Appendix C

Data Validation Report

DATA VALIDATION REPORT - Level III Review

SDG No.:	OG No.: SN 5717 + SN5719 + SN6056		Metals (Sb,Cu,Pb,Zn), AVS/SEM, & TOC				
Laboratory:	Katahdin	Project:	Camp O'Ryan				
Reviewer:	Devon Chicoine	Date:	September 11 th , 2020				

This report presents the findings of a review of the referenced data. The report consists of this summary, a listing of the samples included in the review, copies of data reports with data qualifying flags applied, data review worksheets, supporting documentation, and an explanation of the data qualifying flags employed. The review performed is based on the project Quality Assurance Project Plan and the Department of Defense Quality Systems Manual, Version 5.0 (July 2013); and, qualified according to the protocols defined in the *US EPA Region II SOPs# HW-36A, Rev. 0 and HW-2b Rev. 0* (July 2015).

Major

Anomalies: None.

Minor

Anomalies:

: During the metals analysis, the following method blanks displayed detections greater than the limit of detection (LOD):

Batch	Analyte	Result	Units	
	Total Copper	0.082		
NG16IMS1	Total Lead	0.036		
	Total Zinc	0.40		
	Total Copper	0.14		
NG20IMS2	Total Lead	0.140		
	Total Zinc	0.44		
NH04IMS1	Total Lead	0.024		
	Total Zinc	0.13		
NG20IMS1	Total Lead	0.024	malka	
INGZUIIVIST	Total Zinc	0.28	mg/Kg	
	Total Copper	0.084		
NG23IMS1	Total Lead	0.036		
	Total Zinc	0.89		
NG27IMS1	Total Lead	0.0088		
ING2/IIVIST	Total Zinc	0.21		
	Total Copper	0.097		
NG28IMS1	Total Lead	0.023		
	Total Zinc	0.30		
PBWNG21IMW2	Total Copper	1.7		
PBWNG29IMW2	Total Copper	0.54	µg/L	
PBWWGZ9IIWWZ	Total Lead	0.20		
	SEM Copper	0.00058		
	SEM Lead	0.000083		
NH03ICS2	SEM Mercury	0.0000142	µmole/g	
	SEM Nickel	0.00152		
	SEM Zinc	0.00264		

The field sample results that were displayed concentrations less than ten times the associated method detections were qualified U,bl. When appropriate, the quantitation limits were elevated to the concentrations detected or the numerical result less than the limit of quantitation (LOQ) was raised to the LOQ. The following continuing calibration blanks (CCB) displayed detections greater than the LOD:

File ID	Date	Time	Analyte	Result (µg/L)
		1556	Copper	0.425
		1855		1.559
	7/20/20	1927		0.351
	1120120	1959		0.170
LNG20A		2031		0.142
		2104		0.122
		0011	Lead	0.172
	7/21/20	0016	Ledu	0.106
		0048		0.120
	7/22/20	2244		0.112
LNG22B		2316		0.184
		2342		0.130
		1745		0.113
		1745	Copper	0.341
LNG24A	7/24/20	2126		0.132
		2158		0.188
		2211		0.113
LNG27A	7/27/20	2005	Lead	0.179
LNG28B	7/28/20	1513		0.820
LINGZOD	1120120	1545		0.101
LNH06A	8/06/20	1558		0.165

The field sample results were greater than five times the associated CCBs detections; no data qualifying action was required. The following matrix spike pairs (MS/MSD) displayed percent recoveries less than the lower quality control (QC) limits:

Parent Sample	QC Batch ID	Analyte	QC Limits (%)	MS Recovery (%)	MSD Recovery (%)	Result (mg/Kg)
		Antimony	72-124	23.6	24.2	0.225
COR01IS01	NG20IMS1	Copper	84-119	82.4	87.3	30.8
		Lead	84-118	84.6	66.8	56.1
		Antimony	72-124	24.2	21.6	0.327
COR02IS02	NG20IMS1	Copper	84-119	79.5	89.4	31.9
		Lead	84-118	27.8	37.6	98.7
CODOJICOJ	NG20IMS1	Antimony	72-124	32.8	31.3	0.429
COR03IS03	ING2011VIST	Copper	84-119	75.8	111.7	36.0
COR05SED04A	NG23IMS1	Antimony	72-124	52.3	51.3	2.47
COR06SED04A	NG27IMS1	Lead	84-118	122.2	7.4	154
COR01DA02A	NG16IMS1	Antimony	72-124	8.1	10.8	1.14
CORUIDAUZA	ING TOTIVIS I	Copper	84-119	99.5	83.2	23.3
		Antimony	72-124	19.2	22.5	0.15
COR02DA01A	NG16IMS1	Copper	84-119	72.0	96.0	24.4
CORUZDAUTA	ING TOTIVIS I	Lead	84-118	66.7	135.7	38.0
		Zinc	82-119	68.7	114.2	71.8
COR02DB02A	NH04IMS1	Antimony	72-124	27.8	27.6	0.11
		Lead	84-118	102.4	131	19.3
COR03DA03A	NG16IMS1	Antimony	72-124	49.6	34.7	0.236
CORUSDAUSA		Zinc	82-119	92.9	79.3	62.6

The QC batch results associated with percent recoveries less than the lower QC limits were positive and were qualified J-, m. The QC batch results associated with percent recoveries greater than the upper QC limits were positive and were qualified J+,m. The QC batch results associated with a combination of high and low percent recoveries

outside the QC limits were positive and were qualified J,m. The following MS/MSD results displayed relative percent differences (RPD) greater than the control limit of 20%:

Parent Sample	Analyte	RPD (%)
COR05SED04A	Lead	23.6
COR06SED04A	Lead	38.9
COR03DA03A	Antimony	32.8

The positive associated field sample results were previously qualified due to MS/MSD percent recovery anomalies; no further data qualifying action was required. The following post-digestion spikes displayed percent recoveries outside the QC limits:

Parent Sample	Analyte	Recovery (%)			
	Copper	132.9			
COR05SED04A	Lead	626.6			
	Zinc	165.9			
	Copper	124.4			
COR06SED04A	Lead	362.0			
	Zinc	122.1			

The positive associated field sample results were previously qualified due to MS/MSD percent recovery anomalies; no further data qualifying action was required. The following serial dilutions displayed percent differences greater than the control limit of 10%:

Field Sample	Analyte	Difference (%)
COR05SED04A	Zinc	12.5
COR02IS02	Lead	13.3
COR01DA02A	Copper	12.3
CORUIDAUZA	Zinc	10.9
	Antimony	13.2
COR02DA01A	Copper	17.6
	Zinc	18.0
COR02DB02A	Copper	17.8
CURUZUDUZA	Zinc	16.3

The associated field sample results were qualified J,s, unless previously qualified due to MS/MSD percent recovery anomalies. The field duplicate pair associated with parent sample COR06SED02 displayed an RPD greater than the control limit of 35% for total zinc at 88.9%. The associated field duplicate results were qualified J,f.

Correctable Anomalies:

None.

Comments: On the basis of this evaluation, the laboratory appears to have followed the specified method, with the exception of anomalies discussed previously. If a given fraction was not discussed, all quality control criteria reviewed were acceptable. All data are usable, as qualified, for their intended purpose based on the data reviewed.

Signed:

Devou Chicoine

Devon Chicoine

Camp O'Ryan

Job:	60519685-05a.2	001	Lab	oratory: SDG#:	SNE	-					
				300#.	3110				0		
Lab Sample ID	Client ID	Sample Type	Collected	Matrix	Metals	Percent Solids	Grain Size	AVS	тос		
SN5717-001	COR01DA01A	Field Sample	7/8/2020	Soil	Х	Х					
SN5717-004	COR01DB02A	Field Sample	7/8/2020	Soil	Х	Х					
SN5717-005	COR01DA02A	Field Sample	7/8/2020	Soil	Х	Х					
SN5717-007	COR02DA01A	Field Sample	7/10/2020	Soil	Х	Х					
SN5717-008	COR02DA02B	Field Duplicate	7/10/2020	Soil	Х	Х					
SN5717-009	COR02DA02A	Field Sample	7/10/2020	Soil	Х	Х					
SN5717-010	COR02DB02A	Field Sample	7/10/2020	Soil	Х	Х					
SN5717-012	COR03DA01A	Field Sample	7/9/2020	Soil	Х	Х					
SN5717-013	COR03DB01A	Field Sample	7/9/2020	Soil	Х	Х					
SN5717-014	COR03DA02A	Field Sample	7/10/2020	Soil	Х	Х					
SN5717-015	COR03DA02B	Field Duplicate	7/10/2020	Soil	Х	Х					
SN5717-017	COR03DB03A	Field Sample	7/9/2020	Soil	Х	Х					
SN5717-018	COR03DA03A	Field Sample	7/9/2020	Soil	Х	Х					
SN5717-020	COR03EQB	Equipment Blank	7/10/2020	Water	Х						
SN5719-001	COR01IS01	Incremental Sample	7/7/2020	Soil	Х	Х					
SN5719-002	COR01IS02	Incremental Duplicate	7/7/2020	Soil	Х	Х					
SN5719-003	COR01IS03	Incremental Triplicate	7/7/2020	Soil	Х	Х					
SN5719-004	COR02IS01	Incremental Sample	7/8/2020	Soil	Х	Х					
SN5719-005	COR02IS02	Incremental Duplicate	7/8/2020	Soil	Х	Х					
SN5719-006	COR02IS03	Incremental Triplicate	7/8/2020	Soil	X	Х					
SN5719-007	COR03IS01	Incremental Sample	7/10/2020	Soil	Х	X					
SN5719-008	COR03IS02	Incremental Duplicate	7/10/2020	Soil	Х	X					
SN5719-009	COR03IS03	Incremental Triplicate	7/10/2020	Soil	Х	X					
SN6056-001	COR04IS01	Incremental Sample	7/20/2020	Soil	X	X					
SN6056-002	COR04IS02	Incremental Duplicate	7/20/2020	Soil	X	X					
SN6056-003	COR04IS03	Incremental Triplicate	7/20/2020	Soil	X	X					
SN6056-004	COR04IS00	Equipment Blank	7/21/2020	Water	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
SN6056-005	COR05SED01A	Field Sample	7/20/2020	Soil	X	Х					
SN6056-006	COR05SED02A	Field Sample	7/20/2020	Soil	X	X					
SN6056-007	COR05SED02B	Field Duplicate	7/20/2020	Soil	X	X					
SN6056-008	COR05SED03A	Field Sample	7/20/2020	Soil	X	X					
SN6056-009	COR05SED04A	Field Sample	7/20/2020	Soil	X	X					
SN6056-010	COR05SED05A	Field Sample	7/20/2020	Soil	X	X					
SN6056-011	COR05SED06A	Field Sample	7/20/2020	Soil	X	X					
SN6056-012	COR05SED00A	Field Sample	7/20/2020	Soil	X	X	Х	Х	Х		
SN6056-012	COR05SED07A	Field Sample	7/20/2020	Soil	X	X	^	^	~		
SN6056-014	COR053LD08A	Field Sample	7/20/2020	Soil	X	X					
SN6056-015	COR06SED01A	Field Sample	7/20/2020	Soil	X	X					
SN6056-015	COR06SED02A	Field Duplicate	7/20/2020	Soil	X	X					
SN6056-017	COR06SED02B		7/20/2020								
		Field Sample Field Sample		Soil	X X	X X					
SN6056-018	COR06SED04A		7/20/2020	Soil							
SN6056-019	COR06SED05A	Field Sample	7/20/2020	Soil	X	X					
SN6056-020	COR06SED06A	Field Sample	7/20/2020	Soil	X	X	v	v	V		
SN6056-021	COR06SED07A	Field Sample	7/20/2020	Soil	X	X	Х	Х	Х		
SN6056-022	COR06SED08A	Field Sample	7/20/2020	Soil	Х	Х					

Sample ID: Date Sampled:				COR01IS01 7/7/20	COR01IS02 7/7/20	COR01IS03 7/7/20					
	Units	LOQ	5x LOQ	Sample Conc	Duplicate Conc	Triplicate Conc	Average	% RSD	Average Deviation	3x LOQ	Pass/ Fail
Antimony	mg/Kg	0.0980	0.490	0.225	0.285	0.190	0.233	20.6%	0.0344	0.294	Pass
Copper	mg/Kg	0.290	1.450	30.8	28.7	29.2	29.6	3.71%	0.822	0.870	Pass
Lead	mg/Kg	0.0980	0.490	56.1	63.0	38.5	52.5	24.0%	9.36	0.294	Pass
Zinc	mg/Kg	0.980	4.90	93.3	96.3	95.6	95.1	1.65%	1.18	2.94	Pass

Sample ID: Date Sampled:	Units	LOQ	5x LOQ	COR02IS01 7/8/20 Sample Conc	COR02IS02 78/2020 Duplicate Conc	COR02IS03 7/8/20 Triplicate Conc	Average	% RSD	Average Deviation	3x LOQ	Pass/ Fail
Antimony	mg/Kg	0.0980	0.490	0.293	0.327	0.293	0.304	6.45%	0.0151	0.294	Pass
Copper	mg/Kg	0.300	1.50	33.6	31.9	39.9	35.1	12.0%	3.18	0.900	Pass
Lead	mg/Kg	0.0980	0.490	82.9	98.7	72.1	84.6	15.8%	9.42	0.294	Pass
Zinc	mg/Kg	0.980	4.90	91.3	93.1	98.3	94.2	3.86%	2.71	2.94	Pass

Sample ID: Date Sampled:	Units	LOQ	5x LOQ	COR03IS01 7/10/20 Sample Conc	COR03IS02 7/10/20 Duplicate Conc	COR03IS03 7/10/20 Triplicate Conc	Average	% RSD	Average Deviation	3x LOQ	Pass/ Fail
Antimony	mg/Kg	0.100	0.500	0.425	0.725	0.429	0.526	32.7%	0.132	0.300	Pass
Copper	mg/Kg	0.310	1.55	24.9	41.1	36	34.0	24.4%	6.07	0.930	Pass
Lead	mg/Kg	0.100	0.500	164	179	248	197	22.7%	34.00	0.300	Pass
Zinc	mg/Kg	1.00	5.00	119	82.5	84.5	95.3	21.5%	15.8	3.00	Pass

Sample ID: Date Sampled:				COR04IS01 7/20/20	COR04IS02 7/20/20	COR04IS03 7/20/20					
Date Sampleu:	Units	LOQ	5x LOQ	Sample Conc	Duplicate Conc	Triplicate Conc	Average	% RSD	Average Deviation	3x LOQ	Pass/ Fail
Antimony	mg/Kg	0.100	0.500	0.140	0.130	0.130	0.133	4.33%	0.00	0.300	Pass
Copper	mg/Kg	0.310	1.55	17.0	19.1	16.0	17.4	9.11%	1.16	0.93	Pass
Lead	mg/Kg	0.100	0.500	28.1	21.1	21.0	23.4	17.4%	3.13	0.300	Pass
Zinc	mg/Kg	1.00	5.00	86.1	97.8	87.2	90.4	7.15%	4.96	3.00	Pass

Control limits: [sample Average]>5xLOQ use 50% [sample Average]<5xLOQ use Average Deviation <3xLOQ

e ID: d:			COR05SED02A 7/20/20	COR05SED02B 7/20/20				
Units	LOQ	5x LOQ	Sample Conc	Duplicate Conc	% RPD	Delta	3x LOQ	Pass/ Fail
mg/Kg	0.180	0.900	1.53	2.31	40.6%	0.780	0.540	Pass
mg/Kg	0.540	2.70	26.8	33.6	22.5%	6.80	1.62	Pass
mg/Kg	0.180	0.900	177	234	27.7%	57.0	0.540	Pass
mg/Kg	1.80	9.00	176	115	41.9%	61.0	5.40	Pass
	d: Units mg/Kg mg/Kg mg/Kg	d: Units LOQ mg/Kg 0.180 mg/Kg 0.540 mg/Kg 0.180		d: 7/20/20 Units LOQ 5x LOQ Sample Conc mg/Kg 0.180 0.900 1.53 mg/Kg 0.540 2.70 26.8 mg/Kg 0.180 0.900 177	d: 7/20/20 7/20/20 Units LOQ 5x LOQ Sample Conc Duplicate Conc mg/Kg 0.180 0.900 1.53 2.31 mg/Kg 0.540 2.70 26.8 33.6 mg/Kg 0.180 0.900 177 234	A: 7/20/20 7/20/20 Units LOQ 5x LOQ Sample Conc Duplicate Conc % RPD mg/Kg 0.180 0.900 1.53 2.31 40.6% mg/Kg 0.540 2.70 26.8 33.6 22.5% mg/Kg 0.180 0.900 177 234 27.7%	A: 7/20/20 7/20/20 Units LOQ $5x$ LOQ Sample Conc Duplicate Conc % RPD Delta mg/Kg 0.180 0.900 1.53 2.31 40.6% 0.780 mg/Kg 0.540 2.70 26.8 33.6 22.5% 6.80 mg/Kg 0.180 0.900 177 234 27.7% 57.0	A: 7/20/20 7/20/20 Units LOQ 5x LOQ Sample Conc Duplicate Conc % RPD Delta 3x LOQ mg/Kg 0.180 0.900 1.53 2.31 40.6% 0.780 0.540 mg/Kg 0.540 2.70 26.8 33.6 22.5% 6.80 1.62 mg/Kg 0.180 0.900 177 234 27.7% 57.0 0.540

Control limit

Client Samp Date Sample				COR06SED02 7/20/20	2A	COR06SED02B 7/20/20				
	Units	LOQ	5x LOQ	Sample Con	С	Duplicate Conc	% RPD	Delta	3x LOQ	Pass/ Fail
Antimony Copper Lead Zinc	mg/Kg mg/Kg mg/Kg mg/Kg	1.20 3.60 1.20 12.0	6.00 18.0 6.00 60.0	0.800 35.0 153 80.4	J	1.20 41.3 153 209	40.0% 16.5% 0.0% 88.9%	0.400 6.30 0.00 129	3.60 10.8 3.60 36.0	Pass Pass Pass Fail

Control limit

Client Sampl Date Sample				COR02DA02A 7/10/20	COR02DA02B 7/10/20				
	Units	LOQ	5x LOQ	Sample Conc	Duplicate Conc	% RPD	Delta	3x LOQ	Pass/ Fail
A		0.00/0	0.400	0.044	0.07/	01 10/	0.0/50	0 000	
Antimony	mg/Kg	0.0960	0.480	0.341	0.276	21.1%	0.0650	0.288	Pass
Copper	mg/Kg	0.290	1.45	28.2	24.1	15.7%	4.10	0.870	Pass
Lead	mg/Kg	0.0960	0.480	82.6	57.8	35.3%	24.8	0.288	Pass
Zinc	mg/Kg	0.960	4.80	65.0	57.3	12.6%	7.70	2.88	Pass

Control limit

				aprioato	Results				
Client Sample	e ID:			COR03DA02A	COR03DA02B				
Date Sample	d:			7/20/20	7/20/20				
	Units	LOQ	5x LOQ	Sample Conc	Duplicate Conc	% RPD	Delta	3x LOQ	Pass/ Fail
Antimony	mg/Kg	0.100	0.500	0.130	0.110	16.7%	0.0200	0.300	Pass
Copper	mg/Kg	0.300	1.50	15.8	19.6	21.5%	3.80	0.900	Pass
Lead	mg/Kg	0.100	0.500	22.1	24.6	10.7%	2.50	0.300	Pass
Zinc	mg/Kg	1.00	5.00	55.8	58.1	4.0%	2.30	3.00	Pass

Control limit

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical ServicesClient Field ID:COR01DA01AMatrix: SOILSDG Name:SN5717Percent Solids: 91.0Lab Sample ID:SN5717-001

Concentration Units : mg/Kg drywt

					ADJUSTED							
CAS No.	Analyte	Concentration C Q	M	DF	LOQ	MDL	LOD					
7440-36-0	ANTIMONY, TOTAL	0.11	MS	5	0.094	0.019	0.047					
7440-50-8	COPPER, TOTAL	20.8	MS	5	0.28	0.066	0.19					
7439-92-1	LEAD, TOTAL	16.5	MS	5	0.094	0.0066	0.047					
7440-66-6	ZINC, TOTAL	74.8	MS	5	0.94	0.12	0.75					

Comments:

Katahdin Analytical Services A0000004

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Matrix: SOIL SDG Name: Percent Solids: 90.9

Client Field ID: COR01DB02A SN5717 Lab Sample ID: SN5717-004

Concentration Units : mg/Kg drywt

						ADJUSTED						
CAS No.	Analyte	Concentration	С	Q	М	DF	LOQ	MDL	LOD			
7440-36-0	ANTIMONY, TOTAL	0.20			MS	5	0.10	0.020	0.050			
7440-50-8	COPPER, TOTAL	24.7			MS	5	0.30	0.071	0.20			
7439-92-1	LEAD, TOTAL	36.1			MS	5	0.10	0.0071	0.050			
7440-66-6	ZINC, TOTAL	87.4			MS	5	1.0	0.13	0.81			

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR01DA02A
Matrix: SOIL	SDG Name: SN5717
Percent Solids: 90.5	Lab Sample ID: SN5717-005

Concentration Units : mg/Kg drywt

					ADJUSTED						
CAS No.	Analyte	Concentration	C Q	Μ	DF	LOQ	MDL	LOD			
7440-36-0	ANTIMONY, TOTAL	1.14	N	MS	5	0.082	0.016	0.041			
7440-50-8	COPPER, TOTAL	23.3	NE	MS	5	0.24	0.057	0.16			
7439-92-1	LEAD, TOTAL	502	NA	MS	5	0.082	0.0057	0.041			
7440-66-6	ZINC, TOTAL	75.2	EA	MS	5	0.82	0.11	0.65			

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID:	COR02DA01A
Matrix: SOIL	SDG Name:	SN5717
Percent Solids: 93.7	Lab Sample ID:	SN5717-007

Concentration Units : mg/Kg drywt

							ADJUSTED			
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.15	ľ	N	MS	5	0.078	0.016	0.039	
7440-50-8	COPPER, TOTAL	24.4	1	NEA	MS	5	0.24	0.055	0.16	
7439-92-1	LEAD, TOTAL	38.0	1	NA	MS	5	0.078	0.0055	0.039	
7440-66-6	ZINC, TOTAL	71.8	٢	NEA	MS	5	0.78	0.10	0.63	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Matrix: SOIL SDG Name: Percent Solids: 90.6

Client Field ID: COR02DA02B SN5717 Lab Sample ID: SN5717-008

Concentration Units : mg/Kg drywt

					Al	DJUSTED	
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.276	MS	5	0.096	0.019	0.048
7440-50-8	COPPER, TOTAL	24.1	MS	5	0.29	0.067	0.19
7439-92-1	LEAD, TOTAL	57.8	MS	5	0.096	0.0067	0.048
7440-66-6	ZINC, TOTAL	57.3	MS	5	0.96	0.12	0.77

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical ServicesClient Field ID: COR02DA02AMatrix: SOILSDG Name:SN5717Percent Solids: 90.6Lab Sample ID: SN5717-009

Concentration Units : mg/Kg drywt

					ADJUSTED			
CAS No.	Analyte	Concentration C	Q M	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.341	MS	5	0.10	0.020	0.050	
7440-50-8	COPPER, TOTAL	28.2	MS	5	0.30	0.070	0.20	
7439-92-1	LEAD, TOTAL	82.6	MS	5	0.10	0.0070	0.050	
7440-66-6	ZINC, TOTAL	65.0	MS	5	1.0	0.13	0.80	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR02DB02A
Matrix: SOIL	SDG Name: SN5717
Percent Solids: 91.8	Lab Sample ID: SN5717-010

Concentration Units :	: mg/Kg drywt
------------------------------	---------------

							ADJUSTED				
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	0.11	J	Ν	MS	5	0.11	0.022	0.054		
7440-50-8	COPPER, TOTAL	24.2		Е	MS	5	0.32	0.075	0.22		
7439-92-1	LEAD, TOTAL	19.3		NA	MS	5	0.11	0.0075	0.054		
7440-66-6	ZINC, TOTAL	66.4		Е	MS	5	1.1	0.14	0.86		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical ServicesClient Field ID:COR03DA01AMatrix: SOILSDG Name:SN5717Percent Solids: 85.8Lab Sample ID:SN5717-012

Concentration Units : mg/Kg drywt								
ADJUSTED								
CAS No.	Analyte	Concentration C (Q M	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.447	MS	5	0.11	0.021	0.053	
7440-50-8	COPPER, TOTAL	29.4	MS	5	0.32	0.075	0.21	
7439-92-1	LEAD, TOTAL	34.2	MS	5	0.11	0.0075	0.053	
7440-66-6	ZINC, TOTAL	78.4	MS	5	1.1	0.14	0.86	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR03DB01A
Matrix: SOIL	SDG Name: SN5717
Percent Solids: 80.9	Lab Sample ID: SN5717-013

Concentration Unit	: mg/Kg drywt	
---------------------------	---------------	--

										A	DJUSTED	
CAS No.	Analyte	Concentration	CQ	Μ	DF	LOQ	MDL	LOD				
7440-36-0	ANTIMONY, TOTAL	1.00		MS	5	0.12	0.024	0.061				
7440-50-8	COPPER, TOTAL	86.8		MS	5	0.36	0.085	0.24				
7439-92-1	LEAD, TOTAL	393		MS	5	0.12	0.0085	0.061				
7440-66-6	ZINC, TOTAL	110		MS	5	1.2	0.16	0.97				

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR03DA02A	nt Field ID: COR03DA02A
Matrix: SOIL	SDG Name: SN5717	Name: SN5717
Percent Solids: 88.1	Lab Sample ID: SN5717-014	Sample ID: SN5717-014

Concentration	Units :	mg/Kg	drvwt
Concentration	Onno .		aryme

						Al	ADJUSTED	
CAS No.	Analyte	Concentration	C Q	М	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.13		MS	5	0.11	0.023	0.057
7440-50-8	COPPER, TOTAL	15.8		MS	5	0.34	0.079	0.23
7439-92-1	LEAD, TOTAL	22.1	В	MS	5	0.11	0.0079	0.057
7440-66-6	ZINC, TOTAL	55.8		MS	5	1.1	0.15	0.91

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR03DA02B
Matrix: SOIL	SDG Name: SN5717
Percent Solids: 87.1	Lab Sample ID: SN5717-015

Concentration Units : mg/Kg drywt						

CAS No.							ADJUSTED		
	Analyte	Concentration	C (Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.11			MS	5	0.10	0.020	0.051
7440-50-8	COPPER, TOTAL	19.6			MS	5	0.30	0.071	0.20
7439-92-1	LEAD, TOTAL	24.6	I	В	MS	5	0.10	0.0071	0.051
7440-66-6	ZINC, TOTAL	58.1			MS	5	1.0	0.13	0.81

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services Client Field ID: COR03DB03A Matrix: SOIL SDG Name: SN5717 Percent Solids: 89.1 Lab Sample ID: SN5717-017

Concentration Units : mg/Kg drywt									
ADJUSTED									
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	0.096 J	MS	5	0.11	0.022	0.056		
7440-50-8	COPPER, TOTAL	28.8	MS	5	0.34	0.079	0.22		
7439-92-1	LEAD, TOTAL	17.1	MS	5	0.11	0.0079	0.056		
7440-66-6	ZINC, TOTAL	82.8	MS	5	1.1	0.15	0.90		

Comments:

Katahdin Analytical Services A0000015

I

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical ServicesClient Field ID:COR03DA03AMatrix: SOILSDG Name:SN5717Percent Solids: 87.2Lab Sample ID:SN5717-018

Concentration Units : mg/Kg drywt

						ADJUSTED				
CAS No.	Analyte	Concentration	CQ	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	0.236	N*	MS	5	0.097	0.019	0.048		
7440-50-8	COPPER, TOTAL	15.2		MS	5	0.29	0.068	0.19		
7439-92-1	LEAD, TOTAL	90.7	NA	MS	5	0.097	0.0068	0.048		
7440-66-6	ZINC, TOTAL	62.6	N	MS	5	0.97	0.13	0.78		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR03EQB
Matrix: WATER	SDG Name: SN5717
Percent Solids: 0.00	Lab Sample ID: SN5717-020

Concentration Units : ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.11	J		MS	5	1.0	0.055	0.50	
7440-50-8	COPPER, TOTAL	2.36	J	В	MS	5	3.0	0.19	2.0	
7439-92-1	LEAD, TOTAL	3.86			MS	5	1.0	0.075	0.50	
7440-66-6	ZINC, TOTAL	6.7	J		MS	5	10	3.9	8.0	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR011S01
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 96.2	Lab Sample ID: SN5719-001

Concentration Units : mg/Kg drywt

					ADJUSTED					
CAS No.	Analyte	Concentration	CQ	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	0.225	Ν	MS	5	0.098	0.020	0.049		
7440-50-8	COPPER, TOTAL	30.8	Ν	MS	5	0.29	0.069	0.20		
7439-92-1	LEAD, TOTAL	56.1	NA	MS	5	0.098	0.0069	0.049		
7440-66-6	ZINC, TOTAL	93.3		MS	5	0.98	0.13	0.78		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical ServicesClieMatrix: SOILSDCPercent Solids: 96.3Lab

Client Field ID:COR011S02SDG Name:SN5719Lab Sample ID:SN5719-002

Concentration Units : mg/Kg drywt

					ADJUSTED					
CAS No.	Analyte	Concentration	C Q	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	0.285		MS	5	0.10	0.020	0.051		
7440-50-8	COPPER, TOTAL	28.7		MS	5	0.30	0.071	0.20		
7439-92-1	LEAD, TOTAL	63.0		MS	5	0.10	0.0071	0.051		
7440-66-6	ZINC, TOTAL	96.3		MS	5	1.0	0.13	0.81		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR011S03
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 96.1	Lab Sample ID: SN5719-003

Concentration Units : mg/Kg drywt

CAS No.					ADJUSTED		
	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.19	MS	5	0.10	0.021	0.052
7440-50-8	COPPER, TOTAL	29.2	MS	5	0.31	0.072	0.21
7439-92-1	LEAD, TOTAL	38.5	MS	5	0.10	0.0072	0.052
7440-66-6	ZINC, TOTAL	95.6	MS	5	1.0	0.13	0.82

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR021S01
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 97.6	Lab Sample ID: SN5719-004

Concentration Units : mg/Kg drywt

						ADJUSTED					
CAS No.	Analyte	Concentration C	Q	Μ	DF	LOQ	MDL	LOD			
7440-36-0	ANTIMONY, TOTAL	0.293		MS	5	0.098	0.020	0.049			
7440-50-8	COPPER, TOTAL	33.6		MS	5	0.30	0.069	0.20			
7439-92-1	LEAD, TOTAL	82.9		MS	5	0.098	0.0069	0.049			
7440-66-6	ZINC, TOTAL	91.3		MS	5	0.98	0.13	0.79			

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR021S02
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 97.5	Lab Sample ID: SN5719-005

Concentration Units : mg/Kg drywt

						Al	DJUSTED	TED	
CAS No.	Analyte	Concentration	CQ	Μ	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.327	N	MS	5	0.094	0.019	0.047	
7440-50-8	COPPER, TOTAL	31.9	Ν	MS	5	0.28	0.066	0.19	
7439-92-1	LEAD, TOTAL	98.7	NEA	MS	5	0.094	0.0066	0.047	
7440-66-6	ZINC, TOTAL	93.1		MS	5	0.94	0.12	0.75	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical ServicesClient Field ID: COR02IS03Matrix: SOILSDG Name:SN5719Percent Solids: 97.7Lab Sample ID: SN5719-006

Concentration Units : mg/Kg drywt

		1					ADJUSTED		
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	0.293	MS	5	0.094	0.019	0.047		
7440-50-8	COPPER, TOTAL	39.9	MS	5	0.28	0.066	0.19		
7439-92-1	LEAD, TOTAL	72.1	MS	5	0.094	0.0066	0.047		
7440-66-6	ZINC, TOTAL	98.3	MS	5	0.94	0.12	0.75		

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR03IS01
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 95.6	Lab Sample ID: SN5719-007

Concentration Units : mg/Kg drywt

						AI	DJUSTED	
CAS No.	Analyte	Concentration C	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.425		MS	5	0.10	0.021	0.052
7440-50-8	COPPER, TOTAL	24.9		MS	5	0.31	0.072	0.21
7439-92-1	LEAD, TOTAL	164		MS	5	0.10	0.0072	0.052
7440-66-6	ZINC, TOTAL	119		MS	5	1.0	0.13	0.83

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR031S02
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 95.2	Lab Sample ID: SN5719-008

Concentration Units : mg/Kg drywt

					Al	DJUSTED	JSTED	
CAS No.	Analyte	Concentration C Q	М	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.725	MS	5	0.10	0.021	0.052	
7440-50-8	COPPER, TOTAL	41.4	MS	5	0.31	0.073	0.21	
7439-92-1	LEAD, TOTAL	179	MS	5	0.10	0.0073	0.052	
7440-66-6	ZINC, TOTAL	82.5	MS	5	1.0	0.14	0.83	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR031S03
Matrix: SOIL	SDG Name: SN5719
Percent Solids: 93.2	Lab Sample ID: SN5719-009

Concentration Units : mg/Kg drywt

					A	ADJUSTED		
CAS No.	Analyte	Concentration	C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.429	N	MS	5	0.11	0.021	0.053
7440-50-8	COPPER, TOTAL	36.0	NA	MS	5	0.32	0.074	0.21
7439-92-1	LEAD, TOTAL	248	NA	MS	5	0.11	0.0074	0.053
7440-66-6	ZINC, TOTAL	84.5	А	MS	5	1.1	0.14	0.85

1	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID: COR041S01
Matrix: SOIL	SDG Name: SN6056
Percent Solids: 96.4	Lab Sample ID: SN6056-001

Concentration Units : mg/Kg drywt

CAS No.				ADJUSTED				
	Analyte	Concentration C Q	М	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.14	MS	5	0.10	0.021	0.051	
7440-50-8	COPPER, TOTAL	17.0	MS	5	0.31	0.072	0.20	
7439-92-1	LEAD, TOTAL	28.1	MS	5	0.10	0.0072	0.051	
7440-66-6	ZINC, TOTAL	86.1	MS	5	1.0	0.13	0.82	

INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID:	COR04IS02
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 95.9	Lab Sample ID:	SN6056-002

Concentration Units : mg/Kg drywt

			ADJUSTED				
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.13	MS	5	0.098	0.020	0.049
7440-50-8	COPPER, TOTAL	19.1	MS	5	0.30	0.069	0.20
7439-92-1	LEAD, TOTAL	21.1	MS	5	0.098	0.0069	0.049
7440-66-6	ZINC, TOTAL	97.8	MS	5	0.98	0.13	0.79

I INORGANIC ANALYSIS DATA SHEET

Lab Name: Katahdin Analytical Services	Client Field ID:	COR04IS03
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 96.1	Lab Sample ID:	SN6056-003

Concentration Units : mg/Kg drywt

				ADJUSTED			
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.13	MS	5	0.10	0.020	0.051
7440-50-8	COPPER, TOTAL	16.0	MS	5	0.31	0.071	0.20
7439-92-1	LEAD, TOTAL	21.0	MS	5	0.10	0.0071	0.051
7440-66-6	ZINC, TOTAL	87.2	MS	5	1.0	0.13	0.82

Lab Name: Katahdin Analytical Services	Client Field ID:	COR04IS00
Matrix: WATER	SDG Name:	SN6056
Percent Solids: 0.00	Lab Sample ID:	SN6056-004

Concentration Units : ug/L

						ADJUSTED				
CAS No.	Analyte	Concentration	С	Q	М	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	0.50	U		MS	5	1.0	0.055	0.50	
7440-50-8	COPPER, TOTAL	0.95	J		MS	5	3.0	0.19	2.0	
7439-92-1	LEAD, TOTAL	0.41	J		MS	5	1.0	0.075	0.50	
7440-66-6	ZINC, TOTAL	8.0	U		MS	5	10	3.9	8.0	

Lab Name: Katahdin Analytical Services Matrix: SOIL Percent Solids: 41.1 Client Field ID:COR05SED01ASDG Name:SN6056Lab Sample ID:SN6056-005

Concentration Units : mg/Kg drywt

			ADJUSTED				
CAS No.	Analyte	Concentration C Q	М	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	2.29	MS	5	0.24	0.047	0.12
7440-50-8	COPPER, TOTAL	20.0	MS	5	0.71	0.17	0.47
7439-92-1	LEAD, TOTAL	109	MS	5	0.24	0.017	0.12
7440-66-6	ZINC, TOTAL	76.0	MS	5	2.4	0.31	1.9

1

Lab Name: Katahdin Analytical Services
Matrix: SOIL
Percent Solids: 53.0

Client Field ID:COR05SED02ASDG Name:SN6056Lab Sample ID:SN6056-006

Concentration	Units :	mg/Kg drywt
---------------	---------	-------------

			ADJUSTED					
CAS No.	Analyte	Concentration C	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	1.53		MS	5	0.18	0.036	0.091
7440-50-8	COPPER, TOTAL	26.8		MS	5	0.54	0.13	0.36
7439-92-1	LEAD, TOTAL	177		MS	5	0.18	0.013	0.091
7440-66-6	ZINC, TOTAL	176		MS	5	1.8	0.24	1.4

1	
- 1	

Lab Name: Katahdin Analytical Services	Client Fie
Matrix: SOIL	SDG Nam
Percent Solids: 58.4	Lab Samp

Client Field ID: COR05SED02B SDG Name: SN6056 Lab Sample ID: SN6056-007

Concentration Units : mg/Kg drywt

			ADJUSTED					
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD	
7440-36-0	ANTIMONY, TOTAL	2.31	MS	5	0.12	0.024	0.061	
7440-50-8	COPPER, TOTAL	33.6	MS	5	0.37	0.086	0.24	
7439-92-1	LEAD, TOTAL	234	MS	5	0.12	0.0086	0.061	
7440-66-6	ZINC, TOTAL	115	MS	5	1.2	0.16	0.98	

	1
	а.

Lab Name: Katahdin Analytical ServicesClient Field IDMatrix: SOILSDG Name:Percent Solids: 18.4Lab Sample ID

Client Field ID:COR05SED03ASDG Name:SN6056Lab Sample ID:SN6056-008

Concentration Units : mg/Kg drywt							
					ADJUSTED		
CAS No.	Analyte	Concentration C Q	М	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	6.38	MS	5	0.53	0.11	0.27
7440-50-8	COPPER, TOTAL	30.0	MS	5	1.6	0.37	1.1
7439-92-1	LEAD, TOTAL	918	MS	5	0.53	0.037	0.27
7440-66-6	ZINC, TOTAL	337	MS	5	5.3	0.69	4.3

	1
	-

Lab Name: Katahdin Analytical Services	Client Field ID:	COR05SED04A
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 26.1	Lab Sample ID:	SN6056-009

Concentration Units : mg/Kg drywt

					ADJUSTED		
Analyte	Concentration	CQ	Μ	DF	LOQ	MDL	LOD
ANTIMONY, TOTAL	2.47	N	MS	5	0.29	0.058	0.14
COPPER, TOTAL	45.2	А	MS	5	0.87	0.20	0.58
LEAD, TOTAL	686	N*A	MS	5	0.29	0.020	0.14
ZINC, TOTAL	301	EA	MS	5	2.9	0.38	2.3
	ANTIMONY, TOTAL COPPER, TOTAL LEAD, TOTAL	ANTIMONY, TOTAL 2.47 COPPER, TOTAL 45.2 LEAD, TOTAL 686	ANTIMONY, TOTAL2.47NCOPPER, TOTAL45.2ALEAD, TOTAL686N*A	ANTIMONY, TOTAL2.47NMSCOPPER, TOTAL45.2AMSLEAD, TOTAL686N*AMS	ANTIMONY, TOTAL2.47NMS5COPPER, TOTAL45.2AMS5LEAD, TOTAL686N*AMS5	AnalyteConcentrationCQMDFLOQANTIMONY, TOTAL2.47NMS50.29COPPER, TOTAL45.2AMS50.87LEAD, TOTAL686N*AMS50.29	Analyte Concentration C Q M DF LOQ MDL ANTIMONY, TOTAL 2.47 N MS 5 0.29 0.058 COPPER, TOTAL 45.2 A MS 5 0.87 0.20 LEAD, TOTAL 686 N*A MS 5 0.29 0.020

	1	

Lab Name: Katahdin Analytical Services	Cli
Matrix: SOIL	SD
Percent Solids: 11.3	La

Client Field ID: COR05SED05A SDG Name: SN6056 Lab Sample ID: SN6056-010

Concentration Units : mg/Kg drywt

					ADJUSTED		
Analyte	Concentration	C Q	Μ	DF	LOQ	MDL	LOD
ANTIMONY, TOTAL	4.94		MS	5	0.65	0.13	0.32
COPPER, TOTAL	67.5		MS	5	2.0	0.46	1.3
LEAD, TOTAL	690		MS	5	0.65	0.046	0.32
ZINC, TOTAL	314		MS	5	6.5	0.85	5.2
	ANTIMONY, TOTAL COPPER, TOTAL LEAD, TOTAL	ANTIMONY, TOTAL 4.94 COPPER, TOTAL 67.5 LEAD, TOTAL 690	ANTIMONY, TOTAL4.94COPPER, TOTAL67.5LEAD, TOTAL690	ANTIMONY, TOTAL4.94MSCOPPER, TOTAL67.5MSLEAD, TOTAL690MS	ANTIMONY, TOTAL4.94MS5COPPER, TOTAL67.5MS5LEAD, TOTAL690MS5	AnalyteConcentrationCQMDFLOQANTIMONY, TOTAL4.94MS50.65COPPER, TOTAL67.5MS52.0LEAD, TOTAL690MS50.65	Analyte Concentration C Q M DF LOQ MDL ANTIMONY, TOTAL 4.94 MS 5 0.65 0.13 COPPER, TOTAL 67.5 MS 5 2.0 0.46 LEAD, TOTAL 690 MS 5 0.65 0.046

1	
- 1	
. *	

Lab Name: Katahdin Analytical Services	Client Field
Matrix: SOIL	SDG Name:
Percent Solids: 65.2	Lab Sample

Client Field ID: COR05SED06A SDG Name: SN6056 Lab Sample ID: SN6056-011

Concentration Units : mg/Kg drywt

			ADJUSTED				
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	2.22	MS	5	0.15	0.030	0.076
7440-50-8	COPPER, TOTAL	32.7	MS	5	0.46	0.11	0.30
7439-92-1	LEAD, TOTAL	431	MS	5	0.15	0.011	0.076
7440-66-6	ZINC, TOTAL	61.8	MS	5	1.5	0.20	1.2

Lab Name: Katahdin Analytical Services	Client Field ID:	COR
Matrix: SOIL	SDG Name:	SN6
Percent Solids: 38.5	Lab Sample ID:	SN6

R05SED07A 6056 6056-012

Concentration Units : mg/Kg drywt

						ADJUSTED				
CAS No.	Analyte	Concentration	C Q	Μ	DF	LOQ	MDL	LOD		
7440-36-0	ANTIMONY, TOTAL	19.8		MS	5	0.24	0.049	0.12		
7440-50-8	COPPER, TOTAL	124		MS	5	0.73	0.17	0.48		
7439-92-1	LEAD, TOTAL	2780		MS	50	2.4	0.17	1.2		
7440-66-6	ZINC, TOTAL	224		MS	5	2.4	0.32	1.9		

	1		
INORGANIC	ANALYSIS	DATA	SHEET

Lab Name: Katahdin Analytical Services	Client Field ID:	COR05SED08A
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 20.6	Lab Sample ID:	SN6056-013

Concentration	Units :	mg/Kg drywt
---------------	---------	-------------

		ADJUSTED					
DF	LOQ	MDL	LOD				
5	0.48	0.096	0.24				
5	1.4	0.34	0.96				
5	0.48	0.034	0.24				
5	4.8	0.63	3.8				
	5 5 5 5	5 0.48 5 1.4 5 0.48	5 0.48 0.096 5 1.4 0.34 5 0.48 0.034				

1	
1	

Lab Name: Katahdin Analytical Services	Client Field ID:	COR06SED01A
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 45.7	Lab Sample ID:	SN6056-014

Concentration Units : mg/Kg drywt

							AD	JUSTED	
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.14	J		MS	= 5	0.18	0.036	0.089
7440-50-8	COPPER, TOTAL	7.67			MS	5	0.53	0.12	0.36
7439-92-1	LEAD, TOTAL	25.5			MS	5	0.18	0.012	0.089
7440-66-6	ZINC, TOTAL	36.3			MS	5	1.8	0.23	1.4

	1

Lab Name: Katahdin Analytical Services Matrix: SOIL SDG Name: Percent Solids: 11.3

Client Field ID: COR06SED02A SN6056 Lab Sample ID: SN6056-015

Concentration Units : mg/Kg drywt

				ADJUSTED				
CAS No.	Analyte	Concentration	C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.80	J	MS	5	0.82	0.16	0.41
7440-50-8	COPPER, TOTAL	35.0		MS	5	2.5	0.58	1.6
7439-92-1	LEAD, TOTAL	153		MS	5	0.82	0.058	0.41
7440-66-6	ZINC, TOTAL	80.4		MS	5	8.2	1.1	6.6

	1	
	L	

Lab Name: Katahdin Analytical Services	Cli
Matrix: SOIL	SD
Percent Solids: 7.89	Lal

Client Field ID:COR06SED02BSDG Name:SN6056Lab Sample ID:SN6056-016

Concentration Units : mg/Kg drywt

						ADJUSTED				
CAS No.	Analyte	Concentration C C	Q M	DF	LOQ	MDL	LOD			
7440-36-0	ANTIMONY, TOTAL	1.2	MS	5	1.2	0.24	0.60			
7440-50-8	COPPER, TOTAL	41.3	MS	5	3.6	0.85	2.4			
7439-92-1	LEAD, TOTAL	153	MS	5	1.2	0.085	0.60			
7440-66-6	ZINC, TOTAL	209	MS	5	12	1.6	9.7			

	1		
INORGANIC	ANALYSIS	DATA	SHEET

Lab Name: Katahdin Analytical Services Matrix: SOIL Percent Solids: 7.90 Client Field ID:COR06SED03ASDG Name:SN6056Lab Sample ID:SN6056-017

Concentration Units : mg/Kg drywt

					ADJUSTED				
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.81	J		MS	5	1.2	0.25	0.63
7440-50-8	COPPER, TOTAL	34.2			MS	5	3.8	0.88	2.5
7439-92-1	LEAD, TOTAL	119			MS	5	1.2	0.088	0.63
7440-66-6	ZINC, TOTAL	180			MS	5	12	1.6	10

1

Lab Name: Katahdin Analytical Services	Client Field ID: COR06SED04A
Matrix: SOIL	SDG Name: SN6056
Percent Solids: 10.7	Lab Sample ID: SN6056-018

|--|

							ADJUSTED		
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	1.70	3		MS	5	0.66	0.13	0.33
7440-50-8	COPPER, TOTAL	39.6		А	MS	5	2.0	0.46	1.3
7439-92-1	LEAD, TOTAL	154		N*A	MS	5	0.66	0.046	0.33
7440-66-6	ZINC, TOTAL	-111		А	MS	5	6.6	0.86	5.3

	1	
	1	

Lab Name: Katahdin Analytical Services Matrix: SOIL Percent Solids: 21.0 Client Field ID: COR06SED05A SDG Name: SN6056 Lab Sample ID: SN6056-019

Concentration	Units	•	mg/Kg drywt	
---------------	-------	---	-------------	--

					AD	ADJUSTED	
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.37	MS	5	0.37	0.074	0.18
7440-50-8	COPPER, TOTAL	19.6	MS	5	1.1	0.26	0.74
7439-92-1	LEAD, TOTAL	36.0	MS	5	0.37	0.026	0.18
7440-66-6	ZINC, TOTAL	211	MS	5	3.7	0.48	3.0

1
1

Lab Name: Katahdin Analytical Services	Client Field ID: COR06SED06A	
Matrix: SOIL	SDG Name: SN6056	
Percent Solids: 11.8	Lab Sample ID: SN6056-020	

						AD	JUSTED	
CAS No.	Analyte	Concentration C	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.38 J		MS	5	0.64	0.13	0.32
7440-50-8	COPPER, TOTAL	23.9		MS	5	1.9	0.45	1.3
7439-92-1	LEAD, TOTAL	73.2		MS	5	0.64	0.045	0.32
7440-66-6	ZINC, TOTAL	120		MS	5	6.4	0.83	5.1

	1	
	L	

Lab Name: Katahdin Analytical ServicesClient FieldMatrix: SOILSDG Name:Percent Solids: 48.6Lab Sample

Client Field ID:COR06SED07ASDG Name:SN6056Lab Sample ID:SN6056-021

17.7 1

Concentr	ation	Units	: 1	mg/Kg	arywt	

					AĽ	JUSTED	
CAS No.	Analyte	Concentration C Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.17	MS	5	0.15	0.030	0.074
7440-50-8	COPPER, TOTAL	8.75	MS	5	0.45	0.10	0.30
7439-92-1	LEAD, TOTAL	27.0	MS	5	0.15	0.010	0.074
7440-66-6	ZINC, TOTAL	72.4	MS	5	1.5	0.19	1.2

	•

Lab Name: Katahdin Analytical Services	Client Field ID: COR06SED08A
Matrix: SOIL	SDG Name: SN6056
Percent Solids: 65.2	Lab Sample ID: SN6056-022

Concentration Units : mg/Kg drywt

						Α	DJUSTED	
CAS No.	Analyte	Concentration	C (Q M	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, TOTAL	0.14		MS	5	0.12	0.025	0.061
7440-50-8	COPPER, TOTAL	10.4		MS	5	0.37	0.086	0.24
7439-92-1	LEAD, TOTAL	32.3		MS	5	0.12	0.0086	0.061
7440-66-6	ZINC, TOTAL	60.8		MS	5	1.2	0.16	0.98

Lab Name: Katahdin Analytical Services Matrix: SOIL Percent Solids: 38.5 Client Field ID:COR05SED07ASDG Name:SN6056Lab Sample ID:SN6056-024

Concentration Units : umole/g drywt

							1	ADJUSTED	
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, SEM	0.00549			Р	1	0.0027	0.00024	0.0016
7440-43-9	CADMIUM, SEM	0.00199			Р	1	0.0018	0.000029	0.0011
7440-50-8	COPPER, SEM	0.203			Р	1	0.016	0.0010	0.0064
7439-92-1	LEAD, SEM	1.02			Р	1	0.00096	0.00017	0.00077
7439-97-6	MERCURY, SEM	0.000021	U	В	CV	1	0.000041	0.0000065	0.000021
7440-02-0	NICKEL, SEM	0.0296			Р	1	0.0070	0.00031	0.0027
7440-66-6	ZINC, SEM	1.38			Р	1	0.012	0.0011	0.0063

Lab Name: Katahdin Analytical Services Matrix: SOIL Percent Solids: 48.6 Client Field ID:COR06SED07ASDG Name:SN6056Lab Sample ID:SN6056-026

Concentration Units : umole/g drywt

							1	ADJUSTED	ł
CAS No.	Analyte	Concentration	С	Q	Μ	DF	LOQ	MDL	LOD
7440-36-0	ANTIMONY, SEM	0.00045	J		Р	1	0.0026	0.00023	0.0016
7440-43-9	CADMIUM, SEM	0.00312			Р	1	0.0018	0.000028	0.0011
7440-50-8	COPPER, SEM	0.0736			Р	1	0.016	0.0010	0.0063
7439-92-1	LEAD, SEM	0.114			Р	1	0.00096	0.00017	0.00077
7439-97-6	MERCURY, SEM	0.0000074	J	В	CV	1	0.000040	0.0000060	0.000020
7440-02-0	NICKEL, SEM	0.0369			Р	1	0.0068	0.00031	0.0027
7440-66-6	ZINC, SEM	0.577			Р	1	0.012	0.0010	0.0061
7440-66-6	ZINC, SEM	0.577			Р	1	0.012	0.0010	0.006

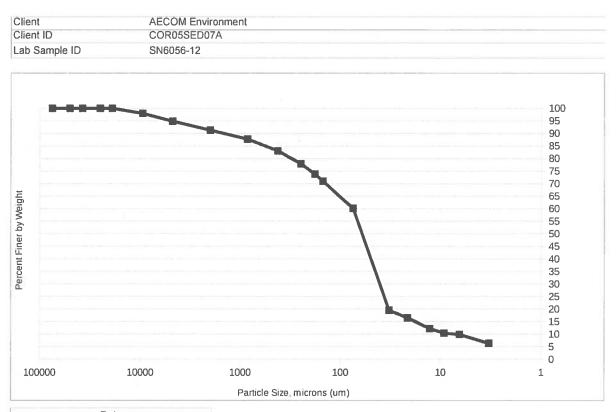
AECOM Environment
COR05SED07A
SN6056-12
Sample (g)
131.7
50.74
•

Sample Split (Oven Dried)	Sample (g)
Sample >=#10	4.4
Sample <=#10	46.34
%Passing #10	91.33

Date Received	07/22/20
Start Date/Time	07/24/20: 9:08
End Date /Times	
End Date/Time	07/30/20 9:00
	Die d
Date/Time in oven	07/28/20: 9:00

Hydrometer Data

Serial Number	742340
Cal Date:	07/27/20
Low Temp C	19.30
Low Temp Reading	1.00300
High Temp	22.70
High Temp Reading	1.0025
Hyd Cal Slope	-0.000147
Hyd Cal Intercept	0.005838
Soil Gravity	2.650000


Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare	Pan+Sample	Sample	%Finer	Classification	Subclass
3"	75000	0.0	0.0	0.0	100	Gravel	
2"	50000	0.0	0.0	0.0	100	Gravel	
1.5"	37500	0.0	0.0	0.0	100	Gravel	
1"	25000	0.0	0.0	0.0	100	Gravel	
3/4"	19000	0.0	0.0	0.0	100	Gravel	
1/4"	6300	404.0	405.0	1.0	98.03	Gravel	
#4	4750	405.2	406.8	1.6	94.88	Gravel	
#10	2000	368.7	370.5	1.8	91.33	Sand	Coarse
#20	850	303.7	305.5	1.8	87.78	Sand	Medium
#40	425	269.8	272.2	2.4	83.05	Sand	Medium
#60	250	245.5	248.1	2.6	77.93	Sand	Fine
#80	180	246.0	248.1	2.1	73.79	Sand	Fine
#100	150	234.6	236.0	1.4	71.03	Sand	Fine
#200	75	226.0	231.5	5.5	60.19	Sand	Fine

Silt/Clay Fraction (Hydrometer Test)

Time (min)	Actual Time	Spec. Gravity	Temp C	% Finer	Particle Size	Classification
2	2	1.0190	19.5	19.55	32.65	Silt
5	5	1.0165	19.5	16.50	21.37	Silt
15	15	1.0130	19.5	12.23	12.74	Silt
30	30	1.0115	19.5	10.40	9.18	Silt
60	60	1.0110	20	9.88	6.45	Silt
240	240	1.0080	20.5	6.31	3.30	Clay
1440	1440	1.0060	19.5	3.69	1.39	Clay

