Periodic Review Report NYSDEC ERP Site #B00016

Reporting Period: February 24, 2021 to February 24, 2022

Location:

Former Photech Imaging Site NYSDEC ERP Site #B00016 1000 Driving Park Avenue Rochester, New York

Prepared for:

FSI Driving Park, LLC 90 Goodway Drive Rochester, New York 14623

LaBella Project No. 2202121

June 3, 2022

TABLE OF CONTENTS

1.0	INTROD	UCTION & BACK	GROUND	1
1.1	Effec	tiveness of the F	Remedial Program	2
1.2	Comp	oliance		2
2.0	SITE OV	ERVIEW		2
3.0	MONITO	ORING PLAN CO	MPLIANCE AND REMEDY EVALUATION	3
3.1	Moni	toring Plan Com	ponents	3
3.2	Groui	ndwater Monito	ring Data	3
3.3	Site 0	Cover System		4
3.4	Groui	ndwater Monito	ring Conclusions	5
4.0	IC/EC C	OMPLIANCE		5
4.1	,			
4.2	Engin	neering Controls		5
5.0	OPERAT	ION & MAINTEN	IANCE COMPLIANCE REPORT	5
6.0			RECOMMENDATIONS	
6.1	Comp	oliance		6
6.2	Perfo	rmance and Eff	ectiveness of Remedy	6
6.3	Reco	mmendations		6
6.4	Poter	ntial Change in l	Jse	6
6.5	Devia	ations		6
Figures	8	Figure 1	Site Location	
		Figure 2	Groundwater Sample Results	
		Figure 3	Site Map	
Tables		Table 1	Groundwater Sample Results	
Append	dices	Appendix 1	Laboratory Analytical Report	
1-1		Appendix 2	Site Inspection Form and CAMP Logs	
		Appendix 3	Excavation Work Plan	
		Appendix 4	EC/IC Certification Forms	

1.0 INTRODUCTION & BACKGROUND

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report on behalf of the FSI Driving Park, LLC for the Former Photech Imaging site located at 1000 Driving Park Avenue, City of Rochester, Monroe County, New York. The site is enrolled in the New York State (NYS) Environmental Restoration Program (ERP), (Site Code B00016). A site Location Map is included as Figure 1. LaBella was retained by the City of Rochester to assist with the monitoring and reporting requirements in accordance with the Site Management Plan (SMP).

Based upon the results of site investigation activities, the types of contamination at the site that were identified to require remediation included:

- Heavy metals including cadmium and silver; and,
- Volatile organic compounds (VOCs).

Remedial actions performed at the site in accordance with the March 2006 Record of Decision include:

- Asbestos abatement, building and equipment decontamination, and building demolition (completed);
- A design-phase investigation to delineate the extent of soil contamination, and to confirm the extent of groundwater contamination (completed);
- Removal of the silver recovery system (completed);
- Excavation and off-site disposal of contaminated soils exceeding commercial soil cleanup objectives (completed);
- Application of Daramend in Area of Concern 2 and 7 (completed);
- Removal of nearly all on-site utilities (completed);
- Development and implementation of a SMP for long term management of remaining contamination as required by the Environmental Easement (completed);
- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site (completed);
- Inclusion in the City of Rochester Building Information System (BIS) (completed);
- Periodic certification of the institutional and engineering controls (on-going); and,
- Implementation of a long-term groundwater monitoring plan (on-going).

The site was previously remediated under the NYS ERP administered by the New York State Department of Environmental Conservation (NYSDEC) and in accordance with State Assistance Contract (SAC) #C303768.

A SMP was prepared for the Site to manage remaining contamination until the Deed Restriction is extinguished. In accordance with the SMP and the requirements in NYSDEC Division of Environmental Restoration (DER)-10 Technical Guidance for Site Investigation and Remediation, dated May, 2010, and the guidelines provided by NYSDEC, an annual inspection was conducted of all remedial components installed at the Site and the four (4) groundwater monitoring wells were sampled. This work was performed on August 28, 2020 and December 8, 2020.

1.1 Effectiveness of the Remedial Program

Progress made during the reporting period toward meeting the remedial objectives for the site include continued monitoring of groundwater and maintenance of the institutional and engineering controls in accordance with the SMP. Monitoring data from the work completed to date shows that the remedial program is currently meeting the remedial objectives for the site.

1.2 Compliance

No areas were identified as being currently out of compliance with the SMP requirements. As such, no steps are currently deemed necessary to correct areas of non-compliance.

2.0 SITE OVERVIEW

The Former Photech Imaging site is located in an M-1 Industrial District in the City of Rochester, Monroe County, New York. The site is situated on an approximately 12.5-acre area parcel and was originally developed in 1948 for manufacturing photographic film and paper. Several different companies have owned and operated the facility for photographic paper and film production since its construction in 1948. The most recent owner, Photech Imaging Systems, Inc., ceased operations and abandoned the facility in 1991. Large amounts of chemicals, wastes, and various supplies and materials were left "as-is" on-site when the facility was abandoned. In 1994, the NYSDEC and the United States Environmental Protection Agency (USEPA) performed a bulk waste and chemical removal action at the site. This work successfully removed bulk chemicals from the facility; however, tanks were not certified as "clean"; small containers of chemicals were left in some of the buildings; and residual chemicals remained in some of the process vessels and piping.

Historically a total of 15 former buildings totaling approximately 108,000 square feet of space occupied the site. The buildings were vandalized following abandonment, with ceilings, walls, piping and equipment severely damaged. As a result, asbestos and chemical residues were distributed throughout many interior areas of the buildings. Additionally, the roofs failed on several of the buildings and there was a fire in 2004 in the former warehouse portion of the facility.

During 2010, the City of Rochester demolished all of the site buildings including the sub grade tunnels. Prior to demolition, asbestos containing materials and residual chemicals inside the buildings were removed and disposed of. In addition, suspect building materials (e.g. concrete floors) were assessed for chemicals of concern and remediated prior to demolition.

During Site building demolition activities remedial actions were performed to remove soils impacted with Polycyclic Aromatic Hydrocarbon (PAH) Semivolatile Organic Compounds (SVOCs) along the eastern side and a drywell along the western side of Building 11 in order to prevent contaminated materials from entering demolition excavations. A total of 601 tons of contaminated soil was removed from AOC 1A and a total of 95 tons of contaminated soil was removed from AOC 1B and transported offsite for disposal, as a regulated solid waste. A source removal action was performed during building demolition to remove source area soils associated with two (2) former sumps in buildings formerly located within AOC 7. A total of 170 tons of cadmium-impacted soil was removed from this area for offsite disposal.

Following building demolition activities, a design phase investigation was completed to delineate the extent of soil contamination and confirm the extent of groundwater contamination. The design phase investigation data was input into a Geographical Information System (GIS) spatial database and used to develop interpolation models illustrating the areal extent of impacted soil at concentrations above the NYSDEC Part 375 commercial use soil cleanup objectives. This information was utilized to guide remedial actions to remove the silver recovery system, and to excavate and dispose of contaminated soils exceeding the commercial use soil cleanup objectives. Following excavation of contaminated soil, Daramend was applied to excavations AOC 2 and AOC 7 to further reduce the contaminant mass at the site. Additionally, nearly all on-site utilities were removed.

3.0 MONITORING PLAN COMPLIANCE AND REMEDY EVALUATION

3.1 Monitoring Plan Components

Monitoring and laboratory analyses were completed in accordance with the SMP. A summary of the routine monitoring and analyses is provided in the table below

Monitoring Program	Frequency	Monitored	Matrix	Analysis
Groundwater	Annually until otherwise approved by NYSDEC and NYSDOH	RMW-3, RMW- 4, RMW-9, and Well-09	Groundwater	TCL VOCs & RCRA Metals
Site Cover / Property Use	Annually until otherwise approved by NYSDEC and NYSDOH	Site Cover Condition and Property Use	Not Applicable	No issues with site cover. Building is undergoing development at southwest area of the site this is outside of the excavation management area.

TCL VOCs denotes Target Compound List Volatile Organic Compounds, RCRA denotes Resource Conservation and Recovery Act

3.2 Groundwater Monitoring Data

Groundwater monitoring was performed once during the reporting period using low flow sampling methodology in accordance with the SMP. The groundwater monitoring results and the historical post post-remediation groundwater sampling results for each of the four (4) groundwater monitoring wells at the site are summarized on Table 2. The February 2022 results are shown on Figure 2 and the laboratory analytical report is included as Appendix 1.

RMW-3

Trichloroethene (TCE) was detected at a concentration of 2.9 micrograms per liter (ug/l) during the February 2022 sampling event which is below the NYSDEC Part 703 Groundwater Standard. TCE has been detected in well RMW-3 above the NYSDEC Part 703 Groundwater Standards during the eleven (11) post-remediation groundwater sampling events, and the concentrations reported for the February 2022 were less than previous sampling events. Previous monitoring events detected 1,1-dichloroethance, vinyl chloride, and cis-1,2-dichloroethane above the NYSDEC Part 703 Groundwater Standards.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the February 2022 groundwater sampling event. Metals have generally not been detected in well RMW-3 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

RMW-4

No VOCs were detected at concentrations above the laboratory method detection limit (MDL) that exceeded the NYSDEC Part 703 Groundwater Standards during the February 2022 groundwater sampling event. TCE was detected during the previous monitoring events at concentrations slightly above the NYSDEC Part 703 Groundwater Standards.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the February 2022 groundwater sampling event. Metals have generally not been detected in well RMW-4 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

<u>RMW-9</u>

Two (2) VOCs (1,1-Dichloroethane at 15 ug/l and Vinyl Chloride at 130 ug/l) were detected at concentrations that exceed the NYSDEC Part 703 Groundwater Standards during the February 2022 sampling event. These two (2) VOCs have been reported at concentrations that exceed the NYSDEC Part 703 Groundwater Standards were detected at similar concentrations reported for the previous sampling events.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the February 2022 groundwater sampling event. Metals have generally not been detected in well RMW-9 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

Well-09

The VOCs 1,1-Dichloroethane was detected at concentrations (7.6 ug/l) above the NYSDEC Part 703 Groundwater Standards during the February 2022 groundwater sampling event.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the February 2022 groundwater sampling event. Metals have generally not been detected in well Well-09 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

3.3 Site Cover System

A site-wide inspection of the cover system was conducted on September 14, 2021 to assess the general condition of the site as well as conditions of the cover system. The Site is developed with new buildings constructed at the southwest (Farmer John's Popcorn) and northeast (LaserShip) areas of the site that are generally outside of the 'Excavation Management Area' or "EMA". Some minor excavations were completed in the EMA for the LaserShip area and community air monitoring plan was implemented and the CAMP logs are included in Appendix 2. The locations of these buildings are shown on Figure 3. A copy of the Site Inspection Form is included in Appendix 2. A Change of Use and Excavation Work Plan was provided to the NYSDEC for the LaserShip development and is included in Appendix 3.

3.4 Groundwater Monitoring Conclusions

There were no deficiencies to the groundwater monitoring plan. Contaminants of concern identified in groundwater previously were generally at similar levels that have been reported during previous sampling events. The following conclusions are made regarding the sampling results:

- VOCs were only detected above the NYSDEC Part 703 Groundwater Standards in well RIMW-9 at similar concentrations to previous groundwater monitoring results. These wells will continue to be monitored. As stated in the Final Engineering Report, the concentrations of VOC detected appear to be associated with off-site migration from the Delphi Automotive Systems Site (NYSDEC Site No. 828064);
- No metals were detected at concentrations that exceeded the NYSDEC Part 703
 Groundwater Standards during the February 2022 groundwater sampling event; and
- The remedy is effective based on the groundwater sampling results.

4.0 IC/EC COMPLIANCE

4.1 Institutional Controls

The following Institutional Controls are included in the SMP for the Site:

- Compliance with the Environmental Easement and the SMP.
- All Engineering Controls must be operated and maintained in accordance with the SMP.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.
- Inclusion in the City of Rochester Building Information System flagging system as a local governmental institutional control (www.cityofrochester.gov/EICproperties).

The site-wide inspection determined that Institutional Controls have been complied with including compliance with the Environmental Easement and the SMP. There are no new conclusions or recommendations for change of Institutional Controls at this time.

4.2 Engineering Controls

The only Engineering Control at the site is the requirement that any buildings have a sub-slab Depressurization System (SSDS) which are constructed within an identified area of concern and are designed for full or part time occupancy. Both new buildings contain a SSDS.

The EC/IC Certification statement and forms are included as Appendix 4.

5.0 OPERATION & MAINTENANCE COMPLIANCE REPORT

Currently each building is equipped with a SSDS. The documentation of the startup of the SSDS for each building are included in Appendix 2. In addition, the site cover system appears intact, and no maintenance was initiated with the exception of the new building area at the southwest area of the site (see Appendix 3).

6.0 SSSCONCLUSIONS AND RECOMMENDATIONS

6.1 Compliance

The requirements dictated in the SMP regarding IC/EC's and the Monitoring Plan were met during the reporting period.

6.2 Performance and Effectiveness of Remedy

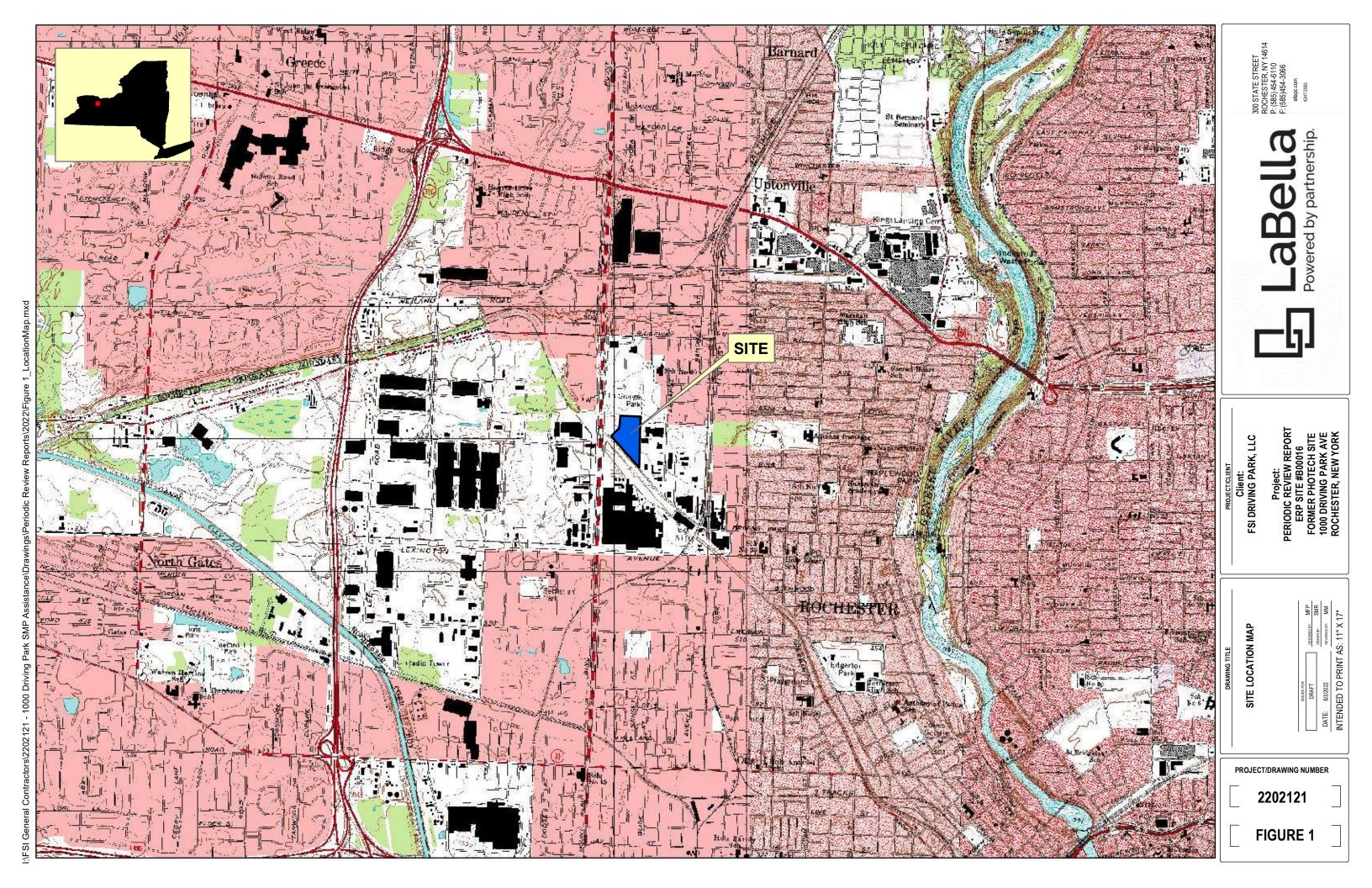
An evaluation of the components of the SMP during this reporting period indicates that, as of the end date of this report, the IC/EC controls were protective of human health and the environment. The monitoring plan sufficiently monitored the performance of the remedy.

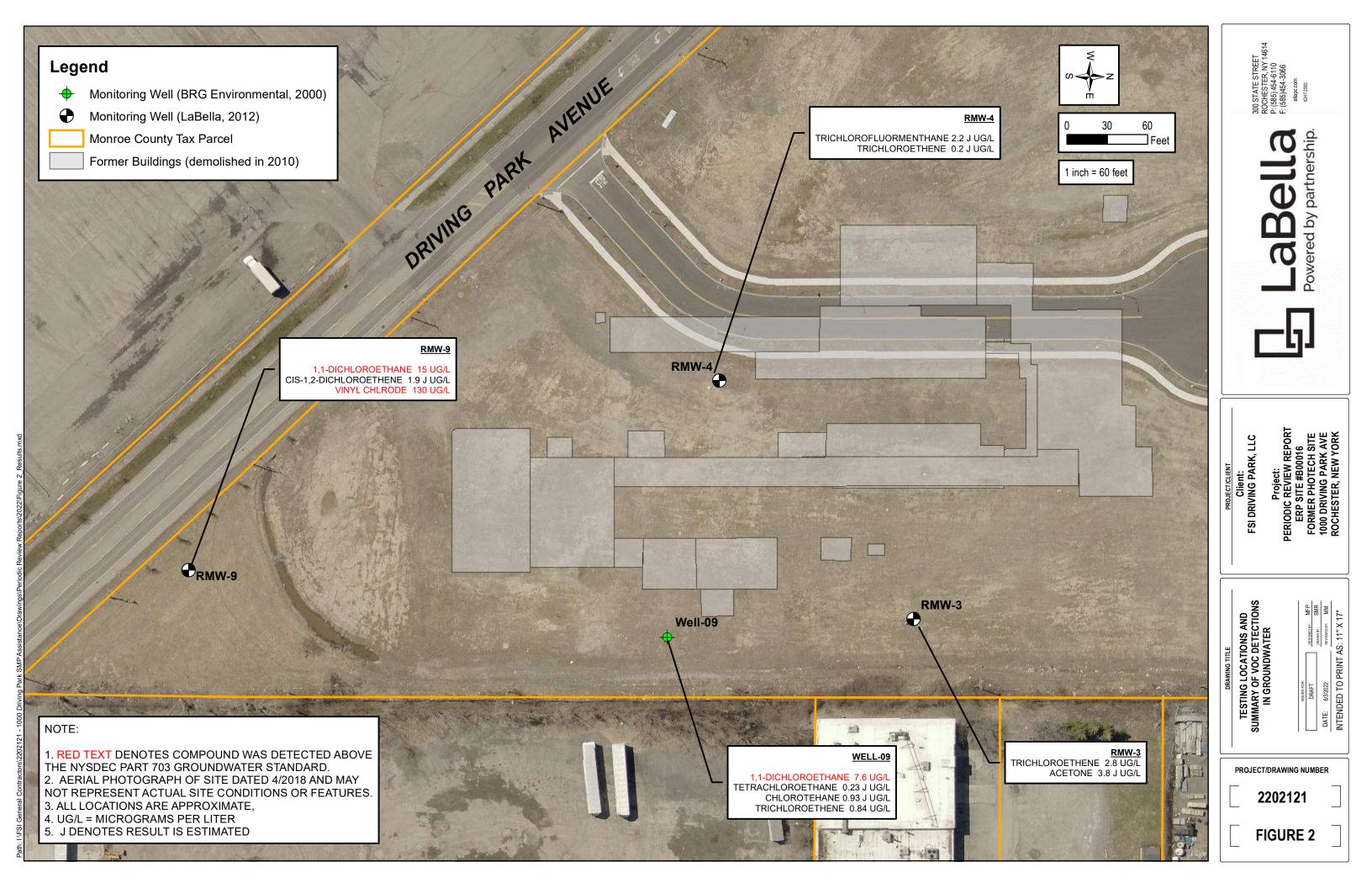
6.3 Recommendations

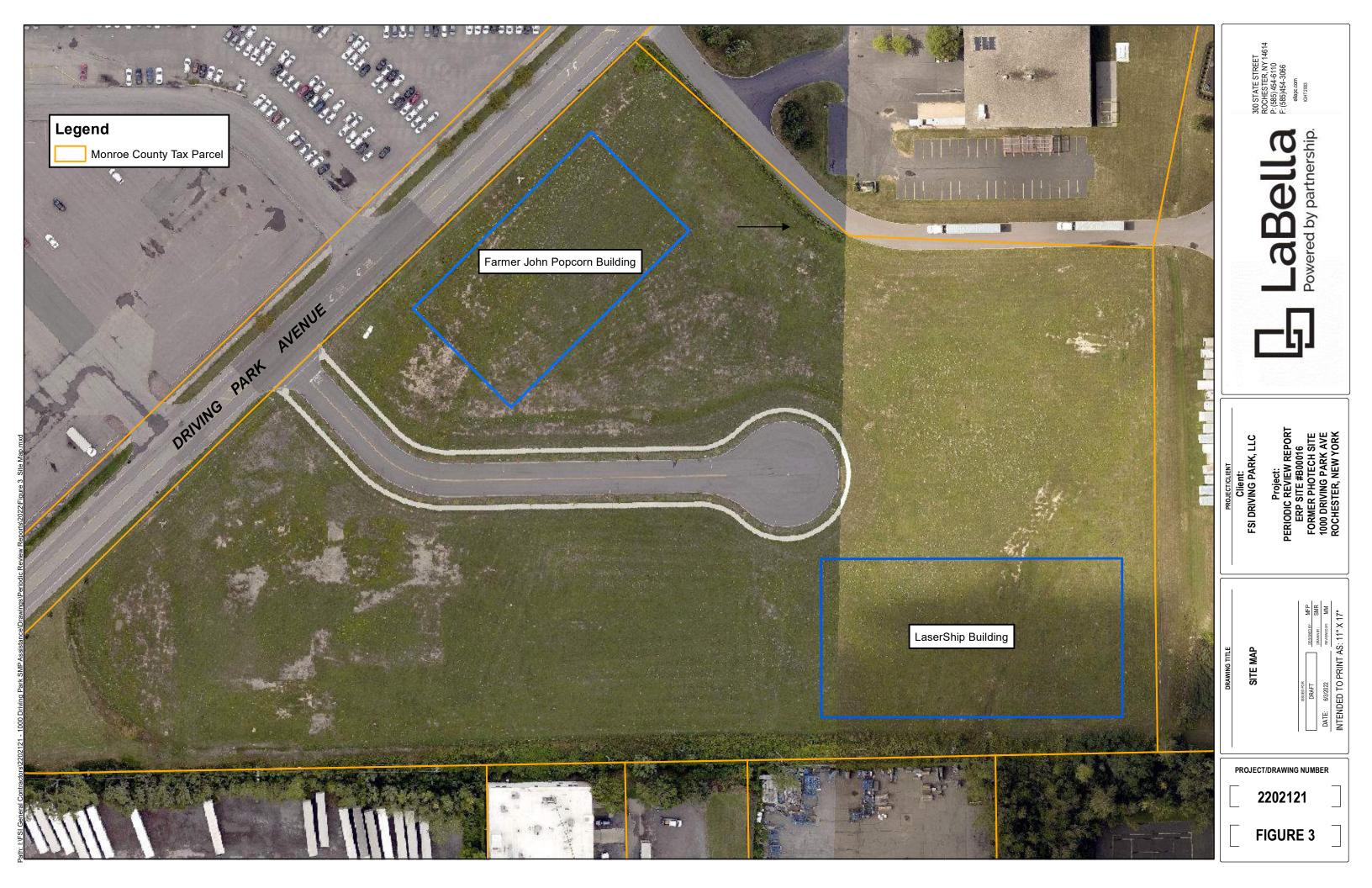
Since residual contamination remains at the site, applicable site management requirements should be continued. However, since residual contamination at the site is considered low in concentration and has been documented in post remediation groundwater samples to remain consistent at the site over time, it is recommended that monitoring activities be changed from annually to once every three years.

