

OCTOBER 2010 PRELIMINARY SITE INVESTIGATION REPORT FORMER CAMP O'RYAN (FUDS PROPERTY NO. C0NY1132)

WETHERSFIELD, NEW YORK

Contract No. W912WJ-09-D-0001 Delivery Order No. 031

Prepared For:

United States Army Corps of Engineers New England District 696 Virginia Road Concord, MA 01742

Prepared By:

Woods Hole Group, Inc. 81 Technology Park Drive East Falmouth, MA 02536

March 2011

OCTOBER 2010 PRELIMINARY SITE INVESTIGATION REPORT FORMER CAMP O'RYAN WETHERSFIELD, NEW YORK

Contract No. W912WJ-09-D-0001 Delivery Order No. 0031

March 2011

Prepared for: United States Army Corps of Engineers New England District 696 Virginia Road Concord, MA 01742

Prepared by:

Woods Hole Group, Inc. 81 Technology Park Drive East Falmouth MA 02536 (508) 540-8080

Table of Contents

EXECUTIVE SUMMARYES-I				
1.0	INTRO	DUCT	ION	
	1.1 SITE L	.OCATIO	N AND DESCRIPTION	
	1.1.1	Site Lo	ocation	
	1.1.2	Backg	round	
	1.1.3	Water	Quality	4
	1.2 proje	ECT OBJE	ECTIVES AND SCOPE	5
2.0	SAMP	LING N	AETHODS	7
	2.1 SURFA	ACE WAT	FER SAMPLING AND ANALYSIS	7
	2.2 SHALI	LOW GR	OUNDWATER SAMPLING AND ANALYSIS	7
	2.3 QUAL	ITY CON	TROL	
3.0	RESUI	LTS		11
	3.1 SURFA	ACE WAT	FER SAMPLING	11
	3.2 SHALI	LOW GR	OUNDWATER SAMPLING	11
	3.3 SURFA	ACE WAT	FER AND SHALLOW GROUNDWATER PHYSICAL RESULTS	
	3.4 SURFA	ACE WAT	FER AND SHALLOW GROUNDWATER CHEMICAL RESULTS	14
4.0	DATA	QUAL	ITY	17
	4.1 SAMP	LE CUST	ODY, PRESERVATION, HOLDING TIME, AND LABORATORY D	ATA
	REVIE	EW		17
	4.2 DATA	VALIDA	TION PROCESS	
	4.3 DATA	VALIDA	TION RESULTS	
	4.4 DATA	VALIDA	TION ACTIONS RECONCILED WITH THE ADR	
5.0	DISCU	SSION		
6.0	DEVIA	TIONS	S FROM THE SAMPLING ANALYSIS PLAN AND	
	CONC	LUSIO	NS	
7.0	REFEF	RENCE	S	
AT	ТАСНМІ	ENT 1	TABLES AND FIGURES	A1-1
AT	ТАСНМІ	ENT 2	FIELD LOGS (ON CD)	A2-1

Woods Hole Group

ATTACHMENT 3	ALPHA ANALYTICAL LABORATORIES RE	PORTS AND
	ANALYTICAL DATA (ON CD)	A3-1
ATTACHMENT 4	VOC TIER –II TYPE DATA VALIDATION REVIEW (ON	
	CD)	A4-1
ATTACHMENT 5	FIELD PHOTOS (ON CD)	A5-1
ATTACHMENT 6	UPDATED ADR LIBRARY (ON CD)	

List of Figures

Figure 1.	Regional map of Camp O'Ryan, Java Lake, Wethersfield Springs Pond
	and Warsaw, NY A1-1
Figure 2.	Former Camp O'Ryan Munitions Response Sites (MRS) A, B and C
Figure 3.	Sampling locations for the October 2010 surface and pore water samples
	and the May 2009 TCLP Samples for Lead (Pb) A1-3

List of Tables

Table 1.	Summary of field sampling locations, samples, and rationale	A1-4
Table 2.	Weather conditions at North Java during sampling event	A1-5
Table 3.	Sample location field data	A1-6
Table 4.	Stream dimensions, velocity and calculated flow rate	A1-7
Table 5-1.	Shallow groundwater sample results	A1-8
Table 5-2.	Surface water sample results	A1-15

List of Acronyms

ASPAnalytical Services ProtocolsCENAEU.S. Army Corps of Engineers, New England DistrictCEMVRU.S. Army Corps of Engineers, Rock Island DistrictCOCchain-of-custodyCRQLContract Required Quantitation LimitDERPDefense Environmental Restoration ProgramDODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNAEUnited States Army Corp of Engineers New York DistrictNAHNew York Army National GuardNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationNY SDECNew York State Department of Environmental ConservationNYSDECNew York Atheop aptiment of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsP	ADR	Automated Data Review
CENAEU.S. Army Corps of Engineers, New England DistrictCEMVRU.S. Army Corps of Engineers, Rock Island DistrictCOCchain-of-custodyCRQLContract Required Quantitation LimitDERPDefense Environmental Restoration ProgramDODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCLMunitions ConstituentsMCLMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detector <td>ASP</td> <td>Analytical Services Protocols</td>	ASP	Analytical Services Protocols
CEMVRU.S. Army Corps of Engineers, Rock Island DistrictCOCchain-of-custodyCRQLContract Required Quantitation LimitDERPDefense Environmental Restoration ProgramDODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFVDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Army National GuardNY SDECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCE </td <td>CENAE</td> <td>U.S. Army Corps of Engineers, New England District</td>	CENAE	U.S. Army Corps of Engineers, New England District
COCchain-of-custodyCRQLContract Required Quantitation LimitDERPDefense Environmental Restoration ProgramDODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limits <td>CEMVR</td> <td>U.S. Army Corps of Engineers, Rock Island District</td>	CEMVR	U.S. Army Corps of Engineers, Rock Island District
CRQLContract Required Quantitation LimitDERPDefense Environmental Restoration ProgramDODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAKUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNANNutional Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY DECNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQU(s)practical quantitation limitsQAquality assuranceQCQuality Control	COC	chain-of-custody
DERPDefense Environmental Restoration ProgramDODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNARUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	CRQL	Contract Required Quantitation Limit
DODDepartment of DefenseDOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limits <tr< td=""><td>DERP</td><td>Defense Environmental Restoration Program</td></tr<>	DERP	Defense Environmental Restoration Program
DOdissolved oxygenDQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmillilitermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	DOD	Department of Defense
DQO(s)data quality objectivesEBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmillijtermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	DO	dissolved oxygen
EBEquipment blankEPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAAUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	DQO(s)	data quality objectives
EPAU.S. Environmental Protection AgencyFBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	EB	Equipment blank
FBIFederal Bureau of InvestigationFUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmillilitermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	EPA	U.S. Environmental Protection Agency
FUDSFormerly Used Defense SitesftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	FBI	Federal Bureau of Investigation
ftfeetGPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNANNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	FUDS	Formerly Used Defense Sites
GPSGlobal Positioning SystemHTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY SDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	ft	feet
HTWHazardous, Toxic WasteLCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	GPS	Global Positioning System
LCSlaboratory control sampleMCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	HTW	Hazardous, Toxic Waste
MCMunitions ConstituentsMCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilliltermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	LCS	laboratory control sample
MCLMaximum Contaminant LevelMDLmethod detection limitMECMunitions and Explosives of ConcernmLmilliltermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	MC	Munitions Constituents
MDLmethod detection limitMECMunitions and Explosives of ConcernmLmilligrams per literMRSMunitions Response SitesMRSMunitions Response SitesMSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	MCL	Maximum Contaminant Level
MECMunitions and Explosives of ConcernmLmillilitermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	MDL	method detection limit
mLmillilitermg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	MEC	Munitions and Explosives of Concern
mg/Lmilligrams per literMRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	mL	milliliter
MRSMunitions Response SitesMS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	mg/L	milligrams per liter
MS/MSDmatrix spike/matrix spike duplicateNAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	MRS	Munitions Response Sites
NAEUnited States Army Corp of Engineers New England DistrictNANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	MS/MSD	matrix spike/matrix spike duplicate
NANUnited States Army Corp of Engineers New York DistrictNEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NAE	United States Army Corp of Engineers New England District
NEHNew Environmental Horizons, Inc.NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NAN	United States Army Corp of Engineers New York District
NELAPNational Environmental Laboratory Accreditation ProgramNTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NEH	New Environmental Horizons, Inc.
NTUnephelometric turbidity unitNY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NELAP	National Environmental Laboratory Accreditation Program
NY ARNGNew York Army National GuardNY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NTU	nephelometric turbidity unit
NY DECNew York Department of Environmental ConservationNYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NY ARNG	New York Army National Guard
NYSDECNew York State Department of Environmental ConservationORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NY DEC	New York Department of Environmental Conservation
ORPoxidation-reduction potentialPAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	NYSDEC	New York State Department of Environmental Conservation
PAHsPolycyclic aromatic hydrocarbonsPALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	ORP	oxidation-reduction potential
PALProject Action LimitPCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	PAHs	Polycyclic aromatic hydrocarbons
PCEtetrachloroethenePIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	PAL	Project Action Limit
PIDphotoionization detectorPQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	PCE	tetrachloroethene
PQL(s)practical quantitation limitsQAquality assuranceQCQuality Control	PID	photoionization detector
QA quality assurance QC Quality Control	PQL(s)	practical quantitation limits
QC Quality Control	QA	quality assurance
	QC	Quality Control
QSM Quality Systems Manual	QSM	Quality Systems Manual
RI Remedial Investigation	RI	Remedial Investigation
RL Reporting limit	RL	Reporting limit

Preliminary Site Investigation Report Former Camp O'Ryan Wethersfield, NY Delivery Order-0031 W912WJ-09-D-0001 March 2011

Reserve Officers Training Corp
relative percent deviation
Sampling and Analysis Plan
Sample Delivery Group
Staged Electronic Data Deliverable
Standard Operating Procedures
Statement of Work
Semi-Volatile Organic Compounds
Target Compound List
Technical and Operational Guideline Series
United States
U.S. Army Corps of Engineers
United States Air Force
U.S. Geological Survey
Unexploded Ordnance
volatile organic compounds
Woods Hole Group
Extensible Markup Language
Yellow Springs Instrument Company

EXECUTIVE SUMMARY

Woods Hole Group, Inc. prepared this Preliminary Site Investigation report as part of the Preliminary Site Investigation including surface and shallow groundwater sampling at the Former Camp O'Ryan in Wethersfield, NY (FUDS Property No. CONY1132), under contract with the United States Army Corps of Engineers (USACE), New England District (CENAE) Task Order 0031 of contract W912WJ-09-D-0001. The work was completed in accordance with the October 2010 Woods Hole Group Sampling and Analysis Plan (SAP) and the revised August 6, 2010 Statement of Work (SOW) prepared by CENAE. The work was performed with reference to the guidance document entitled USACE Requirements for the Preparation of Sampling and Analysis Plans, EM 200-1-3 [United States (U.S.) Army Corps of Engineers (USACE), 2001], the U.S. Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans, EPA QA/R-5, EPA/240/B-01/003, March 2001, New York State Department of Environmental Conservation (NYSDEC) Regulations, Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (SARA), National Oil and Hazardous Substances Contingency Plan (NCP) requirements, and the Formerly Used Defense Sites (FUDS) Program Policy (ER 200-3-1). The analytical requirements included in the New York State Department of Environmental Conservation Analytical Services Protocols (NYSDEC 2005).

The report includes a summary of the field sampling activities conducted from October 18th to 21st, 2010, and the laboratory testing results. Sampling was conducted at three (3) surface water and fifteen (15) shallow groundwater sites. *In-situ* measurements of temperature, specific conductance, pH, Oxidation Reduction Potential (ORP), and turbidity, indicate that the water quality of the samples was acceptable by NYSDEC 703.3 water quality standards; however, the turbidity for numerous shallow groundwater samples did exceed the standard due to the sampling technique.

The samples were analyzed for chemical parameters by: EPA SW846 Method 8260B for the NYSDEC ASP Target Compound List (TCL) Volatile Organic Compounds (VOCs); EPA SW846 Method 8270C for the NYSDEC TCL Semivolatile Organic Compounds (SVOCs); EPA Method 332 for Perchlorate; EPA SW846 Method 6010B for Lead; and EPA Method 8330A for 14 Explosive compounds. The field samples were non-detect for all chemical analyses with only a single detection of lead in one field duplicate sample. These results indicate that the surface and shallow groundwater locations sampled during this investigation at the former Camp O'Ryan do not appear to show impacts from prior site activities.

1.0 INTRODUCTION

1.1 SITE LOCATION AND DESCRIPTION

1.1.1 Site Location

Former Camp O'Ryan is in the rural Town of Wethersfield in Wyoming County, New York, about 40 miles east of Buffalo and 5 miles southeast of Warsaw, NY, (Figure 1). It is represented by District 26 Congressman Chris Lee and is in EPA Region 2. The 370-acre site is mostly forested. A 5-acre parcel including the former motor pool is used by a fireplace company. Residents in the area derive drinking water from private, unregistered wells. There are about a dozen dwellings along the north and west boundary of the site. Groundwater depth is 50 feet and yield is on the order of 10 gallons per minute (USACE SOW, revised 6 August 2010).

1.1.2 Background

Military use of the site began in 1949 when the New York Army National Guard (NY ARNG) enacted a lease for a "Target Range, Maneuver Area, Camp Site, and other Government purposes." (USACE SOW, revised 6 August 2010). Known users of the site included the Army and Air National Guard, Army Reserves, Naval Militia, Reserve Officers Training Program (ROTC) Cadets, Federal Bureau of Investigation (FBI), NY State Police, and local police agencies. Confirmed munitions used at the site included live and blank small arms, tear gas, slap flares, and practice bazooka rockets. Military training ended in 1994. The only Munitions and Explosives of Concern (MEC) reported on the site since site closure was a belt of unfired linked blank small arms found by personnel from the NYSDEC. Reported Munitions Constituents (MC) found at the site include an expended practice bazooka rocket found by a local citizen, similar rockets, expended small arms, and an expended slap flare found by the Rock Island District (CEMVR) during the site inspection in November 2009. The site has been subdivided into three Munitions Response Sites (MRS); MRS A, B, and C as seen in Figure 2. The primary findings in these areas include:

<u>MRS A</u>

MRS A is the four-acre parcel (Figure 2) that served as the former pistol and machine gun range. There is confirmed Hazardous, Toxic Waste (HTW) and MC present at the earthen target berm containing fired lead bullets. Although there is MEC potential in this area, it is not confirmed.

<u>MRS B</u>

MRS B is the ten-acre site that was the known-distance range (Figure 2). Confirmed HTW and MC presence includes lead (from lead bullets) in the earthen target berm. Confirmed MEC was also observed by NYSDEC in the form of an unfired belt of blank small arms ammunition. November 2008 testing by the NYSDEC indicated high Total Lead values and high Toxicity Characteristic Leaching Procedure (TCLP) values in the earthen target backstop.

<u>MRS C</u>

MRS C consists of 356 acres of all other land. This MRS has potential HTW and MEC. The motor pool may have been the site of vehicle maintenance, and similar maintenance may have been performed at the tank training course. A petroleum, oil, and lubricants (POL) point was located in the southern part of this MRS. MC was observed during the Site Inspection in the form of expended training rockets. There is MEC potential in this area, though not confirmed.

1.1.3 Water Quality

Naturally occurring surface water exists at the site in the form of intermittent streams and small manmade ponds on the southern part of the property. An unnamed intermittent stream flows from southeast to northwest across the site and separates the known-distance range from the pistol range, and there are at least two other similar streams in the southern portion of the site. It appears that the stream is being recharged by shallow groundwater downgradient of potential contamination source areas. Nearby water bodies include Java Lake 4 miles to the southwest and Wethersfield Springs Pond 4 miles to the east (Figure 1).

Java Lake is a 53.0 acre lake on the Lake Erie watershed and it is listed as an impaired waterway on the *Priority Waterways List* (PWL). Water bodies listed on the PWL by the NYDEC have documented water quality impairments, minor impacts and/or threats. Phosphorus levels in the lake typically exceed the state guidance values indicating that the lake is best characterized as eutrophic, or highly productive. Measurements of pH typically fall within the state water quality range of 6.5 to 8.5, but are consistently high and occasionally exceed 8.5 (NYSDEC, September 2010).

Wethersfield Springs Pond has not been assessed by the NYSDEC; however, it is a part of the headwaters of East Koy Creek, which is a tributary of the Genesee River. East Koy Creek is known as one of New York's best trout streams, but lack of riparian buffers along the stream and seasonal irrigation usage reduce stream flows, elevate temperatures and cause stresses to the fishery. Previous studies indicated slightly to moderately impacted water quality along the stream due to nutrient enrichment and thermal and flow fluctuations in the stream. The lower section of East Koy Creek is included on the NYS 2002 Section 303(d) List of Impaired Waters because the aquatic life support and fishery habitat is impacted by agricultural activities in the watershed. The Town of Wethersfield maintains an uncovered salt storage facility near the creek in Hermitage and there are concerns over the potential impacts of this facility to the watershed (NYSDEC, March 2003).

A biological (macroinvertebrate) survey of East Koy Creek at multiple sites between East Koy and Wethersfield Springs was conducted in 1993. Within this portion of the stream conditions were primarily slightly impacted. Clean-water mayflies, stoneflies and caddisflies were found, but species richness was lower than expected. Causes for these effects were not apparent. A concurrent fishery survey found appropriate populations in this reach. A biological (macroinvertebrate) assessment of East Koy Creek in East Koy was conducted in 1999. Filtering caddisflies dominated the sample. Impacts were

attributed to nonpoint source nutrient loads and organic wastes. Previous biological sampling in 1993 found similar conditions and evidence of agricultural inputs at various sites (NYSDEC, March 2003).

1.2 PROJECT OBJECTIVES AND SCOPE

The purpose of the sampling was to characterize the water quality of both stream surface water and shallow groundwater at a time when the groundwater was recharging the stream under base flow conditions.

Field activities were completed during a single four-day survey and included:

- 1. Collecting one round of shallow groundwater samples using pore water sampling techniques.
- 2. Collecting one round of surface water samples.
- 3. Collecting field parameters including temperature, pH, specific conductance, dissolved oxygen, oxidation reduction potential (ORP), and turbidity at each sampling location.
- 4. Measuring the stream flow rate.

The results of the October 2010 sampling event are presented in this report. These data are used to assess the nature and extent of shallow groundwater contamination, potential impacts to surface water, and to determine whether unacceptable public health risks exist at these locations. Samples were analyzed in accordance with their respective NYSDEC ASP (2005) contract required quantitation limits (CRQLs). Sample results are compared to their respective regulatory criteria, which for Camp O'Ryan include the June 1998 NYSDEC Technical and Operational Guidance Series (TOGS), and the May 2009 EPA Maximum Contamination Levels (MCLs).

2.0 SAMPLING METHODS

The Woods Hole Group Sampling and Analysis Plan (WHG SAP) and the Statement of Work (SOW) have established the requirement for data generation that meet the project objectives. Groundwater samples were collected in accordance with the Standard Operating Procedures (SOPs) presented in the SAP. The field investigators were escorted for all onsite sampling activities by the USACE-LRB Unexploded Ordinance (UXO) Specialist Nickolas Heleg-Greza, who provided anomaly avoidance especially for the intrusive investigation samples (shallow groundwater).

2.1 SURFACE WATER SAMPLING AND ANALYSIS

The SAP specified four surface water samples, SW-01, SW-02, SW-03, and SW-04; however, surface water sampling point SW-02 was dry during the sampling period. The surface water locations were sampled following the SOW (USACE, 2010), the SAP (Woods Hole Group, 2010), and the procedures outlined in the National Field Manual for the collection of Water Quality Data (USGS 2006). As outlined in the SAP, surface water sample collection was to occur under base flow conditions for the stream and not less than three days following a rainfall amount greater than 1/100th of an inch. In addition, it was noted that samples should not be collected from discontinuous, stagnant pools. Prior to sampling, field measurements of temperature, pH, conductivity, dissolved oxygen (DO), and ORP were taken using a YSI 556 MPS. In addition, a Hach 2100P turbidity meter was used to monitor turbidity.