5.12
3.55
8.28
22.86
52.53
7.66
100

Data					
Sample Fraction	Particle Size	%Passing			
3"	75000	100			
2"	50000	100			
1.5*	37500	100			
1"	25000	100			
3/4"	19000	100			
3/8"	9500	98.03			
#4	4750	94.88			
#10	2000	91.33			
#20	850	87.78			
#40	425	83.05			
#60	250	77.93			
#80	180	73.79			
#100	150	71.03			
#200	75	60.19			
2	32.65	19.55			
5	21.37	16.50			
15	12.74	12.23			
30	9.18	10.40			
60	6.45	9.88			
240	3.30	6.31			
1440	1.39	3.69			

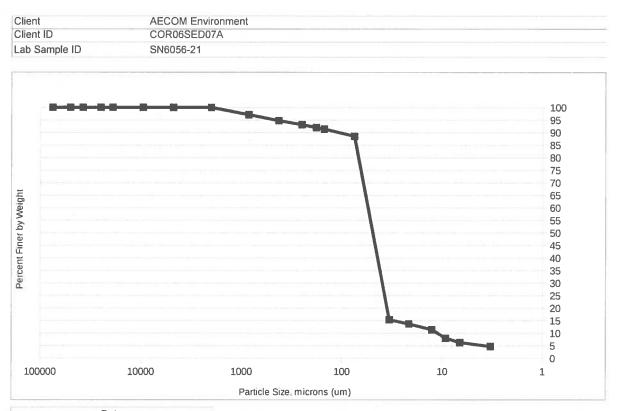
Gravel	5.12
Sand Coarse	3.55
Sand Medium	8.28
Sand Fine	22.86
Silt	52.53
Clay	7.66

Client	AECOM Environment
Client ID	COR06SED07A
Lab Sample ID	SN6056-21
Sample Weight	Sample (g)
Sample Weight (wet)	141.4
Sample Weight (oven dried)) 68.73
% Moisture 51	.4
Sample Split (Oven Dried)	Sample (g)
Sample >=#10	0
Sample <=#10	68.73
%Passing #10	100.00

Date Received	07/22/20
Start Date/Time	07/24/20: 9:10
End Date/Time	07/30/20 9:05
Date/Time in oven	07/28/20 9.05

Hydrometer Data

Serial Number	742340
Cal Date:	07/27/20
Low Temp C	19.30
Low Temp Reading	1.00300
High Temp	22.70
High Temp Reading	1.0025
Hyd Cal Slope	-0.000147
Hyd Cal Intercept	0.005838
Soil Gravity	2.650000


Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare	Pan+Sample	Sample	%Finer	Classification	Subclass
3"	75000	0.0	0.0	0.0	100	Gravel	
2"	50000	0.0	0.0	0.0	100	Gravel	1
1.5"	37500	0.0	0.0	0.0	100	Gravel	
1"	25000	0.0	0.0	0.0	100	Gravel	
3/4"	19000	0.0	0.0	0.0	100	Gravel	
1/4"	6300	404.0	404.0	0.0	100.00	Gravel	
#4	4750	405.2	405.2	0.0	100.00	Gravel	
#10	2000	368.7	368.7	0.0	100.00	Sand	Coarse
#20	850	303.7	305.7	2.0	97.09	Sand	Medium
#40	425	269.8	271.4	1.6	94.76	Sand	Medium
#60	250	245.5	246.6	1.1	93.16	Sand	Fine
#80	180	246.0	246.8	0.8	92.00	Sand	Fine
#100	150	234.6	235.0	0.4	91.42	Sand	Fine
#200	75	226.0	228.0	2.0	88.51	Sand	Fine

Silt/Clay Fraction (Hydrometer Test)

Time (min)	Actual Time	Spec. Gravity	Temp C	% Finer	Particle Size	Classification
2	2	1.0165	20	15.45	33.57	Silt
5	5	1.0150	20	13.75	21.41	Silt
15	15	1.0130	20	11.48	12.66	Silt
30	30	1.0100	20	8.07	9.22	Silt
60	60	1.0085	20	6.36	6.64	Silt
240	240	1.0070	20.5	4.74	3.32	Clay
1440	1440	1.0055	19.5	2.87	1.40	Clay

Gravel	0.00
Sand Coarse	0.00
Sand Medium	5.24
Sand Fine	6.26
Silt	82.53
Clay	5.98
Total =	100

	Data	
Sample Fraction	Particle Size	%Passing
3"	75000	100
2"	50000	100
1.5"	37500	100
1"	25000	100
3/4"	19000	100
3/8"	9500	100.00
#4	4750	100.00
#10	2000	100.00
#20	850	97.09
#40	425	94.76
#60	250	93.16
#80	180	92.00
#100	150	91.42
#200	75	88.51
2	33.57	15.45
5	21.41	13.75
15	12.66	11.48
30	9.22	8.07
60	6.64	6.36
240	3.32	4.74
1440	1.40	2.87

Gravel	0.00
Sand Coarse	0.00
Sand Medium	5.24
Sand Fine	6.26
Silt	82.53
Clay	5.98

DATA VALIDATION WORKSHEET INORGANIC - ICPMS (Sb, Cu, Pb, Zn) **REGION II - SOP HWSS - 2 and DoD QSM v4.1**

SDG No.: <u>SN5717 + SN5719 + SN6056</u> Project No.: 60519685-05a.2001

Project Name:	Camp O'Ryan
Reviewer:	Devon Chicoine
Date:	September 11, 2020

1.0 Cl	1.0 Chain of Custody/Sample Condition/Raw Data		No	NA
1.1	Do Chain-of-Custody forms list all samples which were analyzed?	Х		
1.2	Are all Chain-of-Custody forms signed, indicating sample chain-of-custody was maintained?	Х		
1.3	Do the traffic Reports, chain-of-custody, and lab narrative indicate any problems with sample receipt, condition		v	
1.5	of samples, analytical problems or special circumstances affecting the quality of the data?		Λ	
1.4	Does sample preservation, collection and storage meet method requirement? (For metal: water samples: with	v		
1.4	Nitric Acid to pH < 2, and soil/sediment samples: $4 {}^{\circ}C \pm 2 {}^{\circ}C$).pH >2: Action: J(+)/R(-) $\geq 10 {}^{\circ}C {}$ J(+)/UJ(-)	Λ		
	Are the digestion logs present and complete with pH values, sample weights, dilutions, final volumes. % solids			
1.5	(for soil samples), and preparation dates? For any missing or incomplete documentation, contact the laboratory	Х		
	for explanation/resubmittal.			
1.6	Are the percent solids less than 50%? Action: $>50\%$ J(+)	Х		
Note:				

2.0 H	olding Time	Yes	No	NA
2.1	Have any technical holding times of 6 months, determined from date of collection to date of analysis, been exceeded? Action: $J(+)/R(-)$		X	
Note:				

3.0 In	strument Calibration	Yes	No	NA
3.1	Are sufficient standards of a blank + one standard & a RL standard OR 3 standards and a blank with one standard	X		
5.1	at the RL included in the calibration curve? If not, qualify with "R".	Δ		
	If more than one standard is used, are the correlation coefficients > 0.995? Action: $J(+)/UJ(-)$.	Х		
3.2b	If one standard is used (after 1-point calibration), was a daily low-level (TV <rl) 20%="" check="" of<="" standard="" td="" within=""><td>X</td><td></td><td></td></rl)>	X		
5.20	true value? <40% 40%-80% >120%	Δ		
	<2xCRQL J(+)/R(-) J(+)/UJ(-) J(+)/R(+)(>180%)			
3.3	Was an initial calibration check standard (ICV) analyzed immediately after instrument system had been	х		
5.5	calibrated? Action: If no, all associated data are rejected "R".	Δ		
3.4	Was continuing calibration (CCV) analyzed at a minimum frequency of 10% (every 10 samples or 2 hours)	v		
	during and at the end of the analytical run? If not, qualify positive results "J."	Δ		
3.5	Are all calibration standard percent recoveries within the control limits of 90%-110%?	Х		
	<75% 75% - 89% 111% - 125% <125%			
	Action: $R(+)/R(-)$ $J(+)/UJ(-)$ $J(+)$ $R(+)$			
Note:				

4.0 Bl	Blanks		Yes	No	NA
4.1	Were method blank (MB) prepared at the appropriate frequency (1/20 samples, batch, or matrix)?		X		
4.0	Were calibration blanks (ICB and CCBs) analyzed immediately after each ICV and CCVs? A	Action: If the	V		
4.2	frequency of the CCBs does not follow requirement, all associated data are qualified "J".		Λ		
4.3	Are there reported MB or ICB/CCBs values > LOD?		Х		
	Sample Results >CRQL, <icb ccb="">ICB/CCB,<10x ICB/CCB >MDL,<crql< td=""><td></td><td></td><td></td><td></td></crql<></icb>				
	R J(+) CRQL"U"(+)				
4.4	Are there negative blank results with the absolute value > LOD?			X	
	Sample Results > MDL, <crql< td=""><td></td><td></td><td></td><td></td></crql<>				
	< 10 X CRQL J(+)				
4.5	Are there reported field/equipment blank $> \pm$ MDL?			X	
	Sample Results > MDL, <crql< td=""><td></td><td></td><td></td><td></td></crql<>				
	< 10X CRQL CRQL "U"(+)				
Note:	: Field sample results for SEM Mercury were qualified U,bl				

5.0 ICP Interference Check Sample (ICS)	Yes	No	NA	
5.1 Was ICS analyzed at beginning of each ICP run and every 12 hours? Flag "J" if no		X		
5.2 Are the ICS AB recoveries within 80% - 120%? If not, qualify J(+)/UJ(-), <50%/>1	50% - R	X		
5.3 Are the results for unspiked analytes (in ICS A) <loq?< td=""><td></td><td>X</td><td></td><td></td></loq?<>		X		
5.4 If not, are the associated sample Al, Ca, Fe, and Mg concentrations less than the lev	el in the ICS?	X		
Action: $\langle MDL, \rangle (TV+CRQL)$: J(+) $\langle MDL , \langle (TV-CRQL) : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+)/UJ(+)/UJ(+) \rangle = \langle MDL , \langle TV-CRQL : J(+)/UJ(+)$	-)			
Note:				

.0 Lal	boratory Control Sample (LCS)/Matri	x Spikes	Yes	No	NA
6.1	Was an LCS prepared and analyzed at the	ne correct frequency (one / 20 samples, batch, or matrix)? Action: If no,	v		
6.1	J(+)/R(-) any sample not associated with	А			
6.2	Is any LCS recovery outside the control l		Х		
	Action: Solid	Aqueous			
	< LCL > UCL	< 50% 50% - 79% 120-150% <150%			
	J(+)/UJ(-) $J(+)$	R = J(+)/UJ(-) = J(+) = R(+)			
6.3	Are any MS/MSD recovery outside the c	ontrol limits?	Х		
	Action: Solid	Aqueous			
	< LCL > UCL	< 30% 30% - 79% > 120%			
	J(+)/UJ(-) $J(+)$	J(+)/R(-) $J(+)/UJ(-)$ $J(+)$			
Note [.]	MS/MSD % recoveries displayed percen	t recoveries outside quality control limits			

RPD above control limits for lead in COR05SED04A and COR06SED04A, and antimony in COR03DA03A

7.0 IC	P/AA Serial Dilutions	Yes	No	NA
7.1	Were serial dilutions performed?	X		
7.2	Was a five-fold dilution performed?	X		
	Were results agree within 10% for [sample] > 50 X MDL in the original sample?			
7.3	Action: 10%-100% >100%		Х	
	J(+) $R(+)$			
Note:	Field samples COR05SED04A, COR02IS02, COR01DA02A, COR02DA01A, and COR02DB02A displayed			

multiple serial dilution percent recovery anomalies.

8.0 La	aborator	ry Duplicates (N	/ID)				Yes	No	NA
8.1						20 samples, batch, or matrix)?		x	
0.1	If no, J	(+), using profes	sional judgem	ent, analytes not asso	ciated with duplicate res	ults.		21	
	If both samples are greater than 5x QL, are all analyte duplicate results within control limits?					X			
8.2		Aque	eous	Soil/Sec	iment				
8.2	RPD	20%-100%	>100%	35%-130%	>130%				
		J(+)	R(+)	J(+)	R(+)				
Note:									

9.0 Fi	eld Duplicate Samples	Yes	No	NA
9.1	Were any field duplicates submitted for metal analysis?	X		
9.2	Are all analyte duplicate results within control limits? J(+)/UJ(-)		X	
Note:	COR06SED02 for total zinc at 88.9%			

11.0 R	esult Verification/ Internal Standards/ Tune	Yes	No	NA
11.1	Are all MDLs/RLs equal to or less than the reporting limits specified? If no, flag any sample value less than 5x MDL "J".	X		
11.2	Were all results and detection limits for solid-matrix samples reported on a dry-weight basis?	Х		
11.3	Were all dilutions reflected in the positive results and detection limits?	X		
	Were the Internal Standard recoveries within 60-125%. Action: J(+)/UJ(-)	X		
	Were the tunes run at a minimum of four times with RSD < 5% for analytes in solution? Were the tune mass calibrations < 0.1 amu from the true value? Was the resolution check peak width < 0.9 amu at 10% peak height? Action: $J(+)/UJ(-)$	X		
Note:				

12.0 Completeness Calculation	Yes	No	NA
12.1 Is % completeness within the control limits? (Control limit 90%)	X		
12.2 Number of samples: <u>31</u>			
12.3 Number of target compounds in each analysis: 72:1; 3:7			
12.4 Number of results rejected and not reported: 0			
% Completeness = (12.1.1 x 12.1.2 - 12.1.3) x 100/(12.1.1 x 12.1.2)			
% Completeness = 100%			

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG20A

SDG Name: SN5717

	Date: 07/20/2020				Method: N	MS						
Lab Sample 1D	Client 1D	D.F.	Time					Elements	st			
CalBlank		~	15.19	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CalStd		-	15.23	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ICV		~	15.26	AI Sb	Ca	Cu	Fe Pb	ВW	Mo	¥	Na	Zn
ICB		~	15.28	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
PQL		~	15:31	AI Sb	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn
222222		~	15 39									
222222		-	15.42									
222222		-	15,45									
222222		-	15.47									
ICSAB		-	15 50	Ai Sb	Ca	Сц	Fe Pb	Mg	Mo	¥	Na	Zn
CCV		-	15.53	AI Sb	Ca	Cu	Fe Pb	ВМ	Mo	¥	Na	Zn
CCB		-	15,56	AI Sb	Са	С	Fe Pb	Mg	Mo	¥	Na	Zn
ICSA		-	16 01	AI Sb	Ca	Сп	Fe Pb	Mg	Mo	¥	Na	Zn
222222		ŝ	16.04									
222222		5	16.06									
CCV		~	16 09	AI Sb	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	16 12	AI Sb	Са	Cu	fe Pb	Mg	Mo	¥	Na	Zn
222222		5	16.15									
ZZZZZZ		5	16 17									
222222		S	16.20									
222222		ŝ	16 23									
22222		S	16 25									
ZZZZZ		5	16 28									
ZZZZZ		5	16.30									
ZZZZZ		5	16.33									
222222		S	16.36									
222222		-	16 41									

Katahdin Analytical Services A0000125

Na Na Na Na Na Na ¥ ¥ ¥ ¥ ¥ \mathbf{x} Ň Mo Ň Ň Ŷ Ň Elements Mg Mg BW ВМ ВМ Мg Fe Pb Fe Pb Fe Pb Fe Pb Fe Pb Fe Pb Ü 0 0 С S C C Method: MS Ca Ca Ca Ca Sa Sa AI Sb AI Sb AI Sb AI Sb AI Sb Sb R Instrument ID: AGILENT 7800 ICP-MS 17 02 17.05 17.40 17.48 Time 16.44 16 46 16 49 16.52 16.55 17:00 17.08 17.13 17.16 17.18 17 24 17:27 17:29 17.32 17 34 17.37 17 43 17 45 17 53 16.57 17 11 17:21 17.51 D.F. 25 S ŝ *** -~~~ ŝ S ŝ ŝ ŝ ŝ -ŝ ŝ ŝ ŝ ---ŝ ŝ ŝ -----S 07/20/2020 Client 1D Date: Lab Sample ID 222222 222222 222222 22222 ZZZZZ 22222 222222 222222 222222 222222 22222 22222 ZZZZZ 22222 22222 222222 **ZZZZZ** 22222 ZZZZZ 222222 222222 CCV CCB CCV CCB SCC CCB

Zn Z Katahdin Analytical Services A0000126

Lab Name: Katahdin Analytical Services

14

SDG Name: SN5717

File Name: LNG20A

Zn

Zn

Zn Zn

	Lab Name: Katahdin Analytical Services	ytical	Services	SDG Name: SN5717	a: SN571	7					
	Instrument ID: AGILENT 7800 ICP-MS	7800 I	CP-MS	File Name: LNG20A	LNG20	V.					
	Date: 07/20/2020			Method: MS	MS						
Lab Sample ID	Client ID D.F.	E. Time	ne				Elements	ats			
22222	£	5 17:56	56								
22222	G	17,59	59								
222222	25	5 18 01	10								
22222	S	5 18 04	34								
222222	ũ	5 18:07	20								
222222	ŝ	5 18 09	60								
222222	3	5 18 12	12								
222222	ũ	5 18 15	15								
222222	G	5 18:17	17								
CCV	-	18 20	20 AI Sb	Ca	Си	Fe Pb	ВМ	Mo	¥	Na	Zn
CCB	-	18 23	23 AI Sb	Са	С	Fe Pb	Mg	Mo	¥	Na	Zn
222222	ũ	5 18.25	25								
222222	ŝ	5 18:28	28								
222222	Û	5 18:31	31								
22222	ى ا	5 18 33	33								
ZZZZZ	ũ	5 18.36	36								
222222	3	5 18 39	39								
222222	S	5 18 42	12								
ZZZZZ	ũ	18 44	14								
ZZZZZ	ŝ	18 47	21								
222222	ŝ	18:50	50								
CCV	÷-	18 52	52 AI Sb	Са	Cu	Fe Pb	Mg	Mo	×	Na	Zn
CCB	-	18.55	55 Al Sb	Са	Cu	Fe Pb	ВМ	Mo	¥	Na	Zn
22222	5	18.58	38								
22222	5	19:00	0(
ZZZZZ	Ŷ	19:03	13								
22222	5	19.06	96								

14

Katahdin Analytical Services A0000127

ЧZ Zn Zn Zn Ra Na Ra Na ¥ ¥ ¥ \mathbf{x} Mo Ŵ Ŵ Ň Elements Mg Mg ВЙ ВМ Fe Pb Fe Pb Fe Pb Fe Pb File Name: LNG20A SDG Name: SN5717 ő Ω Cu C Method: MS Sa Sa Ca S AI Sb Al Sb Sb AI Sb Lab Name: Katahdin Analytical Services ₹ Instrument ID: AGILENT 7800 ICP-MS 20.10 19 14 19 16 19 19 19.24 19:30 19:38 19 40 19 43 19:48 19.59 20 15 Time 19:08 19.22 19.27 19.32 19 35 19.46 19.51 19.56 20.02 20.04 20.12 20 18 19 11 19.54 20 07 D.F. ŝ ŝ ŝ ŝ ŝ ŝ . ŝ ŝ ŝ S ŝ S S S S ŝ ----ŝ ŝ ŝ ŝ ŝ S S 07/20/2020 Client ID Date: Lab Sample ID 22222 22222 222222 222222 ZZZZZ 222222 222222 222222 222222 22222 ZZZZZ ZZZZZ 22222 ZZZZZ ZZZZZ 22222 77777 222222 222222 ZZZZZ 222222 222222 222222 CCV CCV CCB CCB

14

Katahdin Analytical Services A0000128

	Lab Name: Katahdin Analytical Services	ıalytic	al Serv	ices	SDG Name: SN5717	e: SN571	2					
	Instrument ID: AGILENT 7800 ICP-MS	4T 780	0 ICP-N	AS	File Name: LNG20A	LNG20	V					
	Date: 07/20/2020				Method:	MS						
Lab Sample ID	Client ID	D.F.	Time	-				Elements	nts			
222222		2	20.21									
77777		S	20.23									
22222		ъ	20.26									
ccv		-	20.29	AI Sb	Са	Cu	Fe Pb	ВМ	Mo	¥	Na	Zn
CCB		-	20,31	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
222222		5	20 34									
77777		-	20.37									
222222		S	20.39									
77777		-	20 42									
222222		сı	20.45									
222222		ŝ	20 47									
22222		5	20.50									
222222		5	20.53									
222222		ŝ	20.55									
222222		S	20 58									
CCV			21.01	AI Sb	Ca	Cu	Fe Pb	ВW	Mo	¥	Na	Zn
CCB		-	21 04	AI Sb	Ca	СЦ	Fe Pb	ВМ	Mo	¥	Na	Zn
ZZZZZZ		2	21.06									
222222		ŝ	21.09									
222222		ß	21.12									
222222		υ	21:14									
222222		2	21.17									
222222		5	21 19									
22222		2	21 22									
222222		2	21 25									
222222		S	21.27									
222222		сı	21 30									

Katahdin Analytical Services A0000129

0
3
Σ
2
2
õ
7
S
Ö
ice
-
E.
S S S
Ser
Ca
·Ξ.
5
Anal
~
-
1
ž
a
Ľ,
, a
\mathbf{X}

FORM XIV - IN

Date:	te: 07/20/2020				Method: 1	MS						
Lab Sample ID	Client ID	D.F.	Time					Elements	ţ			
CCV		-	21 33	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	21.35	Al Sb	Са	Си	Fe Pb	ВМ	Mo	¥	Na	Zn
222222		2	21 38									
222222		ŝ	21 41									
222222		ŝ	21 43									
777772		cu	21:46									
222222		25	21:49									
222222		ŝ	21.51									
222222		5	21.54									
777777		ъ	21.57									
222222		ιŋ	21 59									
222222		2	22.02									
ccv		-	22 05	AI Sb	Са	СЦ	Fe Pb	Mg	Mo	Х	Na	Zn
CCB		-	22:07	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
222222		ŝ	22.10									
222222		ŝ	22 13									
222222		s	22 15									
22222		ŝ	22 18									
222222		25	22.21									
222222		ŝ	22 23									
222222		ŝ	22 26									
22222		ŝ	22 29									
222222		ŝ	22 32									
222222		2	22 34									
CCV		.	22.37	AI Sb	Са	Си	Fe Pb	Mg	Mo	×	Na	Zn
CCB		-	22 40	AI Sb	Са	Cu	Fe Pb	Mg	Mo	×	Na	Zn

14

ANALYSIS RUN LOG

SDG Name: SN5717

Lab Name: Katahdin Analytical Services

Z uZ Zn Zu Zu Zn Zn Zn ЧZ Zn Na Na Na Na \mathbf{x} \mathbf{x} ¥ ¥ Мo Ŵ Мo Ŵ Elements М ВМ В Ыğ Fe Pb Fe Pb Fe Pb Fe Pb Ъb PP 9 PP Pp Pp Ъ РР File Name: LNG20A SDG Name: SN5717 S Cu õ C S C G J 5 20 5 0 Method: MS Ca S S S AI Sb AI Sb AI Sb Sb Sb å Sb Sb Sb Sb Sb Sb ₹ Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS 23.19 23 37 22 45 22 48 22 53 22 56 22 58 23 01 23 04 23:06 23 09 23.11 23 27 23_30 23 40 23 43 23 45 23 48 23 53 Time 22 50 23 14 23.17 23 22 23 24 23 32 23 35 23:50 D.F. 25 ---ю S ŝ ŝ 'n -----ŝ ŝ ŝ ŝ S ŝ ----ŝ ŝ -------07/20/2020 COR01DA02AS COR01DA02AP COR01DA01A COR01DA02A COR01DA02AL COR01DA02AA Client ID Date: LCSONG16IMS1 PBSNG16IMS1 Lab.Sample ID SN5717-005S SN5717-005P SN5717-005A SN5717-005L SN5717-005 SN5717-001 22222 22222 222222 **ZZZZZ** ZZZZZ 22222 ZZZZZZ 22222 22222 222222 222222 222222 22222 222222 222222 CCV CCV CCB CCB

Katahdin Analytical Services A0000131

FORM XIV - IN

14

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG20A

SDG Name: SN5717

	Date: 07	07/20/2020				Method: N	MS						
Lab Sample ID	Client ID		D.F.	Time					Elements	ts			
SN5717-007	COL	COR02DA01A	S	23 56	Sb		Cu	Pb					Zn
SN5717-007L	COR	COR02DA01AL	25	23.58	Sb		Cu	Pb					Zn
SN5717-007A	COR	COR02DA01AA	2	00 01	Sb		Cu	Pb					Zn
SN5717-007S	COR	COR02DA01AS	ŝ	00 03	Sb		Сц	Pb					Zn
SN5717-007P	COR	COR02DA01AP	S	00 00	Sb		Cu	Pb					Zn
CCV			-	60 00	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB			-	00 11	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCV			-	00.14	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB			-	00:16	AI Sb	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
SN5717-008	COL	COR02DA02B	ŝ	00 19	Sb		Cu	Pb					Zn
SN5717-009	COL	COR02DA02A	2	00 22	Sb		Cu	Pb					Zn
SN5717-012	COL	COR03DA01A	S	00 24	Sb		Си	Ъb					Zn
SN5717-018	COL	COR03DA03A	ŝ	00.27	Sb		Сп	Pb					μZ
SN5717-018L	COR	COR03DA03AL	25	00.29	Sb		Си	Pb					Zn
SN5717-018A	COR	COR03DA03AA	ъ	00 32	Sb		Си	Pb					uZ
SN5717-018S	COR	COR03DA03AS	ŝ	00 35	Sb		Си	Pb					Zn
SN5717-018P	COR	COR03DA03AP	ŝ	00.37	Sb		Cu	Pb					Zn
222222			-	00 40									
222222			5	00.43									
CCV				00 45	AI Sb	Са	C	Fe Pb	ВМ	Mo	×	Na	Zn
CCB			-	00 48	AI Sb	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	15:26	File: LNG20A	Jul 2	20, 2020	15:53
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	376.75	94.2	ALUMINUM	500.0	503.09	100.6
ANTIMONY	20.0	19.98	99.9	ANTIMONY	25.0	24.36	97.4
CALCIUM	4000.0	4101.19	102.5	CALCIUM	5000.0	5025.17	100.5
COPPER	20.0	20.39	102.0	COPPER	25.0	25.64	102.6
IRON	4000.0	4114.77	102.9	IRON	5000.0	5028.96	100.6
LEAD	20.0	19.81	99.0	LEAD	25.0	23.88	95.5
MAGNESIUM	4000.0	3995.85	99.9	MAGNESIUM	5000.0	4937.73	98.8
MOLYBDENUM	40.0	40.22	100.6	MOLYBDENUM	25.0	26.26	105.0
POTASSIUM	4000.0	3958.32	99.0	POTASSIUM	5000.0	4973.94	99.5
SODIUM	4000.0	4049.95	101.2	SODIUM	5000.0	5143.05	102.9
ZINC	20.0	20.83	104.1	ZINC	25.0	25.31	101.2

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	16:09	File: LNG20A	Jul 2	20, 2020	16:44
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	487.78	97.6	ALUMINUM	500.0	483.93	96.8
ANTIMONY	25.0	25.17	100.7	ANTIMONY	25.0	24.41	97.6
CALCIUM	5000.0	5051.81	101.0	CALCIUM	5000.0	5057.67	101.2
COPPER	25.0	24.92	99.7	COPPER	25.0	24.99	100.0
IRON	5000.0	5055.77	101.1	IRON	5000.0	5049.95	101.0
LEAD	25.0	24.94	99.8	LEAD	25.0	24.43	97.7
MAGNESIUM	5000.0	4918.41	98.4	MAGNESIUM	5000.0	5015.84	100.3
MOLYBDENUM	25.0	24.24	97.0	MOLYBDENUM	25.0	24.60	98.4
POTASSIUM	5000.0	4912.23	98.2	POTASSIUM	5000.0	4936.32	98.7
SODIUM	5000.0	5058.62	101.2	SODIUM	5000.0	5271.38	105.4
ZINC	25.0	24.97	99.9	ZINC	25.0	24.98	99.9

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	17:16	File: LNG20A	Jul 2	20, 2020	17:48
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	487.74	97.5	ALUMINUM	500.0	491.06	98.2
ANTIMONY	25.0	24.42	97.7	ANTIMONY	25.0	24.09	96.4
CALCIUM	5000.0	5280.37	105.6	CALCIUM	5000.0	5062.62	101.3
COPPER	25.0	24.90	99.6	COPPER	25.0	25.16	100.6
IRON	5000.0	5248.99	105.0	IRON	5000.0	5085.34	101.7
LEAD	25.0	24.03	96.1	LEAD	25.0	24.19	96.8
MAGNESIUM	5000.0	4989.23	99.8	MAGNESIUM	5000.0	5013.75	100.3
MOLYBDENUM	25.0	23.89	95.6	MOLYBDENUM	25.0	24.54	98.2
POTASSIUM	5000.0	4925.88	98.5	POTASSIUM	5000.0	4947.36	98.9
SODIUM	5000.0	5223.89	104.5	SODIUM	5000.0	5202.91	104.1
ZINC	25.0	24.97	99.9	ZINC	25.0	24.75	99.0

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	18:20	File: LNG20A	Jul 2	20, 2020	18:52
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	470.76	94.2	ALUMINUM	500.0	476.02	95.2
ANTIMONY	25.0	24.30	97.2	ANTIMONY	25.0	24.21	96.8
CALCIUM	5000.0	4997.76	100.0	CALCIUM	5000.0	5078.85	101.6
COPPER	25.0	24.87	99.5	COPPER	25.0	25.12	100.5
IRON	5000.0	4878.52	97.6	IRON	5000.0	5069.08	101.4
LEAD	25.0	24.68	98.7	LEAD	25.0	25.56	102.2
MAGNESIUM	5000.0	4977.03	99.5	MAGNESIUM	5000.0	4845.59	96.9
MOLYBDENUM	25.0	24.81	99.2	MOLYBDENUM	25.0	24.27	97.1
POTASSIUM	5000.0	4952.96	99.1	POTASSIUM	5000.0	4864.56	97.3
SODIUM	5000.0	5079.57	101.6	SODIUM	5000.0	4987.38	99.7
ZINC	25.0	24.52	98.1	ZINC	25.0	25.24	101.0

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	19:24	File: LNG20A	Jul 2	20, 2020	19:56
Analyte	True	Found	%R(1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	471.53	94.3	ALUMINUM	500.0	460.31	92.1
ANTIMONY	25.0	23.54	94.2	ANTIMONY	25.0	23.55	94.2
CALCIUM	5000.0	4946.52	98.9	CALCIUM	5000.0	5050.18	101.0
COPPER	25.0	24.39	97.6	COPPER	25.0	24.26	97.0
IRON	5000.0	4875.73	97.5	IRON	5000.0	4875.39	97.5
LEAD	25.0	23.89	95.6	LEAD	25.0	23.78	95.1
MAGNESIUM	5000.0	4851.30	97.0	MAGNESIUM	5000.0	4832.22	96.6
MOLYBDENUM	25.0	24.43	97.7	MOLYBDENUM	25.0	24.96	99.8
POTASSIUM	5000.0	4884.14	97.7	POTASSIUM	5000.0	4862.93	97.3
SODIUM	5000.0	4975.93	99.5	SODIUM	5000.0	4992.71	99.9
ZINC	25.0	23.76	95.0	ZINC	25.0	24.69	98.8

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

Jul 2	20, 2020	20:29	File: LNG20A	Jul 2	20, 2020	21:01
True	Found	%R (1)	Analyte	True	Found	%R (1)
500.0	469.00	93.8	ALUMINUM	500.0	482.81	96.6
25.0	22.93	91.7	ANTIMONY	25.0	24.61	98.4
5000.0	4963.54	99.3	CALCIUM	5000.0	4932.76	98.7
25.0	24.62	98.5	COPPER	25.0	25.18	100.7
5000.0	4867.97	97.4	IRON	5000.0	4962.96	99.3
25.0	23.51	94.0	LEAD	25.0	24.66	98.6
5000.0	4852.84	97.1	MAGNESIUM	5000.0	4848.26	97.0
25.0	24.36	97.4	MOLYBDENUM	25.0	24.92	99.7
5000.0	4886.34	97.7	POTASSIUM	5000.0	4940.49	98.8
5000.0	4981.52	99.6	SODIUM	5000.0	4937.95	98.8
25.0	24.32	97.3	ZINC	25.0	24.22	96.9
	True 500.0 25.0 5000.0 25.0 5000.0 25.0 5000.0 5000.0 5000.0	500.0469.0025.022.935000.04963.5425.024.625000.04867.9725.023.515000.04852.8425.024.365000.04886.345000.04981.52	TrueFound%R (1)500.0469.0093.825.022.9391.75000.04963.5499.325.024.6298.55000.04867.9797.425.023.5194.05000.04852.8497.125.024.3697.45000.04886.3497.75000.04981.5299.6	TrueFound%R (1)Analyte500.0469.0093.8ALUMINUM25.022.9391.7ANTIMONY5000.04963.5499.3CALCIUM25.024.6298.5COPPER5000.04867.9797.4IRON25.023.5194.0LEAD5000.04852.8497.1MAGNESIUM25.024.3697.4MOLYBDENUM5000.04886.3497.7POTASSIUM5000.04981.5299.6SODIUM	TrueFound%R (1)AnalyteTrue500.0469.0093.8ALUMINUM500.025.022.9391.7ANTIMONY25.05000.04963.5499.3CALCIUM5000.025.024.6298.5COPPER25.05000.04867.9797.4IRON5000.025.023.5194.0LEAD25.05000.04852.8497.1MAGNESIUM5000.025.024.3697.4MOLYBDENUM25.05000.04886.3497.7POTASSIUM5000.05000.04981.5299.6SODIUM5000.0	TrueFound%R (1)AnalyteTrueFound500.0469.0093.8ALUMINUM500.0482.8125.022.9391.7ANTIMONY25.024.615000.04963.5499.3CALCIUM5000.04932.7625.024.6298.5COPPER25.025.185000.04867.9797.4IRON5000.04962.9625.023.5194.0LEAD25.024.665000.04852.8497.1MAGNESIUM5000.04848.2625.024.3697.4MOLYBDENUM25.024.925000.04886.3497.7POTASSIUM5000.04940.495000.04981.5299.6SODIUM5000.04937.95

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	21:33	File: LNG20A	Jul 2	20, 2020	22:05
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	475.75	95.2	ALUMINUM	500.0	456.86	91.4
ANTIMONY	25.0	23.49	94.0	ANTIMONY	25.0	24.10	96.4
CALCIUM	5000.0	4953.04	99.1	CALCIUM	5000.0	4915.75	98.3
COPPER	25.0	24.65	98.6	COPPER	25.0	24.20	96.8
IRON	5000.0	4852.87	97.1	IRON	5000.0	4844.15	96.9
LEAD	25.0	24.02	96.1	LEAD	25.0	24.51	98.0
MAGNESIUM	5000.0	4847.74	97.0	MAGNESIUM	5000.0	4751.98	95.0
MOLYBDENUM	25.0	25.05	100.2	MOLYBDENUM	25.0	24.18	96.7
POTASSIUM	5000.0	4924.20	98.5	POTASSIUM	5000.0	4788.79	95.8
SODIUM	5000.0	5004.11	100.1	SODIUM	5000.0	4867.82	97.4
ZINC	25.0	24.95	99.8	ZINC	25.0	23.20	92.8

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	22:37	File: LNG20A	Jul 2	20, 2020	23:09
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	462.70	92.5	ALUMINUM	500.0	466.77	93.4
ANTIMONY	25.0	23.75	95.0	ANTIMONY	25.0	22.80	91.2
CALCIUM	5000.0	4935.06	98.7	CALCIUM	5000.0	4851.47	97.0
COPPER	25.0	25.06	100.2	COPPER	25.0	24.42	97.7
IRON	5000.0	4860.18	97.2	IRON	5000.0	4754.04	95.1
LEAD	25.0	23.95	95.8	LEAD	25.0	22.80	91.2
MAGNESIUM	5000.0	4871.27	97.4	MAGNESIUM	5000.0	4805.39	96.1
MOLYBDENUM	25.0	24.95	99.8	MOLYBDENUM	25.0	25.67	102.7
POTASSIUM	5000.0	4913.58	98.3	POTASSIUM	5000.0	4909.55	98.2
SODIUM	5000.0	4990.53	99.8	SODIUM	5000.0	4956.70	99.1
ZINC	25.0	23.76	95.0	ZINC	25.0	23.98	95.9

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG20A	Jul 2	20, 2020	23:37	File: LNG20A	Jul 2	21, 2020	00:09
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	474.61	94.9	ALUMINUM	500.0	473.22	94.6
ANTIMONY	25.0	23.37	93.5	ANTIMONY	25.0	23.08	92.3
CALCIUM	5000.0	4935.96	98.7	CALCIUM	5000.0	4968.01	99.4
COPPER	25.0	24.52	98.1	COPPER	25.0	23.93	95.7
IRON	5000.0	4862.67	97.3	IRON	5000.0	4811.39	96.2
LEAD	25.0	23.33	93.3	LEAD	25.0	23.74	95.0
MAGNESIUM	5000.0	4854.70	97.1	MAGNESIUM	5000.0	4720.65	94.4
MOLYBDENUM	25.0	24.31	97.2	MOLYBDENUM	25.0	23.90	95.6
POTASSIUM	5000.0	4926.40	98.5	POTASSIUM	5000.0	4788.58	95.8
SODIUM	5000.0	4986.80	99.7	SODIUM	5000.0	4804.54	96.1
ZINC	25.0	24.35	97.4	ZINC	25.0	23.77	95.1

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

.

SAMPLE: CCV

File: LNG20A	Jul 2	21, 2020	00:14	File: LNG20A	Jul 2	21, 2020	00:45
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	465.80	93.2	ALUMINUM	500.0	455.79	91.2
ANTIMONY	25.0	23.14	92.6	ANTIMONY	25.0	25.09	100.4
CALCIUM	5000.0	4952.65	99.1	CALCIUM	5000.0	4953.93	99.1
COPPER	25.0	24.39	97.6	COPPER	25.0	24.40	97.6
IRON	5000.0	4819.88	96.4	IRON	5000.0	4931.79	98.6
LEAD	25.0	23.43	93.7	LEAD	25.0	24.37	97.5
MAGNESIUM	5000.0	4735.11	94.7	MAGNESIUM	5000.0	4648.76	93.0
MOLYBDENUM	25.0	24.45	97.8	MOLYBDENUM	25.0	23.93	95.7
POTASSIUM	5000.0	4897.91	98.0	POTASSIUM	5000.0	4854.55	97.1
SODIUM	5000.0	4862.90	97.3	SODIUM	5000.0	4745.34	94.9
ZINC	25.0	23.97	95.9	ZINC	25.0	24.26	97.0

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: I	PQL		
File: LNG20A	Jul 2	20, 2020	15:31
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	17.39	87.0
ANTIMONY	0.2	0.22	110.0
CALCIUM	20.0	20.28	101.4
COPPER	0.6	0.58	96.7
IRON	20.0	21.27	106.3
LEAD	0.2	0.21	105.0
MAGNESIUM	20.0	20.61	103.1
MOLYBDENUM	1.0	1.00	100.0
POTASSIUM	200.0	204.44	102.2
SODIUM	200.0	205.47	102.7
ZINC	2.0	2.14	107.0

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Units	s: ug/L			
SAMPLE: ICE	3		SAMPLE: CC	B		SAMPLE: CC	В	
File: LNG20A Jul	20, 2020	15:28	File: LNG20A Jul	20, 2020	15:56	File: LNG20A Jul	20, 2020	16:12
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-1.074	U	ALUMINUM	9.152	J	ALUMINUM	-0.750	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	9.254	J	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.425	В	COPPER	0.087	U
IRON	6.400	U	IRON	12.456	В	IRON	6.400	U
LEAD	0.013	J	LEAD	0.034	J	LEAD	0.017	J
MAGNESIUM	0.350	U	MAGNESIUM	11.730	В	MAGNESIUM	1.723	J
MOLYBDENUM	0.118	J	MOLYBDENUM	0.456	J	MOLYBDENUM	0.125	J
POTASSIUM	12.000	U	POTASSIUM	25.258	J	POTASSIUM	15.269	J
SODIUM	6.600	U	SODIUM	71.078	J	SODIUM	23.891	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concen	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG20A Jul	20, 2020	16:46	File: LNG20A Ju	20, 2020	17:18	File: LNG20A Jul	20, 2020	17:51
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-1.409	U	ALUMINUM	-1.228	U	ALUMINUM	1.715	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	-0.129	U	COPPER	-0.125	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.020	J	LEAD	0.012	J	LEAD	0.018	J
MAGNESIUM	10.239	В	MAGNESIUM	6.836	J	MAGNESIUM	-1.443	U
MOLYBDENUM	0.020	U	MOLYBDENUM	0.020	U	MOLYBDENUM	-0.022	U
POTASSIUM	18.973	J	POTASSIUM	19.023	J	POTASSIUM	16.318	J
SODIUM	129.162	В	SODIUM	135.466	В	SODIUM	47.861	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG20A Jul	20, 2020	18:23	File: LNG20A Jul	20, 2020	18:55	File: LNG20A Jul	20, 2020	19:27
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	1.836	J	ALUMINUM	-0.782	U	ALUMINUM	-1.251	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	10.653	В	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	13.534	В	IRON	6.400	U	IRON	6.400	U
LEAD	0.050	J	LEAD	1.559	В	LEAD	0.351	В
MAGNESIUM	-4.459	U	MAGNESIUM	-1.755	U	MAGNESIUM	-2.479	U
MOLYBDENUM	0.023	J	MOLYBDENUM	0.020	U	MOLYBDENUM	0.020	U
POTASSIUM	16.119	J	POTASSIUM	17.187	J	POTASSIUM	12.000	U
SODIUM	51.551	J	SODIUM	45.654	J	SODIUM	34.825	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

				ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG20A Jul	20, 2020	19:59	File: LNG20A Jul	20, 2020	20:31	File: LNG20A Jul	20, 2020	21:04
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-1.241	U	ALUMINUM	-1.613	U	ALUMINUM	1.619	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.858	J	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	-0.092	U
IRON	6.400	U	IRON	6.400	U	IRON	20.505	В
LEAD	0.170	В	LEAD	0.142	В	LEAD	0.122	В
MAGNESIUM	-2.127	U	MAGNESIUM	-1.870	U	MAGNESIUM	-6.185	U
MOLYBDENUM	0.020	U	MOLYBDENUM	-0.023	U	MOLYBDENUM	0.020	U
POTASSIUM	12.000	U	POTASSIUM	17.718	J	POTASSIUM	14.455	J
SODIUM	41.748	J	SODIUM	21.541	J	SODIUM	6.600	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG20A Jul	20, 2020	21:35	File: LNG20A Jul	20, 2020	22:07	File: LNG20A Jul	20, 2020	22:40
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-1.333	U	ALUMINUM	-0.936	U	ALUMINUM	-0.896	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	7.240	J	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	-0.107	U	COPPER	-0.102	U	COPPER	-0.108	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.075	J	LEAD	0.064	J	LEAD	0.050	J
MAGNESIUM	-1.810	U	MAGNESIUM	-1.731	U	MAGNESIUM	-1.348	U
MOLYBDENUM	0.020	U	MOLYBDENUM	0.020	U	MOLYBDENUM	-0.055	U
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	7.979	J	SODIUM	14.402	J	SODIUM	21.741	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG20A Jul	20, 2020	23:11	File: LNG20A Jul	20, 2020	23:40	File: LNG20A Jul	21, 2020	00:11
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-1.466	U	ALUMINUM	0.330	U	ALUMINUM	3.449	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	11.540	В
COPPER	0.087	U	COPPER	-0.104	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	12.450	В
LEAD	0.065	J	LEAD	0.081	J	LEAD	0.172	В
MAGNESIUM	0.350	U	MAGNESIUM	-1.160	U	MAGNESIUM	0.796	J
MOLYBDENUM	0.405	J	MOLYBDENUM	0.020	U	MOLYBDENUM	-0.038	U
POTASSIUM	28.138	J	POTASSIUM	26.254	J	POTASSIUM	22.952	J
SODIUM	63.793	J	SODIUM	43.230	J	SODIUM	13.235	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Conc	entration Unit	s: u
SAMPLE: CC	B		SAMPLE: C	ССВ	
File: LNG20A Jul	21,2020	00:16	File: LNG20A	Jul 21, 2020	00:
Analyte	Result	С	Analyte	Result	С
ALUMINUM	2.343	J	ALUMINUM	0.437	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	7.049	J	CALCIUM	6.800	U
COPPER	-0.094	U	COPPER	-0.109	U
IRON	6.400	U	IRON	6.400	U
LEAD	0.106	В	LEAD	0.120	В
MAGNESIUM	1.699	J	MAGNESIUM	-1.020	U
MOLYBDENUM	0.020	U	MOLYBDENUM	0.020	U
POTASSIUM	19.842	J	POTASSIUM	24.357	J
SODIUM	13.687	J	SODIUM	6.600	U
ZINC	0.220	U	ZINC	0.220	U

Katahdin Analytical Services A0000060

4 ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSAB			SAMPLE:	ICSA		
File: LNG20A	Ju	20, 2020	15:50	File: LNG20A	Ju	1 20, 2020	1
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	9
ALUMINUM	100000.00	89659.54	89.7	ALUMINUM	100000.00	91637.36	9
ANTIMONY	20.00	19.38	95.0	ANTIMONY	0.19	0.16	
CALCIUM	100000.00	98697.43	98.7	CALCIUM	100000.00	100004.80	10
COPPER	20.47	19.49	95.0	COPPER	0.26	0.78	
IRON	100000.00	96847.53	96.8	IRON	100000.00	97507.25	9
LEAD	20.13	19.65	100.0	LEAD	0.13	0.10	
MAGNESIUM	100000.00	93920.45	93.9	MAGNESIUM	100000.00	96140.78	9
MOLYBDENUM	2000.00	1967.70	98.4	MOLYBDENUM	2000.00	1980.68	9
POTASSIUM	100000.00	92256.75	92.3	POTASSIUM	100000.00	94013.93	9
SODIUM	100000.00	93903.37	93.9	SODIUM	100000.00	95865.06	9
ZINC	20.40	18.83	95.0	ZINC	0.24	0.55	

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG22A

SDG Name: SN5717

MS
Method:

	Date: 07/22/2020				Method: MS	MS						
Lab Sample 1D	Client ID	D.F.	Time					Elements	nts			
CalBlank		-	13;31	AI Sb	Са	C	Fe Pb	Mg	Mo	×	Na	Zn
CalStd		4=	13,34	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ICV			13 37	AI Sb	Ca	С	Fe Pb	Mg	Mo	¥	Na	Zn
ICB		-	13 40	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
Pal		-	13.42	AI Sb	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ICSA			13.45	AI Sb	Са	CL	Fe Pb	Mg	Mo	¥	Na	Zn
ICSAB		-	13.48	AI Sb	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn
22222		-	13,50									
222222		-	13.53									
22222		~	13 55									
222222		~	13.58									
ICSAB		-	14:04	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
222222		-	14 07									
CCV		-	14 10	AI Sb	Са	СЦ	Fe Pb	Mg	Mo	¥	Na	Zn
CCB			14-13	AI Sb	Са	СЦ	Fe Pb	Mg	Mo	¥	Na	Zn
CCV			14.15	AI Sb	Ca	Си	Fe Pb	Mg	Mo	Х	Na	Zn
CCB		-	14 18	AI Sb	Ca	Сц	Fe Pb	Mg	Mo	¥	Na	Zn
PBSNG20IMS2		5	14.20	Sb		Cu	Ρb					Zn
LCSONG20IMS2		S	14.23	Sb		Сц	Pb					Zn
SN5717-014	COR03DA02A	S	14 25	Sb		CU	Pb					Zn
SN5717-015	COR03DA02B	S	14 28	Sb		Cu	Pb					Zn
ZZZZZ		ŝ	14 31									
CCV		-	14 33	AI Sb	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	14:36	AI Sb	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNG22A	Jul 2	22, 2020	13:37	File: LNG22A	Jul 2	22, 2020	14:10
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	381.88	95.5	ALUMINUM	500.0	481.16	96.2
ANTIMONY	20.0	20.02	100.1	ANTIMONY	25.0	23.72	94.9
CALCIUM	4000.0	4031.49	100.8	CALCIUM	5000.0	4738.81	94.8
COPPER	20.0	20.39	102.0	COPPER	25.0	24.99	100.0
IRON	4000.0	4037.34	100.9	IRON	5000.0	4785.07	95.7
LEAD	20.0	20.21	101.1	LEAD	25.0	23.76	95.0
MAGNESIUM	4000.0	4044.93	101.1	MAGNESIUM	5000.0	4948.42	99.0
MOLYBDENUM	40.0	39.62	99.0	MOLYBDENUM	25.0	24.84	99.4
POTASSIUM	4000.0	4032.27	100.8	POTASSIUM	5000.0	4933.72	98.7
SODIUM	4000.0	4144.42	103.6	SODIUM	5000.0	5108.90	102.2
ZINC	20.0	20.60	103.0	ZINC	25.0	24.97	99.9

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22A	Jul 2	22, 2020	14:15	File: LNG22A	Jul 2	22, 2020	14:33
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	478.50	95.7	ALUMINUM	500.0	480.94	96.2
ANTIMONY	25.0	23.09	92.4	ANTIMONY	25.0	23.49	94.0
CALCIUM	5000.0	4834.58	96.7	CALCIUM	5000.0	4930.09	98.6
COPPER	25.0	25.09	100.4	COPPER	25.0	25.15	100.6
IRON	5000.0	4841.43	96.8	IRON	5000.0	4983.58	99.7
LEAD	25.0	23.32	93.3	LEAD	25.0	23.44	93.8
MAGNESIUM	5000.0	4948.20	99.0	MAGNESIUM	5000.0	4906.32	98.1
MOLYBDENUM	25.0	24.52	98.1	MOLYBDENUM	25.0	24.28	97.1
POTASSIUM	5000.0	4955.62	99.1	POTASSIUM	5000.0	4945.87	98.9
SODIUM	5000.0	5085.75	101.7	SODIUM	5000.0	5046.64	100.9
ZINC	25.0	25.21	100.8	ZINC	25.0	25.13	100.5

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	PQL		
File: LNG22A	Jul 2	22, 2020	13:42
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	18.99	94.9
ANTIMONY	0.2	0.21	105.0
CALCIUM	20.0	22.59	112.9
COPPER	0.6	0.64	106.7
IRON	20.0	21.76	108.8
LEAD	0.2	0.22	110.0
MAGNESIUM	20.0	19.97	99.8
MOLYBDENUM	1.0	1.05	105.0
POTASSIUM	200.0	213.75	106.9
SODIUM	200.0	218.75	109.4
ZINC	2.0	2.10	105.0

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Unit	s: ug/L			
SAMPLE: ICE	8		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG22A Jul	22, 2020	13:40	File: LNG22A Jul	22, 2020	14:13	File: LNG22A Jul	22, 2020	14:18
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	17.806	В	ALUMINUM	9.005	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.070	J
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	14.926	В
COPPER	0.087	U	COPPER	0.185	J	COPPER	0.108	J
IRON	6.400	U	IRON	6.788	J	IRON	15.712	В
LEAD	0.039	J	LEAD	0.034	J	LEAD	0.083	J
MAGNESIUM	-1.628	U	MAGNESIUM	21.388	В	MAGNESIUM	15.430	В
MOLYBDENUM	0.153	J	MOLYBDENUM	0.524	В	MOLYBDENUM	0.267	J
POTASSIUM	12.000	U	POTASSIUM	29.833	J	POTASSIUM	18.915	J
SODIUM	6.600	U	SODIUM	69.891	J	SODIUM	48.372	J
ZINC	0.220	U	ZINC	0.243	J	ZINC	0.220	U

ЗA

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCB

File: LNG22A	Jul 22, 2020	14:36
Analyte	Result	С
ALUMINUM	0.601	J
ANTIMONY	0.061	U
CALCIUM	6.800	U
COPPER	0.087	U
IRON	14.616	В
LEAD	0.024	J
MAGNESIUM	4.380	J
MOLYBDENUN	0.067	J
POTASSIUM	12.000	U
SODIUM	14.813	J
ZINC	0.220	U

4 ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNG22A	Jul	22, 2020	13:45	File: LNG22A	Ju	1 22, 2020	13:48
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	92025.10	92.0	ALUMINUM	100000.00	89743.61	89.7
ANTIMONY	0.19	0.15		ANTIMONY	20.00	18.62	95.0
CALCIUM	100000.00	99865.83	99.9	CALCIUM	100000.00	98416.17	98.4
COPPER	0.26	0.45		COPPER	20.47	19.22	95.0
IRON	100000.00	96989.03	97.0	IRON	100000.00	96374.97	96.4
LEAD	0.13	0.09		LEAD	20.13	19.82	100.0
MAGNESIUM	100000.00	97235.85	97.2	MAGNESIUM	100000.00	95357.19	95.4
MOLYBDENUM	2000.00	1979.51	99.0	MOLYBDENUM	2000.00	1991.24	99.6
POTASSIUM	100000.00	95710.14	95.7	POTASSIUM	100000.00	93594.03	93.6
SODIUM	100000.00	96772.05	96.8	SODIUM	100000.00	95153.15	95.2
ZINC	0.24	0.57		ZINC	20.40	18.70	95.0

4 ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSAB		
File: LNG22A	Ju	1 22, 2020	14:04
Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	90025.53	90.0
ANTIMONY	20.00	18.24	90.0
CALCIUM	100000.00	101379.26	101.4
COPPER	20.47	19.32	95.0
IRON	100000.00	99086.59	99.1
LEAD	20.13	19.07	95.0
MAGNESIUM	100000.00	95589.71	95.6
MOLYBDENUM	2000.00	1996.17	99.8
POTASSIUM	100000.00	93692.87	93.7
SODIUM	100000.00	95287.94	95.3
ZINC	20.40	18.72	95.0

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG22B

SDG Name: SN5719

Date:	te: 07/22/2020				Method: N	MS						
Lab Sample ID	Client 1D	D.F.	Time					Elements	Its			
CalBlank		-	16.21	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CalStd		~	16 25	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ICV		~	16.27	AI Sb	Ca	СЦ	Fe Pb	Mg	Mo	¥	Na	Zn
ICB		-	16:30	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
PQL		÷	16 33	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ICSA		-	16 36	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ICSAB		~	16.38	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
222222		-	16.41									
222222		-	16 43									
222222		-	16 46									
222222		-	16.49									
CCV		-	16.51	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	×	Na	Zn
CCB		-	16 54	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	×	Na	Zn
ZZZZZZ		2 2	16.57									
222222		£	16.59									
222222		ŝ	17:02									
222222		-	17.05									
222222		-	17.07									
222222			17.10									
LCSONG20IMS1		5	17 13			Cu						
PBSNG201MS1		5	17 15	Sb								Zn
ZZZZZZ		5	17.18									
222222		-	17 21									
CCV		-	17.23	AI Sb	Ca	Сп	Fe Pb	Mg	Mo	×	Na	Zn
CCB		-	17.26	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
222222		ŝ	17.29									
222222		-	17:31									

