 1 x 10-3 centimeters per second (cm/s) (Table 4.1). Because the strata are generally less than 10 feet thick, the composite samples collected for grain size analysis are actually a measure of the "average" material type. Bedrock was not encountered during drilling activities, indicating that the bedrock depth is greater than 84 feet bgs.

The predominant soils in the vicinity of the ETE site are Bath-Valois gravelly loams and the Mardin channery silt loam (USDA, 1974). These soils form the Bath-Mardin association which is characterized by deep, well-drained low lime soils on uplands with minor amounts of poorly-drained Volusia and Alden or Ellery soils on foot slopes and concave areas or depressions, respectively. The Town of Gainesville contains one of the largest areas of this association in the county (USDA, 1974). Although the Bath and Mardin soils are relatively well-drained, they characteristically have a fragipan layer at 1 to 3 feet below ground surface (bgs).

Permeability is moderate in the surface layer and in the upper part of the subsoil. The Bath-Valois loams are generally more gravelly than other soils of the Bath series and commonly have a deep substratum of stratified sand and gravel rather than basal till (USDA, 1974). Permeabilities generally range from 3.1 x 10⁻⁷ to 1.4 x 10⁻³ cm/s for Bath series soils and range up to 4.4 x 10⁻³ cm/s for Bath-Valois association soils (USDA, 1974).

The central and southern portions of the site (the landfill portion of the site) are also comprised of Alden mucky silt loam and Mardin channery silt loam. Permeability for the Mardin and Alden soils range from 3.1×10^{-7} cm/s to 1.4×10^{-3} cm/s.

Cover material for the landfill is presumed to be a mixture of the soil types discussed above because soils from surrounding areas were reportedly used for this purpose (URS, 1990).

4.5.2 Site Groundwater Hydrology

Based on boring logs and water level elevations, a shallow water table aquifer is present in the unconsolidated sediments at the site. No confining layers were identified from the boring logs. Water levels in the shallow and deep monitoring well pairs indicate a slight downward gradient. Water levels in the shallow wells were approximately one foot higher than water levels in corresponding deep wells.

Groundwater level contour maps, based on the shallow and deep monitoring wells, indicate a northeasterly groundwater flow direction (Figures 4.5, Figure 4.6, and Table 4.2). The south pond is located upgradient to the site and appears to be a local groundwater recharge area for shallow groundwater. Water levels indicate that the

leachate collection pond, north and downgradient of the landfill, acts as a local groundwater discharge area.

An elongated hill along the southeast perimeter of the site most likely influences shallow groundwater flow. A groundwater mound may exist beneath this topographic feature.

At least three private (overburden) wells are located within a 1-mile radius of the site (URS, 1990). These three wells were sampled by the NYSDOH in 1989. The majority of the Town of Gainesville and surrounding population are supplied with drinking water from private wells in the glacial aquifer (URS, 1990). These springs are reportedly located over 5 miles southwest and upgradient of the Warsaw Site.

The Village of Silver Springs is supplied by water from two wells and two springs located within 2 miles east of the ETE Site (URS, 1990). One of these wells is reportedly in unconsolidated glacial material and the other in bedrock (URS, 1990).

4.5.3 Site Surface Water Hydrology

The topography in the area slopes downward toward the north, from an elevation of approximately 1,750 feet above sea level, less than 1 mile southeast of the site, to an elevation of 1,400 feet above sea level at Cotton Creek, less than 0.75 mile north of the site. The topography southwest of the site is relatively flat to Koy Creek approximately 1.25 miles southwest of the site.

The vicinity of the ETE Site is dotted by small ponds, primarily concentrated within 1 mile southeast of the site. Two ponds are located on-site with a seasonal tributary joining them. The northern (downstream) pond is a leachate collection pond from which water flows northward into Cotton Creek, approximately 0.75 miles north of the site. Two additional ponds are located less than 500 feet east of the site, bordering both sides of Jordon Road.

Cotton Creek flows east and discharges to Oatka Creek. Oatka Creek flows in a northward direction and becomes a major tributary to the Genesee River (NYSDOH, 1961). The Village of Warsaw obtains its water from an intake on Cotton Creek located approximately 1 mile northwest of the ETE Site (NYSDOH, 1982). Cotton Creek is a Class A water body upstream from (west of) the water supply dam. Class A water bodies are suitable as a drinking water source and all other uses (e.g., fishing, fish propagation, primary contact recreation, etc.) (NYSDEC, 1985, 1991c). Below the water supply dam, Cotton Creek is a Class C water body. Class C water bodies are suitable for fishing, fish propagation, and primary contact recreation (NYSDEC, 1991c). Oatka Creek is also a Class C water body south of (upstream from) the Village of Warsaw (NYSDEC, 1985). Within Warsaw, Oatka Creek is a Class D water body. Class D water bodies are suitable for fishing (but not for fish propagation) and primary contact recreation, although other factors may limit the use for these purposes (NYSDEC, 1991c). Koy Creek is located approximately 1.25 miles southwest of the ETE Site. Portions of Koy Creek are classified as Public Fishing Rights waters (NYSDOH, 1961).

Maximum 24-hour rainfall in this region is approximately 2.5 inches, annual precipitation is 40 inches, evaporation is approximately 27 inches per year, and net precipitation is approximately 13 inches per year (URS, 1990). The site and vicinity are

classified "Zone C", a classification for areas outside the 500-year flood plain (FEMA, 1983).

No wetlands are located within i mile of the site (URS, 1990).

4.6 SITE CONTAMINATION ASSESSMENT

The following subsections summarize the results of Tasks 3 (Initial Environmental Sampling) and 4 (Subsurface Environmental Sampling). Whenever possible, samples were collected upgradient of the site to establish ambient or background conditions. These levels were compared to those found on-site, downstream, or downgradient of the site. Concentrations downstream or downgradient of the site in excess of three times the upgradient or upstream concentrations may indicate a release from an on-site contaminant source. This criterion is generally recognized by the USEPA and the NYSDEC as constituting a "significantly higher" concentration for purposes of scoring an HRS observed release for a particular pathway. However, comparison of shallow groundwater inorganic data is questionable because of high turbidity readings from MW-2S. Because of elevated inorganic concentrations from MW-2S, relative to the other shallow wells, comparisons to upgradient concentrations were made with MW-1S. Where deemed appropriate, concentrations for the leachate sample were compared to concentrations found in groundwater samples because of similar impacts from soil conditions.

Downgradient or downstream results may also be used to determine the threat posed by hazardous waste on-site to the public health and environment. EP Tox testing was also conducted where deemed appropriate to address visible, or otherwise suspected, on-site contamination, for confirmation of on-site hazardous waste. Where appropriate, aqueous sample results have been compared to applicable NYSDEC ambient water quality and guidance values. Soil and sediment sample inorganic results have been compared to published naturally-occurring ranges for the conterminous United States (Shackelette and Boerngen, 1984). VOC, SVOC, pesticide and PCB results for soil and sediment samples have been compared to USEPA human health-based levels for carcinogens and systemic toxicants (NYSDEC, 1992). Downgradient or downstream results were used to determine the threat posed by hazardous waste on-site to the public health and environment.

As stated in Section 3, "validation" of analytical results was limited to sample tracking and contract compliance screening. Assessment of analytical results included reviewing sample holding times and evaluating laboratory blank samples. In most cases concentrations in field samples less than five times blank sample concentrations were considered to be attributable to laboratory contamination and were identified as such. For common laboratory contaminants (methylene chloride, acetone, toluene, 2-butanone, and common phthalate esters), the criterion used was ten times the blank sample concentrations.

Certain concentrations were flagged with a "J", indicating an estimated value. The concentrations were estimated because they were lower than the contract-required detection limit (CRDL) but higher than the instrument detection limit (IDL).

4.6.1 Sediment Sample

One sediment sample was collected from the inlet to the leachate collection pond, adjacent to the south shore of the leachate collection pond. The sediment sample was analyzed for TCL organic compounds (VOCs, SVOCs, pesticides, and PCBs), TAL

metals, and cyanide. This sample was also analyzed for leachable metals by the EP Tox method.

Sample results are shown on Table 4.3.

olc vocs

Six VOCs were detected in the sediment sample; however, methylene chloride and benzene were detected at less than five times and ten times, respectively, of the concentrations detected in the laboratory's method blank and are therefore assumed to be due to laboratory contamination. Acetone, 2-butanone, ethylbenzene, and xylenes were detected at estimated concentrations below the USEPA human health-based levels (NYSDEC, 1992b). All four compounds are potential listed hazardous wastes; however, with the exception of 2-butanone, documented on-site use or disposal has not been located to date. 2-Butanone, also known as methyl ethyl ketone (MEK), exceeded the TCLP regulatory action level in one on-site drum sample collected during removal activities in 1991.

SVOCs

ے اس

Four SVOCs were detected in the sediment sample; however, diethyl phthalate was detected at less than ten times the concentration detected in the corresponding method blank, and is therefore assumed to be attributable to laboratory contamination. Phenanthrene, fluoranthene, and pyrene, were detected at estimated concentrations of 34 ug/kg, 39 ug/kg, and 37 ug/kg, respectively. These concentrations are below the USEPA human health-based levels shown on Table 4.3.

Phenanthrene, fluoranthene, and pyrene belong to a class of organic compounds known as polynuclear aromatic hydrocarbons (PAHs). PAHs are extremely common in residue from fires, coal, charcoal, coal tars, and heavy fuels, such as fuel oil. The practice of burning landfill material is the likely source of the PAHs in the sediment.

OK Pesticides

4,4'-DDD, 4,4'-DDE, and heptachlor were detected at low, estimated concentrations in the sediment sample. All concentrations are below the USEPA human health-based levels (NYSDEC, 1992b). 4,4'-DDD and heptachlor are potential listed hazardous wastes. However, the relatively low concentrations, the lack of documented on-site use or disposal, and the number of farms in the vicinity of the site, indicates that the presence of these pesticides may be attributable to agricultural use.

o (PCBs

No PCBs were detected in the sediment sample.

6位 Inorganics

Except for cyanide, all detected inorganic analytes were within natural background ranges for the eastern United States (Shackelette and Boerngen, 1984). However, iron, manganese, and sodium were above the range detected in surface and/or subsurface soils. The concentration of potassium was higher than for surface soils but was relatively equivalent to subsurface soils. The elevated levels of iron and manganese are likely due to deposition/precipitation from landfill leachate. The detection of sodium corresponds to

the historical reports of the salt disposal (see Section 4.2). Cyanide exceeded the natural background range of non-detect.

None of the concentrations of metals detected in the EP Tox test of this sample exceeded the hazardous waste regulatory standard.

4.6.2 Leachate Sample

One leachate samples was collected from the tributary to the leachate collection pond. This sample was collected at the point where the tributary flows into the leachate collection pond, near the location of the sediment sample. This sample was analyzed for TCL organic compounds TAL metals, and cyanide.

Sample results are shown on Table 4.4. The results are compared to applicable surface water standards for the closest water body downgradient from the site, based on the potential for leachate to affect the water body. Cotton Creek (Class C water body) is the closest water body with a NYSDEC stream classification.

VOCs

Eight VOCs were detected in the leachate sample. However, methylene chloride, acetone, and 2-butanone were detected at less than ten times the concentrations in the corresponding laboratory method blank, and therefore, there presence is assumed to be a result of laboratory contamination. Chloroethane and toluene were detected at estimated concentrations, and 4-methyl-2-pentanone, ethylbenzene, and xylenes, were detected well -above the contract required quantitation limit (CRQL). No Class C surface water standards exist for any of these compounds. These compounds are likely to be attributable to materials disposed in the landfill, and toluene, chloroethane, and 4-methyl-2-pentanone are potential listed hazardous wastes. However, with the exception of 2-butanone and chloroethane, no documented on-site use or disposal of these specific compounds has been identified to date. 2-Butanone was detected in one drum in exceedance of the TCLP regulatory action level and a drum labeled "Chloroethane-V6" was observed on-site. Chloroethane, toluene, 4-methyl-2-pentanone, ethylbenzene, and xylenes was also detected in the leachate sample collected by the NYSDEC in 1992.

SVOCs

9 K

Thirteen SVOCs were detected at low concentrations in the leachate sample; eleven at estimated concentrations. Only naphthalene and methylnaphthalene were detected at concentrations above the CRQL. Eight of the detected SVOCs are PAHs, including the two compounds detected in the highest concentrations, and two are phthalates. The source of the SVOCs is likely to be the material deposited in or burned on the landfill. Documented on-site use or disposal has not been identified to date.

Pesticides

UK Gamma-BHC (Lindane) and gamma-chlordane, were detected at estimated concentrations in the leachate. Gamma-chlordane was detected at 0.017 ppb, in exceedance of the NYSDEC Class C water quality standard of 0.002 ppb. Documented on-site use or disposal has not been identified to date. The presence of pesticides at low concentrations may be attributable to agricultural use in the vicinity of the site.

n PCBs

No PCBs were detected in the leachate sample.

Inorganics

With the exception of barium, calcium, iron, and sodium, concentrations of inorganic analytes in the leachate sample were comparable to concentrations in groundwater from MW-4, in the vicinity of where the leachate sample was collected. Concentrations exceeding Class C water quality standards included: copper, iron, zinc, and cyanide. The elevated concentrations of copper, and zinc are consistent with elevated concentrations found in groundwater upgradient of the landfill, from MW-1S. However, the concentrations of iron was greater than three times the upgradient groundwater concentration, indicating the landfill is the source of iron. Elevated concentrations of iron are likely attributable to on-site disposal of metal wastes. Although no documentation of on-site use or disposal of cyanide has been identified to date, its presence may be attributable to reported disposal of plating wastes. Cyanide also exceeded the Class C water quality standard in a leachate sample collected by the NYSDEC in 1987.

4.6.3 Soil Samples

Surface soil samples were collected from areas which may have been impacted by landfill operations, including stained soils and/or soils in the vicinity of on-site drums. Surface soil SS004 was a duplicate sample for SS001. Subsurface soil samples were collected from monitoring well borings MW-1S, MW-2S, MW-3D, and MW-4. MW-2S was the designated upgradient/background location. Subsurface soil sample SSB3 was a duplicate sample for SSMW-3D.

Three surface soil samples (plus one duplicate) and four subsurface samples (plus one duplicate) were collected. With the exception of duplicate samples, all surface and subsurface soil samples were analyzed for TCL organics, TAL inorganics, and cyanide. Samples SS004 and SSB3 were analyzed for TCL organics only. In addition, samples SS001 (and duplicate SS004) and SS003 were analyzed by the EP Tox method for leachable metals.

Sample results are shown on Tables 4.5 and 4.6 for surface and subsurface soils, respectively.

OK VOCs

Four VOCs were detected in surface the soil samples. However, methylene chloride and benzene concentrations were less than ten times and five times, respectively, greater than concentrations in the corresponding method blank. Therefore, the presence of these two compounds is assumed to be attributable to laboratory contamination. With the exception of an estimated concentration in SS001, the presence of 2-butanone was attributable to laboratory contamination. Acetone was detected in all three surface soil samples; however, its presence in SS003 was attributed to laboratory contamination. 2-Butanone and acetone concentrations were below the USEPA human health-based levels. Their presence may be attributable to reported on-site disposal of solvents; however, documented on-site use or disposal of only 2-butanone has been identified to date.

Six VOCs were detected in subsurface soil samples. However, the concentration for methylene chloride was less than ten fimes the concentration in the corresponding method

blank. The presence of methylene chloride is therefore attributable to laboratory contamination. Acetone was detected at equivalent concentrations (10 ug/kg to 19 ug/kg) in all of the subsurface soil samples. The remaining VOCs were detected at estimated concentrations in the upgradient sample, SSMW-2S, and the duplicate sample for SSMW-3D. All of the VOC concentrations were below the USEPA human health-based levels (NYSDEC, 1992b). The low concentrations, the detection of compounds in the upgradient sample location, and the lack of replicability between duplicate samples indicates that attributing the presence of these compounds to the site may be questionable. Resampling and reanalysis may be warranted.

SVOCs

Fourteen SVOCs were detected in surface soil samples. The concentration of diethyl phthalate was less than ten times the concentration in the corresponding method blank, and is therefore attributed to laboratory contamination. Sample SS001 contained 11 SVOCs, all of which are PAHs. The concentrations from both SS001 and its duplicate SS004 were in good agreement and all were qualified as estimated. These results indicate that the area were this sample was collected is likely to have been impacted by the reported refuse burning discussed in Section 4.2. Concentrations of all detected PAHs are below USEPA human health-based levels. Sample SS003 contained five SVOCs at estimated concentrations, including three PAHs and two phthalates. The phthalates are common plasticizers and may be related to plastic debris, such as garbage bags, deposited in the landfill.

Three SVOCs were detected in subsurface soil samples. The sample collected from 4 to 10 feet bgs at MW-1S contained two phthalates at low (estimated) concentrations. One of the phthalates was also detected at a low concentration in the sample collected from 2 to 8 feet bgs at MW-4. These phthalates may be associated with plasticizers in material disposed in the landfill. The phthalate concentrations were below the USEPA human health-based levels. Bis(2-chloroethyl)ether was detected at a low, estimated concentration in the sample collected from 2 to 22 feet bgs from the upgradient well MW-2S. Bis(2-chloroethyl)ether was also detected in a drum sample collected by the NYSDEC in 1987. No USEPA human health-based level was identified for comparison for this compound.

No SVOCs were detected in the deep sample (and duplicate) collected from 71 to 78 feet bgs at location MW-3D.

Pesticides

Low concentrations of nine pesticides were detected in surface soil samples. All but endosulfan I and endosulfan sulfate were estimated. Five pesticides were detected in SS001; however, duplicate sample SS004 contained only one of these five pesticides and also contained one additional pesticide, indicating the results from these two samples were not in good agreement. Sample SS003 contained five pesticides, three of which were detected only at this location. All detections were below the USEPA human health-based levels.

Two pesticides were detected at estimated concentrations in two of the subsurface soil samples. SSMW2 contained endosulfan II and duplicate sample SSB3 contained aldrin.

1?

The concentration of aldrin was below the USEPA human health-based level. No level was available for endosulfan II for comparison. Aldrin was not detected in SSMW3D.

Although the presence of pesticides in surface soils is likely attributable to agricultural use in the vicinity of the site, no uniform distribution of pesticides can be ascertained from the detections in surface and subsurface soil samples. Documentation of on-site use or disposal has not been identified to date.

011 **PCBs**

OK

PCB congener aroclor 1260 was detected in surface soil sample SS001 and its duplicate SS004. The concentrations were estimated at 71 and 73 ug/kg. concentrations are below the USEPA human health-based level of 1,000 ug/kg (NYSDEC, 1992b).

Documented on-site use or disposal of PCBs has not been identified to date. No PCBs were detected in subsurface soil samples.

Inorganic

Inorganic analyte concentrations were within naturally-occurring ranges for all samples (Shacklette & Boerngen, 1984). Elevated concentrations relative to the other surface and subsurface soil samples collected included lead, zinc, iron, and sodium. Lead concentrations were high in the surface soils relative to concentrations in subsurface soil samples. Additionally, zinc was elevated in two of the three surface soils relative to its levels in subsurface soils. The concentration of iron was significantly higher in surface sample \$\$001 than in all other samples.

The subsurface soil sample collected at 71 to 78 feet bgs at MW-3D contained elevated concentrations of potassium and magnesium relative to other samples. This is likely attributable to the natural occurrence of these analytes at higher concentrations in the deeper strata.

The subsurface soil sample collected from MW-4, near the leachate collection pond, had a high concentration of sodium relative to other samples. This may be related to elevated sodium noted in the sediment sample nearby and to the disposal of salt noted in Section 4.2.

None of the concentrations of leachable metals analyzed by the EP Tox method seeded applicable standards.

(See 4-9-90 Somplies) exceeded applicable standards.

4.6.4 Groundwater Samples

Seven monitoring wells were installed, including three shallow/deep well pairs and one shallow well. MW-2S and MW-2D were designated as upgradient wells. Downgradient wells consisted of well pairs MW-1S/1D and MW-3S/3D, and MW-4. Although the groundwater contours suggest that wells MW-1S and MW-1D are at upgradient locations, their close proximity to the landfill boundary suggests that landfill conditions would likely be detected at these two locations. All samples were analyzed for TCL organic compounds, TAL metals, and cyanide. Detected analytical results are shown on Table 4.7.

VOCs

Ten VOCs were detected in groundwater samples. However; the concentrations of methylene chloride, acetone, and 2-butanone were less than ten times the concentrations in the corresponding method blanks. Therefore their presence is assumed to be attributable to laboratory contamination. Remaining detected VOC concentrations were limited to groundwater samples from monitoring wells, MW-3S, MW-3D, and MW-4.

Sample GW03-S contained six VOCs: vinyl chloride, chloroethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloroethane, and trichloroethene. All six are chlorinated hydrocarbons which are common solvent constituents in many manufacturing and industrial processes. Their presence in the shallow groundwater at this location indicates that chlorinated solvents or a solvent blend was disposed within the landfill, or that a solvent such as trichloroethene was disposed and is decomposing/degrading to the other, simpler chlorinated hydrocarbons (Dragun, 1988). Specifically, the presence of vinyl chloride may be attributable to degradation of trichloroethene detected in on-site drums; the presence of chloroethane may be attributable to an on-site drum labeled "Chloroethane-V6"; and the presence of 1,2-dichloroethane and trichloroethene may be attributable directly from release of wastes detected in on-site drums. Concentrations of four of the compounds exceeded Class GA groundwater standards (Table 4.7).

Sample GW03-D contained chloroethane and 1,2-dichloroethene at low, estimated concentrations. Although a downward groundwater gradient exists in the vicinity of the site, as noted above, the dissolved contaminants appear to be restricted to the shallow groundwater (less than 20 feet bgs). The chlorinated VOCs are generally more dense than water and if present in sufficient quantity can form a separate dense-phase plume. However, the groundwater concentrations of chlorinated VOCs are significantly below saturation levels, indicating that a separate phase most likely has not occurred. This is further supported with the detection of higher chlorinated VOC concentrations in the MW-3S (shallow well) than in MW-3D (deep well).

Sample GW004 (collected from MW-4) contained low (estimated) concentrations of 1,1-dichloroethane, 1,2-dichloroethene, 1,2-dichloroethane, and benzene.

SVOCs

No SVOCs were detected in the groundwater samples.

Pesticides

No pesticides were detected in the groundwater samples.

PCRs

No PCBs were detected in the groundwater samples.

Inorganics

Class GA groundwater standards or guidance values were exceeded for iron in all samples and for manganese in all but one sample. This indicates that the groundwater in the vicinity of the landfill is likely to contain high background concentrations of these two analytes.

100 D

1

In general, the shallow wells and wells downgradient of the fill area had higher concentrations of inorganic analytes. Table 4.7 shows detected analytes and compares them to NYSDEC Class GA groundwater standards and guidance values.

Upgradient well MW-2S contained concentrations of aluminum, calcium, copper, iron, lead and zinc which were high relative to other wells. The elevated concentrations may be attributable to undissolved particles based on the high turbidity reading (>200 NTU) and dark brown appearance of the groundwater from this well noted during purging. The turbidity reading for MW-2D was less than 50 NTU. Because of this discrepancy, downgradient samples have been compared to MW-1S for shallow wells MW-3S and MW-4, and to MW-2D for downgradient deep wells MW-3D to determine possible releases of inorganics from the landfill.

Potential releases to shallow groundwater include barium, cadmium, calcium, magnesium, manganese, nickel, potassium, sodium, and zinc. Of this group of analytes possibly released from the fill, Class GA groundwater standards or guidance values were exceeded for magnesium, manganese, sodium, and zinc in downgradient wells MW-3S and MW-4.

Potential releases to deep groundwater include: aluminum, barium, cadmium, calcium, iron, magnesium, manganese, potassium, sodium, and zinc. Of this group of analytes possibly released by the fill, Class GA groundwater standards or guidance values were exceeded for iron, magnesium, manganese and sodium.

4.6.5 Presence of Hazardous Wastes

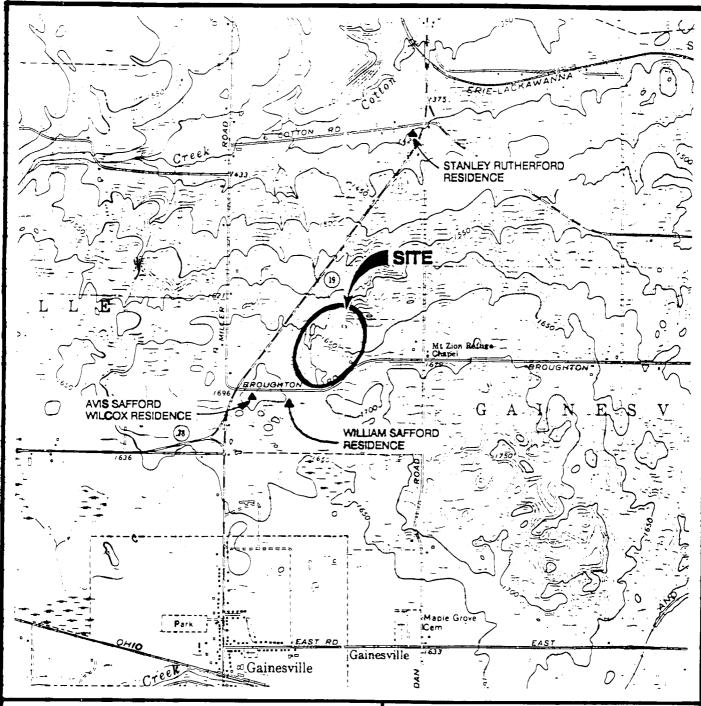
Title 6 of the New York Codes, Rules, and Regulations (6NYCRR), Part 371 establishes two categories of hazardous wastes: (1) listed hazardous wastes, and (2) characteristic hazardous wastes. Listed hazardous wastes are generated by certain industrial processes, or are judged to have an acute hazard or toxicity associated with exposure to them. Listed hazardous wastes are assigned USEPA hazardous waste numbers with "F", "K", "P", "U", or "B" prefixes.

Characteristic hazardous wastes are identified using analytical methods specified in 6NYCRR, Part 371, and are assigned "D" prefixes. The hazardous waste characteristics include toxicity, reactivity, corrosivity, and ignitability. The EP Tox method is used in New York State to identify hazardous wastes having the toxicity characteristic.

Many of the analytes detected in the field samples collected during the PSA investigation are listed potential hazardous wastes (Sections 4.6.1 to 4.6.5). However, the presence of these listed compounds on-site can not be used to establish the presence of hazardous waste at the site because: (1) they cannot be directly attributed to documented specific or non-specific sources as required by 6NYCRR, Part 371.4(b) and (c); or (2) they cannot be directly attributed to the disposal of a "commercial chemical product, manufacturing chemical intermediates, or off-specification commercial chemical products" as required by 6NYCRR, Part 371.4(d), based on limited information obtained to date. The determination of toxicity by the TCLP Method is not an approved method under 6NYCRR 371. However, the EP Tox results for lead and the ignitability results for drum wastes provide the documentation necessary to show the presence of hazardous wastes as defined by 6NYCRR, Part 371.

Preliminary assessment (PA) evaluation scoring was conducted using the USEPA PA-Score (version 2.1) program. The ETE Sanitation and Landfill Site had a score of 34, indicating that HRS scoring may be warranted.

4.6.6 Presence of Significant Threat


The presence of a "significant threat" to public health or the environment, as defined by 6NYCRR, Part 375, may be established by analytical data showing that hazardous substances: (1) have been released to environmental media from hazardous waste disposed at the site, and (2) are present in concentrations exceeding accepted health or environmental standards or guidance values. The criteria used to establish releases is discussed in the introduction to Section 4.6.

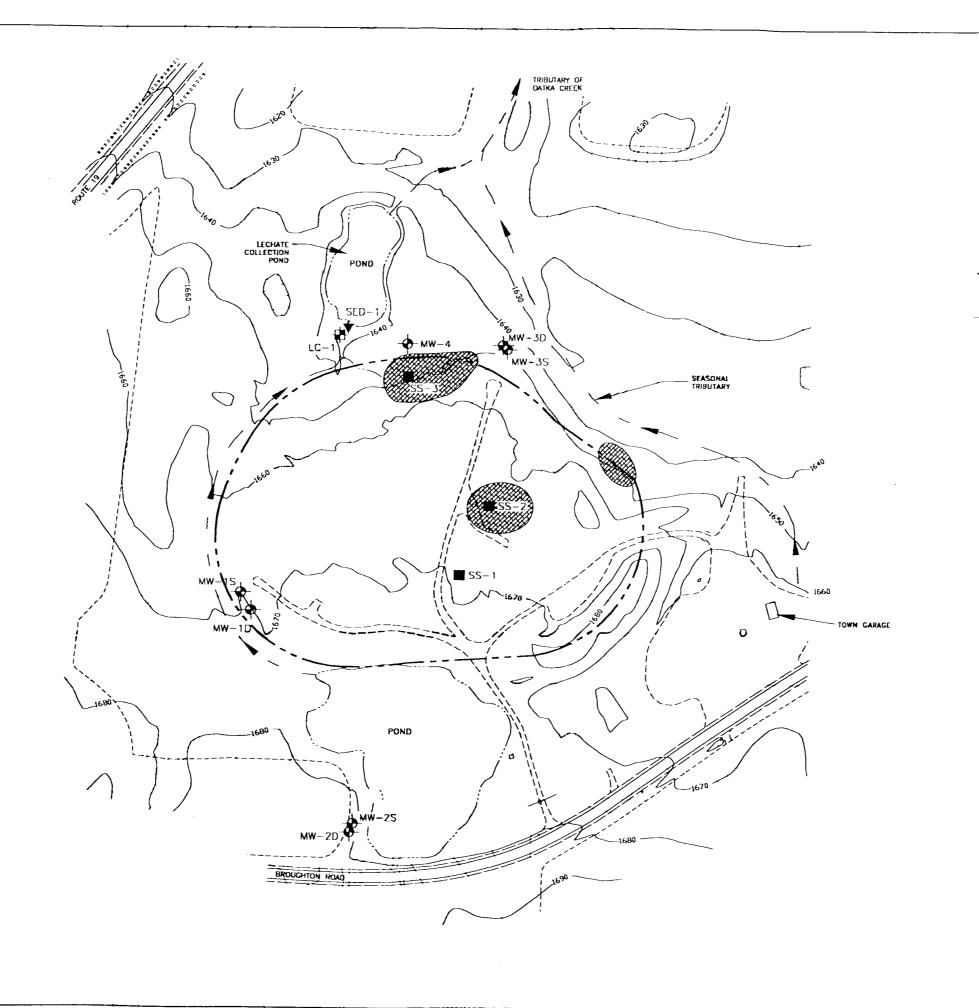
Although the on-site disposal of hazardous waste has been determined, a significant threat resulting from the hazardous waste has not been identified. Explosive and/or fire concerns have been determined not to exist (URS, 1990). Although components of the ignitable wastes were never determined to allow that correlation to be made.

The groundwater exceedance for lead in MW-25 appears to be insufficient for showing significant threat; the concentration only slightly exceeded the standard and it is questionable whether MW-2 accurately reflects site impacts (MW-2 was originally designated an upgradient well).

A significant threat attributable to hazardous waste disposed on-site, as defined by 6NYCRR 371, cannot be established. However, the exceedance of groundwater standards by chlorinated organics indicates that a significant threat could be shown to exist if the components of the ignitable wastes correlated with the exceedances of groundwater standards.

Additional concern may also be warranted for copper, iron, zinc, and cyanide Class C surface water quality standard exceedances (leachate samples).

SOURCE: U.S.G.S. 7.5 MINUTE SERIES TOPOGRAPHIC MAP; WARSAW, NY 1972, CASTILE, NY 1972.



LONGITUDE: 78°07'30" LATITUDE: 42°38'58" SCALE 0 2000 4000 FT. 2000 FT.

ENGINEERING - SCIENCE

SITE LOCATION MAP ETE SANITATION GAINESVILLE, NEW YORK

LEGEND

APPROXIMATE LANDFILL BOUNDARY

DRAINAGE/TRIBUTARY

DRUM LOCATIONS

MONITORING WELL

SS-2

SOIL SAMPLE

LC-1 🖶

LECHATE SAMPLE

SED−1 **▼**

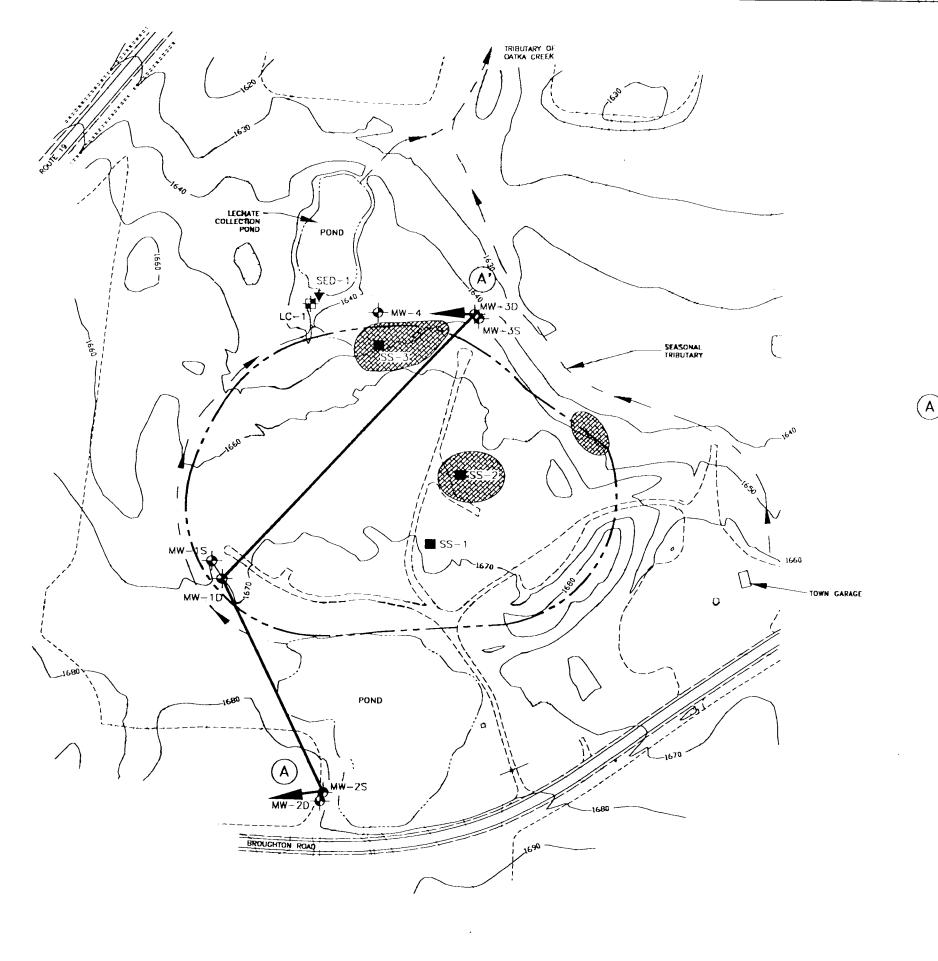
SEDIMENT SAMPLE

NOTE: TRIBUTARIES AND DRUM LOCATIONS ARE APPROXIMATE.

200' Approximate Scale in Feet

CONTOUR INTERVAL: 10' MAPPING COMPILED BY STEREOPHOTOGRAPHETRIC METHODS FROM 1'=400' SCALE AERIAL PHOTOGRAPHY FLOWN 05/10/93. MAPPING COMPILED WITHOUT BENEFIT OF A FIELD EDIT. AREAS DUTLINED AND NOTED INDICATE AREAS OF DOUBTFUL ACCURACY.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PRELIMINARY SITE ASSESSMENT


SAMPLE LOCATION MAP ETE SANITATION AND LANDFILL SITE

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING 280 ELWOOD DAVIS ROAD + LIVERPOOL, NEW YORK 13088 + 315/451-8580 OFFICES IN PRINCIPAL CITIES

REVISED: 2/2/94 001250| D:\723800\ETE.DWG

LEGEND

DRUM LOCATIONS

- DRAINAGE/TRIBUTARY

- MONITORING WELL

SEDIMENT SAMPLE

SS-2 SOIL SAMPLE

LC-1 ♣ LECHATE SAMPLE

LINE OF CROSS SECTION

SED−1 🛡

NOTE: TRIBUTARIES AND DRUM LOCATIONS ARE APPROXIMATE.

200' 100' 0 200'
Approximate Scale in Feet

CONTOUR INTERVAL: 10'

MAPPING COMPILED BY STEREOPHOTOGRAPHETRIC METHODS
FROM 1"=400' SCALE AERIAL PHOTOGRAPHY FLOWN 05/10/93.

MAPPING COMPILED VITHOUT BENEFIT OF A FIELD EDIT.

AREAS DUTLINED AND NOTED INDICATE AREAS OF DOUBTFUL
ACCURACY.

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PRELIMINARY SITE ASSESSMENT

CROSS SECTION LOCATION MAP ETE SANITATION AND LANDFILL SITE

ENGINEERING-SCIENCE

DESIGN . RESEARCH . PLANNING
280 ELWOOD DAVIS ROAD . LIVERPOOL, NEW YORK 13086 . 315/451-9560
OFFICES IN PRINCIPAL CITIES

4-20

FIGURE 4.4

LECEND

DRAINAGE/TRIBUTARY

APPROXIMATE LANDFILL BOUNDARY

DRUM LOCATIONS

MONITORING WELL SOIL SAMPLE

LECHATE SAMPLE SED−1 🛡 SEDIMENT SAMPLE

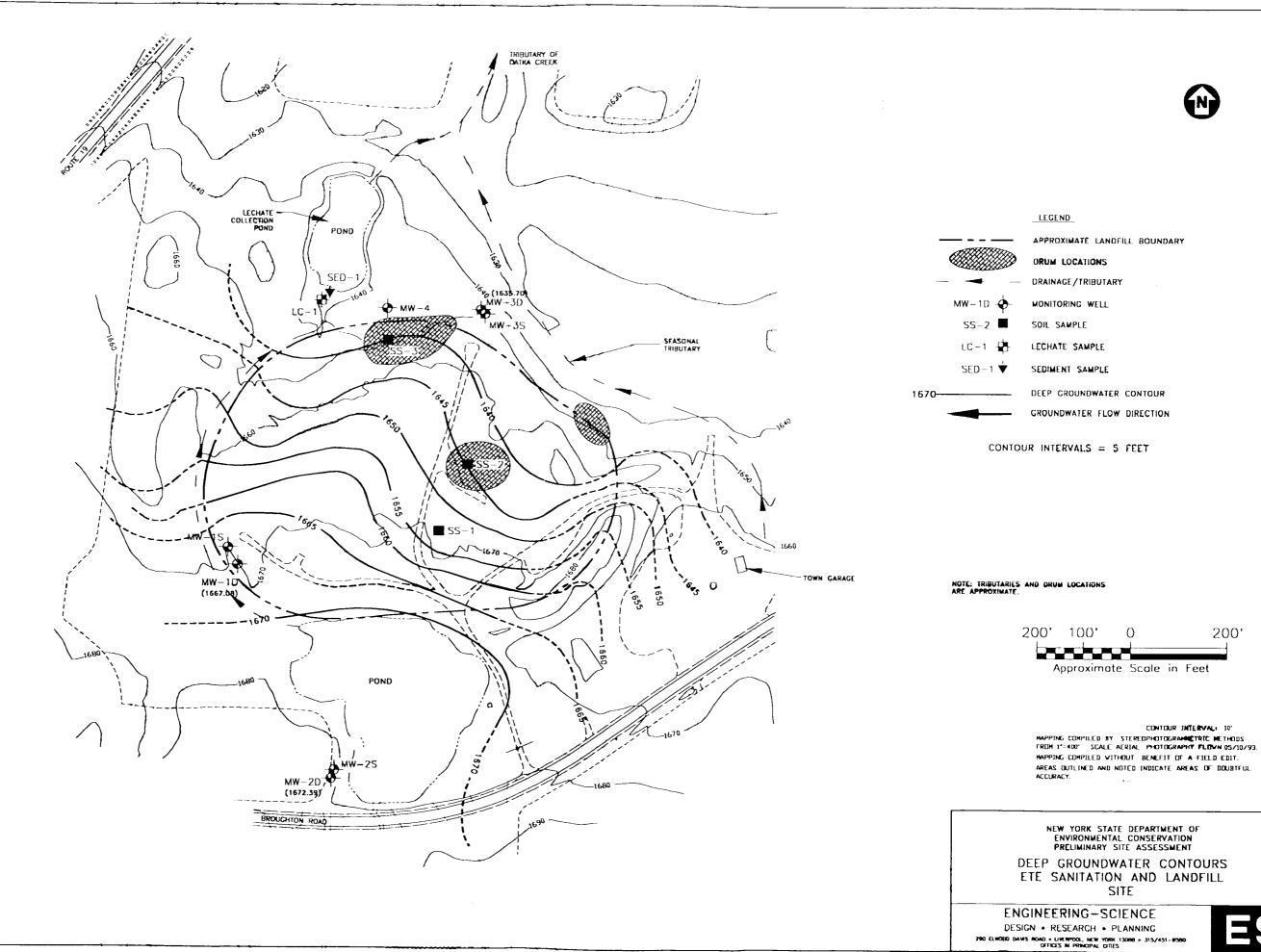
SHALLOW GROUNDWATER CONTOUR GROUNDWATER FLOW DIRECTION

CONTOUR INTERVALS = 5 FEET

NOTE: TRIBUTARIES AND DRUM LOCATIONS ARE APPROXIMATE.

200' Approximate Scale in Feet

CONTOUR INTERVAL: 10' MAPPING COMPILED BY STEREOPHOTOGRAPHETRIC METHODS FROM 1"=400" SCALE AERIAL PHOTOGRAPHY FLOWN 05/10/93. MAPPING COMPILED WITHOUT BENEFIT OF A FIELD EDIT. AREAS DUTLINED AND NOTED INDICATE AREAS OF DOUBTFUL ACCURACY.


NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PRELIMINARY SITE ASSESSMENT

SHALLOW GROUNDWATER CONTOURS ETE SANITATION AND LANDFILL SITE

ENGINEERING-SCIENCE

DESIGN * RESEARCH * PLANNING 290 ELWOOD DAWS ROAD + LINESPOOL, NEW YORK 13088 + 315/451-9580 OFFICES IN PRINCIPAL CITIES

200'

4-22

REVISED: 2/2/94 001250| 0:\723800\ETE.DWG

TABLE 4.1 GRAIN SIZE CHARACTERISTICS ETE SANITATION AND LANDFILL SITE GAINESVILLE, NEW YORK

WELL BORING NUMBER	SAMPLE DEPTH (FEET)	GRAVEL (%)	SAND (%)	SILT & CLAY (%)	UNIFIED SOIL CLASS	MATERIAL DESCRIPTION
MW - 1 S	10 - 14	0.0	4.8	95.2	ML or CL	SILT AND CLAY
MW - 2 S	14 - 18	5.2	15.0	79.8	ML or CL	SANDY SILT AND CLAY
MW 3 S	8 10	0.0	44.5	55.5	ML of CL	SANDY SILT AND CLAY
MW - 4 S	10 – 14	9.7	34.9	55.4	ML or CL	SANDY SILT AND CLAY

TABLE 4.2 GROUNDWATER ELEVATION SUMMARY ETE SANITATION AND LANDFILL SITE GAINESVILLE, NEW YORK

			W ELL		DATE: 4/9/93			DATE: 4/20/93			DATE: 5/10/93		
WEIT ID.	TOP OF PVC CASING ELEVATION (feet)	GROUND SURFACE ELEVATION ([cet)	SCREEN INTERVAL ELEVATION (feet)	DEPTH TO WATER (ft. below TOC)	DEPTH TO WATER (fi. BGS)	WATER LEVEL ELEVATION (feet)	DEPIH TO WATER (ft. below TOC)	DEPTH TO WATER (ft. BGS)	WATER LEVEL ELEVATION (feet)	DEPTH TO WATER (ft. below TOC)	DEPTH TO WATER (fr. BGS)	WATER LEVEL ELEVATION (feet)	
MW-1S	1672.11	1669.7	1662.7 - 1652.7	4.3	1.89	1667.81	4.8	2.39	1667.31	5.4	2.99	1666.71	
MW-1 D	1672.18	1669.6	1637.1 - 1627.1	5.08	2.5	1667.10	5.1	2.52	1667 08	6.4	3.82	1665.78	
MW-2S	1684.63	1681.9	1674.4 - 1664.4	10.79	8.06	1673.84	11.8	9.07	1672 83	12.1	9.37	1672.53	
MW-2 D	1684.29	1682.0	1644.5 - 1634.5	•	•	•	11.9	9.61	1672.39	13	10.71	1671.29	
MW-3S	1648.9	1646.1	1638.6 - 1628.6	10.95	8.15	1637.95	11.9	9.1	1637 00	13	10.2	1635.90	
MW-3D	1648.8	1646.1	1614.1 - 1604.1	12.68	9.98	1636.12	13.1	10.4	1635 70	14	11.3	1634.80	
MW-4	1647.01	1643.8	1638.8 - 1628.8	4.23	1.02	1642.78	4.5	1.29	1642 51	5.2	1.99	1641.81	

^{*} WATER LEVEL NOT MEASURED -- WELL NEWLY-INSTALLED

TABLE 4.3

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc. SEDIMENT DATA SUMMARY

NYSDEC Hazardous Wasta Codes	ORGANIC COMPOUNDS:	USEPA ⁽¹⁾ HEALTH BASED STANDARD	FIELD ID: SAMPLED: UNITS	SD001 05/10/93
	VOLATILES			
F002	Methylene chloride	93,000	ug/kg	98 B
F003	Acetone	8,000,000	ug/kg	190 J
F005	2-Butanone	4,000,000	ug/kg	50 J
F005	Benzene	24,000	ug/kg	3 BJ
	Ethyl benzene	8,000,000	ug/kg	6 J
F003	Total Xylenes	200,000,000	ug/kg	17 J
	SEMI-VOLATILES			
UO88	Diethyl phthalate	80,000,000	ug/kg	87 BJ
	Phenanthrene	NS	ug/kg	34 J
U120	Fluoranthene	3,000,000	ug/kg	39 J
	Pyrene	2,000,000	ug/kg	37 J
	PESTICIDES		ug/kg	
P059	Heptechlor	160	ug/kg	0.30 JP
	4,4'-DDE	2,100	ug/kg	0.83 J
U060	4,4'-DDD	2,900	ug/kg	1.0 J

NOTE: VOC concentrations for acetone, 2-butanone, and xylenes were flagged with "J" qualifiers during data assessment because surrogate toluene-d8 was outside of quality control limits. Laboratory re-analysis is not shown because of holding time exceedance.

(1) NYSDEC - Memorandum (11/16/92) - Determination of soil cleanup objectives and cleanup levels

Organic Data Qualifiers

- U Indicates a compound was analyzed for but not detected.
- J Indicates an estimated value.
- B Indicates the analyte is found in the associated blank as well as in the sample.
- E Indicates compounds whose concentrations exceed the calibration range of the GC/MS instrument.
- D Indicates an analysis at a secondary dilution factor.
- P Indicates a greater than 25% difference for detected concentrations, between two GC columns for pesticide/Aroclor analytes
- R Indicates unuseable results.

NYSDEC Hazerdous Waste Codes	INORGANIC COMPOUNDS	NATURAL ⁽¹⁾ PANGE IN SOILS	FIELD ID: SAMPLED: UNITS	SD001 05/10/93
	Aluminum - Total	700 – 100,000	mg/kg	7870
D004	Arsenic - Total	0.1 - 73	mg/kg	7.6 SN
D005	Barlum – Total	10~1,500	mg/kg	83.4
D008	Cadmlum - Total	0.01-7 (2)	mg/kg	0.84 BN
	Calcium - Total	100-260,000	mg/kg	20500
D007	Chromlum - Total	1-1,000	mg/kg	11.0
	Copper - Total	<1-700	mg/kg	21.7
	Iron - Total	100->100,000	mg/kg	80500 E
D008	Lead - Total	<10-300	mg/kg	38.1 +*
	Magnesium - Total	50-50,000	mg/kg	4170
	Manganese – Total	<2-7,000	mg/kg	1340 EN
	Potassium - Total	50~37,000	mg/kg	954 B
	Sodium - Total	< 500 500,000	mg/kg	11500
	Zinc Total	<5~2,900	mg/kg	180 E
F007-F012	Cyanide - Total	ND	mg/kg	1.7*

Indicates concentration exceeds naturally range.

Inorganic Data Qualifiers

- B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- E Indicates a value estimated or not reported due to the presence of interference.
- S Indicates a value determined by Method of Standard Addition.
- N Indicates spike sample recovery is not within control limits.
- * Indicates duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for method of standard addition is less than 0.995.

⁽¹⁾ Schacklette, and Boergen, 1984.

⁽²⁾ Booz, Allen, and Hamilton, 1983.

TABLE 4.3 (CONT.)

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc. SEDIMENT DATA SUMMARY

NYSDEC Hazardous Waste Codes	INORGANIC COMPOUNDS:	REGULATORY LIMIT (1)	FIELD ID: SAMPLED: UNITS	SD001 05/10/93
	Aluminum - Dissolved	NS	ug/l	200 *
DC 05	Barlum - Dissolved	100,000	ug/l	393
	Calcium - Dissolved	NS	ug/l	25100 BN
	Copper - Dissolved	NS	ug/l	13.2 B
	Iron - Dissolved	NS	ug/l	19000
	Magnesium - Dissolved	NS	ug/i	7270
	Manganese – Dissolved	NS	ug/l	11200 N*
	Nickel - Dissolved	NS	ug/l	117
	Potassium - Dissolved	NS	ug/l	4030 B
	Sodium - Dissolved	NS	ug/l	279000
	Zinc - Dissotved	NS	ug/l	53.1 *

Inorganic Data Qualiflers

- B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- N Indicates spike sample recovery is not within control limits.
- - Indicates duplicate analysis is not within control limits.

^{(1) 6} NYCRR - Identification and Listing of Hazardous Wastes.

NYSDEC - PSA WORK ASSIGNMENT ETE SANITATION SITE Recra Environmental, Inc., A LEACHATE DATA SUMMARY

NYSDEC Hazardous Waste Codes	ORGANIC COMPOUNDS:	NYSDEC (1) Class C Surface Water Standards	FIELD ID: SAMPLED: UNITS	LC001 05/11/93	LC001-RE 05/11/93
	V OLATI LES				
	Chloroethane	NS	ug/l	8 J	_
F002	Methylene chloride	NS	ug/l	170 B	_
F003	Acetone	NS	ug/l	280 B	_
F005	2-Butanone	NS	ug/i	600 B	_
U161	4-Methyl-2-pentanone	NS	ug/l	59	_
F005	Toluene	NS	ug/l	23 J	
	Ethyl benzene	NS	ua/l	79 -	_
F003	Total Xylenes	NS	ug/l	210 ~	-
	SEMI-VOLATILES		_		
	Isophorone	NS	ug/l	10 U	1 J
U101	2,4-Dimethylphenol	NS	uo/l	8 J	8 J
U165	Naphthalene /	NS	ugyl	28	27
	4 - Chloro - 3 - methylphenol	NS	ug/i	6 J	6 J
	2~Methylnaphthalene	NS	ug/i	22 -	22
	Acenaphthene	NS	ug/l	8 J	6 J
UC88	Diethyl phthalate	NS	ug/l	9 J	9 J
	Fluorane	NS	ug/l	2 J	2 J
	Phenanthrene	NS	ug/i	D.9 J	1 J
	Anthracene	NS	ug/l	Q.9 J	10 U
	Carbazole	NS.	ug/l	5 J	2 J
	DI-n-butyl phthalate	NS	ug/l	0.6 J	0.7 J
U063	Dibenzofumn	NS	ug/l	5 J	5 J
	PESTICIDES				
U129	gamma-BHC (Undane)	0.01 (2)	ug/i	0.0043 JP	_
	gamma - Chlordane	0.002 (2)	ug/i	0.017JP	_

(1) NYSDEC - Ambient Water Quality Standards and Guidance Values (10/01/93)

(S) - Standard

(G) - Guldance

* - Standard is Hardness Dependent (assume hardness of 150 ppm)

(2) Standard/guildance value applies to the sum of isomers for the compound; applies to aquatic life.

Indicates concentration exceeds standard/guildance value.

Organic Data Qualifiers

- U Indicates a compound was analyzed for but not detected.
- J Indicates an estimated value.
- B Indicates the analyte is found in the associated blank as well as in the sample.
- P Indicates a greater than 25% difference for detected concentrations, between two GC columns for pesticide/Aroctor analytes.

TABLE 4.4 (CONT.)

NYSDEC - PSA WORK ASSIGNMENT ETE SANITATION SITE Recra Environmental, Inc. LEACHATE DATA SUMMARY

NYSDEC Hazardous Wasts Codes	INORGANIC COMPOUNDS:	NYSDEC (1) Class C Surface Water Standards	FIELD ID: SAMPLED: UNITS	LC001 05/11/93
	Aluminum Total	NS	u <u>o</u> /l	3,850 N
D004	Arsenic - Total	190 (S) (3)	ug/i	5.0 B
D005	Barlum - Total	NS	ug/l	1,700
	Calcium - Total	N9	ug/l	305,000 B
	Copper - Total	16.7 (S) (2). (3)	ug/l	19.28
	tron - Total	300 (S)	ug/l	201,000°
	Magnesium - Total	NS	ug/l	52,700
	Manganese - Total	NS	ug/l	4,000 N*
	Potassium - Total	NS	ug/l	70,100
	Silver - Total	NS	uo/l	0.20 BW
	Sodium - Total	NS	ug/l	7,970,000
	Zinc - Total	30 (S) (J)	ועפעו	153
F 007~F 012	Cyanide - Total -	5.2 (S) (1)	ug/l	13.6

(1) NYSDEC - Ambient Water Quality Standards and Guldance Values (10/01/93)

(S) - Standard

(G) - Guldance

(2) - Standard is Hardness Dependant (assume hardness of 150 ppm)

(3) Standard/guidance value applies to aquatic life.

(4) Standard/guidance value applies to free CN and aquatic life.

Indicates exceedance of standard/guidance value.

Inorganic Data Qualifiers

- 8 Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- N indicates spike sample recovery is not within control limits.
- * Indicates duplicate analysis is not within control limits.
- W Post digestion spike for Furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.

TABLE 4.5

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., A SURFACE SOIL, DATA SUMMARY

NYSDEC Hazardous Waste Codes	ORGANIC COMPOUNDS:	USEPA ⁽¹⁾ HEALTH BASED STANDARD	FIELD ID: SAMPLED: UNITS	SS001 05/10/93	SS002 05/10/93	SS003 05/10/93	SS004 ⁽²⁾ 05/10/93	SS004 ~ RE 05/10/93
	VOLATILES							
F002	Methylene chloride	93,000	ug/kg	10 BJ	140 B	95 B	90 B	65 B
F003	Acetone	8,000,000	ug/kg	18	65	6 BJ	14 BJ	15 BJ
F005	2-Butanone	4,000,000	ug/kg	15 J	9 BJ	5 BJ	12 BJ	12 BJ
F005	Benzene	24,000	ug/kg	2 BJ	11 U	12 U	19 U	19 U
	SEMI-VOLATILES							
U165	Naphthale ne	300,000	ug/kg	29 J	400 U	370 U	62 0 U	_
U088	Diethyl phthalate	60,000,000	ug/kg	40 BJ	34 BJ	33 BJ	65 BJ	_
	Phenanthrene	NS	ug/kg	78 J	400 U	27 J	110 J	_
U120	Fluoranthene	3,000,000	ug/kg	140 J	400 U	33 J	210 J	_
	Pyrene	2,000,000	ug/kg	110 J	400 U	39 J	200 J	_
	Butyl benzyl phthalate	20,000,000	ug/kg	530 U	400 U	40 J	820 U	-
U018	Benzo(a) anthracene	220	ug/kg	57 J	400 U	370 U	84 J	_
U050	Chrysene	NS	ug/kg	71 J	400 U	370 U	100 J	_
U028	Bia(2-ethylhexyl) phthalate	50,000	ug/kg	530 U	400 U	180 J	620 U	-
	Benzo(b)fluoranthene	NS	ug/kg	76 J	400 U	370 U	110 J	_
	Benzo(k)fluoranthene	NS	ug/kg	52 J	400 U	370 U	80 J	_
U022	Benzo(a) pyrene	61	ug/kg	40 J	400 U	370 U	59 J	-
U137	Indeno(1,2,3-cd)pyrene	NS	ug/kg	34 J	400 U	370 U	53 J	
	Benzo(ghl) perylene	NS	ug/kg	35 1	400 U	370 U	58 J	-
	PESTICIDES							
	delta-BHC	NS	ug/kg	2.7 U	1.9 U	2.0 U	0.51JP	_
P004	Aldrin	41	ug/kg	0.41 JP	1.9 U	2.0 U	3.2 U	_
P050	Endosulfan I	NŞ	ug/kg	2.7 U	1.9 U	2.5	3.2 U	~
P037	Dieldrin	440	ug/kg	2.3 JP	3.7 U	0.58 JP	1.7 JP	_
P050	Endosulfan II	NS	ug/kg	5.3 U	3.7 U	30 P	82U	_
U060	4,4'-DDD	2,900	ug/kg	1.0 JP	3.7 U	4.0 U	8.2 U	_
	Endosulfan Sulfate	N\$	ug/kg	Q.91 J	0.55 JP	12	6.2 U	_
	alpha-Chlordane	540	ug/kg	2.7 U	1.9 U	2.2 P	32U	~
	gamma-Chlordane PCBS	540	ug/kg	0.47 J	1.9 U	2.0 U	320	-
B007	Aroclor 1280	1,000	ug/kg	71 P	37 U	40 U	73 P	_

⁽¹⁾ NYSDEC - Memorandum (11/16/92) - Determination of soil cleanup objectives and cleanup levels

Organic Data Qualifiers

⁽²⁾ Duplicate for \$\$001.