Surface water samples were collected in bottles provided by Alpha Analytical, and were submitted for off-site laboratory analysis by: EPA SW846 Method 8260B for the NYSDEC ASP Target Compound List (TCL) VOCs; EPA SW846 Method 8270C for the NYSDEC TCL SVOCs; EPA Method 332 for Perchlorate; EPA SW846 Method 6010B for Lead; and EPA Method 8330A for 14 Explosive compounds. The 1-liter amber bottles for explosives and SVOCs were dip sampled. The samples for VOCs, perchlorate, and both total and dissolved lead were collected using a 140 ml syringe. The dissolved lead and perchlorate samples were filtered through a 0.45 μ m syringe filter. Additionally, the perchlorate samples were filtered through a secondary 0.2 μ m syringe filter. Samples collected during the groundwater sampling program were uniquely identified using the sample nomenclature outlined in the WHG SAP.

A rinsate blank for surface water, CO-EB01-1010, was to be collected for perchlorate, VOCs, and both total and dissolved lead due to use of the syringe and filters, while SVOCs and explosives did not require a rinsate blank due to use of the dip sampling method. The sample was collected by placing the VOC-free DI water provided by Alpha into a new syringe and then simply dispensing the correct amount into each container and using the correct filter, if applicable. Clean tubing, syringes, and filters were used at each sampling location, and used items were discarded between sampling locations.

2.2 SHALLOW GROUNDWATER SAMPLING AND ANALYSIS

Shallow groundwater samples were to be collected from eighteen (18) shallow groundwater locations during the October 2010 sampling. The shallow groundwater sites

were sampled in accordance with the SOW (USACE, 2010), the WHG SAP, as well as using procedures outlined in the National Field Manual for the collection of Water Quality Data (USGS 2006) and Pore Water Sampling (EPA, 2007). The shallow groundwater samples were collected with a pushpoint pore water sampler in combination with a peristaltic pump. Prior to sampling, field measurements of temperature, pH, conductivity, dissolved oxygen (DO), and ORP were taken using a YSI 556 MPS. In addition, a Hach 2100P turbidity meter was used to monitor turbidity. Shallow groundwater samples were collected as composite samples for all analyses except for VOCs, which were individual, grab samples. The composite group associations are shown in Table 1.

Shallow groundwater samples were collected in bottles provided by Alpha Analytical and were submitted for off-site laboratory analysis by: EPA SW846 Method 8260B for the NYSDEC ASP Target Compound List (TCL) VOCs; EPA SW846 Method 8270C for the NYSDEC TCL SVOCs; EPA Method 332 for Perchlorate; EPA SW846 Method 6010B for Lead; and EPA Method 8330A for 14 Explosive compounds. The 1 Liter amber bottles for SVOCs and Explosives were filled first, followed by the 40ml VOCs vials and the total lead containers. Then, a 0.45 μ m inline filter was placed on the end of the peristaltic pump tubing to filter the dissolved lead and perchlorate samples. Perchlorate samples were filtered into the back of a clean syringe and filtered a second time through a 0.2 μ m syringe filter into a bacteria cup. Samples collected during the groundwater sampling program were uniquely identified using the sample nomenclature outlined in the SAP (WHG, 2010).

A rinsate blank sample, CO-EB02-1010, was collected from the pore water sampler used at the shallow groundwater sampling locations. The rinsate blank sample was collected from the pore water sampler following decontamination after use in the sampling process. This procedure included soap and DI water decontamination with a rinse of VOC-free distilled water provided by Alpha Analytical, followed by a final rinse with isopropanol. DI water was pumped from the container into the sample bottles using new tubing and a peristaltic pump. Additionally, the rinsate blanks for perchlorate and dissolved lead were collected using fresh syringes and filters.

2.3 QUALITY CONTROL

As described in the SOW (USACE, 2010) the quality control (QC) samples collected for the October 2010 sampling effort included: field duplicate samples; equipment blanks; matrix spike; matrix spike duplicate; and trip blanks for the VOC samples. Field duplicates were used to evaluate the field sampling procedures and laboratory accuracy and precision in analyzing the samples. The purpose of equipment blanks was to determine whether the sampling equipment could be a source of cross-contamination of samples. Matrix spike (MS) and matrix spike duplicate (MSD) samples were collected for the laboratory as QC samples to provide a measure of the accuracy of the laboratory method in the site matrix. Trip blanks were used to evaluate potential crosscontamination issues during sample transport, both in the field and to the laboratory. Details for the QC protocol were provided in the SAP (Woods Hole Group, 2010). The samples were stored in a cooler on ice until delivery to the laboratory. Analysis of samples was performed by Alpha Analytical Laboratory in Westborough, Massachusetts.

Practical quantitation limits (PQL), also called laboratory reporting limits, for analysis of VOCs, SVOCs, and Lead were at or below the corresponding NYSDEC ASP (2005) contract required quantitation limits (CRQLs). No NYSDEC CRQLs are available for Explosives or Perchlorate; therefore, the project required reporting limits for these parameters have been set as the laboratory reporting limits or PQLs, as supported by the calibration curves for these methods. The PQL is equivalent to the low level calibration standard. The method detection limit (MDL), which is lower than the PQL, represents the lowest quantitation level that can be achieved for each substance by the specified method. In general, the PQLs are three to five times higher than the MDLs. The sample quantitation limit or reporting limit is analogous to the PQL; however, it is adjusted for sample-specific variables such as analytical dilutions. Results for the methods were reported down to the PQL or sample-specific lab Reporting Limits (RLs). For aqueous samples by EPA Methods 8260 (VOCs) and 8270 (SVOCs), the laboratory will report detected results below the PQL, down to the MDL, as estimated (qualified "J") data.

3.0 **RESULTS**

The sampling activities and results from the October 2010 sampling event at Camp O'Ryan are described in this section. From October 18th to 21st, 2010, surface and shallow groundwater samples were collected from a total of 18 monitoring points across the site. All field data, site descriptions, and notes were collected on field data sheets, which are provided in Attachment 2. The locations of the surface water and shallow groundwater samples in the SOW were considered approximate, and the actual locations were determined during the field work with the concurrence of the USACE project geologist, Ken Heim. As a result, new GPS coordinates for the actual surface water sampling locations were taken and are presented in Figure 3. Laboratory analytical results for both the pore and surface water locations sampled during the October 2010 sampling event are provided in Attachment 3. A compilation of photographs taken of the site, equipment, field crew, and sampling activities can be found in Attachment 5.

3.1 SURFACE WATER SAMPLING

Surface water samples were collected from a total of three (3) of the four (4) proposed monitoring points across the site including SW-01, SW-03 and SW-04 (Figure 3). Site SW-02 on the north branch of the stream was not sampled because the streambed was dry in this location except for a stagnant pool. Surface water sampling took place prior to shallow groundwater sampling in the afternoon of October 18th since rain was forecasted for October 19th. There was a trace amount of precipitation recorded overnight on October 18th and during the day on the 19th. The weather conditions during the sampling period are summarized on Table 2. Weather data were obtained from North Java, NY, located 3 miles from the Camp O'Ryan site because this was the closest source for local weather data.

Site SW-01 was roughly 50 feet upstream of the culvert that runs underneath Wethersfield Road. Sites SW-02 and SW-03 were on the north branch and main branch of the stream, respectively, just upstream of their confluence. The stream ran through a marshy flood plain at the location of SW-03. Site SW-04 was the furthest upstream and in the middle of a steep, narrow ravine. The surface water sampling started at the furthest downstream sampling location, SW-01, and continued moving upstream to SW-03 and SW-04. The sampling technician remained on the channel bank downstream of the sampling location (facing upstream) while sampling to avoid disturbing the bottom sediments.

3.2 SHALLOW GROUNDWATER SAMPLING

Shallow groundwater samples were collected from fifteen (15) of the eighteen (18) proposed shallow groundwater locations during the October 2010 sampling event. Shallow groundwater sampling began on October 19th at the north branch of the stream starting with the composite shallow groundwater locations MP-04, MP-05, and MP-06, and followed by MP-07, MP-08, and MP-09. This section of the stream was very shallow, narrow (about a foot across), and had a slow flow, which is in contrast to the dry surface water sampling location, SW-02, located further downstream. This portion of the stream was also heavily vegetated and forested, which hampered sampling efforts. In

addition, the stream ended abruptly roughly 45 feet upstream of location MP-05 and there was no evidence of shallow groundwater upgradient of the end of the stream. As a result, shallow groundwater location MP-06 for composite group B was moved to a suitable sampling location downstream of MP-04. Similarly, both MP-08 and MP-09 were moved downstream due to a lack of suitable sampling locations in the proposed area. The pore water sampler could only be placed roughly a foot into the ground due to refusal.

With sampling completed on the northern branch of the stream, the sampling was continued October 20th on the main branch of the stream starting at the farthest upstream sampling location, MP-18 (composite group F). Sampling with a pore water sampler proved to be difficult in the upper portion of the main branch of the stream since it was set in a narrow, steep ravine with no clearly defined bank. The rockiness of the soil prevented the sampler from penetrating into the ground more than a foot. MP-17 was located on a silty deposit downstream from MP-18. MP-16 was not sampled due to a lack of suitable sampling locations. As a result, composite group F was composed of only two sampling locations, MP-18 and MP-17.

Composite group E proved to be easier to sample than group F, but sampling still remained difficult in the ravine. All three sample locations of composite group F including MP-13, MP-14, and MP-15, were sampled with the pore water sampler located close to the edge of the stream bank. The sampler could not penetrate the ground more than one foot due to rocks.

The ravine widened and gave way to a floodplain between composite groups E and D. Nonetheless, suitable sampling locations were limited resulting in only two locations sampled, MP-10 and MP-12. In this section, the stream had eroded a channel well below the grade of the surrounding floodplain, and, as a result, the pore water sampler could not penetrate deep enough to extract water on top of the floodplain due to refusal from a consolidated layer. A pool of surface water was found away from the bank near the location of MP-12; however, no seep water could be drawn with the pore water sampler from below the pool at this location. The water was simply pooled on top of a cohesive layer of the soil that had a consistency of mushy, dark clay. No suitable site for MP-11 could be found, so it was not sampled. MP-10 was taken by inserting the pore water sampler into an undercut bank along the stream bank.

Composite Group A was composed of only two locations, MP-01 and MP-02, due to a lack of suitable locations along this stretch of stream. As with composite group D, the stream has eroded a channel well below that of the surrounding floodplain, and the pore water sampler could not penetrate deep enough to extract water on top of the floodplain. MP-02 was taken on the stream bank adjacent to a washout with some surface water. Sampling was first attempted in the washout; however, no water could be drawn. The sampling was moved closer to the edge of the stream bank. Site MP-01 was characterized by a seep face set in a steep slope composed of a hard claylike material. Sampling was performed at the base of the seep face.

3.3 SURFACE WATER AND SHALLOW GROUNDWATER PHYSICAL RESULTS

A summary of the field data parameters collected prior to sampling at each of the surface and shallow groundwater locations for the October 2010 sampling are provided in Table 3. The measurements of field parameters were compared with their NYSDEC water quality standards for classes 'A' and 'GA' for surface and groundwater, respectively. The measurements of field parameters from the shallow groundwater measurements were compared to the groundwater (GA) standard as there is not separate class for shallow groundwater or pore water. Overall, the field parameters indicated that the water quality for the surface and shallow groundwater samples collected during this field effort was acceptable. At this time there were no standards set for temperature, ORP or specific conductance, turbidity for surface water (A) or dissolved oxygen for groundwater (GA).

Temperature and specific conductance were much higher for the samples collected on the north branch of the stream MP-04 through MP-09 than on the main branch of the stream. ORP was highest in the upper section of the stream and lowest on the north branch of the stream. The dissolved oxygen measurements for surface water samples ranged from 10.64 mg/L to 12.75 mg/L, which were well above the standard of 4 mg/L. The dissolved oxygen in the shallow groundwater samples ranged from 1.70 mg/L to 8.87 mg/L, which is lower than the surface water samples as expected of shallow groundwater samples.

The pH measurements were within the TOGS standard range of 6.5 to 8.5 for all measurements except for SW-01, which had a pH reading of 6.26. The pH of the samples decreased with their respective downstream location. The pH was also lower on the north branch of the stream than it was on the main branch of the stream. The lower pH measurements downstream of the stream confluence may be an indicator of different groundwater sources feeding the upper section of the stream versus the lower section and north branch of the stream.

The NYSDEC turbidity standard was 5 NTU for groundwater, but there was no standard at this time for the surface water. The shallow groundwater measurements of turbidity actually exceeded the standard of 5 NTU for all locations except for MP-02, MP-06, and MP-13; however, this may be due to the limitations of the pore water sampling technique. Sediment may become mobilized when the pore water sampler is inserted into the ground, which causes the sediment to mix with the groundwater. The pore water sampler could only be inserted into the ground about a foot or so, and this top layer or soil tends be more active biologically and geologically causing this layer to be less consolidated and more easily mobilized as well. The turbidity of the surface water samples from the stream were much lower overall than the shallow groundwater samples, which supports the notion that the turbidity of the shallow groundwater samples is related to the sampling technique. In addition, the water class "GA" may be more appropriately applied towards established drinking water and monitoring wells, which are carefully constructed and can be sampled by less invasive techniques such as low flow sampling.

The stream dimensions and velocity were measured so that the flow rate could be calculated for each surface water sampling location. The average stream flow rate was estimated to be 60% of the product of the stream cross-sectional area and the stream

surface velocity, measured by timing a buoyant surface drifter/float over a measured distance, as outlined in the SAP. The flow rate was calculated to be 0.55 ft³/s at SW-01, 0.25 ft³/s at SW-03, and 0.03 ft³/s at SW-04. As expected, the flow rate increased at each successive downstream sampling location, which is an indication of a gaining stream. The stream dimensions, velocity and flow rate are shown in Table 4.

3.4 SURFACE WATER AND SHALLOW GROUNDWATER CHEMICAL RESULTS

The results were compared to applicable regulatory standards including the NYSDEC TOGS and EPA MCLs, which are summarized in Tables 5-1 and 5-2 for shallow groundwater and surface water, respectively. The standards for TOGS took precedent over the EPA MCLs, except where the MCLs were lower. In general, most of the analytes had standards listed under the NYSDEC TOGS, however, only a few of the analytes tested had standards listed under the EPA MCLs. The values for the NYS TOGS were selected from Table 1 "Ambient Water Quality Standards and Guidance Values. June 1998". A standard is a value that has been promulgated and placed into regulation, while a guidance value is a suggested criterion that has not been placed into regulation yet. A guidance value may only be used where a standard for a substance or group of substances has not been established. Selection of the appropriate standard or guidance value for a compound requires referring to the specific 'water class' and protection 'type' for the sample water source. Protection 'type' in the NYS TOGS was divided into four main categories for human health (H), fish health (A), wildlife health (W), and aesthetics (E). The protection 'type' selected for Camp O'Ryan was human health (H), and more specifically Health for a Water Source or 'H(WS)'. The specific 'water classes' chosen for the shallow groundwater and surface water samples were 'GA' for groundwater and 'A' for freshwater drinking water supply. The sample specific designations for 'water class' and 'type' were selected using guidance from the NYSDEC Region 9 office.

A number of compounds had no standard or guidance value listed under either the NYS TOGS or the EPA MCLs, therefore, these compounds do not have a standard at this time and are listed as 'NS' for in the summary tables. Other compounds were considered to be unregulated for groundwater by New York State, meaning they have no set standard or guidance value and are listed in Table 3 "Partial List of Substances Not Regulated by the Principal Organic Contaminant (POC) Groundwater Standard" of the NYS TOGS. These unregulated compounds are listed as 'NR' in the summary tables.

The results of the surface and shallow groundwater samples for the 2010 October sampling event were "Non-Detect" or "ND" for analyses including VOCs, SVOCs, explosives, perchlorate and both total and dissolved lead for almost all analyses (except as described below). This indicates that the concentrations were not detected at concentration below the RL. There was a single detection of total lead at 0.018 mg/L in the field duplicate sample for the shallow groundwater composite group MPE. The associated field sample was ND. This field duplicate comparison was acceptable by EPA Region 2 data validation standards and further details can be found in the Section 4 Data Quality. This detection of total lead in the duplicate sample of MPE was below the NYSDEC TOGS standard of 0.025 mg/L for groundwater (GA), but it did exceed the

EPA MCL of 0.015 mg/L. This result could be due to the entrainment of suspended particles containing lead during sampling as the turbidity was above the 5 NTU standard at two of the three sampling locations included in this composite sample. A summary of the results can be found in Tables 5-1 and 5-2 and complete laboratory analytical results can be found in Attachment 3.

The results for the SVOC analyte 2,4-dimethylphenol were rejected due to LCS/LCSD recoveries less than 10%. This data is not considered usable for project decisions. The lab commented in their report that this analyte is a problematic analyte to measure in the lab. Considering that SVOCs were not detected in any of the samples, it is not expected that 2,4-dimethylphenol would be present on site. Further details can be found in the Section 4 Data Quality.

All other SVOCs met the reporting limits specified in the approved SAP (NYSDEC ASP CRQLs, 2005). Note that these reporting limits for a number of analytes exceed their respective regulatory limits, as shown in the tables. Standard EPA methods were used for analysis of these samples.

4.0 DATA QUALITY

$4.1\,$ sample custody, preservation, holding time, and laboratory data review

Samples were collected October 18th through 20th, 2011 and received at Alpha Analytical on October 21, 2010. The laboratory narrative confirms that all samples collected for the October 2010 sampling event were received under proper chain-of-custody (COC) procedures and with acceptable preservation as defined in Table 10 Sample Containers, Preservatives, and Holding Times of the SAP (October 2010). A copy of the login narrative is provided in Attachment 3. All samples were analyzed within the required method holding times. All samples were prepared and analyzed using the methods defined in Table 8 Analysis Methods and Project Data Quality Objectives of the SAP (October 2010), summarized as follows:

- EPA SW846 Method 8260B for the NYSDEC ASP Target Compound List (TCL) VOCs
- EPA SW846 Method 8270C for the NYSDEC TCL SVOCs
- EPA Method 332 for Perchlorate
- EPA SW846 Method 6010B for Lead
- EPA Method 8330A for 14 Explosive compounds

The lab processed and delivered the sample results in one sample delivery group (SDG) labeled L1016650. The laboratory performed a data review consistent with the procedures detailed in Section 5.3 of the SAP (October 2010) and the laboratory Quality Assurance Manual. Data reporting procedures were consistent with Section 5.4 and Table 8 of the SAP, with a minor deviation that not all results were reported in units of μ g/L. VOCs, SVOCs, Explosives, and Perchlorate were reported in units of μ g/L while Total and Dissolved Lead were reported in mg/L. These were acceptable reporting protocols for aqueous results for these parameters.

Additionally, there were several inconsistencies between the compound names used by the laboratory and those listed in Table 8 of the SAP. The laboratory reported "3-Methylphenol/4-Methylphenol" rather than "4-Methylphenol" since these two isomers co-elute. Three compounds were reported using common names not listed in Table 8 (IUPAC names used here) as follows: "N-nitrosodiphenylamine" was reported as "NitrosoDiPhenylAmine(NDPA)/DPA"; "4-Chloro-3-methylphenol" was reported as "p-Chloro-m-Cresol"; and "4,6-Dinitro-2-methylphenol" was reported as "4,6-Dinitro-o-cresol". The laboratory reported "m/p-Xylene" and "o-Xylene" instead of "Total Xylene"; therefore, 52 VOCs are reported rather than 51 compounds as listed in Table 8 and the ADR library files were updated accordingly. All these deviations were considered acceptable and do not adversely affect data quality.

As required in Section 5.4 of the SAP, the laboratory provided a narrative nonconformance summary, Stage 2a SEDD (xml) files, and laboratory data report for SDG L1016650 (in pdf format) including results, units, reporting limits, and summary QC.