Katahdin Analytical Services A0000050

Zn Zn Zn Zn Na Na Na Na ¥ \mathbf{x} ¥ \mathbf{x} Мo Mo Ň Ŵ Elements βŴ βW ВМ ВМ Fe Pb Fe Pb Fe Pb Fe Pb File Name: LNG22B Ū G S 0 C Method: MS Ca Ca Sa S AI Sb AI Sb AI Sb AI Sb Instrument ID: AGILENT 7800 ICP-MS Time 17 42 17.45 17.56 17 58 17.34 17 40 17 48 17 50 17 53 18 04 18 09 18 12 18.17 18.20 17.37 18 01 18:06 18 14 18 23 18 25 18.28 18 31 18 33 18 36 18:39 18.41 18 44 D.F. -----ß ŝ ŝ ŝ ----ŝ ю ŝ 25 ŝ ŝ ഗ ŝ S ŝ ŝ ŝ ŝ ŝ ŝ --07/22/2020 Client ID Date: Lab Sample 1D ZZZZZZ 222222 222222 222222 222222 22222 222222 222222 222222 222222 ZZZZZZ ZZZZZ ZZZZZZ ZZZZZZ 222222 222222 77777 222222 222222 ZZZZZZ ZZZZZ 222222 222222 CCV CCB CCV CCB

14

1

SDG Name: SN5719

Lab Name: Katahdin Analytical Services

Katahdin Analytical Services A0000051

Zn Zn Zn Zn Na Na N Na ¥ \mathbf{x} ¥ \mathbf{x} Ň Ň Я Å Elements Mg Ъ ВМ Mg Fe Pb Fe Pb Fe Pb Fe Pb File Name: LNG22B SDG Name: SN5719 ő G C Cu Method: MS S Ca Sa Ca AI Sb ß AI Sb AI Sb Lab Name: Katahdin Analytical Services R Instrument ID: AGILENT 7800 ICP-MS Time 18.47 18.49 18 52 18.54 18.57 19.00 19 02 19 05 19 08 19 10 19 13 19:18 19 26 19.32 19 40 19 43 19.16 19.21 19 24 19 29 19.37 19 45 19 48 19.51 19 53 19.34 19 56 D.F. S ŝ ŝ ŝ <u>_</u> -<u>___</u> S --... ŝ 'n ŝ ŝ ŝ ŝ ---~ ŝ 25 ŝ ŝ ŝ 2 2 ŝ 07/22/2020 Client 1D Date: Lab Sample ID 222222 22222 ZZZZZ 22222 22222 ZZZZZ 222222 22222 222222 ZZZZZ 222222 222222 222222 22222 222222 222222 22222 222222 222222 222222 222222 222222 77777 CCV CCB CCB CCV

14

Katahdin Analytical Services A0000052

14

Zn Zn Zn Zn uZ R Na Na Na Na \mathbf{x} ¥ ¥ ¥ \mathbf{x} Ŵ Ň Ň Мo Š Elements Mg ВŴ ВМ BW ВМ Fe Pb Fe Pb Fe Pb Fe Pb Fe Pb File Name: LNG22B SDG Name: SN5719 S С С S $\overline{\mathbf{C}}$ Method: MS Ca S Sa Sa Ca AI Sb AI Sb AI Sb Sb g Lab Name: Katahdin Analytical Services ₹ ₹ Instrument ID: AGILENT 7800 ICP-MS Time 20.04 20.06 20:09 20 12 20 15 20.17 20.20 20 22 20:30 20 36 20:38 20.41 19 59 20.25 20.28 20.33 20.44 20 49 20:52 20 54 21 00 21:02 21:05 20.01 20 46 20 57 21.07 D.F. ----25 Ś Ś ---ŝ ю ŝ S ŝ ŝ . ŝ 25 Ω ŝ ю S ŝ ß ŝ ŝ ŝ ŝ S -07/22/2020 Client ID Date: Lab Sample ID 222222 222222 222222 222222 222222 22222 222222 22222 22222 22222 ZZZZZ 222222 ZZZZZ ZZZZZ 222222 ZZZZZ ZZZZZ 222222 222222 ZZZZZZ ZZZZZ 222222 CCB CCV CCV CCB CCV

Katahdin Analytical Services A0000053

Katahdin Analytical Services A0000054

FORM XIV - IN

	Date: 07/22/2020	20			Method:	MS						
Lab Sample 1D	Client 1D	D.F.	Time					Elements	tts			
CCB		-	21:10	AI Sb	Ca	Cu	Fe Pb	БМ	Mo	×	Na	Zn
222222		5	21:13									
222222		5	21 15									
222222		5	21.18									
ZZZZZZ		Ω.	21:21									
222222		S	21.23									
222222		Ω.	21.26									
222222		5	21.28									
222222		25	21.31									
222222		S	21 34									
222222		ŝ	21.36									
CCV			21 39	AI Sb	Са	Cu	Fe Pb	Mg	Mo	×	Na	Zn
CCB			21.42	AI Sb	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
ZZZZZ		S	21 44									
22222		ŝ	21 47									
22222		5	21_49									
222222		5	21 52									
ZZZZZ		2 ²	21.55									
22222		5	21 57									
22222		5	22:00									
ZZZZZ		υ	22.02									
222222		5	22 05									
222222		5	22 08									
CCV		-	22.10	AI Sb	Ca	Cu	Fe Pb	BM	Mo	¥	Na	μZ
CCB		~	22:13	AI Sb	Са	С	Fe Pb	Mg	Mo	¥	Na	Zn
LCSONG201MS1		Ω	22.16	Sb			Pb					Zn
PBSNG201MS1		5	22 18			C	Pb					

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG22B SDG Name: SN5719

ANALYSIS RUN LOG

Katahdin Analytical Services A0000055

FORM XIV - IN

Lab Sample ID	Client 1D	D.F.	Time					Elements	nts			
SN5719-001	COR01IS01	5	22 21	Sb		Сп	Pb					Zn
SN5719-001L	COR01IS01L	25	22 24	Sb		CU	Pb					Zn
SN5719-001A	COR01IS01A	ŝ	22,26	Sb		Сп	Pb					ζn
SN5719-001S	COR01IS01S	S	22 29	Sb		Сп	Pb					Zn
SN5719-001P	COR01IS01P	S	22 31	Sb		Cu	Pb					Zn
SN5719-002	COR01IS02	S	22 34	Sb		Сп	Pb					Zn
SN5719-003	COR01IS03	£	22 37	Sb		Cu	Pb					Zn
SN5719-004	COR02IS01	5	22 39	Sb		Cu	Pb					Zn
CCV		-	22.42	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	×	Na	Zn
CCB		-	22 44	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
SN5719-005	COR02IS02	5	22 47	Sb		Cu	Pb					Zn
SN5719-005L	COR02IS02L	25	22.50	Sb		Сп	Pb					Zn
SN5719-005A	COR02IS02A	5	22:52	Sb		С	Pb					Zn
SN5719-005S	COR02IS02S	2	22 55	Sb		С	Pb					Zn
SN5719-005P	COR02IS02P	ŝ	22 58	Sb		Сп	Pb					Zn
SN5719-006	COR02IS03	сı	23.00	Sb		Сп	Pb					Zn
SN5719-007	COR03IS01	ŝ	23 03	Sb		Си	Ρb					Zn
SN5719-008	COR03IS02	S	23 05	Sb		Cu	Ъb					Zn
SN5719-009	COR03IS03	5	23 08	Sb		С	Pb					Zn
SN5719-009L	COR03IS03L	25	23.11	Sb		Си	Pb					Zn
CCV			23 14	AI Sb	Ca	С	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	23 16	AI Sb	Ca	Си	Fe Pb	ВМ	Mo	×	Na	Zn
SN5719-009A	COR03IS03A	5	23 19	Sb		Сп	Pb					Zn
SN5719-009S	COR03IS03S	5	23 22	Sb		Сц	Pb					Zn
SN5719-009P	COR03IS03P	ŝ	23.24	Sb		Cu	Pb					Zn
222222		5	23.27									
		1										

ANALYSIS RUN LOG 14

> Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG22B SDG Name: SN5719

SDG Name: SN5719	File Name: LNG22B	Method: MS	Elements				Ca Cu Fe Pb Mg Mo K
rvices	SM-						AI Sb
tical Se	800 ICI		D.F. Time	23,32	23.35	23 37	23.40
hdin Analy	AGILENT 7	2020	D.F.	5	5	5	**
Lab Name: Katahdin Analytical Services	Instrument ID: AGILENT 7800 ICP-MS	Date: 07/22/2020	Client ID				
			Lab Sample 1D	222222	222222	222222	CCV

zn Zn

Na Na

 \mathbf{x}

Mo

βŴ

Fe Pb

СЦ

Ca

AI Sb

23 42

-

CCB

Katahdin Analytical Services A0000056

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNG22B	Jul 2	22, 2020	16:27	File: LNG22B	Jul	22, 2020	16:51
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	392.62	98.2	ALUMINUM	500.0	480.29	96.1
ANTIMONY	20.0	20.64	103.2	ANTIMONY	25.0	23.05	92.2
CALCIUM	4000.0	3893.29	97.3	CALCIUM	5000.0	5073.42	101.5
COPPER	20.0	20.15	100.7	COPPER	25.0	25.18	100.7
IRON	4000.0	3831.66	95.8	IRON	5000.0	5011.31	100.2
LEAD	20.0	20.79	103.9	LEAD	25.0	23.59	94.4
MAGNESIUM	4000.0	4073.63	101.8	MAGNESIUM	5000.0	4890.81	97.8
MOLYBDENUM	40.0	40.37	100.9	MOLYBDENUM	25.0	25.09	100.4
POTASSIUM	4000.0	4076.81	101.9	POTASSIUM	5000.0	4902.15	98.0
SODIUM	4000.0	4182.70	104.6	SODIUM	5000.0	5112.27	102.2
ZINC	20.0	20.82	104.1	ZINC	25.0	25.16	100.6

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22B	Jul 22, 2020		17:23	File: LNG22B	Jul :	17:56	
Analyte	nalyte True Found %R (1)		Analyte	True Found		%R (1)	
ALUMINUM	500.0	482.88	96.6	ALUMINUM	500.0	482.58	96.5
ANTIMONY	25.0	23.95	95.8	ANTIMONY	25.0	22.85	91.4
CALCIUM	5000.0	5072.61	101.5	CALCIUM	5000.0	4907.23	98.1
COPPER	25.0	24.43	97.7	COPPER	25.0	24.41	97.6
IRON	5000.0	5026.23	100.5	IRON	5000.0	4800.26	96.0
LEAD	25.0	24.13	96.5	LEAD	25.0	23.61	94.4
MAGNESIUM	5000.0	4889.83	97.8	MAGNESIUM	5000.0	4922.58	98.5
MOLYBDENUM	25.0	24.82	99.3	MOLYBDENUM	25.0	25.17	100.7
POTASSIUM	5000.0	4868.57	97.4	POTASSIUM	5000.0	4898.25	98.0
SODIUM	5000.0	5076.93	101.5	SODIUM	5000.0	5131.11	102.6
ZINC	25.0	24.78	99.1	ZINC	25.0	24.79	99.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22B	Jul 2	22, 2020	18:28	File: LNG22B	Jul :	19:00	
Analyte	te True Found %R		%R (1)	Analyte	True Found		%R (1)
ALUMINUM	500.0	485.57	97.1	ALUMINUM	500.0	488.97	97.8
ANTIMONY	25.0	23.75	95.0	ANTIMONY	25.0	24.41	97.6
CALCIUM	5000.0	4960.35	99.2	CALCIUM	5000.0	4928.76	98.6
COPPER	25.0	24.92	99.7	COPPER	25.0	24.77	99.1
IRON	5000.0	4881.74	97.6	IRON	5000.0	4855.01	97.1
LEAD	25.0	24.02	96.1	LEAD	25.0	25.16	100.6
MAGNESIUM	5000.0	4918.00	98.4	MAGNESIUM	5000.0	4920.82	98.4
MOLYBDENUM	25.0	25.24	101.0	MOLYBDENUM	25.0	25.08	100.3
POTASSIUM	5000.0	4919.43	98.4	POTASSIUM	5000.0	4905.50	98.1
SODIUM	5000.0	5123.14	102.5	SODIUM	5000.0	5079.71	101.6
ZINC	25.0	25.00	100.0	ZINC	25.0	25.32	101.3

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22B	Jul 2	Jul 22, 2020		File: LNG22B	Jul 2	20:04		
Analyte	True Found %R (1)		%R (1)	Analyte	True Found		%R (1)	
ALUMINUM	500.0	483.15	96.6	ALUMINUM	500.0	476.13	95.2	
ANTIMONY	25.0	22.87	91.5	ANTIMONY	25.0	24.36	97.4	
CALCIUM	5000.0	4894.99	97.9	CALCIUM	5000.0	4910.41	98.2	
COPPER	25.0	24.50	98.0	COPPER	25.0	24.72	98.9	
IRON	5000.0	4822.35	96.4	IRON	5000.0	4820.91	96.4	
LEAD	25.0	23.41	93.6	LEAD	25.0	24.54	98.2	
MAGNESIUM	5000.0	4951.70	99.0	MAGNESIUM	5000.0	4904.38	98.1	
MOLYBDENUM	25.0	25.26	101.0	MOLYBDENUM	25.0	25.07	100.3	
POTASSIUM	5000.0	4940.85	98.8	POTASSIUM	5000.0	4913.38	98.3	
SODIUM	5000.0	5134.80	102.7	SODIUM	5000.0	5104.14	102.1	
ZINC	25.0	25.06	100.2	ZINC	25.0	24.56	98.2	

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22B Jul 22, 2020		22, 2020	20:36	File: LNG22B	Jul 2	21:07	
Analyte	True Found %R(1)		Analyte	True	Found	%R (1)	
ALUMINUM	500.0	495.07	99.0	ALUMINUM	500.0	504.01	100.8
ANTIMONY	25.0	23.63	94.5	ANTIMONY	25.0	22.88	91.5
CALCIUM	5000.0	4882.59	97.7	CALCIUM	5000.0	4895.25	97.9
COPPER	25.0	25.39	101.6	COPPER	25.0	25.62	102.5
IRON	5000.0	4804.80	96.1	IRON	5000.0	4829.99	96.6
LEAD	25.0	23.99	96.0	LEAD	25.0	23.42	93.7
MAGNESIUM	5000.0	5030.87	100.6	MAGNESIUM	5000.0	5063.76	101.3
MOLYBDENUM	25.0	25.81	103.2	MOLYBDENUM	25.0	25.77	103.1
POTASSIUM	5000.0	5040.70	100.8	POTASSIUM	5000.0	5022.07	100.4
SODIUM	5000.0	5237.89	104.8	SODIUM	5000.0	5245.85	104.9
ZINC	25.0	25.28	101.1	ZINC	25.0	25.98	103.9

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22B	Jul 2	Jul 22, 2020		File: LNG22B	Jul :	22:10	
Analyte	alyte True Found %R(1)		Analyte	True	Found	%R (1)	
ALUMINUM	500.0	480.19	96.0	ALUMINUM	500.0	475.61	95.1
ANTIMONY	25.0	23.26	93.0	ANTIMONY	25.0	22.43	89.7
CALCIUM	5000.0	4952.36	99.0	CALCIUM	5000.0	4873.01	97.5
COPPER	25.0	24.82	99.3	COPPER	25.0	24.98	99.9
IRON	5000.0	4860.08	97.2	IRON	5000.0	4834.68	96.7
LEAD	25.0	24.01	96.0	LEAD	25.0	23.24	93.0
MAGNESIUM	5000.0	5006.68	100.1	MAGNESIUM	5000.0	4934.05	98.7
MOLYBDENUM	25.0	25.16	100.6	MOLYBDENUM	25.0	25.32	101.3
POTASSIUM	5000.0	4906.85	98.1	POTASSIUM	5000.0	4930.23	98.6
SODIUM	5000.0	5127.78	102.6	SODIUM	5000.0	5089.16	101.8
ZINC	25.0	25.01	100.0	ZINC	25.0	25.44	101.8

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG22B	File: LNG22B Jul 22, 2020		22:42	File: LNG22B	Jul 2	23:14	
Analyte	True Found %R(1)		Analyte	True Found		%R (1)	
ALUMINUM	500.0	482.01	96.4	ALUMINUM	500.0	494.01	98.8
ANTIMONY	25.0	24.12	96.5	ANTIMONY	25.0	24.44	97.8
CALCIUM	5000.0	4854.18	97.1	CALCIUM	5000.0	4955.40	99.1
COPPER	25.0	25.21	100.8	COPPER	25.0	27.04	108.2
IRON	5000.0	4839.78	96.8	IRON	5000.0	4939.66	98.8
LEAD	25.0	24.82	99.3	LEAD	25.0	24.68	98.7
MAGNESIUM	5000.0	4843.45	96.9	MAGNESIUM	5000.0	4923.20	98.5
MOLYBDENUM	25.0	24.91	99.6	MOLYBDENUM	25.0	25.26	101.0
POTASSIUM	5000.0	4815.06	96.3	POTASSIUM	5000.0	4913.84	98.3
SODIUM	5000.0	5035.19	100.7	SODIUM	5000.0	5069.44	101.4
ZINC	25.0	25.16	100.6	ZINC	25.0	25.68	102.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE: CCV

Jul 2	22, 2020	23:40
True	Found	%R (1)
500.0	473.97	94.8
25.0	23.12	92.5
5000.0	4917.08	98.3
25.0	25.26	101.0
5000.0	4880.62	97.6
25.0	23.57	94.3
5000.0	4858.66	97.2
25.0	25.47	101.9
5000.0	4874.50	97.5
5000.0	4998.34	100.0
25.0	24.90	99.6
	True 500.0 25.0 5000.0 25.0 5000.0 25.0 5000.0 25.0 5000.0 5000.0	500.0 473.97 25.0 23.12 5000.0 4917.08 25.0 25.26 5000.0 4880.62 25.0 23.57 5000.0 4858.66 25.0 25.47 5000.0 4874.50 5000.0 4998.34

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

Concentration Units: ug/L

SAMPLE:	PQL		
File: LNG22B	Jul 2	22, 2020	16:33
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	18.87	94.3
ANTIMONY	0.2	0.21	105.0
CALCIUM	20.0	21.96	109.8
COPPER	0.6	0.51	85.0
IRON	20.0	23.04	115.2
LEAD	0.2	0.22	110.0
MAGNESIUM	20.0	20.66	103.3
MOLYBDENUM	1.0	1.12	112.0
POTASSIUM	200.0	209.62	104.8
SODIUM	200.0	217.63	108.8
ZINC	2.0	2.17	108.5

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	ration Units	s: ug/L					
SAMPLE: ICE	3		SAMPLE: CC	SAMPLE: CCB			SAMPLE: CCB			
File: LNG22B Jul	22, 2020	16:30	File: LNG22B Jul	22, 2020	16:54	File: LNG22B Jul	22, 2020	17:26		
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С		
ALUMINUM	0.388	J	ALUMINUM	10.251	В	ALUMINUM	0.542	J		
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U		
CALCIUM	6.800	U	CALCIUM	14.749	В	CALCIUM	6.800	U		
COPPER	-0.115	U	COPPER	0.102	J	COPPER	-0.142	U		
IRON	6.400	U	IRON	14.158	В	IRON	6.400	U		
LEAD	0.018	J	LEAD	0.090	J	LEAD	0.028	J		
MAGNESIUM	0.829	J	MAGNESIUM	10.613	В	MAGNESIUM	1.293	J		
MOLYBDENUM	0.197	J	MOLYBDENUM	0.192	J	MOLYBDENUM	0.048	J		
POTASSIUM	12.000	U	POTASSIUM	15.852	J	POTASSIUM	12.000	U		
SODIUM	6.600	U	SODIUM	57.775	J	SODIUM	16.885	J		
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U		

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5719

			Concent	ration Unit	s: ug/L				
SAMPLE: CC	B		SAMPLE: CCB			SAMPLE: CCB			
File: LNG22B Jul	22, 2020	17:58	File: LNG22B Jul	22, 2020	18:31	File: LNG22B Jul	22, 2020	19:02	
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С	
ALUMINUM	0.387	J	ALUMINUM	0.330	U	ALUMINUM	0.330	U	
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U	
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U	
COPPER	-0.156	U	COPPER	-0.203	U	COPPER	-0.183	U	
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U	
LEAD	0.017	J	LEAD	0.017	J	LEAD	0.067	J	
MAGNESIUM	4.961	J	MAGNESIUM	2.348	J	MAGNESIUM	2.049	J	
MOLYBDENUM	0.056	J	MOLYBDENUM	0.062	J	MOLYBDENUM	0.044	J	
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U	
SODIUM	18.707	J	SODIUM	9.402	J	SODIUM	6.600	U	
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U	

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	ration Unit	s: ug/L				
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CCB			
File: LNG22B Jul	22, 2020	19:34	File: LNG22B Jul	22, 2020	20:06	File: LNG22B Jul	22, 2020	20:38	
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С	
ALUMINUM	0.940	J	ALUMINUM	0.330	U	ALUMINUM	1.029	J	
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U	
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U	
COPPER	-0.176	U	COPPER	-0.218	U	COPPER	-0.179	U	
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U	
LEAD	0.017	J	LEAD	0.034	J	LEAD	0.012	J	
MAGNESIUM	1.135	J	MAGNESIUM	0.350	U	MAGNESIUM	1.069	J	
MOLYBDENUM	0.040	J	MOLYBDENUM	0.055	J	MOLYBDENUM	0.067	J	
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U	
SODIUM	20.888	J	SODIUM	8.646	J	SODIUM	10.086	J	
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U	

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG22B Jul	22, 2020	21:10	File: LNG22B Ju	1 22, 2020	21:42	File: LNG22B Ju	1 22, 2020	22:13
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	0.330	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	-0.177	U	COPPER	-0.185	U	COPPER	-0.174	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.013	J	LEAD	0.022	J	LEAD	0.009	J
MAGNESIUM	-2.358	U	MAGNESIUM	-2.851	U	MAGNESIUM	-3.219	U
MOLYBDENUM	0.056	J	MOLYBDENUM	0.047	J	MOLYBDENUM	0.043	J
POTASSIUM	12.000	U	POTASSIUM	-15.413	U	POTASSIUM	-12.994	U
SODIUM	6.600	U	SODIUM	6.600	U	SODIUM	11.321	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG22B Ju	1 22, 2020	22:44	File: LNG22B Ju	22, 2020	23:16	File: LNG22B Ju	1 22, 2020	23:42
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	3.955	J	ALUMINUM	2.773	J	ALUMINUM	1.870	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	-0.155	U	COPPER	-0.135	U	COPPER	-0.162	U
IRON	12.189	В	IRON	9.395	J	IRON	6.400	U
LEAD	0.112	В	LEAD	0.184	В	LEAD	0.130	В
MAGNESIUM	-3.941	U	MAGNESIUM	-3.894	U	MAGNESIUM	-2.488	U
MOLYBDENUM	0.060	J	MOLYBDENUM	0.084	J	MOLYBDENUM	0.069	J
POTASSIUM	-14.608	U	POTASSIUM	-14.700	U	POTASSIUM	-20.983	U
SODIUM	6.600	U	SODIUM	6.600	U	SODIUM	6.600	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5719

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNG22B	Ju	1 22, 2020	16:36	File: LNG22B	Ju	1 22, 2020	16:38
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	92785.31	92.8	ALUMINUM	100000.00	92419.28	92.4
ANTIMONY	0.19	0.16		ANTIMONY	20.00	18.66	95.0
CALCIUM	100000.00	99238.10	99.2	CALCIUM	100000.00	97491.74	97.5
COPPER	0.26	0.26		COPPER	20.47	19.37	95.0
IRON	100000.00	95988.97	96.0	IRON	100000.00	93970.82	94.0
LEAD	0.13	0.08		LEAD	20.13	19.58	100.0
MAGNESIUM	100000.00	96563.33	96.6	MAGNESIUM	100000.00	96588.66	96.6
MOLYBDENUM	2000.00	2029.58	101.5	MOLYBDENUM	2000.00	2040.87	102.1
POTASSIUM	100000.00	95581.88	95.6	POTASSIUM	100000.00	95223.27	95.2
SODIUM	100000.00	96939.50	96.9	SODIUM	100000.00	96992.70	97.0
ZINC	0.24	0.54		ZINC	20.40	19.97	100.0

Katahdin Analytical Services A0000134

FORM XIV - IN

	Na	Na	Na	Na	Na	Na	Na					Na	Na											Na	Na		
	¥	¥	¥	¥	¥	¥	¥					¥	¥											¥	×		
ats	Mo	Mo	Mo	Mo	Mo	Mo	Mo					Mo	Mo											Mo	Mo		
Elements	Mg	Mg	ВМ	ВW	ßM	Mg	ВW					Mg	ВМ											ВМ	Mg		
	Fe Pb	Fe Pb	Fe Pb	Fe Pb	Fe Pb	Fe Pb	Fe Pb					Fe Pb	Fe Pb											Fe Pb	Fe Pb		
	Са	Са	Са	Ca	Са	Ca	Ca					Са	Ca											Са	Ca		
	AI Sb	AI Sb	AI Sb	AI Sb	AI Sb	AI Sb	AI Sb					AI Sb	AI Sb											AI Sb	AI Sb		
Time	17 13	17_16	17 19	17 21	17.24	17,26	17.29	17 32	17 34	17 37	17 40	17,42	17.45	17 47	17.50	17 53	17.55	17.58	18.00	18 03	18.05	18 08	18 11	18.13	18.16	18.18	10.01
D.F.	-	-	-	-	-	-	-	-	-	-	-	-	-	4	1	÷	-	۲	٢	1	-	-	-	7 -	t	4	u
Client ID																											
Lab Sample ID	CalBlank	CalStd	ICV	ICB	PQL	ICSA	ICSAB	222222	222222	222222	222222	ccv	CCB	22222	222222	222222	222222	222222	222222	222222	222222	222222	22222	CCV	CCB	777777	

14

ANALYSIS RUN LOG

File Name: LNG24A

SDG Name: SN5717

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

14

	Lab Name: Katahdin Analytical Services	nalytical (Services	SDG Name: SN5717	N5717				
	Instrument ID: AGILENT 7800 ICP-MS	NT 7800 I	CP-MS	File Name: LNG24A	NG24A				
	Date: 07/24/2020			Method: MS					
Lab Sample ID	Client ID	D.F. Time	16			Elements	ts		
22222		1 18.24	4						
ZZZZZ		1 18 26	9						
222222		1 18 29	6						
22222		1 18.31	4						
222222		5 18 34	4						
222222		5 18 37	7						
222222		5 18 39	6						
222222		5 18 42	2						
CCV		1 18.44	4 AI Sb	Са	Fe Pb	Mg	Mo	×	Na
CCB		1 18 47	7 AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na
222222		5 18 50	0						
222222		5 18 53	e						
22222		5 18:55	S						
777777		5 18 58	8						
222222		10 19 00	0						
ZZZZZZ		20 19 03	E						
222222		5 19 06	G						
222222		5 19 08	8						
222222		5 19 11	-						
222222		5 19 13	3						
CCV		1 19 16	6 AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na
CCB		1 19 19	9 Al Sb	Ca	Fe Pb	Mg	Mo	×	Na
222222		5 19.21	+						
PBWNG21IMW2		5 19 24	4 Sb		đ				
LCSWNG21IMW2		5 19.27	7 Sb		Ъb				
SN5717-020	COR03EQB	5 19:29	9 Sb		Ч				
222222		5 19.32	2						

Katahdin Analytical Services A0000135

14 VSIS RUN I

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/24/2020

File Name: LNG24A

SDG Name: SN6056

	Client ID	D.F.	lime					Elements	ents		
22222		S	19.35								
22222		5	19.37								
222222		S	19.40								
222222		S	19 43								
222222		S	19 45								
ccv		-	19.48	AI Sb	Ca	Си	Fe Pb	Mg	Mo	¥	Na
CCB		-	19.51	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
222222		5	19.53								
222222		5	19.56								1
222222		5	19.58								
222222		2J	20.01								
222222		25	20.03								
22222		2	20.06								
222222		ß	20.08								
22222		5	20:11								
222222		S	20.14								
222222		-	20.16								
CCV		-	20:19	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CCB		-	20:21	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
22222		1	20.24								1
22222		+	20.27								
222222		4	20:29								
222222		100	20.32								
222222		-	20.35								
22222		-	20.37								
22222		3	20.40								
222222		-	20 43								

Zn Zn

Zn Zn 14

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/24/2020

File Name: LNG24A

SDG Name: SN6056

Method: MS

Instantion Clancity No. Clancity No. Clancity No. Clancity No. Clancity No. Clancity No.			\$			INTERIOR.	CIVI						
ZZ 1 204 ZZ 1 2.04 M M M M M ZZ 1 2.04 M M M M M M ZZ 1 2.03 M M M M M M M ZZ 1 2.03 A M M M M M M ZZ 1 2.03 A M M M M M M ZZ 2 2.03 M M M M M M M ZZ 1 2.04 S0 M M M M M M ZZ 1 2.04 S0 M M M M M M ZZ 1 2.04 M M M M M M M MODER 1 2.14 M <td< th=""><th>Lab Sample ID</th><th>Client ID</th><th>D.F</th><th></th><th></th><th></th><th></th><th></th><th>Eleme</th><th>nts</th><th></th><th></th><th></th></td<>	Lab Sample ID	Client ID	D.F						Eleme	nts			
Z2 1 201 2014<	22222		-	20.45			6						
1 2 4 8 6	22222		-	20.48									
22 1 215 1 215 1 216 1<	ccv		-	20.51		Ca	Cu	Fe Pb	Mg	Mo	х	Na	Zn
ZZ 2 206 ZZ 5 210 MCZMISI 5 210 MCZMISI 5 210 MCZMISI 6 10 MCZMISI 5 210 MCZMISI 5 210 MCZMISI 6 10 MCZMISI 6 10 MCZMISI 10 10 MCZMISI 10 10 MCZMISI 10 10 MCZMISIONI 10 10 MCMUSEDMAI	CCB		-	20.53		Са	Cu		Mg	Mo	¥	Ra	Zn
1 2 2 2 2 2 2 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2 10	222222		5	20.56									
ZZ ZZ <thzz< th=""> ZZ ZZ ZZ<!--</td--><td>222222</td><td></td><td>5</td><td>20 59</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thzz<>	222222		5	20 59									
Accorditation 5 2104 50 Col Col <th< td=""><td>22222</td><td></td><td>5</td><td>21:01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	22222		5	21:01									
MGZJMK31 5 107 5 107 5 107 5 107 5 107 5 107 5 107 5 107 10 <	PBSNG23IMS1		ŝ	21.04	Sb		Сц						Zn
MG20MS1 G 2 </td <td>LCSONG23IMS1</td> <td></td> <td>5</td> <td>21.07</td> <td>Sb</td> <td></td> <td>С</td> <td>Pb</td> <td></td> <td></td> <td></td> <td></td> <td>Zn</td>	LCSONG23IMS1		5	21.07	Sb		С	Pb					Zn
6e0e C0R05ED01 5 2112 5b Cu Cu 6e0e C0R05ED024 5 2115 5b Cu Cu Cu 6e0e C0R05ED024 5 2117 Sb Cu Cu Cu 6e0e C0R05ED034 5 2120 Sb Cu Cu<	LC20NG23IMS1		5	21.09	Sb		СЦ	Pb					Zn
6e0e CorassEbord 5 11 5b CurassEbord 5 11 5b CurassEbord 5 11 5b CurassEbord 5 11 21 5b CurassEbord 5b 12 2b 12 5b 12	SN6056-005	COR05SED01A		21:12	Sb		ō						Zn
6607 C0rdssEpd2 5 217 5 1 5 217 5 1 2 <th2< th=""> <th2< th=""> 2</th2<></th2<>	SN6056-006	COR05SED02A		21.15	Sb		C						Zn
6-010 COROSED0A 5 2120 50 Cu Cu <thcu< th=""> <thcu< th=""> Cu</thcu<></thcu<>	SN6056-007	COR05SED02B		21.17	Sb		С				0		Zn
I 2123 Al Sb Ca Cu Fe Mo K Na 66-09 CorrosSED04A 5 2128 KSb Ca Cu Fe Mo K Na 66-091 CorrosSED04A 5 2128 Sb Cu Fe Mo K Na 66-091 CorrosSED04A 5 2131 Sb Cu Cu Fe Na K Na 66-093 CorrosSED04A 5 2131 Sb Cu Cu Fe Fe Na K Na 66-093 CorrosSED04A 5 2136 Sb Sb Fe	SN6056-008	COR05SED03A		21:20	Sb		Cu						Zn
1 212 AI SU Cal Cu Fe Po Mo K Ma 66-004 5 2128 Sb	CCV		-	21:23		Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
66-004 C 2128 5b CurdissED04AL 5 2131 5b 66-004 C Z 2 2131 Sb CurdissED04AL Z	CCB		1	21:26		Ca	Cu		ßM	Mo	×	Na	Zn
66-004 CS 2131 Sb Cu 66-004 5 2134 Sb Cu Pb Image: Second Se	SN6056-009	COR05SED04A		21.28	Sb		С						Zn
66-008 COR0SED04A 5 2134 Sb Cu Pb 66-008 COR0SED04A 5 2136 Sb Cu Pb Cu 66-009 COR0SED04A 5 2139 Sb Cu Pb Cu Pb 66-010 COR0SED05A 5 2142 Sb Cu Pb Cu Pb 66-01 COR0SED05A 5 2142 Sb Cu Pb Cu Pb 66-01 COR0SED05A 5 2147 Sb Sb Cu Pb Cu	SN6056-009L	COR05SED04AL			Sb		СЦ						Zn
66-008 COR05SED04AS 5 21:36 Sb Cu Pb 66-009 COR05SED04A 5 21:39 Sb Cu Pb Cu Pb 66-010 COR05SED05A 5 21:42 Sb Cu Pb Cu Pb 66-011 COR05SED05A 5 21:42 Sb Cu Pb Cu Pb 66-012 COR05SED05A 5 21:47 Sb Cu Pb Cu	SN6056-009A	COR05SED04AA		21:34	Sb		СЦ	Pb					Zn
66-00P COR05SED04AP 5 21:39 Sb Cu Pb 66-010 COR05SED05A 5 21:42 Sb Cu Pb Cu 66-011 COR05SED05A 5 21:43 Sb Cu Pb Cu Pb 66-012 COR05SED05A 5 21:47 Sb Cu Pb Cu Pb 66-012 COR05SED05A 5 21:47 Sb Cu Pb Cu Pb Cu Pb Cu Pb Pb Pb Pb Pa Pa Pa Pa Pb Pa Pb Pa	SN6056-009S	COR05SED04AS		21.36	Sb		Cu	Pb					Zn
66-010 COR0SSED05A 5 2142 Sb Cu Pb 66-011 COR0SSED07A 5 2147 Sb Cu Pb Cu Pb Cu Pb Cu	SN6056-009P	COR05SED04AP		21:39	Sb		Cu	Рb					Zn
66-011 COROSSED06A 5 21.44 Sb Cu Pb 66-012 5 21.47 Sb Cu Pb Current (Constrained	SN6056-010	COR05SED05A		21:42	Sb		СП	Рb					Zn
66-012 COROSSED07A 5 2147 Sb Cu 66-013 COROSSED08A 5 2150 Sb Cu Pb	SN6056-011	COR05SED06A		21 44	Sb		СП	Рb					Zn
56-013 COROSSED08A 5 21:50 Sb Cu Pb 56-014 5 21:52 Sb Pb Pb<	SN6056-012	COR05SED07A		21.47	Sb		Cu						Zn
56-014 C CR06SED01A 5 21:52 Sb Pb P 1 21:55 AI Sb Ca Cu Fe Pb Mg Ma Na	SN6056-013	COR05SED08A		21.50	Sb		Cu	Pb					Zn
1 21:55 AI Sb Ca Cu Fe Pb Mg Mo K Na	SN6056-014	COR06SED01A		21:52	Sb			Pb					Zn
	CCV		-	21.55		Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn

Katahdin Analytical Services A0000190

14

SDG Name: SN6056 Method: MS Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS 07/24/2020 Date:

File Name: LNG24A

Lab Sample ID	Client ID	D.F.	D.F. Time					Elements	ts			
CCB		-	21.58	AI Sb	Ca	Cu	Fe Pb	Mg	Mo	×	Na	Zn
SN6056-015	COR06SED02A	5	22.01	Sb			Pb					Zn
SN6056-016	COR06SED02B	5	22 03	Sb			Pb					Zn
SN6056-017	COR06SED03A	S	22 06	Sb								Zn
CCV		-	22 08	AI Sb	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		F	22 11	AI Sb	Ca	CL	Fe Pb	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNG24A	Jul 2	24, 2020	17:19	File: LNG24A	Jul 2	24, 2020	17:42
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	391.94	98.0	ALUMINUM	500.0	485.29	97.1
ANTIMONY	20.0	19.69	98.5	ANTIMONY	25.0	24.33	97.3
CALCIUM	4000.0	3973.95	99.3	CALCIUM	5000.0	4787.56	95.8
IRON	4000.0	3948.94	98.7	IRON	5000.0	4840.93	96.8
LEAD	20.0	19.83	99.1	LEAD	25.0	24.32	97.3
MAGNESIUM	4000.0	4025.92	100.6	MAGNESIUM	5000.0	4793.15	95.9
MOLYBDENUM	40.0	40.06	100.2	MOLYBDENUM	25.0	24.88	99.5
POTASSIUM	4000.0	4014.47	100.4	POTASSIUM	5000.0	4782.74	95.7
SODIUM	4000.0	4100.39	102.5	SODIUM	5000.0	4958.05	99.2

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG24A	Jul 2	24, 2020	18:13	File: LNG24A	Jul 2	24, 2020	18:44
Analyte	True	Found	%R(1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	479.70	95.9	ALUMINUM	500.0	482.85	96.6
ANTIMONY	25.0	23.34	93.4	ANTIMONY	25.0	23.09	92.4
CALCIUM	5000.0	4880.97	97.6	CALCIUM	5000.0	4826.83	96.5
IRON	5000.0	4863.52	97.3	IRON	5000.0	4765.73	95.3
LEAD	25.0	24.11	96.4	LEAD	25.0	23.77	95.1
MAGNESIUM	5000.0	4976.93	99.5	MAGNESIUM	5000.0	4900.34	98.0
MOLYBDENUM	25.0	25.20	100.8	MOLYBDENUM	25.0	25.16	100.6
POTASSIUM	5000.0	4813.51	96.3	POTASSIUM	5000.0	4796.74	95.9
SODIUM	5000.0	5152.45	103.0	SODIUM	5000.0	5095.64	101.9

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG24A	Jul 2	24, 2020	19:16	File: LNG24A	Jul 2	24, 2020	19:48
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	470.79	94.2	ALUMINUM	500.0	473.02	94.6
ANTIMONY	25.0	23.20	92.8	ANTIMONY	25.0	23.73	94.9
CALCIUM	5000.0	4835.68	96.7	CALCIUM	5000.0	4870.24	97.4
IRON	5000.0	4804.85	96.1	IRON	5000.0	4816.00	96.3
LEAD	25.0	24.14	96.6	LEAD	25.0	24.93	99.7
MAGNESIUM	5000.0	4970.75	99.4	MAGNESIUM	5000.0	5018.00	100.4
MOLYBDENUM	25.0	25.35	101.4	MOLYBDENUM	25.0	25.48	101.9
POTASSIUM	5000.0	4840.66	96.8	POTASSIUM	5000.0	4786.29	95.7
SODIUM	5000.0	5169.95	103.4	SODIUM	5000.0	5237.15	104.7

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG24A	Jul 2	24, 2020	20:19	SAMPLE: CCV File: LNG24A		24, 2020	20:51
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	489.04	97.8	ALUMINUM	500.0	486.11	97.2
ANTIMONY	25.0	22.67	90.7	ANTIMONY	25.0	24.10	96.4
CALCIUM	5000.0	4939.48	98.8	CALCIUM	5000.0	4844.79	96.9
COPPER	25.0	25.23	100.9	COPPER	25.0	25.04	100.2
IRON	5000.0	4827.54	96.6	IRON	5000.0	4770.77	95.4
LEAD	25.0	23.61	94.4	LEAD	25.0	25.00	100.0
MAGNESIUM	5000.0	5079.92	101.6	MAGNESIUM	5000.0	5063.72	101.3
MOLYBDENUM	25.0	25.55	102.2	MOLYBDENUM	25.0	25.42	101.7
POTASSIUM	5000.0	4879.18	97.6	POTASSIUM	5000.0	4853.43	97.1
SODIUM	5000.0	5248.51	105.0	SODIUM	5000.0	5207.42	104.1
ZINC	25.0	26.60	106.4	ZINC	25.0	26.43	105.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV			21.22	SAMPLE: CCV			
File: LNG24A	Jul 2	24, 2020	21:23	File: LNG24A	Jul	24, 2020	21:55
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	481.01	96.2	ALUMINUM	500.0	492.19	98.4
ANTIMONY	25.0	23.93	95.7	ANTIMONY	25.0	23.75	95.0
CALCIUM	5000.0	4905.80	98.1	CALCIUM	5000.0	4872.73	97.5
COPPER	25.0	25.50	102.0	COPPER	25.0	24.95	99.8
IRON	5000.0	4861.83	97.2	IRON	5000.0	4825.81	96.5
LEAD	25.0	25.11	100.4	LEAD	25.0	25.07	100.3
MAGNESIUM	5000.0	4990.29	99.8	MAGNESIUM	5000.0	4955.76	99.1
MOLYBDENUM	25.0	26.00	104.0	MOLYBDENUM	25.0	25.62	102.5
POTASSIUM	5000.0	4812.53	96.3	POTASSIUM	5000.0	4826.96	96.5
SODIUM	5000.0	5139.96	102.8	SODIUM	5000.0	5093.96	101.9
ZINC	25.0	25.58	102.3	ZINC	25.0	24.85	99.4

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV

File: LNG24A	Jul 2	24, 2020	22:08
Analyte	True	Found	%R (1)
ALUMINUM	500.0	481.60	96.3
ANTIMONY	25.0	23.03	92.1
CALCIUM	5000.0	4843.11	96.9
COPPER	25.0	25.27	101.1
IRON	5000.0	4787.07	95.7
LEAD	25.0	24.07	96.3
MAGNESIUM	5000.0	4978.36	99.6
MOLYBDENUM	25.0	25.69	102.8
POTASSIUM	5000.0	4807.82	96.2
SODIUM	5000.0	5137.39	102.7
ZINC	25.0	25.47	101.9

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

. . .

SDG Name: SN5717

Concentration Units: ug/L

SAI	MPLE:	PQL

File: LNG24A	Jul 2	24, 2020	17:24
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	20.03	100.2
ANTIMONY	0.2	0.21	105.0
CALCIUM	20.0	21.94	109.7
IRON	20.0	23.11	115.6
LEAD	0.2	0.23	115.0
MAGNESIUM	20.0	19.22	96.1
MOLYBDENUM	1.0	1.12	112.0
POTASSIUM	200.0	209.16	104.6
SODIUM	200.0	228.92	114.5

.

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	ration Unit	s: ug/L			
SAMPLE: ICE	3		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG24A Jul	24, 2020	17:21	File: LNG24A Jul	24, 2020	17:45	File: LNG24A Jul	24, 2020	18:16
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.479	J	ALUMINUM	3.295	J	ALUMINUM	0.368	J
ANTIMONY	0.061	U	ANTIMONY	0.070	J	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	8.450	J
IRON	6.400	U	IRON	6.436	J	IRON	6.400	U
LEAD	0.022	J	LEAD	0.113	В	LEAD	0.021	J
MAGNESIUM	-2.210	U	MAGNESIUM	1.431	J	MAGNESIUM	-1.125	U
MOLYBDENUM	0.171	J	MOLYBDENUM	0.158	J	MOLYBDENUM	0.088	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	24.662	J	SODIUM	39.932	J

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG24A Jul	24, 2020	18:47	File: LNG24A Jul	24, 2020	19:19	File: LNG24A Jul	24, 2020	19:51
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	0.330	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.023	J	LEAD	0.020	J	LEAD	0.011	J
MAGNESIUM	-2.104	U	MAGNESIUM	-2.495	U	MAGNESIUM	-0.804	U
MOLYBDENUM	0.068	J	MOLYBDENUM	0.076	J	MOLYBDENUM	0.046	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	-10.409	U	SODIUM	51.319	J

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CO	CB	
File: LNG24A Jul	l 24, 2020	20:21	File: LNG24A Jul	24, 2020	20:53	File: LNG24A Ju	l 24, 2020	21:26
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	1.081	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	12.785	В	CALCIUM	28.158	В
COPPER	-0.140	U	COPPER	0.087	U	COPPER	-0.094	U
IRON	6.400	U	IRON	6.400	U	IRON	10.360	В
LEAD	0.013	J	LEAD	0.032	J	LEAD	0.132	В
MAGNESIUM	-1.768	U	MAGNESIUM	-3.044	U	MAGNESIUM	-4.311	U
MOLYBDENUM	0.073	J	MOLYBDENUM	0.095	J	MOLYBDENUM	0.079	J
POTASSIUM	-13.035	U	POTASSIUM	12.000	U	POTASSIUM	-13.054	U
SODIUM	6.600	U	SODIUM	10.403	J	SODIUM	-24.951	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Conc	entration Unit
SAMPLE: CO	СВ		SAMPLE: O	ССВ
File: LNG24A Ju	ıl 24, 2020	21:58	File: LNG24A	Jul 24, 2020
Analyte	Result	С	Analyte	Result
ALUMINUM	0.754	J	ALUMINUM	0.862
ANTIMONY	0.061	U	ANTIMONY	0.061
CALCIUM	6.800	U	CALCIUM	6.800
COPPER	-0.164	U	COPPER	-0.186
IRON	6.400	U	IRON	6.400
LEAD	0.188	В	LEAD	0.113
MAGNESIUM	-4.856	U	MAGNESIUM	-3.766
MOLYBDENUM	0.074	J	MOLYBDENUM	0.055
POTASSIUM	-14.023	U	POTASSIUM	-17.120
SODIUM	-27.904	U	SODIUM	-33.968
ZINC	0.220	U	ZINC	0.220

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNG24A	Ju	1 24, 2020	17:26	File: LNG24A	Ju	24, 2020	17:29
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	97196.56	97.2	ALUMINUM	100000.00	92943.98	92.9
ANTIMONY	0.19	0.17		ANTIMONY	20.00	19.66	100.0
CALCIUM	100000.00	97945.29	97.9	CALCIUM	100000.00	97685.99	97.7
IRON	100000.00	96464.18	96.5	IRON	100000.00	95228.33	95.2
LEAD	0.13	0.09		LEAD	20.13	20.51	105.0
MAGNESIUM	100000.00	101202.85	101.2	MAGNESIUM	100000.00	96860.91	96.9
MOLYBDENUM	2000.00	2114.34	105.7	MOLYBDENUM	2000.00	2054.76	102.8
POTASSIUM	100000.00	97416.54	97.4	POTASSIUM	100000.00	93389.44	93.4
SODIUM	100000.00	101176.76	101.2	SODIUM	100000.00	97298.41	97.3

	Lab Name: Katahdin Analytical Services	ical Ser	vices	SDG Name: SN5717	:: SN571	7					
	Instrument ID: AGILENT 7800 ICP-MS	00 ICP.	MS	File Name: LNG27A	LNG27	V					
	Date: 07/27/2020			Method:	MS						
Lab Sample ID	Client ID D.F.	Time					Elements	ts			
CalBlank	1	16:21	AI	Са	Си	Ъ	Mg	Mo	¥	Na	
CalStd	1	16 24	AI	Ca	Cu	e B	Mg	Mo	¥	Na	
ICV	-	16,27	AI	Ca	С	Ъе	Mg	Mo	¥	Na	
ICB	-	16 30	AI	Ca	Cu	Ъ	Mg	Mo	¥	Na	
Pal	£	16.32	Al	Ca	Cu	Fe	BM	Mo	Х	Na	
ICSA	F	16 35	AI	Ca	С	Ъ	Mg	Mo	¥	Na	
ICSAB	-	16 38	AI	Ca	Сп	Fe	Mg	Mo	¥	Na	
222222	1	16 40									
22222	-	16.43									
22222	£	16 46									Ĩ.
22222	-	16 48									ŀ.
CCV	-	16 51	AI	Ca	Cu	e B	Mg	Mo	¥	Na	
CCB	1	16 54	AI	Ca	СП	Ъe	Mg	Mo	¥	Na	
22222	Ω.	16.57									
222222	Ω.	16.59									
222222	5	17,02									1
222222	۵J	17.04									Ĩ
222222	Ω.	17.07									
ZZZZZZ	25	17.10									
222222	Ð	17:12									
222222	Ω.	17.15									
222222	25	17.18									Ĺ
222222	Ω.	17.20									í I
CCV	F	17:23	AI	Са	Си	e E	Mg	Mo	¥	Na	
CCB	400 A	17:26	AI	Ca	СЦ	Fe	ВМ	Mo	¥	Na	
ZZZZZZ	Ċ	17.28									
222222	υ	17.31									
											I

14

Katahdin Analytical Services A0000137

14

Na ß Na Na ¥ ¥ \mathbf{x} \mathbf{x} Mo Ŵ Ŵ Ŵ Elements ВŴ ВW βW Mg e L Ъ. e E Бe File Name: LNG27A SDG Name: SN5717 S Cu J ū G ŋ S Method: MS Ca Ca Ca Sa Lab Name: Katahdin Analytical Services ₹ R ₹ ₹ Instrument ID: AGILENT 7800 ICP-MS Time 17 33 17 39 17.55 17,36 17 41 17 44 17 49 17.52 17-57 18.05 18.08 18 19 17.47 18 00 18 03 18 13 18 16 18.21 18 24 18:27 18 11 18.29 D.F. ---------~~ --20 ŝ ŝ ŝ ŝ <u>_</u> . -... ŝ ю ហ ----07/27/2020 COR03EQB Client ID Date: LCSWNG211MW2 PBWNG21IMW2 Lab Sample ID SN5717-020 222222 222222 ZZZZZ 222222 222222 222222 222222 222222 ZZZZZ 22222 ZZZZZ 222222 ZZZZZ 222222 222222 CCV CCV CCB CCB

> Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG27A SDG Name: SN6056

Lab Sample 1D	Client ID	D.F.	Time					Elements	nts			
22222		5	18.45									
22222		S	18,48									
222222		5	18.51									
222222		-	18.53									
77777		S	18 56									
ccv		÷	18:59	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	19.01	AI	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn
222222		÷	19.04									
PBSNG23IMS1		S	19.07				Pb					
222222		S	19.09									
222222		S	19.12									
SN6056-005	COR05SED01A	5	19.15				Pb					
SN6056-006	COR05SED02A	ŝ	19-17				Ρb					
SN6056-007	COR05SED02B	2ı	19,20				ЪЪ					
SN6056-008	COR05SED03A	ŝ	19.23				Pb					
SN6056-009	COR05SED04A	ъ	19.25				Pb					
SN6056-009L	COR05SED04AL	25	19 28				РР					
CCV		***	19.31	AI	Ca	Си	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	19.33	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
22222		5	19 36									
222222		5	19.39									
222222		S	19:41									
222222		S	19.44									
222222		5	19.47									
222222		5	19.49									
222222		5	19.52									
		U										

Katahdin Analytical Services A0000194

> Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/27/2020

SDG Name: SN6056 File Name: LNG27A

Method: MS

Lab Sample ID												
	Client ID	D.F.	Time					Elements	ats			
SN6056-015	COR06SED02A	5	19.57			C						
SN6056-016	COR06SED02B	5	20:00			Cu						
CCV		-	20 02	Ы	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	20.05	AI	Ca	СЦ	Fe Pb	Mg	Mo	¥	Na	Zn
222222		S	20.07									
22222		-	20.10									
222222		5	20,13									
222222		-	20.15									
22222		-	20.18									
222222		-	20.20									
222222		1	20.23									
222222		۲	20.26									
77777		-	20:28									
222222		-	20:31									
CCV		-	20.34	AI	Ca	Си	Fe Pb	Mg	Mo	х	Na	Zn
CCB		-	20:36	AI	Ca	С	Fe Pb	Mg	Mo	¥	Na	Zn
777722		-	20.39									
222222		2	20.41									
222222		5	20.44									
222222		5	20.47									
222222		5	20.50									
22222		ŝ	20.52									
222222		ŝ	20.55					3				
222222		S	20.58									
22222		25	21:00									
222222		ß	21.03									
ccv		÷	21.06	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn

Katahdin Analytical Services A0000195

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/27/2020

Method: MS

File Name: LNG27A

SDG Name: SN6056

Inditational bound of the state of													
1 2101 A Ca Ca Fe Mo K Mo 5 2111 2 <t< th=""><th>Lab Sample ID</th><th>Client ID</th><th>D.F.</th><th></th><th></th><th></th><th></th><th></th><th>Eleme</th><th>nts</th><th></th><th></th><th></th></t<>	Lab Sample ID	Client ID	D.F.						Eleme	nts			
3 311 6 213 6 213 7 214 8 212 1 212 1 212 1 212 1 212 1 212 1 212 1 212 1 212 1 212 1 213 1 214 1 213 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 214 1 <t< th=""><th>CCB</th><th></th><th>۲</th><th>21.08</th><th>AI</th><th>Ca</th><th>Си</th><th>Fe Pb</th><th>Mg</th><th>Mo</th><th>×</th><th>Na</th><th>Zn</th></t<>	CCB		۲	21.08	AI	Ca	Си	Fe Pb	Mg	Mo	×	Na	Zn
3 213 6 219 6 219 7 213 1 214 1 212 1 212 1 212 1 213 1 213 1 214 1 213 1 214 1 213 1 214 1 <t< td=""><td>222222</td><td></td><td>5</td><td>21,11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	222222		5	21,11									
3 2116 5 217 1 2123 1 2124 1 2129 1 2129 1 2129 1 2129 1 213 1 213 1 213 1 213 1 213 1 213 1 213 1 213 1 2140 1 2140 1 2143 1 2143 1 2143 1 2143 1 2144 1 2145 1 2145 1 2145 1 2145 1 2145 1 2145 1 214 1 214 1 214 1 214 1 214 <	222222		5	21.13				1					
5 713 6 2121 7 1232 1 2123 1 2124 1 2132 1 2132 1 2132 1 2132 1 2134 1 2135 1 2137 1 2136 1 2137 1 2136 1 2137 1 2136 1 2137 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 215 2 212 2 212 2 212 2 212 <tr tr=""></tr>	222222		5	21 16									
1 2121 1 2122 1 2123 1 2135 1 2135 1 2136 1 2137 1 2136 1 2137 1 2136 1 2137 1 2136 1 2137 1 2136 1 2140 1 2140 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 215 2 215 2 215 2 215 2 215 2 215 2 215 2 215 2 215 2 215 2 215	222222		5	21.19									
1 2124 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222		5	21:21									
3 212 1 2123 1 2135 1 2135 1 2135 1 2136 1 2137 1 2137 1 2137 1 2137 1 2137 1 2137 1 2137 1 2137 1 2136 2 2145 2 2145 2 2145 2 2145 2 2145 2 2145 2 2145 2 2145 2 2145 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214 2 214	222222		-	21:24									
1 2123 1 2132 1 1 2133 1 1 1 2137 Al Ca Cu Fe Pb Mg M Ma 1 2137 Al Ca Cu Fe Pb Mg M Ma 1 2140 Al Ca Cu Fe Pb Mg M Ma 1 2140 Al Ca Cu Fe Pb Mg M Ma 1 2146 Al Ca Cu Fe Pb Mg M Ma 1 2146 Al Mg Mo K Ma 1 2146 Al Al Ma Ma Ma 2 2146 Al Mg Ma K Ma 2 2166 Al Mg Ma K Ma 2 2 Al Al Ma K Al	222222		2J	21,27									
1 2132 2 1 2135 AI Ca Cu Fe No K Na 1 2137 AI Ca Cu Fe No K Na 1 2137 AI Ca Cu Fe No K Na 1 2140 Ca Cu Fe Na No K Na 1 2143 C Cu Fe Na Na Na 1 2143 C Cu Cu Cu Fe Na Na 1 2143 C Cu Cu Cu Fe Na Na 1 2164 C Cu Cu Cu Fe A Na 2 215 C Cu Fe Na Na Na Na 2 2105 Cu Cu Cu Cu Na Na Na	222222		F	21.29									
1 213 A Ca Cu Fe Po Mo Mo Mo Mo 1 2140 A Ca Cu Fe Po Mo Mo Mo Mo 1 2140 A Ca Cu Fe Po Mo Mo Mo Mo 1 2143 A Ca Cu Fe Po Mo Mo Mo Mo 1 2145 A A Mo Mo Mo Mo Mo 1 2146 A A Mo Mo Mo Mo Mo 1 2146 A A A A A A 2 214 A A A A A A 2 216 A Ca Ca Ca Mo Mo Mo Mo 2 210 A Ca Ca Ca Mo Mo Mo	777772		-	21:32									
1 2137 Al Ca Ca E Pio Mo K Ma 1 2140 Al Ca Ca Ca F Pio Mo K Ma 1 2143 - Ca Ca Ca F Pio Mo K Ma 1 2145 -	77777		٢	21:35									
1 2140 Al Ca Ca Pol Mol K Na 1 2143 1 1 1 1 1 1 1 1 2145 1 1 1 1 1 1 1 1 2145 1 1 1 1 1 1 1 1 2164 1 215 1 1 1 1 1 1 2154 1	CCV		-	21.37	AI	Ca	Си	Fe Pb	Mg	Mo	×	Na	Zn
1 2143 2 2145 1 2148 1 2151 1 2154 1 2154 2 2156 2 2156 2 2159 2 2159 2 2159 2 215 2 215 2 210 1 210 2 2201 1 2210 1 2210 2 2201 1 2210 2 2201 2 2201 2 2201 2 2201 2 2201 2 2201 2 2201 2 2201 2 201 2 201 2 201 2 201 20 2 201 20 20 2 201 20 20 20 2	CCB		-	21.40	AI	Са	Cu	Fe Pb	Mg	Mo	×	Na	Zn
5 2145 1 2148 1 2151 1 2154 2 2156 2 2156 2 2159 2 201 2 201 2 201 2 201 3 201 4 Ca 7 201 8 201 9 201 1 201 1 201 2 201 1 201 2 201 2 201 2 201 2 201 2 201 2 201 2 201 2 201 2 201 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	222222		÷	21:43									
1 2146 1 2151 1 2154 1 2154 1 2156 1 2156 1 2150 1 2150 2 216 2 216 2 216 2 2101 2 2 2 2 2 2 </td <td>222222</td> <td></td> <td>ŝ</td> <td>21.45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	222222		ŝ	21.45									
1 2151 2 2156 5 2159 6 2159 7 2159 7 2159 8 201 9 2201 1 2210 1 2210 1 2210 1 2210 1 2210 1 2212 1 2212 1 2212 1 2213 1 2214 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215	222222			21.48									
1 2154 5 2156 6 2159 6 2159 7 2201 6 2204 7 2207 7 2207 8 2207 9 2207 1 2210 1 2210 1 2212 1 2212 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215 1 2215	222222		1	21.51									
5 2156 6 2159 7 2201 7 2202 8 2204 9 2207 1 2210 1 2210 1 2212 1 2212 1 2215	222222		-	21:54									
5 2201 5 2204 5 2204 6 2207 7 2210 1 2210 1 2212 1 2212 2 20 2 20 2 212 2 20 2 212 2 20 2 215 2 2215 2 2215	222222		5	21.56									
5 2204 5 2207 6 2207 1 2210 Al 1 2212 Al 2 2212 Al 1 2212 Al 2 2215 Al	222222		3	21.59									
5 2204 6 2207 1 2210 Al Ca Cu Fe Pb Mg K Na 1 2212 Al Ca Cu Fe Pb Mg K Na 5 2215 S S S S S S S 5 2217 Al Ca Cu Fe Pb Mg K Na	222222		5	22.01									
5 2207 1 2210 Al Ca Cu Fe Pb Mg Mo K Na 1 2212 Al Ca Cu Fe Pb Mg Mo K Na 5 2215 Al Ca Cu Fe Pb Mg Mo K Na 5 2215 Al Al Al Al Al Al	222222		5	22 04									
1 2210 Al Ca Cu Fe Pb Mo K Na 1 2212 Al Ca Cu Fe Pb Mo K Na 5 2215 Al Ca Cu Fe Pb Mo K Na 5 2215 Al Ca S	222222		ŝ	22 07		n n n n n n n n n n n n n n n n n n n							
1 22.12 AI Ca Cu Fe Pb Mg Mo K Na 5 22.15 1	CCV		-	22 10	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
5 S	CCB		-	22.12	AI	Ca	Си	Fe Pb	Mg	Mo	×	Na	Zn
ى ا	222222		Ω.	22:15									
	222222		5	22 17									

> Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/27/2020

Method: MS

File Name: LNG27A

SDG Name: SN6056

ZIZIZI S 220 ZIZIZI 6 223 ZIZIZI 6 223 ZIZIZI 6 229 ZIZIZI 6 239 ZIZIZI 6 239 ZIZIZI 6 239 ZIZIZI 1 24 ZIZIZI 230 24 ZIZIZI 230 24 ZIZIZI 24	Lab Sample ID	Client ID	D.F.	Time					Elements	its			
3 223 6 223 6 223 7 230 6 230 7 230 8 230 9 233 10 230 11 231 12 231 13 240 14 241 15 240 16 240 17 14 18 240 19 241 10 241 11 243 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 241 12 1	22222		S	22 20									
3 223 6 223 6 223 7 233 6 233 7 233 1 234 1 234 1 234 1 234 1 234 1 234 1 243 1 244 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 249 2 240 2 240 2 240 2 240 2 241 2 <t< td=""><td>222222</td><td></td><td>с,</td><td>22 23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	222222		с,	22 23									
5 223 6 233 7 234 7 234 8 234 9 234 1 234 1 234 1 234 1 234 1 234 1 244 1 <t< td=""><td>222222</td><td></td><td>5</td><td>22.25</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	222222		5	22.25									
5 230 6 233 7 236 7 236 1 241 Al Ca Fe Pl Mo K Na 1 243 Al Ca Fe Pl Mo K Na 1 243 Al Ca Fe Pl Mo K Na 1 243 Al Ca Ca Fe Pl Mo K Na 1 243 Al Ca Ca Fe Pl Mo K Na 1 243 Al Ca Ca Fe Pl Mo K Na 2 243 Al Ca Ca Fe Pl Ma K Na 2 243 Al Ca Ca Fe Pl Ma K Na 2 243 Al Ca Ca Fa Pl Ma K Na 2 243 <t< td=""><td>222222</td><td></td><td>5</td><td>22 28</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	222222		5	22 28									
5 223 6 239 1 2 1 2 2 3 1 2 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 3 2 3 2 3 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 <td>222222</td> <td></td> <td>5</td> <td>22:30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	222222		5	22:30									
3 2236 6 2239 1 2241 Al Ca Cu F6 Pa Mo K Ma 6 2236 2236 Cu Ca Cu F6 Pa Mo K Ma 7 2246 2246 Cu Ca Cu F6 Pa Mo K Ma 2 <th2< th=""> <th2< th=""> 2 <th2<< td=""><td>222222</td><td></td><td>S</td><td>22.33</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th2<<></th2<></th2<>	222222		S	22.33									
5 228 A 228 A Ca Ca Fe M M M 1 2243 A Ca Ca Ca Fe M M M M 5 244 A Ca Ca Ca Fe M M M 6 2245 A Ca Ca Ca Fa N N 23 235 A A A A A N N 24 253 A A A A A N N N 2530 2305 A A A A A A A 2305 2305 A A A A A A 2310 A A Ca Ca Ca Ca A M 2311 A A A A A A A	222222		£	22:36									
1 2241 Al Ca Ca Fe Ma Ma Ma 1 243 Al Ca Ca Ca Fe Ma Ma Ma 5 246 . Ca Ca Ca Fa Ma Ma 6 243 . . Ca Ca Ca Ma Ma Ma 2 243 .	222222		5	22.38									
1 224 Al Ca Ca Ca Ca Fer Display Mod K Nat 5 2246 2 224 1<	ccv		1	22.41	Ы	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
5 2246 26 2252 26 2254 27 2254 28 255 29 257 20 252 21 225 22 230 2 230 2 230 2 230 2 230 2 230 3 230 3 230 3 230 4 230 5 231 1 231 2 231 2 231 2 231 2 231 2 231 2 231 2 231 2 232 2 232 2 232 2 232 2 232 2 232 2 232 2 232 2 2 2 2	CCB		+	22 43	Ы	Ca	Сц	Fe Pb	Mg	Mo	¥	Na	Zn
5 224 25 252 5 254 6 257 7 251 8 257 9 257 10 221 11 230 12 230 13 230 14 230 15 230 16 230 17 231 18 230 19 231 10 231 11 231 12 231 13 24 14 24 15 231 16 231 17 17 18 19 19 231 10 19 10 19 11 214 12 1 13 1 14 1 15 1 16 232 17 1 18 1 </td <td>ZZZZZZ</td> <td></td> <td>5</td> <td>22:46</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ZZZZZZ		5	22:46									
26 2254 6 2257 6 2267 7 2300 6 2305 7 2305 6 2305 7 2305 7 2305 8 2305 9 2305 9 2305 10 2305 11 2313 12 2310 13 AI 14 231 15 2316 16 2316 17 2316 18 2316 19 231 10 231 11 2316 12 231 13 232 14 231 15 232 16 232 17 1 18 1 19 1 10 1 11 232 12 1 13 1 14<	222222		5	22.49									
5 2264 6 227 7 2300 7 2302 8 2305 9 2306 9 2306 9 2306 9 2308 9 2308 9 2308 9 2309 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 2310 1 231 2 231 2 2321 1 1 2 2324 2 2324 2 2324 2 2324 2 1 2 1 2 2324 2	222222		25	22.52									
5 2367 6 2300 7 2302 7 2302 8 2305 9 2305 9 2306 9 2310 10 2313 11 2314 12 2315 13 Al 1 2316 1 2317 1 2318 1 2319 1 2316 1 2317 1 2318 1 2319 1 2316 1 2317 1 2318 1 2318 1 2318 1 2318 2 2321 1 2324 2 2324 2 2324 2 2324 2 2 2 2 2 2 2 2 2 2 2	222222		5	22.54									
5 2300 6 2305 7 2306 6 2306 7 2310 7 2310 8 2310 9 2310 1 2313 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 2314 1 1 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2 2 2 2	222222		5	22.57									
5 2302 5 2305 5 2306 5 2310 1 2313 1 2313 1 2314 1 2315 1 2316 1 2313 1 2314 1 2315 1 2316 2 231 2 231 2 2318 1 2318 1 2318 1 2314 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2324 2 2 2 2 2 2 2 2 2 2 2 2 2 2<	222222		ŝ	23 00									
5 2305 6 2310 7 2313 1 2313 1 2313 1 2316 1 2316 1 2316 1 2316 1 2316 1 2316 1 2316 1 2316 1 2318 1 2318 1 2318 1 2318 1 2318 1 1 1 2318 1 1 1 2318 1 1 1 1 1 1 2 2324 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222222		2	23 02									
5 2308 6 2310 1 2313 Al Ca Cu Fe Pb Mg K Na 1 2316 Al Ca Cu Fe Pb Mg K Na 5 2318 Al Ca Cu Fe Pb Mg K Na 6 2321 Al Ca Cu Fe Pb Mg K Na 25 2321 Al Al Al Al Al Al Al 26 2324 Al Al Al Al Al Al Al Al Al 7 Al	222222		α	23.05									
5 2310 1 2313 Al Ca Cu Fe Pb Mg M Ma 1 2316 Al Ca Cu Fe Pb Mg M Na 5 2318 5 2321 25 2324 <	222222		S	23.08									
1 2313 AI Ca Cu Fe Pb Mg Mo K Na 1 2316 AI Ca Cu Fe Pb Mg Mo K Na 5 2318 Ca Cu Fe Pb Mg Mo K Na 6 2321 <td>222222</td> <td></td> <td>ŝ</td> <td>23 10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	222222		ŝ	23 10									
1 2316 AI Ca EP Mg Mo K Na 5 2318 1 <	CCV		-	23 13	AI	Са	Cu	Fe Pb	ВМ	Mo	¥	Na	Zn
υ υ <u>β</u> υ υ	CCB		-	23:16	AI	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
5 25 5	222222		S	23.18									
25 5 5	222222		S	23.21									
α α	22222		25	23.24									
G	22222		2J	23.26									
	222222		5	23 29									

Katahdin Analytical Services A0000197

FORM XIV - IN

> Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG27A

SDG Name: SN6056

Lab Sample ID	Client ID	D.F.	Time					Elen	Elements			
222222		5	23 32									
222222		5	23 35									
222222		25	23.37									
222222		5	23 40									
222222		ŝ	23 42									
			23:45	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
		-	23.48	AI	Са	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
222222		£	23.51									
222222		2	23.53									
222222		5	23.56									
222222		ŝ	23.58									
PBSNG27IMS1		5	00.01			Cu						
LCSONG27IMS1		2	00:04			С						
SN6056-018	COR06SED04A	5	00:02			Cu						Zn
SN6056-018L	COR06SED04AL	25	00:00			С		8				Zn
SN6056-018A	COR06SED04AA	S	00:12			CU						Zn
SN6056-018S	COR06SED04AS	S	00.14			Си						Zn
		-	00:17	AI	Ca	Cu	Fe Pb	Mg	Mo	х	Na	Zn
		4	00.20	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
SN6056-018P	COR06SED04AP	5	00.23			Cu						Zn
SN6056-019	COR06SED05A	S	00:25			Cu						Zn
SN6056-020	COR06SED06A	S	00:28			Си						Zn
		-	00:30	Ы	Ca	Cu	Fe Pb	BM	Mo	х	Na	Zn
		۲	00 33	AI	Ca	СЦ	Fe Pb	Mg	Mo	¥	Na	7n

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNG27A	Jul 2	27, 2020	16:27	File: LNG27A	Jul 2	27, 2020	16:51
Analyte	True	Found	%R(1)	Analyte	True	Found	% R (1)
ALUMINUM	400.0	371.37	92.8	ALUMINUM	500.0	478.45	95.7
CALCIUM	4000.0	4024.59	100.6	CALCIUM	5000.0	4897.84	98.0
COPPER	20.0	20.22	101.1	COPPER	25.0	25.06	100.2
IRON	4000.0	4035.38	100.9	IRON	5000.0	4949.13	99.0
MAGNESIUM	4000.0	3955.83	98.9	MAGNESIUM	5000.0	4844.99	96.9
MOLYBDENUM	40.0	39.82	99.6	MOLYBDENUM	25.0	25.00	100.0
POTASSIUM	4000.0	3935.04	98.4	POTASSIUM	5000.0	4849.53	97.0
SODIUM	4000.0	4031.58	100.8	SODIUM	5000.0	5007.64	100.2
30010101	4000.0	1001.00	100.0	SODIOM	5000.0	5007.04	1

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNG27A	Jul 2	27, 2020	17:23	File: LNG27A	Jul 2	27, 2020	17:55
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	468.68	93.7	ALUMINUM	500.0	466.15	93.2
CALCIUM	5000.0	4911.47	98.2	CALCIUM	5000.0	4947.54	99.0
COPPER	25.0	24.77	99.1	COPPER	25.0	24.86	99.4
IRON	5000.0	4893.39	97.9	IRON	5000.0	4931.12	98.6
MAGNESIUM	5000.0	4923.79	98.5	MAGNESIUM	5000.0	4938.59	98.8
MOLYBDENUM	25.0	25.30	101.2	MOLYBDENUM	25.0	24.87	99.5
POTASSIUM	5000.0	4803.62	96.1	POTASSIUM	5000.0	4770.07	95.4
SODIUM	5000.0	5086.07	101.7	SODIUM	5000.0	5097.36	101.9

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV	V			SAMPLE: CCV			
File: LNG27A	Jul 2	27, 2020	18:27	File: LNG27A	Jul	27, 2020	18:59
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	466.32	93.3	ALUMINUM	500.0	480.85	96.2
CALCIUM	5000.0	4903.88	98.1	CALCIUM	5000.0	4883.23	97.7
COPPER	25.0	24.84	99.4	COPPER	25.0	25.07	100.3
IRON	5000.0	4828.46	96.6	IRON	5000.0	4889.59	97.8
LEAD	25.0	24.14	96.6	LEAD	25.0	23.71	94.8
MAGNESIUM	5000.0	5000.00	100.0	MAGNESIUM	5000.0	4992.98	99.9
MOLYBDENUM	25.0	24.94	99.8	MOLYBDENUM	25.0	25.18	100.7
POTASSIUM	5000.0	4801.27	96.0	POTASSIUM	5000.0	4795.56	95.9
SODIUM	5000.0	5288.90	105.8	SODIUM	5000.0	5076.79	101.5
ZINC	25.0	24.78	99.1	ZINC	25.0	24.64	98.6

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG27A	Iul 2	27, 2020	19:31	SAMPLE: CCV File: LNG27A	Iul '	27, 2020	20:02
Analyte	True	Found	%R(1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	466.33	93.3	ALUMINUM	500.0	469.51	93.9
CALCIUM	5000.0	4964.32	99.3	CALCIUM	5000.0	4919.82	98.4
COPPER	25.0	24.79	99.2	COPPER	25.0	24.84	99.4
IRON	5000.0	4901.98	98.0	IRON	5000.0	4847.04	96.9
LEAD	25.0	24.73	98.9	LEAD	25.0	23.34	93.4
MAGNESIUM	5000.0	4881.66	97.6	MAGNESIUM	5000.0	4912.16	98.2
MOLYBDENUM	25.0	25.15	100.6	MOLYBDENUM	25.0	24.72	98.9
POTASSIUM	5000.0	4822.52	96.5	POTASSIUM	5000.0	4819.57	96.4
SODIUM	5000.0	4992.11	99.8	SODIUM	5000.0	5013.31	100.3
ZINC	25.0	25.32	101.3	ZINC	25.0	24.79	99.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG27A	Jul	27, 2020	20:34	SAMPLE: CCV File: LNG27A	Jul	27, 2020	21:06
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	481.40	96.3	ALUMINUM	500.0	467.18	93.4
CALCIUM	5000.0	5007.88	100.2	CALCIUM	5000.0	4969.81	99.4
COPPER	25.0	25.71	102.8	COPPER	25.0	25.60	102.4
IRON	5000.0	5163.22	103.3	IRON	5000.0	5035.28	100.7
LEAD	25.0	22.96	91.8	LEAD	25.0	24.20	96.8
MAGNESIUM	5000.0	4999.88	100.0	MAGNESIUM	5000.0	5016.51	100.3
MOLYBDENUM	25.0	24.70	98.8	MOLYBDENUM	25.0	24.97	99.9
POTASSIUM	5000.0	4960.86	99.2	POTASSIUM	5000.0	4866.99	97.3
SODIUM	5000.0	9817.94	196.4•	SODIUM	5000.0	6082.59	121.7•
ZINC	25.0	24.45	97.8	ZINC	25.0	25.88	103.5

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV		2.2020	21.25	SAMPLE: CCV	1.1.2	27. 2020	22.10
File: LNG27A	Jul 2	27, 2020	21:37	File: LNG27A	Jul .	27, 2020	22:10
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	486.14	97.2	ALUMINUM	500.0	464.71	92.9
CALCIUM	5000.0	5070.19	101.4	CALCIUM	5000.0	4992.92	99.9
COPPER	25.0	26.20	104.8	COPPER	25.0	25.58	102.3
IRON	5000.0	5119.47	102.4	IRON	5000.0	4998.53	100.0
LEAD	25.0	23.65	94.6	LEAD	25.0	24.19	96.8
MAGNESIUM	5000.0	5133.71	102.7	MAGNESIUM	5000.0	5012.14	100.2
MOLYBDENUM	25.0	25.61	102.4	MOLYBDENUM	25.0	25.27	101.1
POTASSIUM	5000.0	4938.55	98.8	POTASSIUM	5000.0	4838.53	96.8
SODIUM	5000.0	5693.69	113.9•	SODIUM	5000.0	5441.27	108.8
ZINC	25.0	26.11	104.4	ZINC	25.0	24.58	98.3

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG27A	Jul	27, 2020	22:41	SAMPLE: CCV File: LNG27A	Jul	27, 2020	23:13
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	478.10	95.6	ALUMINUM	500.0	475.50	95.1
CALCIUM	5000.0	4911.27	98.2	CALCIUM	5000.0	4970.59	99.4
COPPER	25.0	25.69	102.8	COPPER	25.0	25.92	103.7
IRON	5000.0	4912.43	98.2	IRON	5000.0	4978.15	99.6
LEAD	25.0	23.35	93.4	LEAD	25.0	24.11	96.4
MAGNESIUM	5000.0	5028.30	100.6	MAGNESIUM	5000.0	5037.72	100.8
MOLYBDENUM	25.0	25.22	100.9	MOLYBDENUM	25.0	25.68	102.7
POTASSIUM	5000.0	4925.58	98.5	POTASSIUM	5000.0	4894.48	97.9
SODIUM	5000.0	5378.06	107.6	SODIUM	5000.0	5336.70	106.7
ZINC	25.0	25.29	101.2	ZINC	25.0	25.65	102.6

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG27A	Jul 2	27, 2020	23:45	SAMPLE: CCV File: LNG27A	Jul	28, 2020	00:17
Analyte	True	Found	%R(1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	475.21	95.0	ALUMINUM	500.0	476.38	95.3
CALCIUM	5000.0	4903.02	98.1	CALCIUM	5000.0	4884.36	97.7
COPPER	25.0	25.37	101.5	COPPER	25.0	26.20	104.8
IRON	5000.0	4867.97	97.4	IRON	5000.0	4892.67	97.9
LEAD	25.0	24.00	96.0	LEAD	25.0	24.62	98.5
MAGNESIUM	5000.0	4975.55	99.5	MAGNESIUM	5000.0	5011.80	100.2
MOLYBDENUM	25.0	25.53	102.1	MOLYBDENUM	25.0	26.29	105.2
POTASSIUM	5000.0	4852.74	97.1	POTASSIUM	5000.0	4889.40	97.8
SODIUM	5000.0	5263.36	105.3	SODIUM	5000.0	5251.65	105.0
ZINC	25.0	25.68	102.7	ZINC	25.0	26.17	104.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV

File: LNG27A	Jul	28, 2020	00:30
Analyte	True	Found	%R (1)
ALUMINUM	500.0	466.67	93.3
CALCIUM	5000.0	4966.44	99.3
COPPER	25.0	25.71	102.8
IRON	5000.0	4916.18	98.3
LEAD	25.0	24.32	97.3
MAGNESIUM	5000.0	4971.58	99.4
MOLYBDENUM	25.0	25.62	102.5
POTASSIUM	5000.0	4844.04	96.9
SODIUM	5000.0	5204.01	104.1
ZINC	25.0	26.06	104.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: PQL

File: LNG27A	Jul 2	27, 2020	16:32
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	18.77	93.8
CALCIUM	20.0	22.19	111.0
COPPER	0.6	0.71	118.3
IRON	20.0	21.68	108.4
MAGNESIUM	20.0	20.50	102.5
MOLYBDENUM	1.0	1.06	106.0
POTASSIUM	200.0	201.86	100.9
SODIUM	200.0	218.83	109.4

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SN5717

SAMPLE: ICB File: LNG27A Jul	27, 2020	16:30	SAMPLE: CC	ration Unit: B 27, 2020	s: ug/L 16:54	SAMPLE: CCI File: LNG27A Jul	B 27, 2020	17:26
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	1.453	J	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.158	J	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
MAGNESIUM	0.350	U	MAGNESIUM	0.595	J	MAGNESIUM	2.573	J
MOLYBDENUM	0.196	J	MOLYBDENUM	0.147	J	MOLYBDENUM	0.084	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	18.722	J	SODIUM	6.600	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

SAMPLE: CC File: LNG27A Jul	B 27, 2020	17:57	SAMPLE: CC	ration Unit: B 27, 2020	s: ug/L 18:29	SAMPLE: CC	B 27, 2020	19:01
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.586	U	ALUMINUM	0.330	U	ALUMINUM	0.762	J
CALCIUM	7.385	J	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.088	J	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.011	J	LEAD	0.019	J	LEAD	0.010	J
MAGNESIUM	1.243	J	MAGNESIUM	3.305	J	MAGNESIUM	2.600	J
MOLYBDENUM	0.073	J	MOLYBDENUM	0.046	J	MOLYBDENUM	0.070	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	27.633	J	SODIUM	97.453	J	SODIUM	16.886	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	tration Unit	s: ug/L			
SAMPLE: CC	В		SAMPLE: CC	В		SAMPLE: CO	СВ	
File: LNG27A Jul	27, 2020	19:33	File: LNG27A Jul	27, 2020	20:05	File: LNG27A J	ul 27, 2020	20:36
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	1.347	J	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.068	J	LEAD	0.179	В	LEAD	0.044	J
MAGNESIUM	-3.531	U	MAGNESIUM	-2.460	U	MAGNESIUM	-3.869	U
MOLYBDENUM	0.060	J	MOLYBDENUM	0.068	J	MOLYBDENUM	0.064	J
POTASSIUM	-14.398	U	POTASSIUM	-21.834	U	POTASSIUM	38.814	J
SODIUM	-9.468	U	SODIUM	-21.297	U	SODIUM	3642.513	В
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

SAMPLE: CC File: LNG27A Jul	2 B 1 27, 2020	21:08	SAMPLE: CC	tration Unit C B 1 27, 2020	s: ug/L 21:40	SAMPLE: CC File: LNG27A Ju	C B Il 27, 2020	22:12
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	-0.354	U	ALUMINUM	0.330	U
CALCIUM	6.863	J	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.038	J	LEAD	0.014	J	LEAD	0.019	J
MAGNESIUM	2.473	J	MAGNESIUM	1.678	J	MAGNESIUM	1.782	l
MOLYBDENUM	0.054	J	MOLYBDENUM	0.055	J	MOLYBDENUM	0.078	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	829.802	В	SODIUM	361.921	В	SODIUM	234.444	В
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concen	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	C B		SAMPLE: CC	B	
File: LNG27A Ju	1 27, 2020	22:43	File: LNG27A Ju	1 27, 2020	23:16	File: LNG27A Ju	1 27, 2020	23:48
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.023	J	LEAD	0.014	J	LEAD	0.018	J
MAGNESIUM	-0.793	U	MAGNESIUM	-1.581	U	MAGNESIUM	-2.897	U
MOLYBDENUM	0.040	J	MOLYBDENUM	0.035	J	MOLYBDENUM	0.079	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	-15.259	U
SODIUM	162.167	В	SODIUM	121.164	В	SODIUM	84.462	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Con	cent
SAMPLE: CO	СВ		SAMPLE:	CC
File: LNG27A Ju	1 28, 2020	00:20	File: LNG27A	Ju
Analyte	Result	С	Analyte	
ALUMINUM	0.330	U	ALUMINUM	
CALCIUM	6.800	U	CALCIUM	
COPPER	0.087	U	COPPER	
IRON	6.400	U	IRON	
LEAD	0.034	J	LEAD	
MAGNESIUM	-3.887	U	MAGNESIUM	
OLYBDENUM	0.077	J	MOLYBDENUN	1
POTASSIUM	-16.263	U	POTASSIUM	
SODIUM	61.197	J	SODIUM	
ZINC	0.220	U	ZINC	

4 ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

CALCIUM COPPER IRON	Ju TRUE 100000.00 100000.00	1 27, 2020 FOUND 93327.61	16:35 % R 93.3	File: LNG27A Analyte	TRUE	27, 2020 FOUND	16:3 %
Analyte ALUMINUM CALCIUM COPPER IRON MAGNESIUM	100000.00					FOUND	% I
CALCIUM COPPER IRON		93327.61	93.3				
COPPER	100000 00			ALUMINUM	100000.00	90492.65	90.5
RON	100000.00	101196.79	101.2	CALCIUM	100000.00	96094.68	96.
	0.26	0.55		COPPER	20.47	19.03	95.0
MAGNESIUM	100000.00	98471.88	98.5	IRON	100000.00	93815.11	93.8
MAGINESIONI	100000.00	101869.86	101.9	MAGNESIUM	100000.00	99295.07	99.3
MOLYBDENUM	2000.00	2077.93	103.9	MOLYBDENUM	2000.00	2048.57	102.5
POTASSIUM	100000.00	96134.05	96.1	POTASSIUM	100000.00	93391.14	93.4
SODIUM	100000.00	98444.57	98.4	SODIUM	100000.00	96442.34	96.4

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/28/2020

File Name: LNG28B

SDG Name: SN6056

MS
Method:

Lab Sample 1D	Client ID	D.F.	Time				Elements	nts			
CalBlank		4m	12.33	AI Sb	Ca	Fe Pb	ВМ	Mo	×	Na	Zn
CalStd		-	12.36	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
ICV		*	12 39	AI Sb	Са	Fe Pb	Mg	Mo	×	Na	Zn
ICB		-	12.42	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
Pal		-	12 44	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
ICSA		-	12.47	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
ICSAB		1	12.50	AI Sb	Са	Fe Pb	Mg	Mo	¥	Na	Zn
22222		-	12.53								
222222		-	12.55								
22222		-	12 58								
222222		-	13 00								
CCV		-	13 03	AI Sb	Ca	Fe Pb	ВМ	Mo	×	Na	Zn
CCB		-	13,06	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
22222			13,09								
222222		ß	13.11						10		
222222		5	13 14								
22222		5	13,16								
222222		5	13,19								
222222		25	13.22								
222222		S	13.24								
22222		5	13.27								
222222		5	13:30								
222222		5	13.32								
CCV		-	13.35	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		÷	13.38	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
22222		ŝ	13.40								
22222		5	13 43								

Katahdin Analytical Services A0000199

FORM XIV - IN

14

SDG Name: SN6056

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/28/2020

File Name: LNG28B Method: MS

Indemnify Cuality It Themain Element 22222 13 13 13 14 22222 13 13 14 14 14 22222 13 13 14 14 14 14 22222 13 13 14 14 14 14 14 22222 13 14		Date: 0//28/2020	2020			Method: MS						
6 1346 6 1348 6 1345 7 1345 8 1345 9 1345 16 1345 17 1436 18 1401 19 1417 10 1415 11 1405 12 1415 13 1415 14 1415 14 1415 14 1415 14 1415 14 1415 14 1415 14 1415 14 1415 14 1415 14 1415 14 142 14 142 14 142 14 142 14 142 14 142 14 142 14 143 14 143 143 143<	Lab Sample ID	Client ID	D.F.					Elements				
3 3134 5 3135 25 3136 26 3136 27 3136 28 3136 29 3136 26 3136 26 1316 28 1304 29 1401 20 7 21 1407 21 1407 21 1416 21 1416 21 1415 21 1415 21 1415 21 1415 21 142 21 142 21 142 21 142 21 142 21 142 21 142 21 142 21 143 21 143 21 143 21 143 21 143 21 143	22222		2 2	13.46								
3 1361 5 1364 5 1365 7 1401 6 1401 7 1401 7 1405 7 1405 7 1405 8 1401 19 1405 19 1405 1 1417 1 1417 1 1417 1 1417 1 1417 1 1417 1 1417 1 1417 1 1417 1 1423 1 1423 1 1423 1 1423 1 1423 1 1423 1 1423 1 1423 1 1423 1 1423 1 143 1 143 1 143 <	77777		Ω	13.48								
3 364 2 3156 2 3156 2 3150 2 3140 2 3140 2 3140 2 3140 3 314 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 315 4 316 4 316 4 316 4 316 4 316 4 316 4 316 4 316 4	222222		S	13.51								
5 136 25 136 13 1401 1401 1400 1 1401 1 1401 1 1400 1 1410 1 1410 1 1410 1 1410 1 1410 1 1410 1 1410 1 1410 1 1410 1 1410 1 1410 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420	222222		2J	13.54								
28 139 5 140 6 140 7 140 1 140 1 140 1 140 1 140 1 140 1 140 1 140 1 141 1 141 1 141 1 142 1 142 1 142 1 142 1 142 1 142 1 142 1 142 1 142 1 142 1 142 1 142 1 143 1 143 1 143 1 143 1 143 1 143 1 143 1 144 1 <	222222		5	13 56								
6 1401 1401 1415 141 1 1407 15b Ca Fe Pb Mg M 1 1407 15b Ca Fe Pb Mg K 1 1416 Ca Fe Pb Mg K 1 1417 Ca Fe Pb Mg K 1 1425 Ca Fe Pb Mg K 1 1425 Ca Fe Pb Mg K 1 1426 Ca Fe Pb Mg K 1 1435 Ca Fe Pb Mg K 1 1435 Ca Fe Pb Mg K 1	222222		25	13:59								
5 1404 4 104 4 104 4 104 4 104 1 10	222222		ດ	14:01								
1 1407 A18b Ca Fe Po Mg Mg K 5 1412 Ca Fe Po Mg Mg K 6 1415 Ca Fe Po Mg Mo K 1 1417 Ca Fe Po Mg Mo K 1 1417 Ca Fe Po Mg Mo K 1 1417 Ca Fe Po Mg Mo K 1 1423 Ca Fe Po Mg Mo K K 1 1423 Ca Fe Po Mg Mo K K K 1 1435 Ca Fe Po Mg Mg Mo K K 1 1436 Albert Ca Fe Po Mg Mo <td< td=""><td>222222</td><td></td><td>2J</td><td>14.04</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	222222		2J	14.04								
1 1400 A1Sb Ca Fe Po Mo Mo K 5 1415 1 1417 1 <td>CCV</td> <td></td> <td>1</td> <td>14,07</td> <td>AI Sb</td> <td>Ca</td> <td>Fe Pb</td> <td>Mg</td> <td>Mo</td> <td>×</td> <td>Na</td> <td>Zn</td>	CCV		1	14,07	AI Sb	Ca	Fe Pb	Mg	Mo	×	Na	Zn
5 1412 6 1415 7 1417 8 1420 9 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1420 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1430 1 1440 1 1440 1 1440 1 1440 1 1440 1 1440 1 1440 1 1441 <td< td=""><td>CCB</td><td></td><td>1</td><td>14.09</td><td>AI Sb</td><td>Ca</td><td>Fe Pb</td><td>Mg</td><td></td><td>×</td><td>Na</td><td>Zn</td></td<>	CCB		1	14.09	AI Sb	Ca	Fe Pb	Mg		×	Na	Zn
6 1415 1 1417 5 1420 6 1420 7 1423 8 1428 9 1428 6 1428 6 1428 7 143 8 143 9 143 1 143 1 143 1 143 1 143 1 143 1 143 1 143 1 143 1 143 1 143 1 143 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144	222222		5	14 12								
1 1417 2 1420 1 1423 1 1423 5 1426 5 1426 6 1426 7 1428 7 1428 8 1428 9 1430 10 1431 11 1439 11 1439 11 1430 11 1431 11 1430 11 1430 11 1430 11 1430 11 1430 11 1430 11 1430 11 1430 11 1430 11 1430 11 1430 11 1431 11 1430 11 1430 11 1430 11 1441 11 1441 11 1441 11 1441 11 1441	222222		5	14 15								
5 1420 1 1423 5 1425 5 1425 6 1436 7 1431 8 1431 9 1431 9 1431 10 1432 11 1432 12 1431 13 1432 14 1438 14 1438 14 1438 14 1438 144 1438 144 1438 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144	22222		t	14.17								
1 14.23 5 14.26 5 14.28 5 14.31 5 14.31 5 14.31 5 14.33 6 14.33 7 14.34 7 14.34 7 14.35 7 14.36 7 14.34 7 14.34 7 14.34 7 14.34 7 14.34 7 14.34 7 14.34 8 14.34 9 14.34 144 AI Sb 145 AI Sb	727222		S	14:20								
5 1425 6 1428 7 1431 5 1431 6 1431 7 1431 8 1436 9 1436 10 143 11 1441 12 1436 13 143 14 AI Sb 1 144 143 No 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 144 1 1 1 1 1 1 1 1 1 1 1 1	222222		+	14:23								
5 14.28 5 14.31 5 14.31 5 14.33 6 14.36 7 14.36 7 14.36 7 14.36 7 14.39 8 AI Sb 9 Mo 10 14.41 11 14.42 12 14.43 13 AI Sb 14 AI Sb 144 AI Sb 1445 1447 1445 1448 1445 1449 145 145 145 145 145 145	222222		S	14:25							-	
5 14.31 5 14.33 5 14.36 6 14.36 7 14.39 7 14.39 7 14.39 7 14.41 7 14.41 7 14.41 7 14.41 7 14.41 8 14.42 19 14.43 14 14.55 14.45 14.44 14.40 14.44 14.41 14.43 14.42 14.44 14.43 14.44 14.44 14.44 14.45 14.44 14.46 14.44 14.47 14.44 14.48 14.44 14.49 14.44 14.41 14.44 14.42 14.44 14.43 14.44 14.44 14.44 14.44 14.44 14.44 14.44 14.44 14.44 14.44 14.44 <td< td=""><td>222222</td><td></td><td>5</td><td>14,28</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	222222		5	14,28								
5 14.33 5 14.36 6 14.39 AI Sb 1 14.41 AI Sb Ca Fe Pb Mp Ko 1 1441 AI Sb Ca Fe Pb Mp Ko K 5 1444 AI Sb Ca Fe Pb Mp Mo K 5 1445 AI AI <td< td=""><td>777777</td><td></td><td>2J</td><td>14:31</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	777777		2J	14:31								
5 14.36 1 14.39 AI Sb Ca Fe Pb Mg Mo K 1 14.41 AI Sb Ca Fe Pb Mg Mo K 5 14.44 AI Sb Ca Fe Pb Mg Mo K 65 14.45 T T T T T T T 7 14.45 T	22222		5	14.33								
1 14:30 AI Sb Ca Fe Pb Mg Mo K 1 14:41 AI Sb Ca Fe Pb Mg Mo K 5 14:44 AI Sb Ca Fe Pb Mg Mo K 5 14:44 AI A A A A A A 6 14:49 A A A A A A A 7 14:49 A	222222		5	14:36								
1 14.4 AI Sb Ca Fe Pb Mg Mo K 5 14.44 14.4 <td>CCV</td> <td></td> <td>~</td> <td>14,39</td> <td>AI Sb</td> <td>Ca</td> <td>Fe Pb</td> <td>Mg</td> <td>Mo</td> <td>×</td> <td>Na</td> <td>Zn</td>	CCV		~	14,39	AI Sb	Ca	Fe Pb	Mg	Mo	×	Na	Zn
υ <u>β</u> , η η η	CCB		-	14:41	AI Sb	Ca	Fe Pb	Mg	Mo	X	Na	Zn
δ 35 57	222222		2J	14:44								
5 25 2	22222		ى ك	14 47								
25	22222		сл С	14 49								
S	222222		25	14:52								
	222222		5	14 55								

Katahdin Analytical Services A0000200

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

SDG Name: SN6056

File Name: LNG28B

Lab Sample ID	Client ID	D.F.	Tine				Elements	ats			
22222		5	14.57								
22222		5	15.00								
222222		5	15 03								
272722		S	15 05								
222222		S	15.08								
ccv		-	15.11	AI Sb	Ca	Fe Pb	Mg	Mo	×	Na	Δn
CCB		-	15.13	AI Sb	Са	Fe Pb	Mg	Mo	×	Na	Zn
27272		S	15 16								
222222		5	15,18								
22222		S	15 21								
222222		5	15 24								
SN6056-017	COR06SED03A	5	15 26			Ър					
222222		-	15 29								
77777		S	15.32								
222222			15.34								
222222		-	15:37								
22222			15 40								
CCV			15.42	AI Sb	Са	Fe Pb	БW	Mo	¥	Na	Zn
CCB		-	15:45	AI Sb	Са	Fe Pb	Mg	Mo	¥	Na	Zn
222222		-	15.48								
222222		-	15.50								
222222		5	15.53								
222222		5	15 56								
222222		5	15 58								
222222		5	16.01								
222222		5	16.04								

Katahdin Analytical Services A0000201

FORM XIV - IN

4

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNG28B

SDG Name: SN6056

	CHERLID	D.F.					Elements	nts			
222222		5	16.09								
222222		25	16.12								
ccv		-	16.14	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	16:17	AI Sb	Ca	Fe Pb	Мg	Mo	¥	Na	Zn
222222		'n	16.20								
222222		ß	16.22								
222222		5	16.25								
222222		5	16.28								
222222		5	16.30								
222222		-	16.33								
222222		S	16.35								
222222		-	16.38								
222222		2	16 41								
222222			16.43								
CCV		-	16.46	AI Sb	Са	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	16.49	AI Sb	Са	Fe Pb	Mg	Mo	¥	Na	Zn
222222		-	16.51								
222222		-	16.54								
222222		-	16.57								
222222		5	16 59								
222222		-	17.02								
222222		÷	17 05								
222222		-	17.07								
222222		5	17.10								
222222		5	17.13								
22222		5	17.15								
ccv		-	17.18	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn

Katahdin Analytical Services A0000203

FORM XIV - IN

Lab Sample ID	Client ID	D.F.	Time				Elements	its			
CCB		-	17.21	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
22222		5	17,23								
222222		2	17 26								
222222		5	17:29			-					
222222		S	17 31								
22222		ŝ	17,35								
22222		ى،	17:38								
22222		S	17.40								
222222		ŝ	17.43								
22222		Ω	17,46								
22222		n	17 48								
ccv		1	17.51	AI Sb	Са	Fe Pb	Mg	Mo	×	Na	Zn
CCB		1	17 54	AI Sb	Ca	Fe Pb	Mg	Mo	×	Na	μZ
22222		IJ	17.56								
222222		S	17 59								
22222		S	18.02								
72722		2 2	18.04								
22222		25	18.07								
22222		5	18.10								
222222		S	18:12								
222222		5	18.15								
222222		5	18,18								
22222		Ω.	18:20								
CCV		-	18.23	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		-	18.26	AI Sb	Ca	Fe Pb	Мg	Mo	×	Na	Zn
222222		5	18:28								
		ų	10.01								

ANALYSIS RUN LOG 14

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

File Name: LNG28B

Instrument ID: AGILENT 7800 ICP-MS

14

SDG Name: SN6056

Lab Name: Katahdin Analytical Services

Na Na Ra Na ¥ ¥ ¥ \mathbf{x} Мo Mo Ŵ Ŵ Elements ВМ βŴ Mg Мg Fe Pb Fe Pb Fe Pb Fe Pb РР PP Рр В Pp В Рр PP Pp File Name: LNG28B Method: MS Ca S S S AI Sb AI Sb AI Sb AI Sb S сs S Sb Sb Sb Sb Sb Sb Instrument ID: AGILENT 7800 ICP-MS 19:19 Time 18 34 18:36 18 39 18.42 18.44 18:47 18.52 18 55 18.58 19.00 19 03 19.08 19-13 19 16 19.22 19.24 19.27 19.29 19.32 19 35 19:37 19:40 18:50 19.06 19.11 19.43 D.F. 25 25 ŝ S 25 S ŝ ŝ w ŝ -. s ŝ ŝ ۱D ю ю ŝ ŝ ŝ -*** S G G ŝ 07/28/2020 COR06SED04AS COR06SED04AP COR06SED05A COR06SED04A COR06SED04AL COR06SED04AA COR06SED06A Client ID Date: LCSONG27IMS1 PBSNG27IMS1 Lab Sample ID SN6056-018S SN6056-018A SN6056-018P SN6056-018L SN6056-018 SN6056-019 SN6056-020 22222 222222 22222 222222 22222 222222 ZZZZZ 27772 222222 **ZZZZZ** ZZZZZ 72727 222222 77772 CCV CCB CCV CCB

Zn Zn Zn

z

Zn

Zn

Katahdin Analytical Services A0000204

FORM XIV - IN

14

SDG Name: SN6056

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/28/2020

File Name: LNG28B Method: MS

Lab Sample ID	Client ID	D.F.	D.F. Time				Elements	uts			
22222		5	19.45								
2222		5	19.48								
2222		25	19,51								
2222		5	19:53								
222222		3	19 56								
~		-	19.59	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn
8		1	20.01	AI Sb	Ca	Fe Pb	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV File: LNG28B	Jul 2	28, 2020	12:39	SAMPLE: CCV File: LNG28B		28, 2020	13:03
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	381.24	95.3	ALUMINUM	500.0	480.70	96.1
ANTIMONY	20.0	19.98	99.9	ANTIMONY	25.0	24.14	96.6
CALCIUM	4000.0	3955.47	98.9	CALCIUM	5000.0	4838.41	96.8
IRON	4000.0	3968.37	99.2	IRON	5000.0	4873.09	97.5
LEAD	20.0	20.08	100.4	LEAD	25.0	24.53	98.1
MAGNESIUM	4000.0	3977.05	99.4	MAGNESIUM	5000.0	4839.40	96.8
MOLYBDENUM	40.0	39.58	98.9	MOLYBDENUM	25.0	24.52	98.1
POTASSIUM	4000.0	3955.18	98.9	POTASSIUM	5000.0	4815.58	96.3
SODIUM	4000.0	4043.30	101.1	SODIUM	5000.0	4985.44	99.7
ZINC	20.0	20.55	102.8	ZINC	25.0	25.07	100.3

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG28B		28, 2020	13:35	SAMPLE: CCV File: LNG28B		28, 2020	14:07
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	482.03	96.4	ALUMINUM	500.0	482.47	96.5
ANTIMONY	25.0	24.23	96.9	ANTIMONY	25.0	22.97	91.9
CALCIUM	5000.0	4771.68	95.4	CALCIUM	5000.0	4849.51	97.0
IRON	5000.0	4709.55	94.2	IRON	5000.0	4804.58	96.1
LEAD	25.0	24.66	98.6	LEAD	25.0	24.18	96.7
MAGNESIUM	5000.0	4944.06	98.9	MAGNESIUM	5000.0	5070.10	101.4
MOLYBDENUM	25.0	24.90	99.6	MOLYBDENUM	25.0	24.87	99.5
POTASSIUM	5000.0	4781.94	95.6	POTASSIUM	5000.0	4804.42	96.1
SODIUM	5000.0	4993.75	99.9	SODIUM	5000.0	5214.80	104.3
ZINC	25.0	25.15	100.6	ZINC	25.0	25.82	103.3

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV				SAMPLE: CCV			
File: LNG28B	Jul 2	28, 2020	14:39	File: LNG28B	Jul	28, 2020	15:11
Analyte	True	Found	%R (1)	Analyte	True	Found	%R(1)
ALUMINUM	500.0	492.32	98.5	ALUMINUM	500.0	468.69	93.7
ANTIMONY	25.0	23.83	95.3	ANTIMONY	25.0	23.47	93.9
CALCIUM	5000.0	4964.11	99.3	CALCIUM	5000.0	4763.40	95.3
IRON	5000.0	4808.13	96.2	IRON	5000.0	4732.67	94.7
LEAD	25.0	25.09	100.4	LEAD	25.0	25.20	100.8
MAGNESIUM	5000.0	5059.40	101.2	MAGNESIUM	5000.0	4938.78	98.8
MOLYBDENUM	25.0	25.09	100.4	MOLYBDENUM	25.0	24.75	99.0
POTASSIUM	5000.0	4850.97	97.0	POTASSIUM	5000.0	4850.60	97.0
SODIUM	5000.0	5141.28	102.8	SODIUM	5000.0	5034.86	100.7
ZINC	25.0	25.43	101.7	ZINC	25.0	25.34	101.4

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV				SAMPLE: CCV			
File: LNG28B	Jul 2	28, 2020	15:42	File: LNG28B	Jul	28, 2020	16:14
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	488.60	97.7	ALUMINUM	500.0	484.79	97.0
ANTIMONY	25.0	23.57	94.3	ANTIMONY	25.0	23.64	94.6
CALCIUM	5000.0	4908.41	98.2	CALCIUM	5000.0	4877.71	97.6
IRON	5000.0	4850.73	97.0	IRON	5000.0	4788.42	95.8
LEAD	25.0	24.44	97.8	LEAD	25.0	24.31	97.2
MAGNESIUM	5000.0	4988.04	99.8	MAGNESIUM	5000.0	5032.95	100.7
MOLYBDENUM	25.0	25.34	101.4	MOLYBDENUM	25.0	25.17	100.7
POTASSIUM	5000.0	4851.12	97.0	POTASSIUM	5000.0	4859.22	97.2
SODIUM	5000.0	5082.60	101.7	SODIUM	5000.0	5139.61	102.8
ZINC	25.0	25.59	102.4	ZINC	25.0	25.52	102.1

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV				SAMPLE: CCV			
File: LNG28B	Jul 2	28, 2020	16:46	File: LNG28B	Jul 2	28, 2020	17:18
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	484.77	97.0	ALUMINUM	500.0	482.95	96.6
ANTIMONY	25.0	23.25	93.0	ANTIMONY	25.0	23.65	94.6
CALCIUM	5000.0	4851.14	97.0	CALCIUM	5000.0	4849.92	97.0
IRON	5000.0	4771.88	95.4	IRON	5000.0	4778.01	95.6
LEAD	25.0	23.92	95.7	LEAD	25.0	24.53	98.1
MAGNESIUM	5000.0	4992.14	99.8	MAGNESIUM	5000.0	5005.48	100.1
MOLYBDENUM	25.0	24.81	99.2	MOLYBDENUM	25.0	24.83	99.3
POTASSIUM	5000.0	4816.75	96.3	POTASSIUM	5000.0	4842.42	96.8
SODIUM	5000.0	5092.01	101.8	SODIUM	5000.0	5134.06	102.7
ZINC	25.0	25.53	102.1	ZINC	25.0	25.60	102.4

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV				SAMPLE: CCV			
File: LNG28B	Jul 2	28, 2020	17:51	File: LNG28B	Jul 2	28, 2020	18:23
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	482.61	96.5	ALUMINUM	500.0	486.24	97.2
ANTIMONY	25.0	23.52	94.1	ANTIMONY	25.0	23.43	93.7
CALCIUM	5000.0	4892.29	97.8	CALCIUM	5000.0	4931.73	98.6
IRON	5000.0	4850.11	97.0	IRON	5000.0	4875.74	97.5
LEAD	25.0	24.23	96.9	LEAD	25.0	24.21	96.8
MAGNESIUM	5000.0	4991.37	99.8	MAGNESIUM	5000.0	5044.27	100.9
MOLYBDENUM	25.0	25.04	100.2	MOLYBDENUM	25.0	25.06	100.2
POTASSIUM	5000.0	4821.63	96.4	POTASSIUM	5000.0	4897.00	97.9
SODIUM	5000.0	5101.34	102.0	SODIUM	5000.0	5137.34	102.7
ZINC	25.0	24.94	99.8	ZINC	25.0	25.69	102.8

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV				SAMPLE: CCV			
File: LNG28B	Jul 2	28, 2020	18:55	File: LNG28B	Jul	28, 2020	19:27
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	489.24	97.8	ALUMINUM	500.0	478.03	95.6
ANTIMONY	25.0	23.49	94.0	ANTIMONY	25.0	25.48	101.9
CALCIUM	5000.0	4911.20	98.2	CALCIUM	5000.0	4854.78	97.1
IRON	5000.0	4836.70	96.7	IRON	5000.0	4773.76	95.5
LEAD	25.0	24.16	96.6	LEAD	25.0	26.19	104.8
MAGNESIUM	5000.0	4951.36	99.0	MAGNESIUM	5000.0	4914.64	98.3
MOLYBDENUM	25.0	24.53	98.1	MOLYBDENUM	25.0	24.44	97.8
POTASSIUM	5000.0	4802.75	96.1	POTASSIUM	5000.0	4816.53	96.3
SODIUM	5000.0	5007.12	100.1	SODIUM	5000.0	5001.60	100.0
ZINC	25.0	25.09	100.4	ZINC	25.0	25.59	102.4

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV

File: LNG28B	Jul	28, 2020	19:59
Analyte	True	Found	%R (1)
ALUMINUM	500.0	490.56	98.1
ANTIMONY	25.0	23.79	95.2
CALCIUM	5000.0	5070.84	101.4
IRON	5000.0	4988.25	99.8
LEAD	25.0	24.53	98.1
MAGNESIUM	5000.0	4991.21	99.8
MOLYBDENUM	25.0	24.77	99.1
POTASSIUM	5000.0	4870.73	97.4
SODIUM	5000.0	5075.15	101.5
ZINC	25.0	24.92	99.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: 1	PQL		
File: LNG28B	Jul 2	28, 2020	12:44
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	18.55	92.8
ANTIMONY	0.2	0.22	110.0
CALCIUM	20.0	22.04	110.2
IRON	20.0	23.62	118.1
LEAD	0.2	0.22	110.0
MAGNESIUM	20.0	18.30	91.5
MOLYBDENUM	1.0	1.01	101.0
POTASSIUM	200.0	206.38	103.2
SODIUM	200.0	204.37	102.2
ZINC	2.0	2.05	102.5

