Periodic Review Report NYSDEC ERP Site # B00016

Reporting Period: February 24, 2023 to February 24, 2024

Location: Former Photech Imaging Site NYSDEC ERP Site #B00016 1000 Driving Park Avenue Rochester, New York

Prepared for:

FSI Driving Park, LLC 90 Goodway Drive Rochester, New York 14623

LaBella Project No. 2202121

March 25, 2024

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

TABLE OF CONTENTS

1.0 1.1	INTROD Effec	UCTION & BACK tiveness of the I	GROUND
1.2	Comp	liance	2
2.0 3.0 3.1	SITE OV MONITO Moni	ERVIEW ORING PLAN COI toring Plan Com	2 MPLIANCE AND REMEDY EVALUATION
3.2	Grou	ndwater Monito	ring Data3
3.3	Site C	over System	
3.4	Grou	ndwater Monito	ring Conclusions4
4.0 4.1	IC/EC C Instit	OMPLIANCE utional Controls	5
4.2	Engin	eering Controls.	5
<mark>5.0</mark> 5.1	CONCLU Comp	JSIONS AND RE bliance	COMMENDATIONS
5.2	Perfo	rmance and Effe	ctiveness of Remedy5
5.3	Reco	mmendations	5
5.4	Devia	tions	
Figure	S	Figure 1 Figure 2 Figure 3	Site Location Groundwater Sample Results Site Map
Tables	i	Table 1	Groundwater Sample Results
Appen	dices	Appendix 1 Appendix 2	Laboratory Analytical Report Groundwater Sample Logs and Site Inspection Form

Appendix 3 EC/IC Certification Forms

1.0 INTRODUCTION & BACKGROUND

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report on behalf of the FSI Driving Park, LLC for the Former Photech Imaging site located at 1000 Driving Park Avenue, City of Rochester, Monroe County, New York. The site is enrolled in the New York State (NYS) Environmental Restoration Program (ERP), (Site Code B00016). A site Location Map is included as Figure 1. LaBella was retained by the City of Rochester to assist with the monitoring and reporting requirements in accordance with the Site Management Plan (SMP).

Based upon the results of site investigation activities, the types of contamination at the site that were identified to require remediation included:

- Heavy metals including cadmium and silver; and,
- Volatile organic compounds (VOCs).

Remedial actions performed at the site in accordance with the March 2006 Record of Decision include:

- Asbestos abatement, building and equipment decontamination, and building demolition (completed);
- A design-phase investigation to delineate the extent of soil contamination, and to confirm the extent of groundwater contamination (completed);
- Removal of the silver recovery system (completed);
- Excavation and off-site disposal of contaminated soils exceeding commercial soil cleanup objectives (completed);
- Application of Daramend in Area of Concern 2 and 7 (completed);
- Removal of nearly all on-site utilities (completed);
- Development and implementation of a SMP for long term management of remaining contamination as required by the Environmental Easement (completed);
- Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site (completed);
- Inclusion in the City of Rochester Building Information System (BIS) (completed);
- Periodic certification of the institutional and engineering controls (on-going); and,
- Implementation of a long-term groundwater monitoring plan (on-going).

The site was previously remediated under the NYS ERP administered by the New York State Department of Environmental Conservation (NYSDEC) and in accordance with State Assistance Contract (SAC) #C303768.

A SMP was prepared for the Site to manage remaining contamination until the Deed Restriction is extinguished. In accordance with the SMP and the requirements in NYSDEC Division of Environmental Restoration (DER)-10 Technical Guidance for Site Investigation and Remediation, dated May, 2010, and the guidelines provided by NYSDEC, an annual inspection was conducted of all remedial components installed at the Site and the four (4) groundwater monitoring wells were sampled. This work was performed in January 2024.

1.1 Effectiveness of the Remedial Program

Progress made during the reporting period toward meeting the remedial objectives for the site include continued monitoring of groundwater and maintenance of the institutional and engineering controls in accordance with the SMP. Monitoring data from the work completed to date shows that the remedial program is currently meeting the remedial objectives for the site.