U - Indicates a compound was analyzed for but not detected.

J - Indicates an estimated value.

B - indicates the analyte is found in the associated blank as well as in the sample.

P - Indicates a greater than 25% difference for detected concentrations, between two GC columns for pesticide/Argclor analytes.

TABLE 4.5 (CONT.)

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recre Environmental, Inc., A SURFACE SOIL, DATA SUMMARY

NYSDEC Hazardous Waste Codes	INORGANIC COMPOUNDS:	NATURAL (1) RANGE IN SOILS	FIELD ID: SAMPLED: UNITS	SS001 05/10/93	SS002 05/10/93	SS003 05/10/93
	Aluminum - Total	700 - 100,000	mg/kg	8040	7880	8290
D004	Arsenic - Total	0.1-73	mg/kg	10 SN	5.9 N	7.1 N
D005	Barlum - Total	10 – 1,500	mg/kg	90.6	37.6 B	38.1 B
D006	Cadmium - Total	0.01 ~7 (2)	mg/kg	0.69 BN	0.31 BN	0.75 BN
	Calcium - Total	100-280,000	mg/kg	16500	22600	18100
D007	Chromium - Total	1-1,000	mg/kg	11.8	11.6	14.4
	Cobalt - Total	<3-70	mg/kg	6.7 U	8.1 B	6.3 U
	Copper - Total	<1~700	mg/kg	24.1	20.9	27.6
	Iron - Total	100->100,000	mg/kg	61400 E	19100 E	20700 E
D008	Lead - Total	<10-300	mg/kg	63.6 + *	48.6 +*	31.1 *
	Magnesium - Total	50-50,000	mg/kg	5110	6850	6960
	Manganese - Total	<2-7,000	mg/kg	477 EN	548 EN	442 EN
	Nickel - Total	<5-700	ma/kg	18.1	20.2	33.7
	Potessium - Total	<2-7,000	mg/kg	1190 B	1090 B	1040 B
	Sodium - Total	50-37,000	ma/ka	508 B	205 B	253 U
	Vanadium - Total	<7-300	mg/kg	16.1 B	14.2	14.6 B
	Zinc - Total	<5-2,900	mg/kg	171 E	79.2 E	377 E
F007~F012	: Cyanide - Total	ND	mg/kg	2.1 U*	4.3 *	2.5 *

Inorganic Data Qualifiers

- B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- U Indicates element was analyzed for but not detected.
- E Indicates a value estimated or not reported due to the presence of interference.
- S Indicates a value determined by Method of Standard Addition.
- N Indicates spike sample recovery is not within control limits.
- * Indicates duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for method of standard addition is less than 0.995.

⁽¹⁾ Schacklette, and Boergen, 1984.

⁽²⁾ Booz, Allen, and Hamilton, 1983.

TABLE 4.5 (CONT.)

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., A SURFACE SOIL DATA SUMMARY

NYSDEC Hazardous Waste Codes	INORGANIC COMPOUNDS:	MCL (1)	FIELD ID: SAMPLED: UNITS	SS001 05/10/93	SS003 05/10/93	SS004 05/10/93
	Aluminum - Dissolved	NS	u <u>a</u> /l	200 U*	410 *	240 °
D006	Cadmium - Dissolved	1,000	ug/l	0.40 BN	1.2 BN	0.70 BN
	Calcium - Dissolved	NS	ug/l	119000 BN	91000	85800
	Iron - Dissolved	NS	ug/l	450	70.0 U	190
	Magnesium - Dissolved	NS	ug/l	9450	14000	16200
	Manganese - Dissolved	NS	ug/l	782 N*	847 N*	725 N°
	Nickel - Dissolved	NS	ug/l	30.0 U	30.0 U	32.0 B
	Potasalum - Dissolved	NS	ug/l	1510 B	4360 B	1200 B
	Sodium - Dissolved	NS	ug/l	10100	800 U	3960 B
	Zinc - Dissolved	NS	ug/l	31.5 *	259 *	77.0 •

(1) 6 NYCRR - Identification and Listing of Hazardous Wastes.

Inorganic Data Qualifiers

- B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- U Indicates element was analyzed for but not detected.
- N-Indicates spike sample recovery is not within control limits.
- * Indicates duplicate analysis is not within control limits.

TABLE 4.8

NYSDEC - PSA WORK ASSIGNMENT ETE SANITATION SITE Recra Environmental, Inc., A SUB-SURFACE DATA SUMMARY

NYSDEC		USEPA (1)						
Hazardou	3	HEALTH	FIELD ID:	SSMW1-S	SSMW2-S	SSMW3~D	SS83 (3)	SSMW4
Waste		BASED	DEPTH:	4-10	2-22 (3)	71-76	71-78	2-8
Codes	ORGANIC COMPOUNDS:	STANDARD	SAMPLED:	03/24/93	04/08/93	04/08/93	04/08/93	03/24/93
	VOLATILES							
F002	Methylene chloride	93,000	ug/kg	12 B	10 BJ	14 B	12 B	14 B
F003	Acetone	8,000,000	ug/kg	19	19	10 J	14	16
P022	Carbon Dlaulfide	8,000,000	ug/kg	12 U	1 J	11 U	6 J	12 U
F005	2-Butanone	4,000,000	ug/kg	12 U	5 J	11 U	11 U	12 U
F005	Benzene	24,000	ug/kg	12 U	1 J	11 Ū	11 U	12 U
F005	Toluene	20,000,000	ug/kg	12 U	12 U	11 U	1 J	12 U
	SEMI-VOLATILES							
	Bls(2-chloroethyl) ether	NS	ug/kg	400 U	120 J	380 U	370 U	380 U
	DI-n-butyl phthalate	8,000,000	ug/kg	210 J	390 U	380 U	370 U	110 J
U028	Bls(2-ethylhexyl) phthalate	50,000	ug/kg	48 J	390 U	380 U	370 U	380 U
	PESTICIDES							
P004	Aldrin	41	ug/kg	3 U	2 U	2 U	0.21 JP	2 U
P050	Endosulfan II	NS	ug/kg	40 U	1.2 JP	3.8 U	3.7 U	3 8 U

Organic Data Qualifiers

⁽¹⁾ NYSDEC - Memorandum (11/18/92) - Determination of soil cleanup objectives and cleanup levels

⁽²⁾ VOCs collected from 6'-22.

⁽³⁾ Duplicate for SSMW3-D

U - Indicates a compound was analyzed for but not detected.

J - Indicates an estimated value.

B - Indicates the analyte is found in the associated blank as well as in the sample.

P - Indicates a greater than 25% difference for detected concentrations, between two GC columns for pesticide/Arccior analytes.

TABLE 4.6 (CONT.)

NYSDEC - PSA WORK ASSIGNMENT ETE SANITATION SITE Recra Environmental, Inc., A SUB-SURFACE DATA SUMMARY

NYSDEC Hazardous Waste Codes	INORGANIC COMPOUNDS:	NATURAL ⁽¹⁾ RANGE IN SOILS	FIELD ID: DEPTH: SAMPLED:	SSMW1-S 4-10 03/24/93	SSMW2 - S 2-22 04/08/93	SSMW3-D 71-78 04/08/93	SSB3 ⁽³⁾ 71-76 04/08/93	SSMW4 2-8 03/24/93
	Aluminum - Total	700->100,000	mg/kg	8870	9380	12100	_	6120
D004	Arsenic - Total	0.1 - 73	mg/kg	7.7	8.2	9.1	-	5.9
D005	Barlum ~ Total	10-1,500	mg/kg	34.5 B	32.1 B	89.7	_	26 2 B
D006	Cadmium - Total	0.01 -7 (2)	mg/kg	0.37 B	0.42 B+N	0.16 BN	-	0.46 BS
	Calcium - Total	100-280,000	mg/kg	19500	13400 *	34100 *	_	16800
D007	Chromium - Total	1-1,000	mg/kg	13.3	12,1 *	17.4 *	_	10
	Cobalt - Total	<3-70	mg/kg	7.7 B	8.3 BN	10 BN	_	5.7 B
	Copper - Total	<1-700	mg/kg	24.1	18.8 N*	26.7 N*	_	18 7
	Iron ~ Total	100->100,000	mg/kg	23700	21100 *	27100 *	_	16800
D008	Lead - Total	<10-300	mg/kg	18.8 S	12.1	19.2 S	_	9.3
	Magnesium - Total	50-50,000	mg/kg	8510	5880	11600	_	6080
	Manganese - Total	<2-7,000	mg/kg	524	450 N	462 N	-	552
	Nickel - Total	<5-7,000	mg/kg	24.5	22.9 N	33.4 N	_	17.1
	Potesium - Total	50~37,000	mg/kg	927 B	1170	2120	_	720 B
	Sodium - Total	<500-500,000	mg/kg	182 U	215 B	261 B	_	810 B
	Vanadium - Total	<7-300	mg/kg	16.8	15.4	19.9	_	11.7
	Zinc ~ Total	<5-2,900	mg/kg	95.5	98.3 N	75.8 N	-	74.6

Inorganic Data Qualifiers

⁽¹⁾ Schacklette, and Boergen, 1984.
(2) Booz, Allen, and Hamilton, 1983.

⁽³⁾ Duplicate for \$SMW3-D.

B - Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.

U - Indicates element was analyzed for but not detected.

S - Indicates a value determined by Method of Standard Addition.

N - Indicates spike sample recovery is not within control limits.

^{* -} Indicates duplicate analysis is not within control limits.

^{+ -} Indicates the correlation coefficient for method of standard addition is less than 0.995.

TABLE 4.7

NYSDEC - PSA WORK ASSIGNMENT ETE SANITATION SITE Recra Environmental, Inc., A GROUNDWATER DATA SUMMARY

NYSDEC Hazardous Waste Codes	ORGANIC COMPOUNDS:	NYSDEC (1) Class GA Water Quality Standards	FIELD ID: SAMPLED: UNITS	GW01-D 05/10/93	GW01-S 05/10/93	GW02-D 05/11/93	GW02-DRE 05/11/93	GW02-S 05/11/93	GW03-S 05/11/93	GW03-D 05/11/93	GW004 05/11/93	GW005 ⁽²⁾ 05/10/93
	VOLATILES											
K020	Vinyi ch ioride	2 (S)	ug/t	10 U	10 U	10 U	10 U	10 U	21	l 10 U	10 U	10 U
	Chloroethane	5 (S)	ug/l	10 U	10 U	10 U	10 U	10 U	67	7J	100	10 U
F002	Methylene chloride	5 (S)	ug/l	35 B	3 BJ	24 B	6 BJ	28 B	25 B	4 BJ	21B	23 B
F003	Acetone	50 (S)	ug/l	23 B	10 U	15 B	10 U	14 B	15 B	25 B	12 B	14 B
	1,1-Dichloroethane	5 (S)	ug/l	10 U	10 U	10 U	10 U	10 U	2 J	10 U	1J	10 U
U079	1,2-Dichloroethene (Total)	5 (S)	ug/i	10 U	10 U	10 U	10 U	10 U	150	5.1	ì 1J	10 U
	1,2-Dichloroethane	5 (S)	ug/i	10 U	10 U	10 U	10 U	10 U	1 J	10 U	3 J	10 U
F005	2-Butanone	50 (S)	ug/l	15 B	9 BJ	12 B	10 U	12 B	13 B	14 B	13 B	13 B
F001	Trichloroethene	5 (S)	ug/l	10 U	10 U	10 U	10 U	10 U	54	10 U	10 U	10 U
F005	Benzene	0.7 (S)	ug/l	10 U	10 U	10 U	10 U	10 U	10 U	10 U	2J	10 U

(1) NYSDEC - Ambient Water Quality Standards and Guidance Values (10/01/93)

(S) - Standard

(G) - Guidance (2) Duplicate for GW01-S.

Indicates exceedance of standard/guidance value.

Organic Data Qualifiers

- U Indicates a compound was analyzed for but not detected.
- J Indicates an estimated value.
- B Indicates the analyte is found in the associated blank as well as in the sample.

TABLE 4.7 (CONT.)

NYSDEC - PSA WORK ASSIGNMENT ETE SANITATION SITE Recra Environmental, Inc., A GROUNDWATER DATA SUMMARY

NYSDEC Hazardous Waste Codes	INORGANIC COMPOUNDS:	NYSDEC (I) Class GA Water Quality Standards	FIELD ID: SAMPLED: UNITS	GW01-D 05/10/93	GW01-S 05/10/93	GW02-D 05/11/93	GW02-S 05/11/93	GW03~S 05/11/93	GW03-D 05/11/93	GW004 05/11/93
	Aluminum - Total	NS	ц g/ I	3740 N	6800 N	285 N	21600 N	2050 N	5830 N	8380 N
D004	Arsenic - Total	25 (S)	ug/I	6.0 B	4.0 U	4.0 U	13.0	4.0 UW	7.0 B	12.0
D005	Barlum - Total	1000 (S)	ug/l	183 B	67.7 B	67.3 B	201	159 B	1240	550
D008	Cadmium – Total	10 (S)	u g ∕î	0.20 BN	0.40 BN	0.20 BN	0.70 BN	0.50 BN	1.0 B	3.0 BSN
	Calcium - Total	NS	ug/l	88,600	72,800	50,600	146,000 B	135,000 B	295,000 B	282,000 B
D007	Chromium - Total	50 (S)	ug/l	10 U*	10 U*	10 U*	27.0	10 U*	13.8 *	27.8 •
	Cobalt - Total	NS	ug/l	20.0 U	20.0 U	20.0 U	25.4 B	20.0 U	20.0 U	20.0 U
	Copper - Total	200 (S)	ug/l	11.3 B	22.2 B	10 U	56.7	12.7 B	20.8 B	34.9
	Iron - Total	300 (S)	ug/l	12,800*	15,300*	358*	43,900*	4120*	14,000*	20,400*
B000	Lead - Total	25 (S)	ug/l	4.0 N	7.0 N	3.0 UN	31.0N	3.0 UWN	5.0 N'	8.0 UEN
	Magnesium - Total	35000 (G)	ug/l	19,600	28,800	15,900	38,000	31,300	91,500 /	79,700
	Manganese – Total	300 (S)	ນ໘∕ໄ	522N*	450N°	68.6 N*	1280N*	4010N*	3640	13,000N*
	Nickel – Total	NS	ug/l	30.0 U	30.0 U	30.0 U	46.9	49.9	56.2	183**
	Potessium - Total	NS.	ug/l	3850 B	2940 B	3830 B	7080	20600	24,400	80,300
D011	Sliver - Total	50 (S)	ug/l	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	ح تا 0.20 u	0.40 BW
	Sodium - Total	20000 (S)	ug/l	52,200	6680	10,900	25,000	270,000	1,170,000	2,880,000
	Vanadium - Total	NS	ug/l	20.0 U	20.0 U	20.0 U	38.8B	20.0 U	20.0VL	20.0 U
	Zinc - Total	3 00 (S)	ug/l	38.1	82.8	21.4	410	35.8	126	499
F007~F012	: Cyanide - Total	100 (8)	u g/ I	19 U	10 U	10 U	10 U	10 U	13.6	12.9

(1) NYSDEC - Ambient Water Quality Standards and Guidance Values (10/03/93)

(S) - Standard

(G) - Guidance

Indicates exceedance of standard/guidance value.

Inorganic Data Qualifiers

- B Indicates a value greater than or equal to the instruments detection limit but less than the contract required detection limit.
- U Indicates element was analyzed for but not detected.
- E Indicates a value estimated or not reported due to the presence of interference.
- S Indicates a value determined by Method of Standard Addition.
- N Indicates spike sample recovery is not within control limits.
- * Indicates duplicate analysis is not within control limits.

SECTION 5

RECOMMENDATIONS

5.1 RECOMMENDED SITE CLASSIFICATION

Analytical data collected during this investigation indicate that hazardous wastes have been disposed on-site. Analytical data also indicate that the hazardous waste disposed on site does not present a significant threat to public health or environment. These two factors alone would qualify the site as a Class 3 site. However, the analytical data (exceedance of groundwater standards by chlorinated organics) also indicate that on-site hazardous substances are resulting in conditions that would warrant the determination of significant threat if the source could be determined to be a hazardous waste, as defined by 6NYCRR 371. Although the results of this PSA investigation indicate a reclassification to a Class 2 site is warranted, the required documentation obtained to date is insufficient to completely justify this action.

5.2 FUTURE WORK

ES recommends conducting a limited drum sampling effort to identify ignitable wastes and to identify the components of the ignitable wastes in an attempt to establish a correlation between hazardous waste disposed on-site and chlorinated organic groundwater exceedances, thus establishing a significant threat to public health or environment from hazardous wastes.

The drum sampling effort should include removal, overpacking, sampling, and disposal of partially-buried drums. Additional sampling of wells may also be warranted to assist in determination of significant threat, if any. Laboratory analysis should include, at a minimum, analysis for characteristics of ignitability, characteristics of toxicity (EP Tox metals) (primarily to address the potential for lead), TCL VOCs (for determination of significant threat), and TCLP (for drum disposal).

SECTION 6

LIST OF REFERENCES

- Almor, 1984. NYSDEC Hazardous Waste Disposal Questionnaire, Generator Disposal Forms. Completed by Cassius D. Greene, Jr., Supervisor, Almor Corp., September 10, 1984.
- ES, 1993. Memorandum to File documenting telephone conversation between Tom Abrams (ES) and Kevin Glaser (NYSDEC-Region 9) date October 8, 1993. Engineering-Science, Inc., Liverpool, New York.
- Dragun, James, 1988. The Soil Chemistry of Hazardous Materials. Hazardous Materials. Control Research Institute, Silver Spring, MD.
- FEMA, 1983. Flood Insurance Rate Map 01-04, Town of Gainesville, Wyoming County, Community number 360944 B, Map 04. United States Federal Emergency Management Agency.
- Frost, 1993. Centracts Report, dated May 19, 1993, Frost Associates, Essex, Connecticut.
- Kammerer and Hobba, 1986. Groundwater Availability in the Genesee River Basin in New York and Pennsylvania Water Resources Investigation Report 86-4048 (1986). United States Department of the Interior Geological Survey.
- Lozier, 1991. Analytical report of samples collected by NYSDEC on April 9, 1990, July 20, 1990, and May 31, 1991. Report submitted by Lozier Laboratories, Inc. of Rochester, NY to Kevin Glaser, NYSDEC Region 9, Buffalo, NY.
- NYSDEC, 1967. Part 899.4, Title 6, Chapter X, New York State Codes, Rules and Regulations, dated January 15, 1967. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1977. Landfill inspection report by Kevin Hintz, NYSDEC to Frank Shattuck, Senior Sanitary Engineer, NYSDEC. New York State Department of Environmental Conservation, Environmental Quality Office, Region 9, Buffalo, New York.
- NYSDEC, 1985. Part 701.19, Title 6, Chapter X, New York State Codes, Rules and Regulations, dated October 31, 1985. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1987a. Landfill inspection report by Kevin Glaser, NYSDEC to John Tygert and Lawrence Clare, NYSDEC. New York State Department of Environmental Conservation, Region 9, Buffalo, New York, May 8, 1987.
- NYSDEC, 1987b. Sample collection report by Dennis Farrar, NYSDEC. New York State Department of Environmental Conservation, Region 9, Buffalo, New York, May 8, 1987.
- NYSDEC, 1989. Inactive Hazardous Waste Disposal Sites in New York State (Volume 9) dated April 1989. New York State Department of Environmental Conservation, Albany, New York.

- NYSDEC, 1991a. Water Quality Standards and Guidance Values dated November 1991.

 New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1991b. Draft Cleanup Policy and Guidelines-Volume II, dated October 1991.

 New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1991c. Water Quality Regulations Surface Water and Groundwater Classifications and Standards. Parts 700-705, Title 6, Chapter X, New York State Codes, Rules and Regulations, dated August 31, 1991. New York State Department of Environmental Conservation, Albany, New York.
- NYSDEC, 1992a. Sample collection sketch map by Kevin Glaser, NYSDEC. New York State Department of Environmental Conservation, Region 9, Buffalo, New York, June 25 1992.
- NYSDEC, 1992b. Determination of Soil Cleanup Objectives and Cleanup Levels, TAGM HWR-92-4046, November 16, 1992. New York State Department of Environmental Conservation, Albany, New York.
- NYSDOH, 1993a. Letter to Mr. William Safford from Rick Tuers (NYSDOH, Albany), dated December 20, 1993. New York State Department of Health, Bureau of Environmental Exposure Investigation, Albany, New York.
- NYSDOH, 1993b. Letter to Ms. Avis Safford Wilcox from Rick Tuers (NYSDOH, Albany), dated December 20, 1993. New York State Department of Health, Bureau of Environmental Exposure Investigation, Albany, New York.
- NYSDOH, 1993c. Letter to Mr. Stanley Rutherford from Rick Tuers (NYSDOH, Albany), dated December 20, 1993. New York State Department of Health, Bureau of Environmental Exposure Investigation, Albany, New York.
- NYSDOH, 1982. New York State Atlas of Community Water System Sources (1982). New York State Department of Health, Albany, New York.
- NYSDOH, 1961. Upper Genesee River Drainage Basin dated September 1961. New York State Department of Health Water Pollution Control Board, Albany, New York.
- Richard and Fisher, 1970. Geologic Map of New York dated 1970. L.V. Richard and D.W. Fisher. New York State Museum and Science Service, Albany, New York.
- Shacklette, H.T. and J.G. Boerngen, 1984. Element Concentrations in Soils and other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270.
- unknown, 1989. Site maps (2) with locations for November 11, 1989 samples collected from soils near drum disposal area and from adjacent residences. Map located by ES in NYSDEC Region 9 files, Buffalo, New York during PSA supplemental records search, 1993.
- URS, 1990. Task 1 Preliminary Site Assessment Report ETE Sanitation and Landfill Site, dated December 1990. URS Consultants, Inc., Buffalo, New York.

- USDA, 1974. Soil Survey of Wyoming County, New York. United States Department of Agriculture in cooperation with Cornell University Agricultural Experiment Station, April 1974.
- USGS, 1972a. Warsaw Quadrangle, 7.5 x 7.5 Minute Topographic Maps, Scale 1:24,000. United States Geological Survey, Reston, Virginia.
- USGS, 1972b. Castile Quadrangle, 7.5 x 7.5 Minute Topographic Maps, Scale 1:24,000. United States Geological Survey, Reston, Virginia.
- USNY, 1990. New York State Geological Highway Map (1990). University of the State of New York State Education Department, Albany, New York.

APPENDIX A

SITE INSPECTION REPORT

USEPA FORM 2070-13

EPA	Si Part 1 - Site Lo	ial Hazardous W te Inspection Rep cation and Inspec	ort	n	I. Identi 01 State NY	
II. Site Name and Lo		· •				
01 Site Name (Legal, c	ommon, or descriptive	name of site)	02 Street, Ro	ute No. or Sp	ecific Loca	tion Identifier
ETE Sanitation and La	ındfill		Broughton Roa	d		
03 City	04 Sta	te 05 Zip		,	County Code	08 CONG Dist
Town of Gainesville	<i>N</i> Y	14066	Wyom ———	ing		
	Longitude	x A. Private D. County		oue) Federai	_	C. State
42° 39' 28" .N III. Inspection Inform		E. Municipa	F.	Other		G. Unknown
01 Date of Inspection 10/29/92 Month/Day/Year	02 Sit Ac In	active	03 Years of O 1974 / 19 Beginning	-	g Year	Unknown
04 Agency Performing						
A. EPA B. El	(Name o	of Firm) gineering-Science (Name o		her		(Name of Firm)
05 Chief Inspector		66 Title	•	07 Organi	zation	08 Telephone No.
Mark J. Schumacher		Hydrogeologist		Engineering	-Science,	Inc. (315) 451-9560
09 Other Inspectors		10 Title		11 Organi:	zation	12 Telephone No.
Nicholas A. Smith		Geologist		Engineering	-Science,	Inc. (315) 451-9560
13 Site Representativ	es Interviewed	14 Title	15 Address	· · · · · · ·		16 Telephone No.
17 Access Gained By (Check One) Permission Warrant	18 Time of Ins	spection	19 Weather C 55° Cloudy	onditions		
IV. Information Ava	i la ble From					
01 Contact		02 OF (Agency/O	Organization)			93 Telephone No.
Carl Hoffman		NYSDEC				(518) 457-9538
04 Person Responsible For Tom Abrams	Site Inspection Form	05 Agency	06 Organizati Engineering-So		ep hone N o	9/7/93

ategory	01 Feedstock Name	02 CAS	Number	Category	01 Feedstock Name	02 CAS Number
. Feedstocks	(See Appendix For CA	S Numbers)	·			
ге иниспеи.						
ee attached.				Disposal Method		Concentration
l Category	02 Substance Name			4 Storage/	05 Concentration	06 Measure of
/. Hazardous	Substances (See Appe	ndix For Ma	et Freguentiv	Cited CAS Number	<u> </u>	· · · · · · · · · · · · · · · · · · ·
<i>IES</i>	He av y Metals		Unknown		lead detected in on-s exceedence of EP To.	
AS	Ba se s					
CD	Ac ids	LONG.	CHAILWII		3444	
DC	Ot he r Organic Ch In org an ic Ch emic		Unknown Unknown		drum labeled "cholo. sali	rotnene-V o -
SD CC	Pesticides		T To low on the		4	1.50
DL SD	Solvents -		Unknown		chlorinated solvents	
LW	Oily Waste		-	,,,,	rumou puin umage	
LU	Slu d ge		150	tons	leaded paint sludge	
ategory	Substance Name		01 Gross Amount	02 Unit of Measure	03 Comments	
I. Waste Ty	pe					
· · · · · · · · · · · · · · · · · · ·	pecify)			M. Not App		Unknown
D. Other _		110. VI DI W.		$\frac{z}{x}$ D. Persister		
x C. Sludge		Cubic Yard: No. of Drun		B. Corrosiv	ve F. Infection tive G. Flamma	
D Douglas	Finos m E Timuia	mat.v. a		5.0	-	Vola
x A. Solid	E. Slurry	Tons Unkno	own_	<u>x</u> A. Toxic	x E. Soluble	I. Hig
once in that ap	μις ,	must be inde	•	(Check all that a	ippy)	
1 Physical St Check all that ap		_	uantity At Site f waste quantities			
I. Waste Stat	es, Quantities, and Cha	aracteristics				
			e Information		NY 96	51005
		Site Inspect	dous Waste Sit ion Report	•	I. Identification 01 State 02 S	ite Number

, IV	. MAZAHDUUS SUE	BSTANCES (See Appendix for most tre	PURNITY USDO CAS NUMB	7815). 04 Storage/Disposal 05	MUMIXAM	06 MEASURE OF
01	CATEGORY	02 SUBSTANCE NAME	03 CAS #	METHOD	CONCENTRATION	CONCENTRATION
	Sediment	Sodium – Total	7 44023 5	un known	1E+07	UG/ KG
	Subsurface Soil	Potassium - Total	7440-09-7	un known	2120000	UG/KG
	Subsurface Soil	Cobalt - Total	7440-48-4	unk nown	10000 BN	UG/KG
	Subsurface Soil	Chr om ium – Total	7440-47-3	uп known	17400 *	UG/KG
	Surface Soil	Cadmium – Total	7440-43-9	unk nown	750 BN	UG/KG
	Surface Soil	Barium — Total	7440-39-3	unknown	90600	UG/KG
	Surface Soil	Arsenic - Total	7 440-38 -2	unknown	10000 SN	UG/KG
į	Subsurface Soil	Van adi um – Total	7440-62-2	unknown	19900	UG/KG
,	Groundwater	Silver - Total	7440-22-4	un known	0.4 BW	UG/L
	Surface Soil	Zinc — Total	7 440- 66 -6	un known	377000 E	UG/KG
		Nickel – Total	7 440~0 0 ~0		33700 E	UG/KG
	Surface Soil		· · · · · ·	unknown	1340000 EN	UG/KG
!	Sediment	Man ga nese – Total	7 439-96-5	unknown		•
	Subsurface Soil	Mag ne sium – Total	7439-95-4	unknown	1E+07	UG/KG
	Surface Soil	Lead - Total	7 439- 92-1	unknown	63600 + *	UG/KG
	Sediment	Iron — Total	7 439-89-6	un know n	8E+07 E	UG/KG
	Surface Soil	Copper — Total	7 440~50~8	un known	27600	UG/KG
r	Sediment	4,4' -D DE	72-55-9	un known	0.83 J	UG/KG
	Surface Soil	Phe na nthrene	8 5-01-8	un known	110 J	UG/KG
	Leachate	Acenaphthene	8 3-32-9	un known	6 J	UG/L
	Leachate	2 – Methylnaph thalone	91 -57-6	unknown	22	UG/L
	Surface Soil	Nap hth alene	9 1-20-3	un known	29 J	UG/KG
	Leachate	Car baz ole	86-74- 8	un known	2 J	UG/L
	Leachate	Flu orene	8 6-73- 7	un known	2 J	UG/L
	Surface Soil	Butyl benzyl p hthaiate	8 568 7	unknown	40 J	UG/KG
	Subsurface Soil	Aluminum – Totai	7 429-90-5	unknown	1E+07	UG/KG
!	Subsurface Soil	Di- n- butyl p hthaiate	84-74-2	un known	210 J	UG/KG
	Subsurface Soil	Calcium - Total	7440-70-2	un known	3E+07 *	UG/KG
	Sediment	Heptachlor	7 6-44-8	unknown	0.3 JP	UQ/KG
	Subsurface Soil	Carbon Disulfide	7 5 – 15 ~ 0	unknown	1 J	UG/KG
	Leachate	Methylene chloride	7 5-09-2	unknown	170 B	UG/L
	Groundwater	Viny l c hloride	75-01-4	un known	21	UG/L
	Groundwater	Chloroethane	7 5-00-3	unknown	67	UG/L
	Surface Soil	Endosullan Sullate	1031-07-8	unknown	12	UG/KG
	Surface Soil	Endosulfan I	9 59~98~8	un known	2.5	UQ/KG
	Surface Soil	Рут еле	1 29-00- 0	unknown	200 J	UQ/KG
	Leachate	Anthracene	120-12-7	unknown	0.9 J	UG/L
	Surface Soil	Benzo(k)fluor anthene	207-08-9	unknown	80 J	UG/KG
	Surface Soil	Benzo (b) fluoranthene	205-99-2	unknown	110 J	UG/KG
	Surface Soil	Indeno(1,2,3-cd)pyrene	193-39-5	ยกไดางพ ก	53 J	UG/KG
	Surface Soil	Benzo(ghi)perylene	191-24-2	un known	58 J	UG/KG
	Surface Soil	Aldr in	3 09~0 0-2	unk now n	0.41 JP	UG/KG
	Surface Soil	Fluoranthene	206-44-0	un known	210 J	UG/KG
	Surface Soil	Bis (2 - ethylhexyl) phthelate	1 17-81-7	unknown	180 J	UG/KG
	Surface Soil	Aroclor 1260	11096-82-5	un known	73 P	UG/KG
	Leachate	Tolu en e	1 08-88- 3	un known	23 J	UG/L
	Leachate	2,4 - Dimethylphenol	105679	unknown	9 J	UG/L
	Surface Soil	Chrysene	218-01-9	unk nown	100 J	UQ/KG
	Surface Soil	4,4'- D DD	72-54-8	unknown	1 JP	UG/KG
	Surface Soil	delta-BHC	319-86-8	unknown	0.51 JP	UG/KG
	Surface Soil	Benzo(a)anthtacene	56-55-3	unknown	84 J	UG/KG
	Groundwater	1,2-Dichloroethene (Total)	540-59-0	unimown	150	UQ/L
	Leachate	4-Chloro-3-methylphenol	59-50-7	unknown	6 J	U@/L
	Surface Soil	Dieldrin	60-57-1	unknown	2.3 JP	UG/KG
	Surface Soil	Benzo(a)pyrene	50-32-8	unknown	59 J	UQ/KG
	Leachate	gamma – BHC (Lindane)	58-89-9	unknown	0.00 4 3 JP	UQ/L
	Surface Soil	Endosulfan II	3 3213-65- 9	unknown	30 P	UG/KG
	Leachate	Dibenzofuran	53-70-3	unknown	5 J	UQ/L
	Surface Soil	gamma – Chlordane	5103-74-2	unknown	0.47 J	UG/KG
		Ace ton e	67 -64-1		260 B	UQ/L
	Leachate Surface Soil	alpha Chlordane	5103-71-9	un known un know n	200 B 2.2 P	UQ/KG
	Surface Soil	aipna⇒Criorcaine Cyanide – Total	57 ~12~5	unknown unknown	4300 *	UG/KG
	Groundwater	· _	5/ -12-5 1 07-06-2		4300 - 3 J	UQ/L
		1,2 - Dichloroethane		drum darm	59	UQ/L
	Leachate	4 - Methyl - 2 - pentanone	108101	dnum dnum		
	Leachate Subsurface Cail	Isophorone	78-59-1	dru m	1 J	UG/L
	Subsurface Soil	Bis (2 - chloroethyl) ether	111-44-4	drum	120 J	UG/KG
	Groundwater	Trichloroethene 2 – But anone	79-01-6	drum	54 600 P	UG/L UG/L
	1 4		78-93-3	drum	600 B	(1647)
	Leachate	-				
	Groundwater	1,1 - Dichloroethane	75-34 -3	drum	2 J	UG/L
	Groundwater Leachate	1,1 -D ichlo roethane Total Xylenes	75-34 -3 1 330-20-7	drum drum	2 J 210	UG/L UG/L
	Groundwater	1,1 - Dichloroethane	75-34 -3	drum	2 J	UG/L

EPA	Site In	Hazardous Waste Site nspection Report Iazardous Conditions and Incidents	I. Identification 01 State 02 Site Number NY 961005
II. Hazardoi	us Conditions and Incidents		
03 Population Affected:	Groundwater Contamination on Potentially : <u>Unknown</u> etals were detected in on-site weil	02 <u>x</u> Observed (Date: 5/93) 04 Narrative Description (s.	Potential Alleged
03 Population Affected:	urface Water Contamination on Potentially : <u>Unknown</u> ins to on-site leachate collection	02 X Observed (Date:) 04 Narrative Description pond which discharges to a tributary to a	<u>x</u> Potential Alleged tributary of Cotton Creek.
03 Population	ontamination of Air on Potentially	02 Observed (Date:) 04 Narrative Description	Potential Alleged
03 Population	re/Explosive Conditions on Potentially	02 Observed (Date:) 04 Narrative Description	Potential Alleged
03 Population Affected:	irect Contact on Potentially <u>Unknown</u> ible to pedestrians. Low levels of	02 Observed (Date:) 04 Narrative Description f contamination were detected in leachate	<u>x</u> Potential Alleged and surface soil samples.
O3 Population Affected:	ontamination of Soil on Potentially <u>Unknown</u> Ss, pesticides, PCBs, and inorgan	02 x Observed (Date: 5/93) 04 Narrative Description ics were detected in surface and subsurface	Potential Alleged
03 Population Affected:	rinking Water Contamination on Potentially er well 0.5 miles upgradient of si	02 Observed (Date:) 04 Narrative Description te. No contaminants were detected in the	x Potential Alleged downgradient well (sampled
03 Population	ork er Ex po sure/Injury on P o tentially 	02 Observed (Date:) 04 Narrative Description	Potential Alleged
03 Population Affected:	pulation Exposure/Injury on Potentially	02 Observed (Date:) 04 Narrative Description	<u>x</u> Potential Alleged

EPA	Site In	Hazardous Waste Site aspection Report lazardous Conditions and Incidents		n Site Number 9 6100 5
II. Hazardo	us Conditions and Incidents (Co	ontinued)	1	
03 Population	mage to Flora on Potentially	02 Observed (Date:) 04 Narrative Description	Potential	_x_Alleged
Mr. Broughte		ns site contamination (salt) preventing cro	ps from growing; sti	ressed
03 Population	ama ge to Fauna on P ot en tia lly 	02 Observed (Date:) 04 Narrative Description	Potential	Alleged
	ontamination of Food Chain e Description	02 Observed (Date:)	<u>x</u> Potential	Alleged
(Spills/Runo 03 Populatio	nstable Containment of Wastes off/Standing Liquids/Leading drums) on Potentially	02 <u>x</u> Observed (Date: <u>10/30/92</u>) 04 Narrative Description	Potential	Alleged
		orth edges of landfill. Site is reportedly no	ot lined or capped.	
04 Narrative	amage to Offsite Property e Description charges from site to property adja	02 x Observed (Date: 10/30/92) cent to north side of landfill, reportedly p	Potential	Alleged
	-	02 Observed (Date:)	<u>x</u> Potential	Alleged
01 P. Ille 04 Narrative None reported	-	02 Observed (Date:)	Potential	Alleged
05 Descripti None known.	on of Any Other Known, Potent	tial or Alleged Hazards		
III. Total Po	opulation Potentially Affected:	unknown		
IV. Comme	nts			
NYSDOH has	indicated that site does not prese	ent a concern for contamination of ground	lwater.	
		erences, e.g., state files, sample analysis		
		nd Landfill Site, URS Consultants, Decem ation Landfill Site, Engineering-Science,		

E P A II. Permit Information	Site Insp Part 4 - Permit And	ardous Waste Sit ection Report Descriptive Info		I. Identific 01 State NY	eation 02 Site Number 961005
O1 Type of Permit Issu (Check all that apply) A. NPDES B. UIC C. Air D. RCRA E. RCRA Interim F. SPCC Plan G. State (Specify) H. Local (Specify) J. None	ed 02 Permit Number	03 Date Issued	04 Expiration Date	05 Comments	
III. Site Description 01 Storage/Disposal (Check all that apply) A. Surface Impound B. Piles C. Drums, above gro D. Tank, above gro E. Tank, below gro X. F. Landfill G. Landfarm H. Open Dump I. Other (Specify)	round un d	03 Unit of Measure	H. Other	tion ound Injection I/Physical al Processing Recovery ecycling/Recover	O5 Other A. Buildings on Site None O6 Area of Site Ty 20 (Acres)
07 Comments Altmar Corporation repo disposed on-site by Mallo IV. Containment 01 Containment of Was A. Adequate, Security	ory Timer. Salts were rep	ately 150 tones of ortedly disposed of the action of the a	on-sise by Morton S	alt.	g wastes may have been
02 Description of Drum Poor containment, leache V. Accessibility 01 Waste Easily Access 02 Comments Leachate may pose a pote	is, Diking, Liners, Barrate outbreaks are common	iers, Etc.	<u> </u>		

EPA		Potential Haz	zardous Waste Site	I.	Identifica	ation	
	Part 5 -		ection Report phic, and Environments	01	State	02 Site Number 961005	
II. Drinking	Water Supply			· · · · · · · · · · · · · · · · · · ·			
01 Type of Dr (Check as ap)	-		02 Status		03 Dist	ance To Site	
Community Non-Commun	Surface A nity C	Well B. <u>x</u> D. <u>x</u>	Endangered Affected A B B Ex	Moni tored C. <u>x</u> F		(Mi.) 500_(Ft.)	
III. Groundw	vater						
	ter Use In Vicin Jource For D rin	king <u>x</u> B. Du (Other Sou Comm Irriga	rces Available) Irri	C. Commercial, In gation ited other sources able)	dustrial	D. Not Used	i, Unusable
02 Population	Served by Gro	undwater <u>106</u>	03 Distance	to nearest drinking	water we	eil <u>< 2500</u> (ft)	<u> </u>
04 Depth to G		05 Direction of Go of Aquifer Nor	roundwater Flow 06 I	Pepth to Aquifer (ft)		ential Yield ifer <u>Unk</u> (gpd)	08 Sole Source
site. 10 Recharge A X Yes Con No S	Area	p well water levels		es Sc of site laown	graaieni)	and less than 120	
IV. Surface W	<u> </u>				-		
x A. Reserve	ater Use (Check oir, Recreation Water Source	B. Irrigat	ion, Economically t Resources	C. Commercial, In	dustr ial	D. Not Curr	rently Used
02 Affected/Po	otentially Affect	ted Bodies of Wat	er	Affected	Dis	stance To Site	
Name: Cotton Name: Oatka				<u>Unknown</u> <u>Unknown</u>		. <u>75</u> (mi) < 1 (mi)	
V. Demograph	hic and Propert	y Information			_		
01 Total Popul	of Site Two	(2) Miles of Site	Four (4) Miles of Site C. 3283	02 Distance To	Nearest (mi	•	
One (1) Mile o A. <u>137</u> No. of Persons	B <u>. </u>	of Persons	No. of Persons				

village densely populated urban area)

The site is located in a rural area northeast of the Village of Gainesville. The Villages of Gainesville, Silver Springs, and Glen Rock are located within a two mile radius of the site.

(less than 10 ⁻⁶ cm/sec) (10 ⁻⁴ -10 ⁻⁶ cm/sec) (10 ⁻² -10 ⁻⁴ cm/sec) (Greater than 10 ⁻² cm/sec) 03 Depth to Bedrock	EPA	Potential Hazardous Waste Site Site Inspection Report Part 5 - Water, Demographic, and Environmental Data			. Identification 1 State 02 Site Number NY 961005
	VI. Environmental I	nformation			
cm/sec 02 Permeability of Bedrock (Check One) A. ImpermeableB. Relatively ImpermeableC. Relatively PermeableD. Very PermeableC. Relatively PermeableD. Very PermeableC. Relatively PermeableD. Very PermeableD. Very PermeableD. Very Permeable	01 Permeability of Ur	saturated Zone (Check One)			
		<u>x</u> B. 10 ⁻⁴ -10 ⁻⁴ cm/sec	C. 10 ⁻⁴ -10 ⁻³ cr	nn/sec	D. Greater than 10 ⁻³
Clease than 10 ⁻⁶ cm/sec (10 ⁻⁴ -10 ⁻⁶ cm/sec) (10 ⁻² -10 ⁻⁴ cm/sec) (Greater than 10 ⁻² cm/sec)	02 Permeability of Be	drock (Check One)		· ·	
Section of One Year 24-Hour Rainfall Os Slope Direction of Slope					D. Very Permeable (Greater than 10 ⁻² cm/sec)
Site Slope Slope Slope Slope Slope Slope JO-15 % 10 Slope JO-15 % 10 Slope JO-15 % Site Slope JO-15 % 10 Slope JO-15		-	Zone		
	06 Net Precipitation	07 One Year 24-Hour Rainfall	•		Terrain Average
Site is outside	(in)		•	-	•
floodplain 11 Distance to Wetlands (5 acre minimum) 12 Distance to Critical Habitat (of endangered species Estuarine Other >1 (mi) A. >1 (mi) Endangered Species: None within 1 mile 13 Land Use In Vicinity Distance To: Commercial/Industrial Residential Areas: National State Parks, Forests Prime Ag Land Ag Land	09 Flood Potential	10			
Estuarine Other		year <u>No</u> Site is on Barrier	Island, Coastai	High Hazard A	Area, Riverine Floodway
A. >1 (mi) B. >1 (mi) Endangered Species: None within 1 mile 13 Land Use In Vicinity Distance To: Commercial/Industrial Residential Areas: National State Parks, Forests Prime Ag Land Ag Land	11 Distance to Wetlan	ds (5 acre minimum)	12 Distance to	Critical Habita	t (of endangered species)
13 Land Use In Vicinity Distance To: Commercial/Industrial Residential Areas: National Agricultural Lands State Parks, Forests Prime Ag Land Ag Land	Estuarine	Other	>1(m	ni)	
Distance To: Commercial/Industrial Residential Areas: National State Parks, Forests Agricultural Lands Prime Ag Land Ag Land	A> /_ (mi)	B. <u>>1</u> (mi)	Endangered Sp	oecies: <u>None wi</u>	thin 1 mile
Commercial/Industrial Residential Areas: National Agricultural Lands State Parks, Forests Prime Ag Land Ag Land	13 Land Use In Vicini	ty		· · · · · · · · · · · · · · · · · · ·	
		State Parks, Forests	onal	Prim	C
A. <u>0.5</u> (mi.) B. <u>< 0.75</u> (mi.) C. <u>0.4</u> (mi.) D. <u>0.2</u> (A. <u>0.5</u> (mi.)	B. < 0.75 (mi.)		C	<u>0.4</u> (mi.) D. <u>0.2</u> (mi.)

The site is of generally higher elevation than surrounding terrain. Topography slopes north-northeast. Leachate drains to leachate collection pond at the base of the north slope of the landfill. The leachate pond discharges to a tributary to Cotton Creek. A heavily ponded area is located southeast of the site. Area south of the site levels off and then slopes south.

VII. Sources of Information (Cite specific references, e.g., state files, sample analysis, reports)

EPA	Potential Site l Part 6 - Samp	I. Identification01 State 02 Site NumberNY 961005	
II. Samples Taken			
Sample Type	01 Number of	02 Samples Sent To	03 Estimated Date
	Samples Taken		Results Available
Groundwater	7	Recra Environmental	June 1993
Surface Water	1	NYSDEC (mobile laboratory)	Jan uary 1988
Sediment	1	Cambridg e Analytical Associates Recra Environmental, Inc.	April, 1987 June 1, 1993
Leachate	1	Cambridge Analytical Associates	April, 1987
	3 1	Recra Environmental Recra Environmental	June, 1992 June, 1993
Soil/Surface-Shallow /Subsurface	1 2	NYSDEC (mobile laboratory) NYSDOH - WCLR	January, 1988 January, 1990
	7	Recra Environmental, Inc.	June, 1993
Waste	1 15	NYSDEC (mobile laboratory) Lozier Laboratories	January, 1988 May, 1990
Tap Water	2	NYSDOH - WCLR	December, 1989
NOTE: WCLR - Wad su	orth Center for Labor	rasories and Research.	
III. Field Measuremer	its Taken		
01 Type LEL, Microtip PID	02 Comments No readings above	background. April 20, 1993	
IV. Photographs And	Maps		
01 Type <u>x</u> Ground	<u>x</u> Aerial	02 In Custody of Engineering-Scie (Name of Organization or Indi-	
03 Maps	02 Location of Ma	ps	
x Yes Engineering-S	cience, Inc.		
No			
V. Other Field Data C	collected (Provide Na	rrative Description)	- W - W -
Locations of sampling p	oin ts and leachate ou	breaks recorded on a site map. In addition	, photographs were taken.
VI. Sources of Inform	ation (Cite specific r	eferences, e.g., state files, sample analysis	s, reports)
		and Landfill Site, URS Consultants, December	ber 1990.

Preliminary Site Assessment Report, ETE Sanitation Landfill Site, Engineering-Science, Inc., October 1993.

EPA	S	tial Hazardous Waste ite Inspection Report 7 - Owner Informati		i	ation 02 Site Number 961005
II. CURRE	NT OWNER(s)	·	PARENT COM	PANY (If Applicabl	e)
01 Name ETE Corpora	ation (Mr. DM Iwanicki, Tru	02 D+B Number (stee)	08 Name		09 D+B Number
	dress (P.O. Box, RFD #, etc) Ierbert, Glen Rock Restauran	04 SIC Code	10 Street Addres	ss (P.O. Box, RFD #, etc	e) 11 SIC Code
05 City Silver Springs	06 State <i>NY</i>	07 Zip Code 14550	1 2 City	13 State	14 Zip Code
01 Name		02 D+B Number	08 Name		09 D+B Number
03 Street Ad	dress (P.O. Box, RFD #, etc)	94 SIC Code	10 Street Addres	SS (P.O. Box, RFD #, etc	e) 11 SIC Code
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code
01 Name		02 D+B Number	08 Name		09 D+B Number
03 Street Ad	dress (P.O. Box, RFD #, etc)	04 SIC Code	10 Street Addres	SS (P.O. Box, RFD #, etc	11 SIC Code
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code
01 Name		02 D+B Number	08 Name		09 D+B Number
03 Street Ad	dress (P.O. Box, RFD #, etc)	94 SIC Code	10 Street Addres	S (P.O. Box, RFD #, etc	il SIC Code
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code
III. PREVIO	OUS OWNER(s) (List most re	cent first)	IV. REALTY C	WNER(s) (if applicab	le list most recent first)
01 Name		02 D+B Number	08 Name		09 D+B Number
Edward Herb	ert				
03 Street Ad o 3 South Main	dress (P.O. Box, RFD #, etc) Street	04 SIC Code	10 Street Addres	S (P.O. Box, RFD #, etc	11 SIC Code
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code
Gainesville	NY	14569	•		-
01 Name		02 D+B Number	08 Name		09 D+B Number
03 Street Add	dress (P.O. Box, RFD #, etc)	04 SIC Code	10 Street Addres	S (P.O. Box, RFD #, etc) 11 SIC Code
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code
01 Name		02 D+B Number	08 Name		09 D+B Number
3 Street Add	dress (P.O. Box, RFD #, etc)	04 SIC Code	10 Street Addres	S (P.O. Box, RFD #, etc) 11 SIC Code
05 City	06 State	07 Zip Code	12 City	13 State	14 Zip Code

V. Sources of Information (Cite specific references, e.g., state files, sample analyses, reports)

EPA	S	tial Hazardous Waste ite Inspection Report 8 - Operator Informa	t 01 State 02 Site Number		
I. CURRENT Ope	rator (Provide if differ	ent from Owner)	OPERATOR'S	PARENT COMPAN	Y
11 Name		02 D+B Number	10 Name		11 D+B Number
3 Street Address (P.	.O. Box, RFD #, etc)	04 SIC Code	12 Street Addre	SS (P.O. Box, RFD #, etc)	13 SIC Code
05 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code
08 Years of Operation	on 09 Name of Ov	wner			
II. PREVIOUS OF	ERATOR(s)		PREVIOUS OP (If Applicable)	ERATORS' PAREN	T COMPANIES
11 Name ETE Corporation		02 D+B Number	10 Name		11 D+B Number
3 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code	12 Street Addre	ss (P.O. Box, RFD #, etc)	13 SIC Code
)5 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code
Gainesville	NY	14569			
8 Years of Operation <i>972-1979</i>	on 09 Name of Ov	wner During This Per	iod		
1 Name		02 D+B Number	10 Name		11 D+B Number
Refuse Unlimited, Inc					
3 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code	12 Street Addre	SS (P.O. Box, RFD #, etc)	13 SIC Code
5 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code
Inknown		-	-		-
8 Years of Operation	on 09 Name of Ov	vner During This Per	iod		
Inknown		_			
1 Name		02 D+B Number	10 Name		11 D+B Number
3 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code	12 Street Addre	SS (P.O. Box, RFD #, etc)	13 SIC Code
5 City	06 State	07 Zip Code	14 City	15 State	16 Zip Code
0 W C O 4'-		vner During This Per	• •		_

IV. Sources of Information (Cite specific references, e.g., state files, sample analysis, report(s))

E P A	Si	tial Hazardous Waste ite Inspection Report erator/Transporter I		I. Identific 01 State NY 90	cation 02 Site Number 51005
II. On-Site Generate	or				
01 Name		02 D+B Number			
03 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code			
05 City	06 State	07 Zip Code			
III. Off-Site Genera	utor(s)				
)1 Name Almor Corporation		02 D+B Number	01 Name Mallory Timers		62 D+B Number
03 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code	03 Street Address (P.	.O. Box, RFD #, et	c) 04 SIC Code
220 S. Main Street					
05 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code
Warsaw	NY	14569	Warsaw	NY	14569
IV. Transporter(s)	<u> </u>				· ·
1 Name		02 D+B Number	01 Name		02 D+B Number
3 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code	03 Street Address (P.	.O. Box, RFD #, et	c) 04 SIC Code
05 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code
1 Name		02 D+B Number	01 Name		02 D+B Number
3 Street Address (P.	O. Box, RFD #, etc)	04 SIC Code	03 Street Address (P.	.O. Box, RFD #, et	ot 04 SIC Code
5 City	06 State	07 Zip Code	05 City	06 State	07 Zip Code

V. Sources of Information (Cite specific references, e.g., state files, sample analysis, reports)

EPA	Potential Hazard Site Inspecti Part 10 - Past Res	on Report	I. Identification 01 State 02 Site Number NY 961005
	ponse Activities ater Supply Closed on	02 Date	03 Agency
01 B. Te 04 Description	emp or ary Water Supply Provided	02 Date	03 Agency
01 C. Pe	erm an ent Water Supply Provided	02 Date	03 Agency
01 D. Sp 04 Description	oille d Material Removed	02 Date	03 Agency
01 E. Co	ontaminated Soil Removed	02 Date	03 Agency
01 <u>x</u> F. W: 04 Description	aste Rep ac ked on	02 Date	03 Agency Marcon Inc./NYSDEC
100 empty dr	ums crushed and stored on-site. 19 drui	ns overpacked and stored on-site.	
01 G. W 04 Description	/aste Disposed Elsewhere on	02 Date	03 Agency
01 H. Or 04 Description		02 Date	03 Agency
01 I. In S	Site Chemical Treatment	02 Date	03 Agency
01 J. In 8	Situ Biological Treatment on	02 Date	03 Agency
01 K. In 04 Description	Sit u Phy si cal Treatment on	02 Date	03 Agency
01 L. En		02 Date	03 Agency
01 M. Er 04 Description	nergency Waste Treatment	02 Date	03 Agency

EPA	Potential Hazardous Waste Site Site Inspection Report Part 10 - Past Response Activities		I. Identification 01 State 02 Site Number NY 961005		
II. Past Res 01 N. Cu 04 Description		02 Date	03 Agency		
01 O. Er 04 Description	mergency Diking/Surface Water Diversion on	02 Date	03 Agency		
01 P. Cu 04 Description	atoff Trenches/Sump on	02 Date	03 Agency		
01 Q. Su 04 Description	ibsurface Cutoff Wall on	02 Date	03 Agency		
01 R. Ba	urri er W all s Constructed	02 Date	03 Agency		
01 S. Ca 04 Description	ppi ng /C ov ering on	02 Date	03 Agency		
01 T. Bu 04 Description	dk Tankag e Repaired on	02 Date	03 Agency		
01 U. Gr 04 Description	rout Curtain Constructed	02 Date	03 Agency		
01 V. Bo 04 Description		02 Date	03 Agency		
01 W. Ga		02 Date	03 Agency		
01 X. Fir 04 Description		02 Date	03 Agency		
01 Y. Le 04 Description	ach at e Treatment on	02 Date	03 Agency		
01 Z. Arc 04 Descriptio		02 Date	03 Agency		
01 1. Acc 04 Descriptio	cess To Site Restricted	02 Date	03 Agency		
01 2. Pop 04 Descriptio	pula ti on Re locate d n	02 Date	03 Agency		
04 Descriptio	ner Remedial Activities		03 Agency		

III. Sources of Information (Cite specific references, e.g., state files, sample analysis, reports)

Site Inspection Report Part 11 - Enforcement Information	NY 961005
--	-----------

- II. Enforcement Information
- 01 Past Regulatory/Enforcement Action x Yes No
- 02 Description of Federal, State, Local Regulatory/Enforcement Action

New York State issued a "cease Landfill operations" order in 1979.