4.2 DATA VALIDATION PROCESS

The Woods Hole Group team performed the QC data review and validation on samples analyzed by the contract laboratory in accordance with the August 2010 SOW and the October 2010 Sampling and Analysis Plan (SAP). The SEDD analytical data were evaluated utilizing v8.3 ADR software and the Camp O'Ryan project ADR Library created by CENAE and Alpha Analytical, based on the 2010 SAP. During the ADR evaluation, the ADR files were reviewed in the ADR Review Module. The software was used to generate non-conformance reports (error logs) and qualification reports, which can be found in Attachment 4.

Consistent with Section 5.8 of the 2010 SAP, NEH performed a targeted data validation review for each analysis method in SDG L1016650. This review consisted of: verification of sample identification preservation, and holding times; surrogate, LCS/LCSD, and MS/MSD recoveries; LCS/LCSD, MS/MSD/MD, and Field Duplicate precision; method and field blank contamination issues; and sensitivity of reported results compared to the SAP requirements. This review did not include an evaluation of instrument tunes, initial and continuing calibration results, internal standard recoveries, raw data, or include calculation verifications. The data validation checklists generated by NEH to document this targeted data validation are presented as the January 7, 2011 Data Validation Review reports for sample batch L1016650 (Attachment 4). NEH then reviewed the SEDD/ADR reports to verify that all issues affecting data quality identified in the targeted data validation were properly documented in the ADR/SEDD reports and reconciled issues found in these reports.

4.3 DATA VALIDATION RESULTS

Data Usability

All data, except for the 2,4-dimethylphenol results, are considered usable for project decisions with the understanding of the potential uncertainty in qualified (J and UJ) results. All results for the SVOC 2,4-dimethylphenol were rejected (qualified R) during data validation due to severe exceedance of the method QC measure of accuracy. Rejected results are considered unusable for project decisions. Overall, other QC results for all parameters indicated generally acceptable accuracy, precision, representativeness, and sensitivity of the results, with the following observations. Details for all issues described in this section were included in the data validation reports (Attachment 4).

Accuracy & Precision

For SVOCs, several compounds recovered below acceptance criteria in the MS and/or MSD or demonstrated imprecision in the LCS/LCSD or MS/MSD results. All results for 2,4-dimethylphenol were rejected (qualified R) and are not usable for project decisions based on LCS/LCSD recoveries < 10%. Other results were qualified as estimated (UJ). Data validation actions to qualify SVOC results were consistent with the ADR/SEDD Sample Qualification Report. Three compounds out of the 66 SVOCs listed in Table 8 of the SAP were not reported in the LCS/LCSD or MS/MSD. As the laboratory narrative did not indicate any nonconformance in calibration for these compounds, the data are

considered usable as reported. All qualified data are usable (with the exception of 2,4dimethlyphenol) with low or indeterminate bias.

For VOCs, bromomethane recovered below acceptance criteria in the LCS/LCSD and MS/MSD results. All bromomethane results were estimated (UJ) and are usable with a potential low bias. Several other results were negated (U), as described below, or estimated (J) consistent with the ADR/SEDD Sample Qualification Report.

Potential for field sample contamination was evaluated using trip blank and equipment rinsate blank results. One trip blank for VOCs (CO-TB01-1010) and two equipment rinsate blanks (CO-EB01-1010 for surface water samples and CO-EB02-1010 for shallow groundwater samples), were submitted with the field samples. All parameters were ND in these blanks except as follows. Low levels of chloroform and acetone were detected in the equipment blanks and chloroform was also detected in the trip blank. Low level contamination of these VOCs are common in environmental analyses. The ADR reported estimated values (J) of chloroform below the RL in both equipment blanks; however, the software did not apply the required blank action. During data validation, blank actions were taken to negate (U) the chloroform results in both equipment blanks due to the presence of chloroform as a contaminant in the associated trip blank.

Additionally, the ADR software did not apply the correct qualification for two shallow groundwater samples based on the detected level of acetone in the associated equipment blank. The ADR reported two acetone results in samples CO-MP18-1010 and CO-MP18-1010-B qualified "UJ"; whereas the correct qualification is "U" due to blank actions.

For Explosives, professional judgment was used to estimate (qualify UJ) all results for methyl-2,4,6-trinitrophenylnitramine (Tetryl), rather than just the two results estimated as indicated in the ADR/SEDD Sample Qualification Report. This professional judgment was based on the MS/MSD evidence of matrix effects on accuracy and precision coupled with the QC exceedances in the continuing calibration results for Tetryl (as reported in the laboratory narrative). Tetryl results are usable as estimated values with indeterminate bias.

No data validation actions were required for Perchlorate, Total Lead, or Dissolved Lead as all QC measures of accuracy and precision met acceptance criteria.

Field Precision & Representativeness

Field duplicate (FD) precision and representativeness was evaluated based on results from the analysis of field samples as compared to results from the corresponding field duplicate samples. FD precision was expressed quantitatively in terms of relative percent difference (RPD). Three FD pairs were collected for VOCs and two FD pairs were collected each for SVOCs, Explosives, Perchlorate, and Lead. This FD frequency meets the SAP requirement of collection of 1 FD per 10 field samples.

Field duplicate results for VOCs, SVOCs, Explosives, Perchlorate, and Dissolved Lead were all ND. These ND results were consistent with each other and were considered

acceptable field duplicate precision and representativeness, though RPD could not be calculated. Total Lead was detected in one FD sample, CO-MPE-101B, at 0.018 mg/L while the result for its associated field sample, CO-MPE-1010, was ND at 0.010 U mg/L. The laboratory confirmed these results on re-analysis. Though these FD results did not meet the project requirement of RPD less than 30% (as defined in Table 8 of the SAP), they actually satisfied the EPA Region 2 metals data validation criteria (SOP HW-2, September 2006) for acceptable field duplicate precision. For values near the RL (at <5x RL), the EPA defined acceptable FD precision as the difference between the two results must be less than or equal to the contract required quantitation limit (CRQL), which for lead CRQL was 0.010 mg/L (equal to the RL of our data). The difference between the ND result and detected lead result was 0.008 mg/L, which was less than 0.010 mg/L and, therefore, meets EPA acceptance criteria.

These FD results were an indication of acceptable precision from sample collection through analysis and acceptable representativeness of the sample to the site locations for all types of aqueous samples collected.

Sensitivity

Sensitivity, in terms of achieving the CRQLs listed in Table 8 of the SAP, was met for all parameters with the following observations. For Explosives, all results were ND; however, the sample-specific reporting limits (RLs) were slightly greater than the Project RL of 0.25 µg/L (specified in the SAP); this was due to differences in extraction volumes (preparation factors). The achieved RLs were considered acceptable since they were all were below their associated TOGS, except for 2,6-dinitrotoluene for surface water; however, 2.6-dinitrotoluene would not have achieved the TOGS standard of 0.07 µg/L even at the original RL of 0.25 µg/L. For SVOCs, the following analytes exceeded their CRQLs given in Table 8, as expected, due to method limitations, but met the defined Project RLs: 1,2,4,5-tetrachlorobenzene, 2,4-dichlorophenol, 2,4-dimethylphenol, 2,4dinitrophenol, 2-nitrophenol. 3,3'-dichlorobenzidine, 4,6-dinitro-2-methylphenol, acetophenone, hexachlorobutadiene, and hexachlorocyclopentadiene. For VOCs, 1,4-Dioxane exceeded its CROL, due to method limitations. In addition, the RLs for a number of compounds exceeded their TOGS and/or MCLs due to method limitations. T compounds are shown in the date summary tables.

4.4 DATA VALIDATION ACTIONS RECONCILED WITH THE ADR

Upon completion of the ADR package and independent validation of the data by New Environmental Horizons (NEH), the following manual edits were made in the ADR software (explanations for these actions as discussed in Section 3.3.3 above):

- All Tetryl results for Explosives were estimated (UJ) and have indeterminate bias
- Chloroform in samples CO-EB01-1010 and CO-EB02-1010 were negated (U) at the RL ($0.75~U~\mu\text{g/L})$
- Acetone in samples CO-MP18-1010 and CO-MP18-1010-B were negated (U) at the RL (5 U μg/L)

The reviewed files were exported from the ADR software as reviewed EDDs and submitted for final approval by the CENAE.

5.0 **DISCUSSION**

This section discusses the findings of the October 2010 shallow groundwater and surface water sampling event at Camp O'Ryan. The results from the October 2010 sampling event demonstrate that:

- Rainfall was minimal during and prior to the sampling event indicating that sampling occurred under base flow conditions.
- Measurements of the stream flow indicated that flow increased downstream, which is indicative of a gaining stream.
- The *in-situ* measurements of field parameters including ORP, pH, temperature, specific conductance, dissolved oxygen, and turbidity indicated acceptable water quality by NYSDEC standards; however, turbidity was high for a number of the shallow groundwater samples as a result of the sampling technique.
- All chemical data, except for the 2,4-dimethylphenol results, are considered usable for project decisions with the understanding of the potential uncertainty in qualified (J and UJ) results.
- The surface water samples collected from the stream were nondetect (ND) for the compounds analyzed indicating that contamination of the stream appears to minimal.
- The shallow groundwater sample results for the shallow groundwater locations were nondetect (ND) for the compounds analyzed (except as described in the following bullet) suggesting that the there is no impact due to prior site activities.
- The only detectable result was for total lead at 0.018 mg/L in the duplicate field sample for the shallow groundwater composite group MPE. Total lead was ND in its associated parent field sample. This could be the result of the entrainment of a small amount of sediment containing lead as the turbidity was elevated at several locations of this composite sample. This level of detection was below the NYSDEC TOGS standard of 0.025 mg/L but above its EPA MCL of 0.015 mg/L. The result of the field duplicate comparison does meet EPA Region 2 data validation criteria.
- The reporting limits for a number of the analytes exceeded their respective regulatory limits. The samples were analyzed using standard EPA methods.

6.0 DEVIATIONS FROM THE SAMPLING ANALYSIS PLAN AND CONCLUSIONS

- A surface water sample could not be collected at the location of SW-02 since the stream was dry.
- Shallow groundwater samples could not be collected at three locations including MP-03, MP-11, MP-16, due to the underlying geology of the adjacent bank and general stream characteristics. This reduced the size of their associated composite groups.
- The sample-specific RLs for Explosives were greater than the project RL of 0.25 μ g/L (specified in the SAP) due to differences in extraction volumes. However, the results for Explosives were ND at a level below their respective TOGS and/or MCLs and considered acceptable.
- The laboratory reported "m/p-Xylene" and "o-Xylene" instead of "Total Xylene"; therefore, 52 VOCs are reported rather than 51 compounds as listed in Table 8 of the SAP. The ADR library files were updated accordingly and found in Attachment 6 (on CD) of this report.

7.0 REFERENCES

- DoD Environmental Data Quality Workshop. 2009. Department of Defense Quality Systems Manual For Environmental Laboratories version 4.1.
- Division of Water. June 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations.
- Division of Water. 16 February 2008. Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.
- EPA. May 2009. National Primary Drinking Water Regulations.
- EPA. 2001. EPA Requirements for Quality Assurance Project Plans, EPA QA/R-5, Office of Environmental Information, Washington, DC. EPA/240/B-01/003. March 2001.
- EPA. 1996. Region 1, EPA-New England Data Validation Functional Guidelines for Evaluating Environmental Analyses. December 1996, and Part IV (Inorganic Data Validation Functional Guidelines), November 2008.
- EPA. 5-February-2007. Pore Water Sampling, SOP # SESDPROC-513-R0.
- NYSDEC. September 2010. Niagara River/Lake Erie Basin Waterbody Inventory/Priority Waterbodies List Report.
- NYSDEC. 2005. New York State Department of Environmental Conservation Analytical Services Protocols.
- NYSDEC. March 2003. Genesee River Basin Waterbody Inventory/Priority Waterbodies List Report.
- NYSDEC. June 1998. Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations
- USACE. revised 6 August 2010. Camp O'Ryan Statement of Work, Preliminary Site Investigation Former Camp O'Ryan, Wethersfield, NY (FUDS Property Number C0NY1132).
- USACE. August 2010. Camp O'Ryan Site Reconnaissance Report.
- USACE. 2004. Engineer Regulation (ER) 200-3-1, Formerly Used Defense Sites Program Policy.
- USACE. 2004. EM 200-1-3. Guidance for the SAP. United States Army Corps of Engineers (USACE), 2004. Engineer Regulation (ER) 200-3-1, Formerly Used Defense Sites Program Policy.
- USACE. 2003. Engineer Manual (EM) 1110-1-4007 Safety and Health Aspects of Hazardous, Toxic, and Radioactive Waste Remediation Technologies.
- USACE. 3-November-2003. EM 385-1-1 Safety and Health Requirements Manual
- USACE. 1998. ER 1110-1-263 Chemical Data Quality Management for Hazardous, Toxic, Radioactive Waste Remedial Activities.

- USGS. September 2006. National Field Manual for the Collection of Water Quality Data. Version 2.
- Woods Hole Group. October 2010. Health and Safety Plan. Camp O'Ryan,Wethersfield, NY. Prepared under Contract W912WJ-D-0001, Task Order No0023 for the U.S. Army Corps of Engineers New England District, Concord, MA.
- Woods Hole Group. October 2010. Final Sampling and Analysis Plan. Camp O'Ryan, Wethersfield, NY. Prepared under Contract W912WJ-D-0001, Task Order No 0031 for the U.S. Army Corps of Engineers New England District, Concord, MA.
ATTACHMENT 1 TABLES AND FIGURES

Figure 1. Regional map of Camp O'Ryan, Java Lake, Wethersfield Springs Pond and Warsaw, NY.

Figure 2. Former Camp O'Ryan Munitions Response Sites (MRS) A, B and C.

Figure 3. Sampling locations for the October 2010 surface and pore water samples and the May 2009 TCLP samples taken by NYSDEC.

	Composite Group	Fi Measu	ield 1rement											
ID		Flow	*In Situ Data	Expl (EPA	osives 8330)	Perc (EPA 6	chlorate 6850 or 860)	V (EPA	OC 8260)	S (EPA	VOC A 8270)	I (Tota (EPA	Lead al/Diss.) 6010C)	Rationale
SW-1	NA	х	x	х	Grab	х	Grab	х	Grab	x	Grab	х	Grab	Confluence of stream reaches/ Camp O'Ryan Boundary
SW-2	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Streambed dry
SW-3	NA	х	х	х	Grab	х	Grab	х	Grab	х	Grab	х	Grab	Down gradient southwest stream reach
SW-4	NA	х	х	х	Grab	х	Grab	х	Grab	х	Grab	х	Grab	Up gradient southwest stream reach
MP-1	А	N/A	Х	N/A	N/A	N/A	N/A	х	Grab	х		N/A	N/A	Down gradient tank
MP-2	А	N/A	Х	N/A	N/A	N/A	N/A	х	Grab	х	Comp.	N/A	N/A	training course
MP-3	А	NS	NS	NS	NS	NS	NS	NS	NS	NS		NS	NS	
MP-4	В	N/A	Х	N/A	N/A	N/A	N/A	х	Grab	х		N/A	N/A	Down gradient motor pool
MP-5	В	N/A	Х	N/A	N/A	N/A	N/A	х	Grab	х	Comp.	N/A	N/A	
MP-6	В	N/A	Х	N/A	N/A	N/A	N/A	х	Grab	х		N/A	N/A	
MP-7	С	N/A	х	Х		х		N/A	N/A	N/A	N/A	х		Down gradient known
MP-8	С	N/A	Х	Х	Comp.	Х	Comp.	N/A	N/A	N/A	N/A	х	Comp.	distance firing line and
MP-9	С	N/A	Х	Х		х		N/A	N/A	N/A	N/A	х		target line
MP-10	D	N/A	х	Х		х		х	Grab	х		х		Down gradient possible
MP-11	D	N/A	NS	NS	Comp.	NS	Comp.	NS	NS	NS	Comp.	NS	Comp.	cylinder burial area
MP-12	D	N/A	Х	Х		Х		Х	Grab	х		Х		
MP-13	E	N/A	Х	Х	-	Х		N/A	N/A	N/A	N/A	X		Down gradient pistol
MP-14	E	N/A	Х	Х	Comp.	Х	Comp.	N/A	N/A	N/A	N/A	Х	Comp.	range
MP-15	E	N/A	Х	Х		Х		N/A	N/A	N/A	N/A	X		
MP-16	F	N/A	NS	NS		NS		NS	NS	NS	-	NS		Down gradient possible
MP-17	F	N/A	Х	X	Comp.	Х	Comp.	X	Grab	X	Comp.	X	Comp.	demo pit/rocket range
MP-18	F	N/A	Х	Х		Х		X	Grab	X		X		
Total	6	4	22		8	8		16		8		8		

Table 1.	Summary of field samp	oling locations,	samples, and rationale
			1 /

NS = not sampled; NA = Not Applicable

Date in October 2010	Temperature (°F)	Humidity	Sea Level Pressure (in. Hg)	Wind Speed (MPH)	Precipitation (in.)	Conditions
18	47	63	29.98	6	Trace	Overcast; some precipitation overnight
19	49	69	29.89	8	Trace	Mostly Cloudy; brief and light precipitation in the afternoon
20	50	58	29.74	14	0.07	Partly Sunny and windy

Table 2.Weather conditions at North Java during sampling event.

Table 3.Sample location field data

Sampling Location ID	Sample Date	Composite Group	Latitude	Longitude	Sample Depth (ft)	Temperature (°C)	Specific Conductance ¹ (µS/cm)	рН	ORP ² (mV)	Dissolved Oxygen (mg/L)	Turbidity (NTU)
Surface Sam	ples										
Standard ³						NA	NA	6.5-8.5	NA	4	NA
SW-01	10/18/2010	NA	42° 41.068'	78° 17.327'	0.25	7.31	315	6.26	138.3	12.75	1.04
SW-03	10/18/2010	NA	42° 40.992'	78° 17.108'	0.22	8.72	305	7.80	49.0	10.64	5.14
SW-04	10/18/2010	NA	42° 40.868'	78° 16.826'	0.12	8.32	209	7.86	58.3	10.83	6.31
Porewater S	amples (shallo	w groundwater	r)								
Standard ³						NA	NA	6.5-8.5	NA	NA	5
MP-01	10/20/2010	А	42° 41.036'	78° 17.263'	0.70	7.62	303	6.97	121.4	1.70	27.6
MP-02	10/20/2010	А	42° 41.025'	78° 17.209'	0.85	9.22	352	6.99	164.4	2.83	4.85
MP-04	10/19/2010	В	42° 41.034'	78° 16.902'	1.68	11.21	553	6.85	195.7	2.42	97.6
MP-05	10/19/2010	В	42° 41.030'	78° 16.882'	0.80	10.52	650	7.06	59.6	8.65	48.5
MP-06	10/19/2010	В	42° 41.030'	78° 16.931'	0.90	10.08	458	7.19	38.5	4.60	3.76
MP-07	10/19/2010	С	42° 41.024'	78° 16.897'	1.03	10.85	579	7.07	110.0	1.75	47.50
MP-08	10/19/2010	С	42° 41.025'	78° 16.916'	0.79	10.61	463	7.13	18.1	2.09	23.80
MP-09	10/19/2010	С	42° 41.024'	78° 16.957'	0.95	9.99	433	6.87	107.1	2.13	44.6
MP-10	10/20/2010	D	42° 40.911'	78° 17.054'	0.67	9.05	268	7.58	145.5	8.87	184.0
MP-12	10/20/2010	D	42° 40.885'	78° 17.008'	0.75	8.98	269	7.03	104.3	1.98	53.5
MP-13	10/20/2010	Е	42° 40.896'	78° 16.910'	0.85	9.26	294	6.99	100.0	7.30	3.70
MP-14	10/20/2010	Е	42° 40.894'	78° 16.859'	0.92	8.96	284	7.31	141.1	3.10	81.1
MP-15	10/20/2010	E	42° 40.884'	78° 16.848'	0.90	8.38	236	7.23	150.7	8.20	5.49
MP-17	10/20/2010	F	42° 40.877'	78° 16.750'	0.94	7.97	141	7.15	257.6	4.51	13.0
MP-18	10/20/2010	F	42° 40.825'	78° 16.667'	0.72	7.65	114	7.93	354.6	7.10	60.8

Notes:

 $^1\text{MicroSiemens}$ per centimeter (µS/cm) at 25°C.