1.2 Compliance

No areas were identified as being currently out of compliance with the SMP requirements. As such, no steps are currently deemed necessary to correct areas of non-compliance.

2.0 SITE OVERVIEW

The Former Photech Imaging site is located in an M-1 Industrial District in the City of Rochester, Monroe County, New York. The site is situated on an approximately 12.5-acre area parcel and was originally developed in 1948 for manufacturing photographic film and paper. Several different companies have owned and operated the facility for photographic paper and film production since its construction in 1948. The most recent owner, Photech Imaging Systems, Inc., ceased operations and abandoned the facility in 1991. Large amounts of chemicals, wastes, and various supplies and materials were left "as-is" on-site when the facility was abandoned. In 1994, the NYSDEC and the United States Environmental Protection Agency (USEPA) performed a bulk waste and chemical removal action at the site. This work successfully removed bulk chemicals from the facility; however, tanks were not certified as "clean"; small containers of chemicals were left in some of the buildings; and residual chemicals remained in some of the process vessels and piping.

Historically a total of 15 former buildings totaling approximately 108,000 square feet of space occupied the site. The buildings were vandalized following abandonment, with ceilings, walls, piping and equipment severely damaged. As a result, asbestos and chemical residues were distributed throughout many interior areas of the buildings. Additionally, the roofs failed on several of the buildings and there was a fire in 2004 in the former warehouse portion of the facility.

During 2010, the City of Rochester demolished all of the site buildings including the sub grade tunnels. Prior to demolition, asbestos containing materials and residual chemicals inside the buildings were removed and disposed of. In addition, suspect building materials (e.g. concrete floors) were assessed for chemicals of concern and remediated prior to demolition.

During Site building demolition activities remedial actions were performed to remove soils impacted with Polycyclic Aromatic Hydrocarbon (PAH) Semivolatile Organic Compounds (SVOCs) along the eastern side and a drywell along the western side of Building 11 in order to prevent contaminated materials from entering demolition excavations. A total of 601 tons of contaminated soil was removed from AOC 1A and a total of 95 tons of contaminated soil was removed from AOC 1B and transported offsite for disposal, as a regulated solid waste. A source removal action was performed during building demolition to remove source area soils associated with two (2) former sumps in buildings formerly located within AOC 7. A total of 170 tons of cadmium-impacted soil was removed from this area for offsite disposal.

Following building demolition activities, a design phase investigation was completed to delineate the extent of soil contamination and confirm the extent of groundwater contamination. The design phase investigation data was input into a Geographical Information System (GIS) spatial database and used to develop interpolation models illustrating the areal extent of impacted soil at concentrations above the NYSDEC Part 375 commercial use soil cleanup objectives. This information was utilized to guide remedial actions to remove the silver recovery system, and to excavate and dispose of contaminated soils exceeding the commercial use soil cleanup objectives. Following excavation of contaminated soil, Daramend was applied to excavations AOC 2 and AOC 7 to further reduce the contaminant mass at the site. Additionally, nearly all on-site utilities were removed.

3.0 MONITORING PLAN COMPLIANCE AND REMEDY EVALUATION

3.1 Monitoring Plan Components

Monitoring and laboratory analyses were completed in accordance with the SMP. A summary of the routine monitoring and analyses is provided in the table below.

Monitoring Program	Frequency	Monitored	Matrix	Analysis
Groundwater	Annually until otherwise approved by NYSDEC and NYSDOH	RMW-3, RMW- 4, RMW-9, and Well-09	Groundwater	TCL VOCs & RCRA Metals
Site Cover / Property Use	Annually until otherwise approved by NYSDEC and NYSDOH	Site Cover Condition and Property Use	Not Applicable	No issues with site cover.

TCL VOCs denotes Target Compound List Volatile Organic Compounds, RCRA denotes Resource Conservation and Recovery Act

3.2 Groundwater Monitoring Data

Groundwater monitoring was performed once during the reporting period using low flow sampling methodology in accordance with the SMP. The groundwater monitoring results and the historical post post-remediation groundwater sampling results for each of the four (4) groundwater monitoring wells at the site are summarized on Table 1. The January 2024 results are shown on Figure 2 and the laboratory analytical report is included as Appendix 1.