III. Sources of Information (Cite specific references, e.g., state files, sample analysis, reports)

961005

ENGINEERING INVESTIGATIONS AT INACTIVE HAZARDOUS WASTE SITES

PRELIMINARY SITE ASSESSMENT

APPENDICES B-E VOLUME II

ETE Sanitation and Landfill Gainesville Township

Site No. 961005 Wyoming County

Prepared for:

New York State Department of Environmental Conservation

50 Wolf Road, Albany, New York 12233 Thomas C. Jorling, Commissioner

Division of Hazardous Waste Remediation Michael J. O'Toole, Jr., P.E., Director

BY:

ENGINEERING-SCIENCE, INC. LIVERPOOL, NEW YORK

FEBRUARY 1994

VOLUME 2 - APPENDICES B-E

ETE SANITATION AND LANDFILL SITE NYSDEC SITE NO. 961005 GAINESVILLE TOWNSHIP WYOMING COUNTY, NEW YORK

PRELIMINARY SITE ASSESSMENT WORK ASSIGNMENT NO. D002478-17 NEW YORK STATE SUPERFUND STANDBY CONTRACT

Prepared for

DIVISION OF HAZARDOUS WASTE REMEDIATION NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION 50 WOLF ROAD ALBANY, NEW YORK

Prepared by

Engineering-Science, Inc. 290 Elwood Davis Road Liverpool, N.Y. 13088

FEBRUARY 1994

723800.05060 (SY327.05)

TABLE OF CONTENTS

N 1 - EXECUTIVE SUMMARY	1
Background Summary	1
Site Investigation Summary	2
Recommendations	
N 2 - INTRODUCTION	1
Preliminary Site Assessment Investigation	
N 3 - SCOPE OF WORK	
Intr o duction	1
Initial Environmental Sampling	1
3.2.1 Sediment Samples	1
3.2.2 Leachate Samples	
Subsurface Environmental Sampling	2
3.3.1 Monitoring Wells	2
3.4.2 Report Preparation	5
N 4 - SITE ASSESSMENT	1
Site Description	1
Site History	1
Site Vicinity	3
Regional Environmental Setting	
4.4.1 Regional Geology and Soils	4
4.4.2 Regional Groundwater Hydrology	5
4.4.3 Regional Surface Water Hydrology	5
	Background Summary Site Investigation Summary Presence of Hazardous Wastes. Presence of Significant Threat Recommendations IN 2 - INTRODUCTION Purpose. Report Organization Preliminary Site Assessment Investigation IN 3 - SCOPE OF WORK Introduction. Initial Environmental Sampling. 3.2.1 Sediment Samples. 3.2.2 Leachate Samples 3.2.3 Surficial Soil Samples. Subsurface Environmental Sampling. 3.3.1 Monitoring Wells 3.3.2 Subsurface Soil Samples and Grain-Size Analysis. 3.3.3 Groundwater Samples 3.3.4 Survey 3.3.5 Data Validation 3.3.6 Slug Test Report Preparation. 3.4.1 Site Assessment 3.4.2 Report Preparation. IN 4 - SITE ASSESSMENT Site Description Site History Site Vicinity Regional Environmental Setting 4.4.1 Regional Geology and Soils 4.4.2 Regional Groundwater Hydrology

4.5 Site Environmental Setting	5
4.5.1 Site Geology	5
4.5.2 Site Groundwater Hydrology	6
4.5.3 Site Surface Water Hydrology	7
4.6 Site Contamination Assessment	7
4.6.1 Sediment Sample	8
4.6.2 Leachate Sample	
4.6.3 Soil Samples	11
4.6.4 Groundwater Samples	13
4.6.5 Presence of Hazardous Wastes	15
4.6.6 Presence of Significant Threat	15
SECTION 5 - RECOMMENDATIONS 5.1 Recommended Site Classification 5.2 Future Work	1
SECTION 6 - LIST OF REFERENCES	1
APPENDIX A INSPECTION REPORT USEPA FORM 2070-	1
APPENDIX B PA SCORE SHEETS	2
APPEN D IX C GEOLOGIC DATA	3
APPENDIX D LABORATORY ANALYSES	4
APPENDIX E SELECTED REFERENCES	5

LIST OF TABLES

Table 3.1 - Summary of PSA Tasks	6
Table 3.2 - Sample Summary	9
Table 3.3 - Monitoring Well Locations and Specifications	11
Table 3.4 - Split Spoon Sample Description	12
Table 4.1 - Grain Size Characteristics	23
Table 4.2 - Water Level Data	24
Table 4.3 - Sediment Data Summary	25
Table 4.4 - Leachate Data Summary	28
Table 4.5 - Surface Soil Data Summary	30
Table 4.6 - Subsurface Soil Data Summary	33
Table 4.7 - Groundwater Data Summary	35

LIST OF FIGURES

Figure 1.1 - Site Location Map	5
Figure 1.2 - Site Plan	6
Figure 2.1 - Site Classification Decision Tree	3
Figure 3.1 - Sample Location Map	13
Figure 4.1 - Site Location Map	17
Figure 4.2 - Sample Location Map	18
Figure 4.3 - Cross Section Location Map	19
Figure 4.4 - Cross Section AA'	20
Figure 4.5 - Shallow Groundwater Water Contours	21
Figure 4.6 - Deep Groundwater Water Contours	22

APPENDIX B

PA SCORE SHEETS

OMB Approval Number: 2050-0095 Approved for Use Through: 4/95

POTENTIAL HAZARDOUS		IDENTIFICATION				
WASTE SITE	State: CERCLIS Number:					
PRELIMINARY ASSESSMENT		CERCLIS Discovery Date:				
1. General Site Information			•			
Name: ETE SANITATION AND LANDFILL		Street Addre				
City: GAINESVILLE	State: NY	Zip Code: 14066	County: WYOMING	Co. Code:		
Latit ude: Longitude: 42 39' 28.0" 78 7' 36.0"	Approx.	Area of Site: Status of Site: 20 acres Inactive				
2. Owner/Operator Information			•			
Owner: ETE CORPORATION		Operator:				
Street Address: 3 SOUTH MAIN STREET	•	Street Address:				
City: GAINE SV ILLE		City:				
State: Zi p C ode: Telephone NY 145 69 (716)786	5-25 3 0	State: Zip Code: Telephone:				
Type of Ownership: Priva te		Mow Initially Identified: State/Local Program				

POTENTIAL HAZARDOUS WASTE SITE					IDENTIFICATION		
				Stat		CERCLIS	Number:
PRELIMINARY ASSESSMENT FORM			:	CERCLIS	Discover	y Date:	
3. Si te Ev alu ator In	formation						
Name of Evaluator: THOMAS H. ABRAMS		Agency ENGIN	/Orga	anization:	, INC	Date Pr 10/11	 epared: /93
Street Address: 290 ELWOOD DAVIS ROAD			City: LIVERPOOL			State:	
Name of EPA or State CARL MOFFMAN, PE	Agency Co		Tel	ephone: 518)457-95	38		
Street Address: NYSDEC, 50 WOLF ROAD	1			State:			
4. Si te Disposition (for EPA	se only	:)		••		
Emergency Response/Removal Assessment	CERCLIS Recommer Higher P	ndation:	s:	Signatur	e:	•	
Recommendation: No Date:	Date:	-,		Name: Position			

POTENTIAL HAZARDOUS			IDI	ENTIFICATION
WASTE SITE	State:	CERCLIS Number:		
PRELIMINARY ASSESSMENT FORM			CERCLIS	Discovery Date:
5. General Site Characteristics	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •
Predominant Land Uses Within Site 5 1 Mile of Site: Residential Rura Forest/Fields Agricultural		Be	eginning '	ration: Year: 1972 r: 1979
Type of Site Operations: Hunicipal Landfill Other Landfill	• • • • • • • • • • • • • • • • • • • •		Génerati Offsite	ed:
Not Specified		Waste By: P	e Deposition Authorized Present Owner	
			es	ole to the Public
		Dista Schoo		earest Dwelling.
6. Waste Characteristics Information			•	• • • • • • • • • • • • • • • • • • • •
Source Type Quantity Ti Landfill 8.70e+00 acres Surface impoundment 2.00e+04 sq ft	A I Pair	7 23/P i	es of Was gments Waste	ste:
Tier L eg end C = Co nsti t uent W = Wastestream V = Vo lume A = Area	Physic Soli Liqu	id	ate of Wa	este as Deposited

WASTE SITE PRELIMINARY ASSE	CERCLIS Discovery Date:		
7. Gr ound Water Pathway			
Is Gr oun d W ate r Used for D rin king Water Withi n 4 Miles: No	Is There a Suspected Release to Ground Water:	List Secondary Tar Population Served Ground Water Witho From:	by
Type of Gro und Water Wells Within 4 Miles: Private	Have Primary Target Drinking Water Wells Been Identified: No	0 - 1/4 Mite >1/4 - 1/2 Mite >1/2 - 1 Mile	8 33 117
epth to Shall owe st Aquifer: 0 Feet		>1 - 2 Miles >2 - 3 Miles	434 900
arst Terrain /Aquifer rese nt: No	Nearest Designated Wellhead Protection Area: >0 - 4 Miles	>3 ~ 4 Miles	15 3 8

POTENTIAL HAZARDOUS		10	ENTIFICATION	
WASTE SITE		State: NY	CERCLIS Number:	
PRELIMINARY ASSESSMENT FOR		CERCLIS Discovery Date:		
8. Surface Water Pathway			Part 1 of 4	
Type of Surface Water Draining		nd Distan	t	
Is th ere a Suspected Release to Surfa ce Water: Yes	Site is Located Annual - 10		plain	
8. Su rf ace Wa ter Pathway	•••••••		Part 2 of 4	
Drinking Water Intakes Along the		ration Pa	th: No	
Have Pr imar y Target Drinking Water Secondary Target Drinking Water in		dentified:	No	

PA-Score 2.1 Scoresheets ETE SANITATION AND LANDFILL - 10/12/93

Pa**ge: 6**

POTENTIAL HAZARDOUS	IDENTIFICATION			
WASTE SITE	State: CERCLIS Numbe			
PRELIMINARY ASSESSMENT FORM	CERCLIS Discovery Date:			
8. Surface Water Pathway	Part 3 of 4			
Fisheries Located Along the Surface Water Migrat				
Have Primary Target Fisheries Been Identified:	Yes			
Secondary Target Fisheries:				
8. Surface Water Pathway Part 4 of				
Wetlands Located Along the Surface Water Migrati				
Have Primary Target Wetlands Been Identified? (y	//n) Yes			
Secondary Target Wetlands: None				
Other Sensitive Environments Along the Surface W	later Migration Path: No			
Have Primary Target Sensitive Environments Been	Identified: No			
Secondary Target Sensitive Environments: None				

			1 101	ENTIFICAT	
POTENTIAL HAZARDOUS		IDENTIFICATION			
WASTE SITE PRELIMINARY ASSESSMENT FORM			State: NY	CERCLIS	Number:
			CERCLIS	Discovery	/ Date:
9. S oi l Ex po sure Pa	thway				
Are People Occupying Attending School or Within 200 Feet of / or Suspected Contam	orkers Onsite: None				
Have Terrestrial Ser 200 Fe	nsitive Environmeet of Areas of D	ents Been ide Known or Susp	ntified on o	or Within Mination:	No
		• • • • • • • • • • • • • • • • • • • •			
10. Air Pathway		• • • • • • • • • • • • • • • • • • • •			
Total Population on Onsite	or Within: 1s	There a Suspe	cted Release	to Air:	
0 - 1/4 Mile	0				No
. ∪ ~ 1/4 MILE	7 WET	lands Located		*	No
>1/4 • 1/2 Mile >1/2 • 1 Mile	36 137	lands Located Within	4 Miles of t	he Site:	
>1/4 Wile >1/4 - 1/2 Mile >1/2 - 1 Mile >1 - 2 Miles >2 - 3 Miles >3 - 4 Miles Total	36 137 735	Within 4	4 Miles of t	Located	No
>1/4 - 1/2 Mile >1/2 - 1 Mile >1 - 2 Miles >2 - 3 Miles >3 - 4 Miles Total	36 137 735 2000 3281 6198	Within and Sensitive I	Miles of t Environments Miles of t	Located	No
>1/4 - 1/2 Mile >1/2 - 1 Mile >1 - 2 Miles >2 - 3 Miles >3 - 4 Miles	36 137 735 2000 3281 6198	Within and Sensitive I	Miles of t Environments Miles of t	Located	No
>1/4 - 1/2 Mile >1/2 - 1 Miles >1 - 2 Miles >2 - 3 Miles >3 - 4 Miles Total	36 137 735 2000 3281 6198	Within and Sensitive I	Miles of t Environments Miles of t	Located	No
>1/4 - 1/2 Mile >1/2 - 1 Miles >1 - 2 Miles >2 - 3 Miles >3 - 4 Miles Total	36 137 735 2000 3281 6198	Within and Sensitive I	Miles of t Environments Miles of t	Located	No
>1/4 - 1/2 Mile >1/2 - 1 Miles >1 - 2 Miles >2 - 3 Miles >3 - 4 Miles Total	36 137 735 2000 3281 6198	Within and Sensitive I	Miles of t Environments Miles of t	Located	No

OMB Approval Number: 2050-0095
Approved for Use Through: 4/95

Site Name: ETE SANITATION AND LANDFILL
CERCLIS ID No.:
Street Address: BROUGHTON ROAD
City/State/Zip: GAINESVILLE, NY 14066

Investigator: THOMAS H. ABRAMS
Agency/Organization: ENGINEERING-SCIENCE, INC
Street Address: 290 ELWOOD DAVIS ROAD
City/State: LIVERPOOL , NY

Date: 10/11/93

WASTE CHARACTERISTICS Waste Characteristics (WC) Calculations: 1 ETE LANDFILL Landfill Ref: 1 W9 value maximum Area 8.70E+00 acres 1.12E+02 1.12
ESTIMATED LANDFILL RADIUS TO BE APPROXIMATELY 350 FEET; THEREFORE AREA = 3.14*(350*350). 1.12E+02 1.12E+02 Ref: ES, 1993. Area 2.00E+04 sq ft 1.54E+03 1.54E+03 ESTIMATED LEACHATE COLLECTION POND TO BE 100 FEET BY 200 FEET; THEREFORE 100*200=20,000. Ref: ES, 1993. 2 LEACHATE POND

WQ total 1.65E+03

** Only First WC Page Is Printed ** | Waste Characteristics Score: WC = 32

Ground Water Pathway Criteria List Suspected Release	
Are courses possive some in the deal of th	Υ
Is the source a type likely to contribute to ground water contamination (e.g., wet lagoon)? $(y/n/u)$	Y
Is waste quantity particularly large? (y/n/u)	N
Is precipitation heavy? (y/n/u)	N
Is the infiltration rate high? (y/n/u)	N
Is the site located in an area of karst terrain? (y/n)	N
Is the subsurface highly permeable or conductive? (y/n/u)	N
Is drinking water drawn from a shallow aquifer? (y/n/u)	U
Are suspected contaminants highly mobile in ground water? (y/n/u)	Y
Does analytical or circumstantial evidence suggest	Y
Other criteria? (y/n) N	
SUSPECTED RELEASE? (y/n)	Y
Summarize the rationale for Suspected Release:	
CHLORINATED SOLVENTS DETECTED IN DRUMS DISPOSED ON-SITE AND IN GROUNDWATER.	

Is any drinking water well nearby? (y/n/u) Has any nearby drinking water well been closed? (y/n/u) Has any nearby drinking water well user reported foul-testing or foul-smelling water? (y/n/u) Does any nearby well have a large drawdown/high production rate? (y/n/u) Is any drinking water well located between the site and other wells that are suspected to be exposed to a hazardous substance? (y/n/u) Does analytical or circumstantial evidence suggest contamination at a drinking water well? (y/n/u) Does any drinking water well warrant sampling? (y/n/u) Other criteria? (y/n) PRIMARY TARGET(S) IDENTIFIED? (y/n) Summarize the rationale for Primary Targets:	Ground Water Pathway Criteria List Primary Targets	
Has any nearby drinking water well user reported foul-testing or foul-smelling water? (y/n/u) Does any nearby well have a large drawdown/high production rate? (y/n/u) U Is any drinking water well located between the site and other wells that are suspected to be exposed to a hazardous substance? (y/n/u) U Does analytical or circumstantial evidence suggest contamination at a drinking water well? (y/n/u) N Does any drinking water well warrant sampling? (y/n/u) Other criteria? (y/n) PRIMARY TARGET(S) IDENTIFIED? (y/n)		4
foul-testing or foul-smelling water? (y/n/u) Does any nearby well have a large drawdown/high production rate? (y/n/u) U Is any drinking water well located between the site and other wells that are suspected to be exposed to a hazardous substance? (y/n/u) U Does analytical or circumstantial evidence suggest contamination at a drinking water well? (y/n/u) N Does any drinking water well warrant sampling? (y/n/u) Other criteria? (y/n) PRIMARY TARGET(S) IDENTIFIED? (y/n)	Has any nearby drinking water well been closed? (y/n/u)	٤
Is any drinking water well located between the site and other wells that are suspected to be exposed to a hazardous substance? (y/n/u) to be analytical or circumstantial evidence suggest contamination at a drinking water well? (y/n/u) No Does any drinking water well warrant sampling? (y/n/u) Other criteria? (y/n) No PRIMARY TARGET(S) IDENTIFIED? (y/n)	Has any nearby drinking water well user reported foul-testing or foul-smelling water? (y/n/u)	ι
that are suspected to be exposed to a hazardous substance? (y/n/u) U Does analytical or circumstantial evidence suggest contamination at a drinking water well? (y/n/u) N Does any drinking water well warrant sampling? (y/n/u) Other criteria? (y/n) N PRIMARY TARGET(S) IDENTIFIED? (y/n) N	Does any nearby well have a large drawdown/high production rate? (y/n/u	ı) (
at a drinking water well? (y/n/u) N Does any drinking water well warrant sampling? (y/n/u) Other criteria? (y/n) PRIMARY TARGET(S) IDENTIFIED? (y/n)	Is any drinking water well located between the site and other wells that are suspected to be exposed to a hazardous substance? (y/n/u	ı) (
Other criteria? (y/n) N PRIMARY TARGET(S) IDENTIFIED? (y/n) N	Does analyti cal or circumstantial evidence suggest contamination at a drinking water well? (y/n/u)	
PRIMARY TARGET(S) IDENTIFIED? (y/n)	Does any drinking water well warrant sampling? (y/n/u)	1
	Other criteria? (y/n) N	
	PRIMARY TARGET(S) IDENTIFIED? (y/n))

GROUND WATER PATHWAY SCORESHEETS

WAY SCORESHEE	13	
		Ref
		es
errain? (y/n)	No	
	0	· · · · · · · · · · · · · · · · · · ·
ng water well	(feet): B	<u>+</u>
Suspected Release	No Suspected	Reference
550	*	
	† o	
550	, , ,	
Suspected	No Suspected	
Release	Release	Reference
0		, , , , , , , , , , , , , , , , , , , ,
38	0	
20	÷i	•
5	0	
5	0	
68	0	
32	0 1	
*		
	Suspected Release 550 Suspected Release 0 38	Suspected No Suspected Release Release Release Release O O Suspected Release O O O O O O O O O O O O O O O O O O O

Page: 5

Ground Water Target Populations

Primary Target Population Drinking Water Well ID	Dist. (miles)	Population Served	Reference	Value
No ne			<u></u>	
			<u> </u>	
	ĺ			
*** No te: Maximum of 5	Wells Are Pr	inted ***	Total	

condary Target Population Distance Categories	Population Served	Reference	Value
0 to 1/4 mile	8	1 1	
Greater than 1/4 to 1/2 mile	33	1	
Greater than 1/2 to 1 mile	117	1	
Greater than 1 to 2 miles	434	1 1	(
Greater than 2 to 3 miles	900	1	
Greater than 3 to 4 miles	1538	1 1	1:
		Total	38

or tronsient p	ocumentation	n for a Blem	ded System	 	
				•	

	- 4	
	Surface Water Pathway Criteria List Suspected Release	
Is surface wat	er nearby? (y/n/u)	•
Is w aste qua nt	ity particularly targe? (y/n/u)	
Is the drainag	e area large? (y/n/u)	
Is r ain fal l he	eavy? (y/n/u)	
Is the infiltr	ration rate low? (y/n/u)	
Are sources po	orly contained or prome to rumoff or flooding? (y/n/u)	
	oute well defined(e.g.ditch/chammel to surf.water)? (y/n/u)	ì
	stressed along the probable runoff path? (y/n/u)	
Are sediments	or water unnaturally discolored? (y/n/u)	
Is wi ld life un	maturally absent? (y/n/u)	
Has dep osition	of waste into surface water been observed? (y/n/u)	
Is ground wate	r discharge to surface water likely? (y/n/u)	
Does analytica	l/circumstantial evidence suggest S.W. contam? (y/n/u)	
Other criteria	? (y/n) N	•
	SUSPECTED RELEASE? (y/n)	•
ummarize the r	ationale for Suspected Release:	
LANDFILL TO LI	HARGE OBSERVED ALONG NORTH AND WEST PERIMETER OF ACHATE DRAINS TO DITCH RUNNING FROM POND UPGRADIENT OF EACHATE COLLECTION POND DOWNGRADIENT OF LANDFILL. C LYENTS DETECTED IN LEACHATE. LEACHATE COLLECTION POND TRIBUTARY OF COTTON CREEK.	
Ref: ES, 199	93	•

	• • • • •
Surface Water Pathway Criteria List Primary Targets	İ
Is any target nearby? (y/n/u)	Y
Has any intake, fishery, or recreational area been closed? (y/n/u)	N
Does analytical or circumstantial evidence suggest surface water contamination at or downstream of a target? (y/n/u)	N
Does any target warrant sampling? (y/n/u) If yes: N Drinking water intake Y Fishery N Sensitive environment	Y
Other criteria? (y/n) N	'
PRIMARY INTAKE(S) IDENTIFIED? (y/n)	N I
Summarize the rationale for Primary Intakes:	
continued	

continued	1
Other criteria? (y/n) N	i
PRIMARY FISHERY(IES) IDENTIFIED? (y/n)	Υ
Summarize the rationale for Primary Fisheries:	
COTTON CREEK, A CLASS C WATER BODY SUITABLE FOR FISH PROPOGATION IS LOCATED LESS THAN ONE DOWNSTREAM OF THE SITE. LEACHATE REPORTEDLY DISCHARGES FROM THE LEACHATE COLLECTION POND TO A TRIBUTARY OF COTTON CREEK.	
Ref: ES, 1993.	
	1
Other criteria? (y/n) N	
Other criteria? (y/n) N	N
Other criteria? (y/n) N PRIMARY SENSITIVE ENVIRONMENT(S) IDENTIFIED? (y/n)	N
Other criteria? (y/n) N	N

Page: 10

SURFACE WATER PATHWAY SCORESHEETS

hway Characteristics			Re	ef.
Do y ou su spect a release? (y/n)	Y	es	
Distance to surface water (fee	t):	O		
Flood frequency (years):	• • • • • • • • • • • • • • • • • • • •	1	-10	
What is the downstream distance a. the nearest drink b. the nearest fisher c. the nearest sensi	ing water intary?		0.0 0.0 0.0	
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected Release	Reference	es
LIKELIHOOD OF RELEASE 1. SUSPECTED RELEASE			Referenc	es
***********************	Release		Referenc	: e s

TARGE TS	Suspected Release	No Suspected Release	Reference
 Determine the water body type, flow (if applicable), and number of people served by each drinking water intake. 	•		
4. PRIMARY TARGET POPULATION 0 person(s)	0	*************************************	
5. SECONDARY TARGET POPULATION Are any intakes part of a blended system? (y/n): N	0	0	
6. NEAREST INTAKE	0	0	
7. RE SO URCE S	5	0	
T =	5	0	

Drinking Water Threat Target Populations

Int ake Name	Primary (y/n)	Water Body	Type/Flow	Population Served	Ref.	Value
None				+		
•••••	Ì			*		
				*		
•••••	<u>i</u> i					
*** Note : M	Tot	tal Primary 1 tal Secondary	/ Tarmet Do	milation Val	ue	0 0

portionment	Documentat	ion for a f	Blended Syst	em	

Human Food Chain Threat Targets

TARGETS	Suspected Release	No Suspected Release	References
 Determine the water body type and flow for each fishery within the target limit. 			
9. PRIMARY FISHERIES	300	*	
10. SECONDARY FISHERIES	0	0	
Τ =	300	0	

Human Fo**od** Chain Threat Targets

Fis he ry Name	Primary (y/n)	Water Body	Type/Flow	Ref.	Value
1 COTTON CREEK	Y 1	primary	fishery	1	30 0
2 DATKA CREEK	Y	primary	fishery	1	30 0
None					,
			*)
	<u> </u>) · ·
					·
*** Note : Maximum of	Total	Primary Fis Secondary F	isheries V	ue alue	300 0

Environmental Threat Targets

TARGETS	Suspected Release	No Suspected Release	Ref erences
 Determine the water body type and flow (if applicable) for each sensitive environment. 			
12. PRIMARY SENSITIVE ENVIRONMENTS	0		
13. SECONDARY SENSITIVE ENVIRONS.	0	0	
T =	0	0	

Environmental Threat Targets

Semsitive Environment Name	Primary (y/n)	Water Body Type/Flow	Ref.	Value
1 REGULATED WETLAND WY-13	N	<10 cfs	1	0
2 REGULATED WETLAND WY-12	N	<10 cfs	1	0
3 REGULATED WETLAND WY-15	N	<10 cfs	1	0
No ne				
***************************************		,		
		,		
Total Primary Sensitive (Total Secondary Sensitive *** Note: Maximum of 6 Sensit	e foviror	Weste Value		0

Page: 15

Surface Water Pathway Threat Scores

Thre at	Likelihood of Release(LR) Score		Pathway Waste (Characteristics) (WC) Score	LR x T x WC
Drinking Water	550	5	32	1
Human Food Chain	550	300	32	64
Envi ronmenta l	550	0	32	0

SURFACE WATER PATHWAY SCORE: | 65

Soil Exposure Pathway Criteria List Resident Population s any residence, school, or daycare facility on or within 200 feet of an area of suspected contamination? (y/n/u) s any residence, school, or daycare facility located on adjacent land previously owned or leased by the site owner/operator? (y/n/u) s there a migration route that might spread hazardous substances near residences, schools, or daycare facilities? (y/n/u) ave onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u) pes any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N RESIDENT POPULATION IDENTIFIED? (y/n) marrize the rationale for Resident Population:				
s any residence, school, or daycare facility on or within 200 feet of an area of suspected contamination? (y/n/u) is any residence, school, or daycare facility located on adjacent land previously owned or leased by the site owner/operator? (y/n/u) is there a migration route that might spread hazardous substances near residences, schools, or daycare facilities? (y/n/u) are onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u) ones any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N RESIDENT POPULATION IDENTIFIED? (y/n)		Soil Exposure Pathwa Resident Popu	y Criteria List Nation	
s any residence, school, or daycare facility located on adjacent land previously owned or leased by the site owner/operator? (y/n/u) is there a migration route that might spread hazardous substances near residences, schools, or daycare facilities? (y/n/u) ave onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u) ones any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N				• • • • •
s there a migration route that might spread hazardous substances near residences, schools, or daycare facilities? (y/n/u) ave onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u) oes any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N	within 200 fee	, school, or daycare t of an area of suspe	facility on or ected contamination? (y/n/u)	
substances near residences, schools, or daycare facilities? (y/n/u) ave onsite or adjacent residents or students reported adverse health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u) bes any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N RESIDENT POPULATION IDENTIFIED? (y/n)	s any residence la nd previous!	, school, or daycare y owned or leased by	facility located on adjacent the site owner/operator? (y/n/u)
health effects, exclusive of apparent drinking water or air contamination problems? (y/n/u) pes any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N RESIDENT POPULATION IDENTIFIED? (y/n)	s there a migra substances nea	tion route that might r residences, schools	spread hazardous , or daycare facilities? (y/n/u)
pes any neighboring property warrant sampling? (y/n/u) ther criteria? (y/n) N RESIDENT POPULATION IDENTIFIED? (y/n)	lave o nsite or a	djacent reside <mark>nts</mark> or . exclusive of appare	Students renorted solveres	
ther criteria? (y/n) N RESIDENT POPULATION IDENTIFIED? (y/n)				
RESIDENT POPULATION IDENTIFIED? (y/n)	Toes willy helying	ring property warrant	: sampting? (y/n/u)	
·	ther criteria?	(y/n) N		
·				• • • • •
marize the rationale for Resident Population:		RESIDENT	POPULATION IDENTIFIED? (Y/h)	

Page: 17

SOIL EXPOSURE PATHWAY SCORESHEETS

SOLE EN OSBRE PAI	HEAT SCUKESHEET	3		
athway Ch aracteristics				Ref.
Do any people live on or within of areas of suspected contami	200 44		No	1
Do any people attend school or of areas of suspected contami	da <mark>ycare on or w</mark> nation? (y/n)	ithin 200 ft	No	1
Is the facility active? (y/n):	•••••		No	1
·····			•	
LIKELIHOOD OF EXPOSURE	Suspected Contamination	References		
1. SUSPECTED CONTAMINATION LE =	550			
rgets				
2. RESIDENT POPULATION 0 resident(s) 0 school/daycare student(s)	0	1		
3. RESIDENT INDIVIDUAL	0			
4. WORKERS Nome	0	1		
5. TERRES. SENSITIVE ENVIRONMENTS	0			
6. RE SO URCES	5			
T =	5			
STE CHARACTERISTICS	••••••			
	32			
SIDENT POPULATION THREAT SCORE:	1 1			
ARBY POPULATION THREAT SCORE:	1 1			
Population Within 1 Mile: 1 - 10,	000			
IL EXP OS URE PATHWAY SCORE:	2			
•				

Page: 18

Soil Exposure Pathway Terrestrial Sensitive Environments

	sensitive	Environmen	t Name	!	Reference	Value
ne.				ı		
				i		i
				i		i
				1		1
				ı		i
						<i>∔</i>
						*
	ne	ne	ne	ne	ne	

1

. B

Air Pathway Criteria List Suspected Release	
Are odors currently reported? (y/n/u)	U
Has release of a hazardous substance to the air been directly observed? (y/n/u)	×
Are there reports of adverse health effects (e.g., headaches, nausea, dizziness) potentially resulting from migration of hazardous substances through the air? (y/n/u)	U
Does analytical/circumstantial evidence suggest release to mir? (y/n/u)	N
Other criteria? (y/n) N	•••
SUSPECTED RELEASE? (y/n)	N
Summarize the rationale for Suspected Release:	

AIR PATHWAY SCORESHEETS

Do you suspect a release? (y/n)	No	·	
			'
Distance to the nearest individ	ual (feet):	0	
LIKELIHOOD OF RELEASE	Suspected Release	No Suspected Release	References
1. SUSPECTED RELEASE	0		••••••
2. NO SUSPECTED RELEASE		500	
LR =	0	500	
rgets	• • • • • • • • • • • • • • • • • • • •		
TARGETS	Suspected Release	No Suspected Release	References
3. PRIMARY TARGET POPULATION 0 person(s)	0		•••••••
4. SECONDARY TARGET POPULATION	0	6	
5. NEAREST INDIVIDUAL	0	20	
6. PRIMARY SENSITIVE ENVIRONS.	0		
7. SECONDARY SENSITIVE ENVIRONS.	0	0	
8. RESOURCES	0	5	
T =	0	31	
STE CHARACTERISTICS			
WC =	0	32	
R PATHWAY SCORE:			

Distance Categories	Population	References	Value
Onsite	0	1 1	0
Great er than 0 to 1/4 mile	9	1 1	1
Great er than 1/4 to 1/2 mile	36	1 1	1
Great er tha n 1/2 to 1 mile	137	1 1	1
Great er than 1 to 2 miles	735	1 1	1
Greater than 2 to 3 miles	2000	1 1	1
Greater than 3 to 4 miles	3281	1 1	1

Air Pathway Primary Sensitive Environments

Sensitive Environment Nam	9	Reference	Value
No ne			

••••••••••	4		* -
	***************************************		*
	• • • • • • • • • • • • • • • • • • • •		*
Pathway Secondary Sensitiv	e Environments	rinted***	
Pathway Secondary Sensitiv	Sitive Environments Are P	ents Value rinted***	Value
Pathway Secondary Sensitiv	Sitive Environments Are P	rinted***	Value
Pathway Secondary Sensitiv	Sitive Environments Are P	rinted***	Value
Pathway Secondary Sensitiv Sensitive Environment Nam	Sitive Environments Are P	rinted***	Value
Pathway Secondary Sensitiv Sensitive Environment Nam None	e Environments Are F	rinted***	Value
Pathway Secondary Sensitiv Sensitive Environment Nam None	e Environments Are F	rinted***	Value
Pathway Secondary Sensitiv Sensitive Environment Nam None	e Environments Are F	rinted***	Value

·	
SITE SCORE CALCULATION	SCORE
GROUND WATER PATHWAY SCORE:	15
SURFACE WATER PATHWAY SCORE:	65
SOIL EXPOSURE PATHWAY SCORE:	2
AIR PATHWAY SCORE:	6
SITE SCORE:	33

SUMMARY

1.	Is there a high possibility of a threat to any nearby drinking water well(s) by migration of a hazardous substance in ground water?	r No
	If ye s, identify the well(s).	
	If was how many popular and popular by the share and seemed by	
	If yes, how many people are served by the threatened well(s)? 0	i
2.	Is there a high possibility of a threat to any of the following by hazardous substance migration in surface water? A. Drinking water intake	
	8. Fishery	No No
	C. Sensitive environment (wetland, critical habitat, others)	No
	If yes, identity the target(s).	
3.	Is there a high possibility of an area of surficial contamination within 200 feet of any residence, school, or daycare facility?	No
	If yes, identify the properties and estimate the associated populat	ion(s)
4.	Are there public health concerns at this site	
	that are not addressed by PA scoring considerations?	No
	If yes , explain:	
	•••••	

Page: 25

REFERENCE LIST

 ES, 1993. PRELIMINARY SITE ASSESSMENT REPORT - ETE SANITATION AND LAN DFILL SITE, ENGINEERING-SCIENCE, INC., LIVERPOOL, NEW YORK (DATE OCTOB ER 1993). APPENDIX C

GEOLOGIC DATA

					ENGINEERING-SCIENCE	· · · · · · · · · · · · · · · · · · ·	
Co	Contractor: SJB Services, Inc.			DRILLING RECORD	BORING NO. B-1D		
	Driller:	Randy Steiner					
1	Inspector: N.A. Smith			PROJECT NAME: ETE Sanitation	Sheet of		
Rig Type	Method:	CME-5	50 / 6.25*1	HSA	PROJECT NUMBER: SY327.05	Location: West of landfill	
						Plot Plan	
ļ		TER OBS	ERVATIC	ONS		POND N 1	
WATER LEVEL					Weather Foggy, 35-40 degrees	MW-1S ♦ ETE	
DATE	-				D	B-ID ♦ LANDPILL	
TIME			 	<u> </u>	Date/Time Start <u>March 25, 1993 / 0950</u>	POND	
					Date/Time Finish April 1, 1993 / 1600		
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC	
Reading	1.D.	Depth	Recovery		TIDES ISSUITE ATTOR OF MATERIAL	WELL SCHEMATIC	
	_						
		0	T	SS			
2.6			75	2	Brown fine SAND, little silt (moist		
	-	1	i	5	Brown fine to medium SAND (moist	→ \$ <i>~~~~~~~~</i>	
				4		Bentonite	
		2		3	(wet at 2 feet)	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
2.9			100	3		0-46 feet	
		3		5			
				5	Brown fine to medium SAND and fine sand, some silt, layered	ne norst neeme	
	24	4	1	5	layers range from $1/4^{\circ} - 1^{\circ}$ in thickness (moist—wet)	-+ +:-/ ///////////////////////////////////	
3.3	<u>S1</u>		100	2	Brown-gray SILT, some clay, trace fine sand (moist-wet)	1 200	
	S1 S1	5	<u> </u>	2			
	S1	6		2	i • I		
4.4	S1		87.5	2			
· · · · ·	S1	7	- 07.5	.3	Brown-gray SILT, some fine sand, trace ctay and brown fine-		
	S1	 :	_	7	medium SAND, layered $1/4^n - 1/2^n$ in thickness (moist)	(:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	S1	8		11	(moist		
4.6	S1		87.5	3	•		
	S1	9		4	Gray fine SAND and SILT, trace clay and rock fragments (moist		
	S1			8	, , , , , , , , , , , , , , , , , , , ,		
	S1	10		8			
3.1	G S	-	75	2	Gray fine SAND, some silt, orange mottling (wet)	7.54.6403	
 	G S	11	ļ	2	•		
	G S	-12		2			
3.2	G S G S	_12	87.5	3			
3.2	G S	13	07.3	3	•		
	G S	1.3	-				
	G S	14		5			
2.7			75		<u>.</u> 		
		15	-	3			
			_	1	∢ i		
		16		6			
3.0			62.5	5			
STANT							

STANDARD PENETRATION TEST

Summary: 0-4' Sand; 4-8.5' Silt; 8.5-36.5' Sand; 36.5-38.5' Sand and Gravet; 38.5-42.5' Sand; 42.5-44.5' Clay; 44.5-50' Sand; 50-52' Silt; 52-55.5' Sand; 55.5-64.5' Silt; 64.5-77' Sand; 77-84' Silt

SS = SPLIT SPOONA = AUGER CUTTINGS

C = CORED

		-			ENGINEERING-SCIENCE		
Co	ntractor:	SJ B S erv	ices, Inc.		DRILLING RECORD		BORING NO. B-1D
	Driller: Randy Steiner			DAIDANG RECORD	• • • • • • • • • • • • • • • • • • • •	DORING NO. D 1D	
]		N.A. Sm			PROJECT NAME: ETE Sanitation		Sheet of
		CME-5.		HSA	PROJECT NUMBER: SY327.05		Location: West of landfill
5 7,					THE SECTION SERVICES		Plot Plan
GRC	DUNDWA	TER OBS	ERVATIO	ONS -			POND N
WATER					Weather Foggy, 35-40 degrees		<u> </u>
LEVEL DATE			<u> </u>		5071 8		MW-1S ♦ ETE
TIME			 		Date/Time Start <u>March 25, 1993</u> / 0950		B-ID ♦ LANDFILL
							PONE
					Date/Time Finish April 1, 1993 / 1600		BROUGHTON ROAL
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		WELL SCHEMATIC
Reading	I.D.	Depth	Recovery				<u> </u>
		17	-	5	Gray fine SAND, some silt with fine-medium sand seam	,	
	<u> </u>	10		7	thick) at 16.5 feet and 17 feet	(wet)	e Cement/
- 00		18	25	8			Bentonite
0.9		-	25	4	Gray fine to medium SAND, some angular rock fragments		If all the settle Grout
		19		4	little silt	(wet)	0-46 (cet
		30		12			-
2.6		2 0	- 50	27			
2.0			50	14	Greenish-gray medium-coarse SAND and	(wet)	100100000000000000000000000000000000000
_		2 1	 	10	sandstone fragments from pebbles to boulders		
	-			9			
- 2.1		22		10			
3.1			25	16	4		
	·	2 3	-	50			
				25	<u> </u>		
		24		15	-		
		35		A	_		-
5.4		2 5	50	A			
3.4		26	50	27	<u> </u>		
				29			
_		2 7		16	-		
3.6		27	50	13 25	-		
		28	30	35			
	u			27	<u>-</u>		
		29		19	: - -		
				A	<u> </u>		
		30		$\frac{\Delta}{A}$	<u>.</u>		
1.4			50	16	Gray medium SAND and sandstone fragments	(
	-	31	.,,0	19	oray medium SAND and sandstone tragments	(wet)	
	-			31			
		32		24	∤ 		
3.0	-		62.5	33	Gray fine-medium SAND and rock fragments trace sit	(wet)	
	-	3 3		89		(wer)	
				31	Gray fine SAND, some silt, trace pebbles	(moist)	
		34		28	j j mile of true, some sitt, trace peoples	(moist)	
	-			$\frac{25}{A}$			
		35		— <u>; </u>	∤		
7.4			62.5	24	Gray fine SAND, some pebbles, trace silt (mois	t-wet)	
	-	36	-	23	, , , , at 1 2, some peoples, trace sin (mois	· well	
	-				1		
							<u> </u>
STAND	ADDD	The Property	ATTON	~~~	Cummonus 0 4154 4 051511 05 05 05		

SS = SPLIT SPOON

A = AUGER CUTTINGS

C = CORED

Summary: 0-4' Sand; 4-8.5' Silt; 8.5-36.5' Sand; 36.5-38.5' Sand and Gravel; 38.5-42.5' Sand; 42.5-44.5' Clay; 44.5-50' Sand; 50-52' Silt; 52-55.5' Sand; 55.5-64.5' Silt; 64.5-77' Sand; 77-84' Silt

				_	ENGINEERING-SCIENCE	1
Co	ntractor:	SJ B Serv	ices, Inc.		DRILLING RECORD	BORING NO. B-1D
I	Driller:	er: Randy Steiner				
I		or: N.A. Smith			PROJECT NAME: ETE Sanitation	Sheet of
Rig Type/	Method:	CME-5	50 / 6.25*	HSA	PROJECT NUMBER: SY327.05	Location: West of landfill
<u> </u>						Plot Plan
GRC	UNDWA	TER OBS	ERVATIO	ONS_		POND N
WATER			1		Weather Foggy, 35-40 degrees	
DATE DATE	· · · -	 	 			MW-IS ♦ ETE
TIME					Date/Time Start March 25, 1993 / 0950	B-1D ♦ LANDFILL
 		<u> </u>	L	<u> </u>	Date/Time Finish April 1, 1993 / 1600	POND
					200,11001140111,1999,1000	BROUGHTON ROAL
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC
Reading	1.D,	Depth 37	Recovery	33	Crow garage CAND and fine modium CRAVEY	
2.7		3/	100	36	Gray coarse SAND and fine-medium GRAVEL (wet	
2-1		38	100	26		Ce ment/
-		30	-	21		Bentomite
		3 9	<u> </u>	40	Gray medium SAND and PEBBLES (wet	Grout
		3/		A	Gray medium SAND and PEBBLES (wet	0-46 feet
-	<u>-</u>	40	- -	A		
2.4			37.5	21	Gray fine-medium SAND and cobble fragments (wet	
	···	41	-	17	(Wet	']
				16		
		42	 	24		
2.3		† 	62.5	21		
		43	i	23	Gray CLAY, some silt and pebbles (moist	11
				98	(12010	'
		44		24		
				A		
		45		_ A	Gray fine SAND, some silt, fittle pebbles (moist)
0.0			37.5	11		
		4 6		22		
		ļ <u></u>	<u> </u>	2.7		xxxxxxxxx
		47	<u>!</u>	23	(moist – wet	XXXXXXXXX Borebole
0.0			62.5	22		XXXXXXXXXX Collapse
<u> </u>	· · · · · · · · · · · · · · · · · · ·	4 8	 -	24		XXXXXXXXX 46-69 lea
		40	ļ	22		xxxxxxxxx
		4 9	-	25		XXXXXXXXX
		5 0	 			XXXXXXXXX
0.0		.	62.5	A	Capa SII T linta Garage	XXXXXXXXX
0.0		51	02.3	11	Gray SILT, little fine sand and pebbles (moist	·
				12		XXXXXXXXX
		52	 	13		XXXXXXXXX
0.0			75	12	Gray fine-medium SAND, some silt and rounded pebbles (wet	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
		5 3	i	13	,, meaning of the parties and rounded popules (wer	XXXXXXXXXX
				21		XXXXXXXXX
		5 4		17		xxxxxxxxx
				А		xxxxxxxxx
		5 5		Λ		xxxxxxxxx
0.0			75	9		xxxxxxxxx
		5 6		12	Gray SILT, little fine sand and pebbles (moist-wet)	xxxxxxxxx
-			<u></u>	14		xxxxxxxxx

STANDARD PENETRATION TEST

SS = SPLIT SPOONA = AUGER CUTTINGS Summary: 0-4' Sand; 4-8.5' Silt; 8.5-36.5' Sand; 36.5-38.5' Sand and Gravel; 38.5-42.5' Sand; 42.5-44.5' Clay; 44.5-50' Sand; 50-52' Silt; 52-55.5' Sand; 55.5-64.5' Silt; 64.5-77' Sand; 77-84' Silt

C = CORED

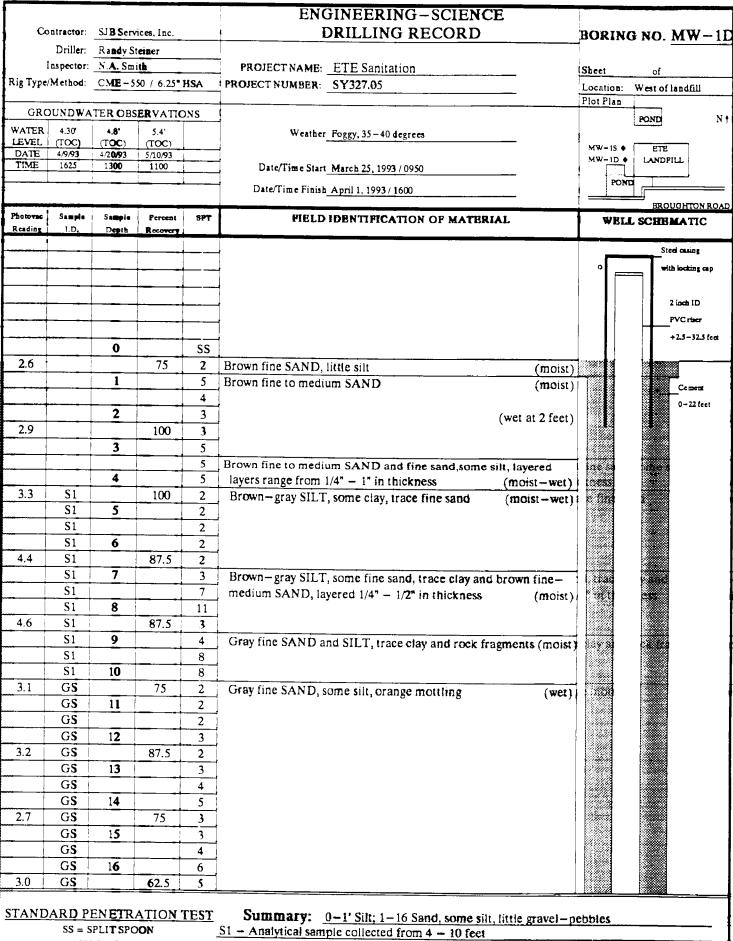
ENGINEERING-SCIENCE									
Cor	ntractor:	SJB Services, Inc.			DRILLING RECORD	BORING NO. $B-1D$			
I	Driller: Randy Steiner				į				
		N.A. Smi				Sheet of			
Rig Type/	Method:	CME-55	50 / 6.25*1	HSA_	PROJECT NUMBER: SY327.05	Location: West of landfill			
GRC	W NINDW≱	ATER OBS	EDVATI(788	1	Plot Plan			
WATER	UITE	TERCE	ERVA)NS	Wk E 25 40 4	POND N †			
LEVEL		1			Weather Foggy, 35-40 degrees	MW-1S ♦ ETE			
DATE TIME				Ε-	1 December 2011 10 100 100 100 100 100 100 100 100	B1D ♦ LANDFILL			
111711					Date/Time Start <u>March 25, 1993 / 0950</u>	POND			
					Date/Time Finish April 1, 1993 / 1600	BROUGHTON ROAD			
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC			
Reading	I.D.	Depth 57	Recovery		Constitution and and rabbins (major mat)				
0.0		3/	50	14	Gray SILT, little fine sand and pebbles (moist—wet)	-			
0.0		5 8	50	15	Gray SILT, little pebbles (moist-wet)				
 +		30	 -	25	- '	XXXXXXXXX Collapse			
		5 9		19	- '	XXXXXXXXX 46-69 feet			
 		3>	 	18 A	-	XXXXXXXXX			
 		60	 -	A	 	XXXXXXXXX			
0.0		<u> </u>	50	12	(wet)	XXXXXXXXX			
0.0		61	30	7	Gray SILT some clay trace nabbles (wet)	-			
 		<u> </u>	 -	8	Gray SILT, some clay, trace pebbles (wet) Gray SILT, trace pebbles (wet)	-			
 		6 2		10	Gray SILT, trace pebbles (wet)				
0.0		02	62.5	11	Gray SILT, some clay, trace pebbles (moist)	XXXXXXXXX			
		63	1 04.5	17	Gray SILT, some clay, trace pebbles (moist)	1			
+		U	-	25	1	XXXXXXXXX			
		64	 	41		XXXXXXXXX			
[A	†	XXXXXXXXX			
<u></u>		6 5		A	Gray SILT and fine SAND, little fine gravel - pebbles	XXXXXXXXXX			
0.0			75	10	(moist—wet)				
		6 6	-	17	· · · · · · · · · · · · · · · · · · ·	XXXXXXXXX			
				13	†	XXXXXXXXX			
	-	6 7		19	†	XXXXXXXXX			
0.0			50	19	Gray fine-medium SAND, some silt and fine gravel-pebbles	XXXXXXXXX			
		6 8		21	(wet)				
		<u> </u>		20		XXXXXXXXX			
		6 9		18	Gray fine SAND, some silt, trace rounded fine gravel (wet)	- †			
				Λ	, , , , , , , , , , , , , , , , , , , ,	Sand pack			
		7 0		Α	i	from attempted			
0.0		7	50	5	Gray fine-medium SAND, some silt and fine gravel-pebbles,	well installation			
		7 1		8	trace clay (wet)				
		'		13					
		7 2		17					
0.0		1	62.5	12					
		7 3		24	Gray fine-medium SAND, some peobles, tittle silt (moist-wet)	· ·			
		<u> </u>		24					
	 _	74		24		:::::::::::::::::::::::::::::::::::::::			
		<u> </u>		A					
		7 5		Α					
12.8		<u> </u>	75	5	<u> </u>				
		<u>76</u>	<u> </u>	7	<u>'</u>				
		<u> </u>		10					
			_						

STANDARD PENETRATION TEST

SS = SPLIT SPOON

A = AUGER CUTTINGS

C = CORED


Summary: 0-4' Sand; 4-8.5' Silt; 8.5-36.5' Sand; 36.5-38.5' Sand and Gravet; 38.5-42.5' Sand; 42.5-44.5' Clay; 44.5-50' Sand; 50-52' Silt; 52-55.5' Sand; 55.5-64.5' Silt; 64.5-77' Sand; 77-84' Silt

		•			ENGINEERING-SCIENCE	
Co	atractor:	SJB Serv	ices, Inc.		DRILLING RECORD	BORING NO. B-1D
Ī	Driller:	Randy St	c iner			1
I	Inspector:	N.A. Smi			PROJECTNAME: ETE Sanitation	Sheet of
Rig Type/	Method:	CME-5	50 / 6.25*	HSA	PROJECT NUMBER: SY327.05	Location: West of landfill
!						Plot Plan
GRC	DUNDWA	TER OBS	ERVATIO	ONS		POND N
WATER					Weather Foggy, 35-40 degrees	
LEVEL DATE	-	—	<u> </u>	-		MW-1S ♦ ETE
TIME					Date/Time Start March 25, 1993 / 0950	B-1D ♦ LANDFILL
<u> </u>		L <u> </u>	<u> </u>	<u> </u>	Date/Time Finish April 1, 1993 / 1600	POND
					5416 Time Time April 1, 1993 (1000	BROUGHTON ROAD
Photovec Reading	Sample I.D.	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC
Reduing	1.10.	Depth 77	Recovery	13	Gray fine-medium SAND, some pebbles, little silt (moist-wet)	
20.2		- '	25	19	Gray SILT, some fine sand and pebbles (moist—wet)	- · · · · · · · · · · · · · · · · · · ·
		78		20	water concentrated around pebbles, remainder slightly moist	<u> </u>
			<u>-</u>	30	, water concentrated around peoples, remainder singulty moist	
		79		24		
-	··-·			A		
		80		A		
19.6			62.5	10		::::::
		81		12		
				13		:::::::
		82		14		
6.0			75	16		
		83		16		
				18		:::::::
		84		19		:::::::
					Boring terminated at 84 feet.	
-		85				
		86	-			
		07	-		 	
		87		<u> </u>		
		88				
		89				
		- 67				
		90			 	
						<u> </u>
		91				
		92				
	-					
		93				
		94				
		95				
		96				
STAND	ARDP	ENETR	Δ ΤΤ (ጥሮርጥ	Cummarus O. Al Cond. A. O.S. Silv. O.S. ACCES. A. ACCES.	