6.4 Potential Change in Use

Additional commercial structures are planned for the Site. A 60-Day Change of Use as required by 6NYCRR Part 375-1.11(d) and 375-1.9(f) will be provided 60 days prior to any change of use.


6.5 Deviations


The groundwater sample logs are not included for the February 2022 sampling event, as they cannot be located at this time.


I:\FSI General Contractors\2202121 - 1000 Driving Park SMP Assistance\Reports\Perriodic Review Reports\2022 PRR\PRR.2022-05.31 2022 Photech PRR.docx

FIGURES

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>RMW-3</u>

SAMPLE ID:				RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RMW-3	RMW-3	BLIND DUPE-021022
LAB ID:	-		NYSDEC Part 703	D3257-05	D4241-03	SB67810-09	E3912-15	F1474-12	F2732-08	L793892-04	L858898-05	L937868-05	L1028256	L2035374-04	L2207321-01	L2207321-05
COLLECTION DATE:	CAS#	Units	Groundwater Standards	6/25/2012	9/13/2012	4/11/2013	9/26/2013	2/20/2014	6/10/2014	10/7/2015	9/8/2016	9/18/2017	9/21/2018	8/27/2020	2/10/2022	2/10/2022
SAMPLE MATRIX:	1			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER	WATER	WATER
VOLATILE ORGANIC COMPOUNDS																
Methylene chloride	75-09-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,1-Dichloroethane	75-34-3	ug/l	5	17	19	10.7	20.7	13.7	10.3	12.3	14.4	12.9	11.6	ND 0.7	ND 0.7	ND 0.7
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.15	ND 0.15	ND 0.15
1,1,2-Trichloroethane	79-00-5 127-18-4	ug/l	1 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.5	ND 0.5 ND 0.18	ND 0.5 ND 0.18
Tetrachloroethene Chlorobenzene	108-90-7	ug/l ug/l	5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.18 ND 0.7	ND 0.7	ND 0.18
Trichlorofluoromethane	75-69-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.19	ND 0.19	ND 0.19
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.16	ND 0.16	ND 0.16
cis-1,3-Dichloropropene	10061-01-5	ug/l	0.4	ND	ND	ND	ND	ND ND	ND NB	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14
Bromoform	75-25-2	ug/l	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.65	ND 0.65	ND 0.65
1,1,2,2-Tetrachloroethane Benzene	79-34-5 71-43-2	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.17 ND 0.16	ND 0.17 ND 0.16	ND 0.17 ND 0.16
Toluene	108-88-3	ug/I ug/I	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.16	ND 0.16	ND 0.16
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Chloromethane	74-87-3	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Bromomethane	74-83-9	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Vinyl chloride	75-01-4	ug/l	2	79	110	60.7	150	E 43.6	46.3	98.4	84.8	123	79.2	ND 0.07	ND 0.07	ND 0.07
Chloroethane	75-00-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,1-Dichloroethene	75-35-4	ug/l	5	ND	ND	ND	ND	ND ND	ND NB	ND ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17
trans-1,2-Dichloroethene Trichloroethene	156-60-5 79-01-6	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 5.9 0.18	ND 0.7 2.9 0.18	ND 0.7 2.8 0.18
1,2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND 0.7	ND 0.7	ND 0.7
1,3-Dichlorobenzene	541-73-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
p/m-Xylene	179601-23-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
o-Xylene	95-47-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
cis-1,2-Dichloroethene	156-59-2	ug/l	5 5	31 ND	30	16.3	24.2	13.5	10	7.97	6.53	5.1	2.62 ND	ND 0.7	ND 0.7 ND 0.7	ND 0.7 ND 0.7
Styrene Dichlorodifluoromethane	100-42-5 75-71-8	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 ND 1	ND 0.7 ND 1	ND 0.7 ND 1
Acetone	67-64-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.5	3.2 J 1.5	3.8 J 1.5
Carbon disulfide	75-15-0	ug/l	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1
2-Butanone	78-93-3	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.9	ND 1.9	ND 1.9
4-Methyl-2-pentanone	108-10-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1
Bromochloromethane	74-97-5	ug/l	5	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane	106-93-4 96-12-8	ug/l ug/l	0.0006 0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.65 ND 0.7	ND 0.65 ND 0.7	ND 0.65 ND 0.7
Isopropylbenzene	98-12-8	ug/I ug/I	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7	ND 0.7	ND 0.7
1,2,3-Trichlorobenzene	87-61-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,2,4-Trichlorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.23	ND 0.23	ND 0.23
Cyclohexane	110-82-7	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.27	ND 0.27	ND 0.27
1,4-Dioxane	123-91-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 61	ND 61	ND 61
Freon-113	76-13-1	ug/l	5	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND 0.7	ND 0.7	ND 0.7
Methyl cyclohexane METALS	108-87-2	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.4	ND 0.4	ND 0.4
Arsenic, Total	7440-38-2	ug/l ug/l	25	5 U	5.79 J	1.8 U	10	UN 10 UN	10	U 10 U	10 U	10 U	10 U	0.32 J 0.16	1.4 0.16	1.49 0.16
Barium, Total	7440-38-2	ug/l	1000	86.1	79.5	70		N 70.1 N	84.1	97.4	93.1	102	97.8	53.42 0.17	122.1 0.17	123.7 0.17
Cadmium, Total	7440-43-9	ug/l	5	1.5 U	1.5 U	0.8 U		UN 3 U		U 2 U	2 U	2 U	2 U	ND 0.05	ND 0.05	ND 0.05
Chromium, Total	7440-47-3	ug/l	50	2.5 U	2.5 U	1 J		UN 57 N*	5.31	10 U	10 U	10 U	10 U	0.37 J 0.17	1.88 0.17	1.66 0.17
Lead, Total	7439-92-1	ug/l	25	8.52	7.33	2 U	6	UN 6 U		U 5 U	5 U	5 U	5 U	0.43 J 0.34	1.5 0.34	1.22 0.34
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2	U 0.2 U	0.2	U 0.2 U	0.2 U	0.2 U	0.2 U	ND 0.09	ND 0.09	0.12 J 0.09
Selenium, Total	7782-49-2	ug/l	10	5.81 J	5 U	3 U		UN 10 U	10	U 10 U	10 U	10 U	10 R	ND 1.73	ND 1.73	ND 1.73
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5	UN 5 U	5	U 5 U	5 U	5 U	5 U	ND 0.16	ND 0.16	ND 0.16

Notes:

ug/I - micrograms per liter
ND - Not Detected
Conc - Concentration
Q - Laboratory Qaulifier

MDL - Methoid Detection Limit

Yellow highlight denotes results detected above the NYSDEC Part 703 Groundwater Standard

NL - Not Listed

J - Estimated result

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>RMW-4</u>

LAB ID:				D3257-01	D4241-10	SB67810-05	E3912-13	F1474-14	F2732-10	L793892-09	L858898-02	L937868-04	L937868-01	L1028256	L2035374-04	L2035374-01	L2035374-05 (Duplicate)	L2207321-03
COLLECTION DATE:	CAS#	Units	NYSDEC Part 703	6/25/2012	9/12/2012	4/10/2013	9/26/2013	2/20/2014	6/10/2014	10/8/2015	9/9/2016	9/18/2017	9/18/2017	9/20/2018	8/27/2020	8/27/2020	8/27/2020	
SAMPLE MATRIX:	-	J	Groundwater Standards	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER	WATER	2/10/2022
VOLATILE ORGANIC COMPOUNDS	1			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER	WAILK	WATER
Methylene chloride	75-09-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,1-Dichloroethane	75-34-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.15	ND 0.15	ND 0.15
1,1,2-Trichloroethane	79-00-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.5	ND 0.5	ND 0.5
Tetrachloroethene	127-18-4	ug/l	5	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND 0.18	ND 0.18	ND 0.18
Chlorobenzene Trichlorofluoromethane	108-90-7 75-69-4	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 1.2 J 0.7	ND 0.7 0.9 J 0.7	ND 0.7 2.2 J 0.7
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.13	ND 0.13	ND 0.13
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.19	ND 0.19	ND 0.19
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.16	ND 0.16	ND 0.16
cis-1,3-Dichloropropene	10061-01-5	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14
Bromoform	75-25-2	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.65	ND 0.65	ND 0.65
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17
Benzene	71-43-2	ug/l	1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.16	0.17 J 0.16	ND 0.16
Toluene Ethylbenzene	108-88-3 100-41-4	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 ND 0.7	ND 0.7 ND 0.7	ND 0.7 ND 0.7
Chloromethane	74-87-3	ug/I ug/I	NL NL	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7	ND 0.7	ND 0.7
Bromomethane	74-83-9	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Vinyl chloride	75-01-4	ug/l	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.07	ND 0.07	ND 0.07
Chloroethane	75-00-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,1-Dichloroethene	75-35-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17
trans-1,2-Dichloroethene	156-60-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Trichloroethene	79-01-6	ug/l	5	14	14	8.69	14.2	6.1	4.7	7.05 J*	9.04	7.98 J	7.71 J	8.74 J	5.9	ND 0.18	ND 0.18	0.2 J 0.18
1,2-Dichlorobenzene 1.3-Dichlorobenzene	95-50-1	ug/l ug/l	3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 ND 0.7	ND 0.7	ND 0.7 ND 0.7
1,4-Dichlorobenzene	541-73-1 106-46-7	ug/I ug/I	3	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7	ND 0.7 ND 0.7	ND 0.7
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
p/m-Xylene	179601-23-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	0.7 J 0.7	ND 0.7
o-Xylene	95-47-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
cis-1,2-Dichloroethene	156-59-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Styrene	100-42-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Dichlorodifluoromethane	75-71-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1
Acetone Corbon digulfida	67-64-1 75-15-0	ug/l	50 60	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.9 J 1.5 ND 1	2.2 J 1.5 ND 1	ND 1.5 ND 1
Carbon disulfide 2-Butanone	78-93-3	ug/l ug/l	50	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.9	ND 1.9	ND 1 ND 1.9
4-Methyl-2-pentanone	108-10-1	ug/l	NL NL	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND 1	ND 1	ND 1
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1
Bromochloromethane	74-97-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,2-Dibromoethane	106-93-4	ug/l	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.65	ND 0.65	ND 0.65
1,2-Dibromo-3-chloropropane	96-12-8	ug/l	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Isopropylbenzene	98-82-8	ug/l	5	ND	ND	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
1,2,3-Trichlorobenzene	87-61-6 120-82-1	ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 ND 0.7	ND 0.7	ND 0.7 ND 0.7
1,2,4-Trichlorobenzene Methyl Acetate	79-20-9	ug/l ug/l	5 NL	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.7 ND 0.23	ND 0.7 ND 0.23	ND 0.7
Cyclohexane	110-82-7	ug/l	NL NL	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND 0.27	ND 0.27	ND 0.27
1,4-Dioxane	123-91-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND 61	ND 61	ND 61
Freon-113	76-13-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7
Methyl cyclohexane	108-87-2	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.4	ND 0.4	ND 0.4
METALS	<u> </u>	ug/l															1	
Arsenic, Total	7440-38-2	ug/l	25	5 U	5.44 J	1.8 U	10 UN	10 UN	10 U	10 U	10 U	10 U	10 U	10 U	0.32 J	13.97 0.16	14.56 0.16	13.92 0.16
Barium, Total	7440-39-3	ug/l	1000	66.3	76.1	73.2	53 N	62.9 N	81.4	60.5	73	49.3	54.1	51.7	53.42	4.5 0.17	5.41 0.17	24.36 0.17
Chromium, Total	7440-43-9 7440-47-3	ug/l	5 50	1.5 U 2.5 U	1.5 U 2.5 U	0.8 U 1.4 J	3 UN 5 UN	3 U 5.49 N*	5 U	2 U	2 U 10 U	2 U 40 U	2 U 40 U	2 U 1 10 U	0.05 U 0.37 J	ND 0.05 0.31 J 0.17	ND 0.05 0.36 J 0.17	0.06 J 0.05 7.7 0.17
Chromium, Total Lead, Total	7439-92-1	ug/l ug/l	25	9.12	8.47	1.4 J	6 UN	5.49 N^ 11.1	6 U	5 U	5 11	5.13	5.4	5 U	0.37 J	0.31 J 0.17 0.76 J 0.34	0.36 J 0.17 0.76 J 0.34	18.08 0.34
Mercury, Total	7439-92-1	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.43 J	ND 0.09	ND 0.09	0.14 J 0.09
Selenium, Total	7782-49-2	ug/l	10	5 U	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 U		1.73 U	ND 1.73	ND 1.73	2.18 J 1.73
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	5 U		0.16 U	ND 0.16	ND 0.16	ND 0.16
5.1751, Total	1770-22-4	ug/ i		2.0	1 2.0 0	0.5	O OIY		1	1 5 0	1 5 0	1 5	1 0	. 1	1 0.10 0	1 115 0.10	0.10	1 115

Notes:

ug/I - micrograms per liter
ND - Not Detected
Conc - Concentration
Q - Laboratory Qaulifier

MDL - Methoid Detection Limit

J - Estimated result

Yellow highlight denotes results detected above the NYSDEC Part 703 Groundwater Standard

NL - Not Listed

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>RMW-9</u>

LAB ID:				D3257-05	D4241-03	SB67810-09	E3912-15	F1474-12	F2732-08	L793892-04	L858898-05	L937868-05	L1028256	L203	5374-02	1220	07321-02
COLLECTION DATE:	CAS #	Units	NYSDEC Part 703	6/25/2012	9/13/2012	4/11/2013	9/26/2013	2/20/2014	6/10/2014	10/7/2015	9/8/2016	9/18/2017	9/21/2018	+	7/2020		10/2022
SAMPLE MATRIX:		Onto	Groundwater Standards	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	1	ATER		VATER
VOLATILE ORGANIC COMPOUN	NDS			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	1	AILN	•	MIER
Methylene chloride	75-09-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,1-Dichloroethane	75-34-3	ug/l	5	17	19	10.7	20.7	13.7	10.3	12.3	14.4	12.9	11.6	7.8	0.7	15	0.7
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.13
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	0.14
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	0.15	ND	0.15
1,1,2-Trichloroethane Tetrachloroethene	79-00-5 127-18-4	ug/l ug/l	1 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.5	ND ND	0.5 0.18
Chlorobenzene	108-90-7	ug/l	5	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	0.18	ND	0.18
Trichlorofluoromethane	75-69-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.13
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19	ND	0.19
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND NB	ND NB	ND	ND	ND	ND	0.16	ND	0.16
cis-1,3-Dichloropropene	10061-01-5	ug/l	0.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.14	ND	0.14
Bromoform 1,1,2,2-Tetrachloroethane	75-25-2 79-34-5	ug/l ug/l	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.65 0.17	ND ND	0.65 0.17
Benzene	79-34-5	ug/I ug/I	1	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	0.17	ND	0.17
Toluene	108-88-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.10	ND	0.7
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Chloromethane	74-87-3	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Bromomethane	74-83-9	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Vinyl chloride	75-01-4	ug/l	2	79	110	60.7	150 E	43.6	46.3	98.4	84.8	123	79.2	57	0.07	130	0.07
Chloroethane	75-00-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,1-Dichloroethene trans-1,2-Dichloroethene	75-35-4 156-60-5	ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.17	ND ND	0.17
Trichloroethene	79-01-6	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.18	ND ND	0.18
1,2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.10
1,3-Dichlorobenzene	541-73-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
p/m-Xylene	179601-23-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
o-Xylene	95-47-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND 4.0	0.7
cis-1,2-Dichloroethene	156-59-2 100-42-5	ug/l	5	31 ND	30 ND	16.3 ND	24.2 ND	13.5 ND	10 ND	7.97 ND	6.53 ND	5.1 ND	2.62 ND	1 ND	J 0.7	1.9 ND	J 0.7
Styrene Dichlorodifluoromethane	75-71-8	ug/l ug/l	5	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	1	ND	1
Acetone	67-64-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	1.5
Carbon disulfide	75-15-0	ug/l	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1
2-Butanone	78-93-3	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	1.9
4-Methyl-2-pentanone	108-10-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1
Bromochloromethane	74-97-5	ug/l	5	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.7	ND	0.7
1,2-Dibromoethane 1,2-Dibromo-3-chloropropane	106-93-4 96-12-8	ug/l ug/l	0.0006 0.04	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.65	ND ND	0.65
Isopropylbenzene	98-82-8	ug/I ug/I	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	0.7	ND	0.7
1,2,3-Trichlorobenzene	87-61-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,2,4-Trichlorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23	ND	0.23
Cyclohexane	110-82-7	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27	ND	0.27
1,4-Dioxane	123-91-1	ug/l	NL -	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	61	ND	61
Freon-113	76-13-1	ug/l	5 NI	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.7	ND	0.7
Methyl cyclohexane METALS	108-87-2	ug/l ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	0.4
Arsenic, Total	7440-38-2	ug/l	25	5 U	5.79 J	1.8 U	10 UN	10 UN	10 U	10 U	10 U	10 U	10 U	0.7	0.16	0.82	0.16
Barium, Total	7440-39-3	ug/l	1000	86.1	79.5	70	118 N	70.1 N	84.1	97.4	93.1	102	97.8	93.96	0.17	79.55	0.17
Cadmium, Total	7440-43-9	ug/l	5	1.5 U	1.5 U	0.8 U	3 UN	3 U	3 U	2 U	2 U	2 U	2 U	ND	0.05	ND	0.05
Chromium, Total	7440-47-3	ug/l	50	2.5 U	2.5 U	1 J	5 UN	57 N*	5.31	10 U	10 U	10 U	10 U	0.72	J 0.17	0.76	J 0.17
Lead, Total	7439-92-1	ug/l	25	8.52	7.33	2 U	6 UN	6 U	6 U	5 U	5 U	5 U	5 U	ND	0.34	1.1	0.34
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	ND	0.09	0.11	J 0.09
Selenium, Total	7782-49-2	ug/l	10	5.81 J	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 R	ND	1.73	ND	1.73
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	5 U	ND	0.16	ND	0.16

Notes:

ug/I - micrograms per liter

ND - Not Detected

Conc - Concentration Q - Laboratory Qaulifier

MDL - Methoid Detection Limit

J - Estimated result

Yellow highlight denotes results detected above the NYSDEC Part 703 Groundwater Standard