 2 Oxidation-reduction potential (ORP) values have a SHE-correction of 200 mV to correct to Eh. mg/L = Milligrams per liter $^{\circ}$ C = degrees Celsius NA = Not Applicable

³NYSDEC Standard. pH = hydrogen ion concentration

NTU = nephelometric turbidity unit mV = MilliVolt

Location	Stream width (ft)	Average Stream Depth (ft)	Average Stream Velocity (ft/s)	Stream flow rate (ft ³ /s)
SW-01	3.0	0.50	0.61	0.55
SW-03	3.9	0.45	0.24	0.25
SW-04	3.2	0.25	0.10	0.03

Table 4.Stream dimensions, velocity and calculated flow rate.

Table 5-1 Shallow Groundwater Sample Results

Camp O'Ryan, Wethersfield, NY

			Locati	ion Name	MF	°C	MPD	MPE	MPE	MPF
			S	Sample ID	CO-MP	C-1010	CO-MPD-1010	CO-MPE-1010	CO-MPE-1010-B	CO-MPF-1010
			San	nple Date	10/19/	/2010	10/20/2010	10/20/2010	10/20/2010	10/20/2010
				QC Code	E:	S	FS	FS	FD	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result	Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
		(Class GA)	MCL							
Explosives by Method 8330										
1,3,5-TRINITROBENZENE	99-35-4	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
1,3-DINITROBENZENE	99-65-0	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
2,4,6-TRINITROTOLUENE	118-96-7	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
2,4-DINITROTOLUENE	121-14-2	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
2,6-DINITROTOLUENE	606-20-2	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
2-AMINO-4,6-DINITROTOLUENE	35572-78-2	NS		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
2-NITROTOLUENE	88-72-2	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
3-NITROTOLUENE	99-08-1	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
4-AMINO-2,6-DINITROTOLUENE	19406-51-0	NS		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
4-NITROTOLUENE	99-99-0	5 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	121-82-4	NR		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
METHYL-2,4,6-TRINITROPHENYLNITRAMINE	479-45-8	NS		µg/L	0.275	UJ	0.338 UJ	0.301 UJ	0.305 UJ	0.278 UJ
NITROBENZENE	98-95-3	0.4 ^a		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
OCTAHYDRO-TETRANITRO-1,3,5,7-TETRAZOCINE	2691-41-0	NS		µg/L	0.275	U	0.338 U	0.301 U	0.305 U	0.278 U
Total & Dissolved Lead by Method 6010B										
Total Lead	7439-92-1	0.025 ^a	0.015	mg/L	0.010	U	0.010 U	0.010 U	0.018	0.010 U
Dissolved Lead	7439-92-1	0.025 ^a	0.015	mg/L	0.010	U	0.010 U	0.010 U	0.010 U	0.010 U
Perchlorate by Method 332			_		_	_				
Perchlorate	14797-73-0	NS	NS	µg/L	0.050	U	0.050 U	0.050 U	0.050 U	0.050 U

Notes

a - NYS TOGS 1.1.1 Table 1 Standard for groundwater class (GA) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

b - NYS TOGS 1.1.1 Table 1 Guidance value for groundwater class (GA) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TOGS and/or EPA MCL)

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting limit; see the ADR and data validation report for details

J = result is an estimated value; see the ADR and data validation report for details

NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not listed in NYS Ambient Water Quality Standards & Guidance Values (TOGS 1998).

NR = Not Regulated. Listed in Table 3 of TOGS (NYS 1998) indicating that the compound is not regulated in groundwater.

Table 5-1 Shallow Groundwater Sample Results

Camp O'Ryan Wethersfield, NY

			ation Name	MPA	MPA	MPB	MPD	MPF	
				Sample ID	CO-MPA-1010	CO-MPA-1010-B	CO-MPB-1010	CO-MPD-1010	CO-MPF-1010
			Sa	ample Date	10/20/2010	10/20/2010	10/19/2010	10/20/2010	10/20/2010
				QC Code	FS	FD	FS	FS	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
		(Class GA)	MCL						
SVOCs by Method 8270C									
1,2,4,5-TETRACHLOROBENZENE	95-94-3	5 ^a		µg/L	20 U	20 U	20 U	20 UJ	20 U
2,4,5-TRICHLOROPHENOL	95-95-4	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
2,4,6-TRICHLOROPHENOL	88-06-2	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
2,4-DICHLOROPHENOL	120-83-2	5 ^a		µg/L	10 U	10 U	10 U	10 UJ	10 U
2,4-DIMETHYLPHENOL	105-67-9	50 ^b		μg/L	R	R	R	R	R
2,4-DINITROPHENOL	51-28-5	10 ^b		µg/L	30 U	30 U	30 U	30 U	30 U
2,4-DINITROTOLUENE	121-14-2	5 ^a		µg/L	5 U	5 U	5 U	5 UJ	5 U
2,6-DINITROTOLUENE	606-20-2	5 ^a		µg/L	5 U	5 U	5 U	5 UJ	5 U
2-CHLORONAPHTHALENE	91-58-7	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
2-CHLOROPHENOL	95-57-8	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
2-METHYLNAPHTHALENE	91-57-6	NR		µg/L	5 U	5 U	5 U	5 UJ	5 U
2-METHYLPHENOL	95-48-7	NS		µg/L	5 U	5 U	5 UJ	5 UJ	5 UJ
2-NITROANILINE	88-74-4	5 ^a		µg/L	5 U	5 U	5 U	5 UJ	5 U
2-NITROPHENOL	88-75-5	NS		µg/L	10 U	10 U	10 U	10 UJ	10 U
3,3'-DICHLOROBENZIDINE	91-94-1	5 ^a		µg/L	50 U	50 U	50 UJ	50 U	50 U
3-NITROANILINE	99-09-2	5 ^a		µg/L	5 U	5 U	5 U	5 U	5 U
4,6-DINITRO-2-METHYLPHENOL	534-52-1	NS		µg/L	20 U	20 U	20 U	20 UJ	20 U
4-BROMOPHENYL-PHENYLETHER	101-55-3	NR		µg/L	5 U	5 U	5 U	5 UJ	5 U
4-CHLORO-3-METHYLPHENOL	59-50-7	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
4-CHLOROANILINE	106-47-8	5 ^a		µg/L	5 U	5 U	5 UJ	5 UJ	5 UJ
4-CHLOROPHENYL-PHENYLETHER	7005-72-3	NR		µg/L	5 U	5 U	5 U	5 UJ	5 U
4-METHYLPHENOL	106-44-5	NS		µg/L	5 U	5 U	5 UJ	5 UJ	5 UJ
4-NITROANILINE	100-01-6	5 ^a		µg/L	5 U	5 U	5 U	5 U	5 U
4-NITROPHENOL	100-02-7	NS		µg/L	10 U	10 U	10 U	10 UJ	10 U
ACENAPHTHENE	83-32-9	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
ACENAPHTHYLENE	208-96-8	NR		µg/L	5 U	5 U	5 U	5 UJ	5 U
ACETOPHENONE	98-86-2	NR		µg/L	20 U	20 U	20 U	20 UJ	20 U
ANTHRACENE	120-12-7	50 ^b		µg/L	5 U	5 U	5 U	5 UJ	5 U
ATRAZINE	1912-24-9	7.5 ^a	3	µg/L	5 U	5 U	5 U	5 U	5 U
BENZALDEHYDE	100-52-7	NR		µg/L	5 U	5 U	5 U	5 U	5 U
BENZO(A)ANTHRACENE	56-55-3	0.002 ^b		μg/L	5 U	5 U	5 U	5 UJ	5 U
BENZO(A)PYRENE	50-32-8	ND	0.2	µg/L	5 U	5 U	5 U	5 UJ	5 U
BENZO(B)FLUORANTHENE	205-99-2	0.002 ^b		µg/L	5 U	5 U	5 U	5 U	5 U
BENZO(G,H,I)PERYLENE	191-24-2	NR		µg/L	5 U	5 U	5 U	5 UJ	5 U
BENZO(K)FLUORANTHENE	207-08-9	0.002 ^b		µg/L	5 U	5 U	5 U	5 UJ	5 U
BIPHENYL	92-52-4	5 ^a		µg/L	5 U	5 U	5 U	5 UJ	5 U

Table 5-1 Shallow Groundwater Sample Results

Camp O'Ryan Wethersfield, NY

			Loca	tion Name	MPA	MPA	MPB	MPD	MPF
				Sample ID	CO-MPA-1010	CO-MPA-1010-B	CO-MPB-1010	CO-MPD-1010	CO-MPF-1010
			Sa	imple Date	10/20/2010	10/20/2010	10/19/2010	10/20/2010	10/20/2010
Present of Maria			554	QC Code	FS	FD	FS	FS	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier				
SVOCs by Method 8270C (Continued)		(Class GA)	MICL						
	111-91-1	5 ^a		ua/l	5.11	5.11	5.11	5 111	5.11
BIS(2-CHLOROETHYL) ETHER	111-44-4	1 ^a		µg/L	5.0	5.0	50	5 11.1	5.0
	108-60-1	5 ^a		µg/L	511	50	50	5 00	5 111
	117 91 7	5 5 ^a	6	µg/L	50	50	50	5 00	5 05
	95 69 7	50 ^b	0	µg/∟ 	50	50	50	5 05	50
	105-60-2	50 NR		µg/L	50	50	50	5 03	50
	86-74-8	NR		µg/L	50	50	50	5 111	50
	219 01 0	0.002b		µg/L	50	50	50	5 05	50
	53-70-3	0.002 NR		µg/L	511	50	511	5 111	50
	132-64-9	NR		ug/L	511	50	50	5 111	50
	84-66-2	50 ^b		µg/L	511	5.0	50	5 111	5.0
	131-11-3	50 ^b		µg/L	511	5.0	511	5 111	5.0
	84-74-2	50 ^a		µg/L	511	5.0	50	5 05	50
	117 94 0	50 ^b		µg/L	50	50	50	5 00	50
	206 44 0	50 ^b		µg/L	50	50	50	5 05	50
	200-44-0	50 ^b		µg/∟ 	50	50	50	5 05	50
	00-73-7	50 0.04 ^a	4	µg/L	50	50	50	5 03	50
	118-74-1	0.04		µg/L	50	50	50	5 UJ	50
	87-68-3	0.5	50	µg/L	10 0	10 0	10 0	10 UJ	10 UJ
HEXACHLOROCYCLOPENTADIENE	//-4/-4	5°	50	µg/L	30 U	30 U	30 U	30 0	30 U
HEXACHLOROETHANE	67-72-1	5-		µg/L	50	50	50	5 UJ	5 UJ
INDENO(1,2,3-CD)PYRENE	193-39-5	0.002		µg/L	5 U	5 U	5 U	5 UJ	5 U
ISOPHORONE	78-59-1	50 [°]		µg/L	5 U	5 U	5 U	5 UJ	5 U
NAPHTHALENE	91-20-3	NS		µg/L	5 U	5 U	5 U	5 UJ	5 U
NITROBENZENE	98-95-3	0.4 ^a		µg/L	5 U	5 U	5 U	5 UJ	5 U
N-NITROSO-DI-N-PROPYLAMINE	621-64-7	NR		µg/L	5 U	5 U	5 U	5 UJ	5 U
N-NITROSODIPHENYLAMINE	86-30-6	50 ⁰		µg/L	5 U	5 U	5 U	5 UJ	5 U
PENTACHLOROPHENOL	87-86-5	NS	1	µg/L	10 U	10 U	10 U	10 UJ	10 U
PHENANTHRENE	85-01-8	50°		µg/L	5 U	5 U	5 U	5 UJ	5 U
PHENOL	108-95-2	NS		µg/L	5 U	5 U	5 U	5 UJ	5 UJ
PYRENE	129-00-0	50°		µg/L	5 U	5 U	5 U	5 UJ	5 U

Notes

a - NYS TOGS 1.1.1 Table 1 Standard for groundwater class (GA) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

b - NYS TOGS 1.1.1 Table 1 Guidance value for groundwater class (GA) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TOGS and/or EPA MCL)

ND = Non-Detect; as standard value from TOGS 1.1.1 Table 1

NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not listed in NYS Ambient Water Quality Standards & Guidance Values (TOGS 1998).

NR = Not Regulated. Listed in Table 3 of TOGS (NYS 1998) indicating that the compound is not regulated in groundwater.

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting limit; see the ADR and data validation report for details

J = result is an estimated value; see the ADR and data validation report for details

R = result is rejected due to severe QC exceedance and is not usable for project decisions; see the ADR and data validation report for details.

Camp O'Ryan Wethersfield, NY

			Locatio	n Name	MP-01	MP-02	MP-02	MP-04	MP-05	MP-06	
			Sa	mple ID	CO-MP01-1010	CO-MP02-1010	CO-MP02-1010-B	CO-MP04-1010	CO-MP05-1010	CO-MP06-1010	
			Samp	ole Date	10/20/2010	10/20/2010	10/20/2010	10/19/2010	10/19/2010	10/19/2010	
-			Q	C Code	FS	FS	FD	FS	FS	FS	
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier						
		(Class GA)	MCL								
VOCs by Method 8260		-8									
1,1,1-TRICHLOROETHANE	71-55-6	5-	200	µg/L	0.5 U						
1,1,2,2-TETRACHLOROETHANE	79-34-5	54	_	µg/L	0.5 U						
1,1,2-TRICHLOROETHANE	79-00-5	1ª	5	µg/L	0.75 U						
1,1-DICHLOROETHANE	75-34-3	5"		µg/L	0.75 U						
1,1-DICHLOROETHENE	75-35-4	5ª	7	µg/L	0.5 U						
1,2,3-TRICHLOROBENZENE	87-61-6	5ª		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,2,4-TRICHLOROBENZENE	120-82-1	5ª	70	µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.04 ^a	0.2	µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,2-DIBROMOETHANE	106-93-4	0.0006 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,2-DICHLOROBENZENE	95-50-1	3 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,2-DICHLOROETHANE	107-06-2	0.6 ^a	5	µg/L	0.5 U						
1,2-DICHLOROPROPANE	78-87-5	1 ^a	5	µg/L	1.8 U						
1,3-DICHLOROBENZENE	541-73-1	3 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,4-DICHLOROBENZENE	106-46-7	3 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
1,4-DIOXANE	123-91-1	NR		µg/L	250 U						
2-BUTANONE	78-93-3	50 ^b		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
2-HEXANONE	591-78-6	50 ^b		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
4-METHYL-2-PENTANONE	108-10-1	NR		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
ACETONE	67-64-1	50 ^b		µg/L	5 U	5 U	5 U	5 U	5 U	5 U	
BENZENE	71-43-2	1 ^a	5	µg/L	0.5 U						
BROMOCHLOROMETHANE	74-97-5	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
BROMODICHLOROMETHANE	75-27-4	50 ^b		µg/L	0.5 U						
BROMOFORM	75-25-2	50 ^b		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
BROMOMETHANE	74-83-9	5 ^a		ua/L	1 UJ						
CARBON DISULFIDE	75-15-0	NR		µg/L	2 U	2 U	2 U	2 U	2 U	2 U	
CARBON TETRACHLORIDE	56-23-5	5 ^a	5	ua/L	0.5 U						
CHLOROBENZENE	108-90-7	5 ^a	100	ua/L	0.5 U						
CHLOROETHANE	75-00-3	5 ^{a,c}		ua/L	1 U	1 U	1 U	1 U	1 U	10	
CHLOROFORM	67-66-3	7 ^a		ua/L	0.75 U						
CHLOROMETHANE	74-87-3	5 ^a		ug/L	2 U	2 U	2.U	2.U	2.U	2.U	
CIS-1.2-DICHLOROETHENE	156-59-2	5 ^a	70	ua/L	0.5 U	0.5 U	0.5 U	0.5 U	0.5 Ū	0.5 Ū	
CIS-1.3-DICHLOROPROPENE	10061-01-5	0.4 ^{a,c}		ua/L	0.5 U						
CYCLOHEXANE	110-82-7	NS		ua/L	2 U	2 U	2 U	2 U	2 U	2 U	
DIBROMOCHLOROMETHANE	124-48-1	50 ^b		ua/L	0.5 U						
DICHLORODIFLUOROMETHANE	75-71-8	5 ^a		ug/L	2.U	2.U	2 U	2 U	2.0	2.0	
ETHYLBENZENE	100-41-4	5ª	700	µg/L	0.5 U	0.5 Ŭ	0.5 U	0.5 Ŭ	0.5 Ŭ	0.5 U	

Camp O'Ryan Wethersfield, NY

			Location	n Name	MP-01	MP-02	MP-02	MP-04	MP-05	MP-06		
			Sai	mple ID	CO-MP01-1010	CO-MP02-1010	CO-MP02-1010-B	CO-MP04-1010	CO-MP05-1010	CO-MP06-1010		
			Samp	le Date	10/20/2010	10/20/2010	10/20/2010	10/19/2010	10/19/2010	10/19/2010		
			Q	C Code	FS	FS	FD	FS	FS	FS		
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier							
		(Class GA)	MCL									
VOCs by Method 8260 (Continued)												
FREON 113	76-13-1	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U		
ISOPROPYLBENZENE	98-82-8	5 ^a		µg/L	0.5 U							
m,p-Xylene ^e	108-38-3/106-42-3	5 ^a	10000 ^d	µg/L	1 U	1 U	1 U	1 U	1 U	1 U		
METHYL ACETATE	79-20-9	NR		µg/L	2 U	2 U	2 U	2 U	2 U	2 U		
METHYL TERT-BUTYL ETHER	1634-04-4	NR		µg/L	1 U	1 U	1 U	1 U	1 U	1 U		
METHYLCYCLOHEXANE	108-87-2	NS		µg/L	2 U	2 U	2 U	2 U	2 U	2 U		
METHYLENE CHLORIDE	75-09-2	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U		
O-XYLENE	95-47-6	5 ^a	10000 ^d	µg/L	1 U	1 U	1 U	1 U	1 U	1 U		
STYRENE	100-42-5	5 ^a	100	µg/L	1 U	1 U	1 U	1 U	1 U	1 U		
TETRACHLOROETHENE	127-18-4	5 ^a	5	µg/L	0.5 U							
TOLUENE	108-88-3	5 ^a	1000	µg/L	0.75 U							
TRANS-1,2-DICHLOROETHENE	156-60-5	5 ^a	100	µg/L	0.75 U							
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.4 ^{a,c}		µg/L	0.5 U							
TRICHLOROETHENE	79-01-6	5 ^a	5	µg/L	0.5 U							
TRICHLOROFLUOROMETHANE	75-69-4	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U	2 U		
VINYL CHLORIDE	75-01-4	2ª	2	µg/L	1 U	1 U	1 U	1 U	1 U	1 U		

Notes a - NYS TOGS 1.1.1 Table 1 Standard for groundwater class (GA) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998) b - NYS TOGS 1.1.1 Table 1 Guidance value for groundwater class (GA) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

c - standard value applies to sum of cis- and trans-1,3-dichloropropene d - MCL applies to sum of total xylenes

e - based on 'p-' and 'm-' xylenes

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TOGS and/or EPA MCL)

NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not listed in NYS Ambient Water Quality Standards & Guidance Values (TOGS 1998).

NR = Not Regulated. Listed in Table 3 of TOGS (NYS 1998) indicating that the compound is not regulated in groundwater.