Summary: 0-4' Sand; 4-8.5' Silt; 8.5-36.5' Sand; 36.5-38.5' Sand and Gravet; 38.5-42.5' Sand; 42.5-44.5' Clay; 44.5-50' Sand; 50-52' Silt; 52-55.5' Sand; 55.5-64.5' Silt; 64.5-77' Sand; 77-84' Silt

SS = SPLIT SPOONA = AUGER CUTTINGS

C = CORED

A = AUGER CUTTINGS C = CORED

GS - Grain size sample collected from 10-18 feet

			-		ENGINEERING-SCIENCE		
Co	etractor:	SJ B Servi	ices. Inc		DRILLING RECORD	BORING NO. MW-	1 D
		Randy St			DAILLING RECORD	DOKING NO. MW 12	
		N.A. Smi			PROJECT NAME: ETE Sanitation	Sheet of	
•		CME-5		HSA	PROJECT NUMBER: SY327.05	Location: West of landfill	
						Plot Plan	
GRO	DUNDWA	TER OBS	ERVATIO	ONS		POND	N †
WATER		4.8	5.4'	İ	Weather Foggy, 35-40 degrees		
DATE	(TOC) 4/9/93	(T O C) 4/ 20/ 93	(TOC) 5/10/93			MW-1S ♦ ETE MW-1D ♦ LANDFILL	
TIME	1625	1300	1100		Date/Time Start <u>March 25, 1993 / 0950</u>		
!	<u>. </u>	·	<u> </u>		Date/Time Finish April 1, 1993 / 1600	POND	=
 	,					BROUGHTON RC	DAD
Photovac Reading	Sample I.D.	Sample Depth	Percent Recovery	SPT	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC	
	G S	17		5	Gray fine SAND, some silt with fine-medium sand seams (1/2"	(C-90) (D-90)	
	G S			7	thick) at 16.5 feet and 17 feet (wet	\$0.0000000 \$0.00000000	
	G S	18		8	` <u> </u>		
0.9			25	4	Gray fine to medium SAND, some angular rock fragments,		
<u> </u>		19	<u> </u>	4	little silt (wet)	
		-	 _	12			
76	-	2 0		27			
2.6	<u> </u>	21	50	14	Greenish – gray medium – coarse SAND and (wet	^	
		21	 	9	sandstone fragments from pebbles to boulders		
		2 2	 	10			
3.1	<u>-</u>		25	16			
		2 3	i -	50		Dentonite p	neller
				25		•••• 22-27 tea	
		24		15		****	
		<u> </u>	Ļ	A		****	
		2 5	ļ. <u></u>	_ A		••••	
5.4	<u> </u>	36	50	27		••••	
		2 6	-	29 16		••••	
 		2 7	-	13			
3.6	<u> </u>	-	50	25	-	••••	
	-	2 8	i	35			
		 		27			
		2 9		19	1		
				A			
		3 0	<u> </u>	A			
1.4	<u> </u>	3.	50	16	Gray medium SAND and sandstone fragments (wet	100000	
ļi	<u> </u>	31		19		::::::::::::::::::::::::::::::::::::::	
 	 _	3 2	-	31 24		Sand pack	
3.0		32	62.5	33	Gray fine-medium SAND and rock fragments, trace silt (wet	27-42.5 fee	et
1		3 3		89	wet		1
				31	Gray fine SAND, some silt, trace pebbles (moist		
		34		28		2 inch ID	
				Α		PVC screen	3
		3 5		A		0.01 inch sk	ot
7.4		30	62.5	24	Gray fine SAND, some pebbles, trace silt (moist-wet	32.5-42.50	eet !
 		3 6	- -	23			
		<u> </u>	<u> </u>	21			=
STANI	OAR D F	ENETR	ATION	TEST	Summary: 16-36.5' Sand, some silt, little gravel-pebble	••	
t		SPLIT SP	_			-	. !
Ī		GER CUT					
L	C	= COREI)				

í

					ENGINEERING-SCIENCE		· · · · · · · · · · · · · · · · · · ·		
C	ntractor:	SIR Ca-	icae Inc		DRILLING RECORD		BODING NO MIL 1P		
1 ~		SJB Services, Inc. Randy Steiner			DRILLING RECORD		BORING NO. $MW-1D$		
<u> </u>		N.A. Sm			PROJECT NAME: ETE Sanitation		Sheet of		
7		CME-5		HSA	PROJECT NUMBER: SY327.05		Location: West of landfill		
!						Plot Plan			
GRO	DUNDWA	TER OBS	ERVATIO	ONS			POND N+		
WATER		4, 8' (T OC)	5.4'		Weather Foggy, 35-40 degrees				
DATE	4/9/93	4/2 0/9 3	(TOC) 5/10/93		 		MW-1S ♦ ETE MW-1D ♦ LANDFILL		
TIME	1625	1300	1100		Date/Time Start March 25, 1993 / 0950				
	-	 -			Date/Time Finish April 1, 1993 / 1600		POND		
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		BROUGHTON ROAD		
Reading	I.D.	Depth	Recovery	371	FIELD IDENTIFICATION OF MATERIAL		WELL SCHEMATIC		
		37		33	Gray coarse SAND and fine-medium GRAVEL	(wet)	:::::::::::::::::::::::::::::::::::::::		
		-	ļ <u>-</u> -	36			:::::::::::::::::::::::::::::::::::::::		
ļ	 -	38	-	26					
!	·	39	<u> </u>	21	Comment of CAMP DEPOY DE				
		39		40 A	Gray medium SAND and PEBBLES	(wet)			
 		40		A			***************************************		
0.0	-		75	21	Gray fine-medium SAND and cobble fragments	(wet)			
		41		17	oray modula si into ana occor nagmono	(wot)			
				!6					
		42		24					
0.0	S1		62.5	21					
	<u>S1</u>	43		23	Gray CLAY, some silt and pebbles	(moist)			
	S1			98					
	<u>S1</u>	44		24					
				_A	Boring terminated at 44.5 feet	-			
				— —	Doring terminated at 44.5 feet				
				 					
	_								
-			<u>'</u>						
	-			-					
									
-									
		-			†				
-									
			-						
		_		<u> </u>					
		—							
1						İ			
STAND	SS = 1	ENETR SPLIT SPO GER CUT	NOC	TEST	Summary: 36.5-40' Sand and Gravel; 40-42'5	' Sand; 42.5	44.5' Clay		
	C = CORED								

Contractor: SJB Services, Inc. DRILLING RECORD BORING NO. Driller: Randy Steiner Inspector: N.A. Smith PROJECT NAME: ETE Sanitation Sheet of Rig Type/Method: CME - 550 / 4.25" HSA PROJECT NUMBER: SY327.05 Location: West of	
Inspector: N.A. Smith PROJECT NAME: ETE Sanitation Sheet of	landfill
Die Torre Market CIME 550 / 405 PM	landfill
kig typermethod: CME - 300 / 4.25" HSA PROJECT NUMBER: \$4.327.05 [Location: West of	landfill
GROUNDWATER OBSERVATIONS Plot Plan	NT &
WATER 4.30 4.8' 5.4' Weather Cloudy, 35 degrees	Νţ
DATE 4.993 4.999 57093	
DATE 4/9/93 4/20/93 5/10/93 TIME 1625 1300 1100 Date/Time Start March 24, 1993 / 1400	ILL
PONT	
Date/Time Finish March 24, 1993 / 1630	UGHTON ROAD
Photovac Sample Sample Percent SPT FIELD IDENTIFICATION OF MATERIAL WELL SCHE	
Reading 1.D. Depth Recovery	
Ste	ed casing
	th locking cap
 	2 loch ID
├──╃┈┈┼╼┈╁┈┈╃┈ ┤ │┃┃│ ┃ ╂┈	PVC riser
O SS	+2.5-7 feet
26 75 2 Dr. C. CANDON	ep bole
1 5 Dear Grand (moist)	2
Brown fine to medium SAND (moist)	Cement
2 3 (wet at 2 feet)	0-3 feet
2.9 100 3 (wet at 2 feet)	
3 5	
5 Brown fine to medium SAND and fine sand, some silt, layered	
4 5 layers range from 1/4" - 1" in thickness (moist-wet)	Boutonite pelle
3.3 S1 100 2 Brown-gray SILT, some clay, trace fine sand (moist-wet)	3-5 lost
S1 5 2 S1 2	
S1 2 S1 6 2	Sand pack
44 51 875 2	5-17 feet
S1 7 3 Brown - grow SILT some fine and the set that the set th	
c1	
S1 8 11	71 115
4.6 S1 87.5 3	2 inch ID PVC screen
S1 9 4 Gray fine SAND and SILT, trace clay and rock fragments (moist)	O.01 inch sior
<u>S1</u> 8	7 - 17 feet
S1 10 8	
3.1 GS 75 2 Gray fine SAND, some silt, orange mottling (wet)	
'''''-'''' 	
GS 12 3	
3.2 GS 87.5 2	
GS 13 3	
GS	
GS 14 5	
2.7 GS 75 3	
G\$ 15 3	
GS 4	
G\$ 16 6	
3.0 GS 62.5 5	
STANDARD PENETRATION TEST Summary: 0-1' Silt: 1-18 Sand, some silt, little gravel-neibbles	
STANDARD PENETRATION TEST SS = SPLIT SPOON SS = SPLIT SPOON S1 - Analytical sample collected from 4 - 10 feet	
A = AUGER CUTTINGS GS - Grain size sample collected from 10-18 feet	

C = CORED

				-	ENGINEERING-SCIENCE						
C _o	niractor:	or: SJB Services, Inc. er: Randy Steiner tor: N.A. Smith				BORING NO. MW-1S					
ĺ						10. <u>11. 15.</u>					
1					PROJECT NAME: ETE Sanitation	Sheet of					
Rig Type/	Method:	CME-55	50 / 4.25*	HSA	PROJECT NUMBER: SY327.05	Location: West of landfill					
CRC	ATTACKA	TER ORG	TERS/ATTIC			Plot Plan					
WATER	4.30'	TER OBS	5.4'	INS	Wester Olivin and	POND N+					
LEVEL	(TOC)	(TOC)	(TOC)		Weather Cloudy, 35 degrees	MW-1S ♦ ETE					
DATE TIME	4/9/93 1625	4/2 0/9 3 13 00	5/10/93 1100		Date/Time Start <u>March 24, 1993</u> / 1400	MW-ID ♦ LANDPILL					
				\sqsubseteq		POND					
					Date/Time Finish March 24, 1993 / 1630	BROUGHTON ROAD					
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL	WELL SCHEMATIC					
Reading	GS	Depth 17	Recovery	5	Gray fine SAND, some silt with fine-medium sand seams (1/2"						
	G S		-	7	thick) at 16.5 feet and 17 feet (wet)	Well bottom: 17 feet					
	G S	18	-	8	(wet)	Wen bottom: 17 teet					
					Boring terminated at 18 feet.	<u> </u>					
		19		<u></u>							
					•						
		20									
		21	-		•						
	-	22	 								
		23									
			ļ - :	<u> </u>							
		24		<u> </u>							
		25	 								
		-									
		26									
	·		ļ. 	<u> </u>							
		27	-								
		28	-								
			-								
-		29									
		30									
		21		<u> </u>							
		31	-	——		,					
		32		<u> </u>		•					
		-	-								
		33									
		34		<u> </u>	•						
		35	-								
		33		 -							
		36	-								
					_	*					
STANE	STANDARD PENETRATION TEST Summary: 0-1' Silt; 1-16 Sand, some silt, little gravel-pebbles										
		SPLI T S PC GER C UT			S1 - Analytical sample collected from 4 - 10 feet GS - Grain size sample collected from 10-18 feet						
		= COREL			Or man size semble collected from 10 = 19 ICCI						

					ENGINEERING-SCIENCE		1
c	ontractor:	SJ B Serv	rices, Inc.		DRILLING RECORD		BORING NO. MW-2D
ĺ		Randy St			DAILDING RISOND		DORING NO. MIN ZE
]	Inspector:				PROJECT NAME: ETE Sanitation		Sheet of
Rig Type	:/Method:	CME-5	50 / 6.25*	HSA	PROJECT NUMBER: SY327.05	_	Location: West of landfill
İ						_	Plot Plan
GR	DUNDWA	TER OBS	ERVATIO	ONS			PONTO N †
WATER LEVEL	_	11.9	13.0		WeatherCloudy, 50s	_	
DATE	4/9/93	T O C 4/ 20/ 93	5/10/93	 	1		MW-1S ♦ ETE ♦ MW-3S B-1D ♦ LANDFILL ♦ MW-3D
TIME	-	=	1400	<u> </u>	Date/Time StartApril 8, 1993 1615	_	
	<u> </u>		<u></u>		Date/Time FinishApril 9, 1993 1500	_	♦ MW+25: POND ♦ MW+2D
Photovac	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		BROUGHTON ROAD WELL SCHEMATIC
Reading	I.D.	Depth	Recovery		1		
	 	 -	 	 	1		Steel casing
	 	-			1		with locating cap
		 	 				
	 	-	 	 	4		2 inch ID
	 _				-		PVC riser
	 	 			+		+2.5-32 feet
0	 -	0		SS			- Weep bole
	 	1	62.5	1	Brown SILT, little fine sand and pebbles	(sl. moist)	
	-	1	 	2	4		Comens
	 	2	 -	2	4		0-30 feet
0	 		75	2			
	 	3	13	3	as above	(dry)	
	 	3	 -	5	+		
		4		13			
0	-	-	50	4	as above	(maint)	
	 	5		10	J ds above	(moist)	
			 +	4			
	S1	6		2	1		
0	S1		50	2	as above	(wet)	
	S1	7		l	as above, burnt or decomposed wood chips	()	
	S1			2	•		
	S1	8		2			
0	S1		25	2	Brown medium SAND, some fine to medium gravel	(wet)	
	S1	9		1			
ļ	S1			1			
	S1	10	 _	3			
0	S1	11	2.5	2	as above	(wet)	
	S1 S1	11		2			
	S1 S1	12	 +	2			
0	S1 S1	12	12.5	5	as above	(.	
- 0	S1	13	143	5	as above	(wet)	
	S1			4			
	Si	14		5			
0	S1, GS		75	6	Brown SILT, some clay, trace pebbles	(moist)	
	S1, GS			5	as above, gray	(moist)	
	S1, GS			6		(
	S1, GS	16		7			
0	S1, GS		75	6	Gray SILT, little fine sand, trace pebbles, dilatent.	(wet)	
STANI		ENETR SPL IT SPC	ATION'	TEST	Summary: 0-8' Silt; 8-14' Sand; 14-18.5 Silt	t; 18.5–22 in	terlayered Silt and Sand

A = AUGER CUTTINGS C = CORED

S1 - Analytical sample collected from 6 - 22 feet GS - Grain size sample collected from 14-18 feet

l					ENGINEERING-SCIENCE			
Cr	ontractor:	SJ B Serv	rices, Inc.		DRILLING RECORD		BORING NO.	MW -2Γ
		Randy St						
,	Inspector:				PROJECT NAME: ETE Sanitation	į	Sheet of	
Rig Type	/Method:	CME-5	550 / 6.25*1	HSA_	PROJECT NUMBER: SY327.05	_ ,	Location: West of I	landfill
						- ,	Plot Plan	
		TER OBS	SERVATIO	ONS	_		POND	N†
WATER	İ	11.9	13.0		WeatherCloudy, 50s	1		
LEVEL DATE	4/9/93	4/ 20 /93	5/10/93		4	-	MW-1S ♦ ETE	
TIME		-	1400		Date/Time StartApril 8, 1993 1615	1		PILL ♦ MW-3D
	<u> </u>		L		Date/Time FinishApril 9, 1993 1500		MW-25 POND	
	***********				Date 1:110 1:110 2011 7: 1770 1300	-		UGHTON ROAD
Photovac Reading	Sample I.D.	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL	,	WELL SCHE	
Rtauru.	\$1, G S	Depth 17	Recovery	8				
	S1, G S		†	13	1	,		1
<u>-</u>	S1, G S			11	1	,		4
0	S1		87.5	6	Brown SILT, little fine sand, trace peobles	(moist)		4
	S1	19		6	Brown fine to medium SAND, little fine gravel	(wet)	- 	4
	S1			9	Brown SILT, little fine sand, trace pebbles	(moist)	+ k‱mm kmmmm	1
	S1	2 0		17	Brown fine to medium SAND, little fine gravel	(wet)	-† fi::::::::::::::::::::::::::::::::::::	4
0	S1		75	9	Brown SILT, little fine sand, trace pebbles	(sl. moist)	→ f************************************	i
	SI	21		13	Brown fine to medium SAND, little fine gravel	(wet)	T 1000000000000000000000000000000000000	ı
	S1			10	Brown SILT, little fine sand, trace pebbles	(si. moist)	→ f~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1
	S1	22		11	Brown fine to medium SAND, little fine gravet	(wet)		ı
0	<u> </u>	<u> </u>	62.5	11	Brown SILT, little fine sand and cobble frag.	(moist)		ı
<u> </u>		2 3	'	11]	,		i
<u> </u>		 '		15		I		i
<u> </u>	 !	24		16]	1		i
0		 	50	18	Brown-gray SILT, some fine sand, little fine gravel	(moist)		i
<u> </u>		2 5		19	and pebbles, tightly packed			i
 			 	18		1		i
<u> </u>		2 6	المريب الم	13	1	1		i
0		+ '	75	16	as above, gray	(moist)		ı
j		2 7		23	Brown fine SAND, little medium gravel and peoble	(mst-wet)		1
		30	 	23	frag., trace silt	1		ı
	, 	2 8	 	12	1	ļ		i
<i></i>		2 9			4	I		I
N/A	,+	4 7	0	13	-	ļ		i
17/12	,	30		14	no recovery	1		i
	,	_ 	 	11	1	I		ſ
	, —	31	+	13	1			ſ
0	, —	_ _	62.5	9	Gray fine SAND, some silt, little fine gravel-pebbles	(tau_ town)		i
		32		10	Gray SILT, little clay and pebbles	(mst-wet)		i
		,		13	Total one i, mine oray and poolies	(moise)		i
		3 3		14	1			ı
					†			1
		34			1			Bentonite pellet
0		ı	62.5	6	as above	(moist)	1 0000	30-35.5 feet
		3 5		12		·	1	
		!		16	Gray SILT and fine SAND, little pebbles	(moist)	1 10000	1
		3 6		17		`		
0		·	75	19	Gray SILT, little sand and pebbles, trace clay	(mst-wet)		. <u></u> _
STANL	ノAKUY	ENEIR	RATION'	TEST	Summary: 0-8' Silt; 8-14' Sand; 14-18.5 Silt	t. 18 5-22 in	terlavered Silt ar	d Sand

SS = SPLIT SPOONA = AUGER CUTTINGS 22-26.5' Silt: 26.5-31.5' Sand; 31.5-35' Silt; 35-36' Silt and Sand; 36-37 Silt S1 - Analytical sample collected from 6 - 22 feet GS - Grain size sample collected from 14-18 feet

C = CORED

					ENGINEERING-SCIENCE		1
Co	airector:	SJ B Servi	ices Inc		DRILLING RECORD		BORING NO. MW-2D
~	Driller:	Randy St		*	DRILLING RECORD		BORING NO. MW-2D
I		N.A. Smi			Sheet of		
		CME-55		HSA	PROJECT NAME: ETE Sanitation PROJECT NUMBER: SY327.05	-	Location: West of landfill
				1100	TROBET HOMBER. 31321.05	-	Plot Plan
GRC	UNDWA	TER OBS	ERVATIO	ONS			POND N †
WATER		11.9	13.0	ļ .	WeatherCloudy, 50s		
LEVEL	-	TO C	тос			-	MW-1S ♦ ETE ♦ MW-3S
DATE TIME	4/9/93	4/20/93	5/10/93 1400	<u></u>	Date/Time StartApril 8, 1993 1615		B-1D ◆ LANDFILL ◆ MW-3D
					· · · · · · · · · · · · · · · · · · ·	=	♦ MW 28 POND
					Date/Time FinishApril 9, 1993 1500	-	♦ MW+2D BROUGHTON ROAD
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		WELL SCHEMATIC
Reading	I.D₄	Depth	Recovery				
		37		20			later a little and
				21	Gray fine-medium SAND, some silt	(mst-wet)	
		38		21	Gray SILT, little fine sand - pebbles, trace clay	(mst-wet)	
				<u> </u>			
		39					2 inch ID
0			25	6	Gray fine SAND, some silt	(wet)	PVC screen
		40		7			0.01 inch slot
				9			37.5-47.5 feat
		41	_	11			
0			37.5	13	Gray fine - medium SAND, trace pebbles - cobbles	(wet)	
		42		14			Thomas
				15			
		43		20			
				<u> </u>			New Property
-		44	(0.5	<u> </u>			
0		45	62.5	5	Gray fine-medium SAND and SILT, little pebbles	(mst-wet)	
		45		10			
		46		13			\$65.00 C
0		40	75	12 7	a ab		Sand pack
-		47	- /3	16	as above	(mst-wet)	35.5-47.5 fca
				14	Gray SILT, little fine sand and pebbles, trace clay	(sl. moist)	
		48		20			
-				20			W-11 47.5.5
		49					Well bottom: 47.5 feet
		5 0					
		5 1					
		52					
		5 3					
		54					
	<u>-</u> _	5 5					
-		5 6					

STANDARD PENETRATION TEST

SS = SPLIT SPOON

A = AUGER CUTTINGS C = CORED

Summary: 0-8' Silt; 8-14' Sand; 14-18.5 Silt; 18.5-22 interlayered Silt and Sand 22-26.5' Silt: 26.5-31.5' Sand; 31.5-35' Silt; 35-36' Silt and Sand; 36-37 Silt; 37-37.5' Sand; 37.5-39' Silt; 39-44' Sand; 44-46.5' Sand and Silt; 46.5-48' Silt

			-	· -	ENGINEERING-SCIENCE	 ,		
0	ontractor:	SJ B Serv	ices, Inc.		DRILLING RECORD		BORIN	д но. <u>MW−2</u>S
ļ		Randy St						
	Inspector:				PROJECT NAME: ETE Sanitation		Sheet	of
Rig Type	/Method:	CME-5	50 / 4.25*	HSA	PROJECT NUMBER: SY327.05	_	Location:	West of landfill
GR	OUNDWA	TER ORS	ED VATE	ONS			Plot Plan	
WATER		11.8	12.1	7.43	Washar Francis (O.			POND N
LEVEL	(TOC)	(T O C)	(TOC)		Weather Sunny, 60s	-	MW-15 ◆	ETE ♦ MW-3S
DATE	4/9/93 1525	4/ 20/ 93	5/10/93 1400	 	Date/Time Start April 8, 1993 / 1310		MW-1D ♦	LANDFILL • MW-3D
						_	♦ MW+25	РОИД
Ī					Date/Time Finish April 8, 1993 / 1550	_	● WW+3D	BROUGHTON ROAL
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		WEL	L SCHEMATIC
Reading	I.D.	Depth	Recovery	-		···	<u> </u>	
 	· -		 	 	+			Steel casing
	 		-	 			" _	with looking cap
	-		 	 	1			
			-	 				2 inch ID
	<u> </u>				 			PVC riser +2.5 - 7.5 feet
	 	0	 	SS	-			
0		-	62.5	1	Brown SILT, little fine sand and pebbles	(sl. moist)		-Weep hole
		1		2	,	(Ce ment
				2	<u></u>			0-3.5 feet
		2		2				
0	ļ	_	75	3	as above	(dry)		
	-	3		5	_			
			-	17			••••	••••
0		4	50	13		4	••••	●●● Bentonite pelle
 	 	5	50	10	as above	(moist)	••••	● ● ● ■ 3.5 – 5.5 (ect
 				4			••••	
<u> </u>	S1	6		2				Sand pack
0	S1		50	2	as above	(wet)		::::::::
	S1	7		Ī	as above, burnt or decomposed wood chips	,		
	S1			2				
ļ <u>.</u>	S1	8	<u> </u>	2			<u> </u>	2 inch ID
0	S1		25	2	Brown medium SAND, some fine to medium gravel	(wet)		PVC screen
	S1 S1	9		1	-			0.01 trach slot
·	S1	10		3	•			7.5-17.5 feet
0	S1		25	2	as above	(wet)	_	
	S1	1 1		2		(wet)	_	
	S1			2	1			
	S1	12		4				
0	S1		12.5	.5	as above	(wet)		
ļ	S1	13	<u> </u>	5	-			_:::=::=
}	S1 S1	14		4	1		::::::::	
0	S1, GS	14	75	6	Proven SILT come along trace maketer	/!		
	\$1, GS		- '3 -	5	Brown SILT, some clay, trace pebbles as above, gray	(moist)		
	S1, GS		<u> </u>	6	j do doore, gi ay	(moist)		
1	S1, GS			7				
0	S1, GS		75	6	Gray SILT, little fine sand, trace pebbles, dilatant	(wet)		
STAN	DARD P	ENETR		TEST				
ł		GER CUT			S1 - Analytical sample collected from 6 - 22 feet	 		
		= COREI			GS - Grain size sample collected from 14-18 feet		·	

					ENGINEERING-SCIENCE		
C	Contractor: SJB Services, Inc. Driller: Randy Steiner Inspector: N.A. Smith			DRILLING RECORD		BORING NO. $MW-2S$	
r .					PROJECT NAME: ETE Sanitation	=	Sheet of
Rig Type	:/Method:	CME-5	50 / 4.25*	HSA_	PROJECT NUMBER: SY327.05	_	Location: West of landfill
GRO	DUNDWA	TER ORS	FRVATIO				Plot Plan
WATER		11.8	12.1'	-	Washare		POND N
LEVEL	(TOC)	(T O C)	(TOC)		WeatherSunny, 60s	-	MW-1S ♦ ETE ♦ MW-3S
DATE	4/9/9 3 152 5	4/20/93	5/10/93	+	Date/Time Start April 8, 1993 / 1310		MW-1D ♦ LANDFILL ♦ MW-3D
						-	♦ MW-2S POND
					Date/Time Finish April 8, 1993 / 1550	-	₱ MW+2D BROUGHTON ROAL
Photovac	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		WELL SCHEMATIC
Reading	1.D.	Depth	Recovery				
	S1, GS		 	8			
···-	S1, GS		-	13			::::::::::::::::::::::::::::::::::::::
-	S1, GS	18	07.5	11	D CTT TO USE OF		17.5 feet
0	S1 S1	19	87.5	6	Brown SILT, little fine sand, trace pebbles	(moist)	*******
	S1	19	-	9	Brown fine to medium SAND, little fine gravel	(wet)	=======
	SI	20	 	17	Brown SILT, little fine sand, trace peobles	(moist)	
0	SI		75	9	Brown fine to medium SAND, little fine gravel Brown SILT, little fine sand, trace peobles	(wet)	
	Si	21	75	13	Brown fine to medium SAND, little fine gravel	(st. moist)	
	S1			10	Brown SILT, little fine sand, trace pebbles	(st. moist)	
	S1	22	 	11	Brown fine to medium SAND, little fine gravel	(wet)	
			 	 -	Boring terminated at 17.5 feet.	(wci)	<u>::::::::</u>
•			 		John Stormmand at 17.5 teet.		
				<u> </u>			
			<u> </u>	<u> </u>			
			ļ	<u> </u>			
		 _					
	<u> </u>		 	<u> </u>			
	-			 			
	-		-	 -			
	ļ			 			
					+		
							
		-		 -			
		-					
							
	-			 	†		
	-				†		
			_	<u> </u>			
				<u> </u>			
CT A NII	יי מעט אר	ENTERN	ATTOR	dili va	S		
SIANI	DARD P			1 EST	Summary: 0-8' Silt; 8-14' Sand; 14-18.5 Silt	; 18.5–22 in	terlayered Silt and Sand
		SPL IT SPO GE R C UT			S1 - Analytical sample collected from 6 00 feet		
		= C O REI			S1 - Analytical sample collected from 6 - 22 feet GS - Grain size sample collected from 14-18 feet		

į

					ENGINEERING-SCIENCE		
Co	ontractor:	SJB Serv	ices. Inc.		DRILLING RECORD		BORING NO. BW-2SA
		Randy St					
	-	N.A. Smi		UEA	PROJECT NAME: ETE Sanitation	_	Sheet 1 of 1
Кц 1урс	AMELIOL	C.VE -3.		пэд	PROJECT NUMBER: SY327.05	_	Location: South of landfill
GRO	DUNDWA	TER OBS	ERVATIO)NS			POND NT
WATER					Weather		
LEVEL DATE	NA.	 		_			MW-13 ♦ ETB • MW-33 MW-1D ♦ LANDFILL • MW-3D
ПМЕ					Date/Time Start <u>March 22, 1993 / 1400</u>	_	♦ MW-ZSA
l ——			·		Date/Time Finish March 22, 1993 / 1510	_	• MW +25 : FOND
Photoma	Sa m pie	Sample	Peres 11	SPT	FIRED IDENTIFICATION OF MATERIAL		BROUGHTON ROAD WELL SCHEMATIC
Reading	1.D.	Depth	Reservery				
		_					j
					1		
					†		
		0		S S			
0.5			50	2	Brown SILT, little fine sand	(moist)	
		1_	 -	2			
		2		6			
0.6			75	9	Brown F SAND, little gravet	(dry)	
		3		7		(//	
				6			
0		4	0	<u>6</u> 5	N 4 0 6 1		Comont/bentente
0		5	-0	4	No recovery 4 – 8 ft bgs		Grout
				3			
		6		5			
0			0	12	•		
		7		<u>5</u>			
	··	8		4			
0			12	4	Brown F SAND, some gravel 8 - 14 ft bgs	(moist/wet)	- 14 ft bgs
		9		2		,	
!		10		$\frac{2}{2}$			
0		10	75	4			
		11		3			
				5			
0		12	67	9	1		
· ·		13	07	16	+		
				13			
		14		10	<u>;</u>		
0		15	67	5	Brown-grey F SAND, some silt 14 + 15 ft bgs	(moist/wet)	
 		13		12			
		16		8	Brown F to M SAND and GRAVEL 15 - 17 ft bgs	(maisther)	
0			75	8	i i i i i i i i i i i i i i i i i i i	(most wei)	
		17		9		•	
				11			
		18		13	Brown-Grey SILT and SAND interlayered with	!	
	· ·	10		4	F to M SAND to 20 ft bgs	(moist/wet)	
		19		6			
		20		9			
OT 4 5 1 5							F
		ENET R IT SPOON		IE <u>ST</u>	Summary: Boring from ground surface to 18 ft bgs		 .
		GER C UT			Final split spoon 18 - 20 ft bgs Boring abandoned with cement/bentonite	grout 3/23/93	
	С	- COREL)				

					ENGINEERING-SCIENCE				
Co	ontractor:	SJ B Serv	ices. Inc.		DRILLING RECORD		BORIN	G NO.	MW -3S
I		Randy St						_ •	
I		N.A. Sm			PROJECT NAME: ETE Sanitation		Sheet	of	
Rig Type	/Method:	CME-5	5 0 / 4.25*	HSA	PROJECT NUMBER: SY327.05	_ ,	Location:	West of	landfill
GRO	DUNDWA	TER OBS	ERVATIO	ONS			Plot Plan	nosim	N†
WATER	·	11.9	13.00		WeatherSunny, 50s			POND	N
LEVEL	(TOC)	(T OC)	(TOC)	 		_	MW-1S ◆	ETE	♦ MW-3S
DATE TIME	4/9/9 3 155 5	4/2 0/9 3	5/10/93 1000		Date/Time Start April 5, 1993 / 1310		MW-ID ◆	LANDP	ILL • MW-3D
				<u> </u>	Date/Time Finish April 5, 1993 / 1550	_	PON		
			,	•	19110113311330	-		نسين BRO	UGHTON ROAD
Photovec Reading		Sample Depth	Percent Recovery	SPT	FIELD IDENTIFICATION OF MATERIAL	.	WBL	L SCHE	MATIC
			Receivery	<u> </u>				Ste	ed casing
							٥	_	th locking cap
	ļ								
									2 inch ID
 				<u> </u>					PVC riser
	-	 _ _	 						+2.5 - 5 feet
0	-	0	50	SS	Drawn CH T. Sixta Garaged			-We	ep bole
	-	1	- 30	2	Brown SILT, little fine sand	(moist)	-01		
	ļ	 -		1					Cement 0-3.5 feet
		2	† -	2					0-3.3 (22)
0			50	10	as above, with fragments of cobble	(moist)			
		3	ļ	.7					
	<u> </u>	4	<u> </u>	16			••••	••••	
0	<u> </u>		75	7	Brown SILT, little fine sand and rock frag.	(moist)	••••	••••	Bentonite pellet
		5		1	Brown CLAY, little—some silt	(moist)	••••	••••	3.5 – 5.5 (cet
				3		()			Sand pack
		6		2	•		::::::::::		5.5 – 17.5 feet
0		7	100	3	as above	(moist)	::::::::::	::::::::	
		'		5	•			_	
		8		9	Brown SILT, some clay	(sl. moist)		_	
0	G S	 - -	100	3	as above	(moist)	_		
	G S	9		1	Brown SILT, some fine sand	(wet)			
	G \$	<u> </u>		1	Brown fine SAND	(wet)			7.5 - 17.5 feet
	G S	10	100	2					
0		11	100	10	Brown SILT, little-some sand, trace pebbles	(sl. moist)	_	-	
	-			16			-	_	
		12		12					
0			0	8	no recovery	(wet)			
		13		9		. /		_:::::::	
		14		11					
0		14	100	20 7	Brown SILT and fine SAND, some pebbles	(m.e	-		
·		15		9	South STET and time SAND, Southe permies	(mstwet)			
				12		Ì			
<u> </u>		16		10	Gray SILT, little pebbles	(wet)			į
0			100	8	Gray SILT, little pebbles	(mst wet)			
STANI	DARD F	EN E TR	ATION	TEST	Summary: 0-4.5 Silt; 4.5-7.5 Clay; 7.5-9	Sill: 9-10' Sa	nd: 10_1	4º Site	
		SPL IT SPC			14-15.5' Silt and Sand; 15.5-17.5	Silt_	1U-1	. 5111	
		GER CUT			GS - Grain size sample collected from 8-10 feet				
	C	= COREI)						-

ı

					ENGINEERING-SCIENCE		
C	ontractor:	SJ B S erv	vices, Inc.		DRILLING RECORD		BORING NO. MW-3S
		Randy St				· · · · · · · · · · · · · · · · · · ·	<u></u>
1	Inspector:	N.A. Sm	ith		PROJECT NAME: ETE Sanitation		Sheet of
Rig Type	:/Method:	CME-5	550 / 4.25 *	'HSA	PROJECT NUMBER: SY327.05	_	Location: West of landfill
						- 	Plot Plan
	· · · · · ·	ATER OBS		ONS			POND N
WATER LEVEL	(тос)	1 1.9 (T OC)	13.00° (TOC)		WeatherSunny, 50s	_	MW-1S ♦ ETE ♦ MW-3S
DATE TIME	4/9/9 3 1555	4/20/93	5/10/93 1000		T		MW-1D ♦ LANDPILL ♦ MW-3D
* ***-	1,,,,	 	Ivo		Date/Time Start April 5, 1993 / 1310	_	POND
·					Date/Time Finish April 5, 1993 / 1550	_	
Photovac Reading	Sample I.D.	Sample Depth	Percent Recovery	1	FIELD IDENTIFICATION OF MATERIAL		WELL SCHEMATIC
		17	<u> </u>	9	Gray SILT, little pebbles	(mstwet)	
	-		+	11	Paris de la 17 5 5 au		
	-	 	 	13	Boring terminated at 17.5 feet.		Well bottom: 17.5 feet
		+			-		
	1				†		
				+	4		
					1		
	<u> </u>		<u> </u>	<u> </u>]		
	- -		-				
		 		 -	4		
			 		4		
	-			+	4	1	
		 	 	+	†		
		1		+	1	1	
					1	į	
				<u> </u>]	I	
	-		 	 	_	I	
		 	 -		4		
	-		1	+	4	ļ	i I
				-	+	İ	!
			i		1	!	
				<u> </u>	1	ļ	
]		İ
	 _	<u> </u>		<u> </u>			
!		-					
							
	 	-	 	 	4		
			 	+	†	\$	1
			-		1	Ì	ļ
					1		
]		
	<u> </u>						
		! 		<u> </u>	4		
		 	-		4		1
		<u></u>		<u></u>			
STANI	<u>JARD F</u>	PEN E IR	LATION	TEST	Summary: 0-4.5' Silt; 4.5-7.5' Clay; 7.5-9' S	Silt; 9 10' Sa	ind: 10-14' Sift
		SPLIT SPC			14-15.5' Silt and Sand; 15.5-17.5	Silt	
		JGE R C UT C = C OR EI			S1 - Analytical sample collected from 4 - 10 feet		
		_= C UK EI	Ü		GS - Grain size sample collected from 10-18 feet		

	_				ENGINEERING-SCIENCE		: · · · · · · · · · · · · · · · · · · ·	
Co	ntractor:	SJ B Servi	ces. Inc		DRILLING RECORD		BORING	NO. $MW-3D$
		Randy St						
ı		N.A. Smi			PROJECT NAME: ETE Sanitation	1	Sheet	of 5
ì		CME-5		HSA	PROJECT NUMBER: SY327.05	-		est of landfill
						=	Plot Plan	
GRC	UNDWA	TER OBS	ERVATIO	NS			Į.	OND N+
WATER	12.68*	13.1	14.001		WeatherSauny, 50s	_	<u> </u>	
DATE	(TOC) 4/9/93	(TOC) 4/ 20/ 93	5/10/93		•	-	MW-1S ♦ B-1D ♦	ETE
TIME	1550	-	1000		Date/Time StartApril 6, 1993 0820	_		LANDFILL V MW-3D
			<u> </u>		Date/Time FinishApril 7, 1993 1730		POND	
						-		BROUGHTON ROAD
Photovac Reading	Sample 1.D.	Semple Depth	Percent Recovery	SPT	FIELD IDENTIFICATION OF MATERIAL		WELLS	CHEMATIC
Reading	1.10.	Беріп	Recovery					Sted casing
					•		۰	with locking cap
			-					with forming cap
			 					
								2 inch ID
			 - -					PVC riser
			 					+2.5-32 feet
-		0	50	SS	D CHT C. C.	(-Weep bole
0		1	50	1	Brown SILT, little fine sand	(moist)		
	-	1	<u> </u>	2				Cemens
		2	 -	2	•			0-25 feet
0			50	10	as above with fragments of abble	(maist)		1
		3	- 30	7	as above, with fragments of cobble	(moist)		
	-		 	16				
-		4		10	•			
0			75	7	Brown SILT, little fine sand and rock frag.	(moist)		
	-	5		1	Brown CLAY, little-some silt	(moist)		
				3	,	()		
		6		2				
0			100	3	as above	(moist)		
		7		5		, ,		
		<u></u>		8				
		8	<u></u>	9	Brown SILT, some clay	(sl. moist)		
0			100	3	as above	(moist)		
		9	-	1	Brown SILT, some fine sand	(wet)		
			ļ	<u>l</u>	Brown fine SAND	(wet)		
		10		2				
0			100	3	Brown SILT, little-some sand, trace pebbles	(sl. moist)		
		11	 -	10				
		12	 -	16 12	1			
0		12	0	8	no reaccioni	(
-		13	 	9	no recovery	(wet)		
		13	 	11				
		14		20				
0	····		100	7	Brown SILT and fine SAND, some pebbles	(mstwet)		1
		15		9		(12011 1701)		
				12				
		16		10	Gray SILT, little pebbles	(wet)	-	
0			100	8	Gray SILT, little pebbles	(mstwet)	. 10000000000 1	
om								

STANDARD PENETRATION TEST

SS = SPLIT SPOON

Summary: 0-4.5' Silt; 4.5-7.5' Clay; 7.5-9' Silt; 9-10' Sand; 10-14' Silt 14-15.5' Silt and Sand; 15.5-20' Silt; 20-37.5' Sand; 37.5-41' Silt; 41-42.5' Sand; 42.5-46' Silt; 46-47.5' Clay; 47.5-61' Silt; 61-61.5' Sand; 61.5-66' Silt; 66-66.5' Sand; 66.5-74' Silt; 74-78' Clay

A = AUGER CUTTINGS C = CORED

					ENGINEERING-SCIENCE				
Co	etractor:	SJB Servi	ces, Inc.		DRILLING RECORD		BORING	3 NO.	MW-3D
	Driller:	Randy St	ei ner			·····			
I		N.A. Smi			PROJECT NAME: ETE Sanitation		Sheet	of	5
Rig Type/	Method:	CME-55	60 / 6.25*1	HSA	PROJECT NUMBER: SY327.05	_	Location:	West of	landfill
<u> </u>						·	Plot Plan		
GRO	UNDWA	TER OBS	ERVATIO	ONS	-			POND	N†
WATER		13.1	14.00'		. WeatherSauny, 50s	_			
DATE		(T OC)	(TOC) 5/10/93				MW-1S ♦ B-1D ♦	ETE	♦ MW-3S ILL ♦ MW-3D
TIME	1550		1000		Date/Time StartApril 6, 1993 0820	_		32.10.	
					Date/Time FinishApril 7, 1993 1730		PON		
						-		BRO	UGHTON ROAD
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		WEL	L SCHE	MATIC
Reading	1.D,	Depth 17	Recovery	9	Gray SILT, little pebbles	/massas)	10.00005553	10000000	
	· ·-	17		11	Gray St. 1, little peobles	(mstwet)			'
		18	-	13					
0			3 7.5	9	Gray SILT, little fine sand and pebbles, cobbles	(mstwet)			
		19	97.5	12	oray StET, intic line sails and peoples, couples	(шагжег)		1988	
	-			22					
		20		21					
0			100	12	Brown medium SAND, trace gravel	(wet)			
		21		22		(,			
				32	Brown medium-coarse SAND, little fine gravel	(wet)			
		22		37	i	(,			
0		<u> </u>	25	15	as above	(wet)			ı
	-	23		19		()			
				20					
		24		19					
0			75	8	Brown medium-coarse SAND, some fine-md. gravel	(wet)			
		25		14					
				14			••••	••••	
		26		10			••••	••••	
0			75	8	as above, gray at 26.5 feet	(wet)	••••	••••	1
		27		!1			••••	••••	
	· •			9	Gray fine-medium SAND	(wet)	••••	••••	
		28		8			••••	••••	Bentonite slurry
		29		A_			••••	•••	
n/a		29	0	10	<u> </u> -		****	••••	25 – 30 feet
11/4		30		9					
		30	-	11			••••	••••	
	-	31		13	<u>:</u> 				Sand pack
0			100	ó	Gray fine-very fine SAND	(wet)		- 1	30-45.75 feet
		32		7	,	()		1 1	30-43.75 (66)
				8				-	ļ
		33		8					
				A				-	
		34		A					Z inch ID
0			100	3	as above	(wet)			PVC screen
		35		4		` ,		1 22	0.01 inch slot
				5					32-42 feet
		36		7					
0			100	7	as above, gray brown	(wet)			
STANE	DARD F	'EN ET R	ATION	TEST	Summary: 0-4.5' Silt; 4.5-7.5' Clay; 7.5-9' S	ilt; 9–10' Sa	ind; 10-1	4' Sift	

SS = SPLIT SPOONA = AUGER CUTTINGS C = CORED

14-15.5' Silt and Sand; 15.5-20' Silt; 20-37.5' Sand; 37.5-41' Silt; 41-42.5' Sand; 42.5-46' Silt; 46-47.5' Clay; 47.5-61' Silt; 61-61.5' Sand; 61.5-66' Silt; 66-66.5' Sand; 66.5-74' Silt; 74-78' Clay

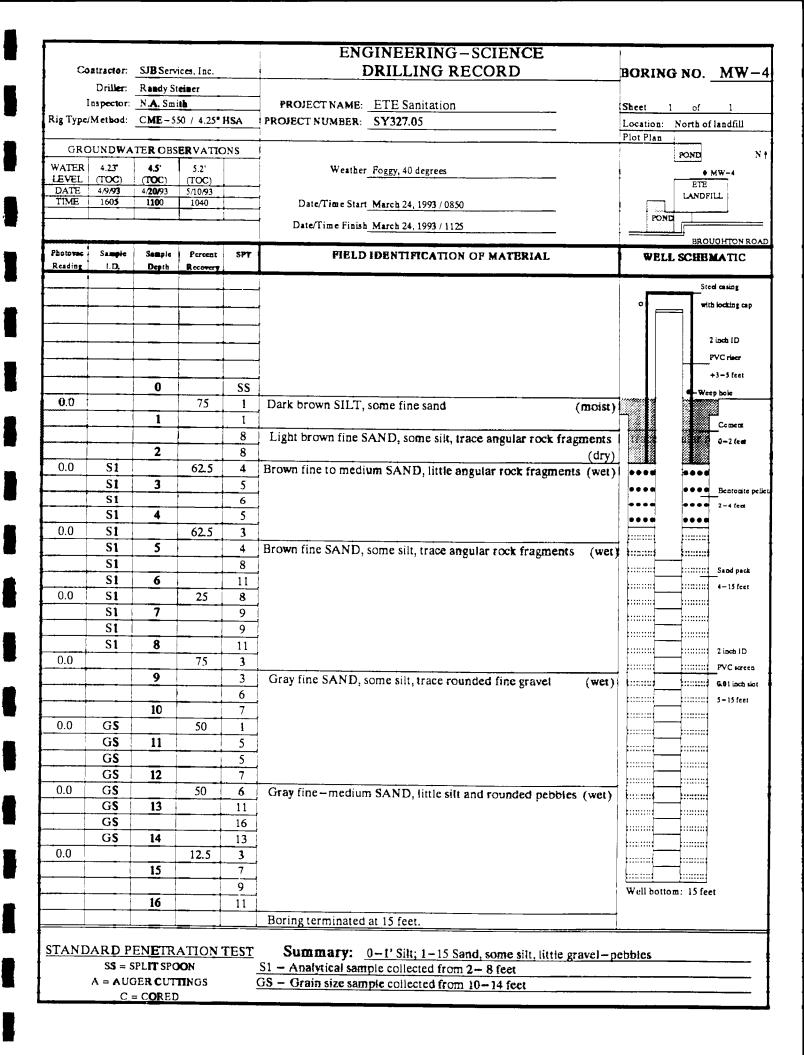
		· ·			ENGINEERING-SCIENCE			
Contractor: SJB Services, Inc.			DRILLING RECORD BORING NO. MW-		MW-3D			
	Driller:	Randy St	einer				†	
1	Inspector:	N.A. Sm	ith		PROJECT NAME: ETE Sanitation	_	Sheet of	5
Rig Type	Method:	CME-5	50 / 6.25*	HSA	PROJECT NUMBER: SY327.05	_	Location: West of	f landfill
							Plot Plan	
		TER OBS	ERVATIO	ONS			POND	N†
WATER LEVEL		13.1' (TOC)	14.00' (TOC)		WeatherSunny, 50s	_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
DATE	4/9/93	4/20/93	5/10/93				MW-1S ♦ ETE B-1D ♦ LAND	PILL MW-3D
TIME	1550	-	1000		Date/Time StartApril 6, 1993 0820	-		
	<u> </u>	·		<u> </u>	Date/Time FinishApril 7, 1993 1730	_	POND	
77			i _					DUOTITON ROAD
Photovec Reading	Sample I.D.	Semple Depth	Percent Recovery	SPT	FIELD IDENTIFICATION OF MATERIAL		WELL SCHE	MATIC
		3 7		8	Gray fine - very fine SAND	(wet)		
				12	Gray SILT and very fine SAND, graded	(mstwet)	+ 	†
		3 8		13		` ,		
				Α				
		3 9		Α				
n/a			0	13]			
		40	<u> </u>	17				
	·			20				
0		41	100	18			 	
- 0		42	100	24	Gray fine-medium SAND	(wet)		
		42	-	21				•
		43	 	25	Gray SILT, trace clay	(4	1
				A	Gray Silli, trace clay	(wet)		
-	-	44		A	-			
0			37.5	11	Gray SILT, little pebbles, cobbles, trace clay	(mst wet)		
	· · · · · · · · · · · · · · · · · · ·	45		12	j ===, ==== , p====, ===, ======, ; :==== =:ay	(13201. 1101)		
				21				
		46		25			••••••	Bentonite pellet
0			75	23	Gray CLAY, little silt	(wet)		45.75-47.75 fce
<u> </u>	-	47	<u> </u>	25			•••••••	•
		40	<u> </u>	30			•••••••	=
-		48			Gray SILT, fittle fine sand and pebbles	(wet)		
		49	<u></u>	A A	4			
0		4/	25	14	Gray SILT, some fine sand, cobble frag.	(wet)	100	
		5 0		17	j orași orași, come mie sana, coobre mag.	(#61)	-	Sand pack 47.5 – 58.5 (cct
				24	! 			47.3-363 (66
		5 1		25				
0			87.5	23	as above	(moist)		
		5 2		20	-			
-		<u> </u>		14				
		<u>5</u> 3		17				
		54	<u> </u>	<u>A</u>	•			
0		34	50	A 14	Constitution of the second			
		5 5		9	Gray SILT, little fine sand and pebbles	(mst.wet)		
		3 5		_				
		5 6		11				
0		<u> </u>	75	16	Gray SILT, little fine sand and pebbles, trace clay, dil.	(mst.wet)		
						- (montweet)	<u> </u>	1
STANE		ENETR		<u>TEST</u>		iit; 9–10' Sa	and; 10-14' Silt	
	S S =	SPLIT SPO	OON		14-15.5' Silt and Sand; 15.5-20' Silt; 20-37.5' Sand; 3	7.5-41' Silt:	; 41-42.5' Sand;	

A = AUGER CUTTINGS C = CORED

42.5-46' Silt; 46-47.5' Clay; 47.5-61' Silt; 61-61.5' Sand; 61.5-66' Silt; 66-66.5' Sand; 66.5-74' Silt; 74-78' Clay

		" "			ENGINEERING-SCIENCE			
Contractor: SJB Services, Inc.			DRILLING RECORD		BORING NO.	MW-3I		
	Driller: Randy Steiner			1		-		
I		N.A. Sm			PROJECT NAME: ETE Sanitation	_	Sheet of	5
Rig Type	/Method:	CME-5	50 / 6.25*	HSA	PROJECT NUMBER: SY327.05	_	Location: West of l	andfill
CRC		TTR ODG	CD1/A 774				Plot Plan	
		TER OBS		ONS			POND	N†
WATER LEVEL	12.68° (TOC)	13.1' (T OC)	14.00' (TOC)	1	WeatherSunny, 50s	_	MW-1S ♦ ETE	● MW-3S
DATE	4/9/93	4/2 0/9 3	5/10/93					LL ♦ MW-3D
TIME	1550	<u> </u>	1000	-	Date/Time StartApril 6, 1993 0820	_	POND	
f					Date/Time FinishApril 7, 1993 1730	_		
Photovec	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		WELL SCHE	IGHTON ROAD
Reading	1.D.	Depth 57	Recovery	16	Gray SILT, little fine sand and pebbles, trace clay, dil.			
l			-	22	Stay 5121, with this said and poobles, trace day, un		17.00	
		58	-	24				
				Α				
		59		Α			••••••	Bostonite pelic
0			87.5	8	as above	(mstwet)	••••••	58.5-60 Seat
		60		12		,	•••••	
.	<u>-</u>			22				
		61	 	20				
0	· · · · · -		50	21	Gray medium SAND	(wet)		
ļ		62		23	Gray SILT, some pebbles, little sand, trace clay	(mstwet)		
l		62		24	•			Sand pack
		63		28				60-71 leet
	-	64		A				
0			50	11	Gray SH T. come nobbles little cond	(mass)	1 1.11 1 1.11	
- 0		65	- 30	13	Gray SILT, some pebbles, little sand	(mstwet)	1 1 1	
				19				
	-	66	 	16				
0			75	14	Gray medium SAND, some pebbles, trace silt	(wet)		
		67		16	Gray SILT, some fine medium sand and pebbles,	(mstwet)	• • •	
				19	trace clay	(112021 1101)		
		68	1	17				
				A				
		69		A				
0			37.5	8	as above	(wet)		
-		70		7	•			
ļ		71		8				
0	S1	/1	62.5	10 7	Come SILT come fine and little att.			
	S1	72	02.3	9	Gray SILT, some fine sand, little pebbles and clay	(wet)	**********	
	<u>S1</u>			14	1			
		73	_	17				Bentonite peller
	S1			A	•			71 – 78 feet
	S1	74		Λ			• • • • • • • • • •	
0	Si		62.5	6	Gray CLAY, little pebbles	(st. moist)	••••	
	S1	75		9			• • • •	
	S1			14	•		••••	
	S1	76		21			• • • •	
0	SI		50	32	as above	(sl. moist)	••••	
STANI	DARD P	EN E TR	ATION	TEST	Summary: 0-4.5' Silt; 4.5-7.5' Clay; 7.5-9' S	iii: 910' Sa	nd: 10-14' Site	
		SPL IT SPC			14-15.5' Silt and Sa14-15.5' Silt and Sand; 15.5-17.5	Silt	AT DIE	
		GE R C UT			42.5-46' Silt; 46-47.5' Clay; 47.5-61' Silt; 61-61.5' S.	and; 61.5-66		
	C	= C OR EI	<u> </u>		66.5-74' Silt; 74-78' Clay		amp, collected fro	

					ENGINEERING-SCIENCE		·
Contractor		cine					DOBING NO MW. 2D
Contractor: SJB: Driller: Ranc Inspector: N.A.					DRILLING RECORD		BORING NO. $MW-3D$
					BROIFOTNIANT ETT Conjugation		[a, .
					PROJECTNAME: ETE Sanitation	-	Sheet of 5
Kig Type	Method:	CME-55	80 / 6. 23 ° 1	HSA	PROJECT NUMBER: SY327.05	-	Location: West of landfill Plot Plan
GRC	GROUNDWATER OBSERVATIONS)NS	<u> </u>		POND N	
WATER	12.68	13.1	14.00*		WeatherSunny, 50s		
LEVEL	(TOC)	(TOC)	(TOC)		Westard and Ity, 505	-	MW-1S ♦ ETE → MW-3S
TIME	4/9/9 3 155 0	4/20/93	5/10/93 1000		Data/Files StandApril 6 1002 0020		B-1D ♦ LANDFILL ♦ MW-3D
11.42			1000		Date/Time StartApril 6, 1993 0820	-	POND
					Date/Time FinishApril 7, 1993 1730	-	
Phonovac	Sample	Sample	Percent	SPT	FIELD IDENTIFICATION OF MATERIAL		BROUGHTON ROAD WELL SCHEMATIC
Reading	I. D.	Depth	Recovery				
	S1	77		36	Gray CLAY, little pebbles	(sl. moist)	••••
	<u>S1</u>			34			••••
	Si	78		38			••••
		79					
		19					
		80	<u> </u>				
	-						
		81					
		82					
		83					
		0.4					
		84			-		
		85			-		
		0.5		——	-		
		86	 		†		
					†		
		87					
		88					
					i -		
		89			-		
		90	 		-		
		61		 			
		91	<u> </u>	——	_		
		92			-		
		72	<u> </u>				
		93	<u> </u>		1		
			-		†		
	-	94			1		
		95					
		96					


STANDARD PENETRATION TEST

SS = SPLIT SPOON

A = AUGER CUTTINGS C = CORED

Summary: 0-4.5' Silt; 4.5-7.5' Clay; 7.5-9' Silt; 9-10' Sand; 10-14' Silt 14-15.5' Silt and Sa14-15.5' Silt and Sand; 15.5-17.5 Silt 42.5-46' Silt; 46-47.5' Clay; 47.5-61' Silt; 61-61.5' Sand; 61.5-66' Silt; 66-66.5' Sand;

66.5-74' Silt; 74-78' Clay

Huntingdon

June 2, 19**9**3

Thomas Abrams
Engineering-Science, Inc.
290 Elwood Davis Road, Suite 312
Liverpool, New York 13088

Reference:

Geotechnical Analysis for PSA Work Assignment No. D002478-17

Dear Mr. Abrams,

Enclosed please find the results of soil samples grain size analysis in accordance with our subcontract dated March 19, 1993 and your letter of transmittal dated May 10, 1993. In all cases we utilized the entire sample provided. Some of the samples containing gravel do not meet the "Approximate Minimum Mass of Portion, g" stated in ASTM D 422 Section 5.1.1 (see copy below). The actual weight retained of samples listed on our "GRAIN SIZE DISTRIBUTION TEST DATA" reports. This information is provided for your use in evaluating the test data.

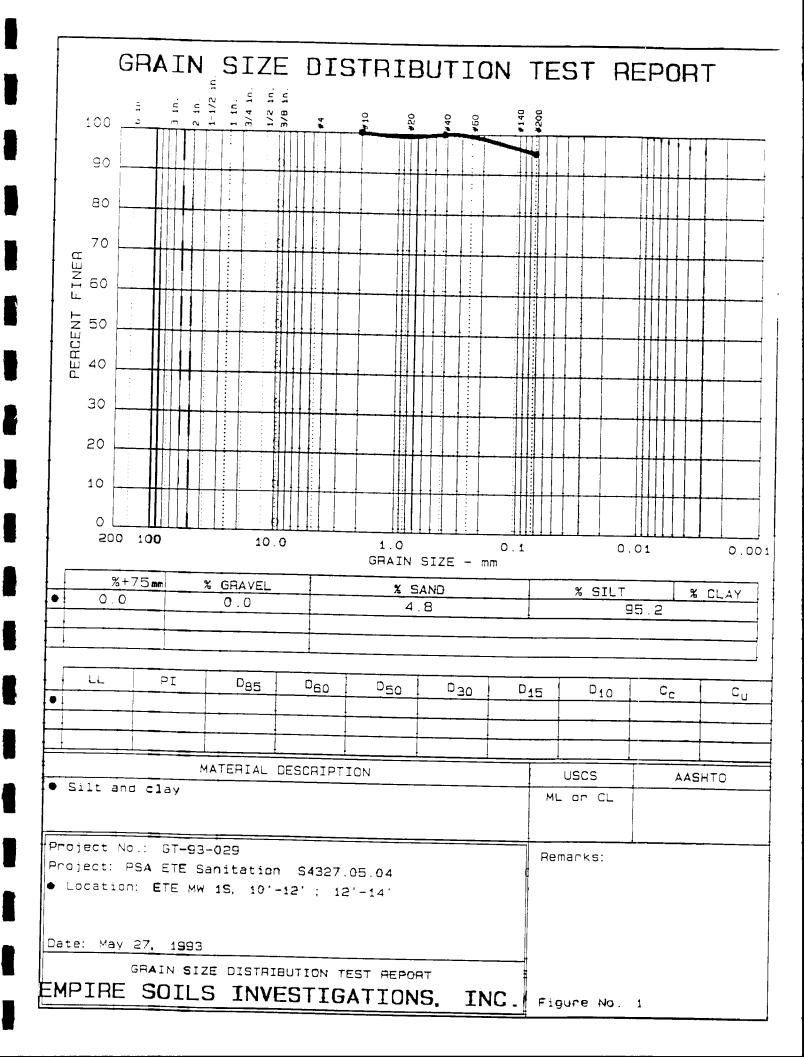
5.1.1 The size of the portion retained on the No. 10 sieve shall depend on the maximum size of particle, according to the following schedule:

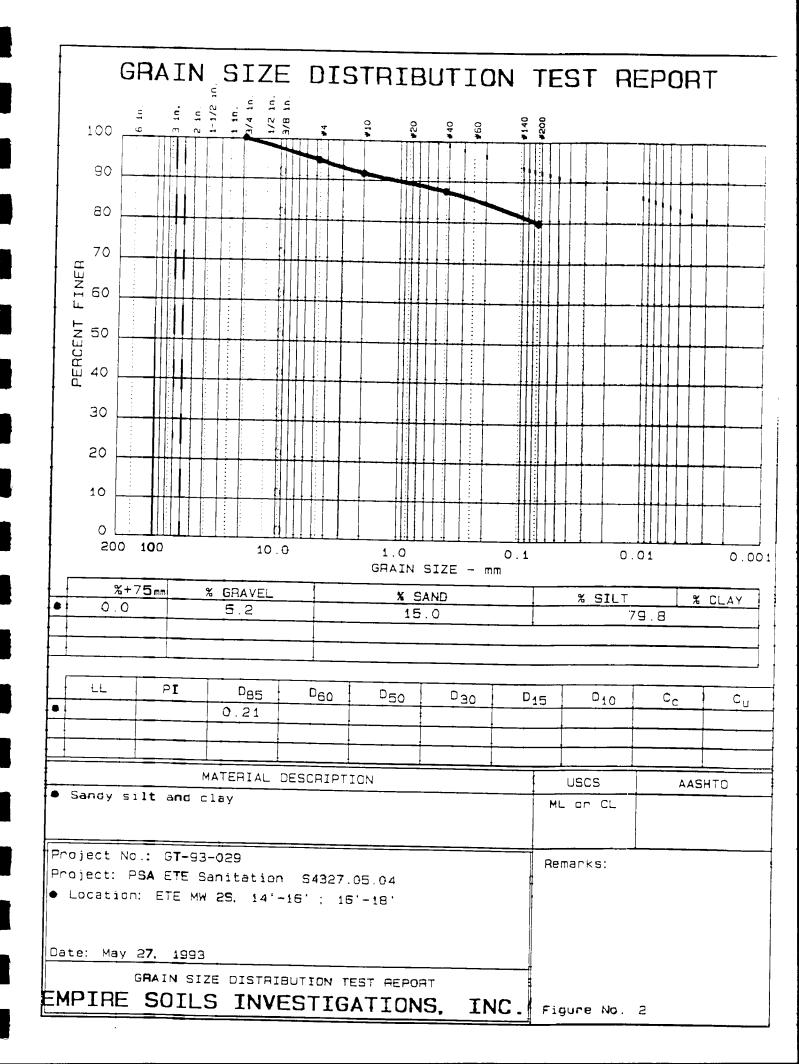
Nominal Diameter of Largest Particles,	Approximate Minimum
in. (mm)	Mass of Portion, g
³ /s (9.5)	500
¾ (19.0)	1000
1 (25.4)	200 0
11/2 (38.1)	300 0
2 (50.8)	400 0
3 (76.2)	5000

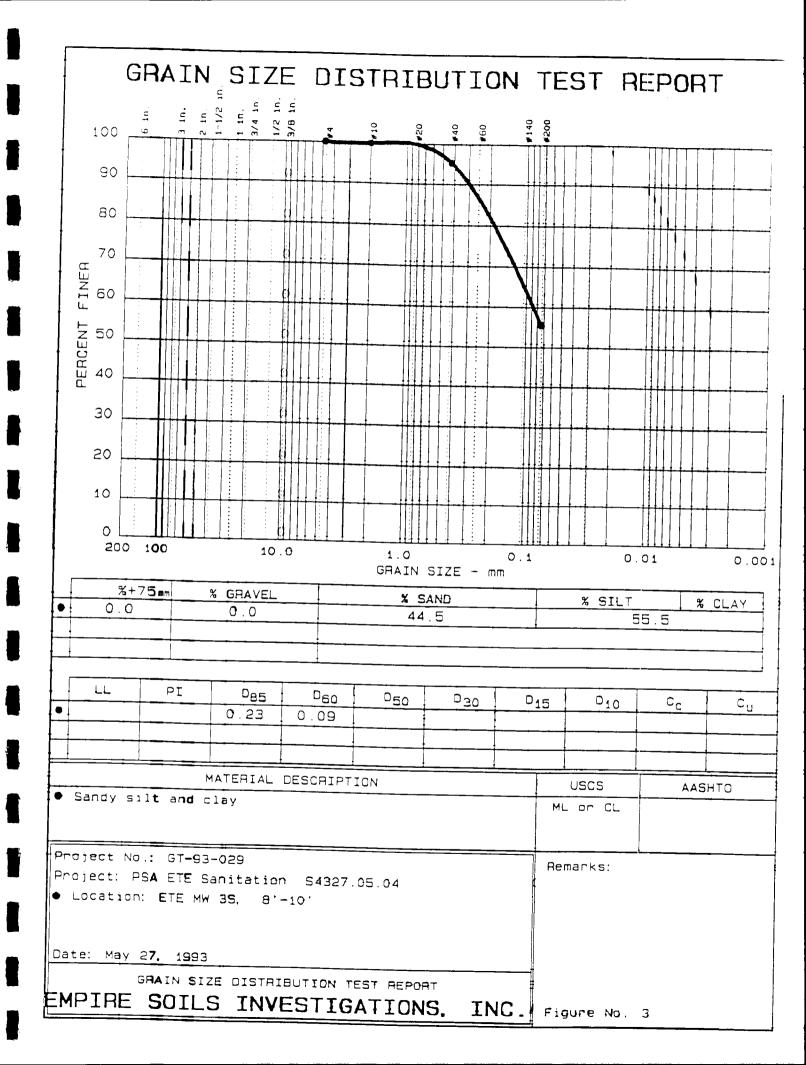
5.1.2 The size of the portion passing the No. 10 sieve shall be approximately 115 g for sandy soils and approximately 65 g for silt and clay soils.