<u>RMW-3</u>

VOCs were not detected during the January 2024 sampling event above the NYSDEC Part 703 Groundwater Standard. Previous monitoring events detected 1,1-dichloroethance, cis-1,2-dichloroethane, and vinyl chloride above the NYSDEC Part 703 Groundwater Standards.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the January 2024 groundwater sampling event. Metals have generally not been detected in well RMW-3 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

<u>RMW-4</u>

No VOCs were detected at concentrations above the laboratory method detection limit (MDL) that exceeded the NYSDEC Part 703 Groundwater Standards during the January 2024 groundwater sampling event. TCE was detected during the previous monitoring events at concentrations slightly above the NYSDEC Part 703 Groundwater Standards.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the January 2024 groundwater sampling event. Metals have generally not been detected in well RMW-4 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

<u>RMW-9</u>

Vinyl Chloride (66 ug/l) and 1,1-Dichloroethane (10 ug/l) were detected at concentrations that exceed the NYSDEC Part 703 Groundwater Standards during the January 2024 sampling event. Vinyl Chloride and 1,1-Dichloroethane have been reported at concentrations that exceed the NYSDEC Part 703 Groundwater Standards from previous sampling events.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the January 2024 groundwater sampling event. Metals have generally not been detected in well RMW-9 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

<u>Well-09</u>

VOCs were not detected above the NYSDEC Part 703 Groundwater Standard during the January 2024 groundwater sampling event. Previous monitoring events detected 1,1-Dichloroethane at concentrations above the NYSDEC Part 703 Groundwater Standards.

No metals were detected at concentrations that exceeded the Part 703 Groundwater Standards during the January 2024 groundwater sampling event. Metals have generally not been detected in Well-09 above the NYSDEC Part 703 Groundwater Standards during the previous monitoring events.

3.3 Site Cover System

A site-wide inspection of the cover system was conducted in January 2024 to assess the general condition of the site as well as the conditions of the cover system. A copy of the Site Inspection Form is included in Appendix 2.

3.4 Groundwater Monitoring Conclusions

There were no deficiencies to the groundwater monitoring plan. Contaminants of concern identified in groundwater previously were generally at similar levels that have been reported during previous sampling events. The following conclusions are made regarding the sampling results:

- Two VOC compounds were detected slightly above the NYSDEC Part 703 Groundwater Standards in well RIMW-9 during the January 2024 monitoring results. This well will continue to be monitored. As stated in the Final Engineering Report, the concentrations of VOC detected appear to be associated with off-site migration from the Delphi Automotive Systems Site (NYSDEC Site No. 828064);
- No metals were detected at concentrations that exceeded the NYSDEC Part 703 Groundwater Standards during the January 2024 groundwater sampling event; and

• The remedy is effective based on the groundwater sampling results.

4.0 IC/EC COMPLIANCE

4.1 Institutional Controls

The following Institutional Controls are included in the SMP for the Site:

- Compliance with the Environmental Easement and the SMP.
- All Engineering Controls must be operated and maintained in accordance with the SMP.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.
- Inclusion in the City of Rochester Building Information System flagging system as a local governmental institutional control (www.cityofrochester.gov/EICproperties).

The site-wide inspection determined that Institutional Controls have been complied with including compliance with the Environmental Easement and the SMP. There are no new conclusions or recommendations for a change of Institutional Controls at this time.

4.2 Engineering Controls

The only Engineering Control at the site is the requirement that any buildings have a sub-slab Depressurization System (SSDS) which are constructed within an identified area of concern and are designed for full or part time occupancy. Both new buildings contain a SSDS. Based on inspection of each of the buildings, the system is operational.

The EC/IC Certification statement and forms are included in Appendix 3.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Compliance

The requirements dictated in the SMP regarding IC/EC's and the Monitoring Plan were met during the reporting period.

5.2 Performance and Effectiveness of Remedy

An evaluation of the components of the SMP during this reporting period indicates that, as of the end date of this report, the IC/EC controls were protective of human health and the environment. The monitoring plan sufficiently monitored the performance of the remedy.