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

J = result is an estimated value; see the ADR and data validation report for details

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting limit; see the ADR and data validation report for details

Camp O'Ryan Wethersfield, NY

			Lengtin	Mana	MD 40	MD 40	MD 47	MD 40	MD 40
			Locatio	n Name	MP-10	WP-12	WP-17	IVIP-18	IVIP-18
			- Odd	Inple ID	CO-IVIP 10-1010	CO-IVIF 12-1010	40/00/0040	40/00/0040	CO-IVIF 10-1010-B
			Samp	C Code	10/20/2010	10/20/2010	10/20/2010	10/20/2010	10/20/2010
Parameter Name	CAS #	NVS TOOS	EDA	Unito	FO Repute Qualifier	FO Result Ouglifier	FO Regult Qualifier	FO Regult Qualifier	FD Result Qualifier
Farameter Name	CAS#	(Class CA)	MCI	Units	Result Qualifier				
VOCs by Method 8260		(Class GA)	WICL						
1 1 1-TRICHI OROFTHANE	71-55-6	5 ^a	200	ua/l	0.5.11	0.5.11	0.5.U	0.5.11	0511
1 1 2 2-TETRACHI OROETHANE	79-34-5	5 ^a	200	µg/L	0.5 U				
1 1 2-TRICHI OROFTHANE	79-00-5	1 ^a	5	ug/L	0.75 U				
1 1-DICHLOROETHANE	75-34-3	5 ^a	Ũ	ug/l	0.75 U	0.75 []	0.75 U	0.75 11	0.75 11
1 1-DICHLOROETHENE	75-35-4	5 ^a	7	µg/L	0.5 11	0511	0.5 11	0.5 11	0511
1.2.3-TRICHLOROBENZENE	87-61-6	5 ^a	'	ug/L	211	2 11	211	211	2 11
1.2.4-TRICHLOROBENZENE	120-82-1	5 ^a	70	ug/L	211	211	211	211	211
1 2-DIBROMO-3-CHLOROPROPANE	96-12-8	0 04ª	02	ug/l	211	2 11	211	211	2 11
1 2-DIBROMOETHANE	106-93-4	0.0006 ^a	•	ug/l	211	2 11	2 1	211	2 11
1 2-DICHLOROBENZENE	95-50-1	3 ^a		ug/l	211	211	211	211	211
1.2-DICHLOROETHANE	107-06-2	0.6ª	5	ug/L	0.5 U				
1.2-DICHLOROPROPANE	78-87-5	1 ^a	5	ua/L	1.8 U				
1.3-DICHLOROBENZENE	541-73-1	3 ^a	-	ua/L	2 U	2 U	2.U	2 U	2 U
1.4-DICHLOROBENZENE	106-46-7	3 ^a		ua/L	2 U	2 Ŭ	2 U	2 Ü	2 Ŭ
1.4-DIOXANE	123-91-1	NR		ug/L	250 U				
2-BUTANONE	78-93-3	50 ^b		ua/L	2 U	2 U	2.U	2 U	2 U
2-HEXANONE	591-78-6	50 ^b		ua/L	2 U	2 Ŭ	2 U	2 Ü	2 Ŭ
4-METHYL-2-PENTANONE	108-10-1	NR		ua/L	2 U	2 U	2 U	2 U	2 U
ACETONE	67-64-1	50 ^b		ua/L	5 U	5 U	5 U	5 U	5 U
BENZENE	71-43-2	1 ^a	5	ua/L	0.5 U				
BROMOCHLOROMETHANE	74-97-5	5 ^a	-	ua/L	2 U	2 U	2 U	2 U	2 U
BROMODICHLOROMETHANE	75-27-4	50 ^b		ua/L	0.5 U				
BROMOFORM	75-25-2	50 ^b		ua/L	2 U	2 U	2 U	2 U	2 U
BROMOMETHANE	74-83-9	5 ^a		ua/L	1 UJ	1 U	10	1 U	1 Ü
CARBON DISULFIDE	75-15-0	NR		µg/L	2 U	2 U	2 U	2 U	2 U
CARBON TETRACHLORIDE	56-23-5	5 ^a	5	µg/L	0.5 U				
CHLOROBENZENE	108-90-7	5 ^a	100	ua/L	0.5 U				
CHLOROETHANE	75-00-3	5 ^{a,c}		µg/L	1 U	1 U	1 U	1 U	1 U
CHLOROFORM	67-66-3	7 ^a		µg/L	0.75 U				
CHLOROMETHANE	74-87-3	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U
CIS-1,2-DICHLOROETHENE	156-59-2	5 ^a	70	µg/L	0.5 U				
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.4 ^{a,c}		µg/L	0.5 U				
CYCLOHEXANE	110-82-7	NS		µg/L	2 U	2 U	2 U	2 U	2 U
DIBROMOCHLOROMETHANE	124-48-1	50 ^b		µg/L	0.5 U				
DICHLORODIFLUOROMETHANE	75-71-8	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U
ETHYLBENZENE	100-41-4	5°	700	µg/L	0.5 U				

October 2010

Camp O'Ryan Wethersfield, NY

			Locatio	n Name	MP-10	MP-12	MP-17	MP-18	MP-18
			Sa	mple ID	CO-MP10-1010	CO-MP12-1010	CO-MP17-1010	CO-MP18-1010	CO-MP18-1010-B
			Samp	le Date	10/20/2010	10/20/2010	10/20/2010	10/20/2010	10/20/2010
						FS	FS	FS	FD
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier				
		(Class GA)	MCL						
VOCs by Method 8260 (Continued)									
FREON 113	76-13-1	5ª		µg/L	2 U	2 U	2 U	2 U	2 U
ISOPROPYLBENZENE	98-82-8	5 ^a		µg/L	0.5 U				
m,p-Xylene ^e	108-38-3 /106-42-3	5 ^a	10000 ^d	µg/L	1 U	1 U	1 U	1 U	1 U
METHYL ACETATE	79-20-9	NR		µg/L	2 U	2 U	2 U	2 U	2 U
METHYL TERT-BUTYL ETHER	1634-04-4	NR		µg/L	1 U	1 U	1 U	1 U	1 U
METHYLCYCLOHEXANE	108-87-2	NS		µg/L	2 U	2 U	2 U	2 U	2 U
METHYLENE CHLORIDE	75-09-2	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U
O-XYLENE	95-47-6	5 ^a	10000 ^d	µg/L	1 U	1 U	1 U	1 U	1 U
STYRENE	100-42-5	5 ^a	100	µg/L	1 U	1 U	1 U	1 U	1 U
TETRACHLOROETHENE	127-18-4	5 ^a	5	µg/L	0.5 U				
TOLUENE	108-88-3	5 ^a	1000	µg/L	0.75 U				
TRANS-1,2-DICHLOROETHENE	156-60-5	5 ^a	100	µg/L	0.75 U				
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.4 ^{a,c}		µg/L	0.5 U				
TRICHLOROETHENE	79-01-6	5 ^a	5	µg/L	0.5 U				
TRICHLOROFLUOROMETHANE	75-69-4	5 ^a		µg/L	2 U	2 U	2 U	2 U	2 U
VINYL CHLORIDE	75-01-4	2ª	2	µg/L	1 U	1 U	1 U	1 U	1 U

Notes a - NYS TOGS 1.1.1 Table 1 Standard for groundwater class (GA) for source of drinking water type H(WS) (from: b - NYS TOGS 1.1.1 Table 1 Guidance value for groundwater class (GA) for source of drinking water type H(WS)

c - standard value applies to sum of cis- and trans-1,3-dichloropropene d - MCL applies to sum of total xylenes

e - based on 'p-' and 'm-' xylenes

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TI NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not NR = Not Regulated. Listed in Table 3 of TOGS (NYS 1998) indicating that the compound is not regulated in grou

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

J = result is an estimated value; see the ADR and data validation report for details

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting

Camp O'Ryan, Wethersfield, NY

			Locati	on Name	SW01	SW03	SW03	SW04
			S	ample ID	CO-SW01-1010	CO-SW03-1010	CO-SW03-1010-E	CO-SW04-1010
			San	nple Date	10/18/2010	10/18/2010	10/18/2010	10/18/2010
				QC Code	FS	FD	FD	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
		(Class A)	MCL					
Explosives by Method 8330							-	
1,3,5-TRINITROBENZENE	99-35-4	5 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
1,3-DINITROBENZENE	99-65-0	5 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
2,4,6-TRINITROTOLUENE	118-96-7	5 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
2,4-DINITROTOLUENE	121-14-2	5 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
2,6-DINITROTOLUENE	606-20-2	0.07 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
2-AMINO-4,6-DINITROTOLUENE	35572-78-2	NS		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
2-NITROTOLUENE	88-72-2	5 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
3-NITROTOLUENE	99-08-1	5 ^b		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
4-AMINO-2,6-DINITROTOLUENE	19406-51-0	NS		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
4-NITROTOLUENE	99-99-0	5 ^a		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
HEXAHYDRO-1,3,5-TRINITRO-1,3,5-TRIAZINE	121-82-4	NS		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
METHYL-2,4,6-TRINITROPHENYLNITRAMINE	479-45-8	NS		µg/L	0.287 UJ	0.291 UJ	0.281 UJ	0.291 UJ
NITROBENZENE	98-95-3	0.4 ^a		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
OCTAHYDRO-TETRANITRO-1,3,5,7-TETRAZOCINE	2691-41-0	NS		µg/L	0.287 U	0.291 U	0.281 U	0.291 U
Total & Dissolved Lead by Method 6010B								
Total Lead	7439-92-1	0.050 ^a	0.015	mg/L	0.010 U	0.010 U	0.010 U	0.010 U
Dissolved Lead	7439-92-1	0.050 ^a	0.015	mg/L	0.010 U	0.010 U	0.010 U	0.010 U
Perchlorate by Method 332								
Perchlorate	14797-73-0	NS	NS	µg/L	0.050 U	0.050 U	0.050 U	0.050 U

Notes

a - NYS TOGS 1.1.1 Table 1 Standard for surface water class (A) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

b - NYS TOGS 1.1.1 Table 1 Guidance value for water class (A) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TOGS and/or EPA MCL)

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

J = result is an estimated value; see the ADR and data validation report for details

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting limit; see the ADR and data validation report for details

NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not listed in NYS Ambient Water Quality Standards & Guidance Values (TOGS 1998). Note that there are no EPA MCLs for any for any other compounds

Camp O'Ryan Wethersfield, NY

			Loca	tion Name	SW01	SW03	SW03	SW04
				Sample ID	CO-SW01-1010	CO-SW03-1010	CO-SW03-1010-B	CO-SW04-1010
			Sa	ample Date	10/18/2010	10/18/2010	10/18/2010	10/18/2010
				QC Code	FS	FS	FD	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifie
		Class (A)	MCL					
SVOCs by Method 8270C								
1,2,4,5-TETRACHLOROBENZENE	95-94-3	5 ^b		µg/L	20 U	20 U	20 U	20 U
2,4,5-TRICHLOROPHENOL	95-95-4	NS		µg/L	5 U	5 U	5 U	5 U
2,4,6-TRICHLOROPHENOL	88-06-2	NS		µg/L	5 U	5 U	5 U	5 U
2,4-DICHLOROPHENOL	120-83-2	5 ^b		µg/L	10 U	10 U	10 U	10 U
2,4-DIMETHYLPHENOL	105-67-9	50 ^b		µg/L	R	R	R	R
2,4-DINITROPHENOL	51-28-5	10 ^b		µg/L	30 U	30 U	30 U	30 U
2,4-DINITROTOLUENE	121-14-2	5 ^b		µg/L	5 U	5 U	5 U	5 U
2,6-DINITROTOLUENE	606-20-2	0.07 ^b		µg/L	5 U	5 U	5 U	5 U
2-CHLORONAPHTHALENE	91-58-7	NS		µg/L	5 U	5 U	5 U	5 U
2-CHLOROPHENOL	95-57-8	NS		µg/L	5 U	5 U	5 U	5 U
2-METHYLNAPHTHALENE	91-57-6	NS		µg/L	5 U	5 U	5 U	5 U
2-METHYLPHENOL	95-48-7	NS		µg/L	5 UJ	5 U	5 U	5 U
2-NITROANILINE	88-74-4	5 ^b		µg/L	5 U	5 U	5 U	5 U
2-NITROPHENOL	88-75-5	NS		µg/L	10 U	10 U	10 U	10 U
3,3'-DICHLOROBENZIDINE	91-94-1	5 ^b		µg/L	50 UJ	50 U	50 U	50 U
3-NITROANILINE	99-09-2	5 ^b		µg/L	5 U	5 U	5 U	5 U
4,6-DINITRO-2-METHYLPHENOL	534-52-1	ŇS		µg/L	20 U	20 U	20 U	20 U
4-BROMOPHENYL-PHENYLETHER	101-55-3	NS		µg/L	5 U	5 U	5 U	5 U
4-CHLORO-3-METHYLPHENOL	59-50-7	NS		µg/L	5 U	5 U	5 U	5 U
4-CHLOROANILINE	106-47-8	5 ^b		µg/L	5 UJ	5 U	5 U	5 U
4-CHLOROPHENYL-PHENYLETHER	7005-72-3	NS		µg/L	5 U	5 U	5 U	5 U
4-METHYLPHENOL	106-44-5	NS		µg/L	5 UJ	5 U	5 U	5 U
4-NITROANILINE	100-01-6	5 ^b		µg/L	5 U	5 U	5 U	5 U
4-NITROPHENOL	100-02-7	NS		µg/L	10 U	10 U	10 U	10 U
ACENAPHTHENE	83-32-9	NS		µg/L	5 U	5 U	5 U	5 U
ACENAPHTHYLENE	208-96-8	NS		µg/L	5 U	5 U	5 U	5 U
ACETOPHENONE	98-86-2	NS		µg/L	20 U	20 U	20 U	20 U
ANTHRACENE	120-12-7	50 ^b		µg/L	5 U	5 U	5 U	5 U
ATRAZINE	1912-24-9	3 ^b	3	µg/L	5 U	5 U	5 U	5 U
BENZALDEHYDE	100-52-7	NS		µg/L	5 U	5 U	5 U	5 U
BENZO(A)ANTHRACENE	56-55-3	0.002 ^b		µg/L	5 U	5 U	5 U	5 U
BENZO(A)PYRENE	50-32-8	0.002 ^b	0.2	µg/L	5 U	5 U	5 U	5 U
BENZO(B)FLUORANTHENE	205-99-2	0.002 ^b		µg/L	5 U	5 U	5 U	5 U
BENZO(G,H,I)PERYLENE	191-24-2	NS		µg/L	5 U	5 U	5 U	5 U
BENZO(K)FLUORANTHENE	207-08-9	0.002 ^b		µg/L	5 U	5 U	5 U	5 U
BIPHENYL	92-52-4	5 ^b		µg/L	5 U	5 U	5 U	5 U

Camp O'Ryan Wethersfield, NY

			Loca	tion Name	SW01	SW03	SW03	SW04
		Sample ID		CO-SW01-1010	CO-SW03-1010	CO-SW03-1010-B	CO-SW04-1010	
			Sa	mple Date	10/18/2010	10/18/2010	10/18/2010	10/18/2010
				QC Code	FS	FS	FD	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
		Class (A)	MCL					
SVOCs by Method 8270C (Continued)								
BIS(2-CHLOROETHOXY)METHANE	111-91-1	5 ^b		µg/L	5 U	5 U	5 U	5 U
BIS(2-CHLOROETHYL) ETHER	111-44-4	0.03 ^b		µg/L	5 U	5 U	5 U	5 U
BIS(2-CHLOROISOPROPYL) ETHER	108-60-1	5 ^b		µg/L	5 U	5 U	5 U	5 U
BIS(2-ETHYLHEXYL) PHTHALATE	117-81-7	5 ^a	6	µg/L	5 U	5 U	5 U	5 U
BUTYLBENZYL PHTHALATE	85-68-7	50 ^b		µg/L	5 U	5 U	5 U	5 U
CAPROLACTAM	105-60-2	NS		µg/L	5 U	5 U	5 U	5 U
CARBAZOLE	86-74-8	NS		µg/L	5 U	5 U	5 U	5 U
CHRYSENE	218-01-9	0.002 ^b		µg/L	5 U	5 U	5 U	5 U
DIBENZO(A,H)ANTHRACENE	53-70-3	NS		µg/L	5 U	5 U	5 U	5 U
DIBENZOFURAN	132-64-9	NS		µg/L	5 U	5 U	5 U	5 U
DIETHYL PHTHALATE	84-66-2	50 ^b		µg/L	5 U	5 U	5 U	5 U
DIMETHYL PHTHALATE	131-11-3	50 ^b		µg/L	5 U	5 U	5 U	5 U
DI-N-BUTYL PHTHALATE	84-74-2	50 ^b		µg/L	5 U	5 U	5 U	5 U
DI-N-OCTYL PHTHALATE	117-84-0	50 ^b		µg/L	5 U	5 U	5 U	5 U
FLUORANTHENE	206-44-0	50 ^b		µg/L	5 U	5 U	5 U	5 U
FLUORENE	86-73-7	50 ^b		µg/L	5 U	5 U	5 U	5 U
HEXACHLOROBENZENE	118-74-1	0.04 ^a	1	µg/L	5 U	5 U	5 U	5 U
HEXACHLOROBUTADIENE	87-68-3	0.5 ^a		µg/L	10 U	10 U	10 U	10 U
HEXACHLOROCYCLOPENTADIENE	77-47-4	5 ^b	50	µg/L	30 U	30 U	30 U	30 U
HEXACHLOROETHANE	67-72-1	5ª		µg/L	5 U	5 U	5 U	5 U
INDENO(1,2,3-CD)PYRENE	193-39-5	0.002 ^b		µg/L	5 U	5 U	5 U	5 U
ISOPHORONE	78-59-1	50 ^b		µg/L	5 U	5 U	5 U	5 U
NAPHTHALENE	91-20-3	NS		µg/L	5 U	5 U	5 U	5 U
NITROBENZENE	98-95-3	0.4 ^a		µg/L	5 U	5 U	5 U	5 U
N-NITROSO-DI-N-PROPYLAMINE	621-64-7	NS		µg/L	5 U	5 U	5 U	5 U
N-NITROSODIPHENYLAMINE	86-30-6	50 ^b		µg/L	5 U	5 U	5 U	5 U
PENTACHLOROPHENOL	87-86-5	NS	1	μg/L	10 U	10 U	10 U	10 U
PHENANTHRENE	85-01-8	50 ^b		μg/L	5 U	5 U	5 U	5 U
PHENOL	108-95-2	NS		μg/L	5 U	5 U	5 U	5 U
PYRENE	129-00-0	50 ^b		μg/L	5 U	5 U	5 U	5 U

Notes

a - NYS TOGS 1.1.1 Table 1 Standard for water class (A) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

b - NYS TOGS 1.1.1 Table 1 Guidance value for water class (A) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TOGS and/or EPA MCL)

ND = Non-Detect; as standard value from TOGS 1.1.1 Table 1

NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not listed in NYS Ambient Water Quality Standards & Guidance Values (TOGS 1998).

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting limit; see the ADR and data validation report for details

J = result is an estimated value; see the ADR and data validation report for details

R = result is rejected due to severe QC exceedance and is not usable for project decisions; see the ADR and data validation report for details.