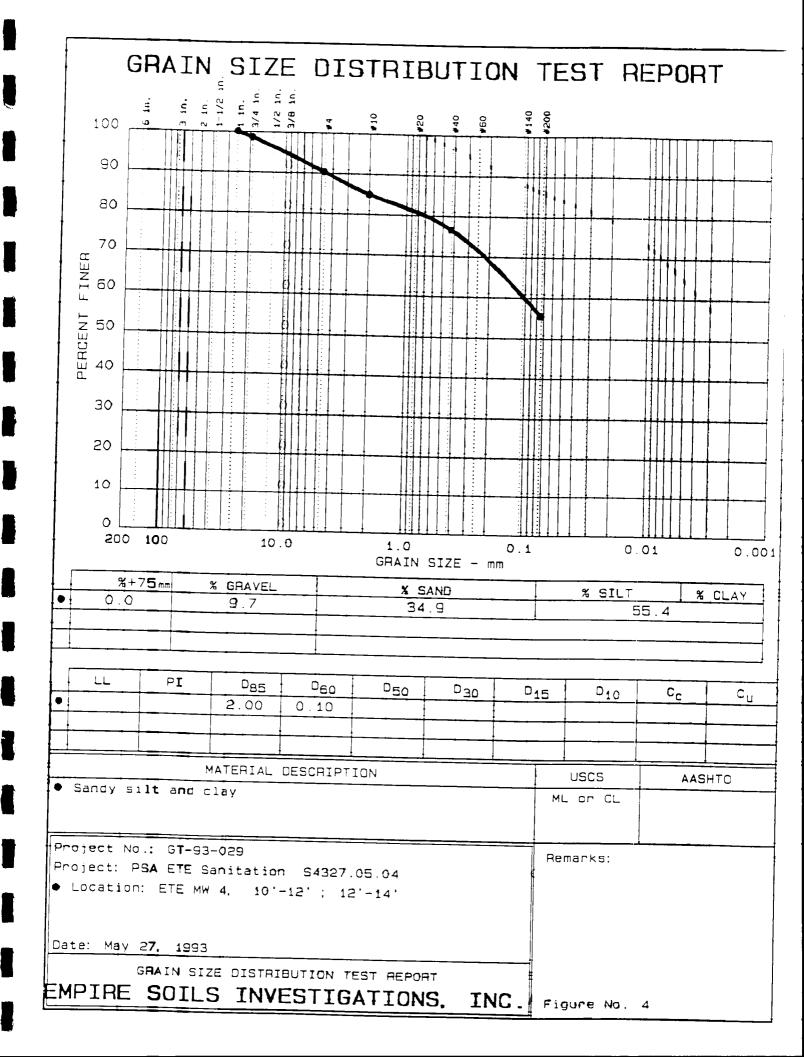
If you have any questions or require additional data please contact the undersigned. Samples and containers will be returned via UPS.

Respectfully submitted,


EMPIRE SOILS INVESTIGATIONS, INC.


Thomas A. Hamilton


iomon


Construction Services Manager

DEGENWE JUI - 4 1993 ES SYRACUSE


```
GRAIN SIZE DISTRIBUTION TEST DATA
            May 27, 1993
Project No.: GT-93-029
Project: PSA ETE Sanitation S4327.05.04
Sample Data
Location of Sample: ETE MW 1S, 10'-12'; 12'-14'
Sample Description: Silt and clay
USCS Class: ML or CL Liquid limit:
AASHTO Class: Plasticity index:
      Notes
Remarks:
Fig. No.:
     Mechanical Analysis Data
            Initial
Dry sample and tare= 636.00
Pare = 0.00
Pry sample weight = 636.00
Tare
sieve tare method
Fractional Components
+ 3 in. = 0.0 % GRAVEL = 0.0 % SAND = 4.8
FINES = 95.2
```

```
GRAIN SIZE DISTRIBUTION TEST DATA
                          May 27, 1993
 Project No.: GT-93-029
Project: PSA ETE Sanitation S4327.05.04
 Sample Data
 Location of Sample: ETE MW 2S, 14'-16'; 16'-18'
 Sample Description: Sandy silt and clay
 USCS Class: ML or CL
AASHTO Class:
                                                Liquid limit:
 AASHTO Class:
                                               Plasticity index:
                                           Notes
 Remarks:
Fig. No.: 2
                              Mechanical Analysis Data
                        Initial
Dry sample and tare= 518.00
                           0.00
Dry sample weight = 518.00
Sieve tare method

        Sieve
        Weight retained
        Sieve finer

        0.75 inches
        0.00
        0.00
        100.0

        # 4
        26.99
        0.00
        94.8

        # 10
        15.96
        0.00
        91.7

        # 40
        21.66
        0.00
        87.5

        # 200
        40.17
        0.00
        79.8

                                 Fractional Components
% + 3 in. = 0.0 % GRAVEL = 5.2 % SAND = 15.0
FINES = 79.8
D85=
      0.21
```

```
GRAIN SIZE DISTRIBUTION TEST DATA
                       May 27, 1993
 Project No.: GT-93-029
Project: PSA ETE Sanitation S4327.05.04
 Sample Data
Location of Sample: ETE MW 3S, 8'-10'
 Sample Description: Sandy silt and clay
USCS Class: ML or CL Liquid limit:
AASHTO Class: Plasticity in
                                            Plasticity index:
                                         Notes
 Remarks:
Fig. No.:
                   Mechanical Analysis Data
                      Initial
Dry sample and tare= 615.30
Tare = 0.00
bry sample weight = 615.30
Tare
sieve tare method

        Eeve tare method
        Weight
        Sieve
        Percent finer

        retained
        tare
        finer

        # 4
        0.18
        0.00
        100.0

        # 10
        0.80
        0.00
        99.8

        # 40
        28.52
        0.00
        95.2

        # 200
        244.50
        0.00
        55.5

                            Fractional Components
            + 3 in. = 0.0 % GRAVEL = 0.0 % SAND = 44.5
 FINES = 55.5
 85= 0.23 D60= 0.087
```

```
GRAIN SIZE DISTRIBUTION TEST DATA
                      May 27, 1993
Project No.:
Project:
                     GT-93-029
                     PSA ETE Sanitation S4327.05.04
          Sample Data
Ocation of Sample: ETE MW 4, 10'-12'; 12'-14' Sample Description: Sandy silt and clay
 SCS Class:
             ML or CL:
                                          Liquid limit:
 ASHTO Class:
                                         Plasticity index:
                                     ------
                                     Notes
  g. No.:
                           Mechanical Analysis Data
                     Initial
Dry sample and tare= 640.00
Tare
                = 0.00
 y sample weight = 640.00
 leve tare method
Sieve Weight Sieve Percent
retained tare finer

1 inches 0.00 0.00 100.0

0.75 inches 9.37 0.00 98.5

# 4 52.67 0.00 90.3

# 10 34.26 0.00 85.0

# 40 53.36 0.00 76.6

# 200 135.63 0.00 55.4
 eve tare method
                            Fractional Components
 FINES = 55.4
```

2.00 D60= 0.101

APPENDIX D

LABORATORY ANALYSES

NYSDEC -- PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data VOLATILES ASP91-1 SEDIMENT DATA

		FIELD SAMPLE ID: EPA SAMPLE ID: LAB SAMPLE ID: SDG: MATRIX:	SD001 SD-001 AS035604 SS001 SO IL	SD001-FE SD-001FE AS035604RI SS001 SOIL
		SAMPLED:	05/10/93	05/10/93
		RECEIVED:	05/11/93	05/11/93
		ANALYZED:	05/1 4/93	08/03/9 3
		DIL. FACTOR:	1	1
CAS NO	COMPOUND	UNITS:	UG/KG	UG/KG
74-87-3	Chloromethane		16 U	16 U
74-83-9	Bromomethane		16 U	16 U
75-01-4	Vinyl chloride		16 U	18 U
75-00-3	Chloroethane		16 U	18 U
75-09-2	Methylene chloride		98 B	75 B
67-64-1	Acetone		190	75 B
75-15-0	Carbon Disulfide		16 U	16 U
75-35-4	1,1-Dichloroethene		16 U	16 U
75-34-3	1,1-Dichloroethane		18 U	16 U
540-59-0	1,2-Dichloroethene (Total)		18 U	16 U
67-68-3	Chloroform		18 U	16 U
107-08-2	1,2-Dichloroethane		18 U	18 U
78-93-3	2-Butanone		50	15 BJ
71-55-6	1,1,1-Trichloroethane		18 U	18 U
56-23-5	Carbon Tetrachloride		18 U	18 U
75-27-4	Bromodichloromethane		18 U	18 U
78-87-5	1,2-Dichloropropane		1 8 U	18 U
10061-02-6	cis-1,3-Dichtoropropene		16 U	18 U
79-01-6	Trichloroethene		18 U	18 U
124-48-1	Dibromochloromethane		18 U	18 U
79~00-5	1,1,2-Trichtoroethane		18 U	18 U
71-43-2	Berzene		3 BJ	18 U
10081-01-5	trans-1,3-Dichloropropene		18 U	18 8
75-25-2	Bramoform		18 U	18 U
108-10-1	4-Methyl-2-pentanone		18 U	18 ប
591~78~6	2-Hexanone		18 U	18 U
127-18-4	Tetrachioroethene		18 U	18 U
78-34-5	1,1,2,2-Tetrachloroethane		18 U	18 U
108-88-3	Totuene		18 U	18 U
108-90-7	Chlorobenzene		18 U	18 U
100-41-4	Ethyl benzene		6 J	3 J
100-42-5	Styrene		18 U	18 U
1330-20-7	Total Xylenes		17	7 J

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIVOLATILES ASP91-2 SEDIMENT DATA

		FIELD SAMPLE ID:	SD001
		EPA SAMPLE ID:	SD-001
		LAB SAMPLE ID:	AS035604
		SDG:	SS001
		MATRIX:	SOIL
		SAMPLED:	05/1 0/ 93
		RECEIVED:	05/11/93
		EXTRACTED:	05/14 /93
		ANALYZED:	06/01/93
040.40	OOM (DOLLING)	DIL FACTOR:	1
CAS NO	COMPOUND	UNITS:	UG/KG
108-95-2	Phenol		520 U
111-44-4	Bis(2-chloroethyl) ether		520 U
95-57-8	2-Chlorophenol		520 U
541-73-1	1,3-Dichloroberzene		520 U
108-48-7	1.4-Dichloroberzene		520 U
95-50-1	1,2-Dichloroberzene		520 U
95-48-7	2-Methylphenol		520 U
108-60-1	Bis(2-chloroisopropy) ether		520 U
108-44-5	4 ~ Methylphenol		520 U
621-64-7	N-Nitroso-Di-n-propylamine		520 U
67-72-1	Hexachloroethane		520 U
98-95-3	Nitroberzene		520 U
78-59-1	Isophorone		520 U
88-75-5	2-Nitrophenol		520 U
105-67-9	2,4-Dimethylphenol		520 U
111-91-1	Bis(2-chloroethoxy) methane		520 U
120-83-2	2,4-Dichlorophenol		520 U
120-82-1	1,2,4~Trichlorobenzene		520 U
91-20-3	Naphthalene		520 U
108-47-8	4Chloroaniline		520 U
87+68+3	Hexachlorobutadlene		520 U
59-50-7	4-Chloro-3-methylphenol		520 U
91-57-6	2-Methyhaphthalene		520 U
77-47-4	Hexachlorocyclopentadiene		520 U
89-06-2	2,4,6-Trichlorophenol		520 U
95-95-4	2,4,5-Trichlorophenol		1300 U
91-58-7	2-Chloronaphthalene		520 U
88-74-4	2-Nitroanillne		1300 U
131-11-3	Dimethyl phthalate		520 U
208-96-8	Acenaphthylene		520 U
806-20-2	2,6-Dinttrotoluene		520 U
99-09-2	3-Nitroanfline		1300 U
83-32-9	Acenaphthene		520 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIVOLATILES ASP91-2 SEDIMENT DATA

		FIELD SAMPLE ID:	SD001
		EPA SAMPLE (D:	SD-001
		LAB SAMPLE (D:	AS035604
		SDG:	SS001
		MATRIX:	SOIL
		SAMPLED:	05/10/93
		REŒIVED:	05/11/93
		EXTRACTED:	05/1 4/93
		ANALYZED:	06/01/93
CAS NO	COMBOUND	DIL FACTOR:	1
CAS NO	COMPOUND	UNITS:	UG/KG
51-28-5	2,4-Dinitrophenol		1300 U
100-02-7	4 – Nitrophenol		1300 U
132-64-9	Dibenzo(a,h)anthracene		520 U
121-14-2	2,4-Dinitrotoluene		520 U
84-66-2	Diethyl phthalate		67 B.
7005-72-3	4-Chlorodiphenylether		520 U
86-73-7	Fluorene		520 U
100-01-6	4-Nitroaniline		1300 U
534-52-1	4,6-Dinitro-2-methylphenol		1300 U
88-30-6	N-nitrosodiphenylamine		520 U
101-55-3	4-Bromophenyl phenyl ether		520 U
118-74-1	Hexachlorobenzene		320 U
87-88-5	Pentachlorophenol		1 300 U
85-01-8	Phenanthrene		34 J
120-12-7	Anthracene		520 U
88-74-8	Carbazole		520 U
84-74-2	Di-n-butyl phthalate		520 U
20844 0	Fluoranthene		39 J
129-00-0	Pyrene		37 J
85-68-7	Butyl benzyl phthalate		520 U
91~94~1	3,3'-Dichloroberzidine		520 U
58~55~3	Berzo(a)anthracene		520 U
218-01-9	Chrysene		520 U
117~81~7	Bis(2-ethylhexyl) phthalate		520 U
117-84-0	Di~n-octyl phthulate		520 U
205~98~ 2	Benzo(b)fluoranthene		520 ป
207-08-9	Benzo(k)fluoranthene		520 U
50-32-8	Berizo(a) pyrene		520 U
193~39~5	Indeno(1,2,3cd)pyrene		520 U
53-70-3	Dibenzofuran		520 U
191-24-2	Benzo(ghl)perylene		520 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data PESTICIDES/AROCLORS ASP91-3 SEDIMENT DATA

		FIELD SAMPLE ID:	SD001
		EPA SAMPLE ID:	SD-001
		LAB SAMPLE ID:	AS035604
		SDG:	SS001
		MATRIX:	SOIL
		SAMPLED:	05/10/93
		RECEIVED:	05/11/93
		E xtracte d:	05/1 4/93
		ANALYZED:	05/28/93
		DIL FACTOR:	1
CAS NO	COMPOUND	UNITS:	UG/KG
319-84-6	alpha-BHC		2.7 U
319-85-7	beta – BHC		2.7 U
319-88-8	delta-BHC		2.7 U
58-89-9	gamma-BHC (Lindane)		2.7 U
76-44-8	Heptachlor		0.30 JF
309-00-2	Aldrin		2.7 U
1024-57-3	Heptachlor epoxide		2.7 U
959-88-8	Endosulfan i		2,7 U
60-57-1	Dieldrin		5.2 U
72-55-9	4,4'-DDE		0,83 J
72-20-8	Endrin		5.2 U
33213-65-9	Endosulfan II		5.2 U
72-54-8	4,4'-DDD		1.0 J
1031-07-8	Endosulfan Sulfate		5.2 U
50-29-3	4,4'DDT		5.2 U
72-43-5	Methoxychlor		27 U
53494-70-5			5, 2 U
7421-B3-4	Endrin aldehyde		5.2 U
5103-71-9	alpha-Chlordane		2.7 U
5103-74-2	gamma—Chlordane		2.7 U
8001-35-2	Toxaphene		270 U
12674-11-2	Aroclor 1016		52 U
11104-28-2	Aroclor 1221		110 U
11141-16-5	Aractor 1232		52 U
53469-21-9			52 U
12672-29-6			52 U
11097-69-1			52 U
11098-82-5	Aroclor 1260		52 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data TOTAL METALS SEDIMENT DATA

		FIELD SAMPLE ID:	SD001
		EPA SAMPLE ID:	SD-001
		LAB SAMPLE 1D:	6313
		SDG:	SS001
		MATRIX:	SOIL
		SAMPLED:	05/10/93
		RECEIVED:	05/11/93
		ANALYZED:	5/14-6/4 /93
		% SOLIDS	62.7
CAS NO	COMPOUND	UNITS:	MG/KG
7429-90-5	Aluminum – Total		7670
7440-38-0	Antimony - Total		19.3 UN
7440-38-2	Arsenic - Total		7.6 SN
7440-39-3	Barium - Total		83.4
7440-41-7	Beryllium – Total		1.6 U
7440-43-9	Cadmium — Total		0.64 BN
7440-70-2	Calcium – Total		20500
7440-47-3	Chromium - Total		11,0
7440-48-4	Cobalt Total		6.4 ⊔
7440-50-8	Copper – Total		21.7
57-12-5	Cyanide – Total		1.7 *
7439-89-6	iron – Total		80500 E
7439-92-1	Lead - Total		36.1 +*
7439-95-4	Magneslum – Total		4170
7439-96-5	Manganese – Total		1340 EN
7439-97-6	Mercury - Total		0.15 U
7440-02-0	Nickel – Total		9.7 U
7440~09 -7	Potassium - Total		954 B
7782-49-2	Selenium - Total		1.3 UN
7440-22-4	Silver Total		0.060 U
7440-23-5	Sodium Total		11500
7440-28-0	Thaillum - Total		1.8 U
7440-62-2	Vanadlum - Total		8.4 U
7440-68-6	Zinc - Total		180 E

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data EP TOX METALS SEDIMENT DATA

		FIELD SAMPLE ID:	SD001
		EPA SAMPLE ID:	SO-001
		LAB SAMPLE ID:	6285
		SDG:	SS001
		MATRIX:	WATER
		SAMPLED:	05/10/93
		RECEIVED:	05/11/93
		AN ALYZED :	5/14-6/4/93
		% SOLIDS	0
CAS NO	COMPOUND	UNITS:	UG/L
7429-90-5	Aluminum -Dissolved		200 *
7440-36-0	Antimony - Dissolved		5.0 U
7440-38-2	Arsenic – Dissolved		4.0 U
7440-39-3	Barlum - Dissolved		393
7440-41-7	Beryllium - Dissolved		5.0 U
7440-43-9	Cadmium - Dissolved		0.20 UN
7440-70-2	Calcium - Dissolved		25100 BN
7440-47-3	Chromium - Dissolved		10 U*
7440-48-4	Cobat - Dissolved		20.0 U
7440-50-8	Copper - Dissolved		13.2 B
57-12-5	Cyanide – Dissolved		10 UN
7439~89-6	Iron – Dissolved		19000
7439-92-1	Lead - Dissolved		6.0 U
7439-95-4	Magnesium – Dissolved		7270
7439-96-5	Manganese – Dissolved		11200 N*
7439-97-6	Mercury – Dissolved		0.20 U
7440-02-0	Nickel – Dissolved		117
7440⊶09 –7	Potassium - Dissolved		4030 B
7782-49-2	Selenium – Dissolved		4.0 U
7440-22-4	Silver ~ Dissolved		0.20 U
7440-23-5	Sodium - Dissolved		279000
7440-28-0	Theilium - Dissolved		5.0 UW
7440-62-2	Vanadium - Dissolved		20.0 U
7440-68-6	Zinc Dissolved		53.1 *
		_	

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data VOLATILES ASP91 – 1 LEACHATE DATA

		FIELD SAMPLE ID:	LC001
		FPA SAMPLE ID:	LC-001
		LAB SAMPLE ID:	AS035593
		SDG:	GW01S
		MATRIX:	WATER
		SAMPLED:	05/11/93
		RECEIVED:	05/11/93
		ANALYZED:	
		ANALTZED: DIL FACTOR:	05/15 /93 5
CAS NO	COMPOUND	UNITS:	UG/L
	55.11 Gaile	GHTG.	OU/E
74-87-3	Chloromethane		50 U
74-83-9	Bromomethane		50 U
75-01-4	Vinyl chloride		50 U
75-00-3	Chloroethane		9 J
75-09-2	Methylene chloride		170 B
67-64-1	Acetone		260 B
75~15-0	Carbon Disutfide		50 U
75-35-4	1,1-Dichloroethene		50 U
75-34-3	1,1-Dichloroethane		50 U
540-59-0	1.2-Dichloroethene (Total)		50 U
67-68-3	Chloroform		50 U
107-06-2	1,2-Dichloroethane		50 U
78-93-3	2-Butanone		600 B
71-55-6	1,1,1-Trichloroethane		50 U
58~23~5	Carbon Tetrachloride		50 U
75-27-4	Bromodichloromethane		50 U
78-87-5	1,2-Dichloropropane		50 U
10061-02-6			50 U
79-01-8	Trichioroethene		50 U
124-48-1	Dibromochloromethane		50 U
79-00-5	1,1,2—Trichloroethane		50 U
71-43-2	Bergene		50 U
10081-01-5	trans1,3Dichloropropene		50 U
75-25-2	Bromoform		50 U
108-10-1	4-Methyl-2-pentanone		59
591 → 78 ~ 8	2-Hexanone		50 U
127~18~4	Tetrachloroethene		50 U
79-34-5	1,1,2,2-Tetrachloroethane		50 U
108-88-3	Toluene		23 J
108-90-7	Chlorobenzene		50 U
100-41-4	Ethyl berizene		79
100~42~5	Styrene		50 U
1330-20-7	Total Xylenes		210

NYSDEC – PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, line, Analytical Data SEMIVOLATILES ASP91-2 LEACHATE DATA

		FIELD SAMPLE ID:	LC001	LC001-FE
		EPA SAMPLE ID:	LC-001	LC-001FE
		LAB SAMPLE ID:	AS035593	AS035593RI
		SDG:	GW01S	GW01S
		MATRIX:	WATER	WATER
		SAMPLED:	05/11/93	05/11/93
		RECEIVED:	05/11/93	05/11/93
		EXTRACTED:	05/14/93	05/14/93
		ANALYZED:	05/28/93	06/01/93
		DIL FACTOR:	1	1
CAS NO	COMPOUND	UNITS:	UG/L	UG/L
108-95-2	Phenol		10 U	10 U
111-44-4	Bis(2-chloroethyl) ether		10 U	10 U
95-57-8	2-Chlorophenol		10 U	10 U
541-73-1	1,3-Dichloroberzene		10 U	10 U
108-48-7	1,4-Dichloroberzene		10 U	10 U
95-50-1	1,2-Dichlorobergene		10 U	10 U
95-48-7	2-Methylphenol		10 U	10 U
108-60-1	Bis(2-chloroisopropy) ether		10 U	10 U
108-44-5	4 - Methylphenol		10 U	10 U
621-64-7	N-Nitroso-Di-n-propylamine		10 U	10 U
67-72-1	Hexachloroethane		10 U	10 U
98-95-3	Nitroberzene		10 U	10 U
78~59-1	Isophorone		10 U	1 J
88-75-5	2-Nitrophenol		10 U	10 U
105-67-9	2,4-Dimethylphenol		8 1	8 J
111-91-1	Bis(2-chloroethoxy) methane		10 U	10 U
120-83-2	2,4-Dichlorophenol		10 U	10 U
120-82-1	1,2,4-Trichlorobenzene		10 U	10 U
91-20-3	Naphthalene		28	27
108-47-6	4~Chloroaniline		10 U	10 U
87~68~3	Hexachlorobutadiene		10 U	10 U
59-50-7	4-Chloro-3-methylphenol		BJ	8.7
91-57-6	2Methylnaphthalene		22	22
77-47-4	Hexachiorocyclopentadiene		10 U	10 U
88-06-2	2,4,6-Trichicrophenol		10 U	10 U
95- 9 5-4	2,4,5-Trichlorophenol		25 U	25 U
91~58~7	2Chtoronaphthalene		10 U	10 U
88-74-4	2-Nitroanlline		25 U	25 U
131113	Dimethyl phthalate		10 U	10 U
208 96 8	Acenaphthylene		10 U	10 U
60 6 ~ 2 0 ~ 2	2,6-Dinitrotoluene		10 U	10 U
99-09-2	3~Nitroaniline		25 U	25 U
83-32-9	Acenaphthene		8 J	8.1

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIVOLATILES ASP91-2 LEACHATE DATA

		FIELD SMINIFLE ID.		
		EPA SAMPLE ID: LAB SAMPLE ID:	LC001	LC001-RE
			AS035593	AS035593FI
		SOG:	GW01S	GW01S
		MATRIX:	WATER	WATER
		SAMPLED:	05/11/93	05/11/93
		RECEIVED:	05/11/93	05/11/93
		EXTRACTED:	05/14/93	05/14/93
		ANALYZED:	05/28/93	06/01/93
		DIL. FACTOR:	1	t
CAS NO	COMPOUND	UNITS:	UG/L	UG/L
51-28-5	2,4~Dinitrophenol		25 U	25 U
100-02-7	4-Nitrophenol		25 U	25 U
132-84-9	Dibenzo(a,h)anthracene		10 U	10 U
121 – 14 – 2	2,4-Dinitrotoluene		10 U	10 U
84-68-2	Diethyl phthalate		8 J	9 J
7005-72-3	4-Chlorodiphenylether		10 U	10 U
88-73-7	Fluorene		2 J	2 J
100-01-6	4-Nitroaniline		25 U	25 U
534-52-1	4,6-Dinitro-2-methylphenol		25 U	25 U
86-30-6	N-nitrosodiphenylamine		10 U	100
101-55-3	4 – Bromophenyl phenyl ether		10 U	10 U
118-74-1	Hexachlorobenzene		10 U	10 U
87-88-5	Pentachlorophenol		25 U	25 U
85-01-8	Phenanthrene		0.9 J	t.J
120-12-7	Anthracene		0.9 J	10 U
86-74-8	Carbazote		2 J	2 J
84-74-2	Di-n-butyl phthalate		0.6 J	0.7 J
206-44-0	Fluoranthene		10 U	10 U
129-00-0	Pyrene		10 U	10 U
85-68-7	Butyl benzył phthalate		10 U	10 U
91-94-1	3,3'-Dichlorobenzidine		10 U	10 U
56-55-3	Berzo(a)anthracene		10 U	10 U
218-01-9	Chrysene		10 U	10 U
117-81-7	Bis(2-ethylhexyl) phthalate		10 U	1 0 U
117-84-0	Di-n-octyl phthalate		10 U	10 U
205-89-2	Benzo(b)fluoranthene		10 U	10 U
207-08-9	Benzo (k)ffuoranthene		10 U	10 U
50-32-8	Berzo(a)pyrene		10 U	10 U
193-39-5	Indeno (1,2,3-cd) pyrene		10 U	10 U
53-70-3	Dibenzofuran		5.1	5.3
191-24-2	Berzo(ghl)perylene		10 U	10 U

FIELD SAMPLE ID:

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data PESTICIDES/ARCOLORS ASP91-3 LEACHATE DATA

	FIELD SAMPLE ID:	LC001
	EPA SAMPLE ID:	LC-001
	LAB SAMPLE ID:	AS035593
	SDG:	GW01S
	MATRIX:	WATER
	SAMPLED:	05/11/93
	RECEIVED:	05/11/93
	EXTRACTED:	05/14/93
	ANALYZED:	05/27/93
	DIL FACTOR:	1
COMPOUND	UNITS:	UG/L
alpha-BHC		0.050 U
beta-BHC		0.050 U
delta –BHC		0.050 U
gamma-BHC (Lindane)		0.0043 J
Heptachlor		0.050 U
Aldrin		0.050 U
		0.050 U
Endosulfan I		0.050 U
Dieldrin		0.10 U
		0.10 U
•		0.50 U
		0.10 U
		0.10 U
		0.050 U
		0.017 J
		5.0 U
		1.0 U
		2.0 U
		1.0 U
		1.0 U
		1.0 U
		1.0 0
Arocior 1260		1.0 U
	alpha – BHC beta – BHC detta – BHC gamma – BHC (Lindane) Heptachlor Aldrin Heptachlor epoxide Endosulfan I	EPA SAMPLE ID: LAB SAMPLE ID: SDG: MATRIX: SAMPLED: RECEIVED: RECEIVED: EXTRACTED: ANALYZED: DIL FACTOR: UNITS: alpha – BHC beta – BHC deta – BHC deta – BHC (Undane) Heptachlor Aldrin Heptachlor epoxide Endosultan I Dietirin 4,4' – DDE Endrin Endosultan II 4,4' – DDD Endosultan II 4,4' – DDT Methoxychlor Endrin ketone Endrin aldehyde alpha – Chlordane Toxaphene Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1244 Aroclor 1254

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data TOTAL METALS LEACHATE DATA

		FIELD SAMPLE ID:	LC001
		EPA SAMPLE ID:	LC-001
		LAB SAMPLE ID:	6198
		SDG:	GW01S
		MATRIX:	WATER
		SAMPLED:	05/11/93
		RECEIVED:	05/11/93
		ANALYZED:	5/14-28/93
		% SOLIDS	0
CAS NO	COMPOUND	UNITS:	UG/L
7429-90-5	Aluminum - Total		3650 N
7440-36-0	Antimony – Total		5.0 UN
7440-38-2	Arsenic - Total		5.0 B
7440-39-3	Barlum – Total		1700
7440-41-7	Beryllium - Total		5.0 U
7440-43-9	Cadmium - Total		1.0 UWN
7440-70-2	Calcium - Total		305000 B
7440-47-3	Chromlum – Total		10 U*
7440-48-4	Cobalt - Total		20.0 U
7440-50-8	Copper – Total		19.2 B
7439-89-6	Iron - Total		201000 *
7439-92-1	Lead - Total		30.0 UEN
7439-95-4	Magnesium – Total		52700
7439-96-5	Manganese - Total		4000 N°
7439-97-6			0.20 U
7440-02-0	Nickel – Total		30.0 U
7440-0 9 -7			70100
7782~49 —2			4.0 U
7440-22-4			0.20 BW
7440-23-5			797 0000
7440-2 8 -0			5.0 U
7440-02-2			20.0 U
7440-68-8	Zinc Total		153
57-12-5	Cyanide — Total		13.6

NYSDEC -- PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data VOLATILES ASP91-1 SURFACE SOIL DATA

		EIELD CAMOLE IO	0000				
		FIELD SAMPLE ID:	SS001	SS002	SS003	SS004	SS004-PE
		EPA SAMPLE ID:	SS-001	SS-002	SS-003	SS-004	SS-004FE
		LAB SAMPLE ID:	AS035600	AS035602	AS035603	AS035601	AS035601RI
		SDG:	SS001	SS001	SS001	SS001	SS001
		MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	05/10/93	05/10/93	05/10/93	05/10/93	05/10/93
		RECEIVED:	05/11/93	05/11/93	05/11/93	05/11/93	05/11/93
		ANALYZED:	05/1 4/93	05/17/ 93	05/18 /83	05/18/93	05 /18/93
CAS NO	COLUDOURD	DIL. FACTOR:	1	1	1	1	1
CAS NO	COMPOUND	UNITS:	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
74-87-3	Chloromethane		16 U	11 U	12 U	19 U	19 U
74-83-9	Bromomethane		16 U	11 U	12 Ų	19 U	19 U
75-01-4	Vinyl chloride		18 U	110	12 U	19 U	19 U
75-00-3	Chloroethane		18 U	11 U	12 U	19 U	19 U
75-09-2	Methylene chloride		10 BJ	140 B	95 B	90 B	65 B
67-64-1	Acetone		18	65	6 8 J	14 BJ	15 BJ
75-15-0	Carbon Disulfide		16 U	11 U	12 U	19 U	19 U
75-35-4	1,1 -Dichloroethene		18 U	11 U	12 U	19 U	19 U
75-34~3	1,1-Dichloroethane		18 U	110	12 U	19 U	19 U
540 - 59 - 0	1,2 - Dichloroethene (Total)		18 U	110	12 U	19 U	19 U
67-66-3	Chloroform		18 U	ŧŧΰ	12 U	19 U	19 U
107-08-2	1,2-Dichloroethane		16 U	11 U	12 U	19 U	19 U
78-93-3	2-Butanone		15 J	9 BJ	5 BJ	12 BJ	12 BJ
71-55-6	1,1,1-Trichloroethane		18 U	110	12 U	19 U	19 U
58-23-5	Carbon Tetrachloride		t8 U	110	12 U	19 U	19 U
75-27-4	Bromodichloromethane		18 U	11U	12 U	19 U	19 U
78-87-5	1,2-Dichloropropane		18 U	11U	12 U	19 U	19 U
10061-02-6	cls-1,3-Dichloropropene		16 U	ttU	12 U	19 U	19 U
79-01-6	Trichloroethene		18 U	11U	12 U	19 U	19 U
124-48-1	Dibromochloromethane		18 U	110	12 U	19 U	19 U
78-00-5	1,1,2-Trichtoroethane		18 U	110	12 U	19 U	19 U
71-43-2	Bertzene		2 BJ	110	12 0	19 Ú	19 U
10061-01-5	trans-1,3-Dichloropropene		18 U	110	12 0	19 U	19 Ú
75-25-2	Bromoform		18 U	110	12 0	19 U	19 Ú
108-10-1	4-Methyl-2-pentanone		16 U	110	12 U	19 Ü	19 Ŭ
591-78-6	2-Hexanone		18 U	110	12 U	19 U	19 U
127 184	Tetrachtoroethene		18 U	11U	12 U	19 (19 U
79-34-5	1,1,2,2-Tetrachloroethane		18 U	110	12 U	19 U	19 U
108-88-3	Totuene		18 U	110	12 U	19 U	19 U
108-90-7	Chlorobenzene		16 U	110	12 U	19 U	19 U
100-41-4	Ethyl benzene		16 U	110	12 U	19 U	19 U
100-42-5	Styrene		18 U	110	12 U	19 U	19 U
1330-20-7	Total Xylenes		18 U	110	12 U	19 U	19 0
	•						.50

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, inc., Analytical Data SEMIYOLATILES ASP81-2 SURFACE SOIL DATA

		FIELD SAMPLE ID:	SS001	SS002	SS003	SS004
		EPA SAMPLE ID:	SS-001	SS-002	SS-003	SS-004
		LAB SAMPLE ID:	AS035600	AS035602	AS035603	AS035601
		SDG:	SS001	SS001	SS001	SS001
		MATRIX:	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	05/10/93	05/10/93	05/10/93	
		RECEIVED:	05/11/93	05/11/93	05/11/93	05/10/93
		EXTRACTED:	05/1 4/93	05/14/ 93	05/14/ 93	05/11/93
		ANALYZED:	05/28/93	05/28/93	08/01/93	05/14/93 05/28/93
		DIL FACTOR:	1	1		03/20/83
CAS NO	COMPOUND	UNITS:	UG/KG	UG/KG	1 UG/ KG	1
0.0.10	CONT. COND	ONITS.	UG/NG	UG/NG	UG/NG	UG/KG
108-95-2	Phenol		530 U	400 U	370 U	620 U
111-44-4	Bis(2-chloroethyl) ether		530 U	400 U	370 U	620 U
95~57~8	2-Chlorophenol		530 U	400 U	370 U	620 U
541-73-1	1,3-Dichloroberzene		530 U	400 U	370 U	820 U
106-46-7	1,4-Dichlorobenzene		530 U	400 U	370 U	620 U
95-50-1	1,2-Dichlorobenzene		530 U	400 U	370 U	620 U
95-48-7	2-Methylphenol		530 U	400 U	370 U	820 U
108-60-1	Bis(2-chloroisopropy) ether		530 U	400 U	370 U	620 U
108-44-5	4-Methylphenol		530 U	400 U	370 U	820 U
621-64-7	N-Nitroso-Di-n-propylamine		530 U	400 U	370 U	820 U
87-72-1	Hexachloroethane		530 U	400 U	370 U	820 U
98-95-3	Nitrobertzene		530 U	400 U	370 U	820 U
78-59-1	Isophorone		530 U	400 U	370 U	620 U
88-75-5	2-Nitrophenol		530 U	400 U	370 U	620 U
105-67-9	2,4—Dimethylphenol		530 U	400 U	370 U	820 U
111-91-1	Bis(2-chloroethoxy) methane		530 U	400 U	370 U	820 U
120-83-2	2,4-Dichlorophenol		530 U	400 U	370 U	620 U
120~82-1	1,2,4 - Trichlorobenzene		530 U	400 U	370 U	620 U
91-20-3	Naphthalene		29 J	400 U	370 U	620 U
108-47-8	4-Chloroaniiine		530 U	400 U	370 U	620 U
87-68-3	Hexachtorobutadiene		530 U	400 U	370 U	820 U
59-50-7	4-Chloro~3-methylphenoi		530 U	400 U	370 U	620 U
91-57-6	2-Methylnaphthalene		530 U	400 U	370 U	620 U
77-47-4	Hexachtorocyclopentadiene		530 U	400 U	370 U	620 U
88-08-2	2,4,6 - Trichtorophenol		530 U	400 U	370 U	620 U
95-95-4	2,4,5~Trichlorophenol		1300 U	960 U	910 U	1 500 U
91-58-7	2-Chloronaphthalene		530 U	400 U	370 U	820 U
88-74-4	2-Ntrouniline		1300 U	960 U	910 U	1500 U
131-11-3	Dimethyl phthalate		530 U	400 U	370 U	620 U
208-96-8	Acenaphthylene		530 U	400 U	370 U	620 U
606-20-2	2,8-Dinitrotoluene		530 U	400 U	370 U	820 U
99-09-2	3-Nitroaniline		1300 U	960 U	910 U	1 500 U
83-32-9	Acenaphthene		530 U	400 U	370 U	620 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIVOLATILES ASP91-2 SURFACE SOIL DATA

		FIELD SAMPLE ID:	SS001	SS002	\$8003	SS004
		EPA SAMPLE ID:	SS-001	SS-002	SS-003	SS-004
		Lab sample (D:	AS035600	AS035602	AS035603	AS035601
		SDG:	SS001	SS001	SS001	SS001
		MATRIX:	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	05/10/93	05/10/93	05/10/93	05/10/93
		RECEIVED:	05/11/93	05/11/93	05/11/93	05/11/93
		EXTRACTED:	05/14/93	05/14/93	05/14/93	05/14/93
		ANALYZED:	05/28/93	05/28/93	06/01/93	05/28/93
		DIL FACTOR:	1	1	1	1
CAS NO	COMPOUND	UNITS:	UG/KG	UG/KG	UG/KG	UG/KG
51-28-5	2,4-Dinitrophenol		1300 U	960 U	910 U	1500 U
100-02-7	4-Nitrophenol		1300 U	960 U	9100	1500 U
132-64-9	Dibenzo(a,h)anthracene		530 U	400 U	370 U	620 U
121 – 14 – 2	2,4 - Dinitrotoluene		530 U	400 U	370 U	620 U
84-68-2	Diethyl phthalate		40 BJ	34 BJ	33 BJ	65 BJ
7005-72-3	4 – Chlorodiphenylether		530 U	400 U	370 U	620 U
88-73-7	Fluorene		530 U	400 U	370 U	620 U
100-01-6	4-Nitroaniline		1300 U	960 U	910 U	1 500 U
534-52-1	4,6-Dinitro-2-methylphenol		1300 U	960 U	91Q U	1500 U
88-30-6	N-nitrosodiphenylamine		530 U	400 U	370 U	62 0 U
101 -55-3	4-Bromophenyl phenyl ether		530 U	400 U	370 U	620 U
118-74-1	Hexachlorobenzene		530 U	400 U	370 U	620 U
87-86-5	Pentachlorophenol		1300 U	960 U	910 U	1500 U
85-01-8	Phenanthrene		78 J	400 U	27 J	110 J
120-12-7	Anthracene		530 U	400 U	370 U	620 U
88-74-8	Carbazole		530 U	400 U	370 U	620 U
84-74-2	DI-n-butyl phthalate		530 U	400 U	370 U	620 U
208-44-0	Fluoranthene		140 J	400 U	33 J	210 J
129-00-0	Pyrene		110 J	400 U	39 J	200 J
85-68-7	Butyl benzyl phthalate		530 U	400 U	40 J	620 U
91 ~ B4 ~ 1	3.3 - Dichforobenzidine		530 U	400 U	370 U	620 U
56-55-3	Benzo (a) anthracene		57 J	400 U	370 U	84 J
218-01-9	Chrysene		713	400 U	370 U	100 J
117-81-7	Bis(2-ethythexyl) phthalate		5 30 U	400 U	180 J	6 20 U
117 - 84 -0	Di-n-octyl phthalate		530 U	400 U	3 7 0 U	620 U
205-99-2	Berizo (b) fluoranthene		7 6 J	400 U	370 U	110 J
207-08-9	Bertzo(k)fluoranthene		52 J	400 U	370 U	80 J
50-32-8	Berzo(a)pyrene		40 J	400 U	370 U	59 J
193-39-5	Indeno (1,2,3-cd) pyrene		34 J	400 U	370 U	53 J
53-70-3	Dibenzofuran		530 U	400 U	370 U	620 U
191-24-2	Benzo (ghl) perytene		32 J	400 U	370 U	58 J

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recre Environmental, Inc., Analytical Data PESTICIDES/AROCLORS ASP81-3 SURFACE SOIL DATA

		FIELD SAMPLE ID:	SS001	SS002	SS003	SS004
		EPA SAMPLE ID:	SS-001	SS-002	SS-003	SS-004
		LAB SAMPLE ID:	AS035600	AS035602	AS035603	AS035601
		SDG:	SS001	SS001	SS001	SS001
		MATRIX:	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	05/10/93	05/10/93	05/10/93	05/10/93
		RECEIVED:	05/11/93	05/11/93	05/11/93	05/11/93
		EXTRACTED:	05/14/93	05/14/93	05/14/93	05/14/93
		A NALYZE D:	05/28/93	05/26/ 93	05/28/93	05/28/93
		DIL FACTOR:	1	1	1	1
CAS NO	COMPOUND	UNITS:	UG/KG	UG/KG	UG/KG	UG/KG
319-84-6	alpha-BHC		2.7 U	1.9 LJ	2.0 U	3.2 U
319-85-7	beta-BHC		2.7 U	190	2.0 U	3.2 U
319-86-8	delta-BHC		2.7 U	19U	2 Q U	0.51 JP
58-89-9	gamma-BHC (Lindane)		2 7 U	1.9 U	500	3.2 U
76-44-8	Heptachlor		27 U	180	2 D U	3 2 U
309-00-2	Aldrin		0.41 JP	19U	200	3 2 U
1024-57-3	Heptachlor epoxide		2.7 U	19U	2 Q U	32U
959-98-8	Endosulfan I		27U	1.9 U	2.5	320
60 – 57 – 1	Diektrin		23 JP	37U	0. 58 JP	1.7 JP
72-55-9	4,4'-DDE		53U	3.7 U	4.0 U	82U
72-20-8	Endrin		53U	37U	4 Q U	62U
33213-65-9			53 U	37U	30 P	82U
72-54-8	4,4'-DDO		1 0 JP	37U	4.0 U	6.2 U
1031-07-8	Endosulfan Sulfate		0.91 J	0. 55 JP	12	6.2 U
50-29-3	4,4'-DDT		53U	3.7 U	4.Q U	8 2 U
72-43-5	Methoxychlor		27 U	19 U	20 U	32 U
53494-70-5			5 3 U	3.7 U	4.Q U	6.2 U
7421-83-4	Endrin afdehyde		53 U	3.7 U	4.0 U	62 U
5103-71-9	alpha-Chlordane		27 U	1.9 U	2.2 P	3 2 U
5103-74-2	gamma-Chlordane		0.47 J	1.9 U	2.0 U	3.2 U
8001-35-2	Toxaphene		270 U	19 0 U	200 U	320 U
12674-11-2			53 U	37 U	40 U	62 U
11104-28-2			110 U	78 U	81 U	130 U
11141-18-5	Aroctor 1232		53 U	37 U	40 U	62 U
53469-21-9	Aroctor 1242		53 U	37 U	40 U	62 U
12672-29-6	Aroclor 1248		5 3 U	37 U	40 U	62 U
11097-69-1	Aracior 1254		53 U	37 U	40 U	62 U
11096-82-5	Aroclar 1260		71 P	37 U	40 U	73 P

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data TOTAL METALS SURFACE SOIL DATA

		FIELD SAMPLE ID:	SS001	SS002	SS003
		EPA SAMPLE ID:	SS-001	SS-002	SS-003
		LAB SAMPLE ID:	6308	6311	6312
		SDG:	SS001	SS001	SS001
		MATRIX:	SOIL	SOIL	SOIL
		SAMPLED:	05/10/93	05/10/93	05/10/93
		RECEIVED:	05/11/93	05/11/93	05/11/93
		ANALYZED:	5/14-6/4 /93	5/1 4-21/ 93	5/14 - 6/4/9 3
		% SOLID S	57.8	88.7	62.5
CAS NO	COMPOUND	UNITS:	MG/KG	MG/KG	MG/KG
7429-90-5	Aluminum - Total		8040	7880	8290
7440-36-0	Antimony – Total		20 0 UN	13 4 UN	19.0 UN
7440-38-2	Arsenic – Total		10 SN	59 N	7.1 N
7440-39-3	Barlum – Total		90 6	37 6 B	38.1 B
7440-41-7	Beryllium – Total		17U	110	1.8 U
7440-43-9	Cadmium – Total		0.69 BN	0.31 BN	0.75 BN
7440-70-2	Calcium — Total		16500	22600	18100
7440-47-3	Chromium – Total		116	116	14 4
7440~48~4	Cobalt - Total		8.7 U	8 1 B	63 U
7440-50-6	Copper – Total		24 1	20.8	27 6
57-12-5	Cyanide – Total		2.1 U*	43*	25.
7439~89-6	Iron ~ Total		61400 E	19100 E	20700 E
7439-92-1	Lead - Total		63 8 + *	48 6 + *	31.1*
7439-95-4	Magnesium – Total		5110	6850	6960
7439-96-5	Manganese – Total		477 EN	548 EN	442 EN
7439~97-6	Mercury – Total		0.18 U	0.11U	0.15 U
7440-02-0	Nickel – Total		16 1	20.2	33 7
7440-09-7	Potassium – Total		1190 B	1090 B	1 040 B
7782-49-2	Selenium — Total		1.3 UWN	0.88 UN	1.2 UWN
7440-22-4	Silver Total		0 070 U	0.040 U	0. 060 U
7440-23-5	Sodium - Total		508 8	205 B	253 U
7440-28-0	Thafflum – Total		1. 8 U	1.1 U	1.6 U
7440-62-2	Vanadium Yotal		16 1 B	14.2	14.6 B
7440-66-6	Zinc - Total		171E	79.2Ē	37 7 E

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data EP TOX METALS SURFACE SOIL DATA

		FIELD SAMPLE ID:	SS001	SS003	SS004
		EPA SAMPLE ID:	SS-001	SS-003	SS-004
		LAB SAMPLE ID:	6280	6312	6283
		SDG:	SS001	SS001	SS001
		MATRIX:	WATER	WATER	WATER
		SAMPLED:	05/10/93	05/10/93	05/10/93
		RECEIVED:	05/11/93	05/11/93	05/11/93
		ANALYZED:	5/14 - 6/4/93	5/14-6/4/93	5/14-6/4/93
		% SOLIDS	0	0	0
CAS NO	COMPOUND	UNITS:	UG/L	UG/L	UG/L
	Aluminum - Dissolved		200 U*	410 *	240 *
	Antimony – Dissolved		50 U	5 Q U	5.0 U
	Arsenic – Dissolved		4 0 U	4 O U	4.0 U
	Barium - Dissolved		338	82 5 B	344
	Beryllium – Dissolved		50 U	50U	5.0 U
	Cadmium – Dissolved		0.40 BN	1 2 BN	0.70 BN
	Calcium - Dissolved		119000 BN	91000	85800
	Chromium – Dissolved		10 U"	10 U*	10 U*
	Cobalt - Dissolved		20 0 U	20 Q U	20.0 U
	Copper – Dissolved		10 U	10 U	1Q U
	Cyanide - Dissolved		10 UN	10 UN	10 UN
	Iron – Dissolved		450	70 O U	190
	Lead - Dissolved		3.0 UW	30UW	3.0 UW
	Magnesium – Dissolved		9450	14000	16200
	Manganese – Dissolved		782 N*	847 N*	725 N*
	Mercury – Dissolved		0 20 U	0.20 U	0.20 U
	Nickel - Dissolved		30 0 U	30 ti U	32.0 B
	Potasslum – Dissolved		1510 B	4360 B	1200 B
	Selenlum - Dissolved		4 0 UW	4 0 U	4.0 U
	Silver ~ Dissolved		0. 20 U	0.20 U	0. 20 U
	Sodlum - Dissolved		10100	800 U	3960 B
	Thaillum — Dissolved		50 U	5.0 U	5.0 U
	Vanadium - Dissolved		20 0 U	20.0 U	20.0 U
	Zinc – Dissotved		31 5 *	259 *	77.0 *

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data VOLATILES ASP81-1 SUB-SURFACE DATA

CAS NO	COMPOUND	FIELD SAMPLE ID: EPA SAMPLE ID: LAB SAMPLE ID: SDG: MATRIX: SAMPLED: RECEIVED: ANALYZED: DIL FACTOR: UNITS:	DR1 DR-1 AS032584 MW3D WATER 04/08/93 04/08/93 04/12/93	SSMW1 - S SS - MW1S AS030802 MW1S SOIL 03/24/93 03/24/93	SSMW2 – S SS – MW2 AS032585 MW3D SOIL 04/08/93 04/08/93	SSMW3-D SS-MW3D AS032288 MW3D SOIL 04/08/93 04/08/93	SSB3 SS-B3 AS032288 MW3D SOIL 04/06/93 04/06/93	SSMW4 SS-MW4 AS030601 MW1S SOft. 03/24/93 03/24/93
CASINO	COMP COND	UNITS.	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
74-87-3	Chloromethane		10 U	12 U	12 U	11 U	11 U	12 U
74-83-9	Bromomethane		10 U	12 U	12 U	110	110	12 U
75-01-4	Vinyl chloride		10 U	12 U	12 U	ຄົນ	11 U	12 U
75-00-3	Chloroethane		10 U	12 U	12 U	110	11 Ü	12 U
75-09-2	Methylene chloride		6 BJ	12 B	10 BJ	14 B	12 B	14 B
87-64-1	Acetone		10 U	19	19	10 J	14	16
75-15-0	Carbon Disulfide		10 U	12 U	1 J	11 Ü	11 U	12 U
75-35-4	1,1-Dichloroethene		10 U	1 2 U	12 U	11 Ü	11 U	12 U
75-34-3	1,1-Dichloroethane		10 U	12 U	12 U	11 U	11 U	12 U
540-59-0	1,2-Dichloroethene (Total)		10 U	12 U	12 U	11 U	11 U	12 U
67-68-3	Chloroform		2 J	12 U	12 U	11 U	11 U	12 U
107-06-2	1,2-Dichloroethane		10 U	12 U	12 U	1 1 U	11 U	12 U
78-93-3	2-Butanone		10 U	12 U	5 J	11 U	8 J	12 U
71-55-8	1,1,1—Trichloroethane		10 U	12 U	12 U	11U	11 U	12 U
58-23-5	Carbon Tetrachloride		10 U	12 U	12 U	11 U	11 U	12 U
75-27-4	Bromodichloromethane		3 J	12 U	12 U	11 U	11 U	12 U
78-87-5	1,2-Dichloropropane		10 U	12 U	12 U	11 U	1† U	1 2 U
	cis-1,3-Dichloropropene		10 U	12 U	1 2 U	110	11 U	12 U
79-01-8	Trichloroethene		10 U	12 U	12 U	11 U	11 U	12 U
124-48-1	Dibromochloromethane		53	12 U	12 U	11 U	11 U	12 U
79-00-5	1,1,2-Trichtoroethane		10 U	12 U	12 U	11 U	110	12 U
71-43-2	Serzene		10 U	12 U	13	11 U	11 U	12 U
10081~01~5 75~25~2	trans-1,3-Dichloropropene Bromoform		10 U	12 U	12 U	110	11 U	12 U
75-25-2 108-10-1	4-Methyl-2-pentanone		3.1	12 U	12 U	110	11 U	1 2 U
591-78-6	2~Hexanone		10 U	12 U	1 2 U	11 U	11 U	1 2 U
127-18-4	Zerrexanone Tetrachloroethene		10 U	12 U	12 U	11 U	11 U	12 U
79-34-5			10 U	12 U	12 U	110	11 U	12 U
78-34-5 108-88-5	1,1,2,2-Tetrachloroethane Tofuene		10 U	12 U	12 U	110	11 U	12 U
108883	Chlorobenzene		10 U	120	12 U	110	1 J	12 U
100-41-4			10 U	120	12 U	110	11 U	12 U
100-41-4	Ethyl benzene Styrene		10 U	12 U	12 U	110	11 U	12 U
1330-20-7	Total Xylenes		10 U	120	12 U	110	11 U	12 U
1550-20-7	TOTAL Aylettes		10 U	12 U	1 2 U	110	11 U	12 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, linc, Analytical Data SEMIVOLATILES ASP91-2 SUB-SURFACE DATA

		FIELD SAMPLE ID: EPA SAMPLE ID: LAB SAMPLE ID: SOG: MATRIX: SAMPLED: RECEIVED: EXTRACTED: ANALYZED: DIL FACTOR:	DR1 DR-1 AS032584 MW3D WATER 04/08/93 04/08/93 04/14/93 1	SSMW1 – S SS – MW1S AS030602 MW1S SOIL 03/24/93 03/24/93 03/24/93 04/01/93	SSMW2 - S SS - MW2 AS032585 MW3D SOIL 04/08/93 04/08/93 04/12/93 04/15/93	SSMW3 – D SS – MW3D AS032288 MW3D SOIL 04/06/93 04/06/93 04/06/93	SSB3 SS-B3 AS032288 MW3D SOIL 04/06/93 04/06/93 04/15/93	SSMW4 SS-MW4 AS030601 MW15 SOIL 03/24/93 03/24/93 03/24/93 04/01/93
CAS NO	COMPOUND	UNITS:	UG/L	UG/ KG	UG/KG	UG/KG	UG/KG	UG/KG
108-95-2 111-44-4 95-57-8 541-73-1 106-48-7 95-50-1 108-60-1 108-60-1 108-44-5 621-64-7 67-72-1 98-95-3 78-59-1 188-75-5 105-67-9 111-91-1 120-83-2 120-82-1 91-20-3 108-47-8 87-88-3 59-50-7 91-57-8 91-58-7	Phenol Bls(2—chloroethyl) ether 2—Chlorophenol 1,3—Dichloroberzene 1,4—Dichloroberzene 1,2—Dichloroberzene 2—Methylphenol Bls(2—chloroisopropyl) ether 4—Methylphenol N—Nitroso—Di—n—propylamine Hexachloroethane Nitroberzene Isophorone 2—Nitrophenol 2,4—Dimethylphenol Bis(2—chloroethoxy) methane 2,4—Dichloroethoxy) methane 4—Chloroanilline Hexachloroburzene Naphthalene 4—Chloroanilline Hexachloroburzenel 1,2,4—Trichloroberzenel Naphthalene 4—Chloroanilline Hexachlorotoutadlene 4—Chloroanilline 1,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,4,5—Trichlorophenol 2,5—Dintrotolutene 2,8—Dintrotolutene		10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	400 U 400 U	390 U 120 J 390 U 390 U	380 U 380 U	370 U 370 U	380 U 380 U
89-09-2 83-32-8	3-Nitroanifine Acenaphthene		25 U 10 U	960 U 400 U	940 U 390 U	920 U 380 U	910 U 370 U	930 U 380 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIVOLATILES ASP81-2 SUB-SURFACE DATA