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	tration Unit	s: ug/L			
SAMPLE: ICE	3		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG28B Jul	28, 2020	12:42	File: LNG28B Jul	28, 2020	13:06	File: LNG28B Jul	l 28, 2020	13:38
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	1.561	J	ALUMINUM	0.476	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	7.659	J	IRON	6.400	U
LEAD	0.044	J	LEAD	0.040	J	LEAD	0.019	J
MAGNESIUM	-3.775	U	MAGNESIUM	-1.935	U	MAGNESIUM	1.703	J
MOLYBDENUM	0.203	J	MOLYBDENUM	0.155	J	MOLYBDENUM	0.085	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	-15.582	U	SODIUM	-12.824	U	SODIUM	-44.417	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concen	tration Unit	s: ug/L			
SAMPLE: CC	В		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG28B Jul	28, 2020	14:09	File: LNG28B Ju	1 28, 2020	14:41	File: LNG28B Ju	1 28, 2020	15:13
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.960	J	ALUMINUM	1.440	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	13.764	В	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.964	J	IRON	7.715	J
LEAD	0.012	J	LEAD	0.056	J	LEAD	0.820	В
MAGNESIUM	-0.552	U	MAGNESIUM	-1.285	U	MAGNESIUM	-2.022	U
MOLYBDENUM	0.084	J	MOLYBDENUM	0.080	J	MOLYBDENUM	0.064	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	-19.173	U	SODIUM	-51.392	U	SODIUM	-78.934	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	' B	
File: LNG28B Jul	28, 2020	15:45	File: LNG28B Ju	28, 2020	16:17	File: LNG28B Ju	l 28, 2020	16:49
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.682	J	ALUMINUM	0.330	U	ALUMINUM	-0.427	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.101	В	LEAD	0.030	J	LEAD	0.028	J
MAGNESIUM	-3.741	U	MAGNESIUM	-4.472	U	MAGNESIUM	-5.377	U
MOLYBDENUM	0.098	J	MOLYBDENUM	0.076	J	MOLYBDENUM	0.101	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	-88.467	U	SODIUM	-65.692	U	SODIUM	-63.464	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	В	
File: LNG28B Jul	28, 2020	17:21	File: LNG28B Ju	1 28, 2020	17:54	File: LNG28B Ju	28, 2020	18:26
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	0.330	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.022	J	LEAD	0.017	J	LEAD	0.019	J
MAGNESIUM	-4.808	U	MAGNESIUM	-3.890	U	MAGNESIUM	-4.457	U
MOLYBDENUM	0.072	J	MOLYBDENUM	0.053	J	MOLYBDENUM	0.081	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	-45.773	U	SODIUM	-79.708	U	SODIUM	-79.344	U
ZINC	0.220	U	ZINC	0.706	J	ZINC	0.557	J

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concer	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CO	CB		SAMPLE: CC	B	
File: LNG28B Jul	1 28, 2020	18:58	File: LNG28B Ju	1 28, 2020	19:29	File: LNG28B Ju	28, 2020	20:01
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.638	J	ALUMINUM	0.330	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.011	J	LEAD	0.022	J	LEAD	0.015	J
MAGNESIUM	-4.960	U	MAGNESIUM	-6.354	U	MAGNESIUM	-5.105	U
MOLYBDENUM	0.076	J	MOLYBDENUM	0.074	J	MOLYBDENUM	0.078	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	-98.725	U	SODIUM	-104.211	В	SODIUM	-95.563	U
ZINC	0.423	J	ZINC	0.583	J	ZINC	0.745	J

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNG28B	Ju	1 28, 2020	12:47	File: LNG28B	Ju	1 28, 2020	12:50
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	95079.39	95.1	ALUMINUM	100000.00	93668.59	93.7
ANTIMONY	0.19	0.16		ANTIMONY	20.00	19.04	95.0
CALCIUM	100000.00	98439.82	98.4	CALCIUM	100000.00	97020.86	97.0
IRON	100000.00	96748.49	96.7	IRON	100000.00	95582.53	95.6
LEAD	0.13	0.10		LEAD	20.13	20.05	100.0
MAGNESIUM	100000.00	99189.40	99.2	MAGNESIUM	100000.00	98090.79	98.1
MOLYBDENUM	2000.00	2046.83	102.4	MOLYBDENUM	2000.00	2056.45	102.8
POTASSIUM	100000.00	96004.63	96.0	POTASSIUM	100000.00	95042.43	95.0
SODIUM	100000.00	99437.43	99.4	SODIUM	100000.00	98453.34	98.5
ZINC	0.24	0.42		ZINC	20.40	20.38	100.0

FORM XIV - IN

	Date: 07/29/2020	020			Method.	SM					
ula ID	Clian		Times			C		Ē			
Lau sampre ID	CHERTIL	D.F.						Elements	ents		
CalBlank		~	17.04	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CalStd		-	17.07	AI	Ca	G	Fe Pb	Mg	Mo	¥	Na
		~	17 10	AI	Са	Cu	Fe Pb	Mg	Mo	¥	Na
		-	17.13	AI	Са	С	Fe Pb	Mg	Mo	¥	Na
		-	17.18	AI	Ca	Сц	Fe Pb	Mg	Mo	×	Na
			17.21	AI	Са	Cu	Fe Pb	Mg	Mo	¥	Na
222222		1	17.29								
222222		F	17:31								
222222		-	17:34								
22222		-	17.42							2	
		1	17 45	AI	Ca	CG	Fe Pb	Mg	Mo	¥	Na
222222		1	17:47								
222222		-	17.50								
222222		1	17.53								
22222		+	17.56								
		-	17:58	AI	Ca	С	Fe Pb	Mg	Mo	¥	Na
		-	18.01	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
222222		-	18.03								
222222		~~	18.06								
777777		1	18:09								
222222		-	18:11								
222222		-	18.14								
222222		Ş	18:17								
222222		£	18:19								
222222		5	18.22								
222222		5	18 25								
LLLL		Ľ	20.01								

14 ANALYSIS RUN LOG

MANU

SDG Name: SN6056

Lab Name: Katahdin Analytical Services

FORM XIV - IN

14 ANALYSIS RUN LOG SDG Name: SN6056

Lab Name: Katahdin Analytical Services

FORM XIV - IN

Ι	Date: 07/29/2020				Method:	MS					
Lab Sample ID	Client ID	D.F.	Tine					Elements	nts		
222222		5	19.42								
PBSNG28IMS1		S	19,44			G	Pb				
LCSONG28IMS1		S	19.47			Сц	Pb				
SN6056-001	COR04IS01	ß	19.50			Cu	Pb				
SN6056-002	COR04IS02	5	19.52			Cu	Pb				
SN6056-003	COR04IS03	S	19:55			Cu	Pb				
PBWNG291MW2		ŝ	19.57			Сц	Pb				
LCSWNG29IMW2		ŝ	20.00			Cu	Ρb		T.		
222222		S	20.03								
CCV			20:05	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CCB			20:08	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
222222		25	20:10								
222222		Ω	20.13								
222222		S	20:16								
222222		ъ	20.18								
SN6056-004	COR04IS00	S	20,21			C					
222222		5	20.24								
222222		3	20:26								
222222		ß	20:29								
222222		5	20 32								
222222		5	20 34								
CCV		-	20:37	AI	Ca	Cu	Fe Pb	Mg	Mo	×	Na
CCB		-	20.40	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
222222		S	20 42								
222222		S	20:45								
222222		S	20.48								
		v	00 00								

14 ANALYSIS RUN LOG SDG Name: SN6056

Lab Name: Katahdin Analytical Services

FORM XIV - IN

	Lab Name: Katahdin Analytical Services	SDG Name: SN6056	: SN6056					
	Instrument ID: AGILENT 7800 ICP-MS	File Name: LNG29A	LNG29/	_				
	Date: 07/29/2020	Method: MS	AS					
Lab Sample ID	Client ID D.F. Time				Elements	its		
222222	5 20.53							
22222	25 20.56							
222222	5 20.58							
22222	5 21:01							
222222	5 21.03							
22222	5 21.06							
CCV	1 21,08 AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CCB	1 21/11 AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
222222	5 21,14							
22222	5 2116							
22222	5 21.19							
22222	5 21.22							
22222	5 21.24							
22222	5 21.27							
22222	5 21:30							
22222	5 21.32							
22222	5 21.35							
22222	5 21:38							
CCV	1 21:40 AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CCB	1 2143 AI	Ca	Сц	Fe Pb	Mg	Mo	¥	Na
22222	5 21.45							
22222	5 21/48							
222222	5 21 51							
22222	5 21 54							
22222	5 21,56							
22222	5 21.59							
77777	5 22.01							

FORM XIV - IN

	Lab Na	LAD INAME: NATARUM ANALYTICAL Services	VIIIII	רורשו מכ	I VICES	OCUONS SUGUES	CUONS :	0				
	Instrun	Instrument ID: AGILENT 7800 ICP-MS	ENT 7	800 ICI	-MS	File Name: LNG29A	: LNG29	A				
	Date:	07/29/2020				Method: MS	MS					
Lab Sample ID	0	Client ID	D.F.	Time					Elements	ents		
22222			5	22.04								
222222			2	22.07								
22222			25	22 09								
CCV			-	22:12	AI	Са	Cu	Fe Pb	Mg	Mo	×	Na
CCB			-	22:14	AI	Са	Cu	Fe Pb	Mg	Mo	¥	Na
22222			5	22,17								
222222			5	22.19								
222222			£	22.22								
222222			ß	22 24								
222222			ŝ	22.27								
727222			ŝ	22:30								
22222			Ω.	22 32								
22222			5	22:35								
222222			S	22:37								
22222			5	22.40								
ccv			-	22.43	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CCB			-	22 45	AI	Ca	CL	Fe Pb	Mg	Mo	×	Na
222222			5	22:48								
222222			3	22:50								
222222			S	22 53								
22222			S	22.56								
777777			ß	22:58								
22222			5	23.01								
222222			S	23 04								
22222			5	23.06								
272722			ŝ	23.09								
LTTTT			ьc	23 12								

14 ANALYSIS RUN LOG

FORM XIV - IN

Date: 07/29/2020			Method: MS	AS					
ple ID Client ID									
						Elements	ts		
	1 23 14	AI	Са	Cu	Fe Pb	BiN	Mo	¥	Na
	1 23.17	AI	Ca	С	Fe Pb	Mg	Mio	×	Na
	5 23 20								
	5 23 22								
	5 23 25								
	5 23 28								
	25 23 30								
	5 23 33								
	5 23 36								
	5 23 38								
	10 23:41								
	20 23 43								
	1 23 46	AI	Са	С	Fe Pb	Mg	Mo	×	Na
	1 23 49	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
	25 23:51								
	1 23.54								
222222	10 23.56								
222222	20 23 59								
222222	25 00.01								
222222	1 00 04								
22222	1 00.06								
	10 00 09								
222222	20 00:11								
222222	25 00 14								
CCV	1 00:17	AI	Ca	Cu	Fe Pb	Mg	Mo	×	Na
CCB	1 00.19	AI	Ca	СЦ	Fe Pb	ВМ	Mo	×	Na
22222	1 00 22								

14

Lab Name: Katahdin Analytical Services Instrument ID: AGII ENT 7800 ICP_MS

I NICOU File Nom

NNALYSIS RUN LOG

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV File: LNG29A	Jul	29, 2020	17:10	SAMPLE: CCV File: LNG29A	Jul 2	29, 2020	17:58
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	371.88	93.0	ALUMINUM	500.0	480.05	96.0
CALCIUM	4000.0	3901.81	97.5	CALCIUM	5000.0	4857.08	97.1
COPPER	20.0	20.22	101.1	COPPER	25.0	25.11	100.4
IRON	4000.0	3883.70	97.1	IRON	5000.0	4844.89	96.9
LEAD	20.0	19.93	99.6	LEAD	25.0	24.04	96.2
MAGNESIUM	4000.0	3928.10	98.2	MAGNESIUM	5000.0	4891.21	97.8
MOLYBDENUM	40.0	38.80	97.0	MOLYBDENUM	25.0	25.18	100.7
POTASSIUM	4000.0	3914.25	97.9	POTASSIUM	5000.0	4874.36	97.5
SODIUM	4000.0	4004.40	100.1	SODIUM	5000.0	5081.64	101.6

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG29A		Jul 29, 2020		SAMPLE: CCV File: LNG29A	Jul	Jul 29, 2020		
Analyte	True Found		%R (1)	Analyte	True	True Found		
ALUMINUM	500.0	481.53	96.3	ALUMINUM	500.0	491.49	98.3	
CALCIUM	5000.0	4843.02	96.9	CALCIUM	5000.0	4865.27	97.3	
COPPER	25.0	25.43	101.7	COPPER	25.0	24.88	99.5	
IRON	5000.0	4735.12	94.7	IRON	5000.0	4860.59	97.2	
LEAD	25.0	24.06	96.2	LEAD	25.0	23.87	95.5	
MAGNESIUM	5000.0	4928.24	98.6	MAGNESIUM	5000.0	4985.04	99.7	
MOLYBDENUM	25.0	24.73	98.9	MOLYBDENUM	25.0	24.38	97.5	
POTASSIUM	5000.0	4950.67	99.0	POTASSIUM	5000.0	4925.52	98.5	
SODIUM	5000.0	5063.54	101.3	SODIUM	5000.0	5833.82	116.7•	

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG29A		29, 2020	19:34	SAMPLE: CCV File: LNG29A		29, 2020	20:05
Analyte	True Found		%R (1)	Analyte	True	True Found	
ALUMINUM	500.0	486.41	97.3	ALUMINUM	500.0	490.86	98.2
CALCIUM	5000.0	4942.57	98.9	CALCIUM	5000.0	4816.62	96.3
COPPER	25.0	24.97	99.9	COPPER	25.0	25.40	101.6
IRON	5000.0	4716.29	94.3	IRON	5000.0	4665.09	93.3
LEAD	25.0	24.17	96.7	LEAD	25.0	23.34	93.4
MAGNESIUM	5000.0	4986.11	99.7	MAGNESIUM	5000.0	5131.40	102.6
MOLYBDENUM	25.0	24.76	99.0	MOLYBDENUM	25.0	25.30	101.2
POTASSIUM	5000.0	4922.01	98.4	POTASSIUM	5000.0	5047.66	101.0
SODIUM	5000.0	5439.96	108.8	SODIUM	5000.0	5393.38	107.9

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

Jui	29, 2020	20:37	SAMPLE: CCV File: LNG29A	Jul 29, 2020		21:08 d %R(1)	
True Found		%R (1)	Analyte	True	Found		
500.0	470.87	94.2	ALUMINUM	500.0	465.43	93.1	
5000.0	4804.48	96.1	CALCIUM	5000.0	4816.44	96.3	
25.0	25.00	100.0	COPPER	25.0	24.84	99.4	
5000.0	4717.02	94.3	IRON	5000.0	4690.70	93.8	
25.0	24.14	96.6	LEAD	25.0	23.02	92.1	
5000.0	4994.58	99.9	MAGNESIUM	5000.0	4904.69	98.1	
25.0	24.56	98.2	MOLYBDENUM	25.0	24.81	99.2	
5000.0	4891.05	97.8	POTASSIUM	5000.0	4819.78	96.4	
5000.0	5230.72	104.6	SODIUM	5000.0	5122.73	102.5	
	True 500.0 5000.0 25.0 5000.0 25.0 5000.0 25.0 5000.0	TrueFound500.0470.875000.04804.4825.025.005000.04717.0225.024.145000.04994.5825.024.565000.04891.05	TrueFound%R (1)500.0470.8794.25000.04804.4896.125.025.00100.05000.04717.0294.325.024.1496.65000.04994.5899.925.024.5698.25000.04891.0597.8	TrueFound%R (1)Analyte500.0470.8794.2ALUMINUM5000.04804.4896.1CALCIUM25.025.00100.0COPPER5000.04717.0294.3IRON25.024.1496.6LEAD5000.04994.5899.9MAGNESIUM25.024.5698.2MOLYBDENUM5000.04891.0597.8POTASSIUM	TrueFound%R (1)AnalyteTrue500.0470.8794.2ALUMINUM500.05000.04804.4896.1CALCIUM5000.025.025.00100.0COPPER25.05000.04717.0294.3IRON5000.025.024.1496.6LEAD25.05000.04994.5899.9MAGNESIUM5000.025.024.5698.2MOLYBDENUM25.05000.04891.0597.8POTASSIUM5000.0	TrueFound%R (1)AnalyteTrueFound500.0470.8794.2ALUMINUM500.0465.435000.04804.4896.1CALCIUM5000.04816.4425.025.00100.0COPPER25.024.845000.04717.0294.3IRON5000.04690.7025.024.1496.6LEAD25.023.025000.04994.5899.9MAGNESIUM5000.04904.6925.024.5698.2MOLYBDENUM25.024.815000.04891.0597.8POTASSIUM5000.04819.78	

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG29A	Jul 29, 2020 True Found		21:40	SAMPLE: CCV File: LNG29A	Jul 29, 2020		22:12	
Analyte			%R (1)	Analyte	True	True Found		
ALUMINUM	500.0	471.14	94.2	ALUMINUM	500.0	466.47	93.3	
CALCIUM	5000.0	4848.00	97.0	CALCIUM	5000.0	4767.18	95.3	
COPPER	25.0	24.56	98.2	COPPER	25.0	24.57	98.3	
IRON	5000.0	4697.19	93.9	IRON	5000.0	4591.14	91.8	
LEAD	25.0	23.07	92.3	LEAD	25.0	23.66	94.6	
MAGNESIUM	5000.0	4912.89	98.3	MAGNESIUM	5000.0	4943.18	98.9	
MOLYBDENUM	25.0	24.44	97.8	MOLYBDENUM	25.0	24.55	98.2	
POTASSIUM	5000.0	4814.63	96.3	POTASSIUM	5000.0	4854.82	97.1	
SODIUM	5000.0	5077.72	101.6	SODIUM	5000.0	5125.39	102.5	

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG29A	Jul	29, 2020	22:43	SAMPLE: CCV File: LNG29A		29, 2020	23:14
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	484.10	96.8	ALUMINUM	500.0	460.83	92.2
CALCIUM	5000.0	4790.30	95.8	CALCIUM	5000.0	4850.34	97.0
COPPER	25.0	25.32	101.3	COPPER	25.0	24.73	98.9
IRON	5000.0	4634.08	92.7	IRON	5000.0	4676.84	93.5
LEAD	25.0	23.68	94.7	LEAD	25.0	22.94	91.8
MAGNESIUM	5000.0	5065.30	101.3	MAGNESIUM	5000.0	4917.51	98.4
MOLYBDENUM	25.0	25.08	100.3	MOLYBDENUM	25.0	24.65	98.6
POTASSIUM	5000.0	4977.66	99.6	POTASSIUM	5000.0	4764.92	95.3
SODIUM	5000.0	5242.33	104.8	SODIUM	5000.0	5087.17	101.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

- --- -

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCVFile:LNG29AJul 29, 2020AnalyteTrueFound		29, 2020	23:46	SAMPLE: CCV File: LNG29A		Jul 30, 2020	
		Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	464.49	92.9	ALUMINUM	500.0	479.13	95.8
CALCIUM	5000.0	4821.74	96.4	CALCIUM	5000.0	4822.46	96.4
COPPER	25.0	24.32	97.3	COPPER	25.0	24.43	97.7
IRON	5000.0	4685.99	93.7	IRON	5000.0	4720.14	94.4
LEAD	25.0	22.79	91.2	LEAD	25.0	22.98	91.9
MAGNESIUM	5000.0	4922.09	98.4	MAGNESIUM	5000.0	4900.53	98.0
MOLYBDENUM	25.0	24.46	97.8	MOLYBDENUM	25.0	24.04	96.2
POTASSIUM	5000.0	4830.04	96.6	POTASSIUM	5000.0	4820.88	96.4
SODIUM	5000.0	5135.04	102.7	SODIUM	5000.0	5239.43	104.8

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG29A	Jul 3	30, 2020	00:48	SAMPLE: CCV File: LNG29A	Jul :	30, 2020	01:19	
Analyte True		Found	%R (1)	Analyte	True Found		%R (1)	
ALUMINUM	500.0	478.94	95.8	ALUMINUM	500.0	473.56	94.7	
CALCIUM	5000.0	4757.72	95.2	CALCIUM	5000.0	4654.12	93.1	
COPPER	25.0	25.14	100.6	COPPER	25.0	24.69	98.8	
IRON	5000.0	4657.56	93.2	IRON	5000.0	4552.53	91.1	
LEAD	25.0	23.23	92.9	LEAD	25.0	23.17	92.7	
MAGNESIUM	5000.0	5011.33	100.2	MAGNESIUM	5000.0	4935.05	98.7	
MOLYBDENUM	25.0	24.54	98.2	MOLYBDENUM	25.0	24.56	98.2	
POTASSIUM	5000.0	4904.01	98.1	POTASSIUM	5000.0	4837.84	96.8	
SODIUM	5000.0	5299.22	106.0	SODIUM	5000.0	5143.17	102.9	

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCVFile: LNG29AJul 30, 2020		01:51	SAMPLE: CCV File: LNG29A	Jul	Jul 30, 2020		
Analyte	alyte True Found %F		%R (1)	%R (1) Analyte		Found	%R (1)
ALUMINUM	500.0	484.52	96.9	ALUMINUM	500.0	480.21	96.0
CALCIUM	5000.0	4688.28	93.8	CALCIUM	5000.0	4728.60	94.6
COPPER	25.0	24.60	98.4	COPPER	25.0	24.82	99.3
IRON	5000.0	4607.09	92.1	IRON	5000.0	4611.30	92.2
LEAD	25.0	22.82	91.3	LEAD	25.0	22.94	91.8
MAGNESIUM	5000.0	4946.66	98.9	MAGNESIUM	5000.0	5005.48	100.1
MOLYBDENUM	25.0	24.03	96.1	MOLYBDENUM	25.0	24.74	99.0
POTASSIUM	5000.0	4844.26	96.9	POTASSIUM	5000.0	4840.25	96.8
SODIUM	5000.0	5163.48	103.3	SODIUM	5000.0	5148.17	103.0

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG29A	Jul 30, 2020 True Found		02:55	SAMPLE: CCV File: LNG29A	Jul	Jul 30, 2020		
Analyte			%R (1)	Analyte	True	True Found		
ALUMINUM	500.0	488.76	97.8	ALUMINUM	500.0	471.04	94.2	
CALCIUM	5000.0	4838.65	96.8	CALCIUM	5000.0	4770.94	95.4	
COPPER	25.0	25.33	101.3	COPPER	25.0	24.24	97.0	
IRON	5000.0	4635.77	92.7	IRON	5000.0	4596.94	91.9	
LEAD	25.0	24.47	97.9	LEAD	25.0	23.97	95.9	
MAGNESIUM	5000.0	5080.68	101.6	MAGNESIUM	5000.0	4937.13	98.7	
MOLYBDENUM	25.0	25.10	100.4	MOLYBDENUM	25.0	24.41	97.6	
POTASSIUM	5000.0	4868.75	97.4	POTASSIUM	5000.0	4751.88	95.0	
SODIUM	5000.0	5405.86	108.1	SODIUM	5000.0	5130.08	102.6	

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	PQL		
File: LNG29A	Jul 2	29, 2020	17:45
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	20.93	104.7
CALCIUM	20.0	22.87	114.3
COPPER	0.6	0.63	105.0
IRON	20.0	25.18	125.9•
LEAD	0.2	0.21	105.0
MAGNESIUM	20.0	19.26	96.3
MOLYBDENUM	1.0	1.03	103.0
POTASSIUM	200.0	208.00	104.0
SODIUM	200.0	208.66	104.3

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	ration Unit	s: ug/L			
SAMPLE: ICE	3		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG29A Jul	29, 2020	17:13	File: LNG29A Jul	29, 2020	18:01	File: LNG29A Ju	29, 2020	18:33
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.339	U	ALUMINUM	3.771	J	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	20.526	В	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	17.608	В	IRON	6.400	U
LEAD	0.034	J	LEAD	0.048	J	LEAD	0.025	J
MAGNESIUM	0.350	U	MAGNESIUM	3.711	J	MAGNESIUM	1.661	J
MOLYBDENUM	0.189	J	MOLYBDENUM	0.122	J	MOLYBDENUM	0.104	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	27.289	J	SODIUM	-10.194	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SN6056

			Concen	tration Unit	s: ug/L			
SAMPLE: CC	CB		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG29A Ju	l 29, 2020	19:05	File: LNG29A Ju	1 29, 2020	19:37	File: LNG29A Ju	1 29, 2020	20:08
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	-0.684	U	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.024	J	LEAD	0.017	J	LEAD	0.044	J
MAGNESIUM	1.052	J	MAGNESIUM	-0.540	U	MAGNESIUM	1.029	J
MOLYBDENUM	0.107	J	MOLYBDENUM	0.129	J	MOLYBDENUM	0.107	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	560.236	В	SODIUM	240.258	В	SODIUM	127.157	В

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concentr	ation Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG29A Jul	29, 2020	20:40	File: LNG29A Jul	29, 2020	21:11	File: LNG29A Jul	29, 2020	21:43
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.470	U	ALUMINUM	-0.349	U	ALUMINUM	-0.841	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.014	J	LEAD	0.027	J	LEAD	0.018	J
MAGNESIUM	1.700	J	MAGNESIUM	2.886	J	MAGNESIUM	3.197	J
MOLYBDENUM	0.113	J	MOLYBDENUM	0.095	J	MOLYBDENUM	0.098	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	76.885	J	SODIUM	40.542	J	SODIUM	25.574	J

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	ration Unit	s: ug/L			
SAMPLE: CCI	B		SAMPLE: CC	B		SAMPLE: CC	В	
File: LNG29A Jul	29, 2020	22:14	File: LNG29A Jul	29, 2020	22:45	File: LNG29A Jul	29, 2020	23:17
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.648	U	ALUMINUM	-0.940	U	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.019	J	LEAD	0.015	J	LEAD	0.017	J
MAGNESIUM	3.126	J	MAGNESIUM	2.957	J	MAGNESIUM	5.069	J
MOLYBDENUM	0.096	J	MOLYBDENUM	0.111	J	MOLYBDENUM	0.073	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	7.009	J	SODIUM	6.600	U	SODIUM	-9.904	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SAMPLE: CC			Concent SAMPLE: CC	ration Unit B	s: ug/L	SAMPLE: CC	В	
File: LNG29A Jul	29, 2020	23:49	File: LNG29A Jul	30, 2020	00:19	File: LNG29A Jul	30, 2020	00:51
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.583	U	ALUMINUM	-0.668	U	ALUMINUM	-0.480	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.018	J	LEAD	0.015	J	LEAD	0.024	J
MAGNESIUM	2.253	J	MAGNESIUM	1.887	J	MAGNESIUM	1.449	J
MOLYBDENUM	0.109	J	MOLYBDENUM	0.105	J	MOLYBDENUM	0.116	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	13.055	J
SODIUM	38.960	J	SODIUM	92.251	J	SODIUM	89.372	J

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	ration Unit	s: ug/L			
SAMPLE: CCI	B		SAMPLE: CC	B		SAMPLE: CC	В	
File: LNG29A Jul	30, 2020	01:22	File: LNG29A Jul	30, 2020	01:54	File: LNG29A Jul	30, 2020	02:26
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.693	U	ALUMINUM	0.330	U	ALUMINUM	-0.619	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.015	j	LEAD	0.014	J	LEAD	0.014	J
MAGNESIUM	-2.067	U	MAGNESIUM	1.382	J	MAGNESIUM	-2.450	U
MOLYBDENUM	0.096	J	MOLYBDENUM	0.090	J	MOLYBDENUM	0.095	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	45.820	J	SODIUM	25.009	J	SODIUM	6.600	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Conc	entration Unit
SAMPLE: C	ССВ		SAMPLE: C	ССВ
File: LNG29A	Jul 30, 2020	02:57	File: LNG29A	Jul 30, 2020
Analyte	Result	С	Analyte	Result
ALUMINUM	-0.771	U	ALUMINUM	-0.618
CALCIUM	6.800	U	CALCIUM	6.800
COPPER	0.087	U	COPPER	0.087
IRON	6.400	U	IRON	6.400
LEAD	0.017	J	LEAD	0.037
MAGNESIUM	-1.995	U	MAGNESIUM	-4.809
MOLYBDENUM	0.072	J	MOLYBDENUM	0.104
POTASSIUM	12.000	U	POTASSIUM	12.000
SODIUM	108.160	В	SODIUM	11.177

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNG29A	Ju	ıl 29, 2020	17:18	File: LNG29A	Ju	l 29, 2020	17:21
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	91972.15	92.0	ALUMINUM	100000.00	91991.97	92.0
CALCIUM	100000.00	101214.55	101.2	CALCIUM	100000.00	99655.02	99.7
COPPER	0.26	0.42		COPPER	20.47	19.39	95.0
IRON	100000.00	98144.43	98.1	IRON	100000.00	96185.52	96.2
LEAD	0.13	0.12		LEAD	20.13	20.39	100.0
MAGNESIUM	100000.00	97242.51	97.2	MAGNESIUM	100000.00	97258.87	97.3
MOLYBDENUM	2000.00	2039.95	102.0	MOLYBDENUM	2000.00	2063.44	103.2
POTASSIUM	100000.00	94755.69	94.8	POTASSIUM	100000.00	95022.34	95.0
SODIUM	100000.00	97496.03	97.5	SODIUM	100000.00	97572.81	97.6

ANALYSIS RUN LOG

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/30/2020

Method: MS

File Name: LNG30A

SDG Name: SN6056

Lab Sample ID	Client ID	D.F.	Time					Elements	nts		
CalBlank			16.19	AI	Ca	Cu	Fe Pb	Mg	Mo	×	Na
CalStd		-	16.22	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
ICV		-	16 30	AI	Ca	С	Fe Pb	Mg	Mo	¥	Na
ICB		-	16.33	AI	Са	Си	Fe Pb	Mg	Mo	¥	Na
Pal		-	16.35	AI	Ca	Си	Fe Pb	Mg	Mo	¥	Na
ICSA		-	16.38	AI	Ca	С	Fe Pb	Mg	Mo	¥	Na
ICSAB		-	16.41	AI	Ca	Сп	Fe Pb	Mg	Mo	¥	Na
222222		Ł	16.44								
222222		-	16.46								
222.222		-	16 49								
222222			16.51								
CCV			16.54	AI	Са	Си	Fe Pb	Mg	Mo	¥	Na
CCB		-	16 57	AI	Са	С	Fe Pb	Mg	Mo	¥	Na
222222		S	16:59								
222222		25	17.02								
222222		5	17.05								
22222		5	17.07								
222222		25	17:10								
222222		5	17.13								
22222		S	17.15								
22222		5	17,18								
SN6056-021	COR06SED07A	ŝ	17:21			Cu	Ъb				
SN6056-022	COR06SED08A	2	17:23			Cu	Pb				
CCV		-	17.26	AI	Са	Cu	Fe Pb	ВМ	Mo	¥	Na
CCB		-	17.28	AI	Са	СП	Fe Pb	Mg	Mo	Х	Na
222222		S	17:31								

Katahdin Analytical Services A0000215

FORM XIV - IN

FORM XIV - IN

	Lab Name: Katahdin Analytical Services	SDG Name: SN6056	: SN605(10				
	Instrument ID: AGILENT 7800 ICP-MS	File Name: LNG30A	LNG30/	4				
	Date: 07/30/2020	Method: MS	NS					
Lab Sample ID	Client ID D.F. Time				Elements			
222222	5 17.36							
222222	5 17.39							
22222	5 17 42							
22222	5 17 44							
22222	5 17.47							
22222	5 17 50							
22222	5 17.52							
222222	5 17.55	k.						
ccv	1 17.57 AI	Ca	Си	Fe Pb	Мg	Mo	×	Na
CCB	1 18.00 AI	Са	Cu	Fe Pb	Mg	Mo	X	Na
222222	25 18 03							
22222	5 18:05							
222222	5 18.08							
222222	5 18,10							
22222	5 18 13							
SN6056-012	COR05SED07A 50 18:16			Pb				
222222	5 18 18							
22222	5 18.21							
222222	5 18.23							
222222	5 18 26							
CCV	1 18:29 AI	Ca	Cu	Fe Pb	Mg	Mo	×	Na
CCB	1 18:31 AI	Ca	СЦ	Fe Pb	Mg	Mo	×	Na
22222	5 18:34							
222222	5 18.37							
22222	5 18.39							
222222	1 18:42							
77777	5 1845						-	

14 ANALYSIS RUN LOG

FORM XIV - IN

			dements						g Mo K Na	g Mo K Na											a Mo K Na	a Mo K Na							
			Elements						ВМ	Mg											ΒM	ВМ							
56	0A							-	Fe Pb	Fe Pb											Fe Pb	Fe Pb							
e: SN60	: LNG3	MS							Cu	Cu											Cu	СЦ							
SDG Name: SN6056	File Name: LNG30A	Method:							Ca	Ca											Ca	Са							
rvices	SM-								AI	AI											A	A							
tical Ser	'800 ICP		Time	18 47	18.50	18.53	18,55	18.58	19.00	19:03	19.06	19.08	19.11	19:14	19-16	19 19	19.22	19:24	19:27	19 29	19.32	19:34	19.37	19:40	19.42	19:45	19 48	19.50	19.53
n Analy	ILENT 7	0	D.F.	Ŧ	10	10	10	-	-		2	5	S	25	S	25	ŝ	25	Ω.	S	-	-	ŝ	5	ŝ	ŝ	2	5	5
Lab Name: Katahdin Analytical Services	Instrument ID: AGILENT 7800 ICP-MS	Date: 07/30/2020	Client ID																										
			Lab Sample ID																			-							

ANALYSIS RUN LOG

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 07/30/2020

File Name: LNG30A

I ab Samula ID	Cliant ID	20	Tiens					Ē	-		
	CHERLED							Elements	nts		
222222		5	19,59								
222222		5	20.01								3
CCV		-	20.04	AI	Ca	Сц	Fe Pb	BM	Mo	¥	Na
CCB		-	20.07	AI	Са	Cu	Fe Pb	Mg	Mo	¥	Na
222222		S	20 09								
SN6056-004	COR04IS00	S	20.12				đ				
222222		S	20.14								
222222		10	20.17								
222222		25	20.20								
222222		25	20.22								
222222		25	20.25								
222222		25	20.28								
222222		25	20.30								
222222		25	20.33								
CCV		-	20:36	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na
CCB		***	20.38	A	Ca	C	Fe Ph	Ma	M	¥	eN

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV File: LNG30A	Jul	30, 2020	16:30	SAMPLE: CCV File: LNG30A	Jul	30, 2020	16:54
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	381.15	95.3	ALUMINUM	500.0	490.46	98.1
CALCIUM	4000.0	3952.14	98.8	CALCIUM	5000.0	5002.81	100.1
COPPER	20.0	20.99	104.9	COPPER	25.0	25.38	101.5
IRON	4000.0	3914.76	97.9	IRON	5000.0	5023.18	100.5
LEAD	20.0	20.85	104.3	LEAD	25.0	24.44	97.8
MAGNESIUM	4000.0	4031.24	100.8	MAGNESIUM	5000.0	4964.06	99.3
MOLYBDENUM	40.0	41.41	103.5	MOLYBDENUM	25.0	25.19	100.8
POTASSIUM	4000.0	3996.98	99.9	POTASSIUM	5000.0	4984.14	99.7
SODIUM	4000.0	4111.21	102.8	SODIUM	5000.0	5130.73	102.6

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG30A	Jul	30, 2020	17:26	SAMPLE: CCV File: LNG30A	Jul	30, 2020	17:57
Analyte	True	Found	%R(1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	470.95	94.2	ALUMINUM	500.0	492.90	98.6
CALCIUM	5000.0	5027.57	100.6	CALCIUM	5000.0	5047.29	100.9
COPPER	25.0	25.21	100.8	COPPER	25.0	25.37	101.5
IRON	5000.0	5012.66	100.3	IRON	5000.0	5011.21	100.2
LEAD	25.0	26.66	106.6	LEAD	25.0	24.34	97.4
MAGNESIUM	5000.0	4852.01	97.0	MAGNESIUM	5000.0	5060.46	101.2
MOLYBDENUM	25.0	24.50	98.0	MOLYBDENUM	25.0	24.81	99.2
POTASSIUM	5000.0	4851.36	97.0	POTASSIUM	5000.0	4941.18	98.8
SODIUM	5000.0	4998.42	100.0	SODIUM	5000.0	5284.85	105.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG30A		80, 2020	18:29	SAMPLE: CCV File: LNG30A		30, 2020	19:00
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	515.93	103.2	ALUMINUM	500.0	485.76	97.2
CALCIUM	5000.0	4969.83	99.4	CALCIUM	5000.0	5052.46	101.0
COPPER	25.0	26.57	106.3	COPPER	25.0	25.15	100.6
IRON	5000.0	4880.89	97.6	IRON	5000.0	5004.63	100.1
LEAD	25.0	25.89	103.6	LEAD	25.0	25.43	101.7
MAGNESIUM	5000.0	5329.84	106.6	MAGNESIUM	5000.0	5072.05	101.4
MOLYBDENUM	25.0	26.48	105.9	MOLYBDENUM	25.0	24.99	100.0
POTASSIUM	5000.0	5156.18	103.1	POTASSIUM	5000.0	4932.44	98.6
SODIUM	5000.0	5634.78	112.7•	SODIUM	5000.0	5310.34	106.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNG30A	Jul 3	30, 2020	19:32	SAMPLE: CCV File: LNG30A	Jul	30, 2020	20:04
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	494.22	98.8	ALUMINUM	500.0	483.27	96.7
CALCIUM	5000.0	5048.70	101.0	CALCIUM	5000.0	4947.77	99.0
COPPER	25.0	25.48	101.9	COPPER	25.0	25.62	102.5
IRON	5000.0	4931.25	98.6	IRON	5000.0	4891.12	97.8
LEAD	25.0	24.07	96.3	LEAD	25.0	24.76	99.0
MAGNESIUM	5000.0	5109.76	102.2	MAGNESIUM	5000.0	5059.09	101.2
MOLYBDENUM	25.0	25.40	101.6	MOLYBDENUM	25.0	25.35	101.4
POTASSIUM	5000.0	4942.16	98.8	POTASSIUM	5000.0	4902.85	98.1
SODIUM	5000.0	5307.62	106.2	SODIUM	5000.0	5243.94	104.9

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV

File: LNG30A	Jul 3	30, 2020	20:36
Analyte	True	Found	%R (1)
ALUMINUM	500.0	477.64	95.5
CALCIUM	5000.0	5049.54	101.0
COPPER	25.0	25.18	100.7
IRON	5000.0	5010.00	100.2
LEAD	25.0	24.09	96.4
MAGNESIUM	5000.0	5060.19	101.2
MOLYBDENUM	25.0	24.76	99.0
POTASSIUM	5000.0	4945.52	98.9
SODIUM	5000.0	5305.00	106.1

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C PQL STANDARD FOR AA AND ICP

SDG Name: SN6056

Lab Name: Katahdin Analytical Services

Concentration Units: ug/L

SAMPLE: PQL File: LNG30A Jul 30, 2020 16:35 TRUE FOUND % R Analyte ALUMINUM 20.0 19.97 99.8 CALCIUM 20.0 22.96 114.8 COPPER 0.6 0.62 103.3 IRON 20.0 118.4 23.68 LEAD 0.2 0.22 110.0 MAGNESIUM 22.50 20.0 112.5 MOLYBDENUM 1.07 1.0 107.0 POTASSIUM 200.0 199.86 99.9 SODIUM 200.0 207.92 104.0

FORM II (Part 3) - IN

Katahdin Analytical Services A0000090

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	ration Unit	s: ug/L			
SAMPLE: ICB File: LNG30A Jul	30, 2020	16:33	SAMPLE: CC	B 30, 2020	16:57	SAMPLE: CC	B 30, 2020	17:28
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	1.628	J	ALUMINUM	1.102	J
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	9.577	J	IRON	7.742	J
LEAD	0.010	J	LEAD	0.039	J	LEAD	0.032	J
MAGNESIUM	-1.388	U	MAGNESIUM	3.781	J	MAGNESIUM	1.312	J
MOLYBDENUM	0.171	J	MOLYBDENUM	0.221	J	MOLYBDENUM	0.126	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	38.253	J	SODIUM	-6.796	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concen	tration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	CB		SAMPLE: CC	В	
File: LNG30A Jul	30, 2020	18:00	File: LNG30A Ju	1 30, 2020	18:31	File: LNG30A Jul	30, 2020	19:03
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	10.278	В	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.022	J	LEAD	0.011	J	LEAD	0.019	J
MAGNESIUM	3.937	J	MAGNESIUM	3.007	J	MAGNESIUM	1.274	J
MOLYBDENUM	0.113	J	MOLYBDENUM	0.105	J	MOLYBDENUM	0.120	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	73.935	J	SODIUM	121.005	В	SODIUM	60.138	J

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	ration Unit	s: ug/L			
SAMPLE: CC	B		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNG30A Jul	30, 2020	19:34	File: LNG30A Jul	30, 2020	20:07	File: LNG30A Jul	30, 2020	20:38
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.432	J	ALUMINUM	0.354	J
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.009	J	LEAD	0.021	J	LEAD	0.005	J
MAGNESIUM	1.121	J	MAGNESIUM	-0.504	U	MAGNESIUM	4.682	J
MOLYBDENUM	0.109	J	MOLYBDENUM	0.105	J	MOLYBDENUM	0.110	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	65.279	J	SODIUM	17.422	J	SODIUM	86.995	J

Concentration Units: ug/I

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNG30A	Ju	1 30, 2020	16:38	File: LNG30A	Ju	1 30, 2020	16:41
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	91086.77	91.1	ALUMINUM	100000.00	94763.96	94.8
CALCIUM	100000.00	102707.34	102.7	CALCIUM	100000.00	100832.28	100.8
COPPER	0.26	0.29		COPPER	20.47	19.83	100.0
IRON	100000.00	100408.06	100.4	IRON	100000.00	98301.02	98.3
LEAD	0.13	0.08		LEAD	20.13	21.21	105.0
MAGNESIUM	100000.00	95742.45	95.7	MAGNESIUM	100000.00	99425.84	99.4
MOLYBDENUM	2000.00	2029.07	101.4	MOLYBDENUM	2000.00	2107.98	105.4
POTASSIUM	100000.00	93008.70	93.0	POTASSIUM	100000.00	96892.76	96.9
SODIUM	100000.00	95197.08	95.2	SODIUM	100000.00	98907.61	98.9

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNH03A

SDG Name: SN6056

MS
hod:
Met

Lab Sample 11)	Client ID	D.F.	Time				Elements	ents			
CalBlank		-	17.54	AI Sb	Са	9 B	Mg	Mo	×	Na	Zn
CalStd		+	17,57	AI Sb	Са	Fe	Mg	Mo	¥	Na	Zn
ICV		1	18.01	AI Sb	Ca	Fe	Mg	Mo	×	Na	Zn
ICB		~~	18:04	AI Sb	Са	е Ц	Mg	Mo	¥	Na	Zn
Pal		-	18.06	AI Sb	Са	ъ.	Mg	Mo	¥	Na	Zn
ICSA		٢	18:09	AI Sb	Ca	Fe	Mg	Mo	¥	Na	Zn
ICSAB		Ļ	18,12	AI Sb	Ca	e Ł	ВМ	Mo	¥	Na	Zn
22222		-	18,15								
222222		-	18:17								
22222		-	18 20								
222222		-	18 23								
CCV		-	18.25	AI Sb	Са	E	Mg	Mo	×	Na	Zn
CCB		-	18:28	AI Sb	Ca	e F	Mg	Mo	×	Na	Zn
222222		£	18:31								
222222		5	18,33								
22222		ŝ	18;36								
222222		5	18:38								
222222		ŝ	18:41								
222222		5	18:43								
222222		5	18:46								
22222		5	18:49								
222222		5	18.52								
222222		5	18.54								
CCV		-	18.57	AI Sb	Ca	Fe	Mg	Mo	×	Na	Zn
CCB		-	18.59	AI Sb	Ca	Fe	БŴ	Mo	¥	Na	Zn
222222		£	19.02								
22222		ŝ	19.05								

FORM XIV - IN

Katahdin Analytical Services A0000219

> Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 08/03/2020

File Name: LNH03A

SDG Name: SN6056

S
Σ
-ip
ho
let
Σ

Lab Sample 11)	Client ID	D.F.	Time				Elements	ants			
222222		25	19.07								
222222		S	19 10						2		
22222		S	19.12								
222222		Ω	19:15								
222222			19,18								
222222		-	19,20								
222222		-	19:23								
222222		S	19.25								
ccv		-	19.28	AI Sb	Са	Fe	Mg	Mo	×	Na	νZ
CCB		-	19.30	AI Sb	Са	Fe	Mg	Mo	¥	Na	Zn
222222		S	19:33								
222222		ß	19.36								
SN6056-021	COR06SED07A	ъ	19.38	Sb							Zn
SN6056-022	COR06SED08A	5	19:41	Sb							Zn
PBWNG29IMW2		ŝ	19.44	Sb							
LCSWNG29IMW2		ŝ	19:46	Sb							
222222		S	19.49								
222222		5	19.51								
222222		S	19:54								
222222		5	19.57								
CCV		-	19.59	AI Sb	Ca	Fe	Mg	Mo	¥	Na	μZ
CCB		-	20:02	AI Sb	Ca	Fe	Mg	Wo	¥	Na	Zn
222222		S	20.05								
222222		5	20.07								
22222		5	20.10								
SN6056-004	COR04IS00	5	20.12	Sb							

Katahdin Analytical Services A0000220

FORM XIV - IN

Elements File Name: LNH03A SDG Name: SN6056 Method: MS Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS D.F. Time Date: 08/03/2020 Client 1D Lab Sample ID

222222	-	20 18								
222222	-	20,20								
22222	F	20 23								
222222	-	20.26								
222222	-	20.28								
CCV	-	20:31	AI Sb	Са	Fe	Mg	Mo	×	Na	Zn
CCB	-	20.33	AI Sb	Са	ъ	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV File: LNH03A	Aug	03, 2020	18:01	SAMPLE: CCV File: LNH03A	Aug	3, 2020	18:25
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	377.96	94.5	ALUMINUM	500.0	484.47	96.9
ANTIMONY	20.0	21.15	105.7	ANTIMONY	25.0	26.71	106.8
CALCIUM	4000.0	3926.52	98.2	CALCIUM	5000.0	4842.39	96.8
IRON	4000.0	3987.15	99.7	IRON	5000.0	4920.50	98.4
MAGNESIUM	4000.0	3978.05	99.5	MAGNESIUM	5000.0	4945.31	98.9
MOLYBDENUM	40.0	41.07	102.7	MOLYBDENUM	25.0	25.59	102.4
POTASSIUM	4000.0	3938.00	98.5	POTASSIUM	5000.0	4983.75	99.7
SODIUM	4000.0	3938.39	98.5	SODIUM	5000.0	5001.87	100.0
ZINC	20.0	20.73	103.6	ZINC	25.0	25.52	102.1

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNH03A	Aug	03, 2020	18:57	SAMPLE: CCV File: LNH03A	Aug	, 03, 2020	19:28
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	471.40	94.3	ALUMINUM	500.0	478.54	95.7
ANTIMONY	25.0	26.27	105.1	ANTIMONY	25.0	25.45	101.8
CALCIUM	5000.0	4855.45	97.1	CALCIUM	5000.0	4861.36	97.2
IRON	5000.0	4865.38	97.3	IRON	5000.0	4909.16	98.2
MAGNESIUM	5000.0	4962.76	99.3	MAGNESIUM	5000.0	5020.75	100.4
MOLYBDENUM	25.0	25.23	100.9	MOLYBDENUM	25.0	25.33	101.3
POTASSIUM	5000.0	4935.66	98.7	POTASSIUM	5000.0	4938.59	98.8
SODIUM	5000.0	5082.05	101.6	SODIUM	5000.0	5007.87	100.2
ZINC	25.0	25.38	101.5	ZINC	25.0	25.46	101.8

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: LNH03A		03, 2020	19:59	SAMPLE: CCV File: LNH03A		, 03, 2020	20:31
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	477.44	95.5	ALUMINUM	500.0	481.54	96.3
ANTIMONY	25.0	25.83	103.3	ANTIMONY	25.0	24.82	99.3
CALCIUM	5000.0	4919.56	98.4	CALCIUM	5000.0	4804.29	96.1
IRON	5000.0	4911.31	98.2	IRON	5000.0	4877.87	97.6
MAGNESIUM	5000.0	4989.59	99.8	MAGNESIUM	5000.0	5029.99	100.6
MOLYBDENUM	25.0	25.25	101.0	MOLYBDENUM	25.0	25.24	101.0
POTASSIUM	5000.0	4982.18	99.6	POTASSIUM	5000.0	4918.97	98.4
SODIUM	5000.0	5100.48	102.0	SODIUM	5000.0	5086.34	101.7
ZINC	25.0	25.14	100.6	ZINC	25.0	24.80	99.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: I	PQL		
File: LNH03A	Aug	03, 2020	18:06
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	20.53	102.6
ANTIMONY	0.2	0.24	120.0
CALCIUM	20.0	21.81	109.1
IRON	20.0	21.27	106.3
MAGNESIUM	20.0	21.43	107.1
MOLYBDENUM	1.0	1.03	103.0
POTASSIUM	200.0	208.97	104.5
SODIUM	200.0	211.50	105.8
ZINC	2.0	2.73	136.5

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

			Concent	ration Units:	ug/L			
SAMPLE: ICE	•		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNH03A Au	g 03, 2020	18:04	File: LNH03A Au	g 03, 2020	18:28	File: LNH03A Au	g 03, 2020	18:59
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	2.166	J	ALUMINUM	0.330	U
ANTIMONY	0.061	U	ANTIMONY	0.071	J	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
MAGNESIUM	0.667	J	MAGNESIUM	3.514	J	MAGNESIUM	2.288	J
MOLYBDENUM	0.096	J	MOLYBDENUM	0.125	J	MOLYBDENUM	0.067	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	15.841	J	SODIUM	45.212	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

SAMPLE: CC	B g 03, 2020	19:30	SAMPLE: CC	ration Unit B g 03, 2020	0	SAMPLE: CC File: LNH03A Au	B g 03, 2020	20:33
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	0.330	U	ALUMINUM	0.330	U
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
MAGNESIUM	1.913	J	MAGNESIUM	2.151	J	MAGNESIUM	3.174	J
MOLYBDENUM	0.070	J	MOLYBDENUM	0.060	J	MOLYBDENUM	0.064	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	15.664	J	SODIUM	43.702	J	SODIUM	38.281	J
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNH03A	Αι	ıg 03, 2020	18:09	File: LNH03A	A	ug 03, 2020	18:12
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	88966.95	89.0	ALUMINUM	100000.00	89527.56	89.5
ANTIMONY	0.19	0.16		ANTIMONY	20.00	20.99	105.0
CALCIUM	100000.00	99092.75	99.1	CALCIUM	100000.00	100823.13	100.8
IRON	100000.00	96088.07	96.1	IRON	100000.00	99101.75	99.1
MAGNESIUM	100000.00	94432.86	94.4	MAGNESIUM	100000.00	95652.15	95.7
MOLYBDENUM	2000.00	2015.73	100.8	MOLYBDENUM	2000.00	2085.86	104.3
POTASSIUM	100000.00	96264.66	96.3	POTASSIUM	100000.00	98044.02	98.0
SODIUM	100000.00	95386.02	95.4	SODIUM	100000.00	97315.27	97.3
ZINC	0.24	0.33		ZINC	20.40	19.47	95.0

Zu Zu Zn Zn Zn ΠZ Zn Zn Zu Zn Zn ЧZ Zn Na Na Na Na Na Ra Na Ra Na Ña Na ¥ ¥ \mathbf{x} \mathbf{x} ¥ \mathbf{x} ¥ \mathbf{x} \leq ¥ ¥ Mo Ň Ŵ мо Ň Ň Ň Mo Ŵ Ŵ Мo Elements Mg М Mg БМ ßW Mg ВМ ВЙ Mg ß βŴ ê L e H e E e E Ъ e F e e F e. Бе Ę SDG Name: SN5717 File Name: LNH04A Method: MS Ca Sa Ca Ca S Sa Ca Ca S S Ça Lab Name: Katahdin Analytical Services ₹ ₹ ₹ ₹ ₹ ₹ ₹ ₹ ۶ ₹ ₹ Instrument ID: AGILENT 7800 ICP-MS Time 14 36 14 40 14 43 14.49 15 02 15 08 15:10 17,10 17 13 17.15 17.18 17.38 14.46 14 54 14.59 15.05 17.22 17:24 17 27 17.30 17.32 17:40 14 51 14.57 17 35 17.43 17,46 D.F. -. --~ <u>___</u> -_ ---, ŝ S ŝ S ю ю ŝ s ŝ ŝ ŝ S -----08/04/2020 COR03EQB Client ID Date: LCSWNG29IMW2 PBWNG29IMW2 Lab Sample ID SN5717-020R CalBlank ZZZZZ 222222 22222 ZZZZZ ZZZZZ 22222 22222 222222 ICSAB 222222 222222 ZZZZZ ZZZZZZ 222222 CalStd ICSA CCV CCB PQL SCV CCB 20 <u>C</u>B

Katahdin Analytical Services A0000139

FORM XIV - IN

14

	Lab Name: Katahdin Analytical Services	Analy	tical Se	vices	SDG Name: SN6056	6056					
	Instrument ID: AGILENT 7800 ICP-MS	ENT 7	800 ICF	-MS	File Name: LNH04A	H04A					
	Date: 08/04/2020				Method: MS						
Lab Sample ID	Client ID	D.F.	Time				Elements	ats			
CalBlank		-	14:36	AI Sb	Ca	е Ш	ßW	Mo	¥	Na	
CalStd		-	14.40	AI Sb	Ca	Fe	Mg	Mo	¥	Na	
ICV		÷	14 43	AI Sb	Ca	Ë	Mg	Mo	¥	Na	
ICB		-	14 46	AI Sb	Са	Fe	Mg	Mo	¥	Na	
Pal		1	14:49	AI Sb	Са	ů,	Mg	Mo	¥	Na	
ICSA		-	14.51	AI Sb	Са	Fe	Mg	Mo	×	Na	
ICSAB		-	14,54	AI Sb	Ca	Ę	Mg	Mo	¥	Na	
222222		-	14.57								
22222		-	14.59								
222222		۲	15.02								
222222			15.05								
CCV		-	15:08	AI Sb	Са	Fe	Mg	Mo	¥	Na	
CCB		-	15.10	AI Sb	Ca	Fe	Mg	Mo	×	Na	
222222		5	17.10								
222222		5	17.13								
727722		5	17.15								
LCSONG28IMS1		ß	17.18	Sb							
222222		5	17.22								
PBSNG28IMS1		5	17.24	Sb							
SN6056-001	COR04IS01	ŝ	17.27	Sb							
SN6056-002	COR04IS02	S	17:30	Sb							
SN6056-003	COR04IS03	S	17:32	Sb							
LCSWNG29IMW2		5	17.35								
CCV		-	17.38	AI Sb	Ca	Fe	Mg	Mo	×	Na	
CCB		-	17:40	AI Sb	Са	Fe	BM	Mo	¥	Na	
PBWNG29IMW2		ŝ	17.43								
222222		5	17.46								

Zn Zn Zn

Zn Zn Zn Zn Zn Zn Zn Katahdin Analytical Services A0000222

FORM XIV - IN

Zn Zn Zn Zn Zn Zn Zn Zn

14 Vere pri

LOG
RUN
YSIS
ANAL

14

SDG Name: SN6056

File Name: LNH04A

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS Date: 08/04/2020

	Date: 08/04/2020				Method: MS						
Lab Sample 1D	Client ID	D.F.	Time				Elements	ts			
222222		S.	17.48								
277722		ى ك	17.51								
222222		2	17.54								
222222		5	17:57								
222222		5	17.59								
222222		5	18:02								
SN6056-004	COR04IS00	5	18.05								Zn
222222		5	18.07								
ccv		-	18.10	AI Sb	Ca	Ъ	Mg	Mo	¥	Na	Zn
CCB		-	18.13	AI Sb	Са	ф Ф	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNH04A	Aug	04, 2020	14:43	File: LNH04A	Aug	04, 2020	15:08
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	373.02	93.3	ALUMINUM	500.0	470.80	94.2
CALCIUM	4000.0	3927.75	98.2	CALCIUM	5000.0	4727.91	94.6
IRON	4000.0	3950.74	98.8	IRON	5000.0	4823.39	96.5
MAGNESIUM	4000.0	3933.84	98.3	MAGNESIUM	5000.0	4962.06	99.2
MOLYBDENUM	40.0	40.32	100.8	MOLYBDENUM	25.0	25.07	100.3
POTASSIUM	4000.0	3913.14	97.8	POTASSIUM	5000.0	4903.58	98.1
SODIUM	4000.0	3928.25	98.2	SODIUM	5000.0	5065.87	101.3
ZINC	20.0	20.52	102.6	ZINC	25.0	25.20	100.8