5.3 Recommendations

Since residual contamination remains at the site, applicable site management requirements should be continued. However, since residual contamination at the site is considered low in concentration and has been documented in post remediation groundwater samples to remain consistent at the site over time, it is recommended that monitoring activities be changed from annually to once every three years.

5.4 Deviations

No deviations appeared to be encountered during this reporting period.

I:\FSI General Contractors\2202121 - 1000 Driving Park SMP Assistance\Reports\Periodic Review Reports\2024 PRR\PRR.2024-01 2024 Photech PRR.docx

TABLE 1 Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>RMW-3</u>

(1			1	1		1				1			1
SAMPLE ID:				RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RIMW-3	RMW-3	RMW-3	BLIND DUPE-021022	RMW-3	BD-20230509	RMW-3
LAB ID:			NYSDEC Part 703	D3257-05	D4241-03	SB67810-09	E3912-15	F1474-12	F2732-08	L793892-04	L858898-05	L937868-05	L1028256	L2035374-04	L2207321-01	L2207321-05	L2325663-05	L2325663-05	L2403725-02
COLLECTION DATE:	CAS #	Units	Groundwater Standards	6/25/2012	9/13/2012	4/11/2013	9/26/2013	2/20/2014	6/10/2014	10/7/2015	9/8/2016	9/18/2017	9/21/2018	8/27/2020	2/10/2022	2/10/2022	5/9/2023	5/9/2023	1/22/2024
SAMPLE MATRIX:				Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER	WATER	WATER	WATER	WATER	WATER
VOLATILE ORGANIC COMPOLINDS									-			-							-
1.1.1 Triphlaraethana	71 55 6	ud/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 II	<0.7 II	<0.7 II
1,1,2,2 Totrashlaraathana	70.24.5	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17	<0.7 U	<0.7 U	<0.17
1 1 2-Trichloroethane	79-00-5	ug/I	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17	<0.17 U	<0.17 U	<0.11 U
1 1-Dichloroethane	75-34-3	ug/1	5	17	19	10.7	20.7	13.7	10.3	12.3	14.4	12.9	11.6	ND 0.7	ND 0.7	ND 0.7	<0.7 11	<0.5 U	<0.7 11
1.1-Dichloroethene	75-35-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17	<0.17 U	<0.17 U	<0.17 U
1.2.3-Trichlorobenzene	87-61-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1.2.4-Trichlorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,2-Dibromo-3-chloropropane	96-12-8	ug/l	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,2-Dibromoethane	106-93-4	ug/l	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.65	ND 0.65	ND 0.65	<0.65 U	<0.65 U	<0.65 U
1,2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13	<0.13 U	<0.13 U	<0.13 U
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14	<0.14 U	<0.14 U	<0.14 U
1,3-Dichlorobenzene	541-73-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,4-Dioxane	123-91-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 61	ND 61	ND 61	<61 U	<61 U	<61 U
2-Butanone	78-93-3	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.9	ND 1.9	ND 1.9	2 J	4.2 J	<1.9 U
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1 U	<1 U	<1 U
4-Methyl-2-pentanone	108-10-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1 U	<1 U	<1 U
Acetone	67-64-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.5	3.2 1.5	3.8 1.5	12	6.6	<1.5 U
Benzene	71-43-2	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.16	ND 0.16	ND 0.16	<0.16 U	<0.16 U	<0.16 U
Bromochloromethane	74-97-5	ug/i	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.1
Bromoform	75-27-4	ug/I	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.19	ND 0.19	ND 0.19	<0.19 0	<0.19 0	<0.19 U