NL - Not Listed

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>Well-09</u>

LAB ID:			AN/ODEO D. 1 700	D3257-02	D4241-03	SB67810-06	E3912-14	F1474-03	F2732-09	L793892-10	L858898-12	L937868-03	L1028256	L2035	374-03	L2207	7321-02
COLLECTION DATE:	CAS #	Units	NYSDEC Part 703 Groundwater	6/25/2012	9/13/2012	4/11/2013	9/26/2013	2/21/2014	6/10/2014	10/8/2015	9/8/2016	9/18/2017	9/21/2018	8/27/	′2020	2/10	0/2022
SAMPLE MATRIX:	_		Standards	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WA ⁻	TER	WA	ATER
VOLATILE ORGANIC COMPOUNDS						1	1	l	ı			l	1	1			
Methylene chloride	75-09-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,1-Dichloroethane	75-34-3	ug/l	5	6.3	12	7.39	16 U	10.3	5.2	7.55	10.1	9.06 J	6.57 J	3.7	0.7	7.6	0.7
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.13
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	0.14
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15	ND	0.15
1,1,2-Trichloroethane	79-00-5	ug/l	<u>1</u> 5	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	0.5	ND 0.02	0.5
Tetrachloroethene Chlorobenzene	127-18-4 108-90-7	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.18	0.23 ND	J 0.18 0.7
Trichlorofluoromethane	75-69-4	ug/l	5	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	0.7	ND	0.7
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	0.13	ND	0.13
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19	ND	0.19
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.16
cis-1,3-Dichloropropene	10061-01-5	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	0.14
Bromoform	75-25-2	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65	ND	0.65
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	ND	0.17
Benzene	71-43-2	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.16
Toluene	108-88-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	0.7	ND	0.7
Chloromethane	74-87-3	ug/l	NL -	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	0.7	ND	0.7
Bromomethane Vinyl chloride	74-83-9 75-01-4	ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.7	ND ND	0.7
Chloroethane	75-01-4	ug/l ug/l	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	0.07	0.93	J 0.7
1,1-Dichloroethene	75-35-4	ug/l	5	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	1.1	0.17	3.1	0.17
trans-1,2-Dichloroethene	156-60-5	ug/l	5	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Trichloroethene	79-01-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	J 0.18	0.84	0.18
1,2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,3-Dichlorobenzene	541-73-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
p/m-Xylene	179601-23-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
o-Xylene	95-47-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
cis-1,2-Dichloroethene	156-59-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Styrene	100-42-5	ug/l	5	ND	ND	ND	ND	ND	ND NB	ND	ND	ND	ND	ND	0.7	ND	0.7
Dichlorodifluoromethane	75-71-8	ug/l	5	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	1	ND	1
Acetone Carbon disulfide	67-64-1 75-15-0	ug/l	50 60	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.5 1	ND ND	1.5 1
2-Butanone	78-93-3	ug/l ug/l	50	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	1.9	ND ND	1.9
4-Methyl-2-pentanone	108-10-1	ug/l	NL NL	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	1.3	ND	1.3
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1
Bromochloromethane	74-97-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,2-Dibromoethane	106-93-4	ug/l	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65	ND	0.65
1,2-Dibromo-3-chloropropane	96-12-8	ug/l	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Isopropylbenzene	98-82-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,2,3-Trichlorobenzene	87-61-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
1,2,4-Trichlorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23	ND	0.23
Cyclohexane	110-82-7	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27	ND	0.27
1,4-Dioxane	123-91-1	ug/l	NL	ND	ND	ND	ND NB	ND	ND NB	ND	ND NB	ND	ND	ND	61	ND	61
Freon-113 Methyl cycloheyane	76-13-1 108-87-2	ug/l	5 NL	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.7	ND ND	0.7
Methyl cyclohexane METALS	100-01-2	ug/l ug/l	INL	אט	ואט	ואט	I IND	I IND	I IND	ואט	I IND	שויו	ן ואט	ן ואט	0.4	טאו	0.4
Arsenic, Total	7440-38-2	ug/l	25	5 U	6.12 J	1.8 U	10 UN	10 UN	10 U	10 U	10 U	10 U	10 U	0.28	J 0.16	0.82	0.16
Barium, Total	7440-38-2	ug/l	1000	70.5	81.7	91.3	66.1 N	51 N	56.1	51.9	52.7	54.4	45.5	41.38	0.17	79.55	0.10
Cadmium, Total	7440-43-9	ug/l	5	1.5 U	1.5 U	0.8 U	3 UN	3 U	3 U	3 U	3 U	2 U	2 U	ND	0.05	ND	0.05
Chromium, Total	7440-47-3	ug/l	50	2.5 U	2.5 U	1.3 U	5 UN	92 N*	5 U	5 U	5 U	10 U	10 U	0.37	J 0.17	0.76	J 0.17
Lead, Total	7439-92-1	ug/l	25	9.44	8.26	2.3	6 UN	4.31 J	6 U	6 U	6 U	5 U	5 U	ND	0.34	1.1	0.34
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	ND	0.09	0.11	J 0.09
Selenium, Total	7782-49-2	ug/l	10	5 U	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 R	ND	1.73	ND	1.73
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	E 11	ND	0.16	ND	0.16

Notes:

ug/l - micrograms per liter

ND - Not Detected

Conc - Concentration

Q - Laboratory Qaulifier MDL - Methoid Detection Limit

MDL - Methold Detection Lii

J - Estimated result

Yellow highlight denotes results detected above the NYSDEC Part 703 Groundwater Standard

NL - Not Listed

APPENDIX 1

ANALYTICAL REPORT

Lab Number: L2207321

Client: LaBella Associates, P.C.

300 State Street

Suite 201

Rochester, NY 14614

ATTN: Mike Pelychaty Phone: (585) 295-6253

Project Name: PHOTECH
Project Number: 2202121
Report Date: 02/28/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2207321-01	RMW-3	WATER	1000 DRIVING PARK AVE, ROCHESTER, NY	02/10/22 10:00	02/10/22
L2207321-02	WELL-09	WATER	1000 DRIVING PARK AVE, ROCHESTER, NY	02/10/22 11:20	02/10/22
L2207321-03	RMW-4	WATER	1000 DRIVING PARK AVE, ROCHESTER, NY	02/10/22 14:30	02/10/22
L2207321-04	RMW-9	WATER	1000 DRIVING PARK AVE, ROCHESTER, NY	02/10/22 12:30	02/10/22
L2207321-05	BLIND DUPE-021022	WATER	1000 DRIVING PARK AVE, ROCHESTER, NY	02/10/22 00:00	02/10/22

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

WG1605831-6: The pH was greater than two; however, the sample was analyzed within the method required holding time.

Total Metals

The WG1604706-3/-4 MS/MSD recoveries for calcium (MS at 70%) and sodium (70%/210\$), performed on L2207321-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/28/22

Custen Walker Cristin Walker

ALPHA

ORGANICS

VOLATILES

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-01 Date Collected: 02/10/22 10:00

Client ID: RMW-3 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/16/22 11:12

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	2.9		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-01 Date Collected: 02/10/22 10:00

Client ID: RMW-3 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.2	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	92		70-130	
Dibromofluoromethane	110		70-130	

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-02 Date Collected: 02/10/22 11:20

Client ID: WELL-09 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/16/22 11:36

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	7.6		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	0.23	J	ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	0.93	J	ug/l	2.5	0.70	1
1,1-Dichloroethene	3.1		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.84		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-02 Date Collected: 02/10/22 11:20

Client ID: WELL-09 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ugh Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	109		70-130	

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-03 Date Collected: 02/10/22 14:30

Client ID: RMW-4 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C

Analytical Date: 02/16/22 12:01

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	2.2	J	ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	0.20	J	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name:PHOTECHLab Number:L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-03 Date Collected: 02/10/22 14:30

Client ID: RMW-4 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	106		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	112		70-130	

L2207321

Project Name: PHOTECH Lab Number:

Project Number: 2202121 **Report Date:** 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-04 Date Collected: 02/10/22 12:30

Client ID: RMW-9 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/16/22 12:25

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	15		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	130		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	
Trichloroethene	ND		ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1	

Project Name:PHOTECHLab Number:L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-04 Date Collected: 02/10/22 12:30

Client ID: RMW-9 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	1.9	J	ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	93		70-130	
Dibromofluoromethane	107		70-130	

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-05 Date Collected: 02/10/22 00:00

Client ID: BLIND DUPE-021022 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 02/16/22 12:50

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	2.8		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

Project Name:PHOTECHLab Number:L2207321

Project Number: 2202121 Report Date: 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-05 Date Collected: 02/10/22 00:00

Client ID: BLIND DUPE-021022 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	3.8	J	ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl Acetate	ND		ug/l	2.0	0.23	1
Cyclohexane	ND		ug/l	10	0.27	1
1,4-Dioxane	ND		ug/l	250	61.	1
Freon-113	ND		ug/l	2.5	0.70	1
Methyl cyclohexane	ND		ug/l	10	0.40	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	93	70-130	
Dibromofluoromethane	112	70-130	

Project Name:PHOTECHLab Number:L2207321

Project Number: 2202121 Report Date: 02/28/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/16/22 10:48

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-05 Batch:	WG1605831-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/16/22 10:48

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-05	Batch:	WG1605831-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	61.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 02/16/22 10:48

Analyst: PD

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG1605831-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	100		70-130		
Toluene-d8	97		70-130		
4-Bromofluorobenzene	93		70-130		
Dibromofluoromethane	109		70-130		

Project Name: PHOTECH

Project Number: 2202121

Lab Number: L2207321

Report Date: 02/28/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	PD mits
/olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	01-05 Batch: \	WG1605831-3	WG1605831-4		
Methylene chloride	100		110		70-130	10	20
1,1-Dichloroethane	110		120		70-130	9	20
Chloroform	100		100		70-130	0	20
Carbon tetrachloride	110		110		63-132	0	20
1,2-Dichloropropane	100		110		70-130	10	20
Dibromochloromethane	100		100		63-130	0	20
1,1,2-Trichloroethane	96		95		70-130	1	20
Tetrachloroethene	100		99		70-130	1	20
Chlorobenzene	100		110		75-130	10	20
Trichlorofluoromethane	100		110		62-150	10	20
1,2-Dichloroethane	99		100		70-130	1	20
1,1,1-Trichloroethane	100		110		67-130	10	20
Bromodichloromethane	100		100		67-130	0	20
trans-1,3-Dichloropropene	82		80		70-130	2	20
cis-1,3-Dichloropropene	99		100		70-130	1	20
Bromoform	82		83		54-136	1	20
1,1,2,2-Tetrachloroethane	98		100		67-130	2	20
Benzene	110		110		70-130	0	20
Toluene	100		110		70-130	10	20
Ethylbenzene	110		110		70-130	0	20
Chloromethane	100		100		64-130	0	20
Bromomethane	120		110		39-139	9	20
Vinyl chloride	120		120		55-140	0	20

Project Name: PHOTECH

Project Number: 2202121

Lab Number: L2207321

Report Date: 02/28/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - V	Vestborough Lab Associated	sample(s):	01-05 Batch:	WG1605831-3	WG1605831-4		
Chloroethane	150	Q	150	Q	55-138	0	20
1,1-Dichloroethene	110		110		61-145	0	20
trans-1,2-Dichloroethene	110		120		70-130	9	20
Trichloroethene	100		100		70-130	0	20
1,2-Dichlorobenzene	100		100		70-130	0	20
1,3-Dichlorobenzene	100		110		70-130	10	20
1,4-Dichlorobenzene	100		100		70-130	0	20
Methyl tert butyl ether	91		95		63-130	4	20
p/m-Xylene	110		110		70-130	0	20
o-Xylene	105		110		70-130	5	20
cis-1,2-Dichloroethene	110		110		70-130	0	20
Styrene	105		105		70-130	0	20
Dichlorodifluoromethane	76		80		36-147	5	20
Acetone	85		93		58-148	9	20
Carbon disulfide	110		120		51-130	9	20
2-Butanone	83		95		63-138	13	20
4-Methyl-2-pentanone	69		77		59-130	11	20
2-Hexanone	58		67		57-130	14	20
Bromochloromethane	100		110		70-130	10	20
1,2-Dibromoethane	93		95		70-130	2	20
1,2-Dibromo-3-chloropropane	85		93		41-144	9	20
Isopropylbenzene	100		110		70-130	10	20
1,2,3-Trichlorobenzene	91		96		70-130	5	20

Project Name: PHOTECH

Project Number: 2202121

Lab Number: L2207321 Report Date: 02/28/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	•					IN D	Quui	Limito	
volatile Organics by GC/MG - Westborough La	ab Associateu	sample(s).	01-05 Daton.	WG 1003031-3	WG1003831-4				
1,2,4-Trichlorobenzene	95		98		70-130	3		20	
Methyl Acetate	93		100		70-130	7		20	
Cyclohexane	110		110		70-130	0		20	
1,4-Dioxane	82		86		56-162	5		20	
Freon-113	100		110		70-130	10		20	
Methyl cyclohexane	97		100		70-130	3		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	97	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	94	94	70-130
Dibromofluoromethane	95	99	70-130

Project Name: PHOTECH
Project Number: 2202121

Lab Number:

L2207321

Report Date:

02/28/22

Parameter	Native Sample	MS Added	MS Found	MS %Recover	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS RMW-3	- Westborough	Lab Asso	ciated sample(s): 01-05 Q	C Batch ID:	WG16058	331-6 WG160	5831-7	QC Sample	: L220	7321-01	Client ID:
Methylene chloride	ND	10	11	110		12	120		70-130	9		20
1,1-Dichloroethane	ND	10	12	120		13	130		70-130	8		20
Chloroform	ND	10	11	110		12	120		70-130	9		20
Carbon tetrachloride	ND	10	11	110		12	120		63-132	9		20
1,2-Dichloropropane	ND	10	11	110		12	120		70-130	9		20
Dibromochloromethane	ND	10	9.5	95		9.8	98		63-130	3		20
1,1,2-Trichloroethane	ND	10	9.7	97		10	100		70-130	3		20
Tetrachloroethene	ND	10	10	100		10	100		70-130	0		20
Chlorobenzene	ND	10	11	110		11	110		75-130	0		20
Trichlorofluoromethane	ND	10	12	120		13	130		62-150	8		20
1,2-Dichloroethane	ND	10	11	110		12	120		70-130	9		20
1,1,1-Trichloroethane	ND	10	12	120		12	120		67-130	0		20
Bromodichloromethane	ND	10	11	110		11	110		67-130	0		20
trans-1,3-Dichloropropene	ND	10	7.8	78		7.8	78		70-130	0		20
cis-1,3-Dichloropropene	ND	10	9.8	98		9.8	98		70-130	0		20
Bromoform	ND	10	8.0	80		8.6	86		54-136	7		20
1,1,2,2-Tetrachloroethane	ND	10	10	100		10	100		67-130	0		20
Benzene	ND	10	11	110		12	120		70-130	9		20
Toluene	ND	10	11	110		11	110		70-130	0		20
Ethylbenzene	ND	10	11	110		11	110		70-130	0		20
Chloromethane	ND	10	11	110		12	120		64-130	9		20
Bromomethane	ND	10	4.9	49		8.7	87		39-139	56	Q	20
Vinyl chloride	ND	10	13	130		14	140		55-140	7		20

Project Name: PHOTECH
Project Number: 2202121

Lab Number: L2207321

Report Date: 02/28/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS RMW-3	- Westborough	Lab Asso	ociated sample((s): 01-05 Q(Batch ID:	WG16058	331-6 WG160	5831-7	QC Sample	e: L2207	7321-01	Client ID:
Chloroethane	ND	10	17	170	Q	18	180	Q	55-138	6		20
1,1-Dichloroethene	ND	10	12	120		13	130		61-145	8		20
trans-1,2-Dichloroethene	ND	10	12	120		13	130		70-130	8		20
Trichloroethene	2.9	10	14	111		14	111		70-130	0		20
1,2-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
1,3-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
1,4-Dichlorobenzene	ND	10	10	100		10	100		70-130	0		20
Methyl tert butyl ether	ND	10	9.9	99		10	100		63-130	1		20
o/m-Xylene	ND	20	22	110		23	115		70-130	4		20
o-Xylene	ND	20	22	110		22	110		70-130	0		20
cis-1,2-Dichloroethene	ND	10	12	120		12	120		70-130	0		20
Styrene	ND	20	22	110		22	110		70-130	0		20
Dichlorodifluoromethane	ND	10	8.5	85		9.1	91		36-147	7		20
Acetone	3.2J	10	16	160	Q	17	170	Q	58-148	6		20
Carbon disulfide	ND	10	12	120		13	130		51-130	8		20
2-Butanone	ND	10	11	110		13	130		63-138	17		20
4-Methyl-2-pentanone	ND	10	9.0	90		9.6	96		59-130	6		20
2-Hexanone	ND	10	7.6	76		8.7	87		57-130	13		20
Bromochloromethane	ND	10	11	110		12	120		70-130	9		20
1,2-Dibromoethane	ND	10	9.6	96		9.8	98		70-130	2		20
1,2-Dibromo-3-chloropropane	ND	10	8.7	87		9.3	93		41-144	7		20
Isopropylbenzene	ND	10	10	100		10	100		70-130	0		20
1,2,3-Trichlorobenzene	ND	10	9.3	93		9.5	95		70-130	2		20

Project Name: PHOTECH
Project Number: 2202121

Lab Number:

L2207321

Report Date:

02/28/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	y Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - RMW-3	- Westborough L	_ab Assoc	ciated sample(s): 01-05 Q	C Batch ID:	WG16058	331-6 WG160	5831-7	QC Sample	: L220	7321-01	Client ID:
1,2,4-Trichlorobenzene	ND	10	9.5	95		9.6	96		70-130	1		20
Methyl Acetate	ND	10	11	110		12	120		70-130	9		20
Cyclohexane	ND	10	12	120		12	120		70-130	0		20
1,4-Dioxane	ND	500	470	94		560	112		56-162	17		20
Freon-113	ND	10	12	120		12	120		70-130	0		20
Methyl cyclohexane	ND	10	10	100		10	100		70-130	0		20

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	102	106	70-130
4-Bromofluorobenzene	91	91	70-130
Dibromofluoromethane	103	106	70-130
Toluene-d8	99	98	70-130

METALS

Project Name: Lab Number: **PHOTECH** L2207321 **Project Number:** Report Date: 2202121 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-01

Date Collected: 02/10/22 10:00 Client ID: RMW-3 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.331		mg/l	0.0100	0.00327	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Antimony, Total	0.00067	J	mg/l	0.00400	0.00042	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Arsenic, Total	0.00140		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Barium, Total	0.1221		mg/l	0.00050	0.00017	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Calcium, Total	208.		mg/l	0.100	0.0394	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Chromium, Total	0.00188		mg/l	0.00100	0.00017	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Cobalt, Total	0.00575		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Copper, Total	0.00456		mg/l	0.00100	0.00038	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Iron, Total	1.11		mg/l	0.0500	0.0191	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Lead, Total	0.00150		mg/l	0.00100	0.00034	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Magnesium, Total	44.7		mg/l	0.0700	0.0242	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Manganese, Total	1.036		mg/l	0.00100	0.00044	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Mercury, Total	ND		mg/l	0.00020	0.00009	1	02/15/22 13:12	02/28/22 10:16	EPA 7470A	1,7470A	AC
Nickel, Total	0.00699		mg/l	0.00200	0.00055	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Potassium, Total	7.29		mg/l	0.100	0.0309	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Silver, Total	ND		mg/l	0.00040	0.00016	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Sodium, Total	502.		mg/l	0.500	0.146	5	02/15/22 11:56	02/15/22 18:21	EPA 3005A	1,6020B	SV
Thallium, Total	0.00041	J	mg/l	0.00100	0.00014	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV
Zinc, Total	0.1071		mg/l	0.01000	0.00341	1	02/15/22 11:56	02/15/22 17:19	EPA 3005A	1,6020B	SV

02/10/22 11:20

Date Collected:

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

SAMPLE RESULTS

Lab ID: L2207321-02

Client ID: WELL-09 Date Received: 02/10/22 Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.0897		mg/l	0.0100	0.00327	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Antimony, Total	ND		mg/l	0.00400	0.00042	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Arsenic, Total	0.00027	J	mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Barium, Total	0.03992		mg/l	0.00050	0.00017	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Calcium, Total	178.		mg/l	0.100	0.0394	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Chromium, Total	0.00026	J	mg/l	0.00100	0.00017	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Copper, Total	0.00039	J	mg/l	0.00100	0.00038	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Iron, Total	0.738		mg/l	0.0500	0.0191	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Lead, Total	0.00041	J	mg/l	0.00100	0.00034	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Magnesium, Total	50.7		mg/l	0.0700	0.0242	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Manganese, Total	0.02459		mg/l	0.00100	0.00044	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Mercury, Total	ND		mg/l	0.00020	0.00009	1	02/15/22 13:12	02/28/22 10:26	EPA 7470A	1,7470A	AC
Nickel, Total	0.00096	J	mg/l	0.00200	0.00055	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Potassium, Total	3.88		mg/l	0.100	0.0309	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Silver, Total	ND		mg/l	0.00040	0.00016	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Sodium, Total	49.3		mg/l	0.100	0.0293	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Thallium, Total	0.00021	J	mg/l	0.00100	0.00014	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV
Zinc, Total	0.01035		mg/l	0.01000	0.00341	1	02/15/22 11:56	02/15/22 17:57	EPA 3005A	1,6020B	SV

Project Name: Lab Number: **PHOTECH** L2207321 **Project Number: Report Date:** 2202121 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-03

Date Collected: 02/10/22 14:30 Client ID: RMW-4 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	2.19		mg/l	0.0100	0.00327	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Antimony, Total	ND		mg/l	0.00400	0.00042	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Arsenic, Total	0.01392		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Barium, Total	0.02436		mg/l	0.00050	0.00017	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Beryllium, Total	0.00019	J	mg/l	0.00050	0.00010	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Cadmium, Total	0.00006	J	mg/l	0.00020	0.00005	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Calcium, Total	169.		mg/l	0.100	0.0394	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Chromium, Total	0.00770		mg/l	0.00100	0.00017	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Cobalt, Total	0.00566		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Copper, Total	0.01339		mg/l	0.00100	0.00038	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Iron, Total	6.41		mg/l	0.0500	0.0191	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Lead, Total	0.01808		mg/l	0.00100	0.00034	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Magnesium, Total	17.7		mg/l	0.0700	0.0242	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Manganese, Total	0.2952		mg/l	0.00100	0.00044	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Mercury, Total	0.00014	J	mg/l	0.00020	0.00009	1	02/15/22 13:12	02/28/22 10:30	EPA 7470A	1,7470A	AC
Nickel, Total	0.01336		mg/l	0.00200	0.00055	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Potassium, Total	37.3		mg/l	0.100	0.0309	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Selenium, Total	0.00218	J	mg/l	0.00500	0.00173	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Silver, Total	ND		mg/l	0.00040	0.00016	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Sodium, Total	82.0		mg/l	0.100	0.0293	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Thallium, Total	0.00021	J	mg/l	0.00100	0.00014	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Vanadium, Total	0.01585		mg/l	0.00500	0.00157	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV
Zinc, Total	0.04416		mg/l	0.01000	0.00341	1	02/15/22 11:56	02/15/22 18:02	EPA 3005A	1,6020B	SV

Project Name: Lab Number: **PHOTECH** L2207321 **Project Number: Report Date:** 2202121 02/28/22