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNH04A	Aug	04, 2020	17:38	File: LNH04A	Aug	04, 2020	18:10
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	472.80	94.6	ALUMINUM	500.0	480.84	96.2
CALCIUM	5000.0	4777.77	95.6	CALCIUM	5000.0	4831.78	96.6
IRON	5000.0	4810.93	96.2	IRON	5000.0	4866.36	97.3
MAGNESIUM	5000.0	4919.33	98.4	MAGNESIUM	5000.0	5027.15	100.5
MOLYBDENUM	25.0	24.93	99.7	MOLYBDENUM	25.0	25.09	100.4
POTASSIUM	5000.0	4781.17	95.6	POTASSIUM	5000.0	4857.49	97.1
SODIUM	5000.0	4936.34	98.7	SODIUM	5000.0	5122.39	102.4
ZINC	25.0	24.45	97.8	ZINC	25.0	25.15	100.6

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: PQL

File: LNH04A	Aug	04, 2020	14:49
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	18.59	93.0
CALCIUM	20.0	19.77	98.8
IRON	20.0	21.55	107.8
MAGNESIUM	20.0	21.01	105.1
MOLYBDENUM	1.0	1.05	105.0
POTASSIUM	200.0	204.83	102.4
SODIUM	200.0	208.69	104.3
ZINC	2.0	1.97	98.5

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Unit	s: ug/L			
SAMPLE: ICE	8		SAMPLE: CC	В		SAMPLE: CC	B	
File: LNH04A Au	g 04, 2020	14:46	File: LNH04A Au	g 04, 2020	15:10	File: LNH04A Au	g 04, 2020	17:40
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	1.292	J	ALUMINUM	0.897	J
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
MAGNESIUM	0.904	J	MAGNESIUM	2.691	J	MAGNESIUM	0.807	J
MOLYBDENUM	0.096	J	MOLYBDENUM	0.116	J	MOLYBDENUM	0.050	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	7.248	J	SODIUM	-11.487	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCB

File: LNH04A Aug 04, 2020 18:13

Analyte	Result	С
ALUMINUM	0.330	U
CALCIUM	6.800	U
IRON	6.400	U
MAGNESIUM	0.883	J
MOLYBDENUM	0.055	J
POTASSIUM	12.000	U
SODIUM	11.016	J
ZINC	0.220	U

4 ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNH04A	Αι	ıg 04, 2020	14:51	File: LNH04A	A	ug 04, 2020	14
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	%
ALUMINUM	100000.00	90063.20	90.1	ALUMINUM	100000.00	91061.63	9
CALCIUM	100000.00	99196.61	99.2	CALCIUM	100000.00	102667.63	10
IRON	100000.00	96110.21	96.1	IRON	100000.00	100851.08	10
MAGNESIUM	100000.00	95522.87	95.5	MAGNESIUM	100000.00	98059.54	9
MOLYBDENUM	2000.00	1994.74	99.8	MOLYBDENUM	2000.00	2072.74	103
POTASSIUM	100000.00	96822.08	96.8	POTASSIUM	100000.00	98832.43	98
SODIUM	100000.00	97712.43	97.7	SODIUM	100000.00	100883.69	100
ZINC	0.24	0.53		ZINC	20.40	19.65	100

Katahdin Analytical Services A0000141

FORM XIV - IN

Indemnetation Cluncin D Is Tenson Ferror Enson collamidet 1 520 A Col 64 Po		Date: 08/05/2020				Method: N	MS						
ank cl 1 5 6 1 5 6	Lab Sample 1D	Client ID	D.F.	Time					Elem	ents			
d d d d d d d d d 1 100 1 1 100 1 100 10	CalBlank		~	15.59	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
1 100 1 100 1 100 100 100 100 100 100 100 1 100 1	CalStd		Ŧ	16 03	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
1 100 1 100	ICV		-	16 06	AI	Ca	Сц	Fe Pb	Mg	Mo	¥	Na	Zn
1 1	ICB		-	16 09	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
Index Index Index Index Index Index Index Index Index Index Ind	Pal		-	16 12	AI	Ca	Cu	Fe Pb	Mg	Mo	¥	Na	Zn
B 1 617 AI Ca Ca Fe Ma Ma ZZ 1 1620 1 1620 1 1620 1 1620 ZZ 1 1620 1 1620 1 1620 1 1620 ZZ 1 1620 1 1620 1 1620 1 1 1 ZZ 1 1630 AI Ca Ca Ca N N N N ZZ 1 1030 AI Ca Ca Ca N N N N ZZ 1 1030 N Ca Ca N N N N ZZ 1 1 N Ca N N N N ZZ 1 1 N N N N N N ZZ 1 1 1 N N N	ICSA		-	16 14	AI	Ca	Сц	Fe Pb	Mig	Mo	×	Na	Zn
ZZ I 1 620 I I 1	ICSAB		-	16,17	А	Ca	Cu	Fe Pb	BM	Mo	¥	Na	Zn
ZZ 1 10.22 ZZ 1 10.52 ZZ 1 10.52 ZZ 1 10.53 ZZ 1 10.53 ZZ 1 10.53 ZZ 1 10.53 ZZ 1 10.53 10 ZZ 1 10.53 10 10 ZZ 1 10.53 10 10 10 ZZ 1 10.54 10 10 10 10 ZZ 1 10.54 1 1 1 1 1 ZZ 1 1 1 1 1 1 1 1 1 ZZ 1 1 1 1 1 1 1 1 1 1 ZZ 1 1 1 1 1 1 1 1 1 1 ZZ 1 1 1 1 1 1 1 1 1 1 1 1 1 1	222222		-	16:20									
ZZ 1 626 ZZ 1 629 ZZ 1 630 ZZ 2 ZZ ZZ ZZ ZZ ZZ ZZ ZZ	22222		-	16.22									
ZZ I	222222		-	16 25									
1 630 Al Ca Ca Fe Ma Ma Ma Z 1 633 Al Ca Cu Fe Ma Ka Na Z 5 642 . Cu Fe Ma Ka Na Z 5 643 Z 5 643 Z 5 643 Z Z Z Z <	222222		-	16 28									
1 103 103 10 103 103 103 103 103 103 103 103 22 2 104 1 1 1 1 1 1 1 22 2 104 1 1 1 1 1 1 22 2 104 1 </td <td>CCV</td> <td></td> <td>-</td> <td>16.30</td> <td>AI</td> <td>Ca</td> <td>СЦ</td> <td>Fe Pb</td> <td>Mg</td> <td>Mo</td> <td>¥</td> <td>Na</td> <td>Zn</td>	CCV		-	16.30	AI	Ca	СЦ	Fe Pb	Mg	Mo	¥	Na	Zn
ZZ 6 164 ZZ 5 164 ZZ 5 164 ZZ 5 164 ZZ 6 165 17-004 6 165 17-004 6 165 17-004 6 165 17-004 6 165 17-004 6 165 17-004 6 165 17-004 6 166 17-014 6 16 17-014 6 16 17-014 7 1 17-014 16 16 17-014 17 1 17-014 17 1 17-014 17 1 17-014 17 1 17-014 17 1	CCB		-	16 33	AI	Ca	СЦ	Fe Pb	Mg	Mo	¥	Na	Zn
ZZ 5 644 ZZ 5 1647 ZZ 5 1647 ZZ 5 1649 ZZ 5 1649 ZZ 6 162 ZZ 6 165 ZZ 6 169 ZZ 7 7	222222		ŝ	16.42									
ZZ 2 1647 ZZ 5 1640 ZZ 5 1640 ZZ 5 1652 ZZ 6 165 ZZ 6 165 T/004 C0R010802A 5 1657 T/1010 C0R020802AL 5 170 T/1010 C0 C0 P T/1010 C0 C0 P T/1010 C1 C0 P T/111 AI AI <td>222222</td> <td></td> <td>ß</td> <td>16 44</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	222222		ß	16 44									
ZZ 2 16.49 HoldNS1 5 16.52 CU Pb T7-004 5 16.55 S 16.55 T7-010 COR01DB02A 5 16.57 S S T7-010 COR02DB02AL 5 1700 CU Pb S T7-010L COR02DB02AL 25 1700 CU Pb S S T7-010L COR02DB02AL 25 1700 CU Pb S S S T7-010L COR02DB02AL 17 1700 Pb S <t< td=""><td>ZZZZZZ</td><td></td><td>ŝ</td><td>16.47</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	ZZZZZZ		ŝ	16.47									
Hitolatikat 5 16 5 Cut Pb ZZ 5 16 55	222222		5	16 49							8		
ZZ ZZ <td< td=""><td>PBSNH04IMS1</td><td></td><td>5</td><td>16 52</td><td></td><td></td><td>Cu</td><td>Pb</td><td></td><td></td><td></td><td></td><td>Zn</td></td<>	PBSNH04IMS1		5	16 52			Cu	Pb					Zn
17-004 $COR01DB02A$ 5 1657 CU Pb $CIC02DB02A$ 5 1700 CU Pb $CIC02DB02A$ 25 1700 CU Pb $CIC02DB02A$ 25 1700 CU Pb $CIC02DB02A$ 25 1700 CU Pb $CIC02DB02A$ 27 $CIC02DB02A$ $CIC02DB02A$	222222		5	16.55									
17-010 COR02DB02A 5 17:00 Cu Pb 17-010L COR02DB02AL 25 17:03 Cu Pb	SN5717-004	COR01DB02A	3	16.57			СЦ	Pb					Zn
17-010L COR02DB02AL 25 17.03 Cu Pb	SN5717-010	COR02DB02A	ŝ	17.00			Си	Pb					Zn
17-010A COR02DB02AA 5 17.05 CU Pb A 1 17.08 AI Ca Cu Fe Pb Ma K Na 1 17.08 AI Ca Cu Fe Pb Ma K Na 1 17.11 AI Ca Ca Fe Pb Ma K Na 17-0105 5 17.14 AI Ca Cu Pb Ma K Na 17-010F COR02DB02AP 5 17.16 Cu Pb A A A	SN5717-010L	COR02DB02AL	25	17.03			Си	Чď					Zn
1 17.08 AI Ca Cu Fe Ma Ma Na 17-0105 12 17.11 AI Ca Ca Fe Pb Ma K Na 17-0105 5 17.14 AI Ca Ca Fe Pb Ma K Na 17-0107 COR02DB02AP 5 17.16 Ca Ca Pb Pa Ma K Na 17-010P COR02DB02AP 5 17.16 Ca Pb Pa P	SN5717-010A	COR02DB02AA	ŝ	17:05			СП	Pb					Zn
1 17.11 AI Ca Cu Fe Pb Mg Mo K Na 17-0105 5 17.14 AI Cu Cu Pb Pa Pa 17-010P COR02DB02AP 5 17.16 Cu Pb Pa Pa	ccv		-	17.08	AI	Ca	Сп	Fe Pb	BM	Mo	¥	Na	Zn
COR02DB02AS 5 17.14 Cu Pb COR02DB02AP 5 17.16 Cu Pb	CCB			17.11	AI	Ca	Сп	Fe Pb	Mg	Mo	¥	Na	Zn
COR02DB02AP 5 17:16 Cu Pb	SN5717-010S	COR02DB02AS	ŝ	17.14			Сц	Pb					Zn
	SN5717-010P	COR02DB02AP	5	17.16			Сц	Pb					Zn

14

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

SDG Name: SN5717 File Name: LNH05A

14

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS 08/05/2020

File Name: LNH05A

SDG Name: SN5717

	Date: 08/05/2020				Method: MS	IS						
Lab Sample ID	Client ID	D.F.	Time					Elements	ts			
SN5717-013	COR03DB01A	ß	17.19			C	Pb					Zn
SN5717-017	COR03DB03A	5	17.22			Си	Pb					Zn
222222		~ `	17 25									
222222			17,27									
222222		£	17:30									
222222		~	17 33									
222222		-	17.35									
22222		-	17.38									
CCV		-	17:41	AI	Ca	Сц	Fe Pb	Mg	Mo	¥	Na	Zn
CCB		~	17 43	AI	Ca	Сц	Fe Pb	Mg	Mo	¥	Na	Zn

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNH05A	Aug	05, 2020	16:06	File: LNH05A	Aug	05, 2020	16:30
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	368.02	92.0	ALUMINUM	500.0	480.76	96.2
CALCIUM	4000.0	4087.97	102.2	CALCIUM	5000.0	5049.24	101.0
COPPER	20.0	20.37	101.8	COPPER	25.0	26.22	104.9
IRON	4000.0	4111.52	102.8	IRON	5000.0	5122.91	102.5
LEAD	20.0	20.24	101.2	LEAD	25.0	25.34	101.4
MAGNESIUM	4000.0	3965.12	99.1	MAGNESIUM	5000.0	5073.26	101.5
MOLYBDENUM	40.0	40.44	101.1	MOLYBDENUM	25.0	25.32	101.3
POTASSIUM	4000.0	3933.99	98.3	POTASSIUM	5000.0	5044.24	100.9
SODIUM	4000.0	3977.04	99.4	SODIUM	5000.0	5165.67	103.3
ZINC	20.0	19.86	99.3	ZINC	25.0	25.91	103.6

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

Aug	05, 2020	17:08	File: LNH05A	Aug	05, 2020	17:41
True	Found	%R (1)	Analyte	True	Found	%R (1)
500.0	476.18	95.2	ALUMINUM	500.0	484.06	96.8
5000.0	5053.26	101.1	CALCIUM	5000.0	5058.80	101.2
25.0	25.79	103.2	COPPER	25.0	25.54	102.2
5000.0	5114.94	102.3	IRON	5000.0	5060.84	101.2
25.0	26.15	104.6	LEAD	25.0	25.89	103.6
5000.0	5035.27	100.7	MAGNESIUM	5000.0	5031.83	100.6
25.0	24.95	99.8	MOLYBDENUM	25.0	25.07	100.3
5000.0	4962.71	99.3	POTASSIUM	5000.0	4970.06	99.4
5000.0	5135.79	102.7	SODIUM	5000.0	5094.29	101.9
25.0	25.39	101.6	ZINC	25.0	25.19	100.8
	True 500.0 5000.0 25.0 5000.0 25.0 5000.0 25.0 5000.0 5000.0	500.0476.185000.05053.2625.025.795000.05114.9425.026.155000.05035.2725.024.955000.04962.715000.05135.79	True Found %R (1) 500.0 476.18 95.2 5000.0 5053.26 101.1 25.0 25.79 103.2 5000.0 5114.94 102.3 25.0 26.15 104.6 5000.0 5035.27 100.7 25.0 24.95 99.8 5000.0 4962.71 99.3 5000.0 5135.79 102.7	True Found %R (1) Analyte 500.0 476.18 95.2 ALUMINUM 5000.0 5053.26 101.1 CALCIUM 25.0 25.79 103.2 COPPER 5000.0 5114.94 102.3 IRON 25.0 26.15 104.6 LEAD 5000.0 5035.27 100.7 MAGNESIUM 25.0 24.95 99.8 MOLYBDENUM 5000.0 4962.71 99.3 POTASSIUM 5000.0 5135.79 102.7 SODIUM	True Found %R (1) Analyte True 500.0 476.18 95.2 ALUMINUM 500.0 5000.0 5053.26 101.1 CALCIUM 5000.0 25.0 25.79 103.2 COPPER 25.0 5000.0 5114.94 102.3 IRON 5000.0 25.0 26.15 104.6 LEAD 25.0 5000.0 5035.27 100.7 MAGNESIUM 5000.0 25.0 24.95 99.8 MOLYBDENUM 25.0 5000.0 4962.71 99.3 POTASSIUM 5000.0 5000.0 5135.79 102.7 SODIUM 5000.0	TrueFound%R (1)AnalyteTrueFound500.0476.1895.2ALUMINUM500.0484.065000.05053.26101.1CALCIUM5000.05058.8025.025.79103.2COPPER25.025.545000.05114.94102.3IRON5000.05060.8425.026.15104.6LEAD25.025.895000.05035.27100.7MAGNESIUM5000.05031.8325.024.9599.8MOLYBDENUM25.025.075000.04962.7199.3POTASSIUM5000.04970.065000.05135.79102.7SODIUM5000.05094.29

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	PQL		
File: LNH05A	Aug	05, 2020	16:12
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	17.33	86.6
CALCIUM	20.0	16.65	83.2
COPPER	0.6	0.60	100.0
IRON	20.0	22.17	110.9
LEAD	0.2	0.23	115.0
MAGNESIUM	20.0	22.84	114.2
MOLYBDENUM	1.0	1.03	103.0
POTASSIUM	200.0	205.40	102.7
SODIUM	200.0	208.91	104.5
ZINC	2.0	1.62	81.0

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

			Concent	ration Units	s: ug/L			
SAMPLE: ICE	3		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNH05A Au	g 05, 2020	16:09	File: LNH05A Au	g 05, 2020	16:33	File: LNH05A Au	g 05, 2020	17:11
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-1.378	U	ALUMINUM	-0.417	U	ALUMINUM	-0.735	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.019	J	LEAD	0.033	J	LEAD	0.013	J
MAGNESIUM	1.828	J	MAGNESIUM	3.089	J	MAGNESIUM	2.764	J
MOLYBDENUM	0.068	J	MOLYBDENUM	0.127	J	MOLYBDENUM	0.054	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	6.600	U	SODIUM	-8.492	U
ZINC	0.220	J	ZINC	-0.547	U	ZINC	-0.544	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCB

File: LNH05A	Aug 05, 2020 17:43
--------------	--------------------

Analyte	Result	С
ALUMINUM	-2.306	U
CALCIUM	6.800	U
COPPER	0.087	U
IRON	6.400	U
LEAD	0.009	J
MAGNESIUM	1.220	J
MOLYBDENUM	0.056	J
POTASSIUM	12.000	U
SODIUM	32.863	J
ZINC	-0.567	U

4

ICP INTERFERENCE CHECK SAMPLE

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNH05A	A	ug 05, 2020	16:14	File: LNH05A	A	ug 05, 2020	16:17
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	90636.38	90.6	ALUMINUM	100000.00	90998.96	91.0
CALCIUM	100000.00	102559.25	102.6	CALCIUM	100000.00	104747.88	104.7
COPPER	0.26	0.27		COPPER	20.47	19.80	100.0
IRON	100000.00	99704.63	99.7	IRON	100000.00	101823.47	101.8
LEAD	0.13	0.10		LEAD	20.13	21.50	110.0
MAGNESIUM	100000.00	96178.73	96.2	MAGNESIUM	100000.00	98641.71	98.6
MOLYBDENUM	2000.00	2009.47	100.4	MOLYBDENUM	2000.00	2102.53	105.2
POTASSIUM	100000.00	97696.07	97.7	POTASSIUM	100000.00	99259.27	99.3
SODIUM	100000.00	98931.48	98.9	SODIUM	100000.00	101614.74	101.6
ZINC	0.24	-0.10		ZINC	20.40	19.32	95.0

Katahdin Analytical Services A0000183

FORM XIV - IN

Lab Sample ID	Client ID	D.F.	Time					Elements		
Blank		-	12.38	AL SB	CD CA	CU	FE PB	MG	N	ZN
Std 1		1	12.43	AL SB	CD CA	сп	FE PB	MG	N	ZN
ICV		t	12 47	AL SB	CD CA	сп	FE PB	MG	N	ZN
ICB		۲	12 51	AL SB	CD CA	сn	FE PB	MG	īz	ZN
PQL		Ļ	12 56	AL SB	CD CA	сп	FE PB	MG	IN	ZN
ICSA		***	13:00	AL SB	CD CA	CU	FE PB	MG	ĪZ	ZN
ICSAB		1	13.06	AL SB	CD CA	cn	FE PB	MG	N	ZN
ccv		1	13.11	AL SB	CD CA	cn	FE PB	MG	ĪZ	NZ
CCB		t	13 15	AL SB	CD CA	cn	FE PB	MG	Z	ZN
222222		1	13.19	č.						
222222		4	13.28							
ccv		+	13 34	AL SB	CD CA	cn	FE PB	MG	Z	ZN
CCB		4	13 38	AL SB	CD CA	сn	FE PB	MG	ĪZ	NZ
222222		+	13.42							
222222		+	13 47							
222222		-	13.51							
22222		-	13.56							
222222		۲	14:00							
222222		-	14.04							
222222		2	14 09							
222222		٢	14 13							
222222		-	14.18							
222222		1	14.22							
CCV		1	14.26	AL SB	CD CA	сп	FE PB	MG	N	ZN
CCB		-	14:31	AL SB	CD CA	cu	FE PB	MG	Z	ZN
222222		4	14:35							

14

Lab Name: Katahdin Analytical Services Instrument ID: THERMO ICAP 6500

File Name: INH06A Method: P

SDG Name: SN6056

ANALYSIS RUN LOG

ANALYSIS RUN LOG

14

SDG Name: SN6056

Lab Name: Katahdin Analytical Services Instrument ID: THERMO ICAP 6500 Date: 08/06/2020

File Name: INH06A Method: P

Lab Sample 1D	Client ID	D.F.	Time					Elements		
222222		5	14,44							
LCSONH03ICS2		-	14,49	SB	CD	cn	PB		N	NZ
PBSNH03iCS2		-	14 53	SB	CD	cn	PB		N	ΝZ
222222		-	14.57					5		
SN6056-026	COR06SED07A	-	15.02	SB	CD	CU	PB		N	ZN
777772		-	15.06							
77777			15:10							
222222		5	15:15							
ccv		-	15.19	AL SB	CD CA	сn	FE PB	MG	N	2
CCB		-	15 23	AL SB	CD CA	сn	FE PB	MG	N	NZ

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV File: INH06A	Aug	g 06, 2020	12:47	SAMPLE: CCV File: INH06A		g 06, 2020	13:11
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10580.00	105.8	ALUMINUM	12500.0	13270.00	106.2
ANTIMONY	400.0	405.20	101.3	ANTIMONY	500.0	513.00	102.6
CADMIUM	400.0	407.10	101.8	CADMIUM	500.0	513.30	102.7
CALCIUM	10000.0	10540.00	105.4	CALCIUM	12500.0	13280.00	106.2
COPPER	400.0	408.70	102.2	COPPER	500.0	524.90	105.0
IRON	10000.0	10510.00	105.1	IRON	12500.0	13320.00	106.6
LEAD	400.0	410.40	102.6	LEAD	500.0	519.10	103.8
MAGNESIUM	10000.0	10350.00	103.5	MAGNESIUM	12500.0	12790.00	102.3
NICKEL	400.0	412.10	103.0	NICKEL	500.0	516.00	103.2
ZINC	400.0	408.00	102.0	ZINC	500.0	513.40	102.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: INH06A	Aug	g 06, 2020	13:34	SAMPLE: CCV File: INH06A		g 06, 2020	14:26
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	12950.00	103.6	ALUMINUM	12500.0	13090.00	104.7
ANTIMONY	500.0	511.20	102.2	ANTIMONY	500.0	508.60	101.7
CADMIUM	500.0	512.30	102.5	CADMIUM	500.0	512.40	102.5
CALCIUM	12500.0	12960.00	103.7	CALCIUM	12500.0	13070.00	104.6
COPPER	500.0	520.50	104.1	COPPER	500.0	521.00	104.2
IRON	12500.0	13070.00	104.6	IRON	12500.0	13170.00	105.4
LEAD	500.0	518.00	103.6	LEAD	500.0	518.10	103.6
MAGNESIUM	12500.0	12700.00	101.6	MAGNESIUM	12500.0	12760.00	102.1
NICKEL	500.0	514.80	103.0	NICKEL	500.0	515.40	103.1
ZINC	500.0	512.00	102.4	ZINC	500.0	511.70	102.3

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV

File: INH06A	Au	g 06, 2020	15:19
Analyte	True	Found	%R (1)
ALUMINUM	12500.0	13050.00	104.4
ANTIMONY	500.0	515.00	103.0
CADMIUM	500.0	516.30	103.3
CALCIUM	12500.0	13000.00	104.0
COPPER	500.0	521.30	104.3
IRON	12500.0	13080.00	104.6
LEAD	500.0	521.50	104.3
MAGNESIUM	12500.0	12850.00	102.8
NICKEL	500.0	518.80	103.8
ZINC	500.0	514.30	102.9

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	PQL		
File: INH06A	Aug	, 06, 2020	12:56
Analyte	TRUE	FOUND	% R
ALUMINUM	300.0	327.60	109.2
ANTIMONY	8.0	8.18	102.3
CADMIUM	5.0	5.22	104.4
CALCIUM	100.0	99.03	99.0
COPPER	25.0	26.45	105.8
IRON	100.0	107.30	107.3
LEAD	5.0	5.66	113.2
MAGNESIUM	100.0	111.60	111.6
NICKEL	10.0	10.51	105.1
ZINC	20.0	20.84	104.2

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Conce	entration Units	s: ug/L			
SAMPLE: IO	СВ		SAMPLE: C	СВ		SAMPLE: 0	ССВ	
File: INH06A	Aug 06, 2020	12:51	File: INH06A	Aug 06, 2020	13:15	File: INH06A	Aug 06, 2020	13:38
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	10.000	U	ALUMINUM	10.000	U	ALUMINUM	18.170	J
ANTIMONY	1.700	U	ANTIMONY	1.700	U	ANTIMONY	1.700	U
CADMIUM	0.092	U	CADMIUM	0.092	U	CADMIUM	0.092	U
CALCIUM	11.000	U	CALCIUM	11.000	U	CALCIUM	11.000	U
COPPER	0.550	U	COPPER	0.550	U	COPPER	0.550	U
IRON	3.600	U	IRON	5.379	J	IRON	5.014	J
LEAD	1.000	U	LEAD	1.000	U	LEAD	1.000	U
MAGNESIUM	2.900	U	MAGNESIUM	2.900	U	MAGNESIUM	4.787	J
NICKEL	0.440	U	NICKEL	0.440	U	NICKEL	0.440	U
ZINC	0.450	U	ZINC	0.450	U	ZINC	0.450	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Co	ncentration Units	s: ug/1
SAMPLE:	ССВ		SAMPLE:	CCB	
File: INH06A	Aug 06, 2020	14:31	File: INH06A	Aug 06, 2020	15:23
Analyte	Result	С	Analyte	Result	С
ALUMINUM	10.000	U	ALUMINUM	14.150	J
ANTIMONY	1.700	U	ANTIMONY	1.700	U
CADMIUM	0.092	U	CADMIUM	0.092	U
CALCIUM	11.000	U	CALCIUM	11.000	U
COPPER	0.550	U	COPPER	0.550	U
IRON	3.600	U	IRON	6.329	J
LEAD	1.000	U	LEAD	1.000	U
MAGNESIUM	3.711	J	MAGNESIUM	2.937	J
NICKEL	0.440	U	NICKEL	0.440	U
ZINC	0.450	U	ZINC	0.450	U

ANALYSIS RUN LOG

Ra Na Na Na Na Ra Na Ra Na Na Ra \mathbf{x} \mathbf{x} ¥ ¥ \mathbf{x} \mathbf{x} \mathbf{x} ¥ \mathbf{x} \mathbf{x} \mathbf{x} Ň Ŵ ыN Ň Mo Я Ŷ Ŵ ŝ Š Ň Elements βM Mg ß Мg Мg ВŴ ВМ Мg ВМ Mg Mg Fe Pb File Name: LNH06A C Ω ŋ J С 0 C C G ū S 3 Method: MS S S Sa S S Sa S Ca Sa S ő AI Sb Sb Lab Name: Katahdin Analytical Services ${\Bbb A}$ Instrument ID: AGILENT 7800 ICP-MS 15 50 16 12 16 14 Time 15.28 15 31 15.34 15 42 15.58 16 06 16.09 16 17 16.28 16 30 16 35 15:24 15 36 15 39 15 45 15 47 15 53 15 56 16 01 16 04 16 20 16.22 16 25 16.33 D.F. ------ ---ŝ S S ະດ ŝ ŝ ŝ ŝ ŝ ŝ s <u>____</u> ----~ ŝ . -08/06/2020 Client 1D Date: Lab Sample ID CalBlank 222222 22222 ZZZZZ 22222 22222 222222 ZZZZZ 222222 ZZZZZ 22222 222222 ZZZZZ ZZZZZ 22222 ZZZZZ 222222 CalStd ICSAB CCB ICSA CCV CCV CCB POL S СB

14

FORM XIV - IN

ANALYSIS RUN LOG

Ra Na Na Ra ¥ ¥ \mathbf{x} \mathbf{x} Ŵ Mo Ŵ Ň Elements Mg Mg ВМ Mg Fe Pb Fe Pb Fe Pb Fe Pb Pb File Name: LNH06A SDG Name: SN5717 C 0 C ů S Cu Method: MS Ca S S S AI Sb AI Sb AI Sb AI Sb Sb Sb Sp Sb Sb Sb g Sb Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS 17.13 Time 16 38 16 46 16.59 16 43 16 49 16.51 16.54 17.02 17,05 17 07 17:10 17 15 17 23 17 26 17 29 17.34 17 39 17:42 16.57 17 18 17.31 17.45 17 48 16 41 17.21 17.37 D.F. S S ŝ ഗ 25 S S S 25 ŝ S 25 S ю ŝ 2 ŝ ŝ ŝ ŝ ŝ ю ŝ ------08/06/2020 COR02DB02AP COR02DB02AA COR02DB02AL COR02DB02AS COR01DB02A COR02DB02A Client ID Date: LCSONH04IMS1 PBSNH04IMS1 Lab Sample ID SN5717-010A SN5717-010P SN5717-010S SN5717-010L SN5717-010 SN5717-004 22222 222222 ZZZZZ 22222 22222 22222 22222 ZZZZZ 222222 222222 222222 222222 222222 22222 ZZZZZ SCV CCB CCV CCB

Katahdin Analytical Services A0000144

FORM XIV - IN

14

NALYSIS RUN	LOG	
	RUN	

4

SDG Name: SN5717

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

File Name: LNH06A

	Date: 08/06/2020	2020				Method: MS	0					
Lab Sample 1D	Client ID	D.F.	Time	2					Elements	s		
SN5717-013	COR03DB01A	B01A 5	17.50		Sb							
SN5717-017	COR03DB03A	B03A 5	17:53		Sb							
222222		t	17 56	6								
222222		+	17,59	~								
22222		4	18,01	_								
ccv		**	18 04	t Al Sb	Sb	Ca	СЦ	Fe Pb	BM	Mo	¥	Na
CCB		-	18 07	A	Sb	Ca	CL	Fe Pb	Mg	Mo	¥	Na

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNH06A	Aug	06, 2020	15:31	File: LNH06A	Aug	06, 2020	15:56
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	376.89	94.2	ALUMINUM	500.0	499.94	100.0
ANTIMONY	20.0	20.21	101.1	ANTIMONY	25.0	25.83	103.3
CALCIUM	4000.0	3937.52	98.4	CALCIUM	5000.0	5008.51	100.2
COPPER	20.0	20.44	102.2	COPPER	25.0	25.95	103.8
IRON	4000.0	3895.50	97.4	IRON	5000.0	5023.16	100.5
LEAD	20.0	20.07	100.4	LEAD	25.0	25.18	100.7
MAGNESIUM	4000.0	3982.00	99.6	MAGNESIUM	5000.0	5074.43	101.5
MOLYBDENUM	40.0	40.36	100.9	MOLYBDENUM	25.0	25.18	100.7
POTASSIUM	4000.0	3973.61	99.3	POTASSIUM	5000.0	5051.18	101.0
SODIUM	4000.0	3968.72	99.2	SODIUM	5000.0	5144.62	102.9

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNH06A	Aug	06, 2020	16:28	File: LNH06A	Aug	06, 2020	16:59
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	490.86	98.2	ALUMINUM	500.0	497.32	99.5
ANTIMONY	25.0	25.04	100.2	ANTIMONY	25.0	24.92	99.7
CALCIUM	5000.0	4821.79	96.4	CALCIUM	5000.0	4872.62	97.5
COPPER	25.0	25.15	100.6	COPPER	25.0	25.54	102.2
IRON	5000.0	4831.51	96.6	IRON	5000.0	4849.28	97.0
LEAD	25.0	24.84	99.4	LEAD	25.0	24.57	98.3
MAGNESIUM	5000.0	4943.12	98.9	MAGNESIUM	5000.0	5048.58	101.0
MOLYBDENUM	25.0	24.80	99.2	MOLYBDENUM	25.0	25.11	100.4
POTASSIUM	5000.0	4922.09	98.4	POTASSIUM	5000.0	5011.60	100.2
SODIUM	5000.0	4985.76	99.7	SODIUM	5000.0	5092.70	101.9

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNH06A	Aug	06, 2020	17:31	File: LNH06A	Aug	06, 2020	18:04
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	495.13	99.0	ALUMINUM	500.0	485.94	97.2
ANTIMONY	25.0	25.99	104.0	ANTIMONY	25.0	24.85	99.4
CALCIUM	5000.0	4853.52	97.1	CALCIUM	5000.0	4899.44	98.0
COPPER	25.0	25.18	100.7	COPPER	25.0	25.26	101.0
IRON	5000.0	4851.61	97.0	IRON	5000.0	4831.74	96.6
LEAD	25.0	25.59	102.4	LEAD	25.0	24.48	97.9
MAGNESIUM	5000.0	4939.76	98.8	MAGNESIUM	5000.0	4915.94	98.3
MOLYBDENUM	25.0	24.78	99.1	MOLYBDENUM	25.0	24.80	99.2
POTASSIUM	5000.0	4917.60	98.4	POTASSIUM	5000.0	4924.85	98.5
SODIUM	5000.0	4950.98	99.0	SODIUM	5000.0	4926.22	98.5

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

File: LNH06A	Aug	06, 2020	15:36
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	20.02	100.1
ANTIMONY	0.2	0.23	115.0
CALCIUM	20.0	21.07	105.4
COPPER	0.6	0.68	113.3
IRON	20.0	21.68	108.4
LEAD	0.2	0.22	110.0
MAGNESIUM	20.0	23.53	117.7
MOLYBDENUM	1.0	1.03	103.0
POTASSIUM	200.0	208.78	104.4
SODIUM	200.0	209.93	105.0

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Concent	ration Units	s: ug/L			
SAMPLE: ICE	8		SAMPLE: CC	B		SAMPLE: CC	B	
File: LNH06A Au	g 06, 2020	15:34	File: LNH06A Au	g 06, 2020	15:58	File: LNH06A Au	g 06, 2020	16:30
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.519	J	ALUMINUM	1.985	J	ALUMINUM	0.460	J
ANTIMONY	0.061	U	ANTIMONY	0.105	В	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.013	J	LEAD	0.165	В	LEAD	0.014	J
MAGNESIUM	2.632	J	MAGNESIUM	2.834	J	MAGNESIUM	1.505	J
MOLYBDENUM	0.079	J	MOLYBDENUM	0.129	J	MOLYBDENUM	0.052	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	12.196	J	SODIUM	6.600	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SAMPLE: CC	B g 06, 2020	17:02	SAMPLE: CCI	ration Unit B g 06, 2020		SAMPLE: CC	B g 06, 2020	18:07
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.589	J	ALUMINUM	1.171	J	ALUMINUM	0.982	J
ANTIMONY	0.061	U	ANTIMONY	0.061	U	ANTIMONY	0.061	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
COPPER	0.087	U	COPPER	0.087	U	COPPER	0.087	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
LEAD	0.019	J	LEAD	0.027	J	LEAD	0.040	J
MAGNESIUM	0.837	J	MAGNESIUM	1.092	J	MAGNESIUM	1.014	J
MOLYBDENUM	0.041	J	MOLYBDENUM	0.042	J	MOLYBDENUM	0.044	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	6.600	U	SODIUM	6.600	U

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: LNH06A	Au	g 06, 2020	15:39	File: LNH06A	A	ug 06, 2020	15:42
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	100000.00	92824.05	92.8	ALUMINUM	100000.00	93532.23	93.5
ANTIMONY	0.19	0.15		ANTIMONY	20.00	20.75	105.0
CALCIUM	100000.00	98143.41	98.1	CALCIUM	100000.00	102082.51	102.1
COPPER	0.26	0.28		COPPER	20.47	19.44	95.0
IRON	100000.00	93801.68	93.8	IRON	100000.00	98446.73	98.4
LEAD	0.13	0.09		LEAD	20.13	21.24	105.0
MAGNESIUM	100000.00	98153.88	98.2	MAGNESIUM	100000.00	99944.42	99.9
MOLYBDENUM	2000.00	2025.44	101.3	MOLYBDENUM	2000.00	2052.30	102.6
POTASSIUM	100000.00	99332.19	99.3	POTASSIUM	100000.00	101945.60	101.9
SODIUM	100000.00	99697.00	99.7	SODIUM	100000.00	102720.05	102.7

Katahdin Analytical Services A0000185

FORM XIV - IN

Blank Std 1 ICV							CHOROLOG		
Std 1 ICV	-	17.12	AL SB	CD CA	cu	FE PB	MG	N	ZN
ICV	-	17,16	AL SB	CD CA	сЛ	FE PB	MG	Z	ZN
	-	17:20	AL SB	CD CA	cn	FE PB	MG	Z	ZN
ICB	£	17.25	AL SB	CD CA	сЛ	FE PB	MG	z	NZ
Pal	-	17.29	AL SB	CD CA	сЛ	FE PB	MG	Z	NZ
ICSA	-	17.33	AL SB	CD CA	сU	FE PB	MG	N	ZN
ICSAB	-	17.39	AL SB	CD CA	сЛ	FE PB	MG	Z	ZN
ccv	-	17.44	AL SB	CD CA	сЛ	FE PB	MG	Z	ZN
CCB		17.48	AL SB	CD CA	cn	FE PB	MG	Z	ZN
222222	+	17.53							
727222	+	18:02							
ccv	-	18:07	AL SB	CD CA	cu	FE PB	MG	Z	ZN
CCB	-	18.11	AL SB	CD CA	cu	FE PB	MG	N	ZN
22222	2	18.16							
222222	5	18.20							
22222	-	18.24							
222222	-	18.29							
222222	-	18.33							
727722	-	18:37							
777772	-	18.43							
222222		18:48							
222222	-	18.54							
222222		18.59							
CCV	-	19,04	AL SB	CD CA	cu	FE PB	MG	Z	ZN
CCB	-	19.09	AL SB	CD CA	cu	FE PB	MG	Z	ZN
222222	-	19.13							
222222	٢	19.17							

ANALYSIS RUN LOG

Lab Name: Katahdin Analytical Services Instrument ID: THERMO ICAP 6500

SDG Name: SN6056

File Name: INH07A

Method: P

Date: 08/07/2020

14

ANALYSIS RUN LOG

14

Lab Name: Katahdin Analytical Services Instrument ID: THERMO ICAP 6500 0002/20/80 Date:

File Name: INH07A

SDG Name: SN6056

Lab Sample 1D	Client ID	D.F.	Time					Elements		
222222		-	19,22							
22222		-	19.27							
222222		-	19:32							
222222		-	19.38							
77777		-	19 43							
222222		-	19.48							
222222		-	19.53							
222222		-	19.57							
ccv		-	20.01	AL SB	CD CA	С	FE PB	MG	N	ZN
CCB		-	20.06	AL SB	CD CA	cn	FE PB	MG	Ī	ZN
222222		-	20:10							
222222		-	20 14							
222222		-	20 19							
22222			20.23							
222222		-	20.28							
77777			20.32							
222222		-	20.36							
222222		-	20.41							
SN6056-024	COR05SED07A	-	20:45	SB	CD	cu	PB		Z	ZN
222222		2	20.49							
ccv		-	20.54	AL SB	CD CA	CU	FE PB	MG	Z	ZN
CCB		-	20:58	AL SB	CD CA	CU	FE PB	MG	ĨZ	NZ

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV File: INH07A	Aug	g 07, 2020	17:20	SAMPLE: CCV File: INH07A		g 07, 2020	17:44
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	10000.0	10070.00	100.7	ALUMINUM	12500.0	12510.00	100.1
ANTIMONY	400.0	399.00	99.8	ANTIMONY	500.0	499.70	99.9
CADMIUM	400.0	401.60	100.4	CADMIUM	500.0	499.60	99.9
CALCIUM	10000.0	10160.00	101.6	CALCIUM	12500.0	12570.00	100.6
COPPER	400.0	398.20	99.5	COPPER	500.0	503.30	100.7
IRON	10000.0	10080.00	100.8	IRON	12500.0	12620.00	101.0
LEAD	400.0	406.20	101.6	LEAD	500.0	505.10	101.0
MAGNESIUM	10000.0	10240.00	102.4	MAGNESIUM	12500.0	12510.00	100.1
NICKEL	400.0	406.40	101.6	NICKEL	500.0	503.10	100.6
ZINC	400.0	402.50	100.6	ZINC	500.0	498.70	99.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: INH07A		g 07, 2020	18:07	SAMPLE: CCV File: INH07A		g 07, 2020	19:04
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	11940.00	95.5	ALUMINUM	12500.0	12250.00	98.0
ANTIMONY	500.0	480.50	96.1	ANTIMONY	500.0	482.50	96.5
CADMIUM	500.0	483.70	96.7	CADMIUM	500.0	485.60	97.1
CALCIUM	12500.0	11960.00	95.7	CALCIUM	12500.0	12220.00	97.8
COPPER	500.0	481.00	96.2	COPPER	500.0	479.90	96.0
IRON	12500.0	12020.00	96.2	IRON	12500.0	12190.00	97.5
LEAD	500.0	490.00	98.0	LEAD	500.0	493.80	98.8
MAGNESIUM	12500.0	12240.00	97.9	MAGNESIUM	12500.0	12510.00	100.1
NICKEL	500.0	487.90	97.6	NICKEL	500.0	492.40	98.5
ZINC	500.0	482.30	96.5	ZINC	500.0	485.70	97.1

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV File: INH07A		g 07, 2020	20:01	SAMPLE: CCV File: INH07A		g 07, 2020	20:54
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	12500.0	11970.00	95.8	ALUMINUM	12500.0	11880.00	95.0
ANTIMONY	500.0	469.20	93.8	ANTIMONY	500.0	464.10	92.8
CADMIUM	500.0	473.00	94.6	CADMIUM	500.0	468.80	93.8
CALCIUM	12500.0	11960.00	95.7	CALCIUM	12500.0	11890.00	95.1
COPPER	500.0	468.30	93.7	COPPER	500.0	457.80	91.6
IRON	12500.0	11900.00	95.2	IRON	12500.0	11870.00	95.0
LEAD	500.0	482.30	96.5	LEAD	500.0	478.60	95.7
MAGNESIUM	12500.0	12360.00	98.9	MAGNESIUM	12500.0	12380.00	99.0
NICKEL	500.0	481.20	96.2	NICKEL	500.0	476.80	95.4
ZINC	500.0	473.00	94.6	ZINC	500.0	468.40	93.7

(1) Control Limits: Mercury 80-120; Other Metals 90-110

2C PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	PQL		
File: INH07A	Aug	07, 2020	17:29
Analyte	TRUE	FOUND	% R
ALUMINUM	300.0	322.10	107.4
ANTIMONY	8.0	8.89	111.1
CADMIUM	5.0	5.12	102.4
CALCIUM	100.0	106.40	106.4
COPPER	25.0	25.77	103.1
IRON	100.0	102.90	102.9
LEAD	5.0	5.21	104.2
MAGNESIUM	100.0	109.60	109.6
NICKEL	10.0	10.65	106.5
ZINC	20.0	20.39	102.0

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

SAMPLE: File: INH07A	ICB Aug 07, 2020	17:25	SAMPLE: CO	ntration Units C B .ug 07, 2020		SAMPLE: File: INH07A	CCB Aug 07, 2020	18:11
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	10.000	U	ALUMINUM	10.000	U	ALUMINUM	10.000	U
ANTIMONY	1.700	U	ANTIMONY	1.700	U	ANTIMONY	1.700	U
CADMIUM	0.092	U	CADMIUM	0.092	U	CADMIUM	0.092	U
CALCIUM	11.000	U	CALCIUM	11.000	U	CALCIUM	11.000	U
COPPER	0.550	U	COPPER	0.550	U	COPPER	0.550	U
IRON	4.910	J	IRON	5.741	J	IRON	6.381	J
LEAD	1.000	U	LEAD	1.000	U	LEAD	1.000	U
MAGNESIUM	3.451	J	MAGNESIUM	3.667	J	MAGNESIUM	2.900	U
NICKEL	0.440	U	NICKEL	0.440	U	NICKEL	0.440	U
ZINC	0.450	U	ZINC	0.450	U	ZINC	0.450	U

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

			Conc	entration Units	s: ug/L			
SAMPLE: File: INH07A	CCB Aug 07, 2020	19:09		CCB Aug 07, 2020	20:06	SAMPLE: File: INH07A	CCB Aug 07, 2020	20:58
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	10.000	U	ALUMINUM	10.000	U	ALUMINUM	10.000	U
ANTIMONY	1.700	U	ANTIMONY	1.700	U	ANTIMONY	1.700	U
CADMIUM	0.092	U	CADMIUM	0.092	U	CADMIUM	0.092	U
CALCIUM	13.280	J	CALCIUM	14.770	J	CALCIUM	12.000	J
COPPER	0.550	U	COPPER	0.929	J	COPPER	0.550	U
IRON	4.541	J	IRON	4.953	J	IRON	6.784	J
LEAD	1.000	U	LEAD	1.000	U	LEAD	1.000	U
MAGNESIUM	2.900	U	MAGNESIUM	2.900	U	MAGNESIUM	2.980	J
NICKEL	0.440	U	NICKEL	0.440	U	NICKEL	0.440	U
ZINC	0.450	U	ZINC	0.450	U	ZINC	0.450	U

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	ICSA			SAMPLE:	ICSAB		
File: INH07A	А	ug 07, 2020	17:33	File: INH07A	А	ug 07, 2020	17:39
Analyte	TRUE	FOUND	% R	Analyte	TRUE	FOUND	% R
ALUMINUM	500000.00	505900.00	101.2	ALUMINUM	500000.00	481900.00	96.4
ANTIMONY	0	1.31		ANTIMONY	600.00	575.00	95.8
CADMIUM	0	-0.12		CADMIUM	1000.00	911.30	91.1
CALCIUM	500000.00	476700.00	95.3	CALCIUM	500000.00	454900.00	91.0
COPPER	0	0.55		COPPER	500.00	502.20	100.4
IRON	200000.00	193400.00	96.7	IRON	200000.00	185700.00	92.8
LEAD	0	-0.01		LEAD	50.00	43.69	88.0
MAGNESIUM	500000.00	454600.00	90.9	MAGNESIUM	500000.00	436700.00	87.3
NICKEL	0	0.21		NICKEL	1000.00	892.00	89.2
ZINC	0	0.63		ZINC	1000.00	903.80	90.4

Katahdin Analytical Services A0000146

FORM XIV - IN

Date: Not: Not: Note: Not: No:		Instrument ID: AGILENT 7800 ICP-MS	ILENT 7	800 ICP	-MS	File Name: LNH12B	VH12B					
(b) (mod) (b) (mod) (b) (c) (c) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2)			20									
1 101	Lab Sample ID	Client 1D	D.F.					Elem	ents			
1 131 14 12 14 15 14 16<	CalBlank		-	15 10	AI	с	Fe	Mg	Mo		Na	μZ
1 10 </td <td>CalStd</td> <td></td> <td>-</td> <td>15 13</td> <td>AI</td> <td>Ca</td> <td>Ч</td> <td>Mg</td> <td>Mo</td> <td></td> <td>Na</td> <td>Zn</td>	CalStd		-	15 13	AI	Ca	Ч	Mg	Mo		Na	Zn
1 151 Al Ca Ca M M M M M 1 152 Al Ca M M M M M M M 1 152 Al M M M M M M M M M 1 152 Al M	ICV		-	15,16	AI	Ca	Fe	Mg	Mo		Na	Zn
1 12.1 A Ca Ca No No No No 1 13.24 A No Ca No No No No 1 13.37 A No Ca To No No No No 1 13.37 A No Ca No No No No 1 13.37 No No No No No No 1 13.37 No No No No No No 1 13.37 No No No No No No 1 13.47 No No No No No No 1 13.47 No No No No No No 1 14.4 No No No No No No 1 14.4 No No No No <t< td=""><td>ICB</td><td></td><td>+</td><td>15:19</td><td>AI</td><td>Са</td><td>Fe</td><td>Mg</td><td>Mo</td><td></td><td>Na</td><td>Zn</td></t<>	ICB		+	15:19	AI	Са	Fe	Mg	Mo		Na	Zn
1 15/2 Al Ca Ca Mod K Mod K 1 13/2 Al Ca Poi K No K No 1 13/2 Al Ca Ca Fo No K No 1 13/2 A Ca Fo No K No 1 13/2 A Ca Ca Fo No K No 1 13/2 A Ca Ca Ca Fo No K No 1 13/2 A Ca Ca Ca Fo No K No 1 13/2 A Ca Ca Ca Fo No K No 1 13/2 A Ca S S S S S 1 13/2 A Ca Ca S S S S S S	PQL		÷	15.21	AI	Са	Fe	Mg	Mo		Na	Zn
1 12/2 14/2 15/2 16	ICSA		+	15 24	AI	Са	ц	Mg	Mo		Na	Zn
1 1630 1 1523 1 1535 1 1537 1 1537 1 1537 1 1537 1 1537 1 1537 1 1540 1 1540 1 1540 1 1540 1 1540 1 154 1 154 1 154 1 154 1 155 1 156 1 156 1 156 1 156 1 156 1 156 1 151 1 151 1 151 1 151 1 151 1 151 1 151 1 151 1 151 1 </td <td>ICSAB</td> <td></td> <td>-</td> <td>15.27</td> <td>AI</td> <td>Ca</td> <td>Fe</td> <td>Mg</td> <td>Mo</td> <td></td> <td>Na</td> <td>Zn</td>	ICSAB		-	15.27	AI	Ca	Fe	Mg	Mo		Na	Zn
1 1532 1 1535 1 1535 1 1537 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 155 1 155 1 155 1 155 1 154 1 155 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1	222222		F	15:30								
1 1636 1 157 1 157 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 154 1 155 <td>22222</td> <td></td> <td>-</td> <td>15,32</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	22222		-	15,32								
1 15.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1 5.0 1	777772		-	15 35								
1 1540 Al Ca Fe Mo K Ma 1 1643 Al Ca Fe Mo K Mo K Ma 5 5646 - Fe Mo K Mo K Ma 6 5646 - Fe Mo K Mo K Ma 10 564 - Fe N - Fe No K Ma 11 563 - Fe N - - Fe No Fe Fe <td< td=""><td>22222</td><td></td><td>٢</td><td>15.37</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	22222		٢	15.37								
1 154 14 15 154 15 15 5 154 154 1 1 1 1 6 154 1 1 1 1 1 1 10 154 1 </td <td>CCV</td> <td></td> <td>Ł</td> <td>15.40</td> <td>AI</td> <td>Ca</td> <td>Fe</td> <td>BM</td> <td>Mo</td> <td></td> <td>Na</td> <td>Zn</td>	CCV		Ł	15.40	AI	Ca	Fe	BM	Mo		Na	Zn
6 154 7 154 10 154 11 156 12 156 13 156 14 156 15 156 16 156 17 160 18 160 19 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 160 1 161 1 161 1 161 1 161 1 161 1 161 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>CCB</td><td></td><td>٢</td><td>15.43</td><td>AI</td><td>Са</td><td>Fe</td><td>Mg</td><td>Mo</td><td></td><td>Na</td><td>Zn</td></t<>	CCB		٢	15.43	AI	Са	Fe	Mg	Mo		Na	Zn
5 548 6 551 10 154 11 156 12 160 13 160 14 160 15 160 16 160 17 161 18 160 19 160 10 160 11 161 12 161 13 161 14 160 15 160 160 160 11 161 12 161 13 161 14 160 15 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 <tr< td=""><td>22222</td><td></td><td>5</td><td>15.46</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>	22222		5	15.46								
6 151 10 154 11 156 12 156 13 156 14 160 15 160 16 160 17 160 18 160 19 160 10 160 11 161 12 160 13 161 14 10 15 161 16 161 17 161 18 161 19 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 10 161 1	22222		S	15.48								
10 1564 12 1566 13 1566 14 1601 15 1604 16 1604 17 1604 18 1604 19 1604 11 1612 12 1604 13 1612 14 1612 15 1614 1614 Al 1614 Al 1614 Al 1615 Fe 1616 Al 1617 Al 1618 Al 1619 Al 1617 Fe Mg 1618 Fe Mg 1617 Fe Mg 1618 Fe Mg 1619 Fe Mg 1614	222222		5	15:51								
1 156 10 1569 1 1601 2 1604 2 1608 2 1608 1 161 2 1609 1 1612 1 1614	22222		10	15.54								
10 159 1 1601 1 1601 1 1604 2 1608 2 1609 1 1612 1 1614 <td< td=""><td>22222</td><td></td><td>-</td><td>15 56</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	22222		-	15 56								
	222222		10	15.59								
5 1604 25 1606 25 1609 1 1612 Al 1 1614 Al	22222		-	16.01								
5 1606 25 1609 1 1612 Al Ca Fe Mg Mo K Na 1 1614 Al Ca Fe Mg Mo K Na 5 1617 T Ca Fe Mg Mo K Na 5 1617 T Ca Fe Mg Mo K Na 5 1619 T T T T T T T 5 1619 T T T T T T T	222222		3	16 04								
25 1609 1 1612 Al Ca Fe Mg Mo K Na 1 1614 Al Ca Fe Mg Mo K Na 5 1617 1	222222		Ω	16.06								
1 16.12 Al Ca Fe Mg Mo K Na 1 16.14 Al Ca Fe Mg Mo K Na 5 16.17 S 16.17 S 16.17 S S 16.17 S	22222		25	16 09								
1 1614 AI Ca Fe Mg Mo K Na 5 1617 5 1619	CCV		-	16:12	AI	Са	Ъ	Mg	Mo	¥	Na	Zn
α α	CCB		-	16 14	AI	Ca	Fe	Mg	Mo		Na	Zn
IJ	22222		5	16 17								
	22222		ŝ	16 19								