Bromomethane	74-83-9	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.05	ND 0.03	ND 0.05	<0.03 U	<0.05 U	<0.03 0
Carbon disulfide	75-15-0	ug/1	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	ND 1	ND 1	<1 11	<1 II	<1 II
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13	<0.13 U	<0.13 U	<0.13 U
Chlorobenzene	108-90-7	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Chloroethane	75-00-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Chloromethane	74-87-3	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
cis-1,2-Dichloroethene	156-59-2	ug/l	5	31	30	16.3	24.2	13.5	10	7.97	6.53	5.1	2.62	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
cis-1,3-Dichloropropene	10061-01-5	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14	<0.14 U	<0.14 U	<0.14 U
Cyclohexane	110-82-7	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.27	ND 0.27	ND 0.27	<0.27 U	<0.27 U	<0.27 U
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.15	ND 0.15	ND 0.15	<0.15 U	<0.15 U	<0.15 U
Dichlorodifluoromethane	75-71-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1 U	<1 U	<1 U
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Freon-113	76-13-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Isopropylbenzene	98-82-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.23	ND 0.23	ND 0.23	<0.23 U	<0.23 U	<0.23 U
Methyl cyclohexane	108-87-2	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.4	ND 0.4	ND 0.4	<0.4 U	<0.4 U	<0.4 U
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Niedłyjene chloride	75-09-2	ug/i	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7
o-Aylerie	170601 22 1	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	
p/m-xylene Sturene	100.42-5	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Tetrachloroethene	127-18-4	ug/1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.18	ND 0.18	ND 0.18	<0.18 11	<0.18 U	<0.18
Toluene	108-88-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.10 U	<0.10 U	<0.7 U
trans-1.2-Dichloroethene	156-60-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
trans-1.3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.16	ND 0.16	ND 0.16	<0.16 U	<0.16 U	<0.16 U
Trichloroethene	79-01-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9 0.18	2.9 0.18	2.8 0.18	1.5	1.7	2.1
Trichlorofluoromethane	75-69-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Vinyl chloride	75-01-4	ug/l	2	79	110	60.7	150 E	43.6	46.3	98.4	84.8	123	79.2	ND 0.07	ND 0.07	ND 0.07	<0.07 U	<0.07 U	<0.07 U
METALS		ug/l													1	1			
Arsenic, Total	7440-38-2	ug/l	25	5 U	5.79 J	1.8 U	10 UN	10 UN	10 U	10 U	10 U	10 U	10 U	0.32 0.16	1.4 0.16	1.49 0.16	3.46	3.3	0.61
Barium, Total	7440-39-3	ug/l	1000	86.1	79.5	70	118 N	70.1 N	84.1	97.4	93.1	102	97.8	53.42 0.17	122.1 0.17	123.7 0.17	78.71	78.72	145.8
Cadmium, Total	7440-43-9	ug/l	5	1.5 U	1.5 U	0.8 U	3 UN	3 U	3 U	2 U	2 U	2 U	2 U	ND 0.05	ND 0.05	ND 0.05	<0.05 U	<0.05 U	<0.05 U
Chromium, Total	7440-47-3	ug/l	50	2.5 U	2.5 U	1 J	5 UN	57 N*	5.31	10 U	10 U	10 U	10 U	0.37 0.17	1.88 0.17	1.66 0.17	9.85	6.39	2.47
Lead, Total	7439-92-1	ug/l	25	8.52	7.33	2 U	6 UN	6 U	6 U	5 U	5 U	5 U	5 U	0.43 0.34	1.5 0.34	1.22 0.34	1.14	0.91 J	0.79 J
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	ND 0.09	ND 0.09	0.12 0.09	<0.09 U	<0.09 U	<0.09 U
Selenium, Total	7782-49-2	ug/l	10	5.81 J	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 R	ND 1.73	ND 1.73	ND 1.73	<1.73 U	<1.73 U	<1.73 U
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	5 U	ND 0.16	ND 0.16	ND 0.16	<0.16 U	<0.16 U	<0.16 U