Camp O'Ryan Wethersfield, NY

			Location Name		SW-01	SW-03	SW-03	SW-04
			Sa	ample ID	CO-SW01-1010	CO-SW03-1010	CO-SW03-1010-B	CO-SW04-1010-B
			Sam	ple Date	10/18/2010	10/18/2010	10/18/2010	10/18/2010
			(QC Code	FS	FS	FD	FS
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
		(Class A)	MCL					
VOCs by Method 8260								
1,1,1-TRICHLOROETHANE	71-55-6	5 ^a	200	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.2 ^b		µg/L	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2-TRICHLOROETHANE	79-00-5	1 ^a	5	µg/L	0.75 U	0.75 U	0.75 U	0.75 U
1,1-DICHLOROETHANE	75-34-3	5 ^a		µg/L	0.75 U	0.75 U	0.75 U	0.75 U
1,1-DICHLOROETHENE	75-35-4	0.7 ^b	7	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2,3-TRICHLOROBENZENE	87-61-6	5 ^b		µg/L	2 U	2 U	2 U	2 U
1,2,4-TRICHLOROBENZENE	120-82-1	5 ^b	70	µg/L	2 U	2 U	2 U	2 U
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.04 ^a	0.2	µg/L	2 U	2 U	2 U	2 U
1,2-DIBROMOETHANE	106-93-4	0.0006 ^a		µg/L	2 U	2 U	2 U	2 U
1,2-DICHLOROBENZENE	95-50-1	3 ^a		µg/L	2 U	2 U	2 U	2 U
1,2-DICHLOROETHANE	107-06-2	0.6 ^a	5	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
1,2-DICHLOROPROPANE	78-87-5	1 ^a	5	µg/L	1.8 U	1.8 U	1.8 U	1.8 U
1,3-DICHLOROBENZENE	541-73-1	3 ^a		µg/L	2 U	2 U	2 U	2 U
1,4-DICHLOROBENZENE	106-46-7	3 ^a		µg/L	2 U	2 U	2 U	2 U
1,4-DIOXANE	123-91-1	ŇS		µg/L	250 U	250 U	250 U	250 U
2-BUTANONE	78-93-3	50 ^b		µg/L	2 U	2 U	2 U	2 U
2-HEXANONE	591-78-6	50 ^b		µg/L	2 U	2 U	2 U	2 U
4-METHYL-2-PENTANONE	108-10-1	ŇŠ		µg/L	2 U	2 U	2 U	2 U
ACETONE	67-64-1	50 ^b		µg/L	5 U	5 U	5 U	5 U
BENZENE	71-43-2	1 ^a	5	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
BROMOCHLOROMETHANE	74-97-5	5 ^a		µg/L	2 U	2 U	2 U	2 U
BROMODICHLOROMETHANE	75-27-4	50 ^b		µg/L	0.5 U	0.5 U	0.5 U	0.5 U
BROMOFORM	75-25-2	50 ^b		µg/L	2 U	2 U	2 U	2 U
BROMOMETHANE	74-83-9	5 ^a		µg/L	1 UJ	1 UJ	1 UJ	1 UJ
CARBON DISULFIDE	75-15-0	ŇS		µg/L	2 U	2 U	2 U	2 U
CARBON TETRACHLORIDE	56-23-5	0 4 ^b	5	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROBENZENE	108-90-7	5 ^a	100	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
CHLOROETHANE	75-00-3	5 ^b		µg/L	1 U	1 U	1 U	1 U
CHLOROFORM	67-66-3	7 ^a		µg/L	0.75 U	0.75 U	0.75 U	0.75 U
CHLOROMETHANE	74-87-3	5 ^a		µg/L	2 U	2 U	2 U	2 U
CIS-1,2-DICHLOROETHENE	156-59-2	5 ^a	70	µg/L	0.5 U	0.5 U	0.5 U	0.5 U
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.4 ^{a,C}		µg/L	0.5 U	0.5 U	0.5 U	0.5 U
CYCLOHEXANE	110-82-7	NS		µg/L	2 U	2 U	2 U	2 U
DIBROMOCHLOROMETHANE	124-48-1	50 ^b		µg/L	0.5 U	0.5 U	0.5 U	0.5 U
DICHLORODIFLUOROMETHANE	75-71-8	5 ^a		µg/L	2 U	2 U	2 U	2 U
ETHYLBENZENE	100-41-4	5ª	700	μg/L	0.5 U	0.5 U	0.5 U	0.5 U

Camp O'Ryan Wethersfield, NY

			Locatio	n Name	SV	V-01	SV	V-03	SV	V-03	SW	-04
			Sample ID		CO-SW	/01-1010	CO-SW	/03-1010	CO-SW	03-1010-В	CO-SW0	4-1010-B
			Sam	ple Date	10/18	8/2010	10/18	8/2010	10/1	3/2010	10/18	/2010
			G	C Code	F	-S	F	-S	F	-D	F	S
Parameter Name	CAS #	NYS TOGS	EPA	Units	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
		(Class A)	MCL									
VOCs by Method 8260 (Continued)												
FREON 113	76-13-1	5 ^a		µg/L	2	U	2	U	2	U	2	U
ISOPROPYLBENZENE	98-82-8	5 ^b		µg/L	0.5	U	0.5	U	0.5	U	0.5	U
m,p-Xylene ^e	108-38-3 /106-42-3	5 ^a	10000 ^d	µg/L	1	U	1	U	1	U	1	U
METHYL ACETATE	79-20-9	NS		µg/L	2	U	2	U	2	U	2	U
METHYL TERT-BUTYL ETHER	1634-04-4	NS		µg/L	1	U	1	U	1	U	1	U
METHYLCYCLOHEXANE	108-87-2	NS		µg/L	2	U	2	U	2	U	2	U
METHYLENE CHLORIDE	75-09-2	5 ^a		µg/L	2	U	2	U	2	U	2	U
O-XYLENE	95-47-6	5 ^a	10000 ^d	µg/L	1	U	1	U	1	U	1	U
STYRENE	100-42-5	5 ^b	100	µg/L	1	U	1	U	1	U	1	U
TETRACHLOROETHENE	127-18-4	0.7 ^b	5	µg/L	0.5	U	0.5	U	0.5	U	0.5	U
TOLUENE	108-88-3	5 ^a	1000	µg/L	0.75	U	0.75	U	0.75	U	0.75	U
TRANS-1,2-DICHLOROETHENE	156-60-5	5 ^a	100	µg/L	0.75	U	0.75	U	0.75	U	0.75	U
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.4 ^{a,C}		µg/L	0.5	U	0.5	U	0.5	U	0.5	U
TRICHLOROETHENE	79-01-6	5 ^a	5	µg/L	0.5	U	0.5	U	0.5	U	0.5	U
TRICHLOROFLUOROMETHANE	75-69-4	5 ^a		µg/L	2	U	2	U	2	U	2	U
VINYL CHLORIDE	75-01-4	0.3 ^b	2	µg/L	1	U	1	U	1	U	1	U

Notes

a - NYS TOGS 1.1.1 Table 1 Standard for water class (A) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

b - NYS TOGS 1.1.1 Table 1 Guidance value for water class (A) for source of drinking water type H(WS) (from: NYS Ambient Water Quality Standards and Guidance Values, June 1998)

c - standard value applies to sum of cis- and trans-1,3-dichloropropene

d - MCL applies to sum of total xylenes

e - based on 'p-' and 'm-' xylenes

Shading indicates that the highlighted NYS TOGS and/or EPA MCL is exceeded

bold font indicates that the Reporting limit (RL) is greater than the associated regulatory standard (NYS TOGS and/or EPA MCL)

NS = No Standard. No applicable NYS TOGS regulatory standard or guidance value or EPA MCL available. Not listed in NYS Ambient Water Quality Standards & Guidance Values (TOGS 1998).

MCL = Maximum Contaminant Level. EPA National Primary Drinking Water Regulations, May 2009.

U = compound not detected; the associated value is the sample-specific reporting limit

J = result is an estimated value; see the ADR and data validation report for details

UJ = compound not detected at an estimated reporting limit; the associated value is the sample-specific reporting limit; see the ADR and data validation report for details

This page intentionally left blank

ATTACHMENT 2 FIELD LOGS (ON CD)

in the second

Health and Safety Plan Pre-Entry Briefing Attendance Form
Former Camp O'Ryan
Wethersfield, NYConducted by:Nic K Heley GreznDate Performed:ID[18/10

conducted by:	NICK Heley Greza	10[18/10
Topics	1. Review of the content of the HASP (Required)	
Discussed:	2. Review of potential une	reloded ordinance huzerds
	3. Slips Trips, Falls	
	4.	

Printed Name	Signature	Representing
Mitchell Buck	Millett Bur	WHG
Pavid Baker	app -	WHG
NICK HELEG BREZA	Vulla R	CISALE
	· YY	
· · · · · · · · · · · · · · · · · · ·		
<u> </u>	· · ·	

			ANT Wo	ods Hole Group		
			40cp			
				-0031		
			START IIVU	END 12	<u>00</u> 80	DTTLE TIME [[] 3]]
SURFACE WATER DATA	WATER DEPTH AT LOCATION	surface FT	DEPTH OF SAMPLE	O FT		·
WATER QUALITY PARAMETERS:			<u>T USED:</u>	TYPE OF SURFAC	E WATER: DECC	N FLUIDS USED:
TEMPERATURE 7,3 ·C			۲ ۲	🔀 STREAM/ R		WATER
SPEC. COND. 0,31 SmS/cm		PUSHP	DINT SAMPLER			DTABLE WATER
PH 6.26 Units		PERIST		SEEP		XONIU2
ORP 38.3 mV			NUMBER 0,2/0	45	IS	OPROPYL ALCOHOL
DO 12,75 mg/L					\times	11 dispored
TURBIDITY		SYEING	A			
SALINITY NA %						
		PRE		BOTTLE TYPE AND VOLUME	SAN	MPLE QC
	ANAL FSIS ME	<u>.1100</u> <u>i</u>		2 x 1-L Amber B	offles	$\frac{\text{PERFORMED}}{MS(MSI)}$
SVOCs	8270C	r	one	2 x 1-L Amber B	ottles	
VOCs	8260B	H	ICL	3 x 40-ml Vials	L E] /
Lead (total & dissolved) Perchlorate	6010B EPA 332	H C	łNO ₃ ; 0.5-μm filte .2-um filter	 1 x 125-ml bottle 1 x 125-ml bacte 	eria cup 🏹	
	;	4:	2.14-1	nas 4	2º 41.068	N II
		·		7	8"17,327	W N
/ VF	/			w,	1th: 3,0	fi Ý
				Dep	44: 0.5;	fj v
		compled		Velo	city: 5ff	18.2 sec's
		/ > /				
	XX					
	Root		`			
			\backslash			
		ł	1			
		N	\checkmark			
	ŧ	man and a second		corrowta	1 deti	nIna
	E		2	set is a	ulua T	111A
			ł		alver/	
- 1 - 1				~	_	
MORA						
Notes:			4 .			
sampled upstrea	t of cu	uvert: 1	ip sam	pled Exp	o. : 5V00	a, Used
JYFINGE ON YES	1,			n 1	10 - x	$n \mid -$
			SIG		toul &	nn
L						

	CON	ISULTANT Woods Hole Gr	oup	
	O - SURFACE & PORE WATE			INTELA
	SW-03 ACTIVITY TIN	DB NUMBER 10-0031		TIME 1720
SURFACE WATER DATA	WATER DEPTH AT LOCATION Surface	FT DEPTH OF SAMPLE	FT	
		PMENT USED: TYPE OF S		JIDS USED:
	<u>∠ •c</u>		REAM/ RIVER DI WAT	ER
SPEC. COND. 0.305	mS/cm			E WATER
рн 7. 80	P Units			х
ORP 42	N	ITER/ NUMBER (<u>), 2/()</u> ,4 5	ISOPRO	PYL ALCOHOL
DO 10.64			<u>x All</u>	hisposed
TURBIDITY 5.14	NTUS			
	%			
		PRESERVATION AND V	LE TYPE /OLUME SAMPLE	QC
	8330	none 2 x 1-L	<u>UIRED</u> <u>COLLECTE</u>	D PERFORMED
SVOCs	8270C	none 2 x 1-L	Amber Bottles	
Lead (total & dissolve	6010B	HCL 3 x 40-m HNO ₃ : 0.5-um filter 1 x 125-	ni Vials	
Perchlorate	EPA 332	0.2-µm filter 1 x 125-	ml bacteria cup	
Drawing for locat	ion		42°40, 192 N 78° 17, 108 W	NT
A		n D	width: 3,9ff epth: 0,45ft	I
is riffler	~ J	V.	elocity: 4.235	ec/1 ft
Preting	Marine Over han	Atom hun h		
		THE Y	~	
	Pool			
	SAMPI	le		
		\backslash		
			A	
			4	
Notes: Dip Sample	d Exp. isvoc'	2, used syr	hye on re	N.
		-	Mitter Q	
		SIGNATURE:	runerer 12	

FIELD DATA RECORD - SU	RFACE & PORE WA		Troote nois Group		
PROJECT Camp	O'Ryan		TO-0031	DATE 10	118110
	04 ACTIVIT	Y TIME START 1 5	20 END 1545	BOTTLE TIM	E 1525
SURFACE WATER DATA	WATER DEPTH AT LOCATION	DEPTH			
WATER QUALITY PARAMETERS:	Ē	EQUIPMENT USED:	TYPE OF SURFACE WATE		S USED:
TEMPERATURE 8.32 ·C	L	BEAKER	STREAM/ RIVER		
SPEC. COND. (2,209mS/cm			ER LAKE/ POND		VATER
PH 7.56 Units			SEEP		
ORP 58.3 mV			<u>2/0,45</u>		ALCOHOL
DO 10.83 mg/L	<u>ر</u>	OTHER		All	2spared
TURBIDITY 6,31 NTUS		teinge			
SALINITY					
ANALYTICAL PARAMETERS		PRESERVATION	BOTTLE TYPE AND VOLUME	SAMPLE	QC
ANALYSIS	ANALYSIS METHOD	METHOD	REQUIRED	COLLECTED	PERFORMED
	8330 8270C	none	2 x 1-L Amber Bottles	<u>ک</u>	
	8270C 8260B	HCL	2 x 1-L Amber Bottles 3 x 40-ml Vials	L L	
Lead (total & dissolved)	6010B	HNO ₃ ; 0.5-μr	n filter 1 x 125-ml bottle	×	
K Perchlorate	EPA 332	0.2-µm filter	1 x 125-ml bacteria cup	<u>F</u>	
Drawing for location			420 40.86	B'N	\wedge
			78°16.82	G'W	
			Width = 3.	2 ff	N
/			Velocity = 10	Sec1126	
	ravine			5007171-	
Rocks B	NR				
A					
. 2 Da	Part	2 8 <u>-</u>	A A	* <	
\leftarrow k	R X	- Sol			
~					A.
	Y K	USne			ł
Notes: Creek is smellm		'parts k	et a con bankr	loveral	W)+L
rocks & leaver.	Moved dow	istream t	from coordinate	er to fin.	1 suitable
in a sur ling sa	mpled Exp.	\$ 500C'e	SIGNATURE MUCH	the BY	h
and used syring	pon rerl.				

			CONSULTANT	Woods Hole Group	
	RECORD - SUF	RFACE & PORE			$\left[\frac{10}{2}\right]$
				10-0031	
LOCATION ID	1111-		CTIVITY TIME <u>(START (</u>	170 END 1011	
SURFACE WATER	DATA	WATER DEPTH AT LOCATION	0.7 FT DEPTH	H MPLE 0, 7 FT	
WATER QUALITY P	ARAMETERS:	After	EQUIPMENT USED:	TYPE OF SURFACE W	ATER: DECON FLUIDS USED:
TEMPERATUR	RE 7.62 °C	7.49	BEAKER	STREAM/ RIVE	
SPEC. COND.	0,303 mS/cm	0.306			
РН	6.97 Units	7.39			
ORP	121,4 mV	96.7		R	
DO	1.70 mg/L	1,25	OTHER		K
TURBIDITY	27.6 NTUS	29.9			
SALINITY	NA %				
ANALYTICAL PARA	METERS		PRESERVATI	BOTTLE TYPE ON AND VOLUME	SAMPLE QC
	<u>SIS</u>	ANALYSIS METI	HOD METHOD	REQUIRED	COLLECTED PERFORMED
	ves	8330 8270C	none	2 x 1-L Amber Bottle 2 x 1-L Amber Bottle	es Dup
VOCs		8260B	HCL	3 x 40-ml Vials	
Lead (to	otal & dissolved)	6010B	HNO ₃ ; 0.5	-µm filter 1 x 125-ml bottle	
Drawing	n for location	EPA 332	0.2-µm filt	er 1 x 125-mi bacteria	
Drawing	gioriocation	(B)			E A
		M			
1	\sim	~		· 2 6 7 2	
		برا د >	seeping	face 2 K	, sampled
	λ.,	CI;FF	face -	TANK	
		- 114	TIN		
			Ň		
			Te and a		
	/				
		Я			42° 41.036 N
	1				75° 17.263W
Notes:			!	^	<u>→</u> N
had obvio	us seep	Coup A.) , Cliff com	pared bar	e at (1;ff compact clay	face which sampled about
STONT 4	for bur	K	•	Nh	statel Ma -
				SIGNATURE:	

.