ANALYSIS RUN LOG

SDG Name: SN5717

Lab Name: Katahdin Analytical Services Instrument ID: AGILENT 7800 ICP-MS

14

ANALYSIS RUN LOG

SDG Name: SN5717

Lab Name: Katahdin Analytical Services

Zn Zn Zn Zn Na Ra Na ß ¥ \succeq ¥ × No Ň Мo Ŵ Elements ВW Mg βğ Mg e E Бe Ъe e E File Name: LNH12B Method: MS Ga Ca Sa Sa ₹ ₹ ₹ ₹ Instrument ID: AGILENT 7800 ICP-MS 16 22 16.36 16 39 16.49 17.00 17.10 17.13 17 18 Time 16.25 16.27 16 34 16 44 16.47 16.54 17.05 17 15 17.20 17.28 16 41 16 52 16 57 17 02 17.23 17 26 17.31 17 33 17 07 D.F. 10 10 20 20 ŝ ŝ ŝ ŝ --------ŝ ŝ ŝ ŝ ß ŝ ŝ ŝ ŝ ŝ ----ŝ 08/12/2020 Client ID Date: Lab Sample ID 22222 222222 ZZZZZ 222222 222222 222222 22222 222222 22222 ZZZZZ 22222 22222 222222 222222 222222 22222 222222 222222 22222 222222 22222 222222 222222 CCB CCV CCV CCB

Katahdin Analytical Services A0000147

FORM XIV - IN

14

NNALYSIS RUN LOG

14

SDG Name: SN5717

Lab Name: Katahdin Analytical Services

	Instrument ID: AGILENT 7800 ICP-MS	37 TN	300 ICP-1	MS	File Name: LNH12B	412B					
	Date: 08/12/2020				Method: MS						
Lab Sample ID	Client ID	D.F.	Time				Elements	ts			
222222		25	17,36								
222222		5	17.38								
727272		5	17-41								
222222		S	17,44								
LCSONH04IMS1		S	17,46								Zn
CCV		۲	17.49	AI	Ca	Fe	ВМ	Mo	¥	Na	Zn
CCB			17.51	AI	Ca	Fe	Mg	Mo	¥	Na	Zn

FORM XIV - IN

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: ICV

SAMPLE: CCV

File: LNH12B	Aug	12, 2020	15:16	File: LNH12B	Aug	12, 2020	15:40
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	400.0	378.32	94.6	ALUMINUM	500.0	501.52	100.3
CALCIUM	4000.0	4019.70	100.5	CALCIUM	5000.0	4904.97	98.1
IRON	4000.0	3976.06	99.4	IRON	5000.0	4875.33	97.5
MAGNESIUM	4000.0	3982.14	99.6	MAGNESIUM	5000.0	5050.67	101.0
MOLYBDENUM	40.0	39.41	98.5	MOLYBDENUM	25.0	25.49	102.0
POTASSIUM	4000.0	3913.96	97.8	POTASSIUM	5000.0	5047.46	100.9
SODIUM	4000.0	3945.32	98.6	SODIUM	5000.0	5042.48	100.8
ZINC	20.0	19.53	97.7	ZINC	25.0	25.28	101.1

(1) Control Limits: Mercury 80-120: Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNH12B	Aug	12, 2020	16:12	File: LNH12B	Aug	12, 2020	16:47
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	486.74	97.3	ALUMINUM	500.0	504.79	101.0
CALCIUM	5000.0	4976.11	99.5	CALCIUM	5000.0	4973.87	99.5
IRON	5000.0	4892.27	97.8	IRON	5000.0	4920.01	98.4
MAGNESIUM	5000.0	4891.43	97.8	MAGNESIUM	5000.0	5101.02	102.0
MOLYBDENUM	25.0	24.23	96.9	MOLYBDENUM	25.0	24.90	99.6
POTASSIUM	5000.0	4871.85	97.4	POTASSIUM	5000.0	5013.16	100.3
SODIUM	5000.0	4859.34	97.2	SODIUM	5000.0	5047.96	101.0
ZINC	25.0	24.05	96.2	ZINC	25.0	24.80	99.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE: CCV

SAMPLE: CCV

File: LNH12B	Aug	12, 2020	17:18	File: LNH12B	Aug	12, 2020	17:49
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
ALUMINUM	500.0	492.84	98.6	ALUMINUM	500.0	487.20	97.4
CALCIUM	5000.0	4985.05	99.7	CALCIUM	5000.0	4947.11	98.9
IRON	5000.0	4935.37	98.7	IRON	5000.0	4917.66	98.4
MAGNESIUM	5000.0	4941.32	98.8	MAGNESIUM	5000.0	4892.22	97.8
MOLYBDENUM	25.0	24.21	96.8	MOLYBDENUM	25.0	24.06	96.2
POTASSIUM	5000.0	4886.24	97.7	POTASSIUM	5000.0	4834.10	96.7
SODIUM	5000.0	4889.68	97.8	SODIUM	5000.0	4805.45	96.1
ZINC	25.0	24.48	97.9	ZINC	25.0	24.16	96.6

(1) Control Limits: Mercury 80-120: Other Metals 90-110

2C

PQL STANDARD FOR AA AND ICP

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

Concentration Units: ug/L

SAMPLE:	PQL		
File: LNH12B	Aug	12, 2020	15:21
Analyte	TRUE	FOUND	% R
ALUMINUM	20.0	20.03	100.2
CALCIUM	20.0	20.25	101.3
IRON	20.0	21.01	105.1
MAGNESIUM	20.0	21.66	108.3
MOLYBDENUM	1.0	0.99	99.0
POTASSIUM	200.0	210.44	105.2
SODIUM	200.0	214.53	107.3
ZINC	2.0	2.06	103.0

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN5717

SAMPLE: ICE File: LNH12B Au	B g 12, 2020	15:19	SAMPLE: CC File: LNH12B Au	B g 12, 2020	15:43	SAMPLE: CC File: LNH12B Au	B g 12, 2020	16:14
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	0.330	U	ALUMINUM	4.214	J	ALUMINUM	1.193	J
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
MAGNESIUM	0.350	U	MAGNESIUM	4.630	J	MAGNESIUM	1.553	J
MOLYBDENUM	0.100	J	MOLYBDENUM	0.164	J	MOLYBDENUM	0.067	J
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	6.600	U	SODIUM	11.588	J	SODIUM	6.600	U
ZINC	0.220	U	ZINC	0.220	U	ZINC	0.220	U

Concentration Units: ug/L

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

ZINC

0.220 U

ZINC

SDG Name: SN5717

ZINC

0.220 U

			Conce	ntration Units	: ug/L			
SAMPLE: CCI File: LNH12B Aug	B g 12, 2020	16:49		C B Aug 12, 2020	17:20	SAMPLE: CC	B g 12, 2020	17:51
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
ALUMINUM	-0.369	U	ALUMINUM	-0.392	U	ALUMINUM	0.330	U
CALCIUM	6.800	U	CALCIUM	6.800	U	CALCIUM	6.800	U
IRON	6.400	U	IRON	6.400	U	IRON	6.400	U
MAGNESIUM	0.350	U	MAGNESIUM	-0.352	U	MAGNESIUM	0.350	U
MOLYBDENUM	0.037	J	MOLYBDENUM	0.023	J	MOLYBDENUM	0.020	U
POTASSIUM	12.000	U	POTASSIUM	12.000	U	POTASSIUM	12.000	U
SODIUM	-9.867	U	SODIUM	6.600	U	SODIUM	6.600	U

0.220 U

4

ICP INTERFERENCE CHECK SAMPLE Lab Name: Katahdin Analytical Services SDG Name: SN5717

Concentration Units: ug/L

IPLE:	ICSA			SAMPLE:	ICSAB	
LNH12B	A	ug 12, 2020	15:24	File: LNH12B	A	ug 12, 2020
'te	TRUE	FOUND	% R	Analyte	TRUE	FOUND
IINUM	100000.00	88724.73	88.7	ALUMINUM	100000.00	90270.57
IUM	100000.00	100447.46	100.4	CALCIUM	100000.00	103683.02
	100000.00	94601.18	94.6	IRON	100000.00	97822.29
ESIUM	100000.00	94369.89	94.4	MAGNESIUM	100000.00	97346.02
DENUN	4 2000.00	1935.58	96.8	MOLYBDENUM	2000.00	2032.21
SIUM	100000.00	95168.60	95.2	POTASSIUM	100000.00	97703.11
M	100000.00	95659.34	95.7	SODIUM	100000.00	98685.69
	0.24	0.50		ZINC	20.40	19.01

ANALYSIS RUN LOG

14

Lab Name: Katahdin Analytical Services Instrument ID: CETAC M6100 Date: 08/13/2020

File Name: HNH13C

SDG Name: SN6056

>
5
:pc
etho
Σ

Lab Sample ID	Client ID D.F.	Time	Elements
Calibration Blank		14.11	ВH
Standard #1 (0.2 ppb	1	14.13	Н
Standard #2 (0.5 ppb	Ŧ	14.15	бH
Standard #3 (1.0 ppb	-	14.17	Hg
Standard #4 (5.0 ppb	-	14, 19	Hg
Standard #5 (10.0 pp	-	14.21	Hg
ICV		14.23	HG
ICB	1	14.25	НС
PQL	1	14.28	Н
ccv	-	14:30	ЭH
CCB	+	14.32	HG
LCSONH03ICS2	1	14.34	ЭH
LCSWNH13HGW1	-	14.36	HG
PBSNH03ICS2	1	14.38	ЭН
PBWNH13HGW1	-	14.40	HG
SN6056-024	COR05SED07A 1	14.42	HG
SN6056-026	COR06SED07A 1	14.45	HG
222222	-	14.47	
222222	1	15.17	
222222	L	15.19	
CCV	-	15:21	HG
CCB	-	15.23	HG

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: ICV				SAMPLE: CCV	1		
File: HNH13C	Aug	; 13, 2020	14:23	File: HNH13C	Aug	13, 2020	14:30
Analyte	True	Found	%R (1)	Analyte	True	Found	%R (1)
MERCURY	6.0	5.85	97.5	MERCURY	5.0	4.96	99.2

(1) Control Limits: Mercury 80-120; Other Metals 90-110

FORM II (Part 1) - IN

Katahdin Analytical Services A0000032

2A

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE: CCV

File: HNH13C Analyte		Aug	Aug 13, 2020				
		True	Found	%R (1)			
MERC	CURY	5.0	5.18	103.6			

(1) Control Limits: Mercury 80-120; Other Metals 90-110

FORM II (Part 1) - IN

Katahdin Analytical Services A0000033

PQL STANDARD FOR AA AND ICP

2C

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	PQL		
File: HNH13C	Au	g 13, 2020	14:28
Analyte	TRUE	FOUND	% R
MERCURY	0.2	0.17	85.0

FORM II (Part 3) - IN

3A

INITIAL AND CONTINUING CALIBRATION BLANKS

Lab Name: Katahdin Analytical Services

SDG Name: SN6056

Concentration Units: ug/L

SAMPLE:	ICB		SAMPLE:	CCB		SAMPLE:	CCB	
File: HNH13C	Aug 13, 2020	14:25	File: HNH13C	Aug 13, 2020	14:32	File: HNH13C	Aug 13, 2020	15:23
Analyte	Result	С	Analyte	Result	С	Analyte	Result	С
MERCURY	0.016	U	MERCURY	0.016	J	MERCURY	0.017	J

FORM III (Part 1) - IN

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

QC Batch ID: NG16IMS1

Matrix: SOIL

Method: MS

SDG Name: SN5717

Prep Date: 07/16/2020

Client ID	Lab Sample 1D	Initial (g)	Final (I_{e})	Bottle IE
LCSONG16IMS1	LCSONG16IMS1	1	0.1	
PBSNG16IMS1	PBSNG16IMS1	1	0.1	
COR01DA01A	SN5717-001	1.17	0.1	А
COR01DA02A	SN5717-005	1.35	0.1	А
COR01DA02AP	SN5717-005P	1.38	0.1	А
COR01DA02AS	SN5717-005S	1.36	0.1	А
COR02DA01A	SN5717-007	1.36	0.1	А
COR02DA01AP	SN5717-007P	1.38	0.1	А
COR02DA01AS	SN5717-007S	1.36	0.1	А
COR02DA02B	SN5717-008	1.15	0.1	А
COR02DA02A	SN5717-009	1.1	0.1	А
COR03DA01A	SN5717-012	1.09	0.1	А
COR03DA03A	SN5717-018	1.18	0.1	А
COR03DA03AP	SN5717-018P	1.15	0.1	А
COR03DA03AS	SN5717-018S	1.14	0.1	А

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNG16IMS1

Matrix: SOIL

SDG Name: SN5717

QC Batch ID: NG16IMS1

Analyte	RESULT	С	
ANTIMONY	0.050	U	
COPPER	0.082	J	
LEAD	0.036	J	
ZINC	0.40	J	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONG16IMS1

Matrix: SOIL

SDG Name: SN5717

QC Batch ID: NG16IMS1

Analyte	TRUE	FOUND	% R	LIMIT	S (%)
ANTIMONY	10.0	9.53	95.3	72	124
COPPER	25.0	26.0	104.1	84	119
LEAD	10.0	9.62	96.2	84	118
ZINC	50.0	50.2	100.3	82	119

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 90.5

Client Field ID:COR01DA02APSDG Name:SN5717Lab Sample ID:SN5717-005P

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	1.79	1.14	8.01	8.1	N	72	124	MS
COPPER, TOTAL	43.2	23.3	20.02	99.5		84	119	MS
LEAD, TOTAL	45.6	502	8.01	-5697.9	Ν	84	118	MS
ZINC, TOTAL	116	75.2	40.05	103.1		82	119	MS

Comments:

FORM V (Part 1) - IN

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 90.5

Client Field ID:COR01DA02ASSDG Name:SN5717Lab Sample ID:SN5717-005S

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.01	1.14	8.13	10.8	N	72	124	MS
COPPER, TOTAL	40.2	23.3	20.32	83.2	Ν	84	119	MS
LEAD, TOTAL	51.2	502	8.13	-5544.6	Ν	84	118	MS
ZINC, TOTAL	112	75.2	40.64	90.0		82	119	MS

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 90.5

Client Field ID:COR01DA02AASDG Name:SN5717Lab Sample ID:SN5717-005A

Concentration Units : ug/L

	Spiked	Sample	Spike			Control Lin	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	4.65	2.78	2	93.6		80	120	MS
COPPER, TOTAL	62.4	56.9	6	91.3		80	120	MS
LEAD, TOTAL	1190	1230	2	-2017.8	А	80	120	MS
ZINC, TOTAL	196	184	20	59.4	А	80	120	MS

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 90.5

Client Field ID:COR01DA02ASDG Name:SN5717Lab Sample ID:SN5717-005

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result	C Spike Dup. Result C	RPD Q	Μ
ANTIMONY, TOTAL		2.01	1.79	11.7	MS
COPPER, TOTAL		40.2	43.2	7.2	MS
LEAD, TOTAL		51.2	45.6	11.6	MS
ZINC, TOTAL		112	116	4.1	MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR01DA02ALSDG Name:SN5717Lab Sample ID:SN5717-005L

Concentration Units: ug/L

Analyte	San	ple Result C	C Dilution	Result	С	% Difference	Q	Μ
ANTIMONY, TOTAL		2.78		2.74		1.24		MS
COPPER, TOTAL		56.9		63.9		12.3	Е	MS
LEAD, TOTAL	3	1230		1230		0.0		MS
ZINC, TOTAL		184		204		10.9	E	MS

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 93.7

Client Field ID:COR02DA01APSDG Name:SN5717Lab Sample ID:SN5717-007P

Concentration Units : mg/Kg drywt

	Spike	ed	Sample		Spike			Control Lir	nits (%R)	
Analyte	Sample	Result C	Result	С	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL		1.63	0.15		7.73	19.2	N	72	124	MS
COPPER, TOTAL		38.3	24.4		19.33	72.0	Ν	84	119	MS
LEAD, TOTAL		43.2	38.0		7.73	66.7	Ν	84	118	MS
ZINC, TOTAL	50	98.4	71.8		38.67	68.7	Ν	82	119	MS

Comments:

FORM V (Part 1) - IN

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 93.7

Client Field ID:COR02DA01ASSDG Name:SN5717Lab Sample ID:SN5717-007S

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Lir	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	1.92	0.15	7.85	22.5	N	72	124	MS
COPPER, TOTAL	43.2	24.4	19.62	96.0		84	119	MS
LEAD, TOTAL	48.6	38.0	7.85	135.7	Ν	84	118	MS
ZINC, TOTAL	116	71.8	39.23	114.2		82	119	MS

5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 93.7

Client Field ID:COR02DA01AASDG Name:SN5717Lab Sample ID:SN5717-007A

Concentration Units : ug/L

	Spiked	Sample	Spike			Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.26	0.38	2	94.1		80	120	MS
COPPER, TOTAL	65.4	62.1	6	55.5	А	80	120	MS
LEAD, TOTAL	93.5	96.9	2	-170.1	А	80	120	MS
ZINC, TOTAL	195	183	20	58.2	А	80	120	MS

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services Matrix: SOIL

Percent Solids: 93.7

Client Field ID:COR02DA01ASDG Name:SN5717Lab Sample ID:SN5717-007

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result (C Spike Dup. Result O	C RPD	Q	Μ
ANTIMONY, TOTAL		1.92	1.63	16.1		MS
COPPER, TOTAL		43.2	38.3	12.1		MS
LEAD, TOTAL		48.6	43.2	12.0		MS
ZINC, TOTAL		116	98.4	16.9		MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR02DA01ALSDG Name:SN5717Lab Sample ID:SN5717-007L

Concentration Units: ug/L

Analyte	Sample Result C	Dilution Result	С	% Difference	Q	Μ
ANTIMONY, TOTAL	0.38	0.33	J	13.2		MS
COPPER, TOTAL	62.1	73.0		17.6	Е	MS
LEAD, TOTAL	96.9	94.0		3.0		MS
ZINC, TOTAL	183	216		18.0	Е	MS

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 87.2

Client Field ID:COR03DA03APSDG Name:SN5717Lab Sample ID:SN5717-018P

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Lii	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	5.18	0.236	9.97	49.6	N	72	124	MS
COPPER, TOTAL	40.6	15.2	24.92	101.9		84	119	MS
LEAD, TOTAL	89.4	90.7	9.97	-12.5	Ν	84	118	MS
ZINC, TOTAL	109	62.6	49.84	92.9		82	119	MS

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 87.2

Client Field ID:COR03DA03ASSDG Name:SN5717Lab Sample ID:SN5717-018S

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Lir	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.72	0.236	10.06	34.7	N	72	124	MS
COPPER, TOTAL	37.2	15.2	25.14	87.4		84	119	MS
LEAD, TOTAL	98.6	90.7	10.06	78.8	Ν	84	118	MS
ZINC, TOTAL	102	62.6	50.28	79.3	Ν	82	119	MS

5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 87.2

Client Field ID:COR03DA03AASDG Name:SN5717Lab Sample ID:SN5717-018A

Concentration Units : ug/L

	Spiked	Sample	Spike		(Control Lir	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.54	0.485	2	102.6		80	120	MS
COPPER, TOTAL	36.2	31.3	6	82.2		80	120	MS
LEAD, TOTAL	184	187	2	-145.6	А	80	120	MS
ZINC, TOTAL	148	129	20	94.9		80	120	MS

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical ServicesClient Field ID:COR03DA03AMatrix: SOLLSDG Name:SN5717Percent Solids: 87.2Lab Sample ID:SN5717-018

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result	C Spike Dup. Result	С	RPD	Q	Μ
ANTIMONY, TOTAL		3.72	5.18		32.8	*	MS
COPPER, TOTAL		37.2	40.6		8.8		MS
LEAD, TOTAL		98.6	89.4		9.8		MS
ZINC, TOTAL		102	109		6.1		MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR03DA03ALSDG Name:SN5717Lab Sample ID:SN5717-018L

Concentration Units: ug/L

Analyte	Sample Result C	Dilution Result	С	% Difference	Q	Μ
ANTIMONY, TOTAL	0.485	0.50	J	3.1		MS
COPPER, TOTAL	31.3	32.6		4,2		MS
LEAD, TOTAL	187	194		3.7		MS
ZINC, TOTAL	129	138		7.0		MS

Lab Name: Katahdin Analytical Services

QC Batch ID: NG20IMS1

Matrix: SOIL

Method: MS

SDG Name: SN5719 **Prep Date:** 07/20/2020

Client ID	Lab Sample ID	Initial (g)	Final (L)	Bottle ID
LCSONG20IMS1	LCSONG201MS1	1	0.1	
PBSNG20IMS1	PBSNG20IMS1	1	0.1	
COR01IS01	SN5719-001	1.06	0.1	
COR011S01P	SN5719-001P	1.08	0.1	
COR011S01S	SN5719-001S	1.07	0.1	
COR011S02	SN5719-002	1.02	0.1	
COR01IS03	SN5719-003	1.01	0.1	
COR02IS01	SN5719-004	1.04	0.1	
COR021S02	SN5719-005	1.09	0.1	
COR02IS02P	SN5719-005P	1.1	0.1	
COR02IS02S	SN5719-005S	1.11	0.1	
COR02IS03	SN5719-006	1.09	0.1	
COR03IS01	SN5719-007	1.01	0.1	
COR031S02	SN5719-008	1.01	0.1	
COR031S03	SN5719-009	1.01	0.1	
COR031S03P	SN5719-009P	1.02	0.1	
COR031S03S	SN5719-009S	1.01	0.1	

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services		QC Batch ID: NG201MS2					
Matrix: SOIL		SDG Name: SN	5717				
Method: MS		Prep Date: 07/	20/2020				
Client ID	Lab Sample ID	Initial (g)	Final (L)	Bottle ID			
LCSONG20IMS2	LCSONG201MS2	1	0.1				
PBSNG20IMS2	PBSNG20IMS2	1	0.1				
COR03DA02A	SN5717-014	1	0.1	A			
COR03DA02B	SN5717-015	1.13	0.1	А			

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNG201MS1

Matrix: SOIL

SDG Name: SN5719

QC Batch ID: NG20IMS1

0.050	U
0.20	U
0.024	J
0.28	J
	0.20 0.024

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNG201MS2

Matrix: SOIL

SDG Name: SN5717

QC Batch ID: NG20IMS2

Analyte	RESULT	С
ANTIMONY	0.050	U
COPPER	0.14	J
LEAD	0.140	В
ZINC	0.44	J

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONG201MS2

Matrix: SOIL

SDG Name: SN5717

QC Batch ID: NG20IMS2

Analyte	TRUE	FOUND	% R	LIMIT	S (%)
ANTIMONY	10.0	8.57	85.7	72	124
COPPER	25.0	24.3	97.2	84	119
LEAD	10.0	8.77	87.7	84	118
ZINC	50.0	46.7	93.4	82	119

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 96.2

Client Field ID:COR011S01PSDG Name:SN5719Lab Sample ID:SN5719-001P

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.50	0.225	9.63	23.6	N	72	124	MS
COPPER, TOTAL	50.6	30.8	24.06	82.4	N	84	119	MS
LEAD, TOTAL	64.2	56.1	9.63	84.6		84	118	MS
ZINC, TOTAL	141	93.3	48.13	99.0		82	119	MS

Comments:

FORM V (Part 1) - IN

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 96.2

Client Field ID:COR011S01SSDG Name:SN5719Lab Sample ID:SN5719-001S

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.58	0.225	9.72	24.2	N	72	124	MS
COPPER, TOTAL	52.0	30.8	24.29	87.3		84	119	MS
LEAD, TOTAL	62.6	56.1	9.72	66.8	Ν	84	118	MS
ZINC, TOTAL	137	93.3	48.58	90.7		82	119	MS

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 96.2

Client Field ID:COR011S01ASDG Name:SN5719Lab Sample ID:SN5719-001A

Concentration Units : ug/L

	Spiked	Sample	Spike		(Control Li	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.54	0.460	2	103.8		80	120	MS
COPPER, TOTAL	68.6	62.9	6	94.2		80	120	MS
LEAD, TOTAL	115	114	2	39.8	А	80	120	MS
ZINC, TOTAL	209	190	20	96.4		80	120	MS

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services	Client Field ID:	COR011S01
Matrix: SOIL	SDG Name:	SN5719
Percent Solids: 96.2	Lab Sample ID:	SN5719-001

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result C	Spike Dup. Result C	RPD Q	Μ
ANTIMONY, TOTAL		2.58	2.50	3.2	MS
COPPER, TOTAL		52.0	50.6	2.7	MS
LEAD, TOTAL		62.6	64.2	2.6	MS
ZINC, TOTAL		137	141	2.6	MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR011S01LSDG Name:SN5719Lab Sample ID:SN5719-001L

Concentration Units: ug/L

Analyte	Sample Result C	Dilution Result	С	% Difference	Q	Μ
ANTIMONY, TOTAL	0.460	0.49	J	6.5		MS
COPPER, TOTAL	62.9	66.1		5.1	5.1	
LEAD, TOTAL	114	121		6.1		MS
ZINC, TOTAL	190	202		6.3		MS

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 97.5

Client Field ID:COR021S02PSDG Name:SN5719Lab Sample ID:SN5719-005P

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.58	0.327	9.32	24.2	N	72	124	MS
COPPER, TOTAL	50.4	31.9	23.31	79.5	N	84	119	MS
LEAD, TOTAL	101	98.7	9.32	27.8	Ν	84	118	MS
ZINC, TOTAL	137	93.1	46.62	94.4		82	119	MS

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 97.5

Client Field ID:COR021S02SSDG Name:SN5719Lab Sample ID:SN5719-005S

Concentration Units : mg/Kg drywt

Analyte	Spiked Sample Result C	Sample Result C	Spike Added	Control Limits (%R)					
				%R	Q	Low	High	Μ	
ANTIMONY, TOTAL	2.32	0.327	9.24	21.6	Ν	72	124	MS	
COPPER, TOTAL	52.6	31.9	23.1	89.4		84	119	MS	
LEAD, TOTAL	102	98.7	9.24	37.6	Ν	84	118	MS	
ZINC, TOTAL	135	93.1	46.2	91.7		82	119	MS	

5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 97.5

Client Field ID:COR02IS02ASDG Name:SN5719Lab Sample ID:SN5719-005A

Concentration Units : ug/L

Analyte	Spiked Sample Result C	Sample Result C	Spike Added	Control Limits (%R)				
				%R	Q	Low	High	Μ
ANTIMONY, TOTAL	2.76	0.695	2	103.1		80	120	MS
COPPER, TOTAL	74.1	67.8	6	104.7		80	120	MS
LEAD, TOTAL	211	210	2	69.4	А	80	120	MS
ZINC, TOTAL	217	198	20	95.0		80	120	MS

Comments:

FORM V (Part 2) - IN

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services	Client Field ID:	COR02IS02
Matrix: SOIL	SDG Name:	SN5719
Percent Solids: 97.5	Lab Sample ID:	SN5719-005

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result	C Spike Dup. Result	C RPD	Q	М
ANTIMONY, TOTAL		2.32	2.58	10.5		MS
COPPER, TOTAL		52.6	50.4	4.1		MS
LEAD, TOTAL		102	101	0.9		MS
ZINC, TOTAL		135	137	1.2		MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR021S02LSDG Name:SN5719Lab Sample ID:SN5719-005L

Concentration Units: ug/L

Analyte	Sample Result C	Dilution Result	С	% Difference	Q	Μ
ANTIMONY, TOTAL	0.695	0.81	J	16.5		MS
COPPER, TOTAL	67.8	74.5		9.9		MS
LEAD, TOTAL	210	238		13.3	Е	MS
ZINC, TOTAL	198	217		9.6		MS

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 93.2

Client Field ID:COR031S03PSDG Name:SN5719Lab Sample ID:SN5719-009P

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike			Control Li	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.88	0.429	10.51	32.8	N	72	124	MS
COPPER, TOTAL	55.9	36.0	26.28	75.8	N	84	119	MS
LEAD, TOTAL	224	248	10.51	-222.9	Ν	84	118	MS
ZINC, TOTAL	138	84.5	52.57	101.3		82	119	MS

Comments:

FORM V (Part 1) - IN

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 93.2

Client Field ID:COR031S03SSDG Name:SN5719Lab Sample ID:SN5719-009S

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.76	0.429	10.62	31.3	N	72	124	MS
COPPER, TOTAL	65.6	36.0	26.55	111.7		84	119	MS
LEAD, TOTAL	274	248	10.62	240.2	Ν	84	118	MS
ZINC, TOTAL	141	84.5	53.09	107.0		82	119	MS

Comments:

FORM V (Part 1) - IN

5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 93.2

Client Field ID:COR031S03ASDG Name:SN5719Lab Sample ID:SN5719-009A

Concentration Units : ug/L

	Spiked	Sample	Spike		(Control Li	mits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.01	0.808	2	110.1		80	120	MS
COPPER, TOTAL	71.0	67.8	6	53.8	А	80	120	MS
LEAD, TOTAL	462	468	2	-278.2	А	80	120	MS
ZINC, TOTAL	172	159	20	65.7	А	80	120	MS

Comments:

FORM V (Part 2) - IN

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services	Client Field ID:	COR031S03
Matrix: SOIL	SDG Name:	SN5719
Percent Solids: 93.2	Lab Sample ID:	SN5719-009

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result	C Spike Dup. Result C	RPD Q	М
ANTIMONY, TOTAL		3.76	3.88	3.3	MS
COPPER, TOTAL		65.6	55.9	16.0	MS
LEAD, TOTAL		274	224	19.6	MS
ZINC, TOTAL		141	138	2.6	MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR031S03LSDG Name:SN5719Lab Sample ID:SN5719-009L

Concentration Units: ug/L

Analyte	Sample Result C	Dilution Result	С	% Difference	Q	М
ANTIMONY, TOTAL	0.808	0.74	J	8.4		MS
COPPER, TOTAL	67.8	71.4		5.3		MS
LEAD, TOTAL	468	502		7.3		MS
ZINC, TOTAL	159	164		3.1		MS

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services		QC Batch ID: NG211MW2					
Matrix: WATER		SDG Name: SN	5717				
Method: MS	Prep Date: 07/	21/2020					
Client ID	Lab Sample ID	Initial (1.)	Final (L)	Bottle ID			
LCSWNG211MW2	LCSWNG211MW2	0.05	0.05				
PBWNG211MW2	PBWNG211MW2	0.05	0.05				
COR03EQB	SN5717-020	0.05	0.05	A			

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWNG211MW2

Matrix: WATER

SDG Name: SN5717

QC Batch ID: NG211MW2

Concentration Units : ug/L

Analyte	RESULT	С	
ANTIMONY	0.50	U	
COPPER	1.7	В	
LEAD	0.50	U	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWNG211MW2

SDG Name: SN5717

Matrix: WATER

QC Batch ID: NG211MW2

Concentration Units : ug/L

Analyte	TRUE	FOUND	% R	LIMIT	'S (%)
ANTIMONY	100	103	103.0	85	117
COPPER	250	279	111.5	85	118
LEAD	100	108	108.1	88	115

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services		QC Batch ID: NG29IMW2						
Matrix: WATER		SDG Name: SN	SDG Name: SN5717					
Method: MS		Prep Date: 07/	29/2020					
Client ID	Lab Sample ID	Initial (L)	Final (L)	Bottle ID				
LCSWNG29IMW2	LCSWNG29IMW2	0.05	0.05					
PBWNG29IMW2	PBWNG29IMW2	0.05	0.05					
COR03EQB	SN5717-020R	0.05	0.05	A				

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWNG29IMW2

Matrix: WATER

SDG Name: SN5717

QC Batch ID: NG29IMW2

Concentration Units : ug/L

Analyte	RESULT	С	
ZINC	8.0	U	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWNG291MW2 SDG Name: SN5717

Matrix: WATER

QC Batch ID: NG29IMW2

Concentration Units : ug/L							
Analyte	TRUE	FOUND	% R	LIMIT	'S (%)		
ZINC	500	526	105.1	83	119		

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Method: MS

Client ID

QC Batch ID: NG23IMS1

SDG Name: SN6056

Prep Date: 07/23/2020

Bottle ID

Final (L) Lab Sample ID Initial (g) LC2ONG23IMS1 1 0.1

LC2ONG23IMS1	LC2ONG23IMS1	I	0.1	
LCSONG23IMS1	LCSONG23IMS1	1	0.1	
PBSNG23IMS1	PBSNG23IMS1	1	0.1	
COR05SED01A	SN6056-005	1.03	0.1	А
COR05SED02A	SN6056-006	1.04	0.1	А
COR05SED02B	SN6056-007	1.4	0.1	А
COR05SED03A	SN6056-008	1.02	0.1	А
COR05SED04A	SN6056-009	1.32	0.1	А
COR05SED04AP	SN6056-009P	1.31	0.1	А
COR05SED04AS	SN6056-009S	1.34	0.1	А
COR05SED05A	SN6056-010	1.36	0.1	А
COR05SED06A	SN6056-011	1.01	0.1	А
COR05SED07A	SN6056-012	1.07	0.1	А
COR05SED08A	SN6056-013	1.01	0.1	А
COR06SED01A	SN6056-014	1.23	0.1	А
COR06SED02A	SN6056-015	1.07	0.1	Α
COR06SED02B	SN6056-016	1.05	0.1	А
COR06SED03A	SN6056-017	1.01	0.1	А

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNG23IMS1

SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NG23IMS1

Analyte	RESULT	С
ANTIMONY	0.050	U
COPPER	0.084	J
LEAD	0.036	J
ZINC	0.89	J

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LC2ONG23IMS1

SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NG23IMS1

Analyte	TRUE	FOUND	% R	LIMIT	'S (%)
ANTIMONY	10.0	9.93	99.3	72	124
COPPER	25.0	26.3	105.2	84	119
LEAD	10.0	10.5	105.3	84	118
ZINC	50.0	53.1	106.2	82	119

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONG23IMS1

SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NG23IMS1

Analyte	TRUE	FOUND	% R	LIMIT	rs (%)
ANTIMONY	10.0	9.79	97.9	72	124
COPPER	25.0	25.2	100.9	84	119
LEAD	10.0	10.4	104.3	84	118
ZINC	50.0	52.0	104.1	82	119

7D

LABORATORY CONTROL SAMPLE DUPLICATES

Lab Name: Katahdin Analytical Services

Matrix: SOIL

QC Batch ID: NG23IMS1

SDG Name:SN6056Lab Sample ID:LCSONG231MS1

Concentration Units: mg/Kg drywt

Analyte	Control Limit (%)	LCS Result	LCS Dup. Result	RPD(%)	Q
ANTIMONY	20.0	9.79	9.93	1.4	
COPPER	20.0	25.2	26.3	4.2	
LEAD	20.0	10.4	10.5	0.9	
ZINC	20.0	52.0	53.1	2.0	

FORM VIID - IN

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 26.1

Client Field ID:COR05SED04APSDG Name:SN6056Lab Sample ID:SN6056-009P

145.97

84.4

82

M MS MS MS

MS

119

Concentration Units : mg/Kg drywt									
	Spiked	Sample	Spike			Control Lir	nits (%R)		
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High		
ANTIMONY, TOTAL	17.7	2.47	29.19	52.3	N	72	124		
COPPER, TOTAL	123	45.2	72.99	106.1		84	119		
LEAD, TOTAL	593	686	29.19	-317.1	Ν	84	118		

301

424

Comments:

ZINC, TOTAL

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 26.1

Client Field ID:COR05SED04ASSDG Name:SN6056Lab Sample ID:SN6056-009S

Concentration Units : mg/Kg drywt								
Analyte	Spiked Sample Result C	Sample Result C	Spike Added	%R	Q	Control Limit Low	s (%R) High	М
ANTIMONY, TOTAL	17.1	2.47	28.54	51.3	N	72	124	MS
COPPER, TOTAL	111	45.2	71.35	92.8		84	119	MS
LEAD, TOTAL	752	686	28.54	232.0	Ν	84	118	MS
ZINC, TOTAL	432	301	142.71	91.7		82	119	MS

5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 26.1

Client Field ID:COR05SED04AASDG Name:SN6056Lab Sample ID:SN6056-009A

Concentration Units : ug/L								
Spiked Sample Spike							nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.74	1.71	2	101.6		80	120	MS
COPPER, TOTAL	39.2	31.2	6	132.9	А	80	120	MS
LEAD, TOTAL	486	474	2	626.6	А	80	120	MS
ZINC, TOTAL	241	208	20	165.9	А	80	120	MS

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services	Client Field ID:	COR05SED04A
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 26.1	Lab Sample ID:	SN6056-009

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result	C Spike Dup. Result	C RPD	Q	Μ
ANTIMONY, TOTAL	0	17.1	17.7	3.6		MS
COPPER, TOTAL		111	123	9.6		MS
LEAD, TOTAL		752	593	23.6	*	MS
ZINC, TOTAL		432	424	1.8		MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR05SED04ALSDG Name:SN6056Lab Sample ID:SN6056-009L

Concentration Units: ug/L									
Analyte	Sample Result C	Dilution Result C	% Difference	Q	Μ				
ANTIMONY, TOTAL	1.71	1.9	11.1		MS				
COPPER, TOTAL	31.2	32.2	3.2		MS				
LEAD, TOTAL	474	496	4.6		MS				
ZINC, TOTAL	208	234	12.5	Е	MS				

FORM IX - IN

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

Matrix: SOIL

QC Batch ID: NG27IMS1

SDG Name: SN6056

Method: MS

Prep Date: 07/27/2020

Client ID	Lab Sample ID	Initial (g)	Final (L)	Bottle ID
LCSONG27IMS1	LCSONG27IMS1	1	0.1	
PBSNG27IMS1	PBSNG27IMS1	1	0.1	
COR06SED04A	SN6056-018	1.42	0.1	А
COR06SED04AP	SN6056-018P	1.41	0.1	А
COR06SED04AS	SN6056-018S	1.49	0.1	А
COR06SED05A	SN6056-019	1.29	0.1	А
COR06SED06A	SN6056-020	1.33	0.1	А
COR06SED07A	SN6056-021	1.38	0.1	В
COR06SED08A	SN6056-022	1.25	0.1	А

FORM XIII - IN

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNG271MS1 SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NG27IMS1

Analyte	RESULT	С	
ANTIMONY	0.050	U	
COPPER	0.20	U	
LEAD	0.0088	J	
ZINC	0.21	J	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONG271MS1

SDG Name: SN6056

Matrix: SOIL

Analyte

QC Batch ID: NG27IMS1

 Concentration Units : mg/Kg drywt

 TRUE
 FOUND
 % R
 LIMITS (%)

 VY
 10.0
 9.69
 96.9
 72
 124

ANTIMONY	10.0	9.69	96.9	72	124
COPPER	25.0	28.2	112.8	84	119
LEAD	10.0	10.4	103.9	84	118
ZINC	50.0	52.8	105.6	82	119

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 10.7

Client Field ID:COR06SED04APSDG Name:SN6056Lab Sample ID:SN6056-018P

Concentration	Units :	mg/Kg drywt
---------------	---------	-------------

	Spiked	Sample	Spike		Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	Μ
ANTIMONY, TOTAL	58.6	1.70	66.43	85.7	72	124	MS
COPPER, TOTAL	227	39.6	166.08	112.6	84	119	MS
LEAD, TOTAL	235	154	66.43	122.2 N	84	118	MS
ZINC, TOTAL	470	111	332.16	108.0	82	119	MS

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 10.7

Client Field ID:COR06SED04ASSDG Name:SN6056Lab Sample ID:SN6056-018S

Concentration Units : mg/Kg drywt										
	Spiked	Sample	Spike		•	Control Li	mits (%R)			
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ		
ANTIMONY, TOTAL	48.3	1.70	62.86	74.1		72	124	MS		
COPPER, TOTAL	193	39.6	157.16	97.7		84	119	MS		
LEAD, TOTAL	159	154	62.86	7.4	Ν	84	118	MS		
ZINC, TOTAL	396	111	314.32	90.8		82	119	MS		

5B

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 10.7

Client Field ID: COR06SED04AA SDG Name: SN6056 Lab Sample ID: SN6056-018A

6

2

20

124.4 A

362.0 A

122.1 A

120

120

120

80

80

80

Μ

MS

MS

MS

MS

	Concentra	ation Units : ug/L					
	Spiked	Sample	Spike			Control Li	mits (%R)
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High
ANTIMONY, TOTAL	2.62	0.517	2	105.2		80	120

12.0

46.8

33.7

19.5

54.0

58.1

Comments:

COPPER, TOTAL

LEAD, TOTAL

ZINC, TOTAL

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical Services	Client Field ID:	COR06SED04A
Matrix: SOIL	SDG Name:	SN6056
Percent Solids: 10.7	Lab Sample ID:	SN6056-018

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result	C Spike Dup. Result C	RPD	Q	Μ
ANTIMONY, TOTAL		48.3	58.6	19.3		MS
COPPER, TOTAL		193	227	16.0		MS
LEAD, TOTAL		159	235	38.9	*	MS
ZINC, TOTAL		396	470	16.9		MS

9 ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR06SED04ALSDG Name:SN6056Lab Sample ID:SN6056-018L

Concentration Units: ug/L										
Analyte	Sample Result	С	Dilution Result	С	% Difference	Q	М			
ANTIMONY, TOTAL	0.517		0.56	J	8.3		MS			
COPPER, TOTAL	12.0		11.6		3.3		MS			
LEAD, TOTAL	46.8		49.0		4.7		MS			
ZINC, TOTAL	33.7		35.1		4.2		MS			

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services		QC Batch ID: NG28IMS1			
Matrix: SOIL		SDG Name: SN6056 Prep Date: 07/28/2020			
Method: MS					
Client ID	Lab Sample ID	Initial (g)	Final (L)	Bottle ID	
LCSONG28IMS1	LCSONG28IMS1	1	0.1		
PBSNG28IMS1	PBSNG28IMS1	1	0.1		
COR04IS01	SN6056-001	1.01	0.1		
COR041S02	SN6056-002	1.06	0.1		
COR04IS03	SN6056-003	1.02	0.1		

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNG281MS1 SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NG28IMS1

RESULT	С	
0.050	U	
0.097	J	
0.023	J	
0.30	J	
	0.050 0.097 0.023 0.30	0.050 U 0.097 J 0.023 J 0.30 J

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONG28IMS1

SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NG28IMS1

Analyte	TRUE	FOUND	% R	LIMITS (%)	
ANTIMONY	10.0	10.3	103.5	72	124
COPPER	25.0	25.4	101.8	84	119
LEAD	10.0	10.0	100.0	84	118
ZINC	50.0	51.5	103.0	82	119

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services		QC Batch ID: NG29IMW2			
Matrix: WATER Method: MS		SDG Name: SN6056 Prep Date: 07/29/2020			
LCSWNG29IMW2	LCSWNG29IMW2	0.05	0.05		
PBWNG29IMW2	PBWNG29IMW2	0.05	0.05		
COR04IS00	SN6056-004	0.05	0.05	A	

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBWNG291MW2

SDG Name: SN6056

Matrix: WATER

QC Batch ID: NG29IMW2

Concentration Units : ug/L

Analyte	RESULT	С	
ANTIMONY	0.50	U	
COPPER	0.54	J	
LEAD	0.20	J	
ZINC	8.0	U	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWNG29IMW2

SDG Name: SN6056

Matrix: WATER

QC Batch ID: NG29IMW2

Concentration Units : ug/L

TRUE	FOUND	% R	LIMIT	S (%)
100	113	112.7	85	117
250	258	103.4	85	118
100	104	104.4	88	115
500	526	105.1	83	119
	100 250 100	100 113 250 258 100 104	100 113 112.7 250 258 103.4 100 104 104.4	100113112.785250258103.485100104104.488

FORM VII - IN

13 PREPARATION LOG

Lab Name: Katahdin Analy	tical Services	QC Batch ID: N	H031CS2	
Matrix: SOIL		SDG Name: SN	6056	
Method: P		Prep Date: 08/	03/2020	
Client ID	Lab Sample ID	Initial (g)	Final (L)	Bottle ID
LCSONH03ICS2	LCSONH03ICS2	10	0.2	
PBSNH03ICS2	PBSNH031CS2	10	0.2	
COR05SED07A	SN6056-024	12.603	0.2	
COR06SED07A	SN6056-026	10.262	0.2	

FORM XIII - IN

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNH03ICS2

SDG Name: SN6056

Matrix: SOIL

QC Batch ID: NH03ICS2

Concentration Units : umole/g drywt

Analyte	RESULT	C	
	RUSOUT	C	
ANTIMONY	0.00082	U	
CADMIUM	0.00053	U	
COPPER	0.00058	J	
LEAD	0.000083	J	
MERCURY	0.0000142	В	
NICKEL	0.00152	J	
ZINC	0.00264	J	

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONH03ICS2

114

SDG Name: SN6056

Matrix: SOIL

Analyte

QC Batch ID: NH03ICS2

Concentration Units : umole/g drywt TRUE FOUND % R LIMITS (%) ANTIMONY 0.0164 0.0166 101.5 79

CADMIUM	0.0445	0.0445	100.0	82	113
COPPER	0.0787	0.0782	99.4	81	117
LEAD	0.00965	0.00995	103.0	81	112
MERCURY	0.000498	0.000488	100.0	80	124
NICKEL	0.170	0.172	101.2	83	113
ZINC	0.153	0.156	102.1	82	113

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services

QC Batch ID: NH04IMS1

Matrix: SOIL

Method: MS

 SDG Name:
 SN5717

 Prep Date:
 08/04/2020

Client ID	Lab Sample ID	Initial (g)	Final (L)	Bottle ID
LCSONH04IMS1	LCSONH04IMS1	1	0.1	
PBSNH04IMS1	PBSNH04IMS1	1	0.1	
COR01DB02A	SN5717-004	1.09	0.1	А
COR02DB02A	SN5717-010	1.01	0.1	А
COR02DB02AP	SN5717-010P	1.02	0.1	А
COR02DB02AS	SN5717-010S	1.02	0.1	А
COR03DB01A	SN5717-013	1.02	0.1	А
COR03DB03A	SN5717-017	1	0.1	А

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services

Sample ID: PBSNH04IMS1

Matrix: SOIL

SDG Name: SN5717

QC Batch ID: NH041MS1

Concentration Units : mg/Kg drywt

Analyte	RESULT	С
ANTIMONY COPPER	0.050 0.20	U U
LEAD	0.024	J
ZINC	0.13	J

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSONH041MS1

Matrix: SOIL

SDG Name: SN5717

QC Batch ID: NH04IMS1

Concentration Units : mg/Kg drywt

Analyte	TRUE	FOUND	% R	LIMIT	°S (%)
ANTIMONY	10.0	10.4	103.6	72	124
COPPER	25.0	25.8	103.2	84	119
LEAD	10.0	10.4	104.3	84	118
ZINC	50.0	47.7	95.5	82	119

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 91.8

Client Field ID:COR02DB02APSDG Name:SN5717Lab Sample ID:SN5717-010P

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.08	0.11 J	10.68	27.8	N	72	124	MS
COPPER, TOTAL	49.2	24.2	26.7	93.8		84	119	MS
LEAD, TOTAL	30.2	19.3	10.68	102.4		84	118	MS
ZINC, TOTAL	114	66.4	53.4	89.5		82	119	MS

5A SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 91.8

Client Field ID:COR02DB02ASSDG Name:SN5717Lab Sample ID:SN5717-010S

Concentration Units : mg/Kg drywt

	Spiked	Sample	Spike		(Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R	Q	Low	High	Μ
ANTIMONY, TOTAL	3.06	0.11 J	10.68	27.6	N	72	124	MS
COPPER, TOTAL	51.7	24.2	26.7	102.9		84	119	MS
LEAD, TOTAL	33.3	19.3	10.68	131.0	N	84	118	MS
ZINC, TOTAL	120	66.4	53.4	100.5		82	119	MS

POST DIGEST SPIKE SAMPLE RECOVERY

Lab Name: Katahdin Analytical Services

Matrix: SOIL

Percent Solids: 91.8

Client Field ID:COR02DB02AASDG Name:SN5717Lab Sample ID:SN5717-010A

Concentration Units : ug/L

	Spiked	Sample	Spike		Control Li	nits (%R)	
Analyte	Sample Result C	Result C	Added	%R Q	Low	High	Μ
ANTIMONY, TOTAL	2.18	0.20 J	2	99.3	80	120	MS
COPPER, TOTAL	50.3	44.9	6	89.6	80	120	MS
LEAD, TOTAL	37.1	35.8	2	65.5 A	80	120	MS
ZINC, TOTAL	141	123	20	90.9	80	120	MS

5D SPIKE DUPLICATES

Lab Name: Katahdin Analytical ServicesClient Field ID:COR02DB02AMatrix: SOILSDG Name:SN5717Percent Solids: 91.8Lab Sample ID:SN5717-010

Concentration Units : mg/Kg drywt

Analyte	Control Limits	Spike Result O	C Spike Dup. Result C	RPD Q	Μ
ANTIMONY, TOTAL		3.06	3.08	0.8	MS
COPPER, TOTAL		51.7	49.2	4.8	MS
LEAD, TOTAL		33.3	30.2	9.6	MS
ZINC, TOTAL		120	114	5.0	MS

ICP SERIAL DILUTION

Lab Name: Katahdin Analytical Services Matrix: SOIL Client Field ID:COR02DB02ALSDG Name:SN5717Lab Sample ID:SN5717-010L

Concentration Units: ug/L

Analyte	Sample Result	С	Dilution Result	С	% Difference	Q	Μ
ANTIMONY, TOTAL	0.20	J	0.22	J	10.0		MS
COPPER, TOTAL	44.9		52.9		17.8	Е	MS
LEAD, TOTAL	35.8		38.9		8.7		MS
ZINC, TOTAL	123		143		16.3	E	MS

13 PREPARATION LOG

Lab Name: Katahdin Analytical Services Matrix: SOIL Method: CV		QC Batch ID: NH13HGW1 SDG Name: SN6056		
		Client ID	Lab Sample ID	Initial (g)
LCSONH03ICS2	LCSONH03ICS2	10	0.2	
LCSWNH13HGW1	LCSWNH13HGW1	0.025	0.025	
PBSNH03ICS2	PBSNH03ICS2	10	0.2	
PBWNHI3HGWI PBWNHI3HGWI		0.025	0.025	

12.603

10.262

SN6056-024

SN6056-026

COR05SED07A

COR06SED07A

FORM XIII - IN

Bottle ID

0.2

0.2

3P PREPARATION BLANKS

Lab Name: Katahdin Analytical Services	Sample ID:	PBWNH13HGW1
Matrix: WATER	SDG Name:	SN6056
QC Batch ID: NH13HGW1		

 Concentration Units : ug/L

 Analyte
 RESULT
 C

 MERCURY
 0.10
 U

FORM III (Part 2) - IN

LABORATORY CONTROL SAMPLES

Lab Name: Katahdin Analytical Services

Sample ID: LCSWNH13HGW1 SDG Name: SN6056

Matrix: WATER

QC Batch ID: NH13HGW1

Concentration Units : ug/L					
Analyte	TRUE	FOUND	% R	LIMIT	°S (%)
MERCURY	5.00	5.84	116.8	82	119

NH ELAP Lab ID 2001 (DW. NPW. SCM) NYSDOH ELAP Lab ID 11121 (AE - T015)

NARRATIVE KATAHDIN ANALYTICAL SERVICES AECOM ENVIRONMENT FORMER SMALL ARMS RANGES – CAMP O'RYAN SN5717

Sample Receipt

The following samples were received on July 28, 2020 and were logged in under Katahdin Analytical Services work order number SN5717 for a hardcopy due date of August 20, 2020.

KATAHDIN	AECOM
Sample No.	Sample Identification
SN5717-1	COR01DA01A
SN5717-4	COR01DB02A
SN5717-5	COR01DA02A
SN5717-7	COR02DA01A
SN5717-8	COR02DA02B
SN5717-9	COR02DA02A
SN5717-10	COR02DB02A
SN5717-12	COR03DA01A
SN5717-13	COR03DB01A
SN5717-14	COR03DA02A
SN5717-15	COR03DA02B
SN5717-17	COR03DB03A
SN5717-18	COR03DA03A
SN5717-20	COR03EQB

.

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAP standards unless otherwise noted in this narrative or in the Report of Analysis.

We certify that the test results provided in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation L2223.

Analytes which are reported but not listed on our ANAB scope of accreditation will be "^" flagged and the following language will be included in the case narrative for all DoD compliant work: "^" Indicates this analyte is not included on Katahdin Analytical Services DoD-ELAP Scope of Accreditation.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Heather Manz. This narrative is an integral part of the Report of Analysis.

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

NH ELAP Lab ID 2001 (DW, NPW, SCM) NYSDOH ELAP Lab ID 11121 (AE - TO15)

Reissue 09/03/2020

This report is being reissued to remove excess pages from the Sample Data Summary section.

Metals Analysis:

The samples associated with Katahdin Work Order SN5717 were prepared and analyzed for metals in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA publication SW846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015), Office of Solid Waste and Emergency Response, U.S. EPA.

Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)

Solid-matrix Katahdin Sample Numbers SN5717-(1, 5, 7, 8, 9, 12, 18) were digested for ICP-MS analysis on 07/16/20 (QC Batch NG16IMS1) in accordance with USEPA Method 3050B. Per client request, SN5717-(5, 7, 18) were prepared with duplicate matrix spiked aliquots.

Solid-matrix Katahdin Sample Numbers SN5717-(14, 15) were digested for ICP-MS analysis on 07/20/20 (QC Batch NG20IMS2) in accordance with USEPA Method 3050B.

Aqueous-matrix Katahdin Sample Number SN5717-20 was digested for ICP-MS analysis on 07/21/20 (QC Batch NG211MW2) in accordance with USEPA Method 3010A. The preparation blank associated with this batch, PBWNG211MW2, was outside of laboratory acceptance criteria for zinc. All associated samples were redigested on 7/29/20 (QC Batch NG211MW2). These digestates are identified on sample preparation logbooks, analysis run logs, and throughout the raw data by the suffix "R" appended to the Katahdin Sample Number, e.g. "SN5717-020R".

Solid-matrix Katahdin Sample Numbers SN5717-(4, 10, 13, 17) were digested for ICP-MS analysis on 08/04/20 (QC Batch NH04IMS1) in accordance with USEPA Method 3050B. SN5717-10 was prepared with duplicate matrix-spiked aliquots.

ICP-MS analyses of Katahdin Work Order SN5717 sample digestates were performed using an Agilent 7800 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all analytical run QC criteria were met, with the following exceptions:

The ICSAB run at 16:01 in analytical batch LNG20A was outside of laboratory acceptance criteria for copper. Because all associated samples were greater than ten times the failed value, they were accepted without corrective action.

The CCBs run at 00:11, 00:16, and 00:48 in analytical batch LNG20A were outside of laboratory acceptance criteria for lead. All associated samples were greater than ten times the failed value, and so were accepted without corrective action.

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

NH ELAP Lab ID 2001 (DW, NPW, SCM) NYSDOH ELAP Lab ID 11121 (AE - TO15)

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes	
Lithium	Beryllium, Boron	
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium	
Germanium	Vanadium, Chromium, Manganese, Iron, Cobalt,	
or	Nickel, Copper, Zinc, Arsenic, Selenium, Silver,	
Yttrium	Cadmium, Strontium, Molybdenum	
Terbium	Antimony, Barium, Tin, Tungsten	
Bismuth	Lead, Thallium, Thorium, Uranium	

Instrument tuning information can also be found in the raw data section in the reports labeled "USEPA Method Tune Report". For Method 6020A, the relative standard deviation was determined from 5 replicate measurements and the peak width was measured at 10% of the peak height.