		FIELD SAMPLE ID:	DR1	SSMW1-S	SSMW2-S	SSMW3-D	SSB3	SSMW4
		EPA SAMPLE ID:	DR-1	SS-MW1S	SS-MW2	SS-MW3D	SS-B3	SS-MW4
		LAB SAMPLE ID:	AS032584	AS030602	AS032585	AS032288	AS032288	AS030601
		SDG:	MW3D	MW1S	MW3D	MW3D	MW3D	MWIS
		MATRIX:	WATER	SOIL	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	04/08/93	03/24/93	04/08/93	04/06/93	04/06/93	03/24/93
		RECEIVED:	04/08/93	03/24/93	04/08/93	04/06/93	04/06/93	03/24/93
		EXTRACTED:	04/13/93	03/29/93	04/12/93	04/09/93	04/09/93	03/29/93
		ANALYZED:	04/14/93	04/01/93	04/15/93	04/15/93	04/15/93	04/01/93
		DIL FACTOR:	1	1	1	1	1	1
CAS NO	COMPOUND	UNITS:	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
51-28-5	2,4-Dinitrophenol		25 U	960 U	940 U	920 U	910 U	930 U
100-02-7	4 – Nitrophenol		25 U	960 U	940 U	920 U	910 U	930 U
132-84-9	Dibenzo(a,h)anthracene		10 U	400 U	390 U	380 1/	370 U	380 U
121-14-2	2,4 - Dinitrotoluene		10 U	400 U	390 U	380 U	370 U	380 U
84-68-2	Diethyl phthalate		10 U	400 U	390 U	380 U	370 U	380 U
7005-72-3	4 - Chlorodiphenylether		10 U	400 U	390 U	380 U	370 U	380 U
88-73-7	Fluorene		10 U	400 U	390 U	380 U	370 U	380 U
100-01-6	4-Nitroanliine		25 U	960 U	940 U	920 U	910 U	930 U
534-52-1	4,6-Dinitro-2-methylphenol		25 U	960 U	940 U	920 U	910 U	930 U
86-30-6	N-nitrosodiphenylamine		10 U	400 U	390 U	380 U	370 U	380 U
101-55-3	4 – Bromophenyl phenyl ether		10 U	400 U	390 U	380 U	370 U	380 U
118-74-1	Hexachlorobenzene		10 U	400 U	390 U	380 U	370 U	380 U
87-88-5	Pentachlorophenol		25 U	960 U	940 U	920 U	910 U	930 U
85-01-8	Phenanthrene		10 U	400 U	390 U	380 U	370 U	380 U
120-12-7	Anthracene		t ū U	400 U	390 U	380 U	370 U	380 U
86-74-8	Carbazole		1Q U	400 U	390 U	380 U	370 U	380 U
84-74-2	DI-n-butyi phthalate		10 U	210 J	390 U	38¢ U	370 U	110 J
208-44-0	Fluoranthene		10 U	400 U	390 U	380 U	370 U	380 U
129-00-0	Pyrene		10 U	400 U	390 U	380 U	370 U	380 U
85-68-7	Butyl benzyl phthalate		10 U	400 U	390 U	380 U	370 U	380 U
#1-94-1	3,3 - Dichloroberzidine		10 U	400 U	390 U	380 U	370 U	380 U
56-55-3	Berzo (a) anthracene		10 U	400 U	390 U	380 U	370 U	380 U
218-Q1 <i>-</i> 8	Chrysene		10 U	400 U	390 U	380 U	370 U	380 U
117-81-7	Bls(2+ethylhexyl) phthalate		4.5	48 J	390 U	380 U	370 U	380 U
117-84 <i>-</i> 0	DI-n-octyl phthelate		10 U	400 U	390 U	380 U	370 U	380 U
205~88 -2	Bertzo(b)fluoranthene		10 U	400 U	390 U	380 U	370 U	380 U
207-08-8	Benzo (k)fluoranthene		10 U	400 U	390 U	380 U	370 U	380 U
60-32 - 8	Berzo(a)pyrene		10 U	400 U	390 U	380 U	370 U	380 U
183-39-5	fndeno(1,2,3-cd)pyrene		10 U	400 U	390 U	380 U	370 U	380 U
53-70-3	Dibenzofuran		10 U	400 U	390 U	380 U	370 U	380 U
191 - 24 - 2	Berzo (ghi) perylene		10 U	400 U	390 U	380 U	370 U	380 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, inc., Analytical Data PESTICIDES/AROCLORS ASP91-3 SUB-SURFACE DATA

		FIELD SAMPLE ID:	DR1	SSMW1-S	SSMW2-S	SSMW3-D	SSB3	SSMW4
		EPA SAMPLE ID:	DA-1	SS-MW1S	SS-MW2	SS-MW3D	SS-B3	SS-MW4
		LAB SAMPLE ID:	AS032584	AS030602	AS032585	AS032288	AS032288	AS030601
		SDG:	MW3D	MW1S	MW3D	MW3O	MW3D	MWIS
		MATRIX:	WATER	SOIL	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	04/08/93	03/24/93	04/08/93	04/06/93	04/06/93	03/24/93
		RECEIVED:	04/08/93	03/24/93	04/08/93	04/06/93	04/06/93	03/24/93
		EXTRACTED:	04/13/93	03/29/93	04/12/93	04/09/93	04/09/93	03/29/93
		ANALYZED:	04/15/93	04/02/93	04/18/93	04/19/93	04/19/93	04/02/93
		DIL FACTOR:	1	1	1	1	1	1
CAS NO	COMPOUND	UNITS:	UG/L	UG/KG	UG/KG	UG/KG	UG/KG	UG/KG
319-84-6	alpha-BHC		0.050 U	4.0 U	20 U	2.0 U	1.9 U	3.8 U
319-85-7	beta-BHC		0.050 U	4 O U	201	2.0 U	1.9 U	3.8 U
319-86-8	delta-BHC		0.050 U	4 0 U	20 U	2.0 U	1.9 U	3.8 U
58-89-9	gamma~BHC (Lindane)		0.050 U	20U	20 U	2.00	1.9 U	2.0 U
78-44-8	Heptachior		0.050 U	20U	20 U	200	1.8 U	2.0 U
309-00-2	Aldrin		0.050 U	200	2.0 U	2.00	0.21 JP	2.0 U
1024-57-3	Heptachlor epoxide		0.050 U	40 U	2 0 U	2 0 U	1.9 U	38 U
959-98-8	Endosulfan I		0.050 U	81 U	2 0 U	2 0 U	1.9 U	78 U
60-57-1	Dieldrin		Q. 10 U	40 U	3.9 U	3.8 U	3.7 U	38 U
72-55-9	4,4'-DDE		0. t0 U	40 U	38 U	3.8 U	3.7 U	38 U
72-20-8	Endrin		0 10 U	40 U	3 9 U	3 8 U	3.7 U	38 U
	Endosulfan II		0.10 U	40 U	12JP	360	3.7 U	38 U
72-54-8	4,4'-DDD		0 10 U	40 U	3 9 U	38U	3.7 U	38 U
1031-07-8	Endosulfan Sulfate		0 10 U	20U	39U	38U	3.7 U	2.0 U
50-29-3	4,4'-DDT		0 10 U	20U	39 U	3 8 U	3.7 U	2.0 U
72-43-5	Methoxychlor		0 50 U	4 O U	20 U	20 U	19 U	3.8 U
	Endrin ketone		0 10 U	20U	3 9 U	3.8 U	3.7 U	2.0 U
7421-83-4	Endrin aldehyde		0.10 U	4 9 U	39 U	3 8 U	3.7 U	3.8 U
5103-71-9	alpha-Chlordane		0.050 U	4 0 U	2 O U	20U	1.9 U	3.8 U
5103-74~2	gamma-Chlordane		0.050 U	4 O U	2 Ô U	20U	1.9 U	3.8 U
8001-35-2	Toxaphene		5.0 U	400	200 U	200 U	190 U	3.8 U
	Aroclor 1018		1.0 U	4 0 U	39 U	38 U	37 U	3.8 U
	Aroclor 1221		2.0 U	2.0 U	79 U	77 U	78 U	2.0 U
	Aroclor 1232		1.0 U	2.0 U	39 U	38 U	37 U	2.0 U
	Aracior 1242		1.0 U	2.0 U	39 U	38 U	37 U	2.0 U
12672-29-6			1.0 U	200	39 U	38 U	37 U	2.0 U
11097~69~1			1.0 U	20 U	39 U	38 U	37 U	20 U
11096-82-5	Aroclar 1260		1.0 U	200 U	39 U	38 U	37 U	200 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data TOTAL METALS SUB-SURFACE DATA

		FIELD SAMPLE ID:	DRI	SSMW1-S	SSMW2-S	MW3-D	SSMW4
		EPA SAMPLE ID:	DR-1	SS-MW1S	SS-MW2	SS-MW3D	SS-MW4
		LAB SAMPLE ID:	AS032584	5300	5396	AS032286	5299
		SDG:	MW3D	MW1S	MW3D	MW3D	MW1S
		MATRIX:	WATER	SOIL	SOIL	SOIL	SOIL
		SAMPLED:	04/08/93	03/24/93	04/08/83	04/06/93	03/24/93
		RECEIVED:	04/08/93	03/24/93	04/08/93	04/06/93	03/24/83
		ANALYZED:	4/17-27/93	4/13-16/93	4/17-27/93	4/17 -27/93	4/13-16/93
		% SOLIDS	0	81.3	88.2	85.6	87.9
CAS NO	COMPOUND	UNITS:	UG/L	MG/KG	MG/KG	MG/KG	MG/KG
7429-90-5	Aluminum – Total		218	8670	9380	12100	6120
7440~36-0	Antimony - Total		5.0 U	13.7 U	13.6 UN	13.8 UN	12.4 U
7440-38-2	Arsenic - Total		4.0 U	7.7	8.2	91	5.9
7440-39-3	Barlum - Total		178 B	34.5 B	32.18	69 7	26.2 B
7440-41-7	Beryllum – Total		5.0 UN	1.1 U	1.1 UN	1.2 UN	1.0 U
7440-43-9	Cadmium - Total		0.20 BN	0.37 B	0.42 B+N	0.16 BN	0.46 BS
7440 - 70-2	Calcium - Total		50800 *	19500	13400 *	34100 *	16800
7440-47-3	Chromium - Total		10 U*	13.3	12.1*	17.4 *	10
7440 - 48-4	Cobalt - Total		20.0 UN	7.7 B	8.3 BN	10 BN	5.7 B
7440~50-B	Copper – Total		10 UN*	24.1	18.8 N*	28.7 N*	16.7
57-12-5	Cyanide - Total		10 UN	1.3 U	1,4 UN	1.5 UN	1.4 U
7439-89-6	iron – Total		1990 *	23700	21100 *	27100 *	18800
7439-92-1	Lead - Total		3.0	18.8S	12.1	19.2 S	9.3
7439-95-4	Magnesium – Total		14400	8510	5880	11800	6080
7439-96-5	Manganese – Total		59.5 N	524	450 N	482 N	552
7439-97-8	Mercury - Total		0.20 U	0.11 U	0.12 U	0.11U	0.11 U
7440-02-0	Nickel - Total		30.0 UN	24.5	22.9 N	33.4 N	17.1
7440-09-7	Potassium — Total		1660 B	927 B	1170	2120	720 B
7782-49-2	Selenium — Total		4.0 UN	0.93 UW	0.B7 UN	0.91 UN	0.87 UW
7440-22-4	Silver - Total		10 UN	0. 050 U	2.3 UN	2.3 UN	0.040 U
7440-23-5	Sodium - Total		20500	162 U	215 B	261 B	810 B
7440-28-0	Thafflum - Total		5.0 UW	1.2 UW	1.1 U	1.1 UW	1.1 UW
7440-62-2	Vanadium Total		20.0 U	16.6	15.4	19.9	11.7
7440-88-8	Zinc - Total		10.5 BN	95.5	98.3 N	75.8 N	74. 8

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, inc., Analytical Data VOLATILES ASP81-1 GROUNDWATER DATA

		FIELD SAMPLE ID: EPA SAMPLE ID: LAB SAMPLE ID: SOG: MATRIX: SAMPLED: RECEIVED: ANALYZED: DIL FACTOR:	GW01-D GW-01D AS035590 GW01S WATER 05/1093 05/11/93 05/11/93	GW01-S GW-018 AS035589 GW01S WATER 05/10/93 05/11/93 05/11/93	GW02-D GW-02D AS035596 GW01S WATER 05/11/93 05/11/93	GW02 - DRE GW-02DRE AS035596RI GW01S WATER 05/11/93 05/11/93 05/17/93	GW02-S GW-028 AS035595 GW018 WATER 05/11/93 05/11/93	GW03-S GW-03S AS035591 GW01S WATER 05/11/93 05/11/93	GW004 GW-004 AS035584 GW01S WATER 05/11/83 05/11/83 05/15/83	GW005 GW-005 AS035598 GW01S WATER 05/10/93 05/11/93 05/15/93	TB TRIP BLANK AS035599 GW01S WATER 05/10/93 05/11/93 05/15/93 1
CAS NO	COMPOUND	UNITS:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
74-87-3 74-83-9 75-01-4 75-00-3 75-09-2 67-64-1 75-15-0 75-35-4 75-34-3 540-59-0 87-68-3 107-06-2 78-93-3 71-55-8 56-23-5 75-27-4 78-87-5 10061-02-6 79-01-8 124-48-1 79-00-5 71-43-2 10061-01-5 75-25-2 1081-01-1 591-78-6 127-18-4 78-34-5	Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Bergene		10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 13 B 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 20 B 14 B 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 21 67 25 B 15 B 10 U 2 J 150 10 U 13 B 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 21 B 12 B 10 U 10 U 13 J 13 B 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 23 B 14 B 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 2 BJ 4 BJ 10 U 10 U 10 U 10 U 10 U 10 U 10 U 10 U
78-34-3 108-88-3 108-90-7 100-41-4 100-42-5 133020-7	1,1,2,2-1 etrachioroethane Tofuene Chloroberizene Ethyl benzene Styrene Total Xylenes		10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U 10 U	10 U 10 U 10 U 10 U 10 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIVOLATILES ASP91-2 GROUNDWATER DATA

		FIELD SAMPLE ID: EPA SAMPLE ID: LAB SAMPLE ID: SDG: MATRIX: SAMPLED: RECEIVED: EXTRACTED: ANALYZED: OILL FACTOR:	GW01-D GW-01D AS035590 GW01S WATER 05/10/93 05/11/93 05/14/93	GW01-S GW-01S AS035589 GW01S WATER 05/10/93 05/11/93 05/14/93	GW02 - D GW - 02D AS035598 GW01S WATER 05/11/93 05/11/93 05/14/93	GW02-S GW-02S AS035595 GW01S WATER 05/11/93 05/11/93 05/14/93	GW03-S GW-03S AS035591 GW01S WATER 05/11/93 05/11/93 05/14/93 05/28/93	GW004 GW-004 AS035594 GW019 WATER 05/11/93 05/11/93 05/14/93 05/28/93	GW005 GW-005 AS035598 GW019 WATER 05/11/93 05/11/93 05/14/93
CAS NO	COMPOUND	UNITS:	UG/L	UG/L	nev _r	UG/L	UG/L	nevr	UG/L
108-95-2	Phenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U
111-44-4	Bis(2-chloroethyl) ether		10 U	10 U	10 U	100	10 U	10 U	10 U
95-57-8	2-Chlorophenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U
541-73-1	1,3-Dichloroberizene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
108-48-7	1,4-Dichloroberzene		1 0 U	10 U	10 U	10 U	10 U	10 U	10 U
95-50-1	1,2-Dichloroberzene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
95-48-7	2-Methylphenol		10 U	10 U	1 0 U	10 U	10 U	10 U	10 U
108-60-1	Bis(2-chloroisopropy) ether		10 U	1 0 U	1 0 U	1 0 U	10 U	10 U	10 U
108-44-5	4-Methylphenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U
621-64-7	N-Nitroso-Di-n-propylamine		10 U	10 U	10 U	10 U	10 U	10 U	1 0 U
67-72-1 98-95-3	Hexachloroethane		10 U	10 U	1 0 U	1 0 U	10 U	10 U	10 U
	Nitrobergene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
78-59-1 88-75-5	Isophorone		10 U	10 U	10 U	10 U	10 U	10 U	10 U
105-87-9	2-Nitrophenol		10 U	1 0 U	10 U	10 U	10 U	10 U	10 U
111-91-1	2,4-Dimethylphenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U
120-83-2	Bis (2-chloroethoxy) methane		10 U	10 U	10 U	10 U	10 U	10 U	10 U
120-63-2	2,4-Dichlorophenol		10 U	10 U	10 U	10 U	10 U	10 U	1 0 U
91-20-3	1,2,4 – Trichlorobenzene Naphthalene		10 U	10 U	1 0 U	10 U	10 U	10 U	10 U
108-47-8	4~Chioroaniline		10 U	10 U	10 U	10 U	10 U	10 U	10 U
87~68~3			10 U	10 U	10 U	10 U	1 0 U	10 U	1 0 U
59-50-7	Hexachlorobutadiene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
91-57-8	4-Chloro-3-methylphenol 2-Methylnaphthalene		10 U	10 U	10 U	100	10 U	10 U	1 0 U
77-47-4	∠⊷merrynapnmaiene Hexachtorocyclopentadiene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
86-06-2	2,4,8-Trichlorophenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U
95-95-4	2,4,5~Trichlorophenol		10 U	10 U	10 U	10 U	10 U	10 U	10 U
91~58~7			25 U	25 U	25 U	25 U	25 U	25 U	25 U
88-74-4	2Chloronaphthalene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
131-11-3	2-Nitroantiine		25 U	25 U	25 U	25 U	25 U	25 U	25 U
208-98-8	Dimethyl phthalate		10 U	10 U	10 U	10 U	10 U	10 U	10 U
208-96-6 608-20-2	Acenaphthylene 2,8-Dinitrotoluene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
89-09-2			10 U	10 U	10 U	10 U	10 U	10 U	10 U
	3-Nitroaniline		25 U	25 U	25 U	25 U	25 U	25 U	25 U
83-32-9	Acenaphthene		10 U	10 U	10 U	10 U	10 U	10 U	10 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data SEMIYOLATILES ASP91-2 GROUNDWATER DATA

CAS NO	COMPOUND	FIELD SAMPLE ID: EPA SAMPLE ID: LAB SAMPLE ID: SOG: MATRIX: SAMPLED: RECEIVED: EXTRACTED: ANALYZED: DIL FACTOR: UNITS:	GW01-D GW-01D AS035590 GW01S WATER 05/10/93 05/11/93 05/14/93 05/28/93 1 UG/L	GW01-S GW-01S AS033589 GW01S WATER 05/10/93 05/11/93 05/14/93 05/14/93	GW02 - D GW - 02D AS035598 GW01S WATER 05/1 1/93 05/1 1/93 05/14/93	GW02 - S GW - 028 AS033585 GW01S WATER 05/11/83 05/11/83 05/14/83	GW03-S GW-03S AS035561 GW01S WATER 05/11/93 05/11/93 05/14/93	GW004 GW-004 AS035594 GW01S WATER 05/11/93 05/11/93 05/14/93	GW005 GW-005 AS035588 GW01S WATER 05/10/93 05/11/93 05/14/93
G-G-HO	COM COILD	UNITS.	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
51-28-5 100-02-7 132-64-9 121-14-2 64-86-2 7005-72-3 86-73-7 100-01-6 534-52-1	2,4-Dinitrophenol 4-Nitrophenol Dibenzo(a,h)anthracene 2,4-Dinitrotoluene Diethyl phthalate 4-Chlorodiphenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol		25 U 25 U 10 U 10 U 10 U 10 U 25 U 25 U	25 U 25 U 10 U 10 U 10 U 10 U 12 U 25 U 25 U	25 U 25 U 10 U 10 U 10 U 10 U 25 U 25 U	25 U 25 U 10 U 10 U 10 U 10 U 25 U 25 U	25 U 25 U 10 U 10 U 10 U 10 U 25 U 25 U	25 U 25 U 10 U 10 U 10 U 10 U 25 U 25 U	25 U 25 U 10 U 10 U 10 U 10 U 25 U
86-30-6	N-nitrosodiphenylamine		10 U	10 U	10 U	10 U	10 U	10 U	10 U
101-55-3	4-Bromophenyl phenyl ether		10 U	10 U	10 U	10 U	10 U	10 U	10 U
118-74-1	Hexachlorobenzene		10 U	to u	1 0 U	10 U	10 U	10 U	10 U
87-88-5 85-01-8	Pentachlorophenol Phenanthrene		25 U	25 U	25 U	25 U	25 U	25 U	25 U
120-12-7	Anthracene		10 U 10 U	10 U 10 U	10 U 10 U	10 U	10 U	10 U	10 U
88-74-8	Carbazole		10 U	10 U	10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U
84-74-2	DI-n-butyl phthalate		10 U	10 U	10 U	10 U	10 U	10 U	100
208-44-0	Fluoranthene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
129-00-0	Pyrene		10 U	10 U	10 U	10 U	tou	10 Ŭ	toù
85-68-7	Butyl benzyl phthalate		10 U	10 U	10 U	10 U	10 U	10 U	tou
91-94-1	3,3'-Dichlorobenzidine		10 U	10 U	10 U	10 U	10 U	10 U	10 U
56-55-3	Berzo(a)anthracene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
218-01-9 117-81-7	Chrysene		10 U	10 U	10 U	10 U	10 U	10 U	10 U
117-84-0	Bis(2-ethylhexyl) phthalate DI-n-octyl phthalate		10 U 10 U	10 U	10 U	10 U	10 U	10 U	10 U
205-99-2	Bertzo(b)fluoranthene		10 0	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U 10 U	10 U
207-08-9	Benzo(k)fluoranthene		10 0	100	100	100	100	100	100
50-32-8	Bergo(a)pyrene		10 U	100	10 U	100	100	100	100
183-39-5	Indeno(1,2,3-cd)pyrene		10 U	10 U	10 U	100	100	100	10 U
53-70-3	Dibenzofuran		10 U	10 0	10 U	10 U	10 U	100	100
191-24-2	Berzo(ghi)perylene		tou	100	10 U	10 U	10 Ú	100	10 U

NYSDEC - PSA WORK ASSIGNMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data PESTICIDES/AROCLORS ASP91-3 GROUNDWATER DATA

		FIELD SAMPLE ID:	GW01-D	GW01-S	GW02-D	GW02-S	GW03-S	GW004	GW005
		EPA SAMPLE ID:	GW-01D	GW-01S	GW-02D	GW-029	GW-039	GW-004	GW-005
		LAB SAMPLE ID:	AS035590	AS035589	AS035596	AS035595	AS035591	AS035594	AS035598
		SDG:	GW01S	GW01S	GW01S	GW01S	GW01S	GW018	GW01S
	•	MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER	WATER
		SAMPLED:	05/10/93	05/10/93	05/11/93	05/11/93	05/11/93	05/11/93	05/10/93
		RECEIVED:	05/11/93	05/11/93	05/11/93	05/11/93	05/11/93	05/11/93	05/11/93
		EXTRACTED:	05/1 4/93	05/14/ B3	05/14/93	05/14/93	05/14/93	05/14/93	06/14/93
		ANALYZED:	05/27/93	05/27/93	05/27/93	05/27/93	05/27/93	05/27/93	05/28/93
		DIL FACTOR:	1	1	1	1	1	1	1
CAS NO	COMPOUND	UNITS:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
319-84-6	alpha-BHC		0.050 U	0.050 U	0.050 U	0.05Q U	0 050 U	0.050 U	0.050 U
319-85-7	beta BHC		0.050 U	0.050 U	0 050 U	0.050 U	0 050 U	0.050 U	0.050 U
319-88-8	delta -BHC		0.050 U	0.050 U	0.050 U	0.050 U	0 050 U	0.050 U	0.050 U
58-89-9	gamma-BHC (Lindane)		0.050 U	0.050 U	0.050 U	0.050 U	0 050 U	0.050 U	0.050 U
76-44-8	Heptachlor		0.050 U	0.050 U	0 050 U	0.050 U	0.050 U	0.050 U	0.050 U
309-00-2	Aldrin		0.050 U	0.050 U	0 050 U	0.050 U	0.050 U	0.050 U	0.050 U
1024-57-3	Heptachlor epoxide		0.050 U	0.050 U	0.050 U	0.050 U	0 050 U	0.050 U	0.050 U
959-98-8	Endosulfan I		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
60-57-1	Dieldrin		0.10 U	Ø.10 U	0.10 U	0.1 0 U	0.10 U	0.1Q U	0.10 U
72-55-9	4,4'-DDE		0 10 U	Q 10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
72-20-8	Endrin		0.10 U	0.10 U	0.10 U	0.10 U	0 t0 U	0.10 U	0.10 U
33213-65-9			0 10 U	Q 1Q U	0.1Q U	0.1Q U	0 1Q U	0.1QU	0.10 U
72-54-8	4,4'-DDD		0.10 U	0 1QU	0.10 U	0.1Q U	0 10 U	Ø.1Q U	0.10 U
1031-07-8	Endosulfan Sulfate		0 10 U	D 10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
50-29-3	4,4'-DDT		0 10 U	0 10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
72-43-5	Methoxychlor		0.50 U	0 50 U	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U
	Endrin ketone		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
7421~93-4	Endrin aldehyde		0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
5103-71-9	alpha-Chlordane		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
5103-74-2	gamma-Chlordane		0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
8001-35-2	Toxaphene		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
12674-11-2			1.0 U	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11104-28-2			2.0 U	200	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
11141-18-5			1.0 U	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
53489219			1.0 U	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
12672-29-6			1.0 U	100	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11097-69-1			1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
11096-82-5	Aroclor 1260		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U

NYSDEC - PSA WORK ASSKINMENTS ETE SANITATION SITE Recra Environmental, Inc., Analytical Data TOTAL METALS GROUNDWATER DATA

		FIELD SAMPLE ID:	G W 01~D	GW01-S	GW02-D	G W02 -S	GW03-S	GW004
		EPA SAMPLE ID:	GW-01D	GW-019	GW-02D	GW-023	GW-039	GW-004
		LAB SAMPLE ID:	6195	6192	6201	6200	6196	6199
		SDG:	GW01\$	GW01S	GW01S	GW01S	GW019	GW018
		MATRIX:	WATER	WATER	WATER	WATER	WATER	WATER
		SAMPLED:	05/10/93	05/10/93	05/11/93	05/11/93	05/11/93	05/11/93
		RECEIVED:	05/11/93	05/11/93	05/11/93	05/11/93	05/11/93	05/11/93
		ANALYZED:	5/14 - 2 8/93	5/14-29/93	5/14-28/93	5/14-29/83	5/14-28/93	5/14→ 28/93
		% SOLID S	0	0	0	0	0	0
CAS NO	COMPOUND	UNITS:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
7429-90-5	Aluminum - Total		3740 N	6600 N	285 N	21600 N	2050 N	8380 N
7440-36-0			5.0 UN	5.0 UN	5.0 UN	5.0 UN	5.0 UN	5.0 UN
7440-38-2			6.0 B	4.0 U	4.0 U	13.0	4.0 UW	12.0
7440-39-3	Barlum – Total		183 B	67.7 B	67.3 B	201	159 B	550
7440-41-7	Beryllum — Total		5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
7440-43-9			0.20 BN	0.40 BN	0.20 BN	0.70 BN	0.50 BN	3.0 BSN
7440-70-2			86600	72800	50600	148000 B	135000 B	282000 B
7440-47-3	Chromium - Total		10 U*	10 U*	10 U*	27.0 *	10 U*	27.8*
7440-48-4	Cobalt - Total		20.0 U	20.0 U	20.0 U	25.4 B	20.0 U	20.0 U
7440-50-8	Copper — Total		11.3 B	22.2 B	10 U	56.7	12.7 B	34.9
7439 - 89 - 6	Iron - Total		12600 *	15300 *	358 *	43900 *	4120 *	20400 *
7439-92-1	Lead - Total		4.0 N	7.0 N	3.0 UN	31.0 N	3.0 UWN	6.0 UEN
7439-95-4	Magnesium – Total		19600	26800	15900	38000	31300	79700
7439-96-5	Manganese - Total		522 N*	450 N°	68.6 N°	1260 N°	4010 N*	13000 N*
7439-97-6	Mercury — Total		0. 20 U	0. 20 U	0.20 U	0.20 U	0.20 U	0.20 U
7440-02-0	Nickel - Total		30.0 U	30.0 U	30.0 U	46.9	49.9	163
7440-09-7	Potassium - Total		3850 B	2940 B	3630 B	7080	20800	803 00
7782-49-2	Selenium - Total		4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
7440-22-4	Silver - Total		0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.40 BW
7440-23-5	Sodium - Total		52200	6660	109 00	25000	270000	2880000
7440-28-0	Thaillum — Total		5.0 U	5.0 U	5.0 U	5.0 ∪	5.0 U	5.0 U
7440-62-2	Vanadium ~ Total		20.0 U	20.0 U	20.0 U	38.6 B	20.0 U	20.0 U
7440-66-6	Zinc Total		38.1	82.6	21.4	410	35.6	499
57-12-5	Cyanide - Total		10 U	10 U	10 U	10 U	10 U	12.9

APPENDIX E SELECTED REFERENCES

ALMOR, 1984.

17:147-56

ETE SANITATION

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF SOLID AND HAZARDOUS WASTE

GENERATOR FORM
PART - 1

50 WOLF ROAD ALBANY, NEW YORK 12233

HAZARDOUS WASTE DISPOSAL QUESTIONNAIRE

PLEASE COMPLETE AN	ICS #: 01005	<u>ರಿತ</u>			SING	G UNIT, RO	OM 525
COMPANY NAME	ALMOR CORPOR		木木		CODE	JMBER	100503
COMPANY MAILING ADDRESS	PO BOX 270 WARSAW	-	NY	:	T EE		ZIP CODE
PLANT NAME (if different)			145	5 9			ELEPHONE 716-786-22
PLANT ADDRESS (if different) STREET	•	CITY		•	STATE		ZIP CODE
PRINCIPAL BUSINESS OF PLANT	alke Cabinets and	Slelva	6	Sifer mil	लो इ		
PLEASE ANSWER THE	FOLLOWING QUESTIC)			•		ECK ONE
1. SINCE JANUARY 1, 1 OWNER S /OP ER ATOR! INSTRU C TIO N S) AT Y	S OF THIS FACILITY	GENERATED	ANY HAZA	RDOUS WA		, D	YES NO
IF THE ANSWER IS YES IF THE ANSWER IS NO							<u>.</u>
NAME, ETC. IF YES L SINCE JANUARY 1, 1 Warsaw Elevat	AS A CHANGE IN OWN UST THE NAMES BY V 1952 TO THE PRESENT Or Co. to Wat:	NERSHIP, CO VHICH THIS Son Elev	ORPORATE FACILITY E	NAME OR C	PERATOR DENTIFIED	120	YES
to Turnbull E Almor Corp. 2 Warsaw, N.Y.			ev. Co.	196 196	57		
NAME, ADDRESSES,	AND TEL EPHONE NU	MBERS		198	ATES		•
3. DESCRIBE THE DOC OBTAINED (SEE INS		CH DATA TH	AT IS INCL	UDED ON P	ART-II WAS		
Almor Corpor	ation shippin	g paper	3	1980) to 198	2	
	DOCUMENT DESCRI	PTION		C	DATES		
	STATEMENTS SUBM	MYKNOWL	EDGE AND E	BELIEF THAT	INFORMATI PUNISHABLE	ON SUPPL	EDISTRUEAN
210.45 OF THE PENA Cassius D.		OFFIGER O	R AUTHORI	ZED REPRE	SENTATIVE	Supv.	9-10-84 DATE
Clessius	IGNATURE	Se.	716-786	-2225			

NAME	ICS NUMBER - EPA ID NUMBER
Almor Corporation	0100503
ADDRESS 220 South Main St	reet
CITY Warsaw	STATE ZIP N.Y. 14569

ENTERED FOR DEC 0 4 1984

GENERATOR FORM
PART - II

ENTERED EDP. __3 () 4 1984

DATE 9-10-84

I. HAZ ARDO US W AST (SEE INSTRI	JCTIONS)	2. DESCRIPTION OF HAZARDOUS WASTES DEPOSITED AT THIS LOCATION (SEE INSTRUCTIONS)	3. EPA WASTE CODE	4. WASTE DISPOSED OF QUANTITY OF WASTE (TONS)	FIGUID 3	SOLID	5. WASTE DISPOSAL DATES	6. TRANSPORTER OF HAZARDOUS WASTE (SEE INSTRUCTIONS)
unknown		WXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	un- known	unknown			1952 to 1967.	unknown
Warsaw Villa Landfill War N.Y. Wyoming	Baw W.BB	Lightly Leaded Paint Sludge	D008	unknown T 30 linshr		K 3	7/67 to 6/74	Almor Corp.
E.T.E. Sanit andfill Inc lainesville, lyoming Cty.	•	Lightly Leaded Paint Sludge	D008	unknown ~ 30 pm /y)	(X	6/74 to 4/79	Almor Corp.
ECOS Northern Falls,	ıl 7	Lead Free Paint	DOC! N 131	62.85 tons	X	x	6/80 to 4/82	Almor Corp.
		From 1912 to 1467, Warryn ard he Mr. Grene's hustor	Elever	for lumpury was	140	1	Cust In.	· Tuendez
	•	NOTE: Almor Corporation from the Elevator	purcha: Company	sed the building	3			

Gamesville Center @Gainesville ROAD CLASSIFICATION Primary highway, hard surface Secondary highway, Light-duty road, hard or .. improved surface
Unimproved road hard surface U. S. Route State Route Interstate Route

ES, 1993.

MEMORANDUM TO FILE

	JOB NO
	FILE DESIGNATION
•	
	DATE 10/8/93 TIME
PHONE CALL FROM Tom Abrams (ES)	PHONE NO
PHONE CALL TO Keyin Glazer (NYSDEC -	
CONFERENCE WITH	<u> </u>
PLACE	
SUBJECT KEVIN WOS NYSDEC INSpector	during Drum removal at ETE.
Drums were removed from Janu	eng 1991 to september 1991.
4 Hough 19 drums were overprete	d only 11 were determined to
contain horadous weste by TCLP.	For dromo were reportedly removed
on 1/20/91, our was removed	on 4/19/91 and 5 more were
removed on 9/13/91. Small qua	ntities of stained soils Cossociated
with the drums) were removed a	and placed on plastic sheeting
for on-sit storage. Drums 2	- ,
	mo laying on the surface. Fartially
buried drums were left in pl	ace to avoid sottital
reptures No sampling has b	ella done on on-site dreens.
SIGN	NED Thomas H. Decom

FROST, 1993.

FROST ASSOCIATES

P.O. Box 495, Essex, Connecticut 06426 (203) 767-1254 Fax (203) 767-7069

May 19, 1993

To: Tom Abrams

Engineering-Science 290 Elwood Davis Rd. Liverpool, NY 13088

Fr: Bob Frost

Frost Associates P.O. Box 495 Essex, Conn **0**6426

Tel: (203) 767-1**254** Fax: (203) 767-7**06**9

|Sub: ETE Sanitat**io**n S**ite**

Broughton Road Gainsvile Township Wyoming County

Site Longitude: **78.127083** Site Latitude: **42.64944**1

The CENTRACTS report below identifies the population, households, and private water wells of each Block Group that lies within, or partially within, the 4, 3, 2, 1, .5, and .25, mile "rings" of the latitude and longitude coordinates above. CENTRACTS may have up to ten radii of any length. 1000 block groups, and 15000 block group sides.

CENTRACTS uses the 1990 Block Group population and Block Group house count data found in the Census Bureau's 1990 STF-1A files. The sources of water supply data are from the Bureau's 1990 STF-3A files. The boundary line coordinates of the Block Groups were extracted from the Census Bureau's 1990 TIGER/Line Files.

CENTRACTS reports are created with programs written by Frost Associates, P.O. Box 495, Essex, Conn. The code was written using Microsoft's Quick-Basic Ver. 4.5.

Latitude and Longitude coordinates identifying a site are entered in degrees and decimal degrees. One or more county files holding Block Group boundary lines are selected for use by CENTRACTS by determining whether the site coordinates fall within the minimum and maximum Lat\Lon coordinates of each county in the state.

Each Block Group line segment has Lat\Lon coordinates representing the "From" and "To" ends of that line. All coordinates from the selected county files are read and converted from degrees, decimal degrees to X\Y miles from the site location. Each line segment is then examined whether it lies within or partially within the maximum ring from the site.

The unique Block Group ID numbers of each line segment that lie within the maximum ring are retained. All Block Group boundary lines matching the Block Group numbers are then extracted from the respective county files to obtain all sides of the in cluded Block Groups. Boundary records are then sorted in adjacent side order to determine the shape and area of each Block Group polygon.

A method to solve for the area of a polygon is to take one-half the sum of the products obtained by multiplying each X-coordinate by the difference between the adja

cent Y-coordinates. For a polygon with coordinates at adjacent angles A, B, C, D, and E. The formula can be expressed:

Area = $1/2\{Xa(Ye-Yb)+Xb(Ya-Yb)+Xc(Yb-Yd)+Xd(Yc-Ye)+Xe(Yd-Ya)\}$

For each ring, the selected Block Groups will be inside, outside, or intersected by the ring. When a polygon is intersected, the partial Block Group area within that ring is calculated using the method described below.

When a ring intersects a Block Group, the intersect points are solved and plotted at the points where the ring enters and exits the shape. The chord line, a line within the circle connecting the intersect points is determined. This chord line is used to calculate the segment area, the half moon shape between the chord line and the ring, and the sub-polygon created by the chord line and the Block Group boundaries that lie outside the ring.

The segment area is subtracted from the sub-polygon area to determine the area of the sub-polygon outside the ring. The area outside the ring is then subtracted from the area of the entire polygon to arrive at the inside area. This inside area is then divided by the tract's total area to determine the percentage of area within the ring. This process is repeated for each block group that is intersected by one of the rings. The total area, partial area, and percentage of partial area of those block groups within, or partially within a ring, are held in memory for the report.

On occasion, the algorithm described above is unable to determine the area of the partial area. Within the report program is a "Paint" routine which allows an enclosed shape to be highlighted. Another routine calculates the percentage of highlighted screen pixels to the pixels within the polygon. A manual entry is allowed. Both the "paint" method and manual entry method over ride the calculated method.

CENTRACTS lists, starting on page 4, all Block Groups in State, County, Census Tract, and Block Group ID order that lie within, or partially within, the maximum ring. Each Block Group is identified by a City or Town name and by the Block Group's State, County, Tract and Block Group ID number. Following is the Block Group's 1990 populution and house count extracted from the Census Bureau's 1990 STF-1A files.

The next four columns display water source data from the 1990 STF-3A files. The first column is "Units with Public system or private company source of water", followed by "Units with individual well, Drilled, source of water"; "Units with individual well, Dug, source of water".

For each ring, CENTRACTS then shows the Block Groups that are within that ring, the Block Group's total area in square miles, the partial area of the Block Group within that ring, and the partial percentage within the ring. The areas of the included Block Group and the partial areas are then totaled.

The last section tallies the demographic data within each ring. The percentage of area for each Block Group is multiplied times the census data for that Block Group and totaled for all Block Group's within the ring. Ring totals are then determined by subtracting the three mile data from the four mile, the two mile from the three mile, one from the two, etc... Population on private wells is calculated using the formula: ((Drilled + Dug Wells) / Households) * Population

No.	City	Block Group ID	E	Blk Grp People	House H olds	Public Water	Drilled Wells	Dug Wells	Other
1 2 3 4 5 6 7 8 9 10	Warsaw Warsaw Castile Castile Gastile Gainesville Gainesville Gainesville Gainesville Gainesville Gainesville Genesee Falls Genesee Falls	36121 9905 36121 9905 36121 9907 36121 9907 36121 9908 36121 9908 36121 9908 36121 9908 36121 9911 36121 9911	1 5 1 3 5 1 2 3 4 1 2	844 651 1286 426 799 835 692 794 761 839 1001	306 271 492 441 303 338 257 338 276 308 404	112 84 320 141 287 313 62 13 0 13	130 150 141 267 12 11 177 258 217 220 193	63 22 26 17 2 4 12 29 34 41 33	0 23 16 17 2 5 12 31 24 30 26
- 	Totals:		-	8928	3734	1503	1776	283	186

ETE Sanitation Site
Broughton Road
Gainesville, NY
(Gainesville Township, Wyoming County)

City	Census Tract ID		Tract People	House Count	Public Water	Drilled Wells	Dug Wells	Other Wells
Castile Castile Castile	11177 777	1 3 5	1286 426 799	492 441 303	320 141 287	141 267 12	26 17 2	16 17 2
	Sub Totals:		2511	1236	748	420	45	35
Gainesville Gainesville Gainesville Gainesville	36 12 1 9908 36 12 1 9908	2 1 3 4	692 835 794 761	257 338 338 276	62 313 13 0	177 11 258 217	12 4 29 34	12 5 31 24
	Sub Totals:		3082	1209	388	663	79	72
Genesee Falls Genesee Falls	36121 9911 36121 9911	2	1001 839	404 308	1 58 13	193 22 0	33 41	26 30
	Sub Totals:		1840	712	171	413	74	56
Warsaw Warsaw	36121 9905 36121 9905	5 1	651 844	271 306	84 112	150 130	22 63	23 0
•	Su b Totals:		1495	577	196	280	85	23

For Radius of 4 Mi., Circle Area = 50.265482

No.	City	Block Group ID	Total Area	Partial Area	% Within R a dius
2 3 4 5 6 7 8 9 10	Warsaw Warsaw Castile Castile Castile Gainesville Gainesville Gainesville Genesee Falls Genesee Falls Gainesville	36121 99051 36121 99055 36121 99071 36121 99073 36121 99081 36121 99082 36121 99083 36121 99112 36121 99111 36121 99084	16.345186 14.936536 26.654385 6.345266 3.633328 1.767671 17.225489 35.947773 35.255230 28.216600 16.583281	1.394699 1.316603 1.829183 1.229298 2.419538 1.767671 17.116001 2.444140 1.926910 2.704288 16.117151	8.53 8.81 6.86 19.37 66.59 100.00 99.36 6.80 5.47 9.58 97.19
	Totals:		202.910751	50.265480	

For Radius of 3 Mi., Circle Area = 28.274334

No.	City	Block Group ID	Total Area	Partial Area	% Within Radius
4 5 6 7 9 10	Castile Castile Castile Gainesville Gainesville Genesee Falls Genesee Falls	36121 99071 36121 99073 36121 99075 36121 99081 36121 99082 36121 99112 36121 99111 36121 99084	26.654385 6.345266 3.633328 1.767671 17.225489 35.255230 28.216600 16.583281	0.277876 0.206907 0.248131 1.767671 16.381350 0.068713 0.191084 9.132603	1.04 3.26 6.83 100.00 95.10 0.19 0.68 55.07
	Totals:		135.681244	28.274334	

For Radius of 2 Mi., Circle Area = 12.566371

No.	City	Block Group ID	Total A rea	Partial Area	% Within Radius
7	Gainesville Gainesville Gainesville	36121 99081 36121 99082 36121 99084	1.7676 7 1 17.2254 89 16.583 28 1	0.449605 5.725261 6.391504	25.43 33.24 38.54
	Totals:		35.576439	12.566370	

For Radius of 1 Mi., Circle Area = 3.141593

No.	City	Block Group ID	Total Ar ea	Partial Area	% Within Radius
	Gainesville Gainesville	36121 990 82 36121 990 84	17.225 489 16.583 28 1	1.138665 2.002927	6.61 12.08
	Totals:		33.808769	3.141593	

For Radius of .5 Mi., Circle Area = 0.785398

No.	City	Block Group ID	Total Ar ea	Partial Area	% Within Radius
	Gainesville Gainesville	36121 99 082 36121 99 084	17.225 489 16.583 281	0.001018 0.784380	0. 01 4. 73
	Totals:		33.808769	0.785398	

For Radius of .25 Mi., Circle Area = 0.196350

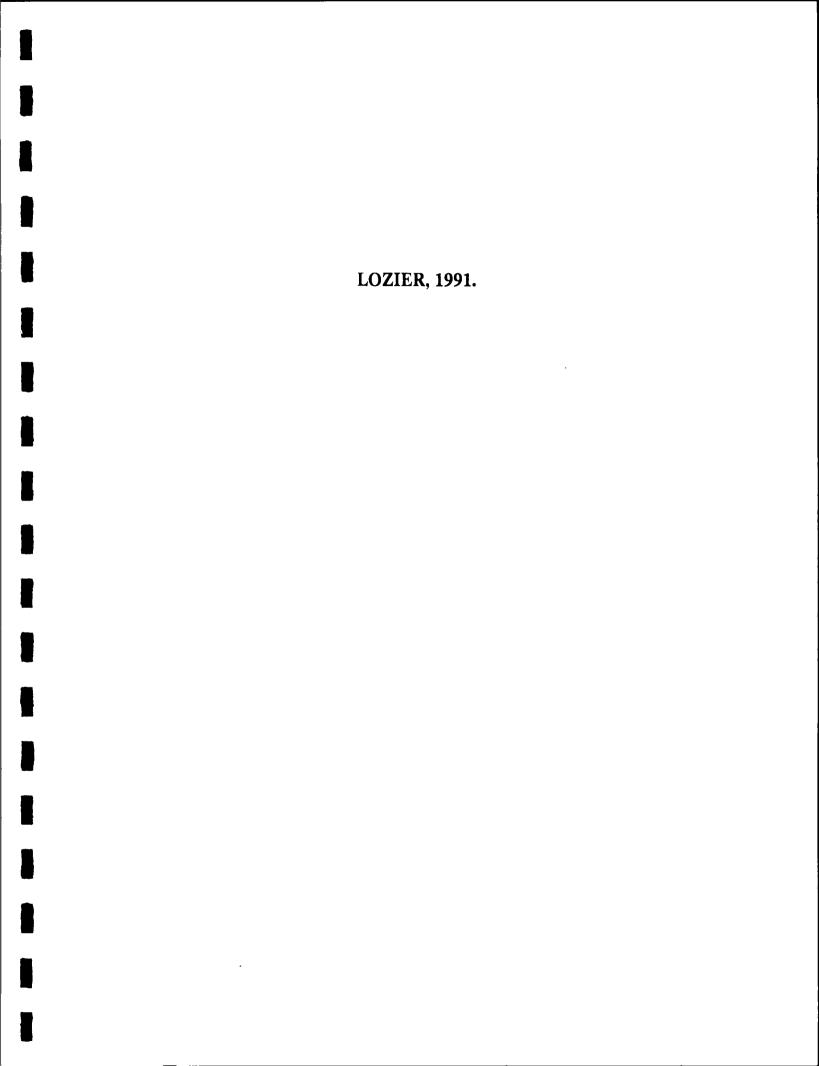
No.	City	Block Group ID	Total Ar ea	Partial Area	% Within Radius
11	Gainesville	36121 99084	16.583281	0.196350	1.18
	Totals:	16.583281	0.196350		

---- Within Ring: .5 Mile(s) and .25 Mile(s) ----

Population: 27.03 Households: 9.80 7.**71** Drilled Wells: Dug Wells: Other Water Sources: 1.21

0.85

** Population On Private Wells: 24.57


---- Within Rin**g:** .25 Mile(s) and O Mile(s) ----

Population: 9.01 3.27 2.57 0.40 Households: Drilled Wells: Dug Wells: Other Water Sources: 0.28

** Population On Private Wells: 8.19

** Total Population On Private Wells: 1538.40

```
ETE Sanitation Site
Broughton Road
Gainesville, NY
(Gainesville Township, Wyoming County)
                     Site Data =========
------------
                     Population:
                                    3283.58
                     Households:
                                    1307.16
                  Drilled Wells:
                                     540.66
                      Dug Wells:
                                     70.40
            Other Water Sources:
                                     54.40
========= Partial (RING) data =============
 ---- Within Ring: 4 Mile(s) and 3 Mile(s) ----
                     Population:
                                   1281.90
                     Households:
                                    529.69
                  Drilled Wells:
                                     228.97
                      Dug Wells:
                                     34.96
            Other Water Sources:
                                     23.66
 ** Population On Private Wells:
                                    638.73
 ---- Within Ring: 3 Mile(s) and 2 Mile(s) ----
                     Population:
                                   1265.99
                     Households:
                                    499.71
                  Drilled Wells:
                                     166.43
                      Dug Wells:
                                     17.33
            Other Water Sources:
                                     16.23
** Population On Private Wells:
                                    465.54
 ---- Within Ring: 2 Mile(s) and 1 Mile(s) ----
                     Population:
                                    598.03
                     Households:
                                    227.44
                  Drilled Wells:
                                    107.35
                      Dug Wells:
                                     13.21
           Other Water Sources:
                                     10.82
** Population On Private Wells:
                                    317.01
 ---- Within Ring: 1 Mile(s) and .5 Mile(s) ----
                     Population:
                                    101.62
                     Households:
                                     37.25
                  Drilled Wells:
                                     27.64
                      Dug Wells:
                                      3.29
           Other Water Sources:
                                      2.56
** Population On Private Wells:
                                     84.36
```


NYSDEC REGION 9 TEL:716-851-7236 Oct 09 93 10:47 No.004 P.01 ETE SHUTHTION PEROOS AS KNG ____ Post-It* brand fax transmittal memo 7671 | of pages > > 5 **NEW YORK STATE** APPROVED ENVIRONMENTAL LABORATORY. NEW YORK STATE DEC #9 DATE REC'D : 07/20/90 600 DELAWARE STREET LABORATORY NO. : 90072614 BUFFALO, NEW YORK 14202 REPORT DATE : 07/27/90 CLIENT: ATTN : KEVIN BLASER File # 9-014 SAMPLE INFORMATION SAMPLE DATE : 07/20/90 SAMPLE TIME : 10:00 AM NUMBER OF SAMPLES : 13 SAMPLE DATE TOCATION. TYPE OF SAMPLE : SOLIDS SAMPLER : MARCOS_GROUP LABORATORY REPORT PARAMETER # 1 #2 性台 #3 #4 排等 UNITS FLASHFOINT >150 >150 70.5 >150 129.7 >150 Degrees F m Samplary

HIM I COME PROTOR

NYEDOH LAB ID # 10390

NYSDEC REGION 9 TEL:716-851-7236 Oct. 09 93 10:47 No.004 P.02 LOZIER LABORATORIES, INC. NEW YORK STATE

909 CULVER ROAD ROCHESTER, NEW YORK 14609

APPROVED ENVIRONMENTAL LABORATORY

ETE. SANITATION 961005

CLIENT:

NEW YORK STATE DEC #9
600 DELAWARE AVENUE LABORATORY NO. : 90041221
BUFFALO, NY 14202 REPORT DATE : 05/10/90

ATTN: KEVIN GLASER RE : FILE # 9-014

SAMPLE INFORMATION

SAMPLE DATE : 04/09/90 LOCATION :ETE SANITATION SAMPLE TIME : (ALL DAY) TYPE OF SAMPLE :LIQUID SAMPLER :CLIENT

716-654-6350

SAMPLER : CLIENT

LABORATORY REPORT

PARAMETER DRUM #7 DRUM #9 DRUM #10 DRUM #11 LIMITS UNITS

EPTOX METALS SEE ATTACHED

FCB

SEE ATTACHED

FLASHPOINT

(74.5)

(68.42

>150 >150 140 Degrees F

CORROSIVITY

SEE ATTACHED

REACTIVITY

SEE ATTACHED

PESTICIDES

SEE ATTACHED

HERBICIDES

SEE ATTACHED

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

NYS DEC #7

FAGE 2

LABORATORY REPORT

PARAMETER DRUM #12

ETE 4/9/90

LIMITS

UNITS

EPTOX METALS

SEE ATTACHED

PCB

SEE ATTACHED

FLASHFOINT

>150

140

Degrees F

SW846 1010

CORROSIVITY

SEE ATTACHED

REACTIVITY

SEE ATTACHED

PESTICIDES

SEE ATTACHED

HERBICIDES

SEE ATTACHED

NYSDOH LAB ID # 10390

909 CULVER ROAD **HOCHESTER, NEW YORK 14609** 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

CLIENT:

NEW YORK STATE DEC #9 DATE REC'D :04/16/90

PAGE 3

LABORATORY NO. : 70041221

REFORT DATE : 05/10/90

SAMPLE INFORMATION

SAMPLE DATE

SAMPLE TIME

NUMBER OF SAMPLES :

04/09/90 (ALL DAY)

TYPE OF SAMPLE :LIQUID

LOCATION : ETE SANITATION

SAMPLER :CLIENT

LABORATORY REPORT

PARAMETER	DRUM #7	DRUM #9	DRUM #10	DRUM #1	etinu ~~~
PCB 1221	<1.0	<1.0	<1.0	<1.0	m g/kg
PCB 1232	<1.0	<1,Q	<1.0	<1.0	mg/kg
PCB 1016	<1.0	<1.0	<1.0	<1.0	mg/kg
PCB 1242	<1.0	<1.0	<1.O	<1.0	mg/kg
PCB 1248	<10	<1.0	<1.0	<1.0	mg≠kg
PCB 1254	<10	<1.0	<1.0	<1.0	mg/kg
FCB 1260	<1.0	<1.0	<1.0	<1.0	mg/kg
PCB 1262	<1.0	<1.0	<1.0	<1.0	mg/kg
PCB 1268	<1.0	<1.0	<1.0	<1.0 .	mg/kg
TOTAL POB'S	<10	<1.O	<1.0	<1.0	mg /kg

METHOD : EPA 600/4-81-045

MYSDOH LAB ID # 10390

NYSDEC REGION 9 TEL:716-851-7236 Oct 09 93 10:49 No.004 P.05

LOZIER LABORATORIES, INC.

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

CLIENT: NEW YORK STATE DEC #9

PAGE 4

DATE REC'D :04/16/90

LABORATORY NO. : 90041221

REPORT DATE :05/10/90

SAMPLE INFORMATION

SAMPLE DATE SAMPLE DATE :

NUMBER OF SAMPLES :

04/09/90 (ALL DAY)

TYPE OF SAMPLE :LIQUID

LOCATION :ETE SANITATION

SAMPLER :CLIENT

LABORATORY REPORT

PARAMETER	DRUM #12	ETE 4/9/90	UNITS
PCB 1221	<1.0	<1.0	mg∕kg
PCB 1232	<1.0	<1.0	mg/kg
PCB 1016	<1.O	<1,0	mg/kg
PCB 1242	<1.0	<1.0	mg/kg
PCB 1248	<1.0	<1.0.	mg/kg
PCB 1254	<1.0	< 1 Q	m g/ kg
PCB 1260	<1.0	<1.0	mg /kg
FCB 1262	<1.0	<1.0	wä \ k:ä
PCB 1268	<1.0 ₁	<1.0.	mg/kg
TOTAL PCB'S	. <1Q	<i.0< td=""><td>mg/kg</td></i.0<>	mg/kg
METHOD: EPA 600/4-8	1-045		₹

MYSDOR LAB ID # 10390

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

CLIENT:

NEW YORK STATE DEC #9

PAGE 5

DATE REC'D : 04/16/90

LABORATORY NO. : 70041221

REFORT DATE :05/10/90

SAMPLE INFORMATION

SAMPLE DATE : 04/09/90 SAMPLE TIME : (ALL DAY) NUMBER OF SAMPLES : 14 SAMPLE DATE

L.OCATION

:ETE SANITATION

SAMPLER : CLIENT

TYPE OF SAMPLE : SOLID

LABORATORY REPORT

PARAMETER

DRUM #1 DRUM #2 DRUM #3

DRUM #4 UNITS LIMITS

EP TOX METALS:

ARSENIC	<0.100	<0.100	<0.100	<0.100	mg/l	5.0
BARIUM	<10.0	<10.0	<10.0	<10.0	mg/l	100.0
CADMIUM	₹0.05	<0.05	<0.05	<0.05	mg/l	1.0
CHROMIUM	0.11	0.17	<0.050	0.19	mg/l	5.0
LEAD	0.49	0.28	<0.20	(10.2)	mg/l	5.0
MERCURY	<0.050	<0.050	<0.,050	<0.050	mg/1	0.2
SELENIUM	<0.100	<0.100	<0.100	<0.100	mg/1	1.0
BILVER	<0.05	<005	<0.05	<0.05	 mg/1	5.0

All analysis was performed by methods outlined in EPA SW846 "Test Methods for Evaluating Solid Waster, 3rd Ed.

NYSDOH LAB # 10390 and the second s

909 CULVER FOAD ROCHESTER, NEW YORK 14609 716-654-8350

NEW YORK STATE **APPROVED** ENVIRONMENTAL LABORATORY

CLIENT:

NEW YORK STATE DEC #9

PAGE 6

DATE REC'D

:04/16/90

LABORATORY NO. :90041221

REPORT DATE

#05/10/90

SAMPLE INFORMATION

SAMPLE DATE

94/09/90 (ALL DAY)

LOCATION

:ETE SANITATION

SAMPLE TIME

TYPE OF SAMPLE : SOLID SAMPLER

NUMBER OF SAMPLES :

:CLIENT

LABURATORY REPORT

PARAMETER DRUM #5 DRUM #6 DRUM #8 DRUM #13 UNITS LIMITS

EP TOX METALS:

ARSENIC <0.100 <0.100 <0.100 **KQ. 100** mg/l 5.0 RARTIM CIRCO 1100 0 110 a CADMIUM <0.05 <0.05 <0.05 <0.05 ma/l 1.0 CHROMIUM < 0...05 0.08<0.05 <0.050 3.0 mg/I LEAD) <0.20 <0.20 1.87 <0.20 5.0 mg/1MERCURY <0.050 <0.050 <0.050 <0.050 mg/I0.2 SELENIUM <0.100. <0.100 <0.100 <0.100 mg/11.0 SILVER <0.05 KO,05 <0.05 <0.05 mg/l

All analysis was performed by methods outlined in EPA SW846 "Test Methods for Evaluating Solid Waste", 3rd Ed.

NYSDOH LAB # 10390.

909 CULVER ROAD ROCHESTER, NEW YORK 14809 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

CLIENT:

NEW YORK STATE DEC #9

PAGE 7

DATE RECED

:04/16/90

LABORATORY NO. : 90041221

REPORT DATE

:05/10/90

SAMPLE INFORMATION

SAMPLE DATE : 04/07/90
SAMPLE TIME : (ALL DAY)
NUMBER OF SAMPLES : 14

TYPE OF SAMPLE : SOLID

LOCATION :ETE SANITATION

Ŭ

SAMPLER :CLIENT

LABORATORY REPORT

PARAMETER

DRUM #14 DRUM #15 DRUM #16 DRUM #17 UNITS LIMITS

EP TOX METALS:

ABBOTTHETON

ARBENIC	<0.100	<0.100	<0.100	<0.100	mg/l	5.0
BARIUM	<10.0	<10.0	<10 ° 0	<10.0	mg/l	100.
CADMIUM	<0.050	<0.050	< 0 .050	<0.050	mg/l	1.0
CHROMIUM	<0.500	୯୦, ୦୫୦	0,070	<0.050	mg/1	5.0
LEAD	<0.20	<0.20	୦ଧର	0.52	mg/l	5,0
MERCURY	(0,050	<0.050	<0.050	<0.050	mg/l	0.2
SELEMIUM	<0.100	<0.100	<0.100	<0.100	mg/l	1.0
BILVER	<0.05	<0.05	<0.05	<0.05	mg/l	5.0

All analysis was performed by methods outlined in EPA SW846 " " sat Methods for Evaluating Solid Waste", 3rd Ed.