PRECUDATA RECORD - SURVICE & PORE WATER CONTONION LOONTONIO COMPONENT CONTONION MATERICATA WATER			CONSULTANT	Woods Hole Group	
CAMP V RYAL CONSERVED CONSERVED <td></td> <td>IRFACE & PORE</td> <td></td> <td></td> <td></td>		IRFACE & PORE			
CONTRET DATA Inter DEFIN ATTOCNION ATTOCNION COST COST ATTOCNION ATTOCNION COST COST ATTOCNION ATTOCNION COST COST ATTOCNION ATTOCNION COST COST ATTOCNION COST COST ATTOCNION COST COST ATTOCNION COST COST ATTOCNION ATTOCNION COST ATTOCNION ATTOCNION ATTOCNION COST ATTOCNION AT		0 Ryan		TO-0031	DATE 10/20/10
BURACE WATER DATA WATER DETTY DE STORE DEPTY DE SUPERIOR DE SUPERIOR MATER DECONFLUISS USED. MATER QUALITY PARMETERS APPLY C 9,03 BEARER DISTRICT PURCE WATER DOWNTER TEMPERATURE 2.22 c 9,03 BEARER DISTRICT PURCE WATER DOWNTER SPEC COND. 0.352 more 0.743 POUSPONT SAMPLE LAMER POND POTALE WATER PH 6,92 Lots 6,73 Persistant C PUMP SEEP SLOUNDX ORP 16474 mv 145.4 PERTERVILABLER SEEP SLOUNDX DO 2.2837 mg1 2:2C OTHER DISTRICT PURCE SAMPLE COLLECTED PERFORMED DO 2.2837 mg1 2:2C OTHER DISTRICT PURCE SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE COLLECTED PERFORMED 24.14.Ame BELLS DISTRICT PURCE SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE COLLECTED PERFORMED 24.14.Ame BELLS DISTRICT PURCE SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE SECO HOL SAMPLE COLLECTED PERFORMED DISTRICT 14.287 MILL STORE SECO HOL SAMPLE SECO HOL		ACT	IVITY TIME <u>START I</u>	120 END 114	BOTTLE TIME 1 30
ANTER QUALITY PARAMETERS AALTER QUALITY PARAMETERS Affect TERMERATURE [2,2,2] 9,03 BEARER STREAM INVER SPEC COND. [0,322,0] 0,743 PH [4,27] Image: Anter Conde 0,743 Image: Anter	SURFACE WATER DATA	WATER DEPTH AT LOCATION	85 FT OF SAM	APLE D.85 FT	
TEMPERATURE $2 \cdot 2 \cdot 9.03$ SPEC COND. $2.332 \dots 500$ 6.743 PUSHPONT SAMPLER LAKE POND POTABLE WATER PH 6.99 Units 6.73 PERISTALTIC PUMP SEEP QUOUNOX ORP $16.4.4. \dots 145.4$ [FLTER NUMBER	WATER QUALITY PARAMETERS:	After	EQUIPMENT USED:		WATER: DECON FLUIDS USED:
SPEC COND. (0.352 mscm) (0.743 [APUSHPONT SAMPLER] LAKE POND [POTABLE WATER PH (2.9) the (-73 [APPERISTATIC PUMP SEEP [ULUUINOX ORP [6.73 [APPERISTATIC PUMP SEEP [ULUUINOX ORP [6.74] m) 145.4 [FLTEN NUMBER] [SOPROPYLALCOHOL DO 2.83 mgz 2:2C [OTHER] [SOPROPYLALCOHOL DO 2.84 mgz 2:2C [SOPROPYLALCOHOL DO 2.87 mgz 2:2C [SOPROPYLALCOHOL DO 2.97 mgz 1:2C [SO	TEMPERATURE 9,22 c	9.03	BEAKER	STREAM/ RIVE	er 📐 di water
PH <u>4292 Unde</u> 6.73 <u>PERISTALTIC PUMP</u> <u>SEEP</u> <u>UliQUINOX</u> ORP <u>1674 m</u> 145.4 <u>PLTER/NUMBER</u> <u>DOPTICE TYPE</u> DO <u>2.837 mgL</u> 2:2C <u>OTHER</u> <u>DOTTLE TYPE</u> TURBIDITY <u>H.857 NTUD</u> 13.3 SALINTY <u>NA m</u> WALYTICAL PARAMETERS <u>ANALYSIS</u> <u>ANALYSIS METHOD</u> <u>METHOD</u> <u>METHOD</u> <u>RECERVATION</u> <u>AND ULIVE</u> <u>COLLECTED</u> <u>PERFORMED</u> <u>COLLECTED</u> <u>PERFORMED</u> <u>ANALYSIS</u> <u>ANALYSIS METHOD</u> <u>METHOD</u> <u>METHOD</u> <u>RECOVER</u> <u>AND ULIVE</u> <u>COLLECTED</u> <u>PERFORMED</u> <u>ANALYSIS</u> <u>ANALYSIS METHOD</u> <u>METHOD</u> <u>METHOD</u> <u>RECOVER</u> <u>AND ULIVE</u> <u>COLLECTED</u> <u>PERFORMED</u> <u>ANALYSIS</u> <u>ANALYSIS METHOD</u> <u>METHOD</u> <u>METHOD</u> <u>RECOVER</u> <u>AND ULIVE</u> <u>COLLECTED</u> <u>PERFORMED</u> <u>ANALYSIS</u> <u>ANALYSIS METHOD</u> <u>METHOD</u> <u>METHOD</u> <u>RECOVER</u> <u>AND ULIVE</u> <u>AND ULIVE</u> <u>COLLECTED</u> <u>PERFORMED</u> <u>ANALYSIS</u> <u>ANALYSIS BETHOD</u> <u>METHOD</u> <u>AND SALON</u> <u>AND ULIVE</u> <u>AND ULIV</u>	SPEC. COND. 0,352 mS/cm	0,743			
ORP 164.4 mv 145.4 PLTERVILLABLER 1800 PROPERTIES ALLOHOL DO 2.83 mgL 2.2 C OTHER 100 TURBIDITY 4.85 NTUL 13.3 SALINITY NA 5 NALYTICAL PARAMETERS 000 PRESERVATION BOTLETYPE OCCULETED PERFORMED Explosives 8330 none 2x+1.4 Andre Bottlee COLLECTD PERFORMED Social Status of 9008 HNO: 0.5 µm filter 1x 125 milliotte Bottle 1 Used (used & used ver) 6008 HNO: 0.5 µm filter 1x 125 milliotte action op 42° 41.025 'N N 78° 17,203' W N Status of 12,203' W N	PH <u>4,99</u> Units	6.73			
DO 2.87 mg 2.22 C OTHER TURBIDITY 4.85 NTUB 13.3 SALINITY MA & WALYTOAL PARAMETERS ANALYSIS AVALYSIS METHOD METHOD METHOD Explosives 8330 none 2 x 14. Andre Bottles COLLECTED PERFEROMED SVOCS 8270C none 2 x 14. Andre Bottles DULP U VOCS 8270C none 2 x 14. Andre Bottles DULP U VOCS 8270C none 2 x 14. Andre Bottles DULP U VOCS 8270C none 2 x 14. Andre Bottles DULP Destroate EPA 332 0.2-ym filter 1 x 125-m bottle Dulp HCL 0.5-ym filter 1 x 125-m bottle 0.2-ym filter 1 x 125-m bottle D 2.2-ym filter 1 x 125-m bottle 0.2-ym filter 1 x 125-m bot	ORP /64.4 mV	145.4	FILTER/ NUMBER		
TURBDITY If ST ATTACH 13.3 SALINTY IVA sc NNALYTICAL PARAMETERS ANALYSIS ANALYSIS BOTH ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS BOTH ANALYSIS BOTH ANALYSIS BOTH ANALYSIS BOTH BOTH BOTH ANALYSIS BOTH BOTH BOTH Dead (table delaster) BOTH Drawing for location To CK5 Stangled Both Analysis Both	DO 2.83 mg/L	2.26	OTHER		
SALINY MA	TURBIDITY 4.85 NTUS	13.3			
ANALYTICAL PARAMETERS ANALYSIS METHOD AND VOLUME BEQUIRED COLLECTED PERFORMED COLLECTED CO	salinity NA %				
ANALYSIS ANALYSIS MANALYSIS METHOD METHOD REQUECTED PERFORMED Explosives 8330 none 2x+1. Amber Bottles SVOCs 8270C none 2x+1. Amber Bottles UCCs 8270B HCL 3x40mt Vals BURP Lead (total & dissolved) 6010B HKO; 0.5 µm filter 1x 125 mt bacteria cup Perchante EPA 332 0.2 µm filter 1x 125 mt bacteria cup Trawing for location 422*41.025*N N 78° [7,209 W N 78° [7,209 W N Stayment Stayment Stampled about a foot from Stream. SIGNATURE MAXAMAL	ANALYTICAL PARAMETERS		PRESERVATIO	BOTTLE TYPE AND VOLUME	SAMPLE QC
Drawing for location		ANALYSIS METHO	DD METHOD	REQUIRED	COLLECTED PERFORMED
VOCs 82808 HCL 3 x 40 mi Vals Lead (total & dissolved) 6010B HNO3: 0.5 µm filter 1 x 125-mi bottle Perchlorate EPA 332 0.2 µm filter 1 x 125-mi bottle Urawing for location 78° 17, 209 W M 78° 17, 209 W M Stynesty Sumpled I Sumpled I Sumpled I Sumpled I Sumpled I Sumpled A Signature Mutuum	SVOCs	8330 8270C	none	2 x 1-L Amber Botti 2 x 1-L Amber Botti	les Pup
Lead (total & dissolved) Perchiorate EPA 332 0.2-µm filter 1 x 125-ml battle Drawing for location 42°44.025'N N 78° [7,20]'W M	VOCs	8260B	HCL	3 x 40-ml Vials	F Dup
Drawing for location Drawing for location Drawing for location Tracks Trac	Lead (total & dissolved)	6010B	HNO ₃ ; 0.5-	um filter 1 x 125-ml bottle	
Drawing for location H2° 41,025'N N 78° 17,209'W Stynest Stynest Sampled about a foot from stream. Signature Mutatum	Perchlorate	EPA 332	0.2-µm filter	1 x 125-ml bacteria	ı cup
stynes i sampled about a foot from stream. Note: Composite Group A. Sampled about a foot from stream. SIGNATURE MULTURE	Drawing for location				42°41.025'N N 78°17.202'W
Intes: Composite Group A. Sampled about a foot from stream. SIGNATURE: MULLING	stayney Pooj	X J sampled	ED E		
SIGNATURE: MULTURE	Notes: Camposite Grou	pA. Sampl	ied about	ufoot fr	om stream.
				SIGNATURE:	the Mm

			CONSULTANT	Woods Hole	Group		
	RECORD - SU	RFACE & POR					
	\square			<u>το-0031</u>			1045
LOCATION ID			ACHVITT HME START				
SURFACE WATER I	DATA	WATER DEPTH AT LOCATION	1.68 FT OF	TH 1.6	FT		
WATER QUALITY P	ARAMETERS:	After	EQUIPMENT USE		SURFACE WATE	R: DECON FLUID	S USED:
TEMPERATUR	E 11.21 °C	11.54	BEAKER	s	TREAM/ RIVER		
SPEC. COND.	0.557ms/cm	0.555			AKE/ POND		WATER
РН	6.85 Units	6.87		PUMP 🔀 s	EEP		
ORP	1,25.7 mV	123,3	FILTER/ NUME	ER			LALCOHOL
DO	2,42 mg/L	1.94	OTHER				
TURBIDITY	97.6 NTUS	34.1					
SALINITY	NA %						
ANALYTICAL PARA	METERS		, PRESERVA	BO ⁻ TION ANI	TLE TYPE VOLUME	SAMPLE	QC
	<u>SIS</u>	ANALYSIS ME	ETHOD METHO				PERFORMED
	/es	8330 8270C	none	2 x 1- 2 x 1-	L Amber Bottles		MSIMSD
VOCs		8260B	HCL	3 x 4)-ml Vials	X	
Lead (to Perchlor	tal & dissolved) ate	6010B EPA 332	HNO ₃ ; [.] 0.2-um :	0.5-μm filter 1 x 1: ilter 1 x 1:	25-ml bottle		
Drawing	for location					<u></u>	\sim
			read				
	ينين المراجع ا المراجع المراجع			an a			I
		woor	Tracline	1	/ /	1	/
~			the mars	mpled my area			
		Ν.	Correk			\sim	
2		7.49				-	
						42 41.	034'N 802'W
Notes: Samp COMPOSIL	led mar	shy we	a ~25 ft	From.	iree K,		
j, • ⊶ / ·	c grou	ÞÐ		SIGNATURE	Mitu	her Br	M
							

PROJECT	/ Same / 1113					110
		in				
LOCATION ID	<u>_/vi //~6/5</u>	ACTIV	TY TIME START	() Y END 1 Z	20 BOTTLE TIME	
SURFACE WATER DA	TA WA' AT L		· S FT DEPTH	APLE 0.8 FT		
WATER QUALITY PAR	AMETERS: AF	Hec.	EQUIPMENT USED:	TYPE OF SURFAC	E WATER: DECON FLUIDS	S USE
TEMPERATURE	10.52 . 7.9	21	BEAKER	STREAM/ R		
SPEC. COND.	0,65(ms/cm 0,6	.31		PLER LAKE/ PON		/ATEI
РН	7,06 Units 7,1	18		MP 🔀 SEEP		
ORP	· 5/.6 mv 13	.(FILTER/ NUMBER			. ALC
DO	8,65 mg/L 8,6	.3	OTHER		_ []	
TURBIDITY	48, 5 NTUS 3, 70	6				
SALINITY	MA %					
	ETERS		PRESERVATIO	DN AND VOLUME	E SAMPLE	05
	2	ANALISIS METHOD	<u>METHOD</u>	REQUIRED		PE
	i	8330 82700	none	2 x 1-L Amber E 2 x 1-L Amber F	somes	,
		8260B	HCL	3 x 40-mi Vials		
Lead (total	& dissolved)	6010B	HNO ₃ : 0.5	um filter 1 x 125-ml bottl	e 🗂	
		EPA 332	0.2-um filte	r 1 x 125-ml bact	eria cup	
Drawing f	or location	- f			42° 41.030') 78° 16.882'v	V V
	A.	k 1-		_		
	_ 174	~ ~ ~				
	wood,		- Tr	= elso	Wood	2,5
	unds open		Tr stayne, pool	t eling	Wood Lesamples	in the second se
	unnds Open		The stayne, pool 1: Greek	t eline C C T	Wood Et sampled 12 Ft	,5 de 4
	und, open		Stayne, pool h: Greek	E e l'an C C T E E E	Wood Et Sampled 12 ft	2.5 July 14 14
Notes: Sample	nod 5 Open	- N	Stayne, pool 1. Greek F Greek		Wood Esampled 12 Ft hick clay	the state
Notes: Sample. Let so	pen	n.orth o Heavily	The stayne pool 1: Greek f Greek, popet. 4, 1	soil hur t	Wood Esampled 12 Ft hick cday, b nent pool pres	is it is interest

.

.

ILLU DAIA NLUUND - UU	RFACE & PORE WAT	ER		
ROJECT Camp	O'Ryan	JOB NUMBER TO-0	031	
	- OG ACTIVITY	IME START 1250	end [3] b	BOTTLE TIME 1305
URFACE WATER DATA	WATER DEPTH AT LOCATION	DEPTH	2.2 FT	
ATER QUALITY PARAMETERS:	After EQ	UIPMENT USED: T	PE OF SURFACE WATER:	DECON FLUIDS USED:
темрегатиге 10,08 •с	10.15	BEAKER	STREAM/ RIVER	
SPEC. COND. 0.458mS/cm	0.451		LAKE/ POND	
PH 7,19 Units	7,12 ×		SEEP	
ORP 38.5 mV	122,3	FILTER/ NUMBER		
DO 4,60 mg/L	7.00	OTHER		
TURBIDITY 3,76 NTUS	9.68			
SALINITY NA %				
NALYTICAL PARAMETERS		PRESERVATION	BOTTLE TYPE AND VOLUME	SAMPLE QC
ANALYSIS	ANALYSIS METHOD	METHOD	REQUIRED	COLLECTED PERFORMED
	8330 8270C	none	2 x 1-L Amber Bottles	MSIMSO
VOCs	8260B	HCL	3 x 40-ml Vials	
Lead (total & dissolved)	6010B	HNO ₃ ; 0.5-μm filter	1 x 125-ml bottle	
Drawing for location			<u> </u>	N
	hor	1	m	1
R HHL JIOP	sumpled H 140FA H Marshy Area	W. 000/5 X MP-04	MP-05	Moved downsil MP-06
	Ali (rec			river
42°41.030'N				-ر ۵ ۸
				1, 1
lotes: Camposite Group	B. Site move	d down Streeman	am of conro	Inster Lup
iotes: Composite Group o river disapped Voluck sampling t	B. Site move Many Undergr Gere Site	own & HOFF	F 55 Ft Nor	-H of MP-05,

		CONSULTANT Woods Hole Group
FIELD DATA RECORD - S	SURFACE & POR	
	p U Ryan	JOB NUMBER TO-0031 DATE 1017/40
	<u> </u>	ACTIVITY TIME START 1420 END 1300 BOTTLE TIME (143)
SURFACE WATER DATA	WATER DEPTH AT LOCATION	1.03 FT DEPTH OF SAMPLE 1.03 FT
WATER QUALITY PARAMETERS:	After	EQUIPMENT USED: TYPE OF SURFACE WATER: DECON FLUIDS USED:
TEMPERATURE 10.85	c 10,62	
SPEC. COND. 0, 579 mS/c	m 0,578	PUSHPOINT SAMPLER LAKE/ POND
РН 7,07 Un	its 7.19	
ORP [1.60 n	_{1V} - 31.5	FILTER/ NUMBER 0.2/0,45
DO 1.75 mg	1.88	
TURBIDITY 47.5 NT	Js 115	3 Yring.e
SALINITY NA	%	
ANALYTICAL PARAMETERS		BOTTLE TYPE PRESERVATION AND VOLUME SAMPLE QC
ANALYSIS	ANALYSIS ME	ETHOD METHOD REQUIRED COLLECTED PERFORMED
SVOCs	8330 8270C	none 2 x 1-L Amber Bottles
VOCs	8260B	HCL 3 x 40-ml Vials
Lead (total & dissolved)	6010B	HNO ₃ ; 0.5- μ m filter 1 x 125-ml bottle
Perchlorate	EPA 332	0.2-µm filter 1 x 125-ml bacteria cup
Drawing for location	111111-1111111111111111111111111111111	<i>N</i>
	- fo	ad
		[
	5-00	nds.
		MP-04 ×MPOS
		\times
11 11		
\prec A_{i}	Treek E	<u> </u>
1111	/ 1	1 47.4+1 (()
	l.	WLL (
		Sampled the Murshy
		Live area
Notes:		
Sprinkled brinn	oup C. Sr	impled murshy atea 47ft trom creek,
, in the second se	14 JUN 7	a sumpliny
		SIGNATURE: MUTATION

[CONSULTANT	Woods Hole Group	
FIELD DATA RECORD -	SURFACE & PORE W	VATER		
PROJECT Can	ap O'Ryan		TO-0031	DATE 10113170
	<u>₽-88</u> асті	IVITY TIME START	610 END 163	ВОТТLЕ ТІМЕ 1620
SURFACE WATER DATA		179 FT DEPTI	H MPLE 0.79 FT	
	After	EQUIPMENT USED:		WATER: DECON FLUIDS USED:
TEMPERATURE			STREAM/ RIV	
SPEC. COND. 0463 ms	_{/cm} 0,46 (
рн 7,13 и	nits 7,00			
ORP 18.1	<u>m</u> ∨ 44.8		0.2/0.45	ISOPROPYL ALCOHOL
DO 2.09 m	_{19/} 1,95			
TURBIDITY 23,8 N	rus 9.99	Syringe		
SALINITY NA	%			
ANALYTICAL PARAMETERS		PRESERVATI	BOTTLE TYPE ON AND VOLUME	SAMPLE QC
ANALYSIS	ANALYSIS METHO	D METHOD	REQUIRED	<u>COLLECTED</u> PERFORMED
	8330 8270C	none	2 x 1-L Amber Bot 2 x 1-L Amber Bot	tles
	8260B	HCL	3 x 40-ml Vials	
Lead (total & dissolved)	6010B	HNO ₃ ; 0.5	i-µm filter 1 x 125-mi bottle	X
Perchlorate	EPA 332	0.2-µm filte	er 1 x 125-ml bacteria	a cup
Drawing for location	I		42° 78	41.025 N *16.916W N
	Roa	1		\frown
				[
	\backslash	\backslash		\sim
	LNDA	15 >		
				Fivers
				EMA
	EN. LES	ok 2		
	[23++			Clay
Muddules.		, ,	· ×	novinter 1X
hrea -	A San	npled	MP-07	MP-Q8
Notes: Comparito G			tian	t of MP-07
contan't find	suitable loc.	en inca ation unri	Fream at orr	ginal coordinates.
		····· · /› /	NONATUS MI	tien and -
L			SIGNATURE:	m w i i i v

		CONSULTANT	Woods Hole Group	
FIELD DATA RECORD) - SURFACE & PORE W			
PROJECT C	Camp O'Ryan		TO-0031	DATE 10/19/10
	<u>М //- 09</u> асті	VITY TIME START	630 END 1645	BOTTLE TIME 1635
SURFACE WATER DATA	WATER DEPTH AT LOCATION	0,95 FT DEPT	H MPLE 0. 95 ft	
	<u>):</u>	EQUIPMENT USED:	TYPE OF SURFACE WAT	TER: DECON FLUIDS USED:
		BEAKER	STREAM/ RIVER	
SPEC. COND. 0,433	mS/cm		IPLER LAKE/ POND	
рн 6.87	Units			
ORP 107,1	/ _{mV}		× <u>0.2/</u> 0,45	
DO 2,13	mg/L			
	NTUS	Stringe		
	%			
ANALYTICAL PARAMETERS		PRESERVAT	BOTTLE TYPE ON AND VOLUME	SAMPLE QC
ANALYSIS	ANALYSIS METHO	D <u>METHOD</u>	REQUIRED	COLLECTED PERFORMED
Explosives	8330	none	2 x 1-L Amber Bottles	
	8270C	none	2 x 1-L Amber Bottles	
Lead (total & dissolve	d) 6010B		J X 40-mi viais	
Perchlorate	EPA 332	0.2-µm filt	er 1 x 125-mi bacteria cup	
Drawing for locati	on			N
	R-6	pad		1
	, /		/ /	
	11/2015			
				1
<i>₽</i>				
	EN. Com		~~~	
衆 ———			1	
r IKIL				
forest	sampled			
Pullin XIII))			1(10/11: AD10 A.
1	marshy wrea			78"16.957 W
Notes: Composite	Group C. P.	ino dird	ma final ra	dia a Sundad
17 ft from (reek in Mursh	y urea wil	Shallow puddle	Mearby, Mayed
unite downst	CCAMASMO S	uiteble 10	SIGNATING AMIT	tituti Ma
THERAM WW.	+4 MP-08		SIGNATURE.	