SAMPLE RESULTS

Lab ID: L2207321-04

Date Collected: 02/10/22 12:30 Client ID: RMW-9 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.271		mg/l	0.0100	0.00327	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Antimony, Total	ND		mg/l	0.00400	0.00042	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Arsenic, Total	0.00082		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Barium, Total	0.07955		mg/l	0.00050	0.00017	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Calcium, Total	128.		mg/l	0.100	0.0394	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Chromium, Total	0.00076	J	mg/l	0.00100	0.00017	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Cobalt, Total	0.00035	J	mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Copper, Total	0.00093	J	mg/l	0.00100	0.00038	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Iron, Total	0.990		mg/l	0.0500	0.0191	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Lead, Total	0.00110		mg/l	0.00100	0.00034	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Magnesium, Total	57.6		mg/l	0.0700	0.0242	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Manganese, Total	0.1066		mg/l	0.00100	0.00044	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Mercury, Total	0.00011	J	mg/l	0.00020	0.00009	1	02/15/22 13:12	02/28/22 10:33	EPA 7470A	1,7470A	AC
Nickel, Total	0.00095	J	mg/l	0.00200	0.00055	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Potassium, Total	19.9		mg/l	0.100	0.0309	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Silver, Total	ND		mg/l	0.00040	0.00016	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Sodium, Total	227.		mg/l	0.100	0.0293	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Thallium, Total	ND		mg/l	0.00100	0.00014	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV
Zinc, Total	0.01198		mg/l	0.01000	0.00341	1	02/15/22 11:56	02/15/22 18:07	EPA 3005A	1,6020B	SV

02/10/22 00:00

Date Collected:

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

SAMPLE RESULTS

Lab ID: L2207321-05

Client ID: BLIND DUPE-021022 Date Received: 02/10/22

Sample Location: 1000 DRIVING PARK AVE, ROCHESTER, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.269		mg/l	0.0100	0.00327	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Antimony, Total	ND		mg/l	0.00400	0.00042	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Arsenic, Total	0.00149		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Barium, Total	0.1237		mg/l	0.00050	0.00017	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Calcium, Total	200.		mg/l	0.100	0.0394	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Chromium, Total	0.00166		mg/l	0.00100	0.00017	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Cobalt, Total	0.00493		mg/l	0.00050	0.00016	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Copper, Total	0.00454		mg/l	0.00100	0.00038	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Iron, Total	0.952		mg/l	0.0500	0.0191	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Lead, Total	0.00122		mg/l	0.00100	0.00034	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Magnesium, Total	43.7		mg/l	0.0700	0.0242	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Manganese, Total	0.9078		mg/l	0.00100	0.00044	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Mercury, Total	0.00012	J	mg/l	0.00020	0.00009	1	02/15/22 13:12	02/28/22 10:36	EPA 7470A	1,7470A	AC
Nickel, Total	0.00693		mg/l	0.00200	0.00055	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Potassium, Total	7.62		mg/l	0.100	0.0309	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Silver, Total	ND		mg/l	0.00040	0.00016	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Sodium, Total	574.		mg/l	0.500	0.146	5	02/15/22 11:56	02/15/22 18:31	EPA 3005A	1,6020B	sv
Thallium, Total	ND		mg/l	0.00100	0.00014	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Vanadium, Total	0.00158	J	mg/l	0.00500	0.00157	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV
Zinc, Total	0.09259		mg/l	0.01000	0.00341	1	02/15/22 11:56	02/15/22 18:12	EPA 3005A	1,6020B	SV

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier Un	ts RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sam	ple(s): 01-0	5 Batch: W	'G160470	06-1				
Aluminum, Total	ND	m	g/l 0.0100	0.00327	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Antimony, Total	ND	m	g/l 0.00400	0.00042	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Arsenic, Total	ND	m	g/l 0.00050	0.00016	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Barium, Total	ND	m	g/l 0.00050	0.00017	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Beryllium, Total	ND	m	g/l 0.00050	0.00010	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Cadmium, Total	ND	m	g/l 0.00020	0.00005	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Calcium, Total	ND	m	g/l 0.100	0.0394	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Chromium, Total	ND	m	g/l 0.00100	0.00017	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Cobalt, Total	ND	m	g/l 0.00050	0.00016	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Copper, Total	ND	m	g/l 0.00100	0.00038	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Iron, Total	ND	m	g/l 0.0500	0.0191	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Lead, Total	ND	m	g/l 0.00100	0.00034	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Magnesium, Total	ND	m	g/l 0.0700	0.0242	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Manganese, Total	0.00085	J m	g/l 0.00100	0.00044	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Nickel, Total	ND	m	g/l 0.00200	0.00055	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Potassium, Total	ND	m	g/l 0.100	0.0309	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Selenium, Total	ND	m	g/l 0.00500	0.00173	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Silver, Total	ND	m	g/l 0.00040	0.00016	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Sodium, Total	ND	m	g/l 0.100	0.0293	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Thallium, Total	0.00040	J m	g/l 0.00100	0.00014	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Vanadium, Total	ND	m	g/l 0.00500	0.00157	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV
Zinc, Total	ND	m	g/l 0.01000	0.00341	1	02/15/22 11:56	02/15/22 16:46	1,6020B	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mar	nsfield Lab for sample(s):	01-05 E	Batch: WO	G16047	08-1				
Mercury, Total	ND	mg/l	0.00020	0.00009	1	02/15/22 13:12	02/28/22 10:10	1,7470A	AC

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: PHOTECH

Project Number: 2202121

Lab Number: L2207321

Report Date: 02/28/22

		Qual %Recovery	Qual Limits	RPD	Qual	RPD Limits
al Metals - Mansfield Lab Associated sar	mple(s): 01-05 Bate	ch: WG1604706-2				
Aluminum, Total	90	-	80-120	-		
Antimony, Total	81	-	80-120	-		
Arsenic, Total	96	-	80-120	-		
Barium, Total	98	-	80-120	-		
Beryllium, Total	101	-	80-120	-		
Cadmium, Total	101	-	80-120	-		
Calcium, Total	89	-	80-120	-		
Chromium, Total	93	-	80-120	-		
Cobalt, Total	89	-	80-120	-		
Copper, Total	92	-	80-120	-		
Iron, Total	98	-	80-120	-		
Lead, Total	99	-	80-120	-		
Magnesium, Total	106	-	80-120	-		
Manganese, Total	90	-	80-120	-		
Nickel, Total	90	-	80-120	-		
Potassium, Total	106	-	80-120	-		
Selenium, Total	100	-	80-120	-		
Silver, Total	104	-	80-120	-		
Sodium, Total	103	-	80-120	-		
Thallium, Total	107	-	80-120	-		
Vanadium, Total	93	-	80-120	-		

Project Name: PHOTECH Project Number: 2202121

Lab Number: L2207321

Report Date: 02/28/22

Parameter	LCS %Recovery		%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 01-05 Bat	ch: WG1604706-2			
Zinc, Total	90	-	80-120	-	
Total Metals - Mansfield Lab Associate	ed sample(s): 01-05 Bat	ch: WG1604708-2			
Mercury, Total	103	-	80-120	-	

Project Name: PHOTECH **Project Number:** 2202121

Lab Number: L2207321

Report Date: 02/28/22

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-05	QC Bat	ch ID: WG160	4706-3	WG1604706	6-4 QC Sam	ple: L22	207321-01	Client	:ID: RMW-3
Aluminum, Total	0.331	2	2.12	89		2.09	88		75-125	1	20
Antimony, Total	0.00067J	0.5	0.5119	102		0.4715	94		75-125	8	20
Arsenic, Total	0.00140	0.12	0.1233	102		0.1226	101		75-125	1	20
Barium, Total	0.1221	2	2.122	100		2.100	99		75-125	1	20
Beryllium, Total	ND	0.05	0.04775	96		0.04810	96		75-125	1	20
Cadmium, Total	ND	0.053	0.05146	97		0.05244	99		75-125	2	20
Calcium, Total	208.	10	215	70	Q	218	100		75-125	1	20
Chromium, Total	0.00188	0.2	0.1849	92		0.1861	92		75-125	1	20
Cobalt, Total	0.00575	0.5	0.4574	90		0.4662	92		75-125	2	20
Copper, Total	0.00456	0.25	0.2344	92		0.2415	95		75-125	3	20
Iron, Total	1.11	1	1.99	88		2.02	91		75-125	1	20
Lead, Total	0.00150	0.53	0.5263	99		0.5247	99		75-125	0	20
Magnesium, Total	44.7	10	53.8	91		54.5	98		75-125	1	20
Manganese, Total	1.036	0.5	1.543	101		1.544	102		75-125	0	20
Nickel, Total	0.00699	0.5	0.4534	89		0.4721	93		75-125	4	20
Potassium, Total	7.29	10	17.9	106		17.7	104		75-125	1	20
Selenium, Total	ND	0.12	0.118	98		0.115	96		75-125	3	20
Silver, Total	ND	0.05	0.05192	104		0.05278	106		75-125	2	20
Sodium, Total	502.	10	509	70	Q	523	210	Q	75-125	3	20
Thallium, Total	0.00041J	0.12	0.1268	106		0.1263	105		75-125	0	20
Vanadium, Total	ND	0.5	0.4690	94		0.4721	94		75-125	1	20

Project Name: PHOTECH **Project Number:** 2202121

Lab Number:

L2207321

Report Date: 02/28/22

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD 6Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-05	QC Bat	ch ID: WG1604706-3	WG1604706-	4 QC Sample:	L2207321-01	Client ID:	RMW-3
Zinc, Total	0.1071	0.5	0.5584	90	0.5666	92	75-125	1	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-05	QC Bat	ch ID: WG1604708-3	WG1604708-	4 QC Sample:	L2207321-01	Client ID:	RMW-3
Mercury, Total	ND	0.005	0.00499	100	0.00481	96	75-125	4	20

Project Name: PHOTECH Lab Number: L2207321 Project Number: 2202121

Report Date: 02/28/22

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2207321-01A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01A1	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01A2	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01B1	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01B2	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01C1	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01C2	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-01D	Plastic 250ml HNO3 preserved	А	<2	<2	2.3	Y	Absent		TL-6020T(180),FE-6020T(180),BA-6020T(180),SE-6020T(180),CA-6020T(180),NI-6020T(180),K-6020T(180),CR-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),SB-6020T(180),NA-6020T(180),AS-
L2207321-01D1	Plastic 250ml HNO3 preserved	А	<2	<2	2.3	Y	Absent		TL-6020T(180),FE-6020T(180),BA-6020T(180),SE-6020T(180),CA-6020T(180),NI-6020T(180),K-6020T(180),CR-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),SE-6020T(180),MN-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),AG-6020T(180),CD-6020T(180),AL-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)

Lab Number: L2207321

Report Date: 02/28/22

Project Name: PHOTECH
Project Number: 2202121

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2207321-01D2	Plastic 250ml HNO3 preserved	A	<2	<2	2.3	Y	Absent		TL-6020T(180),FE-6020T(180),BA-6020T(180),SE-6020T(180),CA-6020T(180),NI-6020T(180),K-6020T(180),CR-6020T(180),ZN-6020T(180),PB-6020T(180),NA-6020T(180),PB-6020T(180),BE-6020T(180),MS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),CO-6020T(180),BG-6020T(180),CO-6020T(180)
L2207321-02A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-02B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-02C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-02D	Plastic 250ml HNO3 preserved	A	<2	<2	2.3	Y	Absent		BA-6020T(180),FE-6020T(180),TL-6020T(180),SE-6020T(180),CA-6020T(180),CR-6020T(180),K-6020T(180),NI-6020T(180),ZN-6020T(180),NA-6020T(180),CU-6020T(180),BE-6020T(180),MN-6020T(180),MN-6020T(180),MS-6020T(180),CU-6020T(180),AS-6020T(180),CD-6020T(180),AG-6020T(180),CD-6020T(180),HG-T(28),AL-6020T(180),MG-6020T(180),CO-6020T(180)
L2207321-03A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-03B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-03C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-03D	Plastic 250ml HNO3 preserved	A	<2	<2	2.3	Y	Absent		TL-6020T(180),BA-6020T(180),FE-6020T(180),SE-6020T(180),CR-6020T(180),CA-6020T(180),K-6020T(180),NI-6020T(180),A-6020T(180),ZN-6020T(180),CU-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),SB-6020T(180),V-6020T(180),HG-T(28),AL-6020T(180),CD-6020T(180),AG-6020T(180),MG-6020T(180),CO-6020T(180),AG-6020T(180),MG-6020T(180),CO-6020T(180)
L2207321-04A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-04B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-04C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)

Lab Number: L2207321

Report Date: 02/28/22

Project Name: PHOTECH*Project Number:* 2202121

Container Information		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2207321-04D	Plastic 250ml HNO3 preserved	A	<2	<2	2.3	Y	Absent		BA-6020T(180),TL-6020T(180),FE-6020T(180),SE-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),NA-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),NA-6020T(180),AS-6020T(180),V-6020T(180),SB-6020T(180),CD-6020T(180),HG-T(28),AL-6020T(180),AG-6020T(180),MG-6020T(180),CO-6020T(180),MG-6020T(180),CO-6020T(180)
L2207321-05A	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-05B	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-05C	Vial HCl preserved	Α	NA		2.3	Υ	Absent		NYTCL-8260-R2(14)
L2207321-05D	Plastic 250ml HNO3 preserved	A	<2	<2	2.3	Y	Absent		BA-6020T(180),TL-6020T(180),SE-6020T(180),FE-6020T(180),NI-6020T(180),CA-6020T(180),CR-6020T(180),CVI-6020T(180),NA-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),NI-6020T(180),SB-6020T(180),V-6020T(180),AS-6020T(180),CD-6020T(180),AG-6020T(180),MG-6020T(180),HG-T(28),AL-6020T(180),CO-6020T(180)

Project Name: PHOTECH Lab Number: L2207321

Project Number: 2202121 Report Date: 02/28/22

GLOSSARY

Acronyms

EDL

LOQ

MS

RL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

 NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:PHOTECHLab Number:L2207321Project Number:2202121Report Date:02/28/22

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:02282215:44

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ДІРНА	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Way	05	Pag	1	-	Date R in La	ec'd Z	-/11	/2	2	L22073	21
Westborough, MA 01581 8 Walkup Dr.	1 Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliv	verables					Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: Ho	tech		and the second			ASP-A			ASP-	В	Same as Client I	nfo
11.000.0000000000000000000000000000000	1701.000-022-0200	Project Location: 1000	Diving 0	a Parti	Ave Ra	choterN	40	EQuIS	(1 File)		EQul:	S (4 File)	PO#	
Client Information	The same of	Project # 2202	121	0				Other						
Client: LaPella	Associates	(Use Project name as Pr	roject#)				Regu	ulatory R	equireme	ent			Disposal Site Informa	tion
Address: 300 <	state St Suiteza	Project Manager: Mi	Ke Pel	lychati	ч			NY TOG	is		NY Pa	nt 375	Please identify below loc	Market Market
	NY 14614	ALPHAQuote #:		-			1 🗖	AWQ St	andards	П	NY CP	-51	applicable disposal facilit	
Phone: 685-9	320-7765	Turn-Around Time	SPINALIF	STATE OF	E SEITE	NO FOLK	Ī	NY Rest	ricted Use	П	Other		Disposal Facility:	******************
Fax: modychat	y Olabellac. com	Standard	d X	Due Date:	100		1 🗂		stricted Us	-			□ NJ □ I	NV.
Email: espirito	Dlabellage.com	Rush (only if pre approved	±) []	# of Days:			1 1		wer Discha				Other:	
	been previously analyze	ed by Alpha					-	LYSIS		- 3-	_		Sample Filtration	T
Other project specifi	ic requirements/comm	nents:			_			1						
Please specify Metal) Total Mobils	0978-					☐ Done ☐ Lab to do Preservation ☐ Lab to do	t a I B
ALDUALLE							50	12					(Please Specify belo	w) t
ALPHA Lab ID (Lab Use Only)	Sa	ample ID		ection	Sample	Sampler's	Total International	N						- ‡
1201 0	7 7		Date	Time	Matrix	Initials	6						Sample Specific Comm	ents e
1921-01	RMW-3		2110/22	-	SW	DT	X	X					MS/MSD	IZ
07	Well-09		2/10/22	11:20	GW	DT	V	X						4
07	RMW-4		2/10/22		aw	DT	X	X						ч
09	RMW-9		2/10/22	12:30	GW	DT	X	X						4
05	Blind Duge	021022	2/10/22	The second secon	GW	DT	×	X						u
										\Box				
A STATE OF THE STA										\top				
							\vdash		_	+	\vdash			_
										+	\vdash			
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic	Westboro: Certification N Mansfield: Certification N				ntainer Type				П			Please print clearly, and completely. Sar not be logged in and turnaround time clo	mples can d ck will not
F = MeOH	C = Cube	Relinquished B	Byr	Date/1	Time		Panali	and Day		\vdash	Detail	Time	start until any ambig resolved. BY EXEC	
G = NaHSO ₄	O = Other E = Encore		17					red By:	2	-/	Date/			
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH	D = BOD Bottle	tauson To		24-102		SECURE S				2/10	122	16:05	HAS READ AND A	GREES
O = Other		SECURE STORAGE	5-1-1-2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	/ /		RCunn	we k	ON)	m	2/19	122	17:30		
Form No: 01-25 HC (rev. 3)	0.51.0040)	(Cunning ham	AAL .	2/10/22 /	17:30	d		_		2/11	122	0000	TERMS & CONDITI (See reverse side.)	
5 140. 01-25 FIC (rev. 3)	2-2aht-5012)									1			(555 1076100 5106.)	

APPENDIX 2

INSPECTION FINDINGS

SITE-WIDE INSPECTION FORM

Project Name: Former Photech Imaging, ERP Site #B00016 Location: 1000 Driving Park Ave, Rochester, NY

Project No.: 2202121

Inspected By: M. Pelychaty

Date of Inspection: 9/14/2021 Weather Conditions: cloudy, 70s

$\overline{}$	
	OT GIL SURCES REPORTS
	CURRENT USE OF

SITE RECORDS UP TO

DATE

(YES)NO)

(COMMERCIAL/ RESIDENTIAL/ETC.)

GENERAL SITE CONDITIONS

COMMENTS AND/OR ACTIONS TAKEN

NONE

The site is angazony ductionment the announced builders at NE and sw over of sole for Ferner Total Green out lustished belows

Mad F. Aghi

September 30, 2021

Mr. Todd Caffoe, P.E. NYSDEC – Region 8 Department of Environmental Remediation 6274 East Avon Lima Road Avon, New York 14414

Re: Pressure Field Extension Readings - LaserShip Building

Former Photech Imaging Site

NYSDEC ERP Site #B00016, 1000 Driving Park Avenue, Rochester, New York

LaBella Project No. 2202121

Dear Mr. Caffoe:

LaBella Associates, D.P.C. (LaBella) is submitting this letter summarizing Pressure Field Extension Monitoring (PFE) readings that were collected for the Sub-Slab Depressurization System (SSDS) that was installed at the LaserShip Building located at the Former Photech Imaging Site at 1000 Driving Park Avenue in the City of Rochester, Monroe County, New York. The Site is a listed New York State Department of Environmental Conservation (NYSDEC) Environmental Restoration Program (ERP) Site #B00016.

PRESSURE FIELD EXTENSION DATA

The PFE data indicates the SSDS is providing adequate influence throughout the building footprint based on data collected on September 14, 2021. The monitoring work that was completed is summarized as follows:

- 1. A Qualified Environmental Professional as defined in Part 375 or a person who was a direct report to the NYS licensed PE of record for the site conducted all of the PFE testing.
- 2. The PFE monitoring was conducted when the building was substantially finished, with the exception of some minor interior and exterior cosmetic finishes.
- 3. PFE Monitoring was completed among nine (9) PFE monitoring points throughout the building, as depicted on attached Figure. PFE measurements indicated there was sufficient negative pressure (i.e. a minimum of -0.004 inches of water column) at each monitoring location, with the exception of monitoring points #2 and #5. Based on this a hammer drill was used to drill a nominal 3/8" hole through the floor the locations of monitoring points #2 and #5 as shown on the attached figure. PFE readings were collected at these locations on September 29, 2021 and indicated there was sufficient negative pressure at monitoring points #2 and #5. PFE readings are summarized in the table below:

Monitoring Point	Manual PFE Readings (Inches of Water Column)
1	-0.070
2	-0.020
3	-0.004

Monitoring Point	Manual PFE Readings (Inches of Water Column)
4	-0.030
5	-0.040
6	-0.054
7	-0.040
8	-0.051
9	-0.031

4. Each SSDS was connected a U-line manometer and audible alarm. Each U-line manometer indicated a pressure reading of approximately 0.75 inches of water column. Each audible alarm was tested by removing the tube from the audible alarm to confirm the audible alert was activated. Each audible alarm was noted to be working.

CONCLUSION

Based on the PFE results collected on September 14, 2021 and September 29, 2021, the SSDS is providing adequate influence throughout the building footprint.