Matrix OC Summary

The measured recoveries in one or both of the matrix spiked aliquots of Katahdin Sample Number SN5717-5 are outside of laboratory acceptance criteria for antimony, copper, and lead. For lead, this could be due to the concentration of lead being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The relative percent difference between the matrix-spike duplicate analyses of Katahdin Sample Number SN5717-5 is within laboratory acceptance criteria for all analytes.

The measured recoveries of lead and zinc in the post-digestion spiked aliquot of Katahdin Sample Number SN5717-5 are outside laboratory acceptance criteria. This could be due to the concentrations of lead and zinc being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The serial dilution analyses of Katahdin Sample Number SN5717-5 are outside laboratory acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for copper and zinc. Because the laboratory control sample was acceptable, no corrective action was taken.

The measured recoveries in one or both of the matrix spiked aliquots of Katahdin Sample Number SN5717-7 are outside of laboratory acceptance criteria for antimony, copper, lead, and zinc. For lead, this could be due to the concentration of lead being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The relative percent difference between the matrix-spike duplicate analyses of Katahdin Sample Number SN5717-7 is within laboratory acceptance criteria for all analytes.

The measured recoveries of lead, zinc, and copper in the post-digestion spiked aliquot of Katahdin Sample Number SN5717-7 are outside laboratory acceptance criteria. This could be due

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

to the concentrations of these analytes being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The serial dilution analyses of Katahdin Sample Number SN5717-7 are outside laboratory acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for copper and zinc. Because the laboratory control sample was acceptable, no corrective action was taken.

The measured recoveries in one or both of the matrix spiked aliquots of Katahdin Sample Number SN5717-10 are outside of laboratory acceptance criteria for antimony and lead. Because the laboratory control sample was acceptable, no corrective action was taken.

The relative percent difference between the matrix-spike duplicate analyses of Katahdin Sample Number SN5717-10 is within laboratory acceptance criteria for all analytes.

The measured recoveries of lead in the post-digestion spiked aliquot of Katahdin Sample Number SN5717-10 are outside laboratory acceptance criteria. This could be due to the concentrations of lead being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The serial dilution analyses of Katahdin Sample Number SN5717-10 are outside laboratory acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for copper and zinc. Because the laboratory control sample was acceptable, no corrective action was taken.

The measured recoveries in one or both of the matrix spiked aliquots of Katahdin Sample Number SN5717-18 are outside of laboratory acceptance criteria for antimony, lead, and zinc. For lead, this could be due to the concentration of lead being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The relative percent difference between the matrix-spike duplicate analyses of Katahdin Sample Number SN5717-18 is outside laboratory acceptance criteria for antimony. Because the laboratory control sample was acceptable, no corrective action was taken.

The measured recoveries of lead in the post-digestion spiked aliquot of Katahdin Sample Number SN5717-18 are outside laboratory acceptance criteria. This could be due to the concentrations of lead being significantly higher than the spike added. Because the laboratory control sample was acceptable, no corrective action was taken.

The serial dilution analyses of Katahdin Sample Number SN5717-18 are outside laboratory acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for copper and zinc. Because the laboratory control sample was acceptable, no corrective action was taken.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

0000005

NYSDOH ELAP Lab ID 2001 (DW, NPW, SCM) NYSDOH ELAP Lab ID 11121 (AE - TO15)

MDL and the LOQ are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with "U" in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the adjusted LOD is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis:

The samples of Work Order SN5717 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for total solids were performed according to "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA publication SW-846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015).

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times, and all quality control criteria were met.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Quality Assurance Officer, or their designee, as verified by the following signature.

Eduard a Mon 09-08-2020

Leslie Dimond Quality Assurance Officer

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

NH ELAP Lab ID 2001 (DW, NPW, SCM) NYSDOH ELAP Lab ID 11121 (AE - TO15)

NARRATIVE KATAHDIN ANALYTICAL SERVICES AECOM ENVIRONMENT FORMER SMALL ARMS RANGES – CAMP O'RYAN SN5719

Sample Receipt

The following samples were received on July 14, 2020 and were logged in under Katahdin Analytical Services work order number SN5719 for a hardcopy due date of July 26, 2020.

KATAHDIN	AECOM
Sample No.	Sample Identification
SN5719-1	COR01IS01
SN5719-2	COR01IS02
SN5719-3	COR01IS03
SN5719-4	COR02IS01
SN5719-5	COR02IS02
SN5719-6	COR02IS03
SN5719-7	COR03IS01
SN5719-8	COR03IS02
SN5719-9	COR03IS03

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAP standards unless otherwise noted in this narrative or in the Report of Analysis.

We certify that the test results provided in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation L2223.

Analytes which are reported but not listed on our ANAB scope of accreditation will be "^" flagged and the following language will be included in the case narrative for all DoD compliant work: "^" Indicates this analyte is not included on Katahdin Analytical Services DoD-ELAP Scope of Accreditation.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, Ms. Heather Manz. This narrative is an integral part of the Report of Analysis.

Metals Analysis

The samples of Katahdin Work Order SN5719 were prepared and analyzed for metals in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA publication SW-846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015), Office of Solid Waste and Emergency Response, U.S. EPA.

ISM Soil Preparation (EPA Method 8330B)

Katahdin Sample Numbers SN5719-(1-9) are solid samples that were dried to a constant weight, sieved, then sub-sampled in accordance with the SW846 8330B preparation method prior to acid digestion.

Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)

Solid-matrix Katahdin Sample Numbers SN5719-(1-9) were digested for ICP-MS analysis on 07/20/20 (QC Batch NG20IMS1) in accordance with USEPA Method 3050B.

ICP-MS analyses of Katahdin Work Order SN5719 sample digestates were performed using an Agilent 7800 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all analytical run QC criteria were met, with the following exception:

The CCBs run at 22:44, 23:16, 23:42 in analytical batch LNG22B have lead concentrations (0.112 ug/L, 0.184 ug/L, 0.130 ug/L) that are above laboratory acceptance criteria. Because the associated samples have lead concentrations greater than ten times that, no action was taken.

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes	
Lithium	Beryllium, Boron	
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium	
Germanium	Vanadium, Chromium, Manganese, Iron,	
or	Cobalt, Nickel, Copper, Zinc, Arsenic,	
Yttrium	Selenium, Silver, Cadmium, Strontium, Molybdenum	
Terbium	Antimony, Barium, Tin, Tungsten	
Bismuth	Lead, Thallium, Thorium, Uranium	

Instrument tuning information can also be found in the raw data section in the reports labeled "USEPA Method Tune Report". For Method 6020A, the relative standard deviation was

determined from 5 replicate measurements and the peak width was measured at 10% of the peak height.

Matrix OC Summary

The measured recoveries of antimony, copper, and lead in one or both of the matrix-spiked aliquots of Katahdin Sample Number SN5719-1 are outside project acceptance criteria. For lead, this could be because the concentration of lead in the sample is significantly higher than the spike added. Because the laboratory control sample is acceptable, no action was taken.

The relative percent difference between the duplicate matrix-spiked analyses of Katahdin Sample Number SN5719-1 are within project acceptance criteria.

The measured recovery of lead in the post-digestion spiked aliquot of Katahdin Sample Number SN5719-1 is outside project acceptance criteria. This could be because the concentration of lead in the sample is significantly higher than the spike added. Because the serial dilution analysis is acceptable, no action was taken.

The serial dilution analysis of Katahdin Sample Number SN5719-1 is within project acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD).

The measured recoveries of antimony, copper, and lead in one or both of the matrix-spiked aliquots of Katahdin Sample Number SN5719-5 are outside project acceptance criteria. For lead, this could be because the concentration of lead in the sample is significantly higher than the spike added. Because the laboratory control sample is acceptable, no action was taken.

The relative percent difference between the duplicate matrix-spiked analyses of Katahdin Sample Number SN5719-5 are within project acceptance criteria.

The measured recovery of lead in the post-digestion spiked aliquot of Katahdin Sample Number SN5719-5 is outside project acceptance criteria. This could be because the concentration of lead in the sample is significantly higher than the spike added.

The serial dilution analysis of Katahdin Sample Number SN5719-5 is outside project acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for lead.

The measured recoveries of antimony, copper, and lead in one or both of the matrix-spiked aliquots of Katahdin Sample Number SN5719-9 are outside project acceptance criteria. For lead, this could be because the concentration of lead in the sample is significantly higher than the spike added. Because the laboratory control sample is acceptable, no action was taken.

The relative percent difference between the duplicate matrix-spiked analyses of Katahdin Sample Number SN5719-9 are within project acceptance criteria.

The measured recovery of lead, copper, and zinc in the post-digestion spiked aliquot of Katahdin Sample Number SN5719-9 is outside project acceptance criteria. This could be because the

P.O. Box 540, Scarborough, ME 04070

concentrations of lead, copper, and zinc in the sample are significantly higher than the spike added. Because the serial dilution analysis is acceptable, no action was taken.

The serial dilution analysis of Katahdin Sample Number SN5719-9 is within project acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD).

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with "U" in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that are below the MDLs are flagged with "U" in the C-qualifier column, and the adjusted LOD is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order SN5719 were analyzed in accordance with the specific methods listed on the Report of Analysis.

Analyses for total solids were performed according to "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA publication SW-846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015).

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times, and all quality control criteria were met.

NH ELAP Lab ID 2001 (DW, NPW, SCM) NYSDOH ELAP Lab ID 11121 (AE - TO15)

NARRATIVE KATAHDIN ANALYTICAL SERVICES AECOM ENVIRONMENT FORMER SMALL ARMS RANGES – CAMP O'RYAN SN6056

Sample Receipt

The following samples were received on July 22, 2020 and were logged in under Katahdin Analytical Services work order number SN6056 for a hardcopy due date of August 17, 2020.

KATAHDIN	AECOM
Sample No.	Sample Identification
SN6056-1	COR04IS01
SN6056-2	COR04IS02
SN6056-3	COR04IS03
SN6056-4	COR04IS00
SN6056-5	COR05SED01A
SN6056-6	COR05SED02A
SN6056-7	COR05SED02B
SN6056-8	COR05SED03A
SN6056-9	COR05SED04A
SN6056-10	COR05SED05A
SN6056-11	COR05SED06A
SN6056-12	COR05SED07A
SN6056-13	COR05SED08A
SN6056-14	COR06SED01A
SN6056-15	COR06SED02A
SN6056-16	COR06SED02B
SN6056-17	COR06SED03A
SN6056-18	COR06SED04A
SN6056-19	COR06SED05A
SN6056-20	COR06SED06A
SN6056-21	COR06SED07A
SN6056-22	COR06SED08A
SN6056-24	COR05SED07A
SN6056-26	COR06SED07A

The samples were logged in for the analyses specified on the chain of custody form. All problems encountered and resolved during sample receipt have been documented on the applicable chain of custody forms.

We certify that the test results provided in this report meet all the requirements of the NELAP standards unless otherwise noted in this narrative or in the Report of Analysis.

We certify that the test results provided in this report are accredited under the laboratory's ISO/IEC 17025:2005 and DoD-ELAP accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation L2223.

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

Analytes which are reported but not listed on our ANAB scope of accreditation will be "^" flagged and the following language will be included in the case narrative for all DoD compliant work: "^" Indicates this analyte is not included on Katahdin Analytical Services DoD-ELAP Scope of Accreditation.

Sample analyses have been performed by the methods as noted herein.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact your Katahdin Analytical Services Project Manager, **Ms. Heather Manz**. This narrative is an integral part of the Report of Analysis.

Grain Size Analysis

The samples of Work Order SN6056 were analyzed in accordance with ASTM D422 version 63, (reapproved 2007) "Standard Test Method for Particle-Size Analysis of Soils", ASTM D2217 version 85 (reapproved 1998) "Standard Practice for Wet Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants", and/or for the specific methods listed below or on the Report of Analysis.

There were no protocol deviations or observations noted by the organics laboratory staff.

Metals Analysis

The samples associated with Katahdin Work Order SN6056 were prepared and analyzed for metals in accordance with "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA publication SW846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015), Office of Solid Waste and Emergency Response, U.S. EPA.

ISM Soil Preparation (EPA Method 8330B)

Katahdin Sample Numbers SN6056-(1-3) are solid samples that were dried to a constant weight, sieved, then sub-sampled in accordance with the SW846 8330B preparation method prior to acid digestion.

Inductively-Coupled Plasma Mass Spectrometric Analysis (ICP-MS)

Solid-matrix Katahdin Sample Numbers SN6056-(5-17) were digested for ICP-MS analysis on 07/23/20 (QC Batch NG23IMS1) in accordance with USEPA Method 3050B. Per client request, SN6056-009 was prepared with duplicate matrix-spiked aliquots. This batch was also prepared with duplicate laboratory control samples.

Solid-matrix Katahdin Sample Numbers SN6056-(18-22) were digested for ICP-MS analysis on 07/27/20 (QC Batch NG27IMS1) in accordance with USEPA Method 3050B. Per client request, SN6056-018 was prepared with duplicate matrix spiked aliquots.

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

NH ELAP Lab ID 2001 (DW, NPW, SCM) NYSDOH ELAP Lab ID 11121 (AE - TO15)

Solid-matrix Katahdin Sample Numbers SN6056-(1-3) were digested for ICP-MS analysis on 07/28/20 (QC Batch NG28IMS1) in accordance with USEPA Method 3050B.

Aqueous-matrix Katahdin Sample Number SN6056-4 was digested for ICP-MS analysis on 07/29/20 (QC Batch NG29IMW2) in accordance with USEPA Method 3010A.

ICP-MS analyses of Katahdin Work Order SN6056 sample digestates were performed using an Agilent 7800 ICP-MS spectrometer in accordance with USEPA Method 6020A. Results for all standards and samples are reported using the mean of 3 replicate measurements. All sample digestates were diluted by a factor of 5 during analysis to reduce mass interferences from chlorine, which is present in the digestates from the hydrochloric acid used in digesting the samples. All samples were analyzed within holding times and all analytical run QC criteria were met, with the following exceptions:

The PQL run in analytical batch LNG24A was outside of laboratory acceptance criteria for copper. All associated samples were greater than ten times the failed value or less than one half the LOQ, so were accepted without corrective action.

The PQL run in analytical batch LNH03A was outside of laboratory acceptance criteria for zinc. All associated samples were greater than ten times the failed value, so were accepted without corrective action.

The CCBs at 21:26, 21:58, and 22:11 in analytical batch LNG24A were outside of laboratory acceptance criteria for lead. All associated samples were greater than ten times the failed value, so were accepted without corrective action.

The CCB at 15:45 in analytical batch LNG28B was outside of laboratory acceptance criteria for lead. All associated samples were greater than ten times the failed value, so were accepted without corrective action.

The ICSA in analytical batch LNG24A was outside of laboratory acceptance criteria for copper. All associated samples were greater than ten times the failed value, so were accepted without corrective action.

Internal standard recoveries for ICP-MS analyses can be found in the raw data section of the accompanying data package. The following table indicates which analytes are associated with each internal standard element.

Internal Standard Element	Associated Analytes	
Lithium	Beryllium, Boron	
Scandium	Sodium, Magnesium, Aluminum, Potassium, Calcium	
Germanium	Vanadium, Chromium, Manganese, Iron, Cobalt, Nickel,	
or	Copper, Zinc, Arsenic, Selenium, Silver, Cadmium,	
Yttrium	Strontium, Molybdenum	
Terbium	Antimony, Barium, Tin, Tungsten	
Bismuth	Lead, Thallium, Thorium, Uranium	

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

Instrument tuning information can also be found in the raw data section in the reports labeled "USEPA Method Tune Report". For Method 6020A, the relative standard deviation was determined from 5 replicate measurements and the peak width was measured at 10% of the peak height.

Inductively-Coupled Plasma (ICP) Atomic Emission Spectroscopic Analysis

Solid-matrix Katahdin Sample Number SN6056-(24, 26) were prepared for ICP analysis on 08/03/2020 (QC Batch NH03ICS2) in accordance with USEPA Draft Method 821/R-91-100 (Acid Volatile Sulfide / Simultaneously Extractable Metals).

ICP analyses of Katahdin Work Order SN6056 samples were performed using a Thermo iCAP 6500 ICP spectrometer in accordance with USEPA Method 6010C. All samples were analyzed within holding times and all applicable analytical run QC criteria were met.

Analysis of Mercury by Cold Vapor Atomic Absorption (CVAA)

Solid-matrix Katahdin Sample Number SN6056-(24, 26) were prepared for ICP analysis on 08/03/2020 (QC Batch NH03ICS2) in accordance with USEPA Draft Method 821/R-91-100 (Acid Volatile Sulfide / Simultaneously Extractable Metals). These aqueous-matrix aliquots of Katahdin Sample Numbers SN6056-(24, 26) were digested for mercury analysis on 08/13/20 (QC Batch NH13HGW1) in accordance with USEPA Method 7470A. The preparation blank associated with this batch, PBSNH03ICS2, was outside of laboratory acceptance criteria for mercury. Because all associated samples were less than one half the PQL, they were accepted without corrective action.

Mercury analyses of the Katahdin Work Order SN6056 sample digestates were performed using a Cetac M6100 automated mercury analyzer in accordance with USEPA Methods 7470A and 7471B. All samples were analyzed within holding times and all analytical run QC criteria were met.

Matrix OC Summary

The measured recovery of lead and antimony in one or both the matrix-spiked aliquots of Katahdin Sample Numbers SN6056-9 are outside laboratory acceptance criteria. For lead, this could be because the concentration in the sample is significantly higher than the spike added. Because the laboratory control sample was acceptable, no action was taken.

The relative percent difference between the matrix-spike duplicate analyses of Katahdin Sample Number SN6056-9 is outside project acceptance criteria for lead. Because the laboratory control sample is acceptable, no action was taken.

The measured recovery of copper, lead, and zinc in the post-digestion spiked aliquot of Katahdin Sample Number SN6056-9 is outside project acceptance criteria. For lead, copper, and zinc, this could be because the concentration in the sample is significantly higher than the spike added. Because the laboratory control sample is acceptable, no action was taken.

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

The serial dilution analyses of Katahdin Sample Numbers SN6056-9 are outside project acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for zinc. Because the laboratory control sample was acceptable, no action was taken.

The measured recovery of lead in both the matrix-spiked aliquots of Katahdin Sample Numbers SN6056-18 are outside laboratory acceptance criteria. For lead, this could be because the concentration in the sample is significantly higher than the spike added. Because the laboratory control sample was acceptable, no action was taken.

The relative percent difference between the matrix-spike duplicate analyses of Katahdin Sample Number SN6056-18 is within project acceptance criteria for all analytes.

The measured recovery of copper, lead, and zinc in the post-digestion spiked aliquot of Katahdin Sample Number SN6056-9 is outside project acceptance criteria. For lead, this could be because the concentration in the sample is significantly higher than the spike added. Because the serial dilution analyses were acceptable, no action was taken.

The serial dilution analyses of Katahdin Sample Numbers SN6056-18 are within project acceptance criteria (<10% relative percent difference, if the concentration in the original sample is greater than 50 times the LOD) for all analytes.

Reporting of Metals Results

Per client request, analytical results for client samples on Form I and preparation blanks on Form IIIP have been reported using the laboratory's limits of detection (LOD). All results were evaluated down to the laboratory's method detection limits (MDLs). Results that fall between the MDL and the LOQ are flagged with "J" in the C-qualifier column, and the measured concentration appears in the concentration column. Results that are less than the MDL are flagged with "U" in the C-qualifier column, and the LOD is listed in the concentration column. These LOQs, MDLs and LODs have been adjusted for each sample based on the sample amounts used in preparation and analysis.

Analytical results on Forms VA, VD, VII, and IX for client samples, matrix QC samples (duplicates and matrix spikes), and laboratory control samples have been reported down to the laboratory's method detection limits (MDLs). Analytical results that arc below the MDLs are flagged with "U" in the C-qualifier column, and the adjusted LOD is listed in the concentration column.

Analytical results for instrument run QC samples (ICVs, ICBs, etc.) have been reported down to the laboratory's instrument detection limits (IDLs).

IDLs, LODs, MDLs, and LOQs are listed on Form 10 of the accompanying data package.

Wet Chemistry Analysis

The samples of Work Order SN6056 were analyzed in accordance with the specific methods listed on the Report of Analysis.

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

Analyses for total solids were performed according to "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", EPA publication SW-846, Third Edition, Final Updates I (1993), II (1995), IIA (1994), IIB (1995), III (1997), IIIA (1999), IIIB (2005), IV (2008), and V (2015).

Analyses for acid volatile sulfide were performed according to "Draft Analytical Method for Determination of Acid Volatile Sulfide in Sediment", EPA 821/R-91-100, December 1991.

Analyses for total organic carbon in soil were performed according to "Determination of Total Organic Carbon in Sediment", Lloyd Kahn, USEPA Region II, 7/88.

All Wet Chemistry results were evaluated to Katahdin Analytical Services' Method Detection Limits (MDL). Measured concentrations that fall between the MDL and Katahdin's Limit of Quantitation (LOQ) are flagged "J". Measured concentrations that are below the MDL are flagged "U" and reported as "U LOD", where "LOD" is the numerical value of the Limit of Detection.

All analyses were performed within analytical holding times. All quality control criteria were met, with the following exceptions:

The relative percent difference (32%) between duplicate analyses of Katahdin Sample No. SN6056-9 for total solids is greater than the laboratory's acceptance limit of 20%.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package has been authorized by the Quality Assurance Officer, or their designee, as verified by the following signature.

slip Dimon

Leslie Dimond Quality Assurance Officer

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400 Fax: (207) 775-4029 www.katahdinlab.com

Katahdin Analytical Services, Inc.

Manual Integration Codes For GC/MS, GC, HPLC and/or IC

M1	Peak splitting.
M2	Well defined peaks on the shoulders of the other peaks.
M3	There is additional area due to a coeluting interferant.
M4	There are negative spikes in the baseline.
M5	There are rising or falling baselines.
M6	The software has failed to detect a peak or misidentified a peak.
M7	Excessive peak tailing.
M8	Analysis such as GRO, DRO and TPH require a baseline hold.
M9	Peak was not completely integrated as in GC/MS.
M10	Primary ion was correctly integrated, but secondary or tertiary ion needed manual integration as in GC/MS.
M11	For GC analysis, when a sample is diluted by 1:10 or more, the surrogate is set to undetected and then the area under the surrogate is manually integrated.
M12	Manual integration saved in method due to TurboChrom floating point error.

DM-007 - Revision 1 - 07/21/2010

METALS SAMPLE FLAGGING

FLAG	SPECIFIED MEANING
E	The reported value is estimated because of the presence of interference (as indicated by serial dilution).
N	The pre-digestion spiked sample recovery is not within control limits.
*	The duplicate sample analysis relative percent difference (RPD) is not within control limits.
В	Indicates the analyte was detected in the laboratory method blank analyzed concurrently with the sample.
А	The post-digestion spiked sample recovery is not within control limits.
•	Analytical run QC sample (e.g. ICV, CCV, ICB, CCB, ICSA, ICSAB) not within control limits.
U	The analyte was not detected above the specified level. This level may be the Limit of Quantitation (LOQ) (previously called Practical Quantitation Level (PQL)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client. Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL/LOQ or "U" LOD, where the rate of false negatives is <1%.
J	The analyte was detected in the sample at a concentration less than the laboratory Limit of Quantitation (LOQ) (previously called Practical Quantitation Limit (PQL)), but above the Method Detection Limit (MDL).
Q	One or more quality control criteria failed (e.g., LCS recovery, surrogate spike recovery or CCV).

KATAHDIN ANALYTICAL SERVICES - INORGANIC DATA QUALIFIERS

The sampled date indicated on the attached Report(s) of Analysis (ROA) is the date for which a grab sample was collected or the date for which a composite sample was completed. Beginning and start times for composite samples can be found on the Chain-of-Custody.

U Indicates the compound was analyzed for but not detected above the specified level. This level may be the Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), the Limit of Detection (LOD) or Method Detection Limit (MDL) as required by the client.

Note: All results reported as "U" MDL have a 50% rate for false negatives compared to those results reported as "U" PQL "U" LOQ or "U" LOD, where the rate of false negatives is <1%.

- E Estimated value. This flag identifies compounds whose concentrations exceed the upper level of the calibration range of the instrument for that specific analysis.
- J Estimated value. The analyte was detected in the sample at a concentration less than the laboratory Practical Quantitation Level (PQL) (also called Limit of Quantitation (LOQ)), but above the Method Detection Limit (MDL).
- I-7 The laboratory's Practical Quantitation Level (PQL) or LOQ could not be achieved for this parameter due to sample composition, matrix effects, sample volume, or quantity used for analysis.
- A-4 Please refer to cover letter or narrative for further information.
- H_ Please note that the regulatory holding time for _____ is "analyze immediately". Ideally, this analysis must be performed in the field at the time of sample collection. _____ for this sample was not performed at the time of sample collection. The analysis was performed as soon as possible after receipt by the laboratory.

H1 - pH H2 - DO H3 - sulfite H4 - residual chlorine

- T1 The client did not provide the full volume of at least one liter for analysis of TSS. Therefore, the PQL of 2.5 mg/L could not be achieved.
- T2 The client provided the required volume of at least one liter for analysis of TSS, but the laboratory could not filter the full one liter volume due to the sample matrix. Therefore, the PQL of 2.5 mg/L could not be achieved.
- M1 The matrix spike and/or matrix spike duplicate recovery performed on this sample was outside of the laboratory acceptance criteria. Sample matrix is suspected. The laboratory criteria was met for the Laboratory Control Sample (LCS) analyzed concurrently with this sample.
- M2 The matrix spike and/or matrix spike duplicate recovery was outside of the laboratory acceptance criteria. The native sample concentration is greater than four times the spike added concentration so the spike added could not be distinguished from the native sample concentration.
- R1 The relative percent difference (RPD) between the duplicate analyses performed on this sample was outside of the laboratory acceptance criteria (when both values are greater than ten times the PQL).

MCL	Maximum Contaminant Level	NL	No limit
NFL	No Free Liquid Present	FLP	Free Liquid Present
NOD	No Odor Detected	TON	Threshold Odor Number

- D-1 As required by Method 5210B, APHA Standard Methods for the Examination of Water and Wastewater (21st edition), the BOD value reported for this sample is 'qualified' because the check standard run concurrently with the sample analysis did not meet the criteria specified in the method (198 +/- 30.5 mg/L). These results <u>may</u> not be reportable for compliance purposes.
- D-2 The measured final dissolved oxygen concentrations of all dilutions were less than the method-specified limit of 1 mg/L. The reported BOD result was calculated assuming a final oxygen concentration equal to 1 mg/L. The reported value should be considered a minimum value.
- D-3 The dilution water used to prepare this sample did not meet the method and/or regulatory criteria of less than 0.2 or 0.4 mg/L dissolved oxygen (DO) uptake over the five day period of incubation. These results <u>may</u> not be reportable for compliance purposes.

Heather Manz

From:	Witte, Joe <joe.witte@aecom.com></joe.witte@aecom.com>
Sent:	Monday, August 3, 2020 1:03 PM
То:	Heather Manz; Salvatore, Amibeth; Wallace, Meagen
Cc:	Mike Flanders; Leslie Dimond; Greg Lull; Sara Colby
Subject:	RE: SN6056-23 & 25 ignitability
Follow Up Flag:	Follow up

Follow Up Flag: Flag Status: Follow up Flagged

l'm sorry,

You are correct. We do not need the TCLP analysis for either COR05SED04A or COR06SED04A.

Joe Witte Environmental Scientist, Remediation, DC Metro Region D +1-301-944-3617 (NEW) M +1-301-300-9873 joe.witte@aecom.com

AECOM

12420 Milestone Center Drive Suite 150 Germantown, MD 20876, USA T +1-301-250-2934 (NEW) aecom.com

Built to deliver a better world

LinkedIn Twitter Facebook Instagram

From: Heather Manz <hmanz@katahdinlab.com>
Sent: Monday, August 3, 2020 12:55 PM
To: Witte, Joe <joe.witte@aecom.com>; Salvatore, Amibeth <amibeth.salvatore@aecom.com>; Wallace, Meagen
<Meagen.Wallace@aecom.com>
Cc: Mike Flanders <mflanders@katahdinlab.com>; Leslie Dimond <ldimond@katahdinlab.com>; Greg Lull
<glull@katahdinlab.com>; Sara Colby <scolby@katahdinlab.com>
Subject: [EXTERNAL] RE: SN6056-23 & 25 ignitability

Hi Joe,

In addition to COR01X39E, COR02X01TCLP, & COR03X01TCLP; samples COR05SED04A and COR06SED04A requested TCLP metals on the attached COC.

COR05SED04A requested TCLP metals and RCI, we are not able to perform the ignitability.

COR06SED04A requested just TCLP metals. This accidentally also got logged in for RCI. I will remove that and we will not report it.

Thanks

Heather

From: Witte, Joe <joe.witte@aecom.com>
Sent: Monday, August 3, 2020 12:46 PM
To: Heather Manz <<u>hmanz@katahdinlab.com</u>>; Salvatore, Amibeth <<u>amibeth.salvatore@aecom.com</u>>; Wallace, Meagen
<<u>Meagen.Wallace@aecom.com></u>
Cc: Mike Flanders <<u>mflanders@katahdinlab.com</u>>; Leslie Dimond <<u>Idimond@katahdinlab.com</u>>; Greg Lull
<<u>glull@katahdinlab.com</u>>; Sara Colby <<u>scolby@katahdinlab.com</u>>
Subject: RE: SN6056-23 & 25 ignitability

Hi Heather,

That is fine. Per my email on July 28th, we do not want samples COR01X39E, COR02X01TCLP or COR03X01TCLP analyzed. Those are the only samples that would have received TCLP analysis.

Joe Witte Environmental Scientist, Remediation, DC Metro Region D +1-301-944-3617 (NEW) M +1-301-300-9873 joe.witte@aecom.com

AECOM 12420 Milestone Center Drive Suite 150 Germantown, MD 20876, USA T +1-301-250-2934 (NEW) aecom.com

Built to deliver a better world

LinkedIn Twitter Facebook Instagram

From: Heather Manz <<u>hmanz@katahdinlab.com</u>>
Sent: Monday, August 3, 2020 12:43 PM
To: Witte, Joe <<u>ioe.witte@aecom.com</u>>; Salvatore, Amibeth <<u>amibeth.salvatore@aecom.com</u>>; Wallace, Meagen
<<u>Meagen.Wallace@aecom.com</u>>
Cc: Mike Flanders <<u>mflanders@katahdinlab.com</u>>; Leslie Dimond <<u>Idimond@katahdinlab.com</u>>; Greg Lull
<<u>glull@katahdinlab.com</u>>; Sara Colby <<u>scolby@katahdinlab.com</u>>
Subject: [EXTERNAL] SN6056-23 & 25 ignitability

Hi Joe,

The lab let me know that we do not have enough sample volume left to perform ignitability on samples SN6056-23 (COR05SED04A) and SN6056-25 (COR06SED04A).

Thank You, Heather Manz

Project Manager Katahdin Analytical Services A Small Business Enterprise DoD ELAP Accredited 600 Technology Way Scarborough, Maine 04074

Heather Manz

Subject:

FW: Camp O'Ryan SN5717 prelim data

From: Witte, Joe <joe.witte@aecom.com> Sent: Tuesday, July 28, 2020 11:49 AM To: Heather Manz <hmanz@katahdinlab.com>; Salvatore, Amibeth <amibeth.salvatore@aecom.com> Cc: Mike Flanders <mflanders@katahdinlab.com>; Leslie Dimond <ldimond@katahdinlab.com>; Greg Lull <glull@katahdinlab.com>; Sara Colby <scolby@katahdinlab.com>; Li, Jennifer J (Germantown) <jennifer.j.li@aecom.com> Subject: RE: Camp O'Ryan SN5717 prelim data

Hi Heather,

I have instructions for which Camp O'Ryan samples to analyze and which samples can be discarded. Sorry it took me a few days to get back to you, I just needed to make sure our whole team agreed.

- **COR01X39E** –SN5717-6 Do not analyze; you may discard. Please do not perform any further analysis, and please do not include any data you may have for this sample in our lab report.
- **COR02X01TCLP** SN5717-11 Do not analyze; you may discard. Please do not perform any further analysis, and please do not include any data you may have for this sample in our lab report.
- **COR03X01TCLP** SN5717-19 Do not analyze; you may discard. Please do not perform any further analysis, and please do not include any data you may have for this sample in our lab report.
- COR01DB01A SN5717-3 Do not analyze; you may discard.
- **COR01DB01B** SN5717-2 Do not analyze; you may discard.
- COR03DB02A SN5717-16 Do not analyze; you may discard.
- COR01DB02A SN5717-4 Please analyze for target metals.
- COR02DB02A SN5717-10 Please analyze for target metals.
- COR03DB01A SN5717-13 Please analyze for target metals.
- COR03DB03A SN5717-17 Please analyze for target metals.

So that is 6 total samples we are asking not to be analyzed, and four total samples we are asking to be analyzed. Please let me know if you have any questions. I believe this takes care of all of our samples on hold, but if I am missing any, please let me know.

Thanks Heather,

Joe Witte

Environmental Scientist, Remediation, DC Metro Region D +1-301-944-3617 (NEW) M +1-301-300-9873 joe.witte@aecom.com

AECOM 12420 Milestone Center Drive Suite 150 Germantown, MD 20876, USA T +1-301-250-2934 (NEW) aecom.com

Built to deliver a better world

Katahdin Analytical Services, LLC. Sample Receipt Condition Report

Client: Al	ECOM	KAS PM:	HAM	Sampled By: Clien	F
Project:		KIMS Entry E	iv: JLR	Delivered By: Fede	x
KAS Work Order#: ら入	15717	KIMS Review	By: MIM	Received By: JuB	
SDG #:	Cooler:	of	Date/Tir	me Rec.: 7.14.20	1020

Receipt Criteria	Y	N	EX*	NA	Comments and/or Resolution
1. Custody seals present / intact?	/				
2. Chain of Custody present in cooler?	/				
3. Chain of Custody signed by client?	/				
4. Chain of Custody matches samples?	/				
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.	/				Temp (°C): I.3 Thermometer ID: IR-1
Samples received at <6 °C w/o freezing?	/				Note: Not required for metals (except Hg soil) analysis.
Ice packs or ice present?	/				The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may
If yes, was there sufficient ice to meet temperature requirements?	/				not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?					Note: No cooling process required for metals (except Hg soil) analysis.
6. Volatiles:					
Aqueous: No bubble larger than a pea?					
Soil/Sediment:					
Received in airtight container?					
Received in methanol?				\leq	
Methanol covering soil?					
D.I. Water - Received within 48 hour HT?					
Air: Refer to KAS COC for canister/flow controller requirements.	√ if ai	r inclu	Ided		1
7. Trip Blank present in cooler?				1.	*
8. Proper sample containers and volume?	/				
9. Samples within hold time upon receipt?	1				
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9	/				
Cyanide – pH >12				1	
11. Bottleware Prepped on:					
* Log-In Notes to Exceptions: document any p	roblen	ns wit	h sam	ples c	r discrepancies or pH adjustments.
				F	
					*

Katahdin Analytical Services, LLC.

Sample Receipt Condition Report

Client:	AECOM			KAS PM:	thh	M	Sampled By:	Clier	1+
Project:				KIMS Entry By	1: 51	IB	Delivered By:	Fede	je .
KAS Work Order#:	SN5719			KIMS Review	By: IT	HM	Received By:	Jub	
SDG #:		Cooler:	o	of			e Rec.: 7.14.	20	1020

Dessint Criteria	Y	N	EX*	NA	Comments and/or Resolution
Receipt Criteria				INA	Comments and/or Resolution
1. Custody seals present / intact?	/				
2. Chain of Custody present in cooler?	/				
3. Chain of Custody signed by client?	1				2
4. Chain of Custody matches samples?	/				
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.	/				Temp (°C): 5.6 Thermometer ID: IR-1
Samples received at <6 °C w/o freezing?	/				Note: Not required for metals (except Hg soil) analysis.
Ice packs or ice present?	/				The lack of ice or ice packs (i.e. no attempt to begin cooling process) or insufficient ice may
If yes, was there sufficient ice to meet temperature requirements?	/				not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?				/	Note: No cooling process required for metals (except Hg soil) analysis.
6. Volatiles:					
Aqueous: No bubble larger than a pea?				\leq	
Soil/Sediment:					
Received in airtight container?					
Received in methanol?					
Methanol covering soil?				/	
D.I. Water - Received within 48 hour HT?					
Air: Refer to KAS COC for canister/flow controller requirements.	√ifai	ir inclu	ded		3
7. Trip Blank present in cooler?				1	
8. Proper sample containers and volume?	/				
9. Samples within hold time upon receipt?	/				
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH pH <2 Sulfide - >9 Cyanide pH >12					ź
11. Bottleware Prepped on:			•		
* Log-In Notes to Exceptions: document any p	roblen	ns wit	h sam	nles c	or discrenancies or pH adjustments
Log in Notes to Exceptions. document any p	obieli	NG WIL	in Sain	1000	aloropanolos or priradjustitients.
.*					

ý

Katahdin Analytical Service	s, LLC.	Sample Rec	ceipt Condition Report
Client: AECCM	KAS PM:	thm	Sampled By: Client
Project:	KIMS Entry	By: JUB	Delivered By: Feder
KAS Work Order#: 5NG056	KIMS Revi	By: (111)	Received By: JCB
SDG #:	Cooler: of	Date/Tim	Ne Rec.: 7,22,20 1015

Receipt Criteria	Y	N	EX*	NA	Comments and/or Resolution
1. Custody seals present / intact?	/				-
2. Chain of Custody present in cooler?	1				
3. Chain of Custody signed by client?	1				1
4. Chain of Custody matches samples?					
5. Temperature Blanks present? If not, take temperature of any sample w/ IR gun.					Temp (°C): 3,4 Thermometer ID: IR-1
Samples received at <6 °C w/o freezing?	/				Note: Not required for metals (except Hg soil) analysis.
Ice packs or ice present?	1				The lack of ice or ice packs (i.e. no attempt to
If yes, was there sufficient ice to meet temperature requirements?	1				begin cooling process) or insufficient ice may not meet certain regulatory requirements and may invalidate certain data.
If temp. out, has the cooling process begun (i.e. ice or packs present) and sample collection times <6hrs., but samples are not yet cool?				/	Note: No cooling process required for metals (except Hg soil) analysis.
6. Volatiles:					4
Aqueous: No bubble larger than a pea?				/	
Soil/Sediment:					
Received in airtight container?				/	
Received in methanol?				-	
Methanol covering soil?				1	
D.I. Water - Received within 48 hour HT?				1	
Air: Refer to KAS COC for canister/flow controller requirements.	√ if air	incluo	ied	4	
7. Trip Blank present in cooler?				1.	
8. Proper sample containers and volume?				-	
9. Samples within hold time upon receipt?	/				
10. Aqueous samples properly preserved? Metals, COD, NH3, TKN, O/G, phenol, TPO4, N+N, TOC, DRO, TPH – pH <2 Sulfide - >9	/			_	
Cyanide – pH >12				1	
11. Bottleware Prepped on:	l				
the second se	roblam	o with	0.00		r diagronoppies es al l'adjustas at
* Log-In Notes to Exceptions: document any p	NODIEN	IS WILF	i sam	pies o	r discrepancies or pH adjustments.
And a second					

	0 Technology Way arborough, ME 04074 l: (207) 874-2400 x: (207) 775-4029		(PLEASE E	OF CUST	AND	Page of	2
Client AECOM		Ami	beth Sa	e Phon Ivatory 70	18 # 39-94 ()3)307 -	4-3617 Fax	#)	
Address 12420 Miles	one Center Dr		mantou				20876	
Purchase Order # 605196			RS Le Ca			atahdin Quote #		
Bill (if different than above) 5 CU	me as abo	NO AC	dress		year -			
Sampler (Print / Sign) M 0 (100	12 Wallage //		- Mal And	21	Copies	To: Joe. Wi	He Qae com.	con
LAB USE ONLY WORK OR	ER #: 5N5717	10		ANAL	ASIS AND CO PRESERVA	NTAINER TYPE	Salvator @acco	MLO
KATAHDIN F	PROJECT NUMBER							Filt.
			Parting Parting					\Box
	UPS C) CLIENT	PACA Refal					
		NOT INTACT	P Ne	Net				
* Sample Description	Date / Time N	Aatrix No. of Cntrs.	EPAL Part	0110				
CORØ1DAØ1A	18120 / 1730 S	012 1						4
COR@10B01B	7/8/20/1740 5	011 1	\times	* Holdan	alysis pe	nding copp.	1DAODIA (PSU)	Ite
CURO1DBOLA	7/8/20/1735 SC	012 (\times				DAG1A (OSU)	
CORØIDBOZA	1 1 1 -	012 1	\times		J	1	DA024 resu	1
CORDIDAO2A		NL 1	\times	1 1	collect			
CORØ1X39E	718/20/1800 5	012 1						
CUROZDAQIA	7/10/20/1025 SC	012	\times	*	Collect N	15/MSD		
CURØZDAØ2B	7110/20/ 1050 50	51L 1	\times					
COROZDA02A	7/10/24/16-15 50	51L 1	\times					
CORØZDBØZA	7/10/20/1655 50		\times	Holdlan	ulusis pend	ina COROZE	AQLAresult	ĸ
CORØ2X01TCLP	7/10/20/1430 SC	516 1	\sim					
CORØ3DAD1A	719120/1708 50	12 1	\times					
CORØ3DBØ1A	7/9/20/ 1715 S	014 1	\times	Hadana	lusis Deud	INCLOOPOST	ACTAresul	ħ
CORO3 DAOZA	7/10/20/1550 50	DIL L	X				TOP TROKE	-
CORU3 DAUZB	110/20/ 1555 SO	11-1	X					
CORØ3DBØZA	7/10/20/559 SC	01L 1	\times	KHuldwer	the allal	usistra lite	of CORO3DA02	A
COMMENTS	· · · · · · · · · · · · · · · · · · ·				and where	garquesans	010000000	
		By: (Signature)	Relinquishe	ed By: (Signatu	re) Date /	Time Receiv	red By: (Signature)	-
Relinquished By: (Signature)	1000 110	By: (Signature)	20	ed By: (Signatu	re) Date /	Time Receiv	red By: (Signature)	-
<i>T</i> F	IE TERMS AND CONDIT SERVICES, EXCEPT WI	TIONS ON THE HEN A SIGNEI	E REVERSE SID	E HEREOF SH AL AGREEME	ALL GOVERN		0000	

	Katahdin Sea) Technology Way arborough, ME 04074 : (207) 874-2400 x: (207) 775-4029					PLEA PRI	SE BE	f CU AR DOV GIBLY II	WN ANI N PEN	0	-	2	2
6	Client AECOM			Conta	ict Voe	with Sal.	te	Phone #	1301-9	44-3	58 (⁼ ax #)		
A	Address 12420 Milest	one Center	DeCity							~	-	de ac	874	,
	Purchase Order # 6051968		oj. Name /								din Quote			
	NUL OF LIFE A ALL A ALL	me as a			ddress			0						
s	Sampler (Print / Sign) Meage	n Wallace	Ime	air	nU	Inela	ree		Cop	oies To:	joe.w	abat	or Cal	com.com
			/	0					PRESER	IVATINE	S			
В	REMARKS:	ROJECT NUMBER				YUN				Filt.				
-					- Hoo	SR								
		🗇 UPS		NT	(0020) A/CALOOTHO	Flost Flost								
				INTACT	62C)	Q								
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	EPA 6	TCL								
	CORØ3DBØ3A	7/9/20/1549	SOIL	١		1	anal	usis 0	budin	COP	030	4 13 2	Are	
	CORO3DA03A	719120/1543	102	1	\mathbf{X}			U '	Nol					
	CURØ3XØITCLP	7/9/20/1510	SOIL			\times								
	CORD3EQB	0191/02/1940	AQUEOUS		\ge									
		/												
		/												
		/												
		/												
		/												
		/												
		/												
		/												
		/												
		/												
		/												
		/												
CON	IMENTS					1	1							
1	My Mallon 7/1	120 1800 M	ed By: (Sig Pmu ed By: (Sig	14.20	L	linquishe				9 / Tim 9 / Tim			/: (Signatı /: (Signatı	

	0 Technology Way arborough, ME 04074 l: (207) 874-2400							STO			1	. /
Fa	x: (207) 775-4029		Conta	act Uce U							e c	of
AECOM			Ami	beth Sa	luatore	(703) 307	-055	58 ())	
Address 12420 Miles	stone Centr	DCity	Ger	manto	wn	State N	1D		Zip Co	de A	587L	e
Purchase Order # 605191	285 Pro	j. Name /	No. 5/	tRS Le	Cam	0 0 K	Eyan	Kataho	lin Quote	e #		
Bill (if different than above)	ALO AS A	David	A	ddress			J					
Sampler (Print / Sign) Meage	en Wallac	re/V	Me	en l	Valle	nei	Сор	ies To:	ice-w	itte@	aecom	, can
Sampler (Print / Sign) Meage LAB USE ONLY WORK ORD	ER #: SNS71	9	6000			ANALYS	IS AND O PRESER	'ONTAI' NATIVE	NER TYI S	PE		
KATAHDIN F REMARKS:	PROJECT NUMBER _	1				Filt.	Filt.	Filt.	Filt.			
				n Lu								
SHIPPING INFO: DFED EX	UPS	CLIE	NT	LEUZCH/CALONHE								
			INTACT	S (F								
* Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	2. UND								
CORØITSØI	7/7/20/1220	SUIL	1	\mathbf{X}	¥c	OLLE	CTA	15/M	\$D			
CORØ1ISØ2	717/20 1230		1	\geq								
CORØ1ISØ3	7/7/20/ 1240		1	\mathbf{X}								
CORØZISØ1	7/8/20/0750	SOIL		\times								
CUR DZISO2	718/20/0730		1	\square	*c	OLLE	CTN	IS/M:	5D			
CUR Ø2TS Ø3	7/8/20/0740	1	1	\mathbf{X}				-217-13				
CORDSTSDI	7/10/20/0810		l	\bowtie								
CORØ3ISØ2	7/19/20/0820		1	\times								
CORO3IS03	7/10/20/0800	and the second se		\mathbf{X}	¥C	0115	r-T N	IS/M	5.5			
CONCOLSUP J	/	0014	1					N TO	30			
	/											
	/											
	/											
	/											
	/											
	/											
COMMENTS Do not grind	d ISM so	impl	es						jt.			
Relipquished By: (Signature) Date	e / Time Receiv	ed By: (Sig	jnature)	Relinqu	ished By: (Si	gnature)	Date	/ Tim	e Re	ceived By	: (Signat	ure)
1 unsthelen 1/13/	100 100	mu	102	2			_					
Relinquebed By: (Signature) Date	e / Time Receiv	ed By: (Sig	jnature)	Relinqu	ished By: (Si	gnature)	Date	/ Tim	e Re	ceived By	/: (Signat	ure)

THE TERMS AND CONDITIONS ON THE REVERSE SIDE HEREOF SHALL GOVERN SERVICES, EXCEPT WHEN A SIGNED CONTRACTUAL AGREEMENT EXISTS.

	ANALYTICAL SERVICES) Technology Way arborough, ME 04074 1: (207) 874-2400 x: (207) 775-4029					PLEA	SE BE	F CUS	N AND PEN				<u>S</u> to
0	Client AECOM			Cont	beth	salva	itte	Phone #	301-9 307	-055	617 F	ax #		
A	ddress 12420 Miles	tone Center	DrCity (ber	man	towr)		MD			ie ZC	7874	5
P	urchase Order # 6051963		oj. Name /			10076 Den 10 - 17		O'R	van	Katahd	in Quote	#		
B	ill (if different than above) Sat	me as ab			ddress		1	/						
s	ampler (Print / Sign) Antonic	Zarvelli/	and	ionse	- 26	hrel	li		Copi	es To: An	se. Win	He Co alvator	Lecon Lecon	com.loi
	AB USE ONLY WORK ORD	ER #: _ SAVS 71 PROJECT NUMBER .	7- SNG		Filt	Filt	Filt	Filt.	PRESERV Filt.	ATIVES Filt	Filt	Filt	Filt	Filt
R _	EMARKS:					07		01	115					
	HIPPING INFO: 🗍 FED EX	UPS		NT	6020A Torget	EM	& Tota	rain Size	Meto					
Т	EMP°C	1		1	60	N	00	Brain	LP Vite					
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	EPA	AV	20L	S	11-14 Literation		N	at	es	
×	COROHISOI	7/20/20/ 0930	Soil	1	X									
*	CORØ4ISØ2	7/20/20/1000	Soil	1	X									
*	CORØ4ISØ3	7/20/20/1030	Soil	1	X					1				
	CORØYISØØ	7/21/20 1245	Water	1	×						Equi	ipmen	+ Bla	nk
	CORØ5SEDØIA	7/20/20/1238	Soil	1	X									
	CORØSSEDØZA	7/20/20/1244	Soil	1	X					1				14.1
	COROSSEDOZB	7/20/20/1245	Soil	I	×					1				
	CORØSSEDØJA	7/20/20/ 1250	Soil	1	X					1				
	COR05SED04A	1/20/20/1310	Soil	3	X				X					
	CORØ5SEDØ5A	7/20/20/1315	Soil	1	X					(
	CORØ5SEDØGA	7/20/20/1320	Soil		X									
	CORØ5SEDØ7A	7/20/20/1325		3	X	X	X	X						
	the second se	7/20/20/1334	Soil	1	X									
-													h	5
	100 A 400 A												1h	3
		/											a	2
	Do not Grind ISM	1 Samples								1			- 1	0
	Collect MS/815D		1			-11 7-5						1 1 1 1		
an	Lover Whelli 1/21	10 1300 1/1	ed By: (Sig	1015	<u> ا</u>		ed By: (Si ed By: (Si			/ Time		ceived By		
											- [

THE TERMS AND CONDITIONS ON THE REVERSE SIDE HEREOF SHALL GOVERN SERVICES, EXCEPT WHEN A SIGNED CONTRACTUAL AGREEMENT EXISTS.

	Katahdin Services	00 Technology Way arborough, ME 04074 41: (207) 874-2400 1x: (207) 775-4029				(PLE	ASE BE	AR DO			Page	2	of <u>Z</u>
0	Client AECOM			Cont	act Joe with So	Winter	He		# 30/- 1) 30			Fax #		
A	address 12420 Milesta	one Center	City	-	rman	1		State	MD			de Zl	7876	-
F	Purchase Order # 60519	685 Pro	oj. Name /		1		npl	O'Rin	n	Kataho	lin Quote			
В	Bill (if different than above) 500	ne as ab	rove	A	ddress		1	170						
s	Sampler (Print / Sign) Antoni	o Zarrelli	An	lone	- Joh	rel	h		Cor	pies To: A	Toe. h	litte C Sulunt	Parece	milly
I	LAB USE ONLY WORK ORD	21/211	75W	ast	1		R. E.Y.	ANALAS	SIS AND		NER IVI			Contract
B	KATAHDIN I	PROJECT NUMBER .	014	200K	Filt.	Filt.					Filt.	Filt		Filt.
-		· · · · · · · · · · · · · · · · · · ·			Para Para		a	0	518					
1		🗇 UPS		NT	20A	NG	Tota	Siz	Metal					
1.1				INTACT	0	57	08-	2 <	6					
*	Sample Description	Date / Time coll'd	Matrix	No. of Cntrs.	A	AVS	201	Scain	TCL					
	COROGSEDOIA	7/20/20/1457	Soil	1	X	-	f -	1	1					
	CORDESEDOZA	7/20/20/1501	Soil	1	X		1							
	CORDESEDOZB	7/20/20/ 1502	Soil	1	X									
	CORDOSEDO3A	7/20/20/1506	Soil	1	X		1				1			
	COROGSEDOYA	7/20/20/1510	Soil	3	X				X					
	CORØ6SEDØ5A	7/20/20/1518	Soil	1	X									
	COROGSED OGA	1/20/20/ 1522	Soil	1	X									
	COROGSED07A	7/20/20/1525	Soil	3	×	X	X	X						
	COROGSED 08A	1/20/20/ 1532	Soil	1	X									
													n,	
													11	0
		1											1	X
		1										A	22	T
												-	62	_
	Collect MS/MSD								1000		H. D. State			
Re	elinguished By: (Signature) Date	10 100 1	ed By: (Sig ed By: (Sig	101	5			Signature Signature		e / Tim e / Tim		ceived By		
-											_			

THE TERMS AND CONDITIONS ON THE REVERSE SIDE HEREOF SHALL GOVERN SERVICES, EXCEPT WHEN A SIGNED CONTRACTUAL AGREEMENT EXISTS.

Data Qualifying Codes

Two types of data qualifying codes or flags are applied in the course of the data review. The data validation flags indicate data that are not usable for decision-making, more than normally biased and/or variable, or not representative of field conditions. These codes and their definitions are presented below in the hierarchy stipulated in the USEPA Contract Laboratory Program National Functional Guidelines for Organic (January 2017) Data Review.

Flag	Interpretation
R	The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
U	The analyte was analyzed for, but not detected at a level greater than or equal to the level of the adjusted Detection Limit (DL) for sample and method.
J+	Reported value may not be accurate or precise, but the result may be biased high.
J-	Reported value may not be accurate or precise, but the result may be biased low.
J	The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the Limit of Detection (LOD).
NJ	The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
UJ	The analyte was not detected at a level greater than or equal to the adjusted DL. However, the reported adjusted DL is approximate and may be inaccurate or imprecise.
С	This qualifier applies to pesticide and Aroclor results when the identification has been confirmed by gas Chromatograph/Mass Spectrometer (GC/MS)
x	The sample results (including non-detects) were affected by serious deficiencies in the ability to an- alyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team (which should include a project chemist), but exclusion of the data is recommended.

Data Validation Flags

The other type of code used by AECOM is a "Reason Code". The reason code indicates the type of quality control failure that led to the application of the data validation flag.

Code Description Code Description Tracer recovery (radiochemical data only) ld Laboratory duplicate RPDs (matrix duplicate, MSD, LCSD) а Laboratory control sample/laboratory control sample duplicate be Equipment blank contamination lp RPDs Matrix spike recovery bf Field blank contamination m Matrix spike/matrix spike duplicate RPD bi Bias indeterminate md Laboratory blank contamination Negative laboratory blank contamination bl nb Missing Blank Information Chemical preservation issue bm р Trip Blank Post Extraction Spike bt pe Performance Evaluation Sample Calibration issue С ps cl Clean-up standard recovery Quantitation issue a Insufficient in growth (radiochemical data only) Dual column RPD ср r Re-extraction precision issue [PAHs only] Chromatographic resolution cr rp Reporting limit raised due to chromatographic interference d SIM ions not within + 2 seconds rt Surrogate recovery dt Dissolved result > total over limit S Ether interference Sample collection issues е SC fd Sample preparation issue Field duplicate RPDs sp Chromatographic pattern match issue Evidence of ion suppression su g h Holding times t **Temperature Preservation Issue** High combined sample result uncertainty (radiochemical data i. Internal standard areas only) u Injection internal standard area or retention time exceedance Compound identification issue ii v **Estimated Maximum Possible Concentrations** k Low % solids Х Т LCS recoveries V Serial dilution results lc Labeled compound recovery ICS results z

Reason Codes