NYSDON LAB # 10390

Date of the countries

existing the same of the state of the same

909 GULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

CLIENT:

NEW YORK STATE DEC #9

PAGE 8

DATE RECED

:04/16/90

LABORATORY NO. : 90041221

REPORT DATE :05/10/90

SAMPLE INFORMATION

SAMPLE DATE

SAMPLE DATE : 04/09/90 SAMPLE TIME : (ALL DAY) NUMBER OF SAMPLES : 14

LOCATION

:ETE SANITATION

TYPE OF SAMPLE :SOLID

SAMPLER : CLIENT

LABORATORY REPORT

PARAMETER	DRUM	#18	DRUM #19	METHOD	‡	UNITS	LIMI
1. 1.0 Jun 167 1 1917	DROM	#18	DRUM #19	METHOD	拤	UNITS	LIMI

EP TOX METALS:

ARSENIC					
HUMBING	<0.10¢	<0.100	7060	mg/l	5.0
BARTUM	<10,0	<10.0	7080	mtg /].	100.0
CADMIUM	(0,050	<0.050	7130	mg/1	1.0
CHRONTUN	<0.050	<0.500	7190	mg/1	5.0
LEAD	2.58	<0.20	7420	mg/l	5.0
MERCURY	<0.050	<0.050	7471	mg/)	0.2
SELENIUM	<0.100	<0.100	7740	mg/1	1.0
SILVER	<o. os<="" td=""><td><0.050</td><td>7760</td><td>mer / 1</td><td>5.0</td></o.>	<0.050	7760	mer / 1	5.0

Git analysis was performed by methods out ided in EPA SW846 "Test Thods for Evaluating Solid Waster, Sed "

NYSDOH LAB.# 10396

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NEW YORK STATE **APPROVED** ENVIRONMENTAL LABORATORY

MEW YORK STATE DEC #9

PAGE 9

LABORATORY REPORT						
PARAMETER	DRUIT #1	DRUM #2	DRUM #3	DRUM #4	DRUM #5	CHIND
CORROSIVITY	7.00	7.00	6 . 00	7,00	7.00	s,u.
REACTIVITY :	*					
CYANIDE	<10	<10	<10	<10	<1Q	, m g /kg
SULFIDE	<15	<10	<10	<10	<10	mg/kg
PESTICIDES :						
LINDANE	<0.20	<0.10	<0.10	<0.10	<0.20	ug/l
ENDRIN	<0.20	<0.10	<0.10	<0.10	<0.20	ug/l
METHOXYCHLOR	<2.0	<1.0	<1.0	<1.0	<2.0	ug/l
TOXAPHENE	<10	<5.0	<5.0	<5.0	< 1.0	ug/1
HERBICIDES :						
2,4-D	<0.06	<0.03	< 0. 03	<0.03	<0.08	ug/1
2,4,5-TP (SILVEX)	<0.06	<0.03	<003	<0.03	<0.06	ug/1

^{*} Performed by Method SW846, Sect. 8.3.

1 LAB ID # 10390

909 CULVER ROAD ROCHESTER, NEW YORK 44609 718-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

NEW YORK STATE DEC #9

PAGE 10

LABORATORY REPORT							
FARAMETER	DRUM #6	DRUM #8	DRUM #13	DRUM #14	DRUM #15	UNITS	
CORROSIVITY	7.00	7,00	7.00	7,00	5.50	s.u.	
REACTIVITY:	.≭ .						
CYANIDE	<10	<10	<10	· <10	₹10	mg /kg	
SULFIDE	<10	<10	<10 .	<10	<10	mg ∠kg	
PESTICIDES :					• •		
LINDANE	<0.10	<0.10	<0.10	<0.10	<0.25	ug/l	
ENDRIN	<0.10	<0.10	<0.10	<0.10	<0.25	ug/1	
METHOXYCHLOR	<1.O	<1.0	<1.0	<1.0	<2.5	ug/1	
TOXAPHENE	<5.0	<5.0	<5.0	₹5,0	<13	ug/l	
HERBICIDES :							
2,4-D	<0.04	<0.03	<0.04	<0.03	<0.08	ug/l	
2,4,5-TP (SILVEX)	<0.04	<0.03	<0.04	<0.03	<0.08	ug/l	

^{*} Performed by Method 9W845, Sect. 8.3.

NYSDOH LAB ID # 10390

909 CULVER ROAD ROCHESTER, NEW YORK 14809 716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

NEW YORK STATE DEC

PAGE 11

LABORATORY REPORT							
FARAMETER	DRUM #16	DRUM #17	DRUM #18	וווי אנו	.9 METHOD NUMBER	UNITS	
CORROSIVITY	7,00	7.00	5.50	7.00		s.u.	
REACTIVITY:	*						
CYANIDE	<10	<10	<10	<10		ne Žlum	
SULFIDE	<10	<10	<15	<10		mg/kg mg/kg	
PESTICIDES :							
LINDANE	<0.10	<1.0	<0.20	<0.10	5W 846 3510/8080	um / ì	
ENDRIN	<0.10	<1.0	<0.20	<0.10		ug/1	
METHOXYCHLOR	<1.0	<10	<2.0	<1.0		ug/l	
TOXAFHENE	<5.0	<50	<10	<5.0		rig/I	
MERBICIDES :							
2,4-0	<0.03	<0.30	<0.06	<0.03	50 846 3510/8150	1104 / 1	
2,4,5-TF (BILVEX)	<0.03	<0.30	<0.08	<0.03		ug/1 ug/1 ·	

^{*} Performed by Method SW846, Sect. 8.3.

NYSOCH LAB ID # 10390

LABORATORY DIRECTOR

NEW YORK STATE APPROVED **ENVIRONMENTAL LABORATORY**

909 CULVER ROAD **ROCHESTER, NEW YORK 14609** 716-654-6350

CLIENT:

NEW YORK STATE DEC REG. #9 DATE RECID

500 DELAWARE AVENUE LABORATORY NO : 71041627

BUFFALC, NEW YORK 14202 REPORT DATE : 05/31/91

: 04/25/91

ATTN : EEVIN GLAZER

- RE : HAZMAT # 9-014

SAMPLE INFORMATION

SAMPLE DATE SAMPLE TIME

04/19/91

LOCATION

: ETE SANITATION

10:00 AM

TYPE OF SAMPLE : SEE REPORT

SAMPLER : CLIUNT

NUMBER OF SAMPLES :

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

TCLP METALS	DRUM #10 DJL.	DRUM #11 OIL	LIMITS mg/l	UNITS	METHOD NUMBER 1311
ARSENIC	<0.10	<0.10	5.0	mg/1	7060
BARIUM	<5.0	₹5.0	100.0	mg/]	7030
CADMIUM	<0.05	0.95	1.0	mg/l	7130
CHROMIUM	<0.50	0.86	5.0	mg/l	7190
LEAD	165	1.99	5.0	mgZ),	7420
MERCURY	<0.10	<0.10	0.20	mg/l	7471
SELENIUM	<0.10	<0.10	10	mg/l	7740
SILVER	<0.05	<0.05	5.0	mọZ1.	7740

 All analyses were performed by methods outlined in Federal Register rules and regulations Volume 55, No. 61, Fart 261, Appendix II, March 29, 1990.

NYSDOH LAB ID # 10390

ROCHESTER, NEW YORK 14609 716-654-6350

NEW YORK STATE **APPROVED ENVIRONMENTAL LABORATORY**

CLICNT:

NEW YORK STATE DEC REG. #9 DATE REC'D

: 04/25/91

LABORATORY NO. :

71041623

REPORT DATE : 05/31/91

PAGE 2

於臣 : HAZMAT # 9-014

SAMPLE INFORMATION

SAMPLE DATE

04/19/91

LOCATION : ETE SANITATION

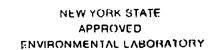
SAMPLE DATE :

10:00 AM

TYPE OF SAMPLE : SEE REPORT

NUMBER OF SAMPLES :

SAMPLER


: CLIENT

TOXICITY CHARACTERISTIC LEACHING PROCEDURE

TCLP METALS	DRUM #12 CIL	DRUM #21	LIMITS mg/l	UNITS	METHOD NUMBER 1311
ARSENIC	<0.10	<0.10	5.0	πg/L	7060
BARIUM	<5.0	₹5.0	100.0	ng/1	7030
CADMIUM	0.05	<୦.୦5	1.0	wë\1	7130
CHROMIUM	<0.,50	୍ଠ, ଅଠ	5.0	mg/l	7190
LEAD	0.46	0.43	5.0	mg/l	7420
MERCURY	<0.10	<0.10	0.20	mg/l	7471
SELENTUM	<0.10	<0.10	! . O	mg/l	7740
SILVER	<0.08	<0.05	5.0	mg/l	7760

* All analyses were performed by methods outlined in Federal Register rules and regulations Volume 55, No. 61, Part 261, Appendix II, March 29, 1990.

NYSDOR LAB 1D # 10390

MYSDECK LAB # 91041523

PAGE I

TCLP / ORGANIC EXTRACTABLES							
PARAMETER	DRUM #10 DIL	DRUM #11 OIL	CIMITS Alger	UNITS	METHOD NUMBER 3510		
PESTICIDES:							
CHLORDANE	<0.02	<0.02	0.03	mg/l	8080		
ENDRIN	<0.002	<0.002	0.02	urð 🗎 J	60 8 0		
HERTACHLOR	<0.002	<0.002	0.008	mų/1	B0 8 0		
L.I NDANE	<0.002	<0.002	0.4	mg/l	6080		
METHOXYCHLOR	<0.002	<0.002	10.0	mg/1	8080		
TOXAPHENE	<0.02	<0.02	0.5	mg/l	9080		
HERBICIDES:							
2,4-D	<0.20	<0.002	10.0	mg/l	8150		
2,4,5-TP (SILVEX)	<0.20	<0.002	1.0	mg/1	8150		

NYSDOH LAB ID # 10390

LABORATORY DIRECTOR

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

909 CULVER ROAD **ROCHESTER, NEW YORK 14609** 716-654-6350

MYSDEC/ LAB # 91041675

PAGE 4

	TCLF / ORGAN	NIC EXTRACT:	WELES		
PARAMETER	DRUM #12 OIL	DRUM #21 OTL	LIMITS ag/l	UNITS	METHOD NUMBER 3510
PESTICIDES:					
CHLORDANE	<0.02	<0.02	0.03	ω g / 1.	୦୫୦ଶ
ENDRIN	<0.002	<0.002	0.02	mg/l	8080
HEPTACHLOR	<0.002	<0.002	0.008	mg/1	8080
LINDANE	<0.002	<0.002	0.4	mg/1	9080
METHOXYCHLOR	<0.002	€0.002	10.0	mg/1	9080
TOXAPHENE	<0.02	<0.02	0.5	mg/l	8080
HERBICIDES:					
2,4-D	<0.002	<0.00∑	1 O O	mg / 1.	9150
2,4,5-TP (SILVEX)	<0.002	<0.002	1.0	mg/I	0150

NYSDOM LAB ID # 10390

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350 NEW YORK STATE
APPROVED
ENVIRONMENTAL LABORATORY

NYSDEC / LAB # 91041623

PAGE 5

	TCLP / VO	OLATILE ORDA	MICS			
PARAMETER	DRUM #10 OTL	DRUM #11 OIL	LIMITS mg/l	UNITS	METHOD NUMBER	•
VINYL CHLORIDE	<0.050	<ଚ.୦୫୦	0.20	mg/l	8010	
1,1-DICHLORDETHENE	<0.050	<0.050	0.70	mg/1	8010	
CHLOROFORM	<0.050	<0.050	6.0	mg/1	8010	
1,2-DICHLORDETHANE	0.080	0.80	0.50	mg/l	8010	
CARBON TETRACHLORIDE	<0.050	1.1	0.50	mg/l	8016	
TRICHLOROETHENE	3.1	4.9	0.50	mg/1	8010	
TETRACHLOROETHENE	0.220	0.130	0.70	mg/l	8010	
BENZENE	<0.050	<0.050	0.50	mg/1	9020	
CHLOROBENZENE	<0.050	<0.050	100.	mg/l	8020	
1,4-DICHLOROBENZENE	<0.050	<0.050	7.5	mg/l	8020	
METHYL ETHYL KETONE	0.150	5.7	200.	ma/1	NYSDOH	

^{*} Exceeds regulatory limitation.

Analysis performed by ELAP # 11030.

CABODATORY DIRECTOR

310-25

^{##} Oll analyses were performed by methods outlined in federal Register rules and regulations, Volume 55, No. 61 Part 261, Appendix II, of March 29, 1990.

NEW YORK STATE **APPROVED** ENVIRONMENTAL LABORATORY

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NYSDEC / LAB # 91041623

PAGE 6

	TOLP / VOLATILE ORDANIES				
PARAMETER	DRUM #12 OIL	DRUM #21 OIL	LIMITS mg/l	UNITS	HETHIOD NUMBER
VINYL CHLORIDE	<0.050	<0.050	0.20	mg/I	8010
1,1-DICHLORGETHENE	<0.0 50	<0.050	0.70	m ä 71	8010
CHLOROFORM	0.360 (A.O	<0.050	6.0	mg/1	8010
1.2-DICHLOROETHANE	10.0	<0.050	0.50	mg/l	9010
CARBON TETRACHLORIDE	` <0.0 50	<0.050	0.50	urÖ∖)	8010
TRICHLOROETHENE		* <0.050	0.50	mg/1	8010
TETRACHLORDETHENE	0.320	<0.050	0.70	mg / 1.	8010
BENZENE	<0.0 50	<0.050	0.50	mg/1	8020
CHLOROBENZENE	<0.050	<0.050	100.	mg/l	9020
1,4-DICHLOROBENZENE	<0.0 50	<0.030	7.5	mg∕l	6020
METHYL ETHYL KETONE	480	<1.0	200.	mg/l	NYSDOH 310-25

^{*} Exceeds regulatory limitation.

Analysis performed by ELAP # 11030.

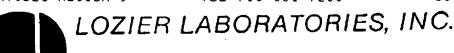
^{**} All analyses were performed by methods outlined in Federal Register rules and regulations, Volume 55, No. 61 Fart 261, Appendix II, of March 29, 1990.

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NYSDEC / LAS 1 91041623

PAGE 7


TCLP / DRGANIC EXTRACTABLES					
CARAMETER	DRUM #10 DIL	DRUM #11 01:		UNITS	METHOD NUMBER TE10
PASE-NEUTRALS: *					
2,4-DINITROTOLUENE	<10.8	€55	0.13	$\log z$ 1	8270
HEXACHLOROBENZENE	<10.8	<55	0.13	mg/1	8270
HEXACHLORD-1,3- BUTADIENE	<10.8	<55	0.50	mg/l	8270
HEXACHLOROETHANE	<10.8	in our sur-	3.0	mg/l	0270
NITROBENZENE	<10.8	<55	2.0	mg/l	8270
FYRIDINE	<10.8	<55	5. 0	mg/l	8270
ACIDS:					
o-CRESOL	<10.8	<55	200	mg/l	9040
m-CRESOL p-CRESOL	8.0t>	<55	200	mg/l	8040
PENTACHLOROPHENOL	<54	<275	100	mg/l	8040
2.4,5-TRICHLORO- PHENOL	₹54	<275	400	mg/l	8040
2, 4, 6-TRTCHLORO- PHENOL	<10.8	< 55	2,0	mg/l	8040

^{*} Analysis performed by ELAF # 11103

NOTE: Due to matrix interference, an elevated detection limit is being reported for these compounds.

NYSDOM LAB ID # 10390

LABORATORY DIRECTOR

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

NYSDEC / LAB # 91041603

PACE 8

	TOLP / ORGA	ANIC EXTRAC	TABLES		
PARAMETER	OIF DEAM #15	DRUM #21 GIL			METHOD NUMBER 3510
Construction of the second		₩.₩			
BASE-NEUTRALE: *					
2,4-DINITROTOLUENE	<0.10	< 1 O	0.13	mg/l	8270
HEXACHLOROBENZENE	<0.10	<1.0	0.13	mg/l	8270
HEXACHLORD-1,3- BUTADIENE	<0.10	< 1 . O	0.50	mg/l	82 70
HEXACHLOROSTHANE	<0.10	<1.0	\$.0	mg/l	8270
NITROBENZENE	<0.10	< 1 . O	2.0	mg/l	8270
PYRIDINE	<0.10	<1.0	5.0	mg/l	827 0
ACIDS:					
o-CRESOL	<0.10	<1.0	200	mg/l	вочо
m-CRE SOL p-CRE SOL	<0.10	<1.0	200	mg/L	8040
PENTACHLOROPHENCL	<0.50	<5.0	100	mg/l	8040
2,4,5-TRICHLORO- PHENOL	<0.50	⟨5,,0	400	mg7l	8040
2,4,6-TRICHLORO- PHENOL	<0.10	< 1 O	2.0	mg/l	8040

^{*} Analysis performed by ELAP # 11103 on sample Drum #21 Analysis parformed by ELAP # 10224 on sample Drum #12.

LABORATORY DIRECTOR

^{**} NOTE : Due to matrix interference, an elevated detection limit is being reported for these compounds, on sample Drum #21.

NEW YORK STATE

LOZIER LABORATORIES, INC. 909 CULVER ROAD ROCHESTER, NEW YORK 14609 716-654-6350

APPROVED **ENVIRONMENTAL LABORATORY**

MYSDEC / LAB # 910016/23

PAGE 9

TOLP / VOLATILE CROANICS					
PARAMETER	DRUM #15 SOLID	DRUM RET SCUDET	LIMITS mg/l	UNITS	TRUMBER
VINYL CHILORIDE	<0.050	<0.0%0	0.20	mg / 1	5010
1,1-DICHLOROETHENE	<0.050	< 0. 050	0.70	mg/l	8010
CHLOROFORM	<0.050	<0.0%0	4.0	mg/l	8010
1,2-DICHLOMOETHANE	<0.050	<0.050	0.50	mg/I	8010
CARBON TETRACHLORIDE	<0.050	<0.050	0.50	mg < 1	8010
TRICHLOROETHENE	<0.050	<0.050	0.50	mg/l	8010
TETRACHLOROETHENE	<0.050	<0.050	0.70	mg/l	8010
PENZENE	<0.050	<0. 050	0.50	mg/1	8020
CHLOROBENZENE	<0.050	<0.050	100.	mg/l	9020
1,4-DICHLOROBENZENE	<0.050	<0.050	7.5	mg/1	0020
METHYL ETHYL KETONE	<1.0	<1.0	200.	mĢ∕l	NYSDOH 310- 2 5

^{*} All analyses were performed by methods outlined in Federal Segister nules and regulations, Volume 55, No. 61 Part 261, Appendix II, of Manch 29, 1990.

Analysis performed by ELAP # 11030.

NEW YORK STATE APPROVED **ENVIRONMENTAL LABORATORY**

NYSDEC / LAB # 91041623

MAGE 10

	TOLF / ORE	ANIC EXTRAC			
PARAMETER	DRUH #15 SOLID	ORUM #17 SUUDGE		UNITS	METHOD NUMBER 3510
BASE-NEUTRALS: *					
2,4-DINITEOTOLUENE	<0.10	<0.02	0.13	mg/1	8270
HEXACHLOROBENZENE	<0.10	<0.02	0.13	mg/1,	8270
HEXACHLORG-1,3-BUTADIENE	<0.10	<0.02	0.50	mg / i.	8270
HEXACHLORDETHANE	<0.10	<0.02	3.0	mg/l	E27 0
NITROBENZENE	<0.10	<0.02	2.0	mg/l	8270
PYRIDINE	<0.10	<0.02	5.0	mg/l	8270
ACIDS:					
o-CRESOL	<0.10	<0.02	200	mg/1	9040
a-CRESOL p-CRESOL	<0.10	<0.02	200	mg/1	804 0
FENTACHLOROPHENOL	<0.50	<0.10	100	mg/l	8040
2,4,5-TRICHLORO» PHENOL	<0.50	<0,10	400	mg/l	8040
2,4,6-TRICHLORO- PHENOL	<0.10	<0.02	2.0	mg/l	8040

^{*} Analysis performed by ELAF # 11103.

716-654-6350

NEW YORK STATE APPROVED ENVIRONMENTAL LABORATORY

NYSDEC / LAB # 91041623

POLYCHLORINATED SIPHENYLS

PAGE 11

	1 Section 1 Sect Herein V & Phillip 1 Kinder	- Egyfreig (f. 1. C. Edwyrd Th. C. Barrissa) Dy y Craw a mae awelawr ann man man man man cann ann ann ann 1. D. P.	
FARAMETER	DRUM #11 OIL	DRUM #21 OIL	UNITS
PCB 1221	<10	<1.0	mg/kg
PCB 1232	<10	<30	mg/kg
PCB 1016	<10	<1.0	mg/kg
PCB 1242	< 1.0	<1.0	mg/kg
PCB 1248	<10	<1.0	mg/kg
FCB 1254	<10	<1.0	mg∕kg
POB 1260	<10	<1.0	i mg/k g
PCB 1262	<10	<1.0	mg/kg
PCB 1268	<10	<1.0	mg/kg
TOTAL FCB*S	<10	<1.0	mg∕kg

Method : EPA 600/4-81-045.

NYSDOH LAB ID # 10390

NYSDEC, 1977.

New York State Department of Environmental Conservation

MEMORANDUM

'alyoning

TO: FROM: Frank Shattuck Kevin Hintz

SUBJECT:

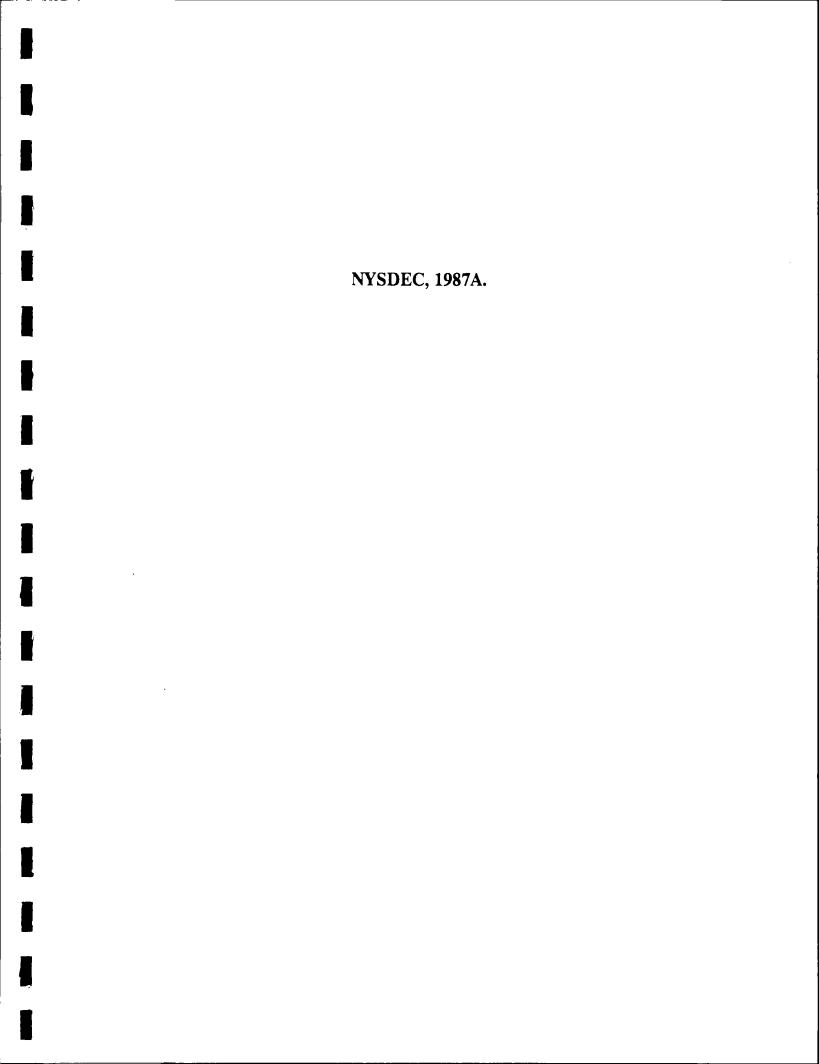
ETE Landfill, Gainesville

DATE:

December 20, 1977

I visited the Landfill in question on the following dates: December 7th, 13th, and 14th. My inspections revealed the following violations of Volume A, Title 6 of NYCRR, Chapter 4, Subchapter B, Part 360:

- 3 60.8 (a) (16)
- 1. Refuse was not confined to a reasonable area. Two separate piles of refuse are located in opposite corners of the Landfill. The northeast corner and the southwest corner. Only the pile in the southwest corner was reachable due to the presence of snow, and this had one lane plowed to it.
- 60.8 (b) (l) 7.1. (c)
- 2. Refuse was not being covered daily. Upon my first visit, I discovered a pile of refuse 20' in diameter in the southwest corner and a 10' x 10' pile in the northeast corner. Portions of the piles were covered with snow indicating that the refuse had probable been there for 3 or 4 days as on the day of my visit it was not snowing. On my 2nd and 3rd visits, I found that more garbage had been dumped causing the pile of refuse to swell to approximately 35' x 200'. Also on my 2nd and 3rd visits I discovered that refuse had been spread and compacted but not covered in an area just west of small pile (in the northeast corner). Snow melt revealed this.
- 6 8 (b) (l) vi) (d)
- 3. Refuse was protruding through the completed area in the northern portion of the Landfill. More cover is necessary.
- 0.8 (b) (l)
- Refuse remains in the piles as formed when the garbage trucks dump their loads. Some refuse has been spread and compacted, but most of it (approximately 90%) remains in piles.
- 648 (b) (l) viii)
- 5. In the completed areas where protruding refuse is not a problem, the ground surface is rough and uneven. Due to melting snow and rain, surface water is pooling throughout the site. Slopes at edges of Landfill appear steeper than we allow.


Frank Shattuck
Page 2
December 20, 1977

- 350.8 (a) (8)
 6. Due to the uncovered garbage, many animals have been attracted. The snow is covered with tracks from these animals & birds. Dogs were present on my 2nd & 3rd inspections. Also the area was starting to become very odorous as the snow melted.
- 0.8 (a) (8) 7. Paper is being blown across the entire site and onto surrounding property.
- 8. Leachate was discovered on the 2nd and 3rd inspection.
 A large pond to the rear (northern end) of the Landfill is collecting the leachate which is breaking out. The leachate is redish brown in color. This was not discovered on the 1st inspection due to the snow cover.

A form letter noting the violations was sent to Mrs. Edwards on December 13, 1977 following my 1st inspection of the site on December 7, 1977. A second letter noting the violation will be sent out on December 15, 1977.

All the violations described except the nesence of odor and animals, and the improper spreading and compaction of refuse, are the same violations cited in the Order on Consent issued in May of 1977.

KH:dd

New York State Department of Environmental Conservation

MEMORANDUM

TO:

Mr. John Tygert/Mr. Lawrence Clare

FROM:

Mr. Kevin Glaser

SUBJECT:

ETE Landfill

يوار اليواولسور وموجو

DATE:

May 8, 1987

Upon inspecting this site, on the above date, I found approximately six drums in the southeast section which did or still do contain chlorinated solvents. One full unopened drum was labeled Chlorothene, a trade name for a chlorinated solvent degreaser. Other drums were too deteriorated to identify from labels, but visually could be identified to contain rain water, paint sludge film, and chlorinated solvents. Several drums around these were labeled to contain motor oil; all of the motor oil drums checked were empty. The small amount of vegetation near these drums showed signs of being chemically burned.

Also noted at the site was a leachate collection pond. It has a continuous flow in and out, and is a pale shade of orange noted both 5/7/87 and 3/27/87. This site has several leachate breakouts of which most drain to the leachate pond. Some of the leachate drains to a swamp area east and northeast of the site which flows north and combines with the leachate pond overflow. This flows north and west under Route 19 and enters a swamp on the north side of East Cotton Road. This swamp drains under East Cotton Road and into Cotton Creek, downstream from the Village of Warsaw drinking water intake.

The surface of the landfill is sparsely covered with stressed vegetation. There are areas with refuse still protruding and other areas where leachate has collected, evaporated leaving traces of salts on the surface.

Sampling of the leachate pond and leachate pond sludge was done in late March and results have not yet been received. Sampling of the drums to identify contents should be the next step and then further studies to determine the extent of contamination.

KG:jps

NYSDEC, 1987B.

SAMPLIAL AT ETE SAAMATION - CAINESUILLE - 960801 (WO ALL #) DATE 9/2/97 PROTECT PESCE 107100 - SAMPLIAL OF DRUMS AND STAILED SOIL TO COMERN PAGEORIC OF HALADOS WASTE ON STAIL LOTE. SITE WAS UND BY A SAPTIL HAULE , NOW SAAM KUPT, MANY DRUMD (14107 ON -5.7E, MOST ARK CORRODED AND LEAKINGLE. COME CARLER POND ON -5.7K, ANDTHAL LEACHATH CONTAMINATED POND MOUNT SMALLE, TO COMERN HALADOS WASTE DISPOSAL ON -5.7E. DOSTECTIVE TO COMERN HALADOS WASTE DISPOSAL ON -5.7E. DAMPLIAL ARCHOLO ON 17K AT WAS DISPOSAL ON -5.7E. THIS STAIL WAS DISPOSAL ON SAMPLE ARCHITICATED THAND TO ROMAN ARCHITICATED PRADE MANY DRUMS ARK CORROPED OPEN, AND LIABILITY MANY CONTAMINATED ARCHITICATED STAIL WINGER IS MANY LONGER MANY DRUMS ARCHITICATED STAIL WINGER IS MANY LONGER MANY ARCHITICATED STAIL WINGER IS MANY LONGER MANY DRUMS AND LORDING ARCHITICATED AND APPEARS SO PA A MANAPORD OF MARCHITER ON 1776. THIS POND APPEARS SO PA A MANAPORD OF MARCHITER ON 1776. THIS POND APPEARS SO DATER POND ON 25 SIK HAS SOME AND AND AND AND AND AND AND AND AND AND		By Danner Fasnar.
PROTECT PLOCATORS - SAMPLISTS OF DRUME AND STANDED SOIL PROTECT PLOCATION PROCESSION OF THE PROTECT OF STANDED SOIL TO COMMENT PROCESSION OF HAPPERSON MADRED SOIL DOWN SAMPLE ON SAMPLE ABOUT AND CORRODOD AND LEARLY OF MADRED DRUMP CATOR ON STAND AND CORRODOD AND LEARLY ON SAMPLE POWD MOUTH SMALLER, ALCOHOL ON STAND AND PROPERTY CONTAMINATION POWD MOUTH SMALLER, ALCOHOL ON STAND AND CONTAMINATION OF SAMPLE SOIL ON SAMPLE STANDED SOIL ON SAMPLE SOI		SAMPLIAL AT ETE SANTATION - GAINESVILLE - 960801 (NO NEL #)
THICL PRICE OF HATCHDOW WAYE ON LITE. SINCE WAS WAS BY A SAPTIC HARLER, NOW SANCEUST. MANY DRUMD EXIST ON -5.7E, MOST ARK CORROSCO AND CRAICING. ONL CARLER POND ON-5.TK, ANDTHER MACHETY CONTAINING POND MOUNT SMALLER, NOW CLOSE BY. OBJECTIVE - TO COMPLIAN HALARDOUS WASHE DISPOSAL ON -5.7E. 24 MOLISE - ARRIVED ON SITE AT 130 PM - SKY DARCAST TAMO. 50-60 L. THIS SIM WAS DISCURRED PRESENT FOR COMMUNITY RICHT TO KNOW SALVEY. IT IS IN A RICHEMAN FOR THE CONTAIN ARE CONTAINED. PRAB. MANY DRIMS ARK CORROSCH DERY, AND CLARICIES. A PUNCLET COSK IS MOTICAL IN THE AREA OF THE ARMY MANY COSTAIN A BURGLE ARD SILV WAS FAME. WHICH IS HEAVEN THAN THAN POND ADERBORS SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS HEAVEN SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS POND ADERBORS. SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS POND ADERBORS. SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS POND ADERBORS. SO COLL MPSY DOWN MAS MORE CONTAINED BY SITE. PARCE PAND ON SITE AND DEBRIS ARK ALSO ALLESTED WHICH IS HARKE. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER.		
THICL PRICE OF HATCHDOW WAYE ON LITE. SINCE WAS WAS BY A SAPTIC HARLER, NOW SANCEUST. MANY DRUMD EXIST ON -5.7E, MOST ARK CORROSCO AND CRAICING. ONL CARLER POND ON-5.TK, ANDTHER MACHETY CONTAINING POND MOUNT SMALLER, NOW CLOSE BY. OBJECTIVE - TO COMPLIAN HALARDOUS WASHE DISPOSAL ON -5.7E. 24 MOLISE - ARRIVED ON SITE AT 130 PM - SKY DARCAST TAMO. 50-60 L. THIS SIM WAS DISCURRED PRESENT FOR COMMUNITY RICHT TO KNOW SALVEY. IT IS IN A RICHEMAN FOR THE CONTAIN ARE CONTAINED. PRAB. MANY DRIMS ARK CORROSCH DERY, AND CLARICIES. A PUNCLET COSK IS MOTICAL IN THE AREA OF THE ARMY MANY COSTAIN A BURGLE ARD SILV WAS FAME. WHICH IS HEAVEN THAN THAN POND ADERBORS SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS HEAVEN SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS POND ADERBORS. SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS POND ADERBORS. SO MA A MALAPOTOL OF CARBORRE ON SITE WHICH IS POND ADERBORS. SO COLL MPSY DOWN MAS MORE CONTAINED BY SITE. PARCE PAND ON SITE AND DEBRIS ARK ALSO ALLESTED WHICH IS HARKE. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER. THICE PLACE -RED DINY SUBSTANCE WHICH ASSETT WAS MADER.		
		PROJECT PESCRIPTION - SAMPLING OF DRUMS AND STAINED SOIL
DRUMP (21) 02 - 5, TE, MOST ALL CORRODO AND LAGRING. OH LARLY POND ON-5, TK, ANOTHER LAGENATY CONTAMINATION POND MOUNT SMALLER, COSE BY. DETECTIVE - TO CONTAMIN HALADOUS WASTE DISPOSAL 32 - 5, TE. SAMPLIAL - ARRIVED ON SITE AT 130 PM - SKY SARCEST THING, 50 - 60 E. THIS SITE ARD DISCURSO THROUGH THE COMMON SY RICHT TO KNOW SARCEST OFFICE AND LEARNING. AREA MOND ORUMS ARE CORRODOD OPEN, AND LEARNING. MANY LONGARD, A BUSHEL-LED SILVY SOFTMAKE STIME AROUNS, MANY LONGARD, A BUSHEL-LED SILVY SOFTMAKE STIME AROUNS, MANY LONGARD, A BUSHEL-LED SILVY SOFTMAKE STIME SOFTMAKES SOFTMAKE POND CARRIED ON STIME SOFTMAKE SOFTMAKES SO		to contian palsébili of HALARDOW whole on site. SITE
ONTECTIVE - TO COME THE DESCRIPTION OF STATE OF	_	WAS USED BY A SEPTIL HAULER, NOW BANKRUPT, MANY
ONLEACH PS-D ON-SITE MACHANIC CONTAIN JAND PS-D MOUTH SMACLED, SOLENN HALANDOUS WASTE DISPOSAL DO-SITE. DOTTETIVE - 70 COMERC HALANDOUS WASTE DISPOSAL DO-SITE. DAMPLIAL - ARRIVED ON SITE AT 120 PM - DRY DARREST THMO. 50-60 E. THIS CITY AND DISCURSO PRESENT PME COMMUNITY RICHT TO RESON SALLY IT IS IN A RUMA ACRICULTAR. ARAB. MANY DRUMS ARE CORRORD DREAD, AND LEARING MANY CONTAIN, A BURNEL ARD DIVY SUBSTANCE WHICH IS HEAVIER THAN WATER. IT APPEARS TO BE CHTY, DE TYPE OIL WASTE DA PLAURAPTOR OF CHALHOTTE ON SITE DUMBANS PICKS OF POSTED ON SITE AND DEBALS ARE GOOD AND SITE DUMBANS PICKS OF POSTED ON SITE AND DEBALS ARE GOOD AND SITE DUMBANS PICKS OF AND REPORT AND DEBALS ARE GOOD AND SITE DUMBANS PICKS OF AND REPORT AND DEBALS ARE GOOD AND SITE DUMBANS PICKS OF AND A PLAURAPTOR OF CHALHOTTE ON SITE DUMBANS PICKS OF AND A PLAURAPTOR OF CHALHOTTE ON SITE DUMBANS PICKS OF AND A PLAURAPTOR OF CHALHOTTE ON SITE DUMBANS PICKS OF AND A PLAURAPTOR OF CHALHOTTE ON SITE DUMBANS PICKS OF AND SAME AND SAME STAINING AND SAME AND SAME THILL PROME TAKEN BOOK TAKEN BY BOOK WATER THILL PROME - PEO OILY SOUTHWAS WHICH EXCEPTED UMBER WATER		
DOTTETIVE - 70 (DUEIRM HALARDOUS WASTE DISPOSAL DO -5.7%. DAMOLISE - ARRIVAD DO 1.1% AT LIBO PM - DRY DARRAGET PHE THMP. 50-60 L. THIS SIM WAS DISCUMMAD PHEORICAL PHE (DOMIND TY RICHT TO KNOW DARRAGET DE LARRAGET THAT AREA AFTER THAT AREA AFTER THAT AREA TO AREA AREA MONTH. AREA MANY DRUMS ARE CORRORDED AREA AFTER AREA MONTH. A BURNEL LAD DICK WASTERNER WHILE TO HEAVER THAT AREA AFTER THAT AREA TO DEPRIANCE THAT AREA TO THE DICK DARRAGET THAT AREA TO DEPRIANCE THAT AREA AFTER THAT AREA AREA TO DEPRIANCE THAT AREA THAT AREA AREA TO DEPRIANCE THAT AREA AREA THAT AREA AREA THAT AREA AREA TO DEPRIANCE THAT AREA AREA AREA AREA AREA AREA AREA AR	_	
24m02126 ARRIVED DA SITE AT 130 PM - SKY DERRESTED TRING. 50-60 L. THIS SITE LAS DISCURRED PRESIDENT PME COMMUNITY RICHT TO KNOW STANKY. IT IS IN A RUNA ACRICULTY. FRAG. MANY DRING ARE CORROLD OPEN, AND LEAKING. FRAGE MANY DRING ARE CORROLD OPEN, AND LEAKING. FRAGE MANY DRING ARE CORROLD OPEN, AND LEAKING. FRAGE MANY DRING ARE CORROLD OPEN, AND LEAKING. THERE STANKS MANY CORROLD OPEN, AND LEAKING. THERE STANKS MANY CORROLD OPEN, AND STANKS. PO DEPARTS TO BE CUTTING THIS POUR APPEARS TO SEE CORROLD OPEN, AND LEAKING. THIS POUR APPEARS TO BE CUTTING THIS POUR APPEARS. THE LARREST AND DEBRIS ARE ALSO ENDAMED TO STANKS. COLL EMPTY DRING MAY AND SOME SPANISH ALONG. ITS SHOCK. SAMPLE POUR ON STANKS AREA EROM. A DRUM ON STATE SAMPLE 960 SOI- OL SAMPLE TARKED EROM. A DRUM ON STATE THILL BLAKE -RED DILLY SUBSTANKS WHICH AXISTED WHERE WATER.	Ĺ,	
24m02126 ARRIVED DA SITE AT 130 PM - SKY DERRESTED TRING. 50-60 L. THIS SITE LAS DISCURRED PRESIDENT PME COMMUNITY RICHT TO KNOW STANKY. IT IS IN A RUNA ACRICULTY. FRAG. MANY DRING ARE CORROLD OPEN, AND LEAKING. FRAGE MANY DRING ARE CORROLD OPEN, AND LEAKING. FRAGE MANY DRING ARE CORROLD OPEN, AND LEAKING. FRAGE MANY DRING ARE CORROLD OPEN, AND LEAKING. THERE STANKS MANY CORROLD OPEN, AND LEAKING. THERE STANKS MANY CORROLD OPEN, AND STANKS. PO DEPARTS TO BE CUTTING THIS POUR APPEARS TO SEE CORROLD OPEN, AND LEAKING. THIS POUR APPEARS TO BE CUTTING THIS POUR APPEARS. THE LARREST AND DEBRIS ARE ALSO ENDAMED TO STANKS. COLL EMPTY DRING MAY AND SOME SPANISH ALONG. ITS SHOCK. SAMPLE POUR ON STANKS AREA EROM. A DRUM ON STATE SAMPLE 960 SOI- OL SAMPLE TARKED EROM. A DRUM ON STATE THILL BLAKE -RED DILLY SUBSTANKS WHICH AXISTED WHERE WATER.		•
Thing. 50-60 L. THIS S,TH WAS DISCURRED THROUGH PTR (20000000 TV RICHT TO KEDOW SILLAY. 17 13 12 A RUMA ACRICULTANI ARAA. MANY DRUMS ARK CORRORD DRW, AND LEAKING.— A PUNCKIT COOK IS NOTICED IN THA ARAA of THA ARUMS, MANY CONTAIN A BUANCE ARD DILLY SUBSTANCE WHICH IS HERVER THAN WATER. IT APPEARS TO BE CUTTINE TYPE OIL WASTE AND CRAWCE POND ARISTS ON STALL WHICH ARISTS PICKS OF PUSTAD ROWERT AND DEBAIS ARE ALSO KNIPEST DU - STEEL. CHECK POND ON SITE HAS SOME SPANNING DU - STEEL COLL EMPTY DRUM WAS NOTICED IN THE COURT IN SMOKE. SAMPLE 960 SOI - OL - SAMPLE TAKED EROM A DRUM ON - SITE SAMPLE - RED DILLY SUBSTANCE WHICH ARISTED UNDER WATER	_	OBJECTIVE - TO CONFIRM HALARDOUS WASTE DISPOSAL ON -5 ITE.
Thing. 50-60 L. THIS S,TH WAS DISCURRED THROUGH PTR (20000000 TV RICHT TO KEDOW SILLAY. 17 13 12 A RUMA ACRICULTANI ARAA. MANY DRUMS ARK CORRORD DRW, AND LEAKING.— A PUNCKIT COOK IS NOTICED IN THA ARAA of THA ARUMS, MANY CONTAIN A BUANCE ARD DILLY SUBSTANCE WHICH IS HERVER THAN WATER. IT APPEARS TO BE CUTTINE TYPE OIL WASTE AND CRAWCE POND ARISTS ON STALL WHICH ARISTS PICKS OF PUSTAD ROWERT AND DEBAIS ARE ALSO KNIPEST DU - STEEL. CHECK POND ON SITE HAS SOME SPANNING DU - STEEL COLL EMPTY DRUM WAS NOTICED IN THE COURT IN SMOKE. SAMPLE 960 SOI - OL - SAMPLE TAKED EROM A DRUM ON - SITE SAMPLE - RED DILLY SUBSTANCE WHICH ARISTED UNDER WATER		
COMMON TO RICHT TO ROOM SALVEY. IT IS, IN A RUNCH ALLICUTARY PRAME. MANY DRUMS ARE CORROLD OPEN, AND CLARKING. A PUNCLIT COOK IS NOTICED IN THE AREA OF THE DRUMS, MANY LOUTAIN, A BUACK - RED DICY SUBSTANCE WHICH IS HEAVIER THAN WATER. IT APPEARS TO BE CONTINUE - TYPE OIL WASTE. PUNCHED OF CHARHATE ON STATE DUMENOUS PICKS OF ENSTAD ROUPERAT AND DEBAIS ARE ALSO KNOWN DUTS. THE SHORE. CARCE POOD ON SITE HAS SOME STATED ON STATE. SAMPLE 960 801 - OIL - SAMPLE TAKED ROOM A DRUM ON SITE. THICE BURCE - RED DICY SUBSTANCE WHICH EXCEPTED UNDER WATER	- -نت	SAMOLIAL- ARRIVAD ON SITE AT 230 PM - SKY DERCAST
COMMON TO RICHT TO ROOM SALVEY. IT IS, IN A RUNCH ALLICUTARY PRAME. MANY DRUMS ARE CORROLD OPEN, AND CLARKING. A PUNCLIT COOK IS NOTICED IN THE AREA OF THE DRUMS, MANY LOUTAIN, A BUACK - RED DICY SUBSTANCE WHICH IS HEAVIER THAN WATER. IT APPEARS TO BE CONTINUE - TYPE OIL WASTE. PUNCHED OF CHARHATE ON STATE DUMENOUS PICKS OF ENSTAD ROUPERAT AND DEBAIS ARE ALSO KNOWN DUTS. THE SHORE. CARCE POOD ON SITE HAS SOME STATED ON STATE. SAMPLE 960 801 - OIL - SAMPLE TAKED ROOM A DRUM ON SITE. THICE BURCE - RED DICY SUBSTANCE WHICH EXCEPTED UNDER WATER		·
P PUDICIT 6000 15 NOTICED 12 THE AREA OF THE ARMS, MANY LONTER. IT APPEARS TO BE CUTTINE TYPE OIL WASTE PUD CRANCE POUD HISTS DJ STEEL DUMENSS PICES OF BUSTED ADDRESS AND DEBRIS ARE ALSO KUIDED DISTE. LYPER IN AND DEBRIS ARE ALSO KUIDED DISTE. CARLE POUD ON SITE HAS SOME STAINLE ALONE ITS ENDRE. SAMPLE 960 801 - OIL SAMPLE TAKED EROM A DRUM ON SITE.	~	
P PUDICIT 6000 15 NOTICED 12 THE AREA OF THE ARMS, MANY LONTER. IT APPEARS TO BE CUTTINE TYPE OIL WASTE PUD CRANCE POUD HISTS DJ STEEL DUMENSS PICES OF BUSTED ADDRESS AND DEBRIS ARE ALSO KUIDED DISTE. LYPER IN AND DEBRIS ARE ALSO KUIDED DISTE. CARLE POUD ON SITE HAS SOME STAINLE ALONE ITS ENDRE. SAMPLE 960 801 - OIL SAMPLE TAKED EROM A DRUM ON SITE.	L.	ARAA. MANY DRUMS ARK CORROPED DED LAKE, IC-
LONTAIN, A BLACK - RED DILY SUBSTANCE WHICH IS ITEM/ER THAN WATER. IT APPEARS TO BE COTTINE TYPE OIL WASTE. AD CRANCE POID HISTS ON STANCE THIS POND APPEARS SO POR A RECEPTOR OF CHACHATE ON - STEE NUMBERS PICKS OF RUSTAD (DUIRMET AND DEBAIS ARE ALSO KUIPENT DN - STEE. STAR. CARCE POND ON -STAR HAS SOME STANDED IN STANDER. SAMPLY DRUM WAS NOTICED IN TERES. THICE, BLACE - RED DILY SUBSTANCE WHICH EXCEPTED UNDER WATER	<u></u>	
2 ολΑΝΣΕΛ ΡΟ +0 15 15 0 2 3 176. ΤΗ 15 10 20 ΑΡΡΙΑΝ 5 50 M/ A NACAPTOR OF CHACHATE 02 - 5 776 DUMENOUS PICKS OF EUSTAD (101/8m6+T AHD DEBRIS ARE ALSO KUIDENT D2 - 5 776. 7746 CARCE P2-20 02 -5 176 HAS 50ME 5 761-2126 ALDOC 173 SHORE. OUL EMPTY DRUM WAS DOTICED 12 17. SAMPLE - 960 801 - 02 - 54 MPLE TAKED EROM A DRUM 02 - 5 176 THICK BLACE -RED DILY SUBSTADIE WHICH EXCOTED UNDER WATER		
THICK BURKE - RED DILY SUBTADILE WHICH EXISTED WAREN	1	WATER. IT APPEARS TO BE CUTTIBLE TYPE OIL WASTE.
FUSTED 12 DED DEBUTE AND DEBUTE AND ALL ALSO KULDEST DO -5, TK. THE LARLE PODD ON -5 ITE HAY SOME STAILLE ALONG ITS ENDRE. OUT EMPTY DRUM WAY NOTICED IT. SAMPLE - 960 801 - OL - SAMPLE TAKED EROM A DRUM ON -5, TE THICK, BLACK - RED DILY SUBSTANCE WHILL EXISTED UNDER WATER	<u> </u>	20 ELANCH POUD HYISTS OF SITH. THIS POUD APPLIANS >0
SAMPLE - GEO DILY SUBSTANCE WHICH EXISTED NAME WATER		10/1 A PHURPTOR OF LHAUHATE OD - 5,74 WUMLASS PILLS OF
SAMPLE - 960 801 - OZ - SAMPLE TAKED EROM A DRUM OW - SITE		RUSTAD ROUIRMENT AND DEBRIS ARE ALSO KUIDENT ON -5, TK. THE
THICK BLACK - RED DILY SUBSTANCE WHICH EXISTED UNDER WATER		LANCH POUD ON -5 17K HAS 50MK 57A, 2, 2 L A LOOL 173 545K.
SAMPLY - 960 801 - 02 - SAMPLY TAKED EROM A DRUM ON - SITE		OUR RMPTY DRUM WAY MOTIND , J. T.
THICK BLACK - NEO DICY SUBSTANCE WHICH EXISTED UNDER WATER	P	
		SAMPLY - 960 801 - 02 - SAMPLE TAKED EROM A DRUM ON -5, TE
		THICK O. D. C. CO.
136 60 100 100 million Rough all a small main and a small	Γ	WALE - NEW DICY SUBTANCE WHICH AXISTED WATER

57mple 960801-(03) - 5016 AGOUND THE PILE OF LEAKING Drums , 5010 WAS BEACK - STANGED , ORV , OF (377,26 OIL . 0 - 4" DEEP. mar: /DEBRIS.. (DEBLIS)

15 1-30 1964 of 1964 7-1-**地位的** 29.4 7 6.366 7 Soll-jar Softios 40 m] MODI JEST SD liter 10.#8 Matrix Total Received by Spate/Ine Date/Time Relinquished by Date\[]\alpha despectation of the state of th 3 211281 22612 sseld . SSELD 558[9] [W 005 3d \$ ad #1 00 [10 06] 10 [10 06] Metals-Soils Metals-Water 15 17712 (1) Sample Preffx # Site Location NYSDEC - DSHW - CHAIN OF CUSTODY RECORD

. 9mrT\9160

SmiT\9150

Date/Time

linquished by

kelinquished by

Kd banzinpnilak,

87 1

10 4 2 10

DY Bale / Lines Received by the Date / Time

新年代 1 met 1 8 ecel yed by Date/Time

Received for Inorg. Lab by Batelline

www.latelline.tacking

BOOK TO THE WAY A STREET

Received for ORG Lab by

Receieved by

MYS DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS SITE REMEDIATION

* ANALYTICAL REPORT*

EXTRACTION METHOD: BILUTION AMALYTICAL METHOD: 8250

INSTRUMENT ID: GC/MS "D" DILUTION FACTOR: 10,000

SAMPLE ID: A98724685 FILE NAME: >3D51A · ETE SANITATION SITE HAME: SITE CODE: 9-60-801 QRUM WASTE MATRIX: *SOLIDS: 0.00 DATE COLLECTED: 02 SEP 87 DATE EXTRACTED: 10 SEP 87 DATE ANALYZED: 10 SEF 87 CONC. UNITS:

COMPOUND NAME	CONCENTRATION		Q-VAL
Amiline	42593.2		83
Phenol	133852.		72
his(-2-Chloroathyl)Ether	181754	• • • •	89
Iscahorene	8142035		80
Ornethul Phihalate	1764936		84
Triatholleching is to			43
Diethulphthalate	2173.11		ខន
Fluorene	1872.04	. · · ·	9€

NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS SITE REMEDIATION

* ANALYTICAL REPORT*

EXTRACTION METHOD: PURGELTRAP

ANALYTICAL METHOD: 8240

INSTRUMENT ID: GC/MS "A"

DILUTION FACTOR: 50.5

SAMPLE ID: A98724606 FILE NAME: >4A79A
SITE NAME: ETE SANITATION SITE CODE: 9-60-801
MATRIX: SOILY ? SOLIDS: 89.0
DATE COLLECTED: 07 SEP 87

DATE EXTRACTED: 09 SEP 87

DATE ANALYZED: 10 SEP 87 CONC. UNITS: UG/L

COMPOUND NAME	CONCENTRATION	Q-VAL
Chloromethane	4.497	46
Bromomethane	4.225	91
Uinul Chloride	14.033	89
Chloroethane	16.961	60
Carbon Disulfide	8.685	100
1.1.0:ohlorpathana	213.291	£1
1.1-Dichloroethane	88.186	79 .
Trans-1,2-Dichloroethene	244.858	83
Chloroform	3.263	9 9
1,2-Dickloroethane	4.132	87
2-Butanone	47.668	70 .
1,1,1-Trichloroethane	2464.50	75
Carbon Tatrachloride	2922.53	85
Uinul A c state	22.860	23
Bromodichloromethane	4.550	63
1,2-Dichloropropane	4125.56	36
Trans-1,3-Dichloropropone	3.230	. 55
Trichlorosthene	3123.77	87
Dibramachiaromethane	2.536	્રામાં 93 કું અક્રુજ ા
1,1.2-Trichlorosthane	195.697	
Benzene	32.829	93 (1984) L
cis-1,3-Dichloropropene	3.232	TO A CONTROL OF THE PARTY OF TH
2-Chloroethylvinylether	16.273	
Tetrachloroethenewantenewanten	1562.16	A CONTRACTOR OF THE PROPERTY O
1.1,2 2-Tetrachloroethane	21:2.79	18 - 04-13 2. 77 18 18 18 18 18 18 18 18 18 18 18 18 18
Toluene	167.679	96
5turane	3.663	<u></u>
Total Xulenes	3.66 6	75

HYS DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS SITE REMEDIATION " TO

* ANALYTICAL REPORT* *****

EXTERCTION METHOD: SOIL SONICATION

ANALYTICAL METHOD: 8250

INSTRUMENT ID: GC/MS "D"

DILUTION FACTOR: 1.07

PARTO LA LOFT PARAPARA

SAMPLE ID: AB8724606 FILE NAME: >3D50A... SITE MARKE: ETE SANITATION SITE CODE: % SOLIDS: 9-60-801. MATRIX: SOIL ~ 89.**0** DATE COLLECTED: 02 SEP 87 DATE EXTRACTED: 09 SEP 87 DATE AMALYZED: 10 SEP 87 > CONC. UNITS: (UG/L)

COMPOUND NAME	CONCENTRATION	Q-UAL
Bhiline	15.545	93
Fhenol	101.950	82
bis(-2-Chloroethyl)Ether	34.025	62
2-Chlorethenel	108	46
M-Mitroso-Di-n-propylamine	231.333	81
Mining Minings	2.463	20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
ikopodrane	Took 18	· · · · · · · · · · · · · · · · · · ·
2-Witrophenol	.146	80 mm
2.4-Dimethylphenol	.212	71
Senzone Acid	42382 52	85
his(-2-Chloroethoxy)Methane	.038	The state of the s
4-Chlora-3-mathylpherol	.137	
Dimethyl Fhthalate	133.111	72
Acemaphthylene	.200	92
Acenaphthene	.109	69
4-Hitrophenol	555	
Dibenzofuran	.050	97
2.4.Dimitrotoluene	- 1	to the second of the second of the second
		89.
Diethulphthalate	2.198	CONTRACTOR OF THE PROPERTY OF
- locuphenul-phenulether	THE ASSESSMENT	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fluorane Tolta Service and the	8 328	77
1-Nitroaniline	Andrew Burger	desired to the second second
4.6-Dinitro-2-methylphenol	42:118	
W-Mitrosodiphenylamine	486	83
4-Bromophenul-phenulether	.506	163
Pentachiorophenol	21.086	92
Phenanthrenassumment of the control	837	The second secon
Sunt time of a like the control of t	- 837 Final	Marie The State of the State of
Di-r-Eatuiphthalate - Bassaco Company	8x4224 94 373 24 4 1	THE PARTY OF THE P
Di-r-Eatulphthalate - Hardwing Ti	194	77
I THE THE POST OF THE PARTY OF	The was the same of the Canada Contraction of the same	
Butulhenzulphthalate	2 612	
Pancala Arthracana	TAVADORA TELEFORMATION AND THE STATE OF THE	CHAPTER STATE OF THE PARTY OF T

N.Y.S. DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS WASTE REMEDIATION EUREAU OF HAZARDOUS SITE CONTROL

H.S.L. METALS REPORT

SAMPLE NIMBER: SITE NAME: DATE COLLECTED: DATE ANALYZED: DATE REPORTED:

A98724606 ETE SANITATION 02SEP87 12N0087 23N0087

ARCHIUE NO. : M1049

The second of th

MATRIX: SOIL CONC. UNITS: NG/KG

		! _	<u>,</u>	
METAL		CONC	CONTRACT REQUIRED DETECTION LIMITS	(سع/۱) ۱
ALUMINIUM ANTIMONY ARSENIC RAFIUM BERYLLIUM CADDIUM CALCIUM CHROMIUM COPPER LAGN LEGNESIUM MANGANESE MERCURY NICTORESIUM SINTERIOR SINTERIOR THALLIUM TIM CANG	** * * * * **	7499000 0 1 1059 N NOOD -900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 600 100 2055 5015 500 1525 100 100 100 100 100 100 100 100 100 10	

THE REST DETECTED: WA = NOT RHALYZED ... CONCERTEATION UNITS ARE: WATER (ug/L), SOIL/SEDIMENT (ug/KG)