Notes: ug/1 - micrograms per liter ND - Not Detected Cone - Concentration Q - Laboratory Qaulifier MDL - Methoid Detection Limit J - Estimated result Yellow highlight denotes results NL - Not Listed

etected above the NYSDEC Part 703 Groundwater Standard

TABLE 1

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>RMW-4</u>

LAB ID:				D3257-01	D4241-10	SB67810-05	E3912-13	F1474-14	F2732-10	L793892-09	L858898-02	L937868-04	L937868-01	L1028256	L2035374-04	L2035374-01	L2035374-05 (Duplicate)	L2207321-03	L2325663-05	L2403725-03
COLLECTION DATE:	CAS #	Units	NYSDEC Part 703 Groundwater Standards	6/25/2012	9/12/2012	4/10/2013	9/26/2013	2/20/2014	6/10/2014	10/8/2015	9/9/2016	9/18/2017	9/18/2017	9/20/2018	8/27/2020	8/27/2020	8/27/2020	2/10/2022	5/9/2023	1/22/2024
SAMPLE MATRIX:				Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER	WATER	WATER	WATER	WATER
VOLATILE ORGANIC COMPOUNDS																				
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17	<0.17 U	<0.17 U
1,1,2-Trichloroethane	79-00-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.5	ND 0.5	ND 0.5	<0.5 U	<0.5 U
1,1-Dichloroethane	75-34-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1,1-Dichloroethene	75-35-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.17	ND 0.17	ND 0.17	<0.17 U	<0.17 U
1,2,3-Trichlorobenzene	87-61-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1,2,4-Trichlorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1,2-Dibromo-3-chloropropane	96-12-8	ug/l	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1,2-Dibromoethane	106-93-4	ug/l	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.65	ND 0.65	ND 0.65	<0.65 U	<0.65 U
1,2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1,2-Dichloroethane	107-06-2	ug/I	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13	<0.13 U	<0.13 U
1,2-Dichlorobonzono	E41 72 1	ug/l	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14	<0.14 U	<0.14 U
1.4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
1 4-Dioxane	123-91-1	ug/l	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 61	ND 61	ND 61	<61 II	<61 U
2-Butanone	78-93-3	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.9	ND 1.9	ND 1.9	<1.9 U	<1.9 U
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1 U	<1 U
4-Methyl-2-pentanone	108-10-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1 U	<1 U
Acetone	67-64-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9 J 1.5	2.2 J 1.5	ND 1.5	2 J	1.8 J
Benzene	71-43-2	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.16	0.17 J 0.16	ND 0.16	<0.16 U	<0.16 U
Bromochloromethane	74-97-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.19	ND 0.19	ND 0.19	<0.19 U	<0.19 U
Bromoform	75-25-2	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.65	ND 0.65	ND 0.65	<0.65 U	<0.65 U
Bromomethane	74-83-9	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Carbon disulfide	75-15-0	ug/l	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1 U	<1 U
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.13	ND 0.13	ND 0.13	<0.13 U	<0.13 U
Chlorobenzene	108-90-7	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Chloroethane	75-00-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Chloromethane	/4-8/-3	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
cis-1,2-Dichloropethene	156-59-2	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Cisleberano	110.82.7	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.14	ND 0.14	ND 0.14	<0.14 0	<0.14 U
Dibromochloromethane	124-48-1	ug/l	NL 50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.27	ND 0.27	ND 0.15	<0.15	<0.27 U
Dichlorodifluoromethane	75-71-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	ND 1	ND 1	<1	<1
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Freon-113	76-13-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Isopropylbenzene	98-82-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.23	ND 0.23	ND 0.23	<0.23 U	<0.23 U
Methyl cyclohexane	108-87-2	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.4	ND 0.4	ND 0.4	<0.4 U	<0.4 U
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Methylene chloride	75-09-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
o-Xylene	95-47-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
p/m-Xylene	179601-23-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	0.7 J 0.7	ND 0.7	<0.7 U	<0.7 U
Styrene	100-42-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
Tetrachloroethene	127-18-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.18	ND 0.18	ND 0.18	<0.18 U	<0.18 U
Toluene	108-88-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
trans-1,2-Dichloroethene	156-60-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	ND 0.7	ND 0.7	<0.7 U	<0.7 U
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.16	ND 0.16	ND 0.16	<0.16 U	<0.16 U
Trichloroethene	79-01-6	ug/l	5	14	14	8.69	14.2	6.1	4.7	7.05 J*	9.04	7.98	7.71 J	8.74 J	5.9	ND 0.18	ND 0.18	0.2 0.18	<0.18 U	0.26 J
Inchioromethane	75-69-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.2 J 0.7	U.9 J U./	2.2 U.1	1.0 J	L.D J
METALS	10-01-4	ug/I	2	שא	טא	טא	UNU	טא	UNU	טא	טא	UNU	UNU	UND	שא	0.07 שאי	U.U7	10.07	~0.01 U	~0.0 <i>1</i> 0
Arsenic Total	7440-38-2	ug/1	25	5 "	5.44	18 !!	10 11	10 10	10 "	10	10 //	10 !!	10 "	10 "	0.32	13.97 0.16	14.56 0.16	13.92 0.16	3 79	5.07
Barium, Total	7440-39-3	ug/1	1000	66.3	76.1	73.2	53 N	62.9 N	81.4	60.5	73	49.3	54.1	51.7	53.42	4.5 0.17	5.41 0.17	24.36 0.17	16.27	12.13
Cadmium, Total	7440-43-9		5	1.5 1	1.5 1	0.8 11	3 UN	3 11	3 11	2 1	2 11	2 11	2 11	2 11	0.05 11	ND 0.05	ND 0.05	0.06 0.05	<0.05 U	<0.05 U
Chromium, Total	7440-47-3	ug/l	50	2.5 U	2.5 U	1.4 J	5 UN	5.49 N*	5 U	10 U	10 U	40 U	40 U	10 U	0.37 J	0.31 J 0.17	0.36 J 0.17	7.7 0.17	0.68 J	2.04
Lead, Total	7439-92-1	ug/l	25	9.12	8.47	2	6 UN	11.1	6 U	5 U	5 U	5.13	5.4	5 U	0.43 J	0.76 J 0.34	0.76 J 0.34	18.80 0.34	0.47 J	1.39
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.09 U	ND 0.09	ND 0.09	0.14 0.09	<0.09 U	<0.09 U
Selenium, Total	7782-49-2	ug/l	10	5 U	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 U	10 R	1.73 U	ND 1.73	ND 1.73	2.18 1.73	<1.73 U	<1.73 U
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	5 U	5 U	0.16 U	ND 0.16	ND 0.16	ND 0.16	<0.16 U	<0.16 U