			Woods Hole Group	· · · · · · · · · · · · · · · · · · ·
	Comp O'Ryon		TO-0031	DATE 10/20/10
	$\frac{1}{1000}$	ACTIVITY TIME START 15	45 END 1649	BOTTLE TIME //4 35
LOCATION ID				
SURFACE WATER DATA	WATER DEPTH AT LOCATION	Q.67 FT DEPTH OF SAMP	LE D.67 FT	
	METERS:	EQUIPMENT USED:	TYPE OF SURFACE WAT	ER: DECON FLUIDS USED:
	1.05 ·c 8.71	BEAKER	STREAM/ RIVER	
SPEC. COND.	0,268mS/cm 0,267			
рн 2	7.58 Units 7.59		olare	
ORP	175,5 mV 1,5,71		<u>.4</u> 0,45	
	184 NILL 201	Syringe]	L]
SALINITY	NA %			
	ERS		BOTTLE TYPE	
ANALYSIS	ANALYSIS	PRESERVATION	I AND VOLUME REQUIRED	SAMPLE QC <u>COLLECTED</u> <u>PERFORMED</u>
Explosives	8330	none	2 x 1-L Amber Bottles	M5/M50
Svocs	8270C	none	2 x 1-L Amber Bottles	E Contraction of the second se
VOCs	8260B	HCL	3 x 40-ml Vials	
Lead (total &	dissolved) 6010B	HNO ₃ ; 0.5-μr	n filter 1 x 125-mi bottle	、
Drawing fo	r location	`	·	42°40.911 NNN 75°17.054'WN
Notes: Mart	A company of the second	WW C	115 minutes	the pat much chan
Trick other bunk of a	was very turbid siter with mole	so purged for ack, so sampled	45 minuter u here, 5ampl	ed in undercut
Composite	group D	'CdM	SIGNATURE: MUL	due n

			CONSULTANT	Woods He	ble Group		
FIELD DATA	RECORD - SUI	RFACE & PORE	WATER				
PROJECT	Camp (D'Ryan	JOB NUMBER	TO-003	1	DATE 10/20/10	
LOCATION ID	MP-	-12 AC		1440	END 1532	BOTTLE TIME 1450	
SURFACE WATER (DATA	WATER DEPTH AT LOCATION	0,75 FT OF	SAMPLE 0,	75 _{FT}		
WATER QUALITY P	ARAMETERS:	After			OF SURFACE WATER	DECON FLUIDS USED:	
TEMPERATUR	Е 8,98 .с	8,97	BEAKER		STREAM/ RIVER		
SPEC. COND.	0,269ms/cm	0,273			LAKE/ POND		
РН	7.03 Units	7,28		PUMP	SEEP		
ORP	104.3 mv	88.4		BER <u>() (</u>) (0,4	F 5	ISOPROPYL ALCOHOL	
DO	1,98 mg/L	2.26					
TURBIDITY	53,5 NTUS	3.71	sysinge				
SALINITY	NA %						
ANALYTICAL PARA	METERS		PRESERV		BOTTLE TYPE	SAMPLE OC	
ANALYS	SIS	ANALYSIS METH	IOD METHO		REQUIRED	COLLECTED PERFORME	ED
Explosiv	res	8330 8270C	none	2:	x 1-L Amber Bottles		v
		8260B	HCL	3:	x 40-ml Vials	臣	
Lead (to	tal & dissolved)	6010B	HNO ₃ ;	0.5-µm filter 1	k 125-ml bottle	<u>ک</u>	
Drawing	for location	/	······································			42°40.885'N 78° 17.008 'W	N P
	mot	n Creek	ravi.	n 7			
Sume	led y	Land 3ft					
			Ń				
bank	in grave	roup D', 5 1 soil	ampled u	4 645	e of rai	ine, 3ft from	א
				SIGNATU	RE: Milita	1 Rh	
r							
PROJECT Cam	o O'Ryan	JOB NUMBER	TO-0031]	DATE 70/	20110	
---------------------------	----------------------------	--------------------	---	--	--------------	-----------	
	P-13 +		1240 END	1305		1300	
SURFACE WATER DATA	WATER DEPTH AT LOCATION	0.85 FT OF	SAMPLE D.85	FT			
WATER QUALITY PARAMETERS:	After	EQUIPMENT USE	D: <u>TYPE OF SU</u>	RFACE WATER:	DECON FLUIDS	USED:	
TEMPERATURE 2,26	0 11,45	BEAKER	STRE	AM/ RIVER			
SPEC. COND. 0,294mS/c	m 0,307			POND		ATER	
PH 6.99 Uni	ts 6.81		РИМР 🕅 SEEP				
ORP 100,D m	v 116.5		er <u>1.2</u> /0,45			ALCOHOL	
DO 7,30 mg	16.36	OTHER					
TURBIDITY 3,70 NTL	Js	SYErnye					
SALINITY	%						
ANALYTICAL PARAMETERS		PRESERVA	BOTTLE ATION AND VO		SAMPLE	QC	
ANALYSIS	ANALYSIS MET	<u>THOD METHO</u>	<u>PD</u> <u>REQU</u>	<u>RED</u>		PERFORMED	
	8330 8270C	none	2 x 1-L A 2 x 1-L A	nber Bottles		V 20 Y.	
VOCs	8260B	HCL	3 x 40-ml	Vials		0	
Lead (total & dissolved)	6010B	HNO ₃ ;	0.5-μm filter 1 x 125-m filter 1 x 125-m	l bottle		Dur	
Drawing for location)	420	40.896 N	N	
	main S.	K flood1	ravi	78			
sampled V K		e K	~				
	347						
				and the second sec			

			Woods Hole Group	
	- SURFACE & POR		TO 0001	10/2/1/4
	MP - 14		10-0031 12 0 END 1135	
SURFACE WATER DATA	WATER DEPTH AT LOCATION	0,9(5 FT DEPTH OF SAMP	DLE D. 915 FT	
WATER QUALITY PARAMETERS	After	EQUIPMENT USED:	TYPE OF SURFACE WATEF	R: DECON FLUIDS USED:
TEMPERATURE 8.90	·c 9,84	BEAKER	STREAM/ RIVER	
SPEC. COND. 0,284	mS/cm 0.258		ER LAKE/ POND	
рн 7.31	Units 7.16		s X seep	
ORP 141,1	mv 65.1		2(0.45	
DO 3.10	mg/L 2.62			
	NTUS 132.0	Syringe		
SALINITY NA	%			
		PRESERVATION	BOTTLE TYPE AND VOLUME	SAMPLE QC
Explosives	ANALYSIS ME 8330	none	REQUIRED 2 x 1-L Amber Bottles	COLLECTED PERFORMED
	8270C	none	2 x 1-L Amber Bottles	
Lead (total & dissolved	8260B 3) 6010B	HCL HNO ₂ : 0.5-un	3 x 40-ml Vials	
Perchlorate	EPA 332	0.2-µm filter	1 x 125-ml bacteria cup	> Dup
Drawing for locati	on		42 78	"16.894'N N 16.859'W
			\sim	1
	ravne		Ň	
F	Min	Greek		\sim
		Jaft 1		
	>(1+-) keporij	, , , , , , , , , , , , , , , , , , ,		
deposit, Ravi	roup E. JAM he becominy	plod about shorter 56	off from b. etter grade.	ank in silty
	1		SIGNATURE: MUTUL	a an

			CONSULTANT	Woods Hole	Group		<u> </u>
	Come O	FACE & PORE W	AIER]		
PROJECT		Ryan		TO-0031			20110
LOCATION ID	_7V1p-		TY TIME START ([]] E	ND 1155	BOTTLE TIM	e <i>1140</i>
SURFACE WATER D	ATA	WATER DEPTH AT LOCATION	90 FT DEPTI	H MPLE 0.9	0 FT		
WATER QUALITY PA	RAMETERS:	After	EQUIPMENT USED:	TYPE O	F SURFACE WATE		<u>S USED:</u>
TEMPERATURE	8. <u>38</u> °C,	9.84			STREAM/ RIVER		
SPEC. COND.	(),236ms/cm	0,243			AKE/ POND		VATER
РН	7.23 Units	7.50		IMP 🔀 s	SEEP		
ORP	150,7 mv/	54.8		2 <u>(),)/0,</u> 45			
DO	8.20 mg/L	3.25					
TURBIDITY	5.49 NTUS	28.2	syringe				
SALINITY	NA %						
ANALYTICAL PARAN	METERS	····		BO			
ANALYS	IS	ANALYSIS METHOD	METHOD	ON AN <u>R</u>		COLLECTED	
Explosive	es	8330	none	2 x 1	-L Amber Bottles	E	Pup
		8270C	none	2 x 1	-L Amber Bottles		
	al & discolved)	8260B		3X4 Lum filter 1×1	0-mi Viais		Ano
	ate	EPA 332	0.2-um filte	er 1x1	25-mi botteria cun		pus
Drawing	for location	}			42°4 78°1	0.884 N 6.848'W	N
							K
		Ĺ					
	5		TAU	ine			
	1 ~	$\langle \rangle$		n C			1
		6	`)
		5 15	\mathbf{i}				,
	$\sim \sim \sim$	4	~~ \ \				
)))	A.				
/		A CAN			_		
		Hira Cro		$\overline{\}$			
	\rightarrow		\sum				
	5	$\langle \kappa \rangle$	\sum				
<u>^</u>	e,	3	$\langle \langle \rangle$				
	45	AL SE					
	'1 ₀	· 9 / 3	VI A				
			X	\mathbf{N}			
			ľ				
Notes: CANA	osite 1-	CONAF 5	am of d	· r.t.	en. hea	d Jf.	1 . [.
160	vite n		a li i	$\frac{1}{1}$	C n M U) ~) `	Trom
,		rye in ti	icky, su	Hy/cle	y area	¢	
					Plant	1.01	121-
				SIGNATUR	: <u>···</u>	vier 1	

	· · · · · · · · · · · · · · · · · · ·	CONSULTANT	Woods Hole Group	
FIELD DATA RECORD -	SURFACE & PORE W			
PROJECT Can	ip O'Ryan		TO-0031	DATE 10/20/10
	АСТІ	VITY TIME START	020 END 1109	BOTTLE TIME (10 30)
SURFACE WATER DATA	AT LOCATION	94 FT OF S	AMPLE 0.94 FT	
WATER QUALITY PARAMETERS:	After			
	- 8.00 - 7.141			
SPEC. COND. U, I'I'I'MS				
РН 7,15 U	nits 1,22			
ORP 257.6	mv 0,149.6		R 0.2(0.4 S	
DO 4,51 m	_{.g/L} 2.98			
TURBIDITY 13.0 N	_{rus} 34.6	sycinge		
SALINITY NA	%			
ANALYTICAL PARAMETERS		PRESERVA	BOTTLE TYPE FION AND VOLUME	SAMPLE QC
	ANALYSIS METHO	D METHOD	2 x 1-i. Amber Bottles	
SVOCs	8270C	none	2 x 1-L Amber Bottles	۲ ۲
	8260B		3 x 40-ml Vials	Y MS/MCA
Perchlorate	EPA 332	0.2-µm fil	ter 1 x 125-ml bacteria cup	K MS/MSD
Drawing for location)		42	"40.877'N N
				1
		0 14		I
	[" " " " " " " " " " " " " " " " " " "	11 4		
		reek		
£	Mam		244	
		- 7 7	7	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			sampled	
		tepos	it .	\mathbf{X}
	ravin	e		
Notes:	E Sam	(ad hat	107 2	1 (mandination Al
Suitably siter	For MP-16,	50 COMPA	ite Group 20	, ly 2 siter. simple
2ff Fram wa	terr edye. f	Revine 645	e Mal	at A M
diffica) + fint?	sample due to	King sites	SIGNATURE: <u>"/// W</u>	town " u

			s Hole Group	
FIELD DATA RECORD - SU			004	10/2/10
	$\frac{0}{0} - 18$ ACTIVIT	JOB NUMBER 10-0	$\frac{1000}{1000}$	
		TIME START y 3 ()		BOTTLE TIME
SURFACE WATER DATA	WATER DEPTH AT LOCATION	フス FT DEPTH OF SAMPLE し	0,72 FT	
WATER QUALITY PARAMETERS:	After	EQUIPMENT USED: TY	PE OF SURFACE WATER	
TEMPERATURE 7.65 °C] " [BEAKER	STREAM/ RIVER	
SPEC. COND. 0, 114 mS/cm			LAKE/ POND	
PH 7,93 Units]		SEEP	
ORP 354.6 m] [·		45	
DO 7.16 mg/L] [
		syringe		
SALINITY NA %				
ANALYTICAL PARAMETERS		PRESERVATION	BOTTLE TYPE AND VOLUME	SAMPLE QC
ANALYSIS	ANALYSIS METHOD	METHOD	REQUIRED	COLLECTED PERFORMED
	8330	none	2 x 1-L Amber Bottles	
VOCs	8260B	HCL	3 x 40-ml Vials	Dup
Lead (total & dissolved)	6010B	HNO_3 ; 0.5-µm filter	1 x 125-ml bottle	> Dup Ms/M
Perchlorate	EPA 332	0.2-µm filter	1 x 125-ml bacteria cup	Z DupMSIMS
Drawing for location			78	"16.667" W
a vine	Simpled	Ecold .	kine	
Notes: Composite G Suitable locations rav Tried several location scouted MP-17 & MP 2 locations instead	roup F. Walk ine bare is essen s with out much 1-16, and decided of 3 based on si	tially the rive success. Lots I to Lo only te availability SIGN.	n Miver 10. - bank. Rayin of rocks in m ATURE: MUnth	Dyds but not man steop, rocky & tall ud. MMM

FIELD INSTRUMENTATION CALIBRATION RECORD Woods Hole Group, INC.						
PROJECT Cano O'Ryan	······································		DATE	0/18	10 1	IME 1020
CREW ID OR TASK ID DSB, MAB		•	JOB N	UMBER	T0-6	1031
SAMPLER SIGNATURE		>	CHE	CKED E	NY MAB	
EQUIPMENT CALIBRATION METER TYPE YS1 MODEL NO. 556 MPS UNIT ID NO. 10 GIO1491 pH units	AM CALIBR STANDARD VALUE	ATION METER VALUE 4.06	PM STAN V	CALIBF DARD ALUE	ATION CHECH METER VALUE 3.98	ACCEPTANCE CRITERIA ** ±0.2 unit
pH units	_7	702		7	7.03	±0.2 unit
Redox +/- mV	229	235	20	9	241	±20 mV
Conductivity mS/cm	1-000	1.002	· <u> .C</u>	00	1.008	0.5% of reading
DO mg/L *	100	96.9031	100	2	8.57	2% of reading or
Temperature deg. C		12.29			23.04	greater
METER TYPE HACH NTU (low) MODEL NO. 2100P	_0	0.11)	0.14	2% of reading
UNIT ID NO. 1109 NTU (high)	5	4.92	5	;	E. 4.7	Whichever is greater.
Check One Equipment calibrated within the Acceptance (Equipment (not) calibrated within the Accepta	50 Criteria specifiec Ince Criteria spe	JV I for each of the ecified for each o	parame of the pa) ters liste rameter	od above. s listed above (see notes below).
MATERIALS RECORD			nductivi	hy .	Lot Num	ber
Disposable Filter Type:		priveo	OR Turbidi	P		
			Oth	er		······································
NOTES:						
** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project requirements necessitate use of the instrument, clearly document on all data sheets and log book entries that the parameter was not calibrated to the acceptance criteria.						
* = standard based on saturated headspace at given temperature						

.

FIELD INSTRUMENTATION CALIBRATION RECORD Woods Hole Group, INC.							
PROJECT Camp O'Ryan		DATE 10/20/10	TIME 5:57				
CREW ID OR TASK ID DSB. MAB		JOB NUMBER	TO-0031				
		CHECKED BY	MAB				
EQUIPMENT CALIBRATION A METER TYPE YS1 ST MODEL NO. 556	AM CALIBRATION TANDARD METER VALUE VALUE U 3.99 7 7.01 229 226.7	PM CALIBRAT STANDARD VALUE 7	ION CHECK METER ACCEPTANCE VALUE <u>CRITERIA **</u> $\overline{7.12}$ ±0.2 unit $\overline{3.9}$ ±0.2 unit				
Redox +/- mV Conductivity mS/cm DO mg/L * Temperature deg. C TURBIDITY METER TYPE <u>Hach 2100P</u> MODEL NO. <u>2100P</u> UNIT ID NO. <u>1102</u> NTU (high)	$\frac{1.000}{100\%} = \frac{1.008}{99.6\%}$ $\frac{99.6\%}{8.56m/2}$ $\frac{21.71}{0}$ $\frac{0}{5} = \frac{4.97}{7}$	<u> </u>	$\frac{206.4}{20 \text{ mV}}$ $\frac{1.021}{7.62}$ $\frac{9.62}{2\% \text{ of reading}}$ $\frac{1.0021}{1.001} \text{ mS/cm}$ $\frac{7.62}{2\% \text{ of reading or}}$ $\frac{0.2 \text{ mg/L.}}{9.2 \text{ mg/L.}}$ $\frac{0.2 \text{ mg/L.}}{1.0000}$ $\frac{0.2 \text{ mg/L.}}{1$				
Check One Equipment calibrated within the Acceptance Criter Equipment (not) calibrated within the Acceptance	ria specified for each of the p Criteria specified for each o	parameters listed a	bL- 9 bove. sted above (see notes below).				
MATERIALS RECORD Lot Number Calibration Fluids / Standard Source: Woods Hole Group, INC. pH /Conductivity Disposable Filter Type: Turbidity Other Other							
NOTES: ** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project requirements necessitate use of the instrument, clearly document on all data sheets and log book entries that the parameter was not calibrated to the acceptance criteria.							

FIELD INSTRUMENTATION CALIBRATION RECORD Woods Hole Group, INC.							
PROJECT Camp O'Ryan	·····		DATE 10/19/	0 T	IME ()645		
CREW ID OR TASK ID 15BMAB			JOB NUMBER	TO-00	831		
SAMPLER SIGNATURE		<u> </u>	CHECKED B	Y <u>MAB</u>			
EQUIPMENT CALIBRATION METER TYPE VS1 MODEL NO. 556MPS UNIT ID NO. pH units	AM CALIBR STANDARD VALUE	ATION METER VALUE 3.98	PM CALIBR STANDARD VALUE 4.00	ATION CHECK METER VALUE 4.06	ACCEPTANCE CRITERIA ** ±0.2 unit		
pH units	7	7.03	7.00	7.1	±0.2 unit		
Redox +/- mV	229	9986	229	Sean.	±20 mV		
Conductivity mS/cm	1.000	1.002	100%	<u> .017</u> 981%	0.5% of reading + 0.001 mS/cm		
DO mg/L * Temperature deg C		8.36 32.71		<u>7.69</u>)].92	2% of reading or 0.2 mg/L. , whichever is		
TURBIDITY METER TYPE <u>Hull</u> NTU (low) MODEL NO. <u>2100 P</u>	0	0.12	0	0.20	2% of reading or 0.3 NTU.		
UNIT ID NO. <u>11 /) 9</u> NTU (high) <u>Check One</u>	<u> </u>	<u>4.81</u> 50.2	50	<u>4.99</u> 50.6	Whichever is greater.		
Equipment calibrated within the Acceptance C Equipment (not) calibrated within the Acceptan	riteria specified nce Criteria spec	for each of the cified for each o	parameters liste	d above. s listed above (s	see notes below).		
MATERIALS RECORD Calibration Fluids / Standard Source: Woods Hole Gro	oup, INC.	pH /Co	nductivity	<u>Lot Numl</u>	<u>per</u>		
Disposable Filter Type:			Turbidity Other				
NOTES:			<u></u>				
. *							
** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project requirements necessitate use of the instrument, clearly document on all data sheets and log book entries that the parameter was not calibrated to the acceptance criteria.							
* = standard based on saturated headspace at given temperature							

ATTACHMENT 3 ALPHA ANALYTICAL LABORATORIES REPORTS AND ANALYTICAL DATA (ON CD)

ATTACHMENT 4 VOC TIER –II TYPE DATA VALIDATION REVIEW (ON CD)

ATTACHMENT 5 FIELD PHOTOS (ON CD)

ATTACHMENT 6 UPDATED ADR LIBRARY (ON CD)