CERTIFICATION

I Michael F. Pelychaty certify that I am currently an Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Pressure Field Extension Monitoring Results was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

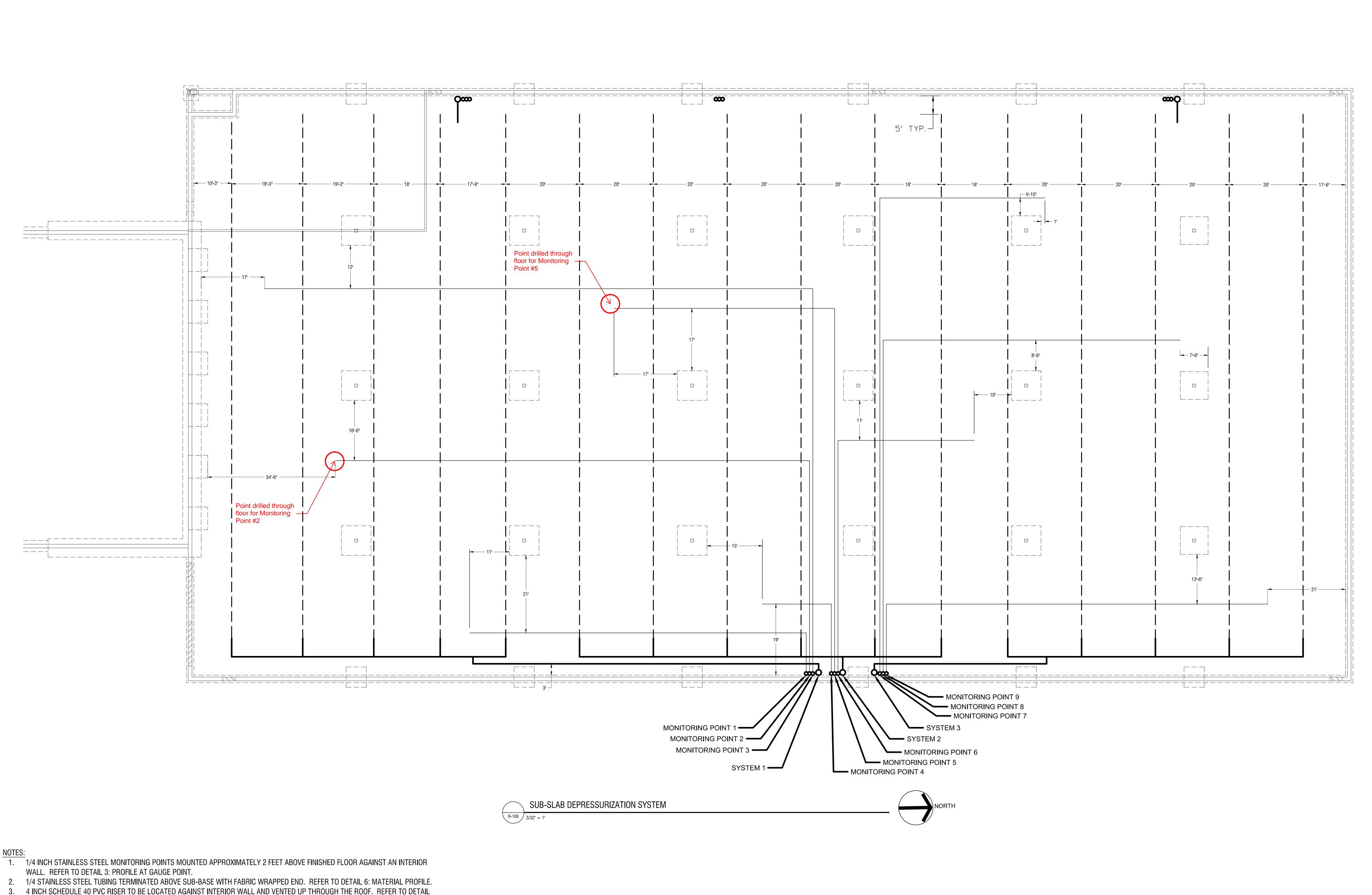
If you have any guestions please do not hesitate to contact me at 585-295-6253.

Respectfully submitted,

LaBella Associates

Michael F. Pelychaty, PG Environmental Project Manager

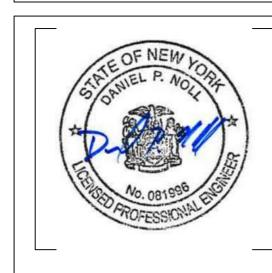
Attachment A - SSDS Layout and Monitoring Point Locations


Michael F. Pelychaty

I:\FSI General Contractors\2202121 - 1000 Driving Park SMP Assistance\Reports\SSDS Letter LaserShip\LTR.2021-09-25.Photech ERP Site B00016_SSDS LaserShip Building.docx

ATTACHMENT A

SSDS Layout and Monitoring Point Locations



- 4 INCH SCHEDULE 40 PVC RISER TO BE LOCATED AGAINST INTERIOR WALL AND VENTED UP THROUGH THE ROOF. REFER TO DETAIL 1: REAR END WALL.
- 4. 4 INCH SCHEDULE 40 PVC TO 4 INCH HDPE PERFORATED PIPE CONNECTION. REFER TO DETAIL 2: DETAIL AT HEADER.
- 4 INCH HDPE PIPE WRAPPED IN FABRIC AND PLACED IN PEA STONE TRENCH. REFER TO DETAIL 6: MATERIAL PROFILE
- MOVE PIPING AS NEEDED IN FIELD TO AVOID PLUMBING.
- INSTALL 4" CAP AT EACH VAPOR COLLECTION PIPE TERMINATION.
- 8. ALL SUB-SLAB VAPOR COLLECTION PIPING TO BE GEOTEXTILE-WRAPPED 4 INCH PERFORATED DUAL-WALLED CORRUGATED EXTERIOR SMOOTH INTERIOR HDPE.
- 9. HEADER PIPING TO BE 4 INCH SCHEDULE 40 PVC.
- 10. PEA STONE SHALL CONSIST OF WASHED MATERIAL THAT WILL PASS THROUGH A 2 INCH SIEVE AND BE RETAINED BY A 1/4 INCH SIEVE.
- 11. TO PROTECT THE VAPOR BARRIER, ALL PENETRATIONS MADE AFTER POURING OF THE SLAB, SUCH AS JOINTS, ETC, SHALL BE CUT IN A MANNER TO AVOID PENETRATING THE VAPOR BARRIER.
- 12. SEAL ALL PENETRATIONS AND GAPS WITH AN ELECTROMETRIC JOINT SEALANT.
- 13. THIS DRAWING IS NOT TO INTEND TO PROVIDE STRUCTURAL INFORMATION. REFER TO STRUCTURAL DRAWINGS.
- 14. CONTRACTOR TO CONFIRM NO AIR INTAKE IS WITHIN 25' FROM VENT STACK. 15. INSTALL RADONAWAY RP-265 FAN ON EACH SYSTEM ABOVE ROOF AND ALARM FOR EACH SYSTEM.

FABRIC WRAPPED 4 INCH HDPE PERFORATED PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH 4 INCH SOLID SCH 40 PVC PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH, SLOPED AWAY FROM VERTICAL RISER AT 1/4 INCH PER FOOT TO

ALLOW FOR DRAINAGE.

1/4 INCH STAINLESS STEEL MONITORING POINTS PLACED ABOVE COMPACTED SUB-BASE MATERIAL, FABRIC WRAPPED AT END.

GENERAL CONTRACTORS

LAB DEPRESSURIZAT SYSTEM LAYOUT

PROJECT/DRAWING NUMBER

2202121

May 17, 2021

Mr. Todd Caffoe, P.E. NYSDEC – Region 8 Department of Environmental Remediation 6274 East Avon Lima Road Avon, New York 14414

Re: Pressure Field Extension Readings - Farmer John Popcorn Building

Former Photech Imaging Site

NYSDEC ERP Site #B00016, 1000 Driving Park Avenue, Rochester, New York

LaBella Project No. 2202121

Dear Mr. Caffoe:

LaBella Associates, D.P.C. (LaBella) is submitting this letter summarizing Pressure Field Extension Monitoring (PFE) readings that were collected for the Sub-Slab Depressurization System (SSDS) that was installed at the Farmer John Popcorn Building located at the Former Photech Imaging Site at 1000 Driving Park Avenue in the City of Rochester, Monroe County, New York. The Site is a listed New York State Department of Environmental Conservation (NYSDEC) Environmental Restoration Program (ERP) Site #B00016.

PRESSURE FIELD EXTENSION DATA

The PFE data indicates the SSDS is providing adequate influence throughout the building footprint based on data collected on April 24, 2021. The monitoring work that was completed is summarized as follows:

- 1. A Qualified Environmental Professional as defined in Part 375 or a person who was a direct report to the NYS licensed PE of record for the site conducted all of the PFE testing.
- 2. The PFE monitoring was conducted when the building was substantially finished, with the exception of some minor interior and exterior cosmetic finishes.
- 3. PFE Monitoring was completed among nine (9) PFE monitoring points throughout the building, as depicted on attached Figures. PFE measurements indicated there was sufficient negative pressure (i.e. a minimum of -0.004 inches of water column) at each monitoring location. PFE readings are summarized in the table below:

Monitoring Location	Manual PFE Readings (Inches of Water Column)
1	-0.6
2	-0.5
3	-0.5
4	-0.5

Monitoring Location	Manual PFE Readings (Inches of Water Column)
5	-0.5
6	-0.5
7	-0.6
8	-0.5
9	-0.5

4. Each SSDS was connected a U-line manometer and audible alarm. Each U-line manometer indicated a pressure reading of approximately 0.75 inches of water column. Each audible alarm was tested by removing the tube from the audible alarm to confirm the audible alert was activated. Each audible alarm was noted to be working.

CONCLUSION

Based on the PFE results collected on April 24, 2021, the SSDS is providing adequate influence throughout the building footprint.

CERTIFICATION

I Daniel P. Noll certify that I am currently a New York State Licensed Professional Engineer as defined in 6 NYCRR Part 375 and that this Pressure Field Extension Monitoring Results was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

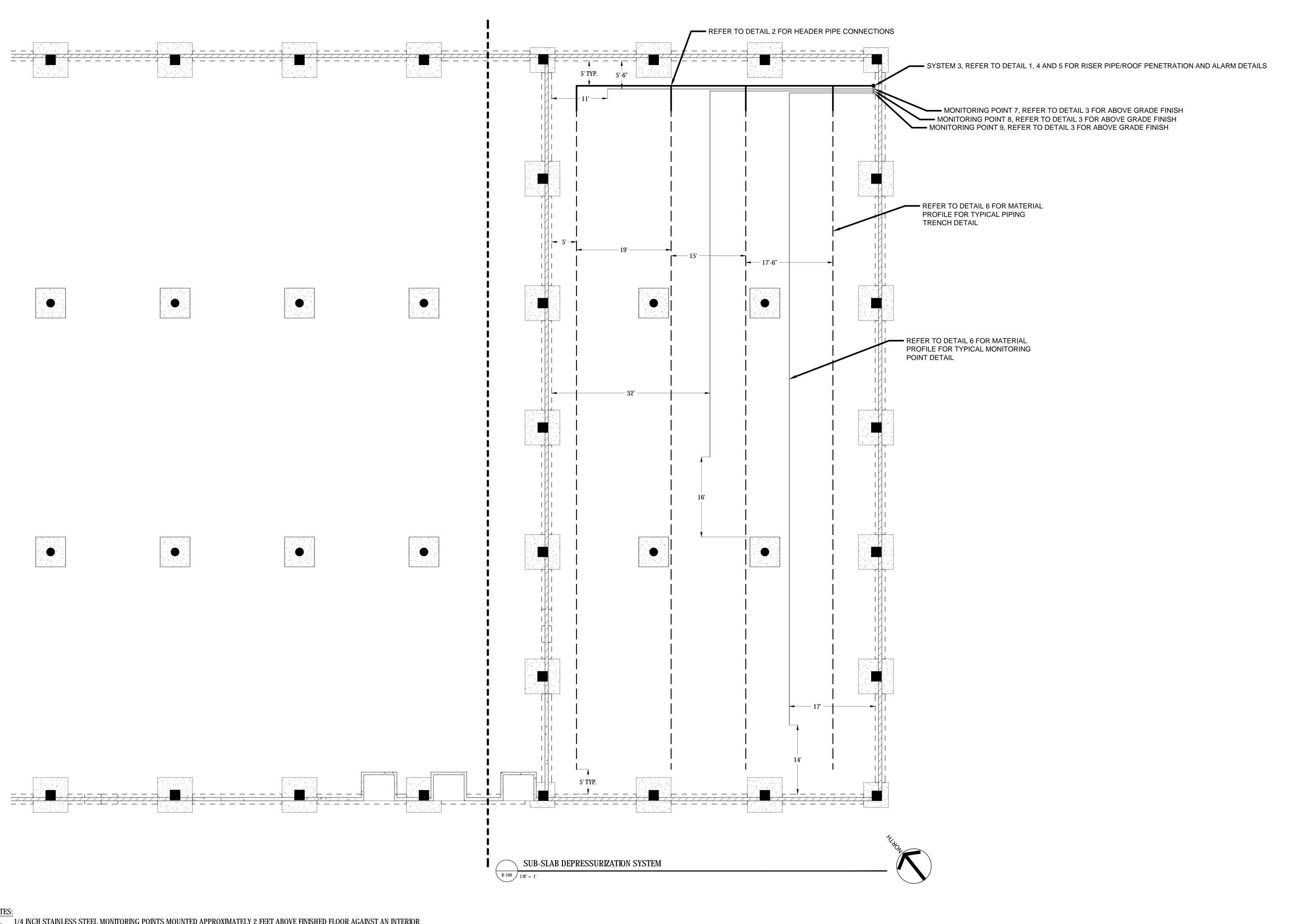
If you have any questions please do not hesitate to contact me at 585-295-6611.

Respectfully submitted,

LaBella Associates

Daniel P. Noll, PE

VP, Environmental Project Manager


Attachment A - SSDS Layout and Monitoring Point Locations

I:\FSI General Contractors\2202121 - 1000 Driving Park SMP Assistance\Reports\SSDS Letter Farmer John\LTR.2021-05-17.Photech ERP Site B00016_SSDS Farmer John Building.docx

ATTACHMENT A

SSDS Layout and Monitoring Point Locations

- WALL. REFER TO DETAIL 3: PROFILE AT GAUGE POINT. 2. 1/4 STAINLESS STEEL TUBING TERMINATED ABOVE SUB-BASE WITH FABRIC WRAPPED END. REFER TO DETAIL 6: MATERIAL PROFILE.
- 4 INCH SCHEDULE 40 PVC RISER TO BE LOCATED AGAINST INTERIOR WALL AND VENTED UP THROUGH THE ROOF. REFER TO DETAIL 1: REAR END WALL.
- 4. 4 INCH SCHEDULE 40 PVC TO 4 INCH HDPE PERFORATED PIPE CONNECTION. REFER TO DETAIL 2: DETAIL AT HEADER.
- 4 INCH HDPE PIPE WRAPPED IN FABRIC AND PLACED IN PEA STONE TRENCH. REFER TO DETAIL 6: MATERIAL PROFILE
- 6. MOVE PIPING AS NEEDED IN FIELD TO AVOID PLUMBING.
- INSTALL 4" CAP AT EACH VAPOR COLLECTION PIPE TERMINATION. 8. ALL SUB-SLAB VAPOR COLLECTION PIPING TO BE GEOTEXTILE-WRAPPED 4 INCH PERFORATED DUAL-WALLED CORRUGATED
- EXTERIOR SMOOTH INTERIOR HDPE.
- 9. HEADER PIPING TO BE 4 INCH SCHEDULE 40 PVC.
- IN A MANNER TO AVOID PENETRATING THE VAPOR BARRIER.
- 12. SEAL ALL PENETRATIONS AND GAPS WITH AN ELASTOMERIC JOINT SEALANT.

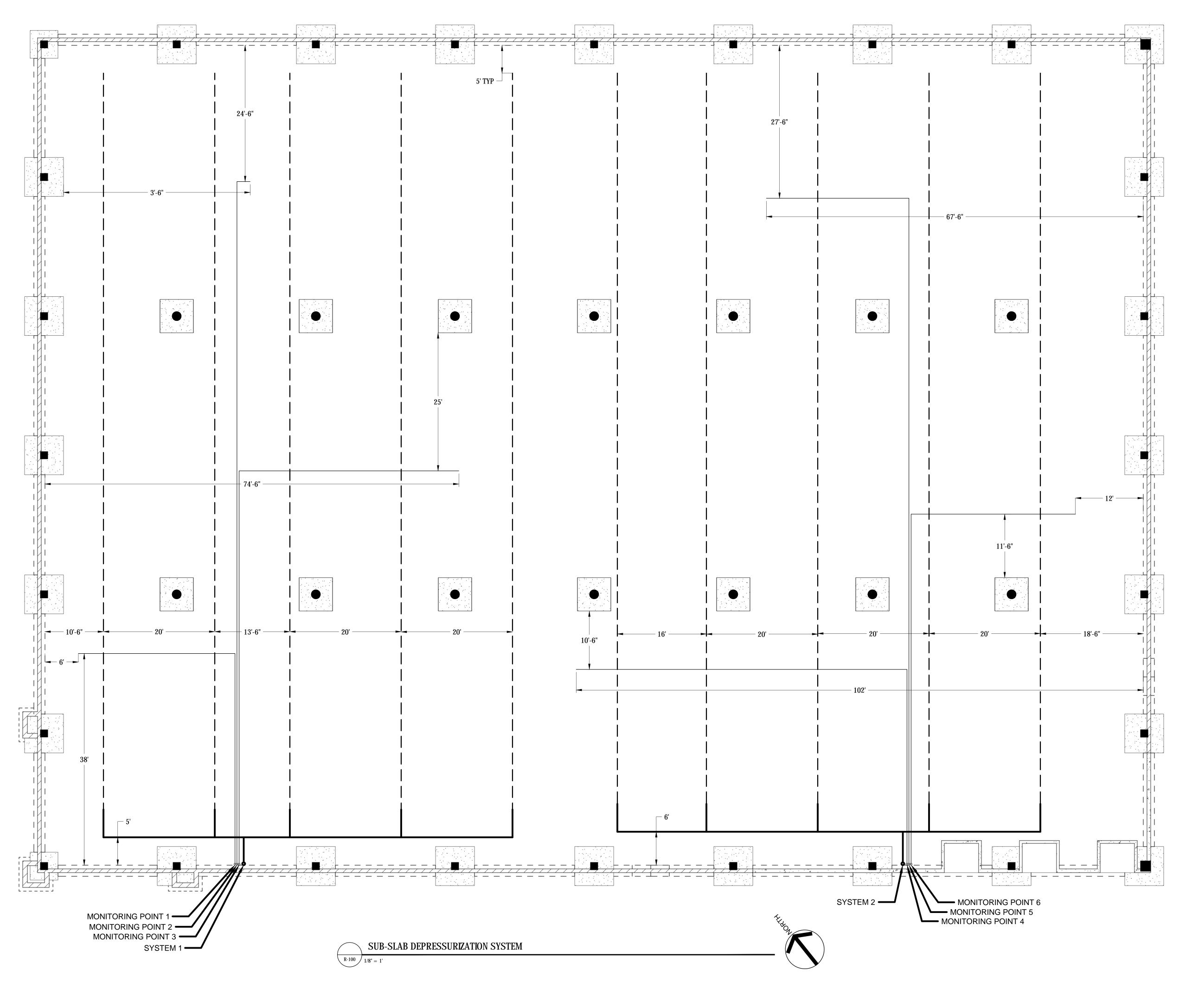
16. RISERS FOR SYSTEM 3 SHALL BE PLACED IN THE WAREHOUSE.

- 10. PEA STONE SHALL CONSIST OF WASHED MATERIAL THAT WILL PASS THROUGH A 2 INCH SIEVE AND BE RETAINED BY A 1/4 INCH SIEVE.
- 11. TO PROTECT THE VAPOR BARRIER, ALL PENETRATIONS MADE AFTER POURING OF THE SLAB, SUCH AS JOINTS, ETC, SHALL BE CUT
- 13. THIS DRAWING IS NOT TO INTEND TO PROVIDE STRUCTURAL INFORMATION. REFER TO STRUCTURAL DRAWINGS.
- 15. INSTALL RADONAWAY RP-265 FAN ON SYSTEM ABOVE ROOF AND INSTALL ALARM.
- 14. CONTRACTOR TO CONFIRM NO AIR INTAKE IS WITHIN 25' FROM VENT STACK.

1/4 INCH STAINLESS STEEL MONITORING POINTS PLACED ABOVE COMPACTED SUB-BASE MATERIAL, FABRIC WRAPPED AT END.

FSI GENERAL CONTRACTORS B DEPRESSURIZATION I LAYOUT - ADDITION SUB-S SYS

PROJECT/DRAWING NUMBER


2202121

FABRIC WRAPPED 4 INCH HDPE PERFORATED PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH

ALLOW FOR DRAINAGE.

4 INCH SOLID SCH 40 PVC PIPE PLACED WITHIN MIDDLE OF PEA STONE

TRENCH, SLOPED AWAY FROM VERTICAL RISER AT 1/4 INCH PER FOOT TO

- WALL. REFER TO DETAIL 3: PROFILE AT GAUGE POINT.
- 2. 1/4 STAINLESS STEEL TUBING TERMINATED ABOVE SUB-BASE WITH FABRIC WRAPPED END. REFER TO DETAIL 6: MATERIAL PROFILE. 3. 4 INCH SCHEDULE 40 PVC RISER TO BE LOCATED AGAINST INTERIOR WALL AND VENTED UP THROUGH THE ROOF. REFER TO DETAIL
- 1: REAR END WALL. 4. 4 INCH SCHEDULE 40 PVC TO 4 INCH HDPE PERFORATED PIPE CONNECTION. REFER TO DETAIL 2: DETAIL AT HEADER.
- 5. 4 INCH HDPE PIPE WRAPPED IN FABRIC AND PLACED IN PEA STONE TRENCH. REFER TO DETAIL 6: MATERIAL PROFILE
- 6. MOVE PIPING AS NEEDED IN FIELD TO AVOID PLUMBING.
- 7. INSTALL 4" CAP AT EACH VAPOR COLLECTION PIPE TERMINATION.
- 8. ALL SUB-SLAB VAPOR COLLECTION PIPING TO BE GEOTEXTILE-WRAPPED 4 INCH PERFORATED DUAL-WALLED CORRUGATED
- EXTERIOR SMOOTH INTERIOR HDPE.
- 9. HEADER PIPING TO BE 4 INCH SCHEDULE 40 PVC.
- 10. PEA STONE SHALL CONSIST OF WASHED MATERIAL THAT WILL PASS THROUGH A 2 INCH SIEVE AND BE RETAINED BY A 1/4 INCH
- 11. TO PROTECT THE VAPOR BARRIER, ALL PENETRATIONS MADE AFTER POURING OF THE SLAB, SUCH AS JOINTS, ETC, SHALL BE CUT IN A MANNER TO AVOID PENETRATING THE VAPOR BARRIER.

16. RISERS FOR SYSTEM 1 SHALL BE PLACED IN ELECTRIC ROOM AND RISER FOR SYSTEM 2 SHALL BE PLACED IN THE WAREHOUSE.

- 12. SEAL ALL PENETRATIONS AND GAPS WITH AN ELECTROMETRIC JOINT SEALANT.
- 13. THIS DRAWING IS NOT TO INTEND TO PROVIDE STRUCTURAL INFORMATION. REFER TO STRUCTURAL DRAWINGS.
- 14. CONTRACTOR TO CONFIRM NO AIR INTAKE IS WITHIN 25' FROM VENT STACK.
- 15. INSTALL RADONAWAY RP-265 FAN ON EACH SYSTEM ABOVE ROOF AND ALARM FOR EACH SYSTEM.

LEGEND FABRIC WRAPPED 4 INCH HDPE PERFORATED PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH

4 INCH SOLID SCH 40 PVC PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH, SLOPED AWAY FROM VERTICAL RISER AT 1/4 INCH PER FOOT TO ALLOW FOR DRAINAGE.

1/4 INCH STAINLESS STEEL MONITORING POINTS PLACED ABOVE COMPACTED SUB-BASE MATERIAL, FABRIC WRAPPED AT END.