NYS DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS SITE REMEDIATION

EXTRACTION METHOD:

PURGESTRAP 8240

ANALYTICAL METHOD: INSTRUMENT ID:

GC/MS "A"

DILUTION FACTOR:

1.0

SAMPLE ID:

A38724607

FILE NAME:

>4A65A

SITE WAME:

ETE SAUITATION

SITE CODE:

9-60-801

MATRIX:

WATER)

% SOLIDS:

00.0

DATE COLLECTED: 02 SEP S7

DATE EXTRACTED: 09 SEP 82

DATE ANALYMED: 09 SEP 87

CONC. UNITS:

UGIL

COMPOUND NAME	CONCENTRATION	Q-UAL
Chloromethane	439	77
Uinul Chloride	.207	66
Chloroethane	. 551	25
Carbon Disulfide	452	180
1.1-Dichloroethane	.078	189 %
Chlaraform	.087	60
เป็นเป็นสาริได้สดยจโลกล	67-1	90
1 1 1-Trichloroethane	200	
Pinul Acetate	893	5∠ 53
Promodichloromethane	.046	· J/
1.2-Dichloropropane	187835	/5
Trichioraethene	-1,103	31
1.1.2-Trichloroethane	.059	
ក៏ទេក្រុងពេក	-	80
cis-1.3-Dichloropropene	. 084	63
2-Chloroethylvinylether	.092	
1.1.2.2-Tetrachloroethane	113	96
Toluene	62.361	57
Storene	. 585	94
Children in the second of the	USV	96

NYS DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS SITE REMEDIATION

EXTRACTION METHOD: PURGESTRAP

ANALYTICAL METHOD: 8240

INSTRUMENT ID: GC/MS "A"

DILUTION FACTOR: 1.0

SAMPLE ID: H98724607HS) FILE NAME: >4REER SITE HAME: ETE SANITATION SITE CODE: 9-60-801 HATRIX: (MATER) % SOLIDS: 00.0 DATE COLLECTED: 02 SEP 87 DATE EXTRACTED: 09 SEP 87 DATE AMALYZED: 09 SEP 87 CONC. UNITS: (UG/L)

COMPOUND NAME	CONCENTRAT	O NOI,	-UAL
Chlaromothane	. 446		64
Promomethane	. 046		79
Uinul Chloride	.140	the state of the s	40
Chloroethane	. 339	en en en en en en en en en en en en en e	85
Carbon Disulfide	.632		80
1.1-Dishlarmethene	39.886	-	\$2
i.l-Di c hiurbethane	177		78
Trans-1.2-Dichloroethene	047		95
Chleroform	. 447	en en en en en en en en en en en en en e	94
1.2-Dichloroethane	.355	and the control of th	36
2-Eata n one	.341		72
1.1.1-Trichloraethane	9 9 . <u>831</u>		82
Carbon Tetrachloride	.741		94
Cinyl Acetate	. 411		39
Ecomodiciloromethane	.054		75
1.2-Dichloropropane	61.924		90
Trans-1,3-Dichloropropens	.065		7 9
Trichloraethene	50.586		78
1.1.2-Trichlornethane	.272		97
Benzene	48.761	The state of the s	89
cis-1.3-Dichloropropens	125	The second second	79
2-Chlornethulvinulether	447	The state of the s	38 Mary note 88
2 Hezanone	.751		45
1.1.2.2-Tetrachloroethan	67092	STATE OF THE PARTY	(44)
Talliene mer man common common and a second	51:793	ALL SELECTION OF THE PROPERTY OF THE SELECTION	94 municipality
Chlorobenzene 38	56.703	以下的一个个个	81
Ethylhenrene (1997)	.061		85
<u>Styrene</u>			42

NYS DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF HAZARDOUS SITE REMEDIATION

EXTRACTION METHOD: PURGESTRAP

ANALYTICAL METHOD: 8240

INSTRUMENT ID: GC/MS "A"

DILUTION FACTOR: 1.0

SAMPLE ID: 833724607MSD FILE NAME: >4867R SITE NAME: ELE-SANITATION SITE CODE: 9-60-801 WATER) MOTETX: % SOLIDS: 00.0 DATE COLLECTED: 02 SEP 87 DATE EXTRACTED: 09 SEP 87 DATE AMALYZED: 09 SEP 87 CONC. UNITS: (UG/L)

COMPOSIND NAME	CONCENTRATION	Q-UAL
Chloromethane	.096	67
Bromomethane	.046	97
Chloroethane	1.301	97
Carbon Disulfide	.494	100
1.1-Dichloroethene	35,810	94
1 1-1:shlarosthams	.112	97
Chiura form	.023	95
1,2-Dichloroethane	.353	6 6
2-Fatamone	8.903	42
1 1 1-Trichlorgethame	24.882	21
Carbon Tetrachloride	642	78
Completate	668	68
Bromodich lo romethane	. 058	87
1 2-Inchloropropane	10.790	9 9
Trichloroethene	49,300	80
1.1.2-Trichloroethane	.150	73
Benzene	48,539	89
7-Chloroethylvinylether	.305	. 80
1 1.2.2-Tetrachloroethane	38.726G	G D
Toluene	49,266	93
Chlorobenzene ()	54.805	13 80 v
Styrene cray the second second	Transfer 065	94

N.Y.S DEPARTMENT OF EMULRONMENTAL CONSERVATION DIVISION OF HAZARDOUS WASTE REMEDIATION BUREAU OF HAZARDOUS SITE CONTROL

H.S.L. METALS REPORT

SAMPLE NUMBER:

A98724607

ARCHIVE NO.: M1050

5-14-15 Abril

SITE NAME:

ETE SANITATION

SITE CODE: 960801

DATE COLLECTED: 02SEP37

MATRIX: WATER

DATE ANALYZED: 12NOU87 DATE REPORTED: 20NOUS7

CONC. UNITS: MG/L

		t			•
METAL		I COM	C	CONTRACT REQUIRED DETECTION LIMITS	(ug/L)
		1	t		
PHILIPPIN	1	IND	į	200	
GESENIC	*	I ND	!	60	
BARIUM	*	I ND		10	
BERYLLIUM	*	1 4.0	9 1	200	
CADMIUM	*	I ND	1	5	
CALCIUM		. 0	1 !	5	•
Series Services	¥.	i NA	Ì	5000	
All Allerand		1 1:10	- 1	10	
COPPLE		1.0	1	5 0	
TRON		1 ND	_	25	
LEAD		11	7 1	100	
MAGNESIUM	*	םא ו	ı	5	
		6.1	0 1	5000	
MERCURY		1 (11)	l	15	
nakuuki Monat	*	† ND	1	0.2	
		l ND	1	40	
POTASSIUM:		1 23.25	3 (5 ù ū 0	
SELENTUR	*	ם א	1	5	•
SILVER	*	1 110	1	10	
COLIUM		18.6	0 ι	5000	
THALLIUM	*	1 ND	1	10	· ·
TIN	*	13.9	0 1	40	
UANADIUM		I ND	ŧ	5 û .	1 (18 grayer)
SINC		J 3 0:	3	20	The second second

HD - HOT DETECTED: NA - NOT ANALYZED

^{*} CONSENTRATION UNITS ARE: WATER (ug/L), SOIL/SEDIMENT (ug/KG)

NYS DEPARTMENT OF ENUIRONMENTAL CONSERVATION DIVISION OF MOZARDOUS SITE REMEDIATION

***** * ANALYTICAL REPORT* *****

EXTRACTION METHOD: FURGESTRAP

AMALYTICAL METHOD: 8240

INSTRUMENT ID:

DILUTION FACTOR:

GC/NS "A"

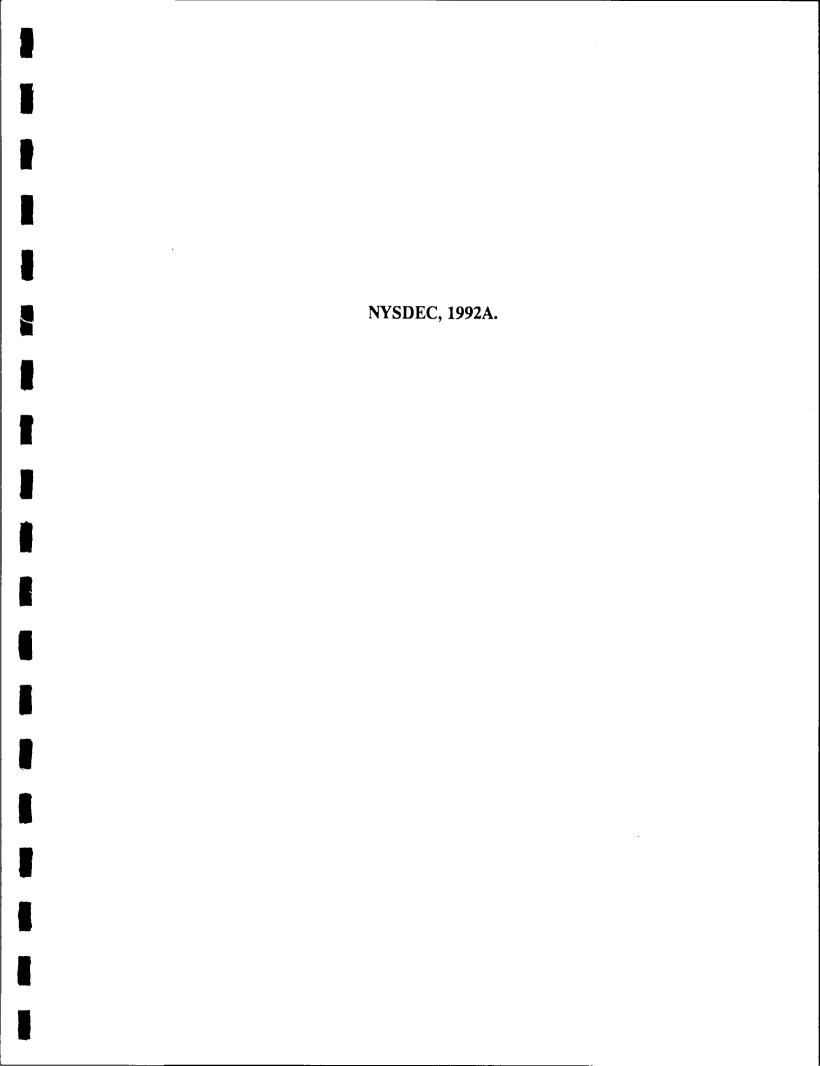
1.0

SAMPLE 10: SITE NAME: HOTEIX:

P33704610

ETE SANITATION

CHATERY


DATE COLLECTED: 07 SEP 87 DATE AMALYZED: 18 SEP 87 FILE NAME: SITE CODE:

> 4AE DA 9-60-801 X

% SOLIDS: 00.**0** DATE EXTRACTED: 10 SEP 87

CONC. UNITS: (UG/L)

COMPOUND NAME	CONCENTRATION	Q-UAL
Chloromethane	533	99
Urnul Chloride	.305	ÝÚ
Carbon Disulfide	.232	100
1,1-Dichlorosthers	.096	81
1.1-Dichloroethane	.170	88
Chloroform	. 056	3 0
್ರಿತ ಕನ್ನಡಗಳು ಅವರು ಸಹಕ್ಕ	. 215	3.5
1.1.1-Trichloroethane	1.367	81
Uinul Acetate	.292	5 3
Fromodichleromethane	. 053	91
1,2-Dichloropropane	19.943	95
Trichloroethene	243	
1.1 2-Trichlorosthane		95
Rendene	.102	73
2-Chloreschydninglether	. 071	<i>7</i> 5
1.1.2,2-Tetrachloroethane	. 254	3 8
Toluene Toluene	36.829	85
· · · · · · ·	. 520	96
Chlorobenzene	. 035	82
, Styrena	.054	64

ETE Sanifation # 961005 These are the vesults of sampling @ ETE Sanitation May 20 by Keein Glaser 4/25/82 effluent of 186001 Leachate Pond motherent Creek on east side

ETE SANITATION

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO DET

A88601

Lab Name: <u>RECRA ENVIRON</u>	Contract: <u>C002412</u>
Lab Code: RECNY Case No.: SH992	SAS No.: SDG No.: 0514
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AS011433
Sample wt/vol: $5.0 (g/mL) ML$	Lab File ID: L0294
Level: (low/med) LOW	Date Received: 05/15/92
Moisture: not dec	Date Analyzed: 05/18/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3	10
100-4 1 -4Ethylbenzene	10 U 0.5 J 10 U
1330-20-7Total Xylenes	4 J

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: RECRA ENVIRON	Contract: C002412 A88601
Lab Code: RECNY Case No.: SH992	SAS No.: SDG No.: 0514
Matrix: (soil/water) WATER	Lab Sample ID: ASO11433
Sample wt/vol:5.0 (g/mL) ML	Lab File ID: L0294
Level: (low/med) LOW	Date Received: 05/15/92
% Moisture: not dec	Date Analyzed: 05/18/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L
CAS NUMBER COMPOUND NAI	ME RT EST. CONC. Q

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: RECRA ENVIRON	A88602 Contract: C002412
Lab Code: RECNY Case No.: S	992 SAS No.: SDG No.: 0514
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: AS011434
Sample wt/vol: $5.0 (g/m)$) ML Lab File ID: L0300
Level: (low/med) Low	Date Received: 05/15/92
% Moisture: not dec	Date Analyzed: 05/18/92
GC Column: <u>DB-624</u> ID: <u>0.53</u>	(mm) Dilution Factor: 1.0
Soil Extract Volume: (1	L) Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3Chloromet	hane 10 U

74-87-3	Chloromethane	10	U
74-8 3- 9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	ט ו
75~0 0- 3 	Chloroethane	9	J 💆
75-0 9- 2	Methylene Chloride	14	
67-64-1	Acetone	210	É
75-15-0	Carbon Disulfide	10	<u>"</u>
75-35-4	1,1-Dichloroethene	10	Tu l
75-34 - 3	1.1-Dichloroethane	10	ָ <u>ט</u>
540-5 9 -0	1,2-Dichloroethene (total)	1	17 -
67-6 6- 3- -	Chloroform	10	
107-06-2	1,2-Dichloroethane	10	ן ט
78-93 - 3	2-Butanone	470	E
71-55-6	1.1.1-Trichloroethane	10	บ็
56-23-5	Carbon Tetrachloride	10	ט
75-27-4	Bromodichloromethane	10	•
78-87 - 5	1,2-Dichloropropane	•	U
10061-01-5	cis-1,3-dichloropropene	10	U
79-01-6	Trichloroethene	10	Ū
124-4 8 -1	Dibromochloromethane	$\frac{1}{2}$	J
79-00 - 5	1,1,2-Trichloroethane	10	U
71-43 - 2- -	1,1,2-Trichioroethane	10	ן ט
71-43-2 	Benzene	. 2	J
10061 - 02 - 6	trans-1,3-dichloropropene	10	U
/5-25 - 2	Bromoform	. 10	ע
108-1 0 -1 	4-Methyl-2-Pentanone	† 27	
591-7 8 -6 -	2-Hexanone	10	ַ ט
12/-18-4	Tetrachloroethene	10	ן ט
79-34 - 5	1,1,2,2-Tetrachloroethane	10	U
108-8 8- 3 -	Toluene	31	
108-9 0- 7 -	Chlorobenzene		3
100-4 1 -4	Ethvlbenzene	95	† <i>f</i>
100-42-5	Styrene	10	ן מ
1330 -2 0 -7 -	Total Xylenes	330	†
			t l

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FDZ	SAMPLE	NΩ

A88602

Lab Name: RECRA ENVIRON	Contract: <u>C002412</u>
Lab Code: RECNY Case No.: SH992	SAS No.: SDG No.: 0514
Matrix: (soil/water) WATER	Lab Sample ID: AS011434
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: L0300
Level: (low/med) LOW	Date Received: 05/15/92
% Moisture: not dec	Date Analyzed: 05/18/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor: 1.0

Soil Extract Volume: ____ (uL) Soil

Number TICs found: 10

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q_
1.	Alkyl benzene derivative	21.09	1	J
2.	Aromatic derivative	21.70	3	J
3.	Ethyl methyl benzene isomer	21.84	17	J
4.	Trimethyl benzene isomer	21.97	6	J
5.	Alkyl benzene derivative	22.29	6	J
6.	Trimethyl benzene isomer	22.55	20	J
7.	Unknown	23.27	1	J
8.	Diethyl benzene isomer	23.60	1	∮ ,⊤
9.	Aromatic derivative	23.55	4	; 👊
10.	Ethyl dimethyl benzene isome	24.04	0.9	J

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

A88602DL

Lab Name: <u>RECRA ENVIRON</u>	Contract: C002412
Lab Code: RECNY Case No.: S	H992 SAS No.: SDG No.: 0514
Matrix: (soil/water) WATER	Lab Sample ID: AS011434DL
Sample wt/vol: $5.0 (g/m)$	L) ML Lab File ID: L0304
Level: (low/med) <u>LOW</u>	Date Received: 05/15/92
% Moisture: n ot dec	Date Analyzed: 05/18/92
GC Column: <u>DB-624</u> ID: <u>0.53</u>	0 (mm) Dilution Factor: 4.0
Soil Extract Volume: {	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3	Anne

127-18-4-----Tetrachloroethene

108-90-7-----Chlorobenzene

108-88-3-----Toluene

79-34-5----1,1,2,2-Tetrachloroethane

U

U

U

DJ

DJ

D

U

D

4.0

40

40

34

---2

86

40

310

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: RECRA ENVIRON Contract: C002412

EPA	SAMPLE	NO.
		110.

~ C ·

A88602DL

Lab	Code:	RECNY	Case No.:	SH992	SAS No.:	 SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434DL

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: L0304

Level: (low/med) LOW Date Received: 05/15/92

% Moisture: not dec. ____ Date Analyzed: 05/18/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 4.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Number TICs found: $\underline{6}$

CAS NUMBER	COMPOUND NAME	RT	EST'. CONC.	Q
1. 2. 3. 4. 5. 6.	Aromatic derivative Ethylmethylbenzene isomer Trimethylbenzene isomer Ethylmethylbenzene isomer Trimethylbenzene isomer Aromatic derivative	21.67 21.80 21.94 22.27 22.52 23.52	25 160 59 60 190 35	55555

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: RECRA ENVIRON	Contract: C002412 A88603
Lab Code: RECNY Case No.: SH992	SAS No.: SDG No.: 0514
Matrix: (soil/water) WATER_	Lab Sample ID: AS011435
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: L0302
Level: (low/med) LOW	Date Received: 05/15/92
% Moisture: not dec	Date Analyzed: 05/18/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3	10
100-42-5Styrene 1330-20-7Total Xylenes	10 U

EPA SAMPLE NO.

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

		ļ
į	A88603	

Lab Name: RECRA ENVIRON	Contract: C002412
Lab Code: RECNY Case No.: SH992	SAS No.: SDG No.: 0514
Matrix: (soil/water) WATER	Lab Sample ID: AS011435
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: L0302
Level: (low/med) Low_	Date Received: 05/15/92
% Moisture: not dec	Date Analyzed: 05/18/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>
CAS NUMBER COMPOUND NA	ME RT EST. CONC. Q

EPA SAMPLE NO.

18 SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: RECRA ENVIRON Contract: C00241	A88601
Lab Code: RECNY Case No.: SH992 SAS No.:	
	nple ID: <u>AS011433</u>
	e ID: <u>11119Z</u>
Level: (low/med) LOW Date Re	eceived: 05/15/92
% Moisture: decanted: (Y/N) Date Ex	tracted: 05/20/92
Concentrated Extract Volume: 1000 (uL) Date An	nalyzed: 05/27/92
Injection Volume: 2.0(uL) Dilution	on Factor:1.0
GPC Cleanup: (Y/N) N pH: 7.0	
CAS NO. COMPOUND (ug/L or ug	
108-95-2	10 10 10 10 10 10 10 10 10 10 10 10 10 1
88-74-42-Nitroaniline 131-11-3Dimethyl-Phthalate 208-96-8Acenaphthylene 606-20-22,6-Dinitrotoluene	25 U 10 U 10 U 10 U
99-0 9 -23-Nitroaniline	25 ט
83-32-9Acenaphthene	10 U

1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>RECRA ENVI</u>	RON Conti	act: <u>C002412</u>		8601
Lab Code: RECNY	Case No.: <u>SH992</u> SAS	No.:	SDG No.:	0514
Matrix: (soil/water)	WATER	Lab Samp	ole ID: ASO	11433
Sample wt/vol:	1000 (g/mL) ML	Lab File	E ID: 111	192
Level: (low/med)	LOW	Date Red	ceived: <u>05/</u>	15/92
% Moisture:	decanted: (Y/N)	Date Ext	racted: <u>05/</u>	20/92
Concentrated Extract	Volume: 1000 (uL)	Date Ana	alyzed: <u>05/</u>	27/92
Injection Volume:	2.0(uL)	Dilution	n Factor:	1.0
GPC Cleanup: (Y/N) CAS NO.		CONCENTRATIO		Q
100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 120-12-7 86-74-8 120-12-7 86-74-8 129-00-0 129-00-0 129-00-0 117-81-7 117-84-0 117-84-0 117-84-0 117-84-0 117-84-0 117-84-0 117-81-7 117-84-0 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7 117-81-7	4-Nitroaniline4,6-Dinitro-2-MethyN-Nitrosodiphenylam4-Bromophenyl-phenyHexachlorobenzenePentachlorophenolPhenanthreneCarbazoleDi-n-ButylphthalateFluoranthenePyreneButylbenzylphthalat3,3'-DichlorobenzidBenzo(a)Anthracene	plether	50 25 10 10 25 10 10 25 10 10 10 10 10 10 10 10 10 10 10 10	ממממממממממממממממממממממממממממ

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

A88601

Lab Name:	RECRA ENVIRON	Contract:	C002412	

Matrix: (soil/water) WATER Lab Sample ID: AS011433

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11119Z

Level: (low/med) Low Date Received: 05/15/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/27/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.0

Number TICs found: 18 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	Unknown	5.47	3	J
2.	Unknown	7.15	40	J
3.	Unknown Acid	7.75	30	J
4.	Unknown	7.82	3	J
5. 646-07 -1	4-Methyl Pentanoic Acid	8.44	38	JN
6. 142-62 -1	Hexanoic Acid	8.57	5	JN
7.	Unknown Acid	9.57	28	
8.	Unknown	9.67	3	J
9.	Unknown	9.97	4	J
10.	Unknown	10.12	5	J
11.	Unknown	10.89	8	J
12.	Unknown Acid	11.80	8	J
13.	Unknown Acid	13.32	42	J
14.	Unknown	13.42	4	J
15.	Benzenepropanoic Acid deriv.	14.59	48	J
16. 134-62-3	N, N-Diethyl-3-methyl benzamid		6	JN
<u> </u>	Unknown	19.17	5	J
18.	Oxygenated Compound	19.37	1.3	J

EPA SAMPLE NO.

3/90

*

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

A88602 Lab Name: RECRA ENVIRON ____ Contract: C002412 Lab Code: RECNY Case No.: SH992 SAS No.: SDG No.: 0514 Matrix: (soil/water) WATER Lab Sample ID: AS011434 Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11124Z Level: (low/med) LOW Date Received: 05/15/92 % Moisture: ____ decanted: (Y/N) ____ Date Extracted: 05/20/92 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/27/92 Injection Volume: _____2.0(uL) Dilution Factor: 1.0 GPC Cleanup: (Y/N) N pH: 7.0 CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 108-95-2----Phenol 130 111-44-4-----bis(2-Chloroethyl)Ether 10 Tu-95-**57**-8------2-Chlorophenol____ U 10 541-73-1-----1,3-Dichlorobenzene_ 10 U 106-46-7-----1,4-Dichlorobenzene 10 U 95-50-1-----1,2-Dichlorobenzene 10 U 95-48-7----2-Methylphenol 10 U 108-60-1----2,2'-oxybis(1-Chloropropane) 10 U 106-44-5-----4-Methylphenol 380 621-64-7----N-Nitroso-Di-n-Propylamine 10 67-**72-1-----**Hexachloroethane____ 10 ш 98-95-3-----Nitrobenzene____ 10 U 78-**59**-1------Isophorone 88-75-5-----2-Nitrophenol_____ 10 IJ 10 U 105-67-9-----2,4-Dimethylphenol 10 IJ 111-91-1-----bis(2-Chloroethoxy)Methane 10 IJ 120-83-2----2,4-Dichlorophenol ____ 10 U 120-82-1-----1,2,4-Trichlorobenzene 10 91-20-3-----Naphthalene 46 106-47-8-----4-Chloroaniline 10 U 87-68-3-----Hexachlorobutadiene_ 10 U 59-50-7-----4-Chloro-3-Methylphenol_____ 10 U 91-57-6----2-Methylnaphthalene_ 10 U 77-47-4-----Hexachlorocyclopentadiene____ 10 U 88-06-2----2,4,6-Trichlorophenol 10 U 95-**95-4-**-----2,4,5-Trichlorophenol 25 91-58-7----2-Chloronaphthalene 10 88-74-4----2-Nitroaniline 25 131-11-3-----Dimethyl Phthalate____ 10 208-96-8-----Acenaphthylene 10 606-20-2-----2,6-Dinitrotoluene U 10 99-**09-2-----3-**Nitroaniline_____ U 25 83-32-9-----Acenaphthene 10 U

FORM I SV-1

051

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.

					A88602
Lab	Name:	RECRA_ENVIRON	Contract:	C002412	

Lab Code: RECNY Case No.: SH992 SAS No.: SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434

 Sample wt/vol:
 1000 (g/mL) ML
 Lab File ID:
 11124Z

 Level:
 (low/med)
 LOW
 Date Received:
 05/15/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/27/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.0

CONCENTRATION UNITS:
Number TICs found: 12 (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	Unknown	9.07	21	J
2.	Unknown	9.92	59	J
3.	Unknown	10.69	89	J
4.	Unknown Acid	11.84	1700	J
5.	Unknown	11.99	88	BJ
6.	Unknown Acid	12.30	160	J
7.	Unknown	12.49	41	J
8.	Unknown	12.67	64	J
9.	Unknown	13.25	30	J
0.	Unknown	13.55	87	J
1.	Unknown Acid	14.94	110	J
2.	Benzenepropanoic Acid deriv.	16.12	170	J

18

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

 Lab Name: RECRA ENVIRON
 Contract: C002412
 A88602RE

 Lab Code: RECNY
 Case No.: SH992
 SAS No.: SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434RI

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11136Z

Level: (low/med) LOW Date Received: 05/15/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/28/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

		 1
108- 9 5-2Phenol	150	E
111-44-4bis(2-Chloroethy))Ether	10	ַ װ [ַ] װ
95-5 7 -82-Chlorophenol	10	ן דו
95-5 7 -82-Chlorophenol	10	שׁ וֹ שׁ
106- 4 6-71,4-Dichlorobenzene	10	<u>"</u>
95-5 0 -11,2-Dichlorobenzene	10	ו י
		ี <u>บ</u>
95-4 8 -72-Methylphenol 108- 6 0-12,2'-oxybis(1-Chloropropane)_	10	U
106-44-54-Methylphenol	680	E
621- 6 4- 7 N-Nitroso-Di-n-Propylamine	10	ַ <u>"</u>
67-72-1Hexachloroethane	10	<u>"</u>
98-9 5 -3Nitrobenzene	10	Ū
78-5 9 -1Isophorone	10	Ū
88-7 5 -52-Nitrophenol	10	Ū
105-67-92,4-Dimethylphenol 111-91-1bis(2-Chloroethoxy)Methane	10	บี
111-91-1bis(2-Chloroethoxy) Methane	10	Ū
120- 8 3- 2 2,4-Dichlorophenol	10	Ū
120- 8 2- 1 1.2.4-Trichloropenzene	10	ี้ <u>บ</u>
91-2 0 -3Naphthalene	48	
106- 4 7-84-Chloroaniline	10	Ū
87-68-3Hexachlorobutadiene	10	שׁ
59-50-74-Chloro-3-Methylphenol	10	ט
91-5 7 -62-Methylnaphthalene	10	שׁל
77-47-4Hexachlorocyclopentadiene	10	Ū
88-06-22,4,6-Trichlorophenol	10	U
95-9 5 -42.4.5-Trichlorophenol	25	Ū
91-58-72-Chloronaphthalene	10	โบ
88-74-42-Nitroaniline	1 25	บั
131-11-3Dimethyl Phthalate	10	บ
208-96-8Acenaphthylene	10	Ū
606- 2 0- 2 2.6-Dinitrotoluene	10	Ū
99-0 9 -23-Nitroaniline	25	Ū
83-32-9Acenaphthene	10	Ū
		1
TOPW T 071 1	· ——————	• • • • • • • • • • • • • • • • • • • •

FORM I SV-1

3/90

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. ~

A88602RE Lab Name: RECRA ENVIRON Contract: C002412 Lab Code: RECNY Case No.: SH992 SAS No.: SDG No.: 0514 Matrix: (soil/water) WATER_ Lab Sample ID: AS011434RI Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11136Z Level: (low/med) LOW___ Date Received: 05/15/92 % Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/28/92 Injection Volume: _____2.0(uL) Dilution Factor: _____1.0 GPC Cleanup: (Y/N) N pH: 7.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

		 .
51-28-52,4-Dinitrophenol	50	u l
100- 0 2-74-Nitrophenol	25	ן ט
132-64-9Dibenzofuran	- 6	J
121-14-22,4-Dinitrotoluene	- 10	Ü
84-66-2Diethylphthalate	- 44	1
7005-72-34-Chlorophenyl-phenylether	- 10	U
86-73-7Fluorene	- 10	ָ ט
100- 0 1-64-Nitroaniline	- 25	U U
534-52-14,6-Dinitro-2-Methylphenol	25	1 - 1
96 30 6 N. Nitrocodinhamilaria (1)	- I	U
86-30-6N-Nitrosodiphenylamine (1)	_ 10	U
101-55-34-Bromophenyl-phenylether		Ŭ
118-74-1Hexachlorobenzene	_ 10	ū
87-86-5Pentachlorophenol	25	ט
85-01-8Phenanthrene	10	ַ ַ ַ
120-12-7Anthracene	10	ַ
86-74-8Carbazole	8	J
84-74-2Di-n-Butylphthalate	_ 10	ן ט
206- 4 4- 0 Fluoranthene	10	Ŭ
129-00-0Pyrene_ 85-68-7Butylbenzylphthalate_	_ 10	U
85-68-7Butylbenzylphthalate	_ 10	U
-91-94-1	10	[U
56-5 5 -3Benzo(a)Anthracene	10	ן ט
218- 0 1-9Chrysene	10	ן ט ∣
117-81-7Bis(2-Ethylhexyl)Phthalate	10	[U
117-84-0Di-n-Octyl Phthalate	10	U
205-99-2Benzo(b)Fluoranthene	10	ן ט
207- 0 8-9Benzo(k)Fluoranthene	10	וֹ עוֹ
50-32-8Benzo(a)Pyrene	10	ן מ
193- 3 9- 5 Indeno(1,2,3-cd)Pyrene	10	U
53-70-3Dibenz(a,h)Anthracene	10	ט ו
191-24-2Benzo(g,h,i)Perylene	10	Tu
	-	
	_ +	1

1 F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

A88602RE

Lab Name:	RECRA ENV	IRON	Contract: C002	4412 A00602RE
Lab Code:	RECNY	Case No.: <u>SH992</u>	SAS No.:	SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434RI

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11136Z

Level: (low/med) LOW Date Received: 05/15/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/28/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.0

Number TICs found: 15 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2. 142-62-1 3. 4. 5. 6. 7.	Unknown Hexanoic Acid Unknown Unknown Unknown Acid Unknown Unknown Unknown Unknown Unknown	9.89 11.79 11.92 12.27 12.44 12.62 12.95	110 3900 200 360 70 140 86 34	J J N J J J
9. 10. 11. 12. 13. 14. 15.	Unknown Acid Unknown Acid Unknown Acid Benzenepropanoic Acid deriv. Unknown Unknown Unknown Unknown Acid	13.22 13.50 14.82 16.09 19.67 20.25 20.57	100 210 220 380 60 32 35	000000000000000000000000000000000000000

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

A88602DL

Lab Name: RECRA ENVIRON Contract: C002412

Lab Code: RECNY Case No.: SH992 SAS No.: SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434DL

Sample wt/ \mathbf{v} ol: 1000 (g/mL) ML Lab File ID: 11137Z

Level: (low/med) LOW Date Received: 05/15/92

% Moisture: _____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/28/92

Injection Volume: 2.0(uL) Dilution Factor: 20.0

GPC Cleanup: (Y/N) N pH: _7.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

108-95-2Phenol	300	D
11-44-4bis(2-Chloroethyl)Ether	200	֓ ֓ ֓֞֓֡֓֡֓֡֓֡֓
95- 5 7- 8 2-Chlorophenol	200	Ū
5-57-8	200	ַ
106-46-71.4-Dichlorobenzene	200	ט ו
NE EO 1 1 2 Dichlaraharrana	200	ับ
95- 4 8- 7 2-Methylphenol	200	Ū
25-48-72-Methylphenol 108-60-12,2'-oxybis(1-Chloropropane) 106-44-54-Methylphenol 221-64-7N-Nitroso-Di-n-Propylamine	200	บ
.06+44-54-Methylphenol	690	D
521-64-7N-Nitroso-Di-n-Propylamine	200	ľU
\ <i> - </i> /-	200	U
	200	Ū
78- 5 9- 1 Isophorone	200	Ū
78-59-1Isophorone 88-75-52-Nitrophenol 105-67-92,4-Dimethylphenol 111-91-1bis(2-Chloroethoxy)Methane	200	U
.05-67-92,4-Dimethylphenol	200	Ŭ
11-91-1bis(2-Chloroethoxy)Methane	200	ប
L2U-03-2	200	U
2(1-82-1	200	U
1-20-3Naphthalene 106-47-84-Chloroaniline	58	DJ
.06-47-84-Chloroaniline	200	U
{/-68-1	200	י ט
59-50-74-Chloro-3-Methylphenol	200	ี บิ
1-57-62-Methylnaphthalene	200	ַ
1-57-6Hexachlorocyclopentadiene	200	U
88-06-22,4,6-Trichlorophenol	200	U
95- 9 5-42,4,5-Trichlorophenol	500	Ū
1-58-72-Chloronaphthalene	200	Ū
	500	Ū
31-11-3Dimethyl Phthalate	200	Ū
208-96-8Acenaphthylene	200	ָ <u>ט</u>
131-11-3Dimethyl Phthalate 208-96-82,6-Dinitrotoluene 99-09-23-Nitroaniline	200	ט
99- 0 9- 2 3-Nitroaniline	500	ָ ט
33-32-9Acenaphthene	200	ט

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. --

A88602DL

Lab Name: RECRA ENVIRON Contract: C002412

Lab Code: RECNY Case No.: SH992 SAS No.: SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434DL

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11137Z

Level: (low/med) LOW Date Received: 05/15/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/28/92

Injection Volume: _____2.0(uL) Dilution Factor: ____20.0

GPC Cleanup: (Y/N) N pH: 7.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

		
51-28-52,4-Dinitrophenol	1000	ט
100- 0 2- 7 4-Nitrophenol	500	U
132- 6 4- 9 Dibenzofuran	200	†ប
121-14-22,4-Dinitrotoluene	200	ਹਿ
84-66-2Diethylphthalate	26	DJ
7005-72-34-Chlorophenyl-phenylether	200	บ
86-73-7Fluorene	200	Ū
100-01-64-Nitroaniline	500	Τū
534-52-14,6-Dinitro-2-Methylphenol		Ū
86-30-6N-Nitrosodiphenylamine (1)	200	Ū
101-55-34-Bromophenyl-phenylether	200	Ū
118-74-1Hexachlorobenzene	200	ับ
87-86-5Pentachlorophenol	500	ŭ
85-01-8Phenanthrene	200	Ū
120- 1 2-7Anthracene	200	Ū
86-7 4 -8Carbazole	200	מל
84-74-2Di-n-Butylphthalate	200	ָ ע
206-44-0Fluoranthene	200	Ü
129- 0 0-0	200	מ
129-00-0		ם
91-94-13,3'-Dichlorobenzidine	200	
- 71-74-1	200	U
56-55-3Benzo(a)Anthracene	200	U
218-01-9Chrysene	200	U
117-81-7Bis(2-Ethylhexyl)Phthalate	200	U
117-84-0Di-n-Octyl Phthalate	200	U
205-99-2Benzo(b) Fluoranthene	200	ū
207-08-9Benzo(k) Fluoranthene	200	Ŭ
50-32-8Benzo(a) Pyrene	200	ַ ט
193-39-5Indeno(1.2.3-cd)Pyrene	200	ַ ַ עַ
53-70-3Dibenz(a,h)Anthracene	200	Ŭ
191-24-2Benzo(g,h,i)Perylene	200	Ŭ

1 F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

A88602DL

EPA SAMPLE NO.

Lab Name: RECRA ENVIRON Contract: C002412

Lab Code: RECNY Case No.: SH992 SAS No.: SDG No.: 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011434DL

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11137Z

Level: (low/med) LOW Date Received: 05/15/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/28/92

Injection Volume: 2.0(uL) Dilution Factor: 20.0

GPC Cleanup: (Y/N) N pH: 7.0

Number TICs found: 8 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 142-62-1 2. 646-07-1 3. 142-62-1 4. 5. 111-14-8 6. 7.	Hexanoic Acid 4-Methyl Pentanoic Acid Hexanoic Acid Unknown Acid Heptanoic Acid Unknown Acid Unknown Acid Enzenepropanoic Acid deriv.	7.62 8.08 9.14 9.45 10.04 11.65 13.05 14.40	930 120 1300 370 540 390 520 930	JN JN J JN J J

18

EPA SAMPLE NO.

SEMIVORATIES ORGANICS ANALI	
Lab Name: <u>RECRA ENVIRON</u>	A88603 Contract: C002412
Lab Code: RECNY Case No.: SH992	SAS No.: SDG No.: 0514
Matrix: (soil/water) WATER	Lab Sample ID: AS011435
	Lab File ID: 11125Z
Level: (low/med) LOW	Date Received: 05/15/92
% Moisture: decanted: (Y/N)	Date Extracted: 05/20/92
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 05/27/92
Injection Volume:2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: _7	′. 0
CAS NO. COMPOUND	
108-95-2	10
59-50-74-Chloro-3-Met	diene 10 U

208-96-8-----Acenaphthylene 10 U 606-20-2-----2,6-Dinitrotoluene 10 U 99-**09-2----3-**Nitroaniline 25 U 83-32-9-----Acenaphthene U 10

59-50-7----4-Chloro-3-Methylphenol

88-06-2-----2,4,6-Trichlorophenol

95-95-4-----2,4,5-Trichlorophenol_

91-58-7----2-Chloronaphthalene

131-11-3-----Dimethyl Phthalate

88-74-4----2-Nitroaniline

91-57-6------Hexachlorocyclopentadiene

10

10

10

25

10

25

10

U

U

U

U

Ū

U

U

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO:

Lab Name: RECRA ENVI	RON	Contract:	<u>C002412</u>	A88603
Lab Code: RECNY	Case No.: <u>SH992</u>	SAS No.:	SDG	No.: 0514
Matrix: (soil/water)	WATER	L	ab Sample ID:	AS011435
Sample wt/vol:	1000 (g/mL) ML	_	ab File ID:	11125Z
Level: (low/med)	LOW	D	ate Received:	05/15/92
% Moisture:	decanted: (Y/N)	p	ate Extracted:	: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/27/92

Injection Volume: _____2.0(uL) Dilution Factor: 1.0

CONCENTRATION UNITS:

GPC Cleanup: (Y/N) N pH: 7.0

COMPOUND

CAS NO.

(ug/L or ug/Kg) UG/L 51-28-5-----2,4-Dinitrophenol 50 U 100-02-7----4-Nitrophenol 25 U 132-64-9-----Dibenzofuran_ 10 U 121-14-2----2,4-Dinitrotoluene_ 10 Ū 84-66-2-----Diethylphthalate 10 U 7005-72-3-----4-Chlorophenyl-phenylether 10 U 86-73-7-----Fluorene 10 Ū 100-01-6-----4-Nitroaniline 25 U 534-52-1-----4,6-Dinitro-2-Methylphenol 25 U 86-30-6-----N-Nitrosodiphenylamine (1) 10 U 101-55-3-----4-Bromophenyl-phenylether____ 10 U 118-74-1-----Hexachlorobenzene_ 10 Ü 87-86-5-----Pentachlorophenol 25 U 85-01-8------Phenanthrene____ 10 Ŭ 120-12-7-----Anthracene 10 U 86-**74**-8------Carbazole 10 U 84-74-2-----Di-n-Butylphthalate 10 U 206-44-0-----Fluoranthene 10 U 129-00-0-----Pyrene_ 10 U 85-68-7-----Butylbenzylphthalate 10 U 91-94-1----3,31-Dichlorobenzidine____ 10 U 56-55-3-----Benzo(a)Anthracene___ 10 U 218-01-9-----Chrysene_ 10 U 117-81-7-----Bis(2-Ethylhexyl)Phthalate 10 U 117-84-0-----Di-n-Octyl Phthalate__ 10 U 205-99-2----Benzo(b) Fluoranthene_ 10 U 207-08-9-----Benzo(k) Fluoranthene 10 U 50-32-8-----Benzo(a) Pyrene_ 10 U -193-39-5----Indeno(1,2,3-cd)Pyrene_____10.... 53-70-3-----Dibenz(a,h)Anthracene 10 191-24-2----Benzo(g,h,i)Perylene____ 10 U 1F

EPA SAMPLE NO

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

A88603	

Lab	Name:	RECRA	ENVIRON	Contract:	C002412	
Lab	Code:	RECNY	fase No · sugg?	SAS NO .	SDC	No - 0514

Matrix: (soil/water) WATER Lab Sample ID: AS011435

Sample wt/vol: 1000 (g/mL) ML Lab File ID: 11125Z

Level: (low/med) LOW Date Received: 05/15/92
% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 05/20/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 05/27/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: 7.0

Number TICs found: 5 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 930-68-7	2-Cyclohexen-1-one Unknown Unknown Unknown Unknown Unsaturated Hydrocarbon	5.20 5.67 6.63 8.12 8.25	7 4 53 5 13	BJN J J J

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: RECRA ENVIRON Contract	: <u>C002412</u>	A88601
Lab Code: RECNY Case No.: SH992 SAS No.		No.: 0514
Matrix: (soil/water) WATER		
Sample wt/vol: <u>1000</u> (g/mL) ML	Lab File ID:	
% Moisture: decanted: (Y/N)	Date Received:	05/15/92
Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted	: <u>05/20/92</u>
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	06/02/92
	Dilution Factor	
GPC Cleanup: (Y/N) N pH: 7.0	Sulfur Cleanup	: (Y/N) <u>Y</u>
CAS NO. COMPOUND (ug/I	INTRATION UNITS: Or ug/Kg) UG/L	_ Q
319-84-6		0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.050 U 0.10 U

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA	SAMPLE	NO.	- 7	\mathcal{L}
-----	--------	-----	-----	---------------

		A88602
Lab Name: RECRA ENVIRON	Contract: C002412	
Lab Code: RECNY Case No.: SH992		
Matrix: (soil/water) WATER	Lab Sample ID:	AS011434
Sample wt/vol: 1000 (g/mL) ML	_ Lab File ID:	
% Moisture: decanted: (Y/N)	Date Received:	05/15/92
Extraction: (SepF/Cont/Sonc) SEP	<u>F</u> Date Extracted:	05/20/92
Concentrated Extract Volume: 10000		
Injection Volume: <u>1.00</u> (uL)	Dilution Factor	: 1.00
GPC Cleanup: (Y/N) N pH: 7.	O Sulfur Cleanup:	(Y/N) <u>Y</u>
CAS NO. COMPOUND	CONCENTRATION UNITS:	
319-84-6	lane)	0.62 0.62 0.050 0.050 0.050 0.050 0.050 0.10 0

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO. 0 8

Lab Name: RECRA ENVIRON Contract:	C002412	A88603
Lab Code: RECNY Case No.: SH992 SAS No.:		No.: 0514
Matrix: (soil/water) WATER		
Sample wt/vol: 1000 (g/mL) ML	Lab File ID:	
% Moisture: decanted: (Y/N)	Date Received:	05/15/92
Extraction: (SepF/Cont/Sonc) <u>SEPF</u>	Date Extracted:	05/20/92
Concentrated Extract Volume: 10000 (uL)	Date Analyzed:	06/02/92
Injection Volume: 1.00 (uL)	Dilution Factor	1.00
GPC Cleanup: (Y/N) N pH: 7.0	Sulfur Cleanup:	(Y/N) <u>Y</u>
CONCENCE COMPOUND CAS NO. COMPOUND (ug/L	TRATION UNITS: or ug/Kg) UG/L	
319-84-6		0.050 U U U U U U U U U U U U U U U U U U

	1		
INORGANIC	ANALYSES	DATA	SHEET

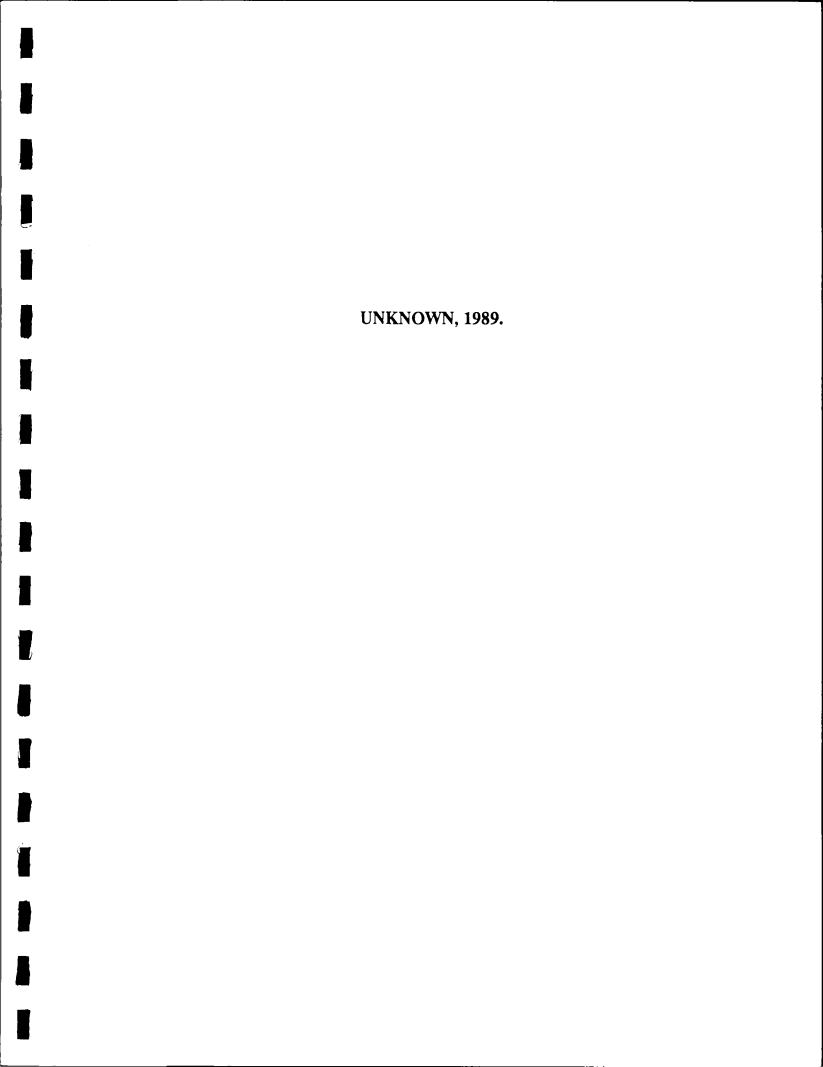
NYSDEC SAMPLE NO.

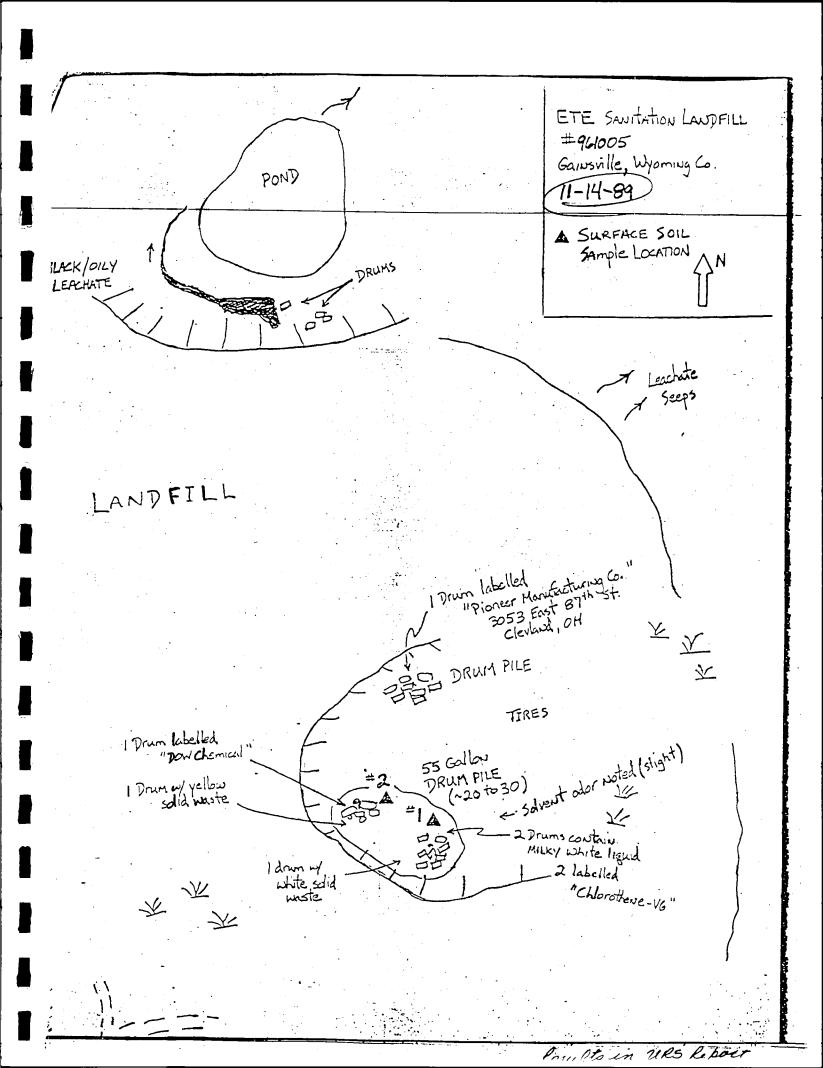
Lab Name: RECRA_ENVI	RONMENTAI	L_INC	Contract:	C0 02 412	A88601
Lab Code: RECNY_	Case N	No.: SH99	32 SAS N	0.:	SDG No.: 0514
Matrix (soil/water):	WATER	:		Lab Sampl	e ID: 5551
Level (low/med):	LOW	:		Date Rece	ived: 05/1 5/92
% Solids:	0	•			

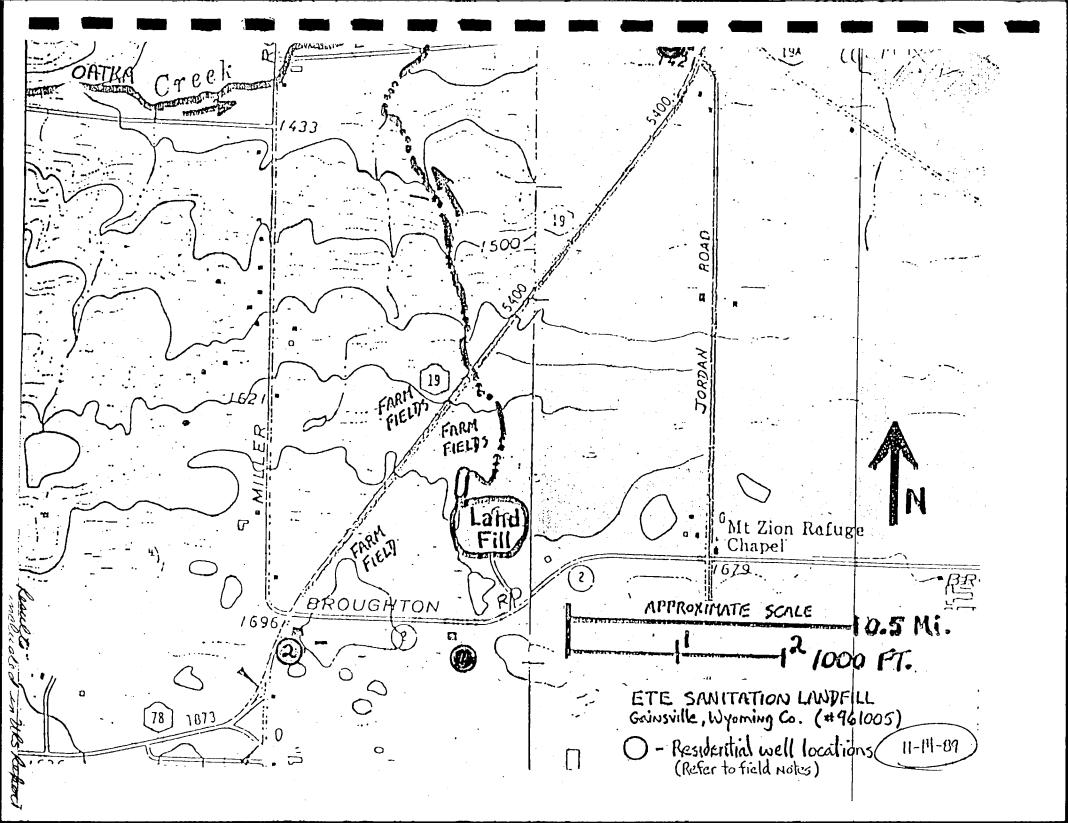
Concentration Units (ug/L or mg/kg dry weight): UG/L_

m 79.0 Y 44.0 S.0 264 um 5.0 5.0 104000 m 10.0 20.0 5.0	B U U		P P F P P P A P
5.0 264 25.0 5.0 5.0 104000 m 10.0 20.0	บ บ บ		F P P P A
264 um 5.0 5.0 104000 m 10.0 20.0	บ บ		P P A
UM 5.0 5.0 104000 m 10.0 20.0	U U		P_ P_ P_ A
5.0 104000 m 10.0 20.0	U U		P_ P_ A
10.00 m 10.0 20.0	<u></u>		P_A
m10.0 20.0	<u></u>		A
20.0	1 1		
	U] p
			1 -
	В		[P_
4090			P
12.8		SN	F
um 20700	-		P
se 1020			P
0.20	<u> </u>		CV
26.0	В		P
um 19000	1		P
m 5.0	ן טֿן	WN	F
10.0	U		P
1780000	1		P
m 7.0	וֹ טַ וֹ		F_
m 20.0	וטו		P_
	U		P_
10.0	1 1		NR
	um 19000 m 5.0 10.0 1780000	um 19000 m 5.0 Ū 10.0 U 1780000 m 7.0 Ū m 20.0 U 10.0 U	UM 19000 U WN 5.0 U WN 10.0 U TR 7.0 U

						. • •	
Color	Before:	COLORLESS	Clarity	Before:	CLEAR_	Texture:	
Color	Afte r:	COLORLESS	Clarity	After:	CLEAR_	Artifacts:	
Commen LAB CLI	SAMPLE I	D:_AS011433 LE_ID:_SH992-051	14-A88601				
			FORM	MI - IN			9/89


	1		
INORGANIC	ANALYSES	DATA	SHEET


Lab Name: RECRA_ENVI	RONMENTAL_INC	Contract: C002412	A88603
Lab Code: RECNY_	Case No.: SH9	92 SAS No.:	SDG No.: 0514
Matrix (soil/water):	WATER	Lab Sampl	e ID: 5555
Level (low/med):	LOW	Date Rece	ived: 05/15/92
% Solids: ;	0		


Concentration Units (ug/L or mg/kg dry weight): UG/L_

· · · · · · · · · · · · · · · · · · ·	1				
CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	50.0	$\overline{\mathbf{u}}$		P
7440-36-0	Antimony -	40.0	Ū		P-
7440-38-2	Arsenic -		U		F
7440-39-3	Barium	73.0	В		P_
7440-41-7	Beryllium	5.0	U		P_
7440-43-9	Cadmium	5.0	U		P
7440-70-2	Calcium	66300			P-
7440-47-3	Chromium	10.0	ប៊		A^{-}
7440-48-4	Cobalt	20.0	U		P_
7440-50-8	Copper	5.0	В		₽¯
7439-89-6	Iron	447			P
7439-92-1	Lead	12.0		+N	F_
7439-95-4	Magnesium	12200			P_
7439-96-5	Manganese	206			P_
7439-97-6	Mercury	0.20	Ū		CV
7440-02-0	Nickel		U		P_
7440-09-7	Potassium	5840	_		P_
7782-49-2	Selenium_	5.0	Ū	WN	[F_
7440-22-4	Silver	10.0	U		P_ :
7440-23-5	Sodium	380000		. 	P
7440-28-0	Thallium_	7.0	Ū		F_
7440-62-2	Vanadium_	20.0	U		P
7440-66-6	Zinc	12.0	В		P_
	Cyanide		_		NR
l	l ,		!		11

		l	\ <u></u>			ll	
Color	Befor e:	COLORLESS	Clarity	Before:	CLEAR_	Texture: _	
Color	After:	COLORLESS	Clarity	After:	CLEAR_	Artifacts: _	
Commer LAI CL:	SAMPLE	ID:_AS011434 LE_ID:_SH992	-0514-A8860	3			_
			FORI	MI - IN		9/	89