FSI GENERAL CONTRACTORS

PROJECT/DRAWING NUMBER

2202121

Test 002

Instrument		Data Properties	
Model	DustTrak II	Start Date 05/11/2021	
Instrument S/N	8530114008	Start Time	06:54:39
		Stop Date	05/11/2021
		Stop Time	17:24:39
		Total Time	0:10:30:00
		Logging Interval	900 seconds

Statistics				
AEROSOL				
Avg	0.005 mg/m^3			
Max	0.007 mg/m^3			
Max Date	05/11/2021			
Max Time	11:39:39			
Min	0.004 mg/m^3			
Min Date	05/11/2021			
Min Time	07:09:39			
TWA (8 hr)	0.005			
TWA Start Date	05/11/2021			
TWA Start Time	06:54:39			
TWA End Time	17:24:39			

Test Data					
Data Point	Date	Time	AEROSOL mg/m^3		
1	05/11/2021	07:09:39	0.004		
2	05/11/2021	07:24:39	0.004		
3	05/11/2021	07:39:39	0.004		
4	05/11/2021	07:54:39	0.004		
5	05/11/2021	08:09:39	0.004		
6	05/11/2021	08:24:39	0.005		
7	05/11/2021	08:39:39	0.004		
8	05/11/2021	08:54:39	0.004		
9	05/11/2021	09:09:39	0.004		
10	05/11/2021	09:24:39	0.004		
11	05/11/2021	09:39:39	0.004		
12	05/11/2021	09:54:39	0.005		
13	05/11/2021	10:09:39	0.004		
14	05/11/2021	10:24:39	0.005		
15	05/11/2021	10:39:39	0.004		
16	05/11/2021	10:54:39	0.004		
17	05/11/2021	11:09:39	0.005		
18	05/11/2021	11:24:39	0.005		
19	05/11/2021	11:39:39	0.007		
20	05/11/2021	11:54:39	0.004		
21	05/11/2021	12:09:39	0.006		

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
22	05/11/2021	12:24:39	0.004		
23	05/11/2021	12:39:39	0.005		
24	05/11/2021	12:54:39	0.005		
25	05/11/2021	13:09:39	0.004		
26	05/11/2021	13:24:39	0.005		
27	05/11/2021	13:39:39	0.005		
28	05/11/2021	13:54:39	0.004		
29	05/11/2021	14:09:39	0.004		
30	05/11/2021	14:24:39	0.005		
31	05/11/2021	14:39:39	0.005		
32	05/11/2021	14:54:39	0.005		
33	05/11/2021	15:09:39	0.006		
34	05/11/2021	15:24:39	0.005		
35	05/11/2021	15:39:39	0.005		
36	05/11/2021	15:54:39	0.005		
37	05/11/2021	16:09:39	0.005		
38	05/11/2021	16:24:39	0.005		
39	05/11/2021	16:39:39	0.004		
40	05/11/2021	16:54:39	0.004		
41	05/11/2021	17:09:39	0.004		
42	05/11/2021	17:24:39	0.004		

Test 001

Instrument		Data Properties		
Model	DustTrak II	Start Date	06/01/2021	
Instrument S/N	8530134215	Start Time	07:34:04	
		Stop Date	06/01/2021	
		Stop Time	16:04:04	
			0:08:30:00	
		Logging Interval	900 seconds	

Statistics				
	AEROSOL			
Avg	0.018 mg/m^3			
Max	0.034 mg/m^3			
Max Date	06/01/2021			
Max Time	13:19:04			
Min	0.008 mg/m^3			
Min Date	06/01/2021			
Min Time	09:49:04			
TWA (8 hr)	0.018			
TWA Start Date	06/01/2021			
TWA Start Time	07:34:04			
TWA End Time	16:04:04			

	Test Data					
Data Point	Date	Time	AEROSOL mg/m^3			
1	06/01/2021	07:49:04	0.023			
2	06/01/2021	08:04:04	0.024			
3	06/01/2021	08:19:04	0.013			
4	06/01/2021	08:34:04	0.017			
5	06/01/2021	08:49:04	0.019			
6	06/01/2021	09:04:04	0.020			
7	06/01/2021	09:19:04	0.014			
8	06/01/2021	09:34:04	0.009			
9	06/01/2021	09:49:04	0.008			
10	06/01/2021	10:04:04	0.026			
11	06/01/2021	10:19:04	0.019			
12	06/01/2021	10:34:04	0.024			
13	06/01/2021	10:49:04	0.021			
14	06/01/2021	11:04:04	0.021			
15	06/01/2021	11:19:04	0.012			
16	06/01/2021	11:34:04	0.012			
17	06/01/2021	11:49:04	0.021			
18	06/01/2021	12:04:04	0.022			
19	06/01/2021	12:19:04	0.012			
20	06/01/2021	12:34:04	0.016			
21	06/01/2021	12:49:04	0.014			

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
22	06/01/2021	13:04:04	0.015		
23	06/01/2021	13:19:04	0.034		
24	06/01/2021	13:34:04	0.019		
25	06/01/2021	13:49:04	0.016		
26	06/01/2021	14:04:04	0.021		
27	06/01/2021	14:19:04	0.021		
28	06/01/2021	14:34:04	0.015		
29	06/01/2021	14:49:04	0.017		
30	06/01/2021	15:04:04	0.023		
31	06/01/2021	15:19:04	0.011		
32	06/01/2021	15:34:04	0.015		
33	06/01/2021	15:49:04	0.014		
34	06/01/2021	16:04:04	0.017		

21/06/01 07:34

Summary
Unit Name MiniRAE 3000(PGM-7320)
Unit SN 592-912859
Unit Firmw V2.22A
Running M Hygiene Mode
Datalog Mc Auto
Diagnostic No
Stop Reaso Power Down
Site ID RAE00000
User ID USER0000
Begin 6/1/2021 7:34
End 6/1/2021 16:17
Sample Per 900
Number of 34
Sensor PID(ppm)
Sensor SN S023030778A8
Measure TyMin; Avg; Max; Real
Span 100
Span 2 1000
Low Alarm 50
High Alarm 100
Over Alarm 15000
STEL Alarm 100
TWA Alarm 50
Measurem Isobutylene
Calibration 5/28/2021 11:05
Peak 0
Min 0
Average 0

Datalog

0						
			PID(ppm)	PID(ppm)	PID(ppm)	PID(ppm)
Index	Date/	Time	(Min)	(Avg)	(Max)	(Real)
	1	6/1/2021 7:49	9 0	0	0.1	0
	2	6/1/2021 8:04	4 0	0	0	0
	3	6/1/2021 8:19	9 0	0	0	0
	4	6/1/2021 8:3	4 0	0	0.1	0
	5	6/1/2021 8:49	9 0	0	0	0

	6	6/1/2021 9:04	0	0	0	0
	7	6/1/2021 9:19	0	0	0	0
	8	6/1/2021 9:34	0	0	0	0
	9	6/1/2021 9:49	0	0	0	0
	10	6/1/2021 10:04	0	0	0	0
	11	6/1/2021 10:19	0	0	0	0
	12	6/1/2021 10:34	0	0	0	0
	13	6/1/2021 10:49	0	0	0	0
	14	6/1/2021 11:04	0	0	0	0
	15	6/1/2021 11:19	0	0	0	0
	16	6/1/2021 11:34	0	0	0	0
	17	6/1/2021 11:49	0	0	0	0
	18	6/1/2021 12:04	0	0	0	0
	19	6/1/2021 12:19	0	0	0	0
	20	6/1/2021 12:34	0	0	0	0
	21	6/1/2021 12:49	0	0	0	0
	22	6/1/2021 13:04	0	0	0	0
	23	6/1/2021 13:19	0	0	0	0
	24	6/1/2021 13:34	0	0	0	0
	25	6/1/2021 13:49	0	0	0	0
	26	6/1/2021 14:04	0	0	0	0
	27	6/1/2021 14:19	0	0	0	0
	28	6/1/2021 14:34	0	0	0	0
	29	6/1/2021 14:49	0	0	0	0
	30	6/1/2021 15:04	0	0	0	0
	31	6/1/2021 15:19	0	0	0	0
	32	6/1/2021 15:34	0	0	0	0
	33	6/1/2021 15:49	0	0	0	0
	34	6/1/2021 16:04	0	0	0	0
Pe	eak		0	0	0.1	0
M	lin		0	0	0	0
A۱	verage		0	0	0	0

TWA/STEL

			PID(ppm)	PID(ppm)
Index	١	Date/Time	(TWA)	(STEL)
	1	6/1/2021 7:49	0	0
	2	6/1/2021 8:04	0	0
	3	6/1/2021 8:19	0	0
	4	6/1/2021 8:34	0	0
	5	6/1/2021 8:49	0	0
	6	6/1/2021 9:04	0	0
	7	6/1/2021 9:19	0	0
	8	6/1/2021 9:34	0	0
	9	6/1/2021 9:49	0	0
1	10	6/1/2021 10:04	0	0

11	6/1/2021 10:19	0	0
12	6/1/2021 10:34	0	0
13	6/1/2021 10:49	0	0
14	6/1/2021 11:04	0	0
15	6/1/2021 11:19	0	0
16	6/1/2021 11:34	0	0
17	6/1/2021 11:49	0	0
18	6/1/2021 12:04	0	0
19	6/1/2021 12:19	0	0
20	6/1/2021 12:34	0	0
21	6/1/2021 12:49	0	0
22	6/1/2021 13:04	0	0
23	6/1/2021 13:19	0	0
24	6/1/2021 13:34	0	0
25	6/1/2021 13:49	0	0
26	6/1/2021 14:04	0	0
27	6/1/2021 14:19	0	0
28	6/1/2021 14:34	0	0
29	6/1/2021 14:49	0	0
30	6/1/2021 15:04	0	0
31	6/1/2021 15:19	0	0
32	6/1/2021 15:34	0	0
33	6/1/2021 15:49	0	0
34	6/1/2021 16:04	0	0

Test 001

Instrument		Data Pro	perties
Model	DustTrak II	Start Date 06/01/2021	
Instrument S/N	8530114008	Start Time	07:39:05
		Stop Date 06/01/2021	
		Stop Time	16:09:05
		Total Time	0:08:30:00
		Logging Interval	900 seconds

Statistics				
	AEROSOL			
Avg	0.017 mg/m^3			
Max	0.035 mg/m^3			
Max Date	06/01/2021			
Max Time	07:54:05			
Min	0.013 mg/m^3			
Min Date	06/01/2021			
Min Time	11:39:05			
TWA (8 hr)	0.017			
TWA Start Date	06/01/2021			
TWA Start Time	07:39:05			
TWA End Time	16:09:05			

	Test Data					
Data Point	Date	Time	AEROSOL mg/m ³			
1	06/01/2021	07:54:05	0.035			
2	06/01/2021	08:09:05	0.024			
3	06/01/2021	08:24:05	0.018			
4	06/01/2021	08:39:05	0.025			
5	06/01/2021	08:54:05	0.018			
6	06/01/2021	09:09:05	0.020			
7	06/01/2021	09:24:05	0.022			
8	06/01/2021	09:39:05	0.015			
9	06/01/2021	09:54:05	0.016			
10	06/01/2021	10:09:05	0.017			
11	06/01/2021	10:24:05	0.014			
12	06/01/2021	10:39:05	0.014			
13	06/01/2021	10:54:05	0.015			
14	06/01/2021	11:09:05	0.019			
15	06/01/2021	11:24:05	0.014			
16	06/01/2021	11:39:05	0.013			
17	06/01/2021	11:54:05	0.015			
18	06/01/2021	12:09:05	0.014			
19	06/01/2021	12:24:05	0.015			
20	06/01/2021	12:39:05	0.015			
21	06/01/2021	12:54:05	0.013			

	Test Data						
Data Point	Date	Time	AEROSOL mg/m^3				
22	06/01/2021	13:09:05	0.014				
23	06/01/2021	13:24:05	0.015				
24	06/01/2021	13:39:05	0.017				
25	06/01/2021	13:54:05	0.016				
26	06/01/2021	14:09:05	0.016				
27	06/01/2021	14:24:05	0.019				
28	06/01/2021	14:39:05	0.015				
29	06/01/2021	14:54:05	0.016				
30	06/01/2021	15:09:05	0.017				
31	06/01/2021	15:24:05	0.022				
32	06/01/2021	15:39:05	0.017				
33	06/01/2021	15:54:05	0.019				
34	06/01/2021	16:09:05	0.021				

21/06/0		40 *******	******	*****	*****	******	****
Summa							
Unit Na Unit SN Unit Fire	59	iniRAE 3000(PGM 92-908132 2.22A	-7320)				
Datalog Diagnos	McAu tic No						
Site ID User ID		12345678 12345678					
Begin End Sample		6/1/2021 7:40 6/1/2021 16:20 900					
Number	r of	34					
	SN SO e TyAv	D(ppm) 123030521B4 123030521B4 100 1000 1000 50					
Over Ala STEL Ala TWA Ala	arm arm arm	100 15000 25 10 obutylene					
Calibrat Peak Min Average	ion	5/28/2021 12:05 0 0 0					
****** Datalog		******					****
Index	Da 1 2 3 4 5	6/1/2021 7:55 6/1/2021 8:10 6/1/2021 8:25 6/1/2021 8:40 6/1/2021 8:55	PID(ppm) (Avg) C C C))		O(ppm) eal) 0 0 0 0 0 0	

	6	6/1/2021 9:10	0	0	0
	7	6/1/2021 9:25	0	0	0
	8	6/1/2021 9:40	0	0	0
	9	6/1/2021 9:55	0	0.1	0
	10	6/1/2021 10:10	0	0.2	0
	11	6/1/2021 10:25	0	0	0
	12	6/1/2021 10:40	0	0	0
	13	6/1/2021 10:55	0	0	0
	14	6/1/2021 11:10	0	0.1	0
	15	6/1/2021 11:25	0	0	0
	16	6/1/2021 11:40	0	0.1	0
	17	6/1/2021 11:55	0	0.1	0
	18	6/1/2021 12:10	0	0	0
	19	6/1/2021 12:25	0	0.2	0
	20	6/1/2021 12:40	0	0	0
	21	6/1/2021 12:55	0	0	0
	22	6/1/2021 13:10	0	0	0
	23	6/1/2021 13:25	0	0	0
	24	6/1/2021 13:40	0	0.1	0
	25	6/1/2021 13:55	0	0.1	0
	26	6/1/2021 14:10	0	0	0
	27	6/1/2021 14:25	0	0	0
	28	6/1/2021 14:40	0	0	0
	29	6/1/2021 14:55	0	0	0
	30	6/1/2021 15:10	0	0.1	0
	31	6/1/2021 15:25	0	0.1	0
	32	6/1/2021 15:40	0	0	0
	33	6/1/2021 15:55	0	0	0
	34	6/1/2021 16:10	0	0.1	0
Peak			0	0.2	0
Min			0	0	0
Averag	e		0	0	0

TWA/STEL

			PID(ppm)	PID(ppm)
Index		Date/Time	(TWA)	(STEL)
	1	6/1/2021 7:55	0	0
	2	6/1/2021 8:10	0	0
	3	6/1/2021 8:25	0	0
	4	6/1/2021 8:40	0	0
	5	6/1/2021 8:55	0	0
	6	6/1/2021 9:10	0	0
	7	6/1/2021 9:25	0	0
	8	6/1/2021 9:40	0	0
	9	6/1/2021 9:55	0	0
	10	6/1/2021 10:10	0	0

11	6/1/2021 10:25	0	0
12	6/1/2021 10:40	0	0
13	6/1/2021 10:55	0	0
14	6/1/2021 11:10	0	0
15	6/1/2021 11:25	0	0
16	6/1/2021 11:40	0	0
17	6/1/2021 11:55	0	0
18	6/1/2021 12:10	0	0
19	6/1/2021 12:25	0	0
20	6/1/2021 12:40	0	0
21	6/1/2021 12:55	0	0
22	6/1/2021 13:10	0	0
23	6/1/2021 13:25	0	0
24	6/1/2021 13:40	0	0
25	6/1/2021 13:55	0	0
26	6/1/2021 14:10	0	0
27	6/1/2021 14:25	0	0
28	6/1/2021 14:40	0	0
29	6/1/2021 14:55	0	0
30	6/1/2021 15:10	0	0
31	6/1/2021 15:25	0	0
32	6/1/2021 15:40	0	0
33	6/1/2021 15:55	0	0
34	6/1/2021 16:10	0	0

Datalog

Index	Date	e/Time	PID(ppm) (Min)	PID(ppm) (Avg)	PID(ppm) (Max)	PID(ppm) (Real)
	1	6/2/2021 7:37	0	0	0	0
	2	6/2/2021 7:52	0	0	0	0
	3	6/2/2021 8:07	0	0	0	0
	4	6/2/2021 8:22	0	0	0	0
	5	6/2/2021 8:37	0	0	0	0

6/2/2021 8:52	0	0	0	0
6/2/2021 9:07	0	0	0	0
6/2/2021 9:22	0	0	0	0
6/2/2021 9:37	0	0	0	0
6/2/2021 9:52	0	0	0	0
6/2/2021 10:07	0	0	0	0
6/2/2021 10:22	0	0	0	0
6/2/2021 10:37	0	0	0	0
6/2/2021 10:52	0	0	0	0
6/2/2021 11:07	0	0	0	0
6/2/2021 11:22	0	0	0	0
6/2/2021 11:37	0	0	0	0
6/2/2021 11:52	0	0	0	0
6/2/2021 12:07	0	0	0	0
6/2/2021 12:22	0	0	0	0
6/2/2021 12:37	0	0	0	0
6/2/2021 12:52	0	0	0	0
6/2/2021 13:07	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
	6/2/2021 9:07 6/2/2021 9:22 6/2/2021 9:37 6/2/2021 9:52 6/2/2021 10:07 6/2/2021 10:22 6/2/2021 10:52 6/2/2021 11:07 6/2/2021 11:07 6/2/2021 11:37 6/2/2021 11:52 6/2/2021 12:07 6/2/2021 12:07 6/2/2021 12:22 6/2/2021 12:37 6/2/2021 12:52	6/2/2021 9:07	6/2/2021 9:07	6/2/2021 9:07

TWA/STEL

1 117 1, 31 LL	•		
		PID(ppm)	PID(ppm)
Index	Date/Time	(TWA)	(STEL)
1	6/2/2021 7:37	0	0
2	6/2/2021 7:52	0	0
3	6/2/2021 8:07	0	0
4	6/2/2021 8:22	0	0
į	6/2/2021 8:37	0	0
6	6/2/2021 8:52	0	0
7	6/2/2021 9:07	0	0
8	6/2/2021 9:22	0	0
g	6/2/2021 9:37	0	0
10	6/2/2021 9:52	0	0
11	6/2/2021 10:07	0	0
12	6/2/2021 10:22	0	0
13	6/2/2021 10:37	0	0
14	6/2/2021 10:52	0	0
15	6/2/2021 11:07	0	0
16	6/2/2021 11:22	0	0
17	6/2/2021 11:37	0	0
18	6/2/2021 11:52	0	0
19	6/2/2021 12:07	0	0
20	6/2/2021 12:22	0	0
21	6/2/2021 12:37	0	0

22 6/2/2021 12:52 0 0 23 6/2/2021 13:07 0 0

21/06/02 1	.3:16 ********	******	*****	******	*****
Summary					
	MiniRAE 3000(PG 592-912859 V2.22A	iM-7320)			
Datalog Mo					
Diagnostic Stop Reaso	No Power Down				
Site ID User ID					
	6/2/2021 13:16				
End	6/2/2021 13:42				
Sample Per					
Number of	1	•			
Sensor					
Sensor SN	S023030778A8				
Measure T	Min; Avg; Max; R	eal			
Span	100)			
Span 2	1000)			
Low Alarm	50)			
High Alarm	100)			
Over Alarm	15000)			
STEL Alarm	100)			
TWA Alarm	50)			
Measurem	Isobutylene				
Calibration	5/28/2021 11:05	I			
Peak	0)			
Min	0)			
Average	0)			
******	******	******	******	******	*****
Datalog					
J		PID(ppm	ı) PID(pp	m) PID(pp	om) PID(ppm)
Index	Date/Time	(Min)	(Avg)	(Max)	
1		-	0	0 ′	0 0
Peak			0	0	0 0
Min			0	0	0 0
Average			0	0	0 0
-					

TWA/STEL

PID(ppm) PID(ppm)

Index Date/Time (TWA) (STEL)
1 6/2/2021 13:31 0 0

Test 002

Instru	ment	Data Prop	erties
Model	DustTrak II	Start Date	06/02/2021
Instrument S/N	8530114008	Start Time	07:17:37
		Stop Date	06/02/2021
		Stop Time	13:32:37
		Total Time	0:06:15:00
		Logging Interval	900 seconds

Statistics		
	AEROSOL	
Avg	0.022 mg/m^3	
Max	0.046 mg/m^3	
Max Date	06/02/2021	
Max Time	08:02:37	
Min	0.013 mg/m^3	
Min Date	06/02/2021	
Min Time	11:32:37	
TWA (8 hr)	0.017	
TWA Start Date	06/02/2021	
TWA Start Time	07:17:37	
TWA End Time	13:32:37	

	Test Data					
Data Point	Date	Time	AEROSOL mg/m^3			
1	06/02/2021	07:32:37	0.039			
2	06/02/2021	07:47:37	0.033			
3	06/02/2021	08:02:37	0.046			
4	06/02/2021	08:17:37	0.036			
5	06/02/2021	08:32:37	0.029			
6	06/02/2021	08:47:37	0.039			
7	06/02/2021	09:02:37	0.019			
8	06/02/2021	09:17:37	0.017			
9	06/02/2021	09:32:37	0.017			
10	06/02/2021	09:47:37	0.016			
11	06/02/2021	10:02:37	0.015			
12	06/02/2021	10:17:37	0.015			
13	06/02/2021	10:32:37	0.014			
14	06/02/2021	10:47:37	0.016			
15	06/02/2021	11:02:37	0.014			
16	06/02/2021	11:17:37	0.015			
17	06/02/2021	11:32:37	0.013			
18	06/02/2021	11:47:37	0.014			
19	06/02/2021	12:02:37	0.015			
20	06/02/2021	12:17:37	0.014			
21	06/02/2021	12:32:37	0.014			

Test Data					
Data Point	Date	Time	AEROSOL mg/m^3		
22	06/02/2021	12:47:37	0.023		
23	06/02/2021	13:02:37	0.022		
24	06/02/2021	13:17:37	0.025		
25	06/02/2021	13:32:37	0.023		

21/06/0		19 *******	*****	****	*****	*****	*****
Summai	ſy						
Unit SN	59	iniRAE 3000(PGM 2-908132	I-7320)				
Unit Firr		2.22A 					
Running Datalog Diagnos Stop Rea	M Hy Mc Au tic No aso Po	giene Mode uto					
Site ID		12345678					
		12345678 					
_		6/2/2021 7:19					
		6/2/2021 13:45 900					
Sample Number		25					
	SN SO	 D(ppm) 23030521B4 g; Max; Real					
Span		100					
Span 2		1000					
Low Ala		50					
High Ala		100					
Over Ala		15000					
TWA Ala		25 10					
		obutylene					
		5/28/2021 12:05					
Peak		0.1					
Min		0					
Average	!	0					
*****	****	******	*****	****	*****	******	******
Datalog							
			PID(ppm)	PID(ppm)	PID(ppm	n)
Index	Da	ate/Time	(Avg)	(Ma	x)	(Real)	
	1	6/2/2021 7:34			0.1		0
	2	6/2/2021 7:49	0		0		0

6/2/2021 8:04

6/2/2021 8:19

6/2/2021 8:34

0.1

0.1

	6	6/2/2021 8:49	0.1	0.1	0.1
	7	6/2/2021 9:04	0.1	0.1	0.1
	8	6/2/2021 9:19	0.1	0.1	0.1
	9	6/2/2021 9:34	0.1	0.1	0.1
	10	6/2/2021 9:49	0.1	0.1	0.1
	11	6/2/2021 10:04	0.1	0.1	0.1
	12	6/2/2021 10:19	0.1	0.1	0.1
	13	6/2/2021 10:34	0.1	0.1	0
	14	6/2/2021 10:49	0.1	0.1	0.1
	15	6/2/2021 11:04	0	0.1	0
	16	6/2/2021 11:19	0	0.1	0
	17	6/2/2021 11:34	0	0	0
	18	6/2/2021 11:49	0	0.1	0
	19	6/2/2021 12:04	0	0.1	0
	20	6/2/2021 12:19	0	0	0
	21	6/2/2021 12:34	0	0	0
	22	6/2/2021 12:49	0	0.1	0
	23	6/2/2021 13:04	0	0	0
	24	6/2/2021 13:19	0	0	0
	25	6/2/2021 13:34	0	0	0
Peak			0.1	0.1	0.1
Min			0	0	0
Aver	age		0	0.1	0

TWA/STEL

1 447 17 3				
			PID(ppm)	PID(ppm)
Index		Date/Time	(TWA)	(STEL)
	1	6/2/2021 7:34	0	0
	2	6/2/2021 7:49	0	0
	3	6/2/2021 8:04	0	0
	4	6/2/2021 8:19	0	0
	5	6/2/2021 8:34	0	0.1
	6	6/2/2021 8:49	0	0.2
	7	6/2/2021 9:04	0	0.2
	8	6/2/2021 9:19	0	0.2
	9	6/2/2021 9:34	0	0.2
	10	6/2/2021 9:49	0	0.2
	11	6/2/2021 10:04	0	0.2
	12	6/2/2021 10:19	0	0.2
	13	6/2/2021 10:34	0	0.1
	14	6/2/2021 10:49	0	0.1
	15	6/2/2021 11:04	0	0.1
	16	6/2/2021 11:19	0	0
	17	6/2/2021 11:34	0	0
	18	6/2/2021 11:49	0	0
	19	6/2/2021 12:04	0	0

20	6/2/2021 12:19	0	0
21	6/2/2021 12:34	0	0
22	6/2/2021 12:49	0	0
23	6/2/2021 13:04	0	0
24	6/2/2021 13:19	0	0
25	6/2/2021 13:34	0	0

Test 002

Instru	ment	Data Prop	erties
Model	DustTrak II	Start Date	06/02/2021
Instrument S/N	8530134215	Start Time	07:21:02
		Stop Date	06/02/2021
		Stop Time	13:06:02
		Total Time	0:05:45:00
		Logging Interval	900 seconds

Statistics				
	AEROSOL			
Avg	0.019 mg/m^3			
Max	0.045 mg/m^3			
Max Date	06/02/2021			
Max Time	07:36:02			
Min	0.012 mg/m^3			
Min Date	06/02/2021			
Min Time	10:21:02			
TWA (8 hr)	0.014			
TWA Start Date	06/02/2021			
TWA Start Time	07:21:02			
TWA End Time	13:06:02			

		Test Data	
Data Point	Date	Time	AEROSOL mg/m^3
1	06/02/2021	07:36:02	0.045
2	06/02/2021	07:51:02	0.036
3	06/02/2021	08:06:02	0.032
4	06/02/2021	08:21:02	0.023
5	06/02/2021	08:36:02	0.017
6	06/02/2021	08:51:02	0.022
7	06/02/2021	09:06:02	0.015
8	06/02/2021	09:21:02	0.013
9	06/02/2021	09:36:02	0.013
10	06/02/2021	09:51:02	0.013
11	06/02/2021	10:06:02	0.013
12	06/02/2021	10:21:02	0.012
13	06/02/2021	10:36:02	0.014
14	06/02/2021	10:51:02	0.033
15	06/02/2021	11:06:02	0.013
16	06/02/2021	11:21:02	0.013
17	06/02/2021	11:36:02	0.013
18	06/02/2021	11:51:02	0.015
19	06/02/2021	12:06:02	0.015
20	06/02/2021	12:21:02	0.015
21	06/02/2021	12:36:02	0.016
22	06/02/2021	12:51:02	0.016
23	06/02/2021	13:06:02	0.018

Test 003

Instrument		Data Properties	
Model	DustTrak II	Start Date	06/02/2021
Instrument S/N	8530134215	Start Time	13:14:56
		Stop Date	06/02/2021
		Stop Time	13:29:56
		Total Time	0:00:15:00

Statistics			
	AEROSOL		
Avg	0.018 mg/m^3		
Max	0.018 mg/m^3		
Max Date	06/02/2021		
Max Time	13:29:56		
Min	0.018 mg/m^3		
Min Date	06/02/2021		
Min Time	13:29:56		
TWA (8 hr)	0.001		
TWA Start Date	06/02/2021		
TWA Start Time	13:14:56		
TWA End Time	13:29:56		

Test Data			
Data Point Date Time AEROSOL mg/m^3			
1	06/02/2021	13:29:56	0.018

21/05/1					
Summai		******	****	*****	*******
Unit Nai Unit SN Unit Firr		 MiniRAE 3000(PGM 592-907575 V2.22A	 1-7320)		
Datalog Diagnos	Μα tic				
Site ID		12345678			
User ID		12345678			
_		5/10/2021 7:32			
		5/10/2021 16:56			
Sample Number		900 37			
Sensor S	SN	PID(ppm) S023030629W1			
	e Ty	Avg; Max; Real			
Span Span 2		100 1000			
Low Ala	rm	50			
High Ala	ırm	100			
Over Ala	arm	15000			
STEL Ala		100			
TWA Ala		50			
Calibrat		Isobutylene 5/7/2021 8:56			
Peak	1011	0.3			
Min		0.9			
Average	<u> </u>	0			
*****	***	*****	*****	******	******
Datalog					
Index		Date/Time	PID(ppm) (Avg)	PID(ppm) (Max)	PID(ppm) (Real)
acx	1	5/10/2021 7:47	(,, vg)		_
	2	5/10/2021 8:02	0	_	_
	3	5/10/2021 8:17	0	C	0

5/10/2021 8:32

5/10/2021 8:47

0.1

6	5/10/2021 9:02	0	0	0
7	5/10/2021 9:17	0	0.4	0
8	5/10/2021 9:32	0	0.1	0.1
9	5/10/2021 9:47	0.1	0.7	0
10	5/10/2021 10:02	0	0.3	0
11	5/10/2021 10:17	0	0.2	0
12	5/10/2021 10:32	0	0.1	0
13	5/10/2021 10:47	0	0.9	0
14	5/10/2021 11:02	0	0.1	0
15	5/10/2021 11:17	0	0.1	0
16	5/10/2021 11:32	0	0.2	0
17	5/10/2021 11:47	0	0.1	0
18	5/10/2021 12:02	0	0.1	0
19	5/10/2021 12:17	0	0	0
20	5/10/2021 12:32	0	0.8	0
21	5/10/2021 12:47	0	0	0
22	5/10/2021 13:02	0	0	0
23	5/10/2021 13:17	0	0	0
24	5/10/2021 13:32	0	0	0
25	5/10/2021 13:47	0	0.1	0
26	5/10/2021 14:02	0	0	0
27	5/10/2021 14:17	0	0	0
28	5/10/2021 14:32	0	0	0
29	5/10/2021 14:47	0	0.2	0
30	5/10/2021 15:02	0	0.2	0
31	5/10/2021 15:17	0.1	1.1	0.1
32	5/10/2021 15:32	0.2	1.1	0.3
33	5/10/2021 15:47	0.2	0.5	0.1
34	5/10/2021 16:02	0.1	0.1	0.1
35	5/10/2021 16:17	0	0.1	0
36	5/10/2021 16:32	0	0	0
37	5/10/2021 16:47	0	0.1	0
Peak		0.2	1.1	0.3
Min		0	0	0
Average		0	0.2	0

TWA/STEL

			PID(ppm)	PID(ppm)
Index		Date/Time	(TWA)	(STEL)
	1	5/10/2021 7:47	0	0
	2	5/10/2021 8:02	0	0
	3	5/10/2021 8:17	0	0
	4	5/10/2021 8:32	0	0
	5	5/10/2021 8:47	0	0
	6	5/10/2021 9:02	0	0
	7	5/10/2021 9:17	0	0

8	5/10/2021 9:32	0	0.1
9	5/10/2021 9:47	0	0.1
10	5/10/2021 10:02	0	0
11	5/10/2021 10:17	0	0
12	5/10/2021 10:32	0	0
13	5/10/2021 10:47	0	0
14	5/10/2021 11:02	0	0
15	5/10/2021 11:17	0	0
16	5/10/2021 11:32	0	0
17	5/10/2021 11:47	0	0
18	5/10/2021 12:02	0	0
19	5/10/2021 12:17	0	0
20	5/10/2021 12:32	0	0
21	5/10/2021 12:47	0	0
22	5/10/2021 13:02	0	0
23	5/10/2021 13:17	0	0
24	5/10/2021 13:32	0	0
25	5/10/2021 13:47	0	0
26	5/10/2021 14:02	0	0
27	5/10/2021 14:17	0	0
28	5/10/2021 14:32	0	0
29	5/10/2021 14:47	0	0
30	5/10/2021 15:02	0	0
31	5/10/2021 15:17	0	0.1
32	5/10/2021 15:32	0	0.4
33	5/10/2021 15:47	0	0.4
34	5/10/2021 16:02	0	0.2
35	5/10/2021 16:17	0	0.1
36	5/10/2021 16:32	0	0
37	5/10/2021 16:47	0	0

Test 001

Instrument		Data Properties	
Model	DustTrak II	Start Date 05/10/2021	
Instrument S/N	8530134215	Start Time	07:23:08
		Stop Date	05/10/2021
		Stop Time	16:38:08
		Total Time	0:09:15:00
		Logging Interval	900 seconds

Statistics				
	AEROSOL			
Avg	0.005 mg/m^3			
Max	0.016 mg/m^3			
Max Date	05/10/2021			
Max Time	12:08:08			
Min	0.001 mg/m^3			
Min Date	05/10/2021			
Min Time	09:38:08			
TWA (8 hr)	0.005			
TWA Start Date	05/10/2021			
TWA Start Time	07:23:08			
TWA End Time	16:38:08			

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
1	05/10/2021	07:38:08	0.009		
2	05/10/2021	07:53:08	0.005		
3	05/10/2021	08:08:08	0.006		
4	05/10/2021	08:23:08	0.007		
5	05/10/2021	08:38:08	0.008		
6	05/10/2021	08:53:08	0.002		
7	05/10/2021	09:08:08	0.003		
8	05/10/2021	09:23:08	0.004		
9	05/10/2021	09:38:08	0.001		
10	05/10/2021	09:53:08	0.001		
11	05/10/2021	10:08:08	0.001		
12	05/10/2021	10:23:08	0.003		
13	05/10/2021	10:38:08	0.002		
14	05/10/2021	10:53:08	0.002		
15	05/10/2021	11:08:08	0.003		
16	05/10/2021	11:23:08	0.001		
17	05/10/2021	11:38:08	0.001		
18	05/10/2021	11:53:08	0.006		
19	05/10/2021	12:08:08	0.016		
20	05/10/2021	12:23:08	0.005		
21	05/10/2021	12:38:08	0.008		

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
22	05/10/2021	12:53:08	0.006		
23	05/10/2021	13:08:08	0.007		
24	05/10/2021	13:23:08	0.009		
25	05/10/2021	13:38:08	0.005		
26	05/10/2021	13:53:08	0.005		
27	05/10/2021	14:08:08	0.003		
28	05/10/2021	14:23:08	0.004		
29	05/10/2021	14:38:08	0.004		
30	05/10/2021	14:53:08	0.004		
31	05/10/2021	15:08:08	0.010		
32	05/10/2021	15:23:08	0.003		
33	05/10/2021	15:38:08	0.004		
34	05/10/2021	15:53:08	0.004		
35	05/10/2021	16:08:08	0.004		
36	05/10/2021	16:23:08	0.005		
37	05/10/2021	16:38:08	0.006		

======	========	=======			
21/05/10 0)7:22 *******	*****	*******	*****	*****
Summary					
	MiniRAE 3000(PGI 592-907579 V2.22A	M-7320)			
Datalog Mo Diagnostic					
Site ID User ID	12345678				
Begin					
Sensor Sensor SN Measure T Span Span 2 Low Alarm High Alarm Over Alarm STEL Alarm TWA Alarm	S023030132P2 Avg; Max; Real 100 1000 50 1000 15000 100 50 Isobutylene				
Datalog Index	5/10/2021 7:52 5/10/2021 8:07 5/10/2021 8:22	PID(ppm) (Avg) 0 0 0		PID(ppm (Real)	

6	5/10/2021 8:52	0	0	0
7	5/10/2021 9:07	0	0	0
8	5/10/2021 9:22	0	0	0
9	5/10/2021 9:37	0	0	0
10	5/10/2021 9:52	0	0	0
11	5/10/2021 10:07	0	0	0
12	5/10/2021 10:22	0	0	0
13	5/10/2021 10:37	0	0	0
14	5/10/2021 10:52	0	0	0
15	5/10/2021 11:07	0	0	0
16	5/10/2021 11:22	0	0	0
17	5/10/2021 11:37	0	0	0
18	5/10/2021 11:52	0	0.4	0
19	5/10/2021 12:07	0	0	0
20	5/10/2021 12:22	0	0	0
21	5/10/2021 12:37	0	0	0
22	5/10/2021 12:52	0	0	0
23	5/10/2021 13:07	0	0	0
24	5/10/2021 13:22	0	0.1	0
25	5/10/2021 13:37	0	0	0
26	5/10/2021 13:52	0	0	0
27	5/10/2021 14:07	0	0	0
28	5/10/2021 14:22	0	0	0
29	5/10/2021 14:37	0	0	0
30	5/10/2021 14:52	0	0	0
31	5/10/2021 15:07	0	0.4	0
32	5/10/2021 15:22	0	0	0
33	5/10/2021 15:37	0	0	0
34	5/10/2021 15:52	0	0	0
35	5/10/2021 16:07	0	0	0
Peak		0	0.4	0
Min		0	0	0
Average		0	0	0

TWA/STEL

			PID(ppm)	PID(ppm)
Index	I	Date/Time	(TWA)	(STEL)
	1	5/10/2021 7:37	0	0
	2	5/10/2021 7:52	0	0
	3	5/10/2021 8:07	0	0
	4	5/10/2021 8:22	0	0
	5	5/10/2021 8:37	0	0
	6	5/10/2021 8:52	0	0
	7	5/10/2021 9:07	0	0
	8	5/10/2021 9:22	0	0
	9	5/10/2021 9:37	0	0

10	5/10/2021 9:52	0	0
11	5/10/2021 10:07	0	0
12	5/10/2021 10:22	0	0
13	5/10/2021 10:37	0	0
14	5/10/2021 10:52	0	0
15	5/10/2021 11:07	0	0
16	5/10/2021 11:22	0	0
17	5/10/2021 11:37	0	0
18	5/10/2021 11:52	0	0
19	5/10/2021 12:07	0	0
20	5/10/2021 12:22	0	0
21	5/10/2021 12:37	0	0
22	5/10/2021 12:52	0	0
23	5/10/2021 13:07	0	0
24	5/10/2021 13:22	0	0
25	5/10/2021 13:37	0	0
26	5/10/2021 13:52	0	0
27	5/10/2021 14:07	0	0
28	5/10/2021 14:22	0	0
29	5/10/2021 14:37	0	0
30	5/10/2021 14:52	0	0
31	5/10/2021 15:07	0	0
32	5/10/2021 15:22	0	0
33	5/10/2021 15:37	0	0
34	5/10/2021 15:52	0	0
35	5/10/2021 16:07	0	0

TrackPro Report Page 1 of 2

Test 001

Instrument		Data Properties	
Model	DustTrak II	Start Date	05/10/2021
Instrument S/N	8530114008	Start Time	07:32:23
		Stop Date	05/10/2021
		Stop Time	16:47:23
		Total Time	0:09:15:00
		Logging Interval	900 seconds

Statistics			
	AEROSOL		
Avg	0.012 mg/m^3		
Max	0.080 mg/m^3		
Max Date	05/10/2021		
Max Time	15:47:23		
Min	0.004 mg/m^3		
Min Date	05/10/2021		
Min Time	12:47:23		
TWA (8 hr)	0.011		
TWA Start Date	05/10/2021		
TWA Start Time	07:32:23		
TWA End Time	16:47:23		

Test Data				
Data Point	Date	Time	AEROSOL mg/m^3	
1	05/10/2021	07:47:23	0.010	
2	05/10/2021	08:02:23	0.008	
3	05/10/2021	08:17:23	0.007	
4	05/10/2021	08:32:23	0.006	
5	05/10/2021	08:47:23	0.007	
6	05/10/2021	09:02:23	0.006	
7	05/10/2021	09:17:23	0.007	
8	05/10/2021	09:32:23	0.009	
9	05/10/2021	09:47:23	0.020	
10	05/10/2021	10:02:23	0.019	
11	05/10/2021	10:17:23	0.020	
12	05/10/2021	10:32:23	0.009	
13	05/10/2021	10:47:23	0.010	
14	05/10/2021	11:02:23	0.008	
15	05/10/2021	11:17:23	0.012	
16	05/10/2021	11:32:23	0.020	
17	05/10/2021	11:47:23	0.007	
18	05/10/2021	12:02:23	0.005	
19	05/10/2021	12:17:23	0.005	
20	05/10/2021	12:32:23	0.005	
21	05/10/2021	12:47:23	0.004	

TrackPro Report Page 2 of 2

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
22	05/10/2021	13:02:23	0.006		
23	05/10/2021	13:17:23	0.006		
24	05/10/2021	13:32:23	0.006		
25	05/10/2021	13:47:23	0.007		
26	05/10/2021	14:02:23	0.006		
27	05/10/2021	14:17:23	0.006		
28	05/10/2021	14:32:23	0.005		
29	05/10/2021	14:47:23	0.009		
30	05/10/2021	15:02:23	0.009		
31	05/10/2021	15:17:23	0.020		
32	05/10/2021	15:32:23	0.062		
33	05/10/2021	15:47:23	0.080		
34	05/10/2021	16:02:23	0.007		
35	05/10/2021	16:17:23	0.006		
36	05/10/2021	16:32:23	0.008		
37	05/10/2021	16:47:23	0.010		

21/05/1		55 ******	*****	*****	*****	******
Summar						
Unit Nar Unit SN Unit Firr	59	iniRAE 3000(PGM 92-907575 2.22A	 1-7320)			
Datalog Diagnos	McAu tic No					
Site ID User ID		12345678 12345678				
Begin End	,	5/11/2021 6:55 5/11/2021 17:27 900		- 		
Sample Number	of	42				
Sensor Sensor S Measure Span Span 2 Low Alar High Ala Over Ala STEL Ala TWA Ala Measure Calibrati Peak Min Average	PI SN SO TYAN rm rm rm rm arm em Iso	D(ppm) 123030629W1 100 1000 50 1000 15000 100 50 bbutylene 5/7/2021 8:56 0 0			****	*****
******* Datalog	****	******	****	*****	****	****
Index	Da 1 2 3 4 5	ate/Time 5/11/2021 7:10 5/11/2021 7:25 5/11/2021 7:40 5/11/2021 7:55 5/11/2021 8:10	PID(ppm) (Avg) 0 0 0		(Real))))	0 0 0 0 0

6	5/11/2021 8:25	0	0	0
7	5/11/2021 8:40	0	0	0
8	5/11/2021 8:55	0	0	0
9	5/11/2021 9:10	0	0	0
10	5/11/2021 9:25	0	0	0
11	5/11/2021 9:40	0	0	0
12	5/11/2021 9:55	0	0	0
13	5/11/2021 10:10	0	0	0
14	5/11/2021 10:25	0	0	0
15	5/11/2021 10:40	0	0	0
16	5/11/2021 10:55	0	0	0
17	5/11/2021 11:10	0	0	0
18	5/11/2021 11:25	0	0	0
19	5/11/2021 11:40	0	0	0
20	5/11/2021 11:55	0	0	0
21	5/11/2021 12:10	0	0	0
22	5/11/2021 12:25	0	0	0
23	5/11/2021 12:40	0	0	0
24	5/11/2021 12:55	0	0	0
25	5/11/2021 13:10	0	0	0
26	5/11/2021 13:25	0	0	0
27	5/11/2021 13:40	0	0	0
28	5/11/2021 13:55	0	0	0
29	5/11/2021 14:10	0	0	0
30	5/11/2021 14:25	0	0	0
31	5/11/2021 14:40	0	0	0
32	5/11/2021 14:55	0	0	0
33	5/11/2021 15:10	0	0	0
34	5/11/2021 15:25	0	0	0
35	5/11/2021 15:40	0	0	0
36	5/11/2021 15:55	0	0	0
37	5/11/2021 16:10	0	0	0
38	5/11/2021 16:25	0	0	0
39	5/11/2021 16:40	0	0	0
40	5/11/2021 16:55	0	0	0
41	5/11/2021 17:10	0	0	0
42	5/11/2021 17:25	0	0	0
Peak		0	0	0
Min		0	0	0
Average		0	0	0

TWA/STEL

			PID(ppm)	PID(ppm	1)
Index	D	ate/Time	(TWA)	(STEL)	
	1	5/11/2021 7:10	C)	0
	2	5/11/2021 7:25	C)	0

3	5/11/2021 7:40	0	0
4	5/11/2021 7:55	0	0
5	5/11/2021 8:10	0	0
6	5/11/2021 8:25	0	0
7	5/11/2021 8:40	0	0
8	5/11/2021 8:55	0	0
9	5/11/2021 9:10	0	0
10	5/11/2021 9:25	0	0
11	5/11/2021 9:40	0	0
12	5/11/2021 9:55	0	0
13	5/11/2021 10:10	0	0
14	5/11/2021 10:25	0	0
15	5/11/2021 10:40	0	0
16	5/11/2021 10:55	0	0
17	5/11/2021 11:10	0	0
18	5/11/2021 11:25	0	0
19	5/11/2021 11:40	0	0
20	5/11/2021 11:55	0	0
21	5/11/2021 12:10	0	0
22	5/11/2021 12:25	0	0
23	5/11/2021 12:40	0	0
24	5/11/2021 12:55	0	0
25	5/11/2021 13:10	0	0
26	5/11/2021 13:25	0	0
27	5/11/2021 13:40	0	0
28	5/11/2021 13:55	0	0
29	5/11/2021 14:10	0	0
30	5/11/2021 14:25	0	0
31	5/11/2021 14:40	0	0
32	5/11/2021 14:55	0	0
33	5/11/2021 15:10	0	0
34	5/11/2021 15:25	0	0
35	5/11/2021 15:40	0	0
36	5/11/2021 15:55	0	0
37	5/11/2021 16:10	0	0
38	5/11/2021 16:25	0	0
39	5/11/2021 16:40	0	0
40	5/11/2021 16:55	0	0
41	5/11/2021 17:10	0	0
42	5/11/2021 17:25	0	0

TrackPro Report Page 1 of 2

Test 002

Instrument		Data Properties	
Model	DustTrak II	Start Date 05/11/2021	
Instrument S/N	8530134215	Start Time	07:00:07
		Stop Date	05/11/2021
		Stop Time	17:15:07
		Total Time	0:10:15:00
		Logging Interval	900 seconds

Statistics			
	AEROSOL		
Avg	0.003 mg/m^3		
Max	0.014 mg/m^3		
Max Date	05/11/2021		
Max Time	10:15:07		
Min	0.000 mg/m^3		
Min Date	05/11/2021		
Min Time	07:45:07		
TWA (8 hr)	0.003		
TWA Start Date	05/11/2021		
TWA Start Time	07:00:07		
TWA End Time	17:15:07		

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
1	05/11/2021	07:15:07	0.001		
2	05/11/2021	07:30:07	0.001		
3	05/11/2021	07:45:07	0.000		
4	05/11/2021	08:00:07	0.002		
5	05/11/2021	08:15:07	0.001		
6	05/11/2021	08:30:07	0.001		
7	05/11/2021	08:45:07	0.001		
8	05/11/2021	09:00:07	0.001		
9	05/11/2021	09:15:07	0.002		
10	05/11/2021	09:30:07	0.002		
11	05/11/2021	09:45:07	0.001		
12	05/11/2021	10:00:07	0.002		
13	05/11/2021	10:15:07	0.014		
14	05/11/2021	10:30:07	0.005		
15	05/11/2021	10:45:07	0.003		
16	05/11/2021	11:00:07	0.002		
17	05/11/2021	11:15:07	0.002		
18	05/11/2021	11:30:07	0.007		
19	05/11/2021	11:45:07	0.006		
20	05/11/2021	12:00:07	0.011		
21	05/11/2021	12:15:07	0.006		

about:blank 6/2/2021

TrackPro Report Page 2 of 2

	Test Data				
Data Point	Date	Time	AEROSOL mg/m^3		
22	05/11/2021	12:30:07	0.001		
23	05/11/2021	12:45:07	0.005		
24	05/11/2021	13:00:07	0.002		
25	05/11/2021	13:15:07	0.001		
26	05/11/2021	13:30:07	0.002		
27	05/11/2021	13:45:07	0.004		
28	05/11/2021	14:00:07	0.001		
29	05/11/2021	14:15:07	0.003		
30	05/11/2021	14:30:07	0.001		
31	05/11/2021	14:45:07	0.002		
32	05/11/2021	15:00:07	0.003		
33	05/11/2021	15:15:07	0.004		
34	05/11/2021	15:30:07	0.002		
35	05/11/2021	15:45:07	0.004		
36	05/11/2021	16:00:07	0.002		
37	05/11/2021	16:15:07	0.001		
38	05/11/2021	16:30:07	0.000		
39	05/11/2021	16:45:07	0.001		
40	05/11/2021	17:00:07	0.002		
41	05/11/2021	17:15:07	0.008		

about:blank 6/2/2021

21/05/11 0	7:00 *******		. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	*********** *
Summary	****	* * * * * * * * * * * * *	• • • • • • • • • • •	*****
Unit Name Unit SN Unit Firmw	MiniRAE 3000(PGM- 592-907579 V2.22A	7320)	-	
Datalog Mo Diagnostic Stop Reaso			-	
Site ID User ID	12345678 12345678			
	5/11/2021 7:00 5/11/2021 15:51 900 35		-	
Measure To Span Span 2 Low Alarm High Alarm Over Alarm STEL Alarm TWA Alarm	PID(ppm) S023030132P2 Avg; Max; Real 100 1000 50 15000 100 50 Isobutylene 5/7/2021 13:01 0		-	
******* Datalog Index	**************************************	PID(ppm) (Avg)	PID(ppm) (Max)	PID(ppm) (Real)

5/11/2021 7:30

5/11/2021 7:45

5/11/2021 8:00

5/11/2021 8:15

6	5/11/2021 8:30	0	0	0
7	5/11/2021 8:45	0	0	0
8	5/11/2021 9:00	0	0	0
9	5/11/2021 9:15	0	0	0
10	5/11/2021 9:30	0	0	0
11	5/11/2021 9:45	0	0	0
12	5/11/2021 10:00	0	0	0
13	5/11/2021 10:15	0	0	0
14	5/11/2021 10:30	0	0	0
15	5/11/2021 10:45	0	0	0
16	5/11/2021 11:00	0	0	0
17	5/11/2021 11:15	0	0	0
18	5/11/2021 11:30	0	0	0
19	5/11/2021 11:45	0	0	0
20	5/11/2021 12:00	0	0	0
21	5/11/2021 12:15	0	0	0
22	5/11/2021 12:30	0	0	0
23	5/11/2021 12:45	0	0	0
24	5/11/2021 13:00	0	0	0
25	5/11/2021 13:15	0	0	0
26	5/11/2021 13:30	0	0	0
27	5/11/2021 13:45	0	0	0
28	5/11/2021 14:00	0	0	0
29	5/11/2021 14:15	0	0	0
30	5/11/2021 14:30	0	0	0
31	5/11/2021 14:45	0	0	0
32	5/11/2021 15:00	0	0	0
33	5/11/2021 15:15	0	0	0
34	5/11/2021 15:30	0	0	0
35	5/11/2021 15:45	0	0	0
Peak		0	0	0
Min		0	0	0
Average		0	0	0

TWA/STEL

			PID(ppm)	PID(ppm)
Index		Date/Time	(TWA)	(STEL)
	1	5/11/2021 7:15	0	0
	2	5/11/2021 7:30	0	0
	3	5/11/2021 7:45	0	0
	4	5/11/2021 8:00	0	0
	5	5/11/2021 8:15	0	0
	6	5/11/2021 8:30	0	0
	7	5/11/2021 8:45	0	0
	8	5/11/2021 9:00	0	0
	9	5/11/2021 9:15	0	0

10	5/11/2021 9:30	0	0
11	5/11/2021 9:45	0	0
12	5/11/2021 10:00	0	0
13	5/11/2021 10:15	0	0
14	5/11/2021 10:30	0	0
15	5/11/2021 10:45	0	0
16	5/11/2021 11:00	0	0
17	5/11/2021 11:15	0	0
18	5/11/2021 11:30	0	0
19	5/11/2021 11:45	0	0
20	5/11/2021 12:00	0	0
21	5/11/2021 12:15	0	0
22	5/11/2021 12:30	0	0
23	5/11/2021 12:45	0	0
24	5/11/2021 13:00	0	0
25	5/11/2021 13:15	0	0
26	5/11/2021 13:30	0	0
27	5/11/2021 13:45	0	0
28	5/11/2021 14:00	0	0
29	5/11/2021 14:15	0	0
30	5/11/2021 14:30	0	0
31	5/11/2021 14:45	0	0
32	5/11/2021 15:00	0	0
33	5/11/2021 15:15	0	0
34	5/11/2021 15:30	0	0
35	5/11/2021 15:45	0	0

APPENDIX 3

September 30, 2021

Mr. Todd Caffoe, P.E. NYSDEC – Region 8 Department of Environmental Remediation 6274 East Avon Lima Road Avon, New York 14414

Re: Pressure Field Extension Readings - LaserShip Building

Former Photech Imaging Site

NYSDEC ERP Site #B00016, 1000 Driving Park Avenue, Rochester, New York

LaBella Project No. 2202121

Dear Mr. Caffoe:

LaBella Associates, D.P.C. (LaBella) is submitting this letter summarizing Pressure Field Extension Monitoring (PFE) readings that were collected for the Sub-Slab Depressurization System (SSDS) that was installed at the LaserShip Building located at the Former Photech Imaging Site at 1000 Driving Park Avenue in the City of Rochester, Monroe County, New York. The Site is a listed New York State Department of Environmental Conservation (NYSDEC) Environmental Restoration Program (ERP) Site #B00016.

PRESSURE FIELD EXTENSION DATA

The PFE data indicates the SSDS is providing adequate influence throughout the building footprint based on data collected on September 14, 2021. The monitoring work that was completed is summarized as follows:

- 1. A Qualified Environmental Professional as defined in Part 375 or a person who was a direct report to the NYS licensed PE of record for the site conducted all of the PFE testing.
- 2. The PFE monitoring was conducted when the building was substantially finished, with the exception of some minor interior and exterior cosmetic finishes.
- 3. PFE Monitoring was completed among nine (9) PFE monitoring points throughout the building, as depicted on attached Figure. PFE measurements indicated there was sufficient negative pressure (i.e. a minimum of -0.004 inches of water column) at each monitoring location, with the exception of monitoring points #2 and #5. Based on this a hammer drill was used to drill a nominal 3/8" hole through the floor the locations of monitoring points #2 and #5 as shown on the attached figure. PFE readings were collected at these locations on September 29, 2021 and indicated there was sufficient negative pressure at monitoring points #2 and #5. PFE readings are summarized in the table below:

Monitoring Point	Manual PFE Readings (Inches of Water Column)
1	-0.070
2	-0.020
3	-0.004

Monitoring Point	Manual PFE Readings (Inches of Water Column)
4	-0.030
5	-0.040
6	-0.054
7	-0.040
8	-0.051
9	-0.031

4. Each SSDS was connected a U-line manometer and audible alarm. Each U-line manometer indicated a pressure reading of approximately 0.75 inches of water column. Each audible alarm was tested by removing the tube from the audible alarm to confirm the audible alert was activated. Each audible alarm was noted to be working.

CONCLUSION

Based on the PFE results collected on September 14, 2021 and September 29, 2021, the SSDS is providing adequate influence throughout the building footprint.

CERTIFICATION

I Michael F. Pelychaty certify that I am currently an Qualified Environmental Professional as defined in 6 NYCRR Part 375 and that this Pressure Field Extension Monitoring Results was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and that all activities were performed in full accordance with the DER-approved work plan and any DER-approved modifications.

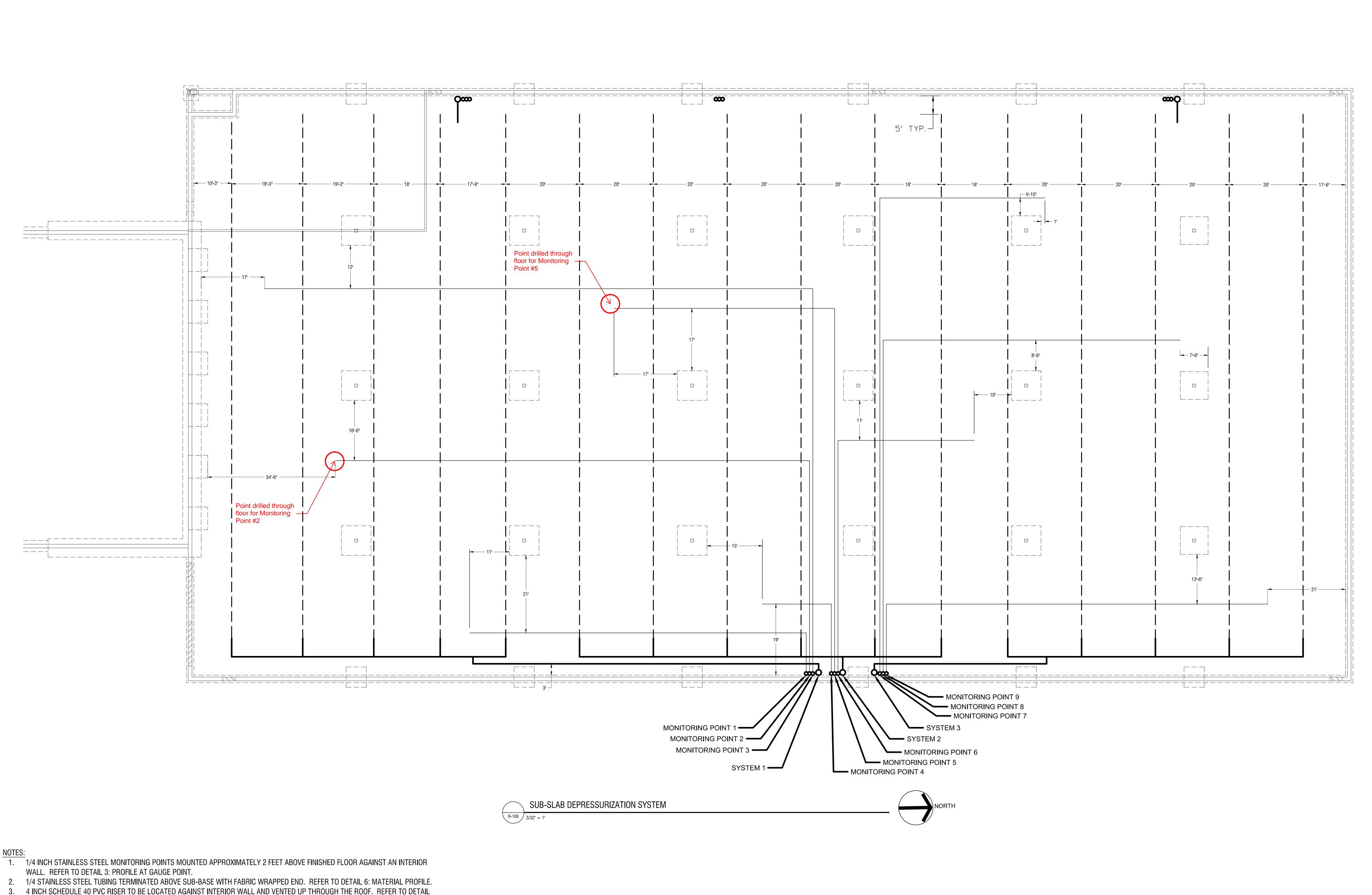
If you have any guestions please do not hesitate to contact me at 585-295-6253.

Respectfully submitted,

LaBella Associates

Michael F. Pelychaty, PG Environmental Project Manager

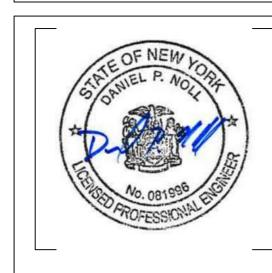
Attachment A - SSDS Layout and Monitoring Point Locations


Michael F. Pelychaty

I:\FSI General Contractors\2202121 - 1000 Driving Park SMP Assistance\Reports\SSDS Letter LaserShip\LTR.2021-09-25.Photech ERP Site B00016_SSDS LaserShip Building.docx

ATTACHMENT A

SSDS Layout and Monitoring Point Locations



- 4 INCH SCHEDULE 40 PVC RISER TO BE LOCATED AGAINST INTERIOR WALL AND VENTED UP THROUGH THE ROOF. REFER TO DETAIL 1: REAR END WALL.
- 4. 4 INCH SCHEDULE 40 PVC TO 4 INCH HDPE PERFORATED PIPE CONNECTION. REFER TO DETAIL 2: DETAIL AT HEADER.
- 4 INCH HDPE PIPE WRAPPED IN FABRIC AND PLACED IN PEA STONE TRENCH. REFER TO DETAIL 6: MATERIAL PROFILE
- MOVE PIPING AS NEEDED IN FIELD TO AVOID PLUMBING.
- INSTALL 4" CAP AT EACH VAPOR COLLECTION PIPE TERMINATION.
- 8. ALL SUB-SLAB VAPOR COLLECTION PIPING TO BE GEOTEXTILE-WRAPPED 4 INCH PERFORATED DUAL-WALLED CORRUGATED EXTERIOR SMOOTH INTERIOR HDPE.
- 9. HEADER PIPING TO BE 4 INCH SCHEDULE 40 PVC.
- 10. PEA STONE SHALL CONSIST OF WASHED MATERIAL THAT WILL PASS THROUGH A 2 INCH SIEVE AND BE RETAINED BY A 1/4 INCH SIEVE.
- 11. TO PROTECT THE VAPOR BARRIER, ALL PENETRATIONS MADE AFTER POURING OF THE SLAB, SUCH AS JOINTS, ETC, SHALL BE CUT IN A MANNER TO AVOID PENETRATING THE VAPOR BARRIER.
- 12. SEAL ALL PENETRATIONS AND GAPS WITH AN ELECTROMETRIC JOINT SEALANT.
- 13. THIS DRAWING IS NOT TO INTEND TO PROVIDE STRUCTURAL INFORMATION. REFER TO STRUCTURAL DRAWINGS.
- 14. CONTRACTOR TO CONFIRM NO AIR INTAKE IS WITHIN 25' FROM VENT STACK. 15. INSTALL RADONAWAY RP-265 FAN ON EACH SYSTEM ABOVE ROOF AND ALARM FOR EACH SYSTEM.

FABRIC WRAPPED 4 INCH HDPE PERFORATED PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH 4 INCH SOLID SCH 40 PVC PIPE PLACED WITHIN MIDDLE OF PEA STONE TRENCH, SLOPED AWAY FROM VERTICAL RISER AT 1/4 INCH PER FOOT TO

ALLOW FOR DRAINAGE.

1/4 INCH STAINLESS STEEL MONITORING POINTS PLACED ABOVE COMPACTED SUB-BASE MATERIAL, FABRIC WRAPPED AT END.

GENERAL CONTRACTORS

LAB DEPRESSURIZAT SYSTEM LAYOUT

PROJECT/DRAWING NUMBER

2202121

APPENDIX 4

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details e No. B00016	Box 1	
Sit	e Name Former Photec Imaging		
City	Address: 1000 Driving Pk. Avenue Zip Code: 14613- //Town: Rochester unty: Monroe Acreage: 12.500		
Re	porting Period: February 24, 2021 to February 24, 2022		
		YES	NO
1.	Is the information above correct?	X	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?	X	
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	X	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?	X	
	answers 3 through 5: The Site is being developed with commercial buildings. See attached are the Change se provided to the NYSDEC.		
		Box 2	
		YES	NO
6.	Is the current site use consistent with the use(s) listed below? Commercial and Industrial	X	
-	Are all ICs in place and functioning as designed? The current site buildings have a sub-slab depressurization system (SSDS) installed. A copy of the letters documenting the start-up of the SSDS are provided in the PRR.		
	IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below a DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	nd	
A C	corrective Measures Work Plan must be submitted along with this form to address th	iese issi	ues.
Cir	nature of Owner, Remedial Party or Designated Representative Date		

SITE NO. B00016 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

090.63-001-001 FSI Driving Park LLC

Ground Water Use Restriction Landuse Restriction Site Management Plan Soil Management Plan Monitoring Plan

IC/EC Plan

The Environmental Easement limits site use to commercial and/or industrial uses, prohibits the use of groundwater as a potable source, requires a site management plan, and requires periodic certification that all institutional and engineering controls are in place.

The Site Management Plan addresses: excavation of soils that may contain residual contamination; soil characterization and disposal/reuse in accordance with NYSDEC regulations; the potential for vapor intrusion into any buildings developed on the site; and operation and maintenance of the components of the remedy.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

090.63-001-001

Vapor Mitigation

Periodic groundwater monitoring to determine the effectiveness of the remedy. The need for groundwater remediation and/or continued monitoring will be periodically evaluated. Groundwater monitoring will continue until the remedial objectives have been achieved, or until the NYSDEC determines that continued monitoring is no longer required.

A sub-slab mitigation system will be required for all new building construction. The SSDS shall be monitored on a periodic basis. The SSDS can be shutdown if NYSDEC determines the system is no longer required.

Box	5
-----	---

	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
	 b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete. YES NO
	X
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X □
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

IC CERTIFICATIONS SITE NO. B00016

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Frank 5 Inburgiat FS	T Acoustical Systems LLC, print business address
am certifying as	Owner or Remedial Party
for the Site named in the Site Details Section of this	form.
Signature of Owner, Remedial Party, or Designated Rendering Certification	Representative Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name print business address

am certifying as a Professional Engineer for the

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

LABALL ASSOCIATES T. ROCHESTELNY

print business address

ASSOCIATES T. ROCHESTELNY

print print business address

ASSOCIATES T. ROCHESTELNY

print business address

ASSOCIATES T. ROCHESTELNY

print business address

ASSOCIATES T. ROCHESTELNY

ASSOCIAT