Notes: ug/1 - micrograms per liter ND - Not Detected Conc - Concentration Q - Laboratory Qualifier MDL - Methoid Detection Limit J - Estimated result Yallow Highlight denotes results NL - Not Listed VSDEC Part 703 Groundwater Standard

TABLE 1

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

DMMO																				
<u>RMW-9</u>																				
							-			-										
LAB ID:				D3257-05	D4241-03	SB67810-09	E3912-15	F1474-12	F2732-08	L793892-04	L858898-05	L937868-05	L1028256	L2035374	4-02	L22073	21-02	L2325663-05	L240	3725-05
COLLECTION DATE:	CAS #	Units	NYSDEC Part 703 Groundwater Standards	6/25/2012	9/13/2012	4/11/2013	9/26/2013	2/20/2014	6/10/2014	10/7/2015	9/8/2016	9/18/2017	9/21/2018	8/27/202	20	2/10/2	2022	5/9/2023	1/2	.3/2024
SAMPLE MATRIX:	-			Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER	2	WAT	ER	WATER	W	/ATER
VOLATILE ORGANIC COMPOUND	DS																			
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	ND	0.17	<0.17	J <0.	.17 U
1,1,2-Trichloroethane	79-00-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	0.5	<0.5	J <0	.5 U
1,1-Dichloroethane	75-34-3	ug/l	5	17	19	10.7	20.7	13.7	10.3	12.3	14.4	12.9	11.6	7.8	0.7	15	0.7	3.4	1	<u>٥ </u>
1,1-Dichloroethene	75-35-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.17	ND	0.17	<0.17	J <0.	<u>17 U</u>
1,2,3-Trichlorobenzene	87-61-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	./ U
1,2,4-Tricniorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7		.7 U
1.2-Dibromoethane	106-93-/	ug/l	0.006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65	ND	0.65	<0.65		.7 U
1.2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND	0.7	<0.7	J <0	0.7 U
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.13	<0.13	J <0.	.13 U
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	0.14	<0.14	J <0.	.14 U
1,3-Dichlorobenzene	541-73-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
1,4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
1,4-Dioxane	123-91-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	61	ND	61	<61	J <6	ن1 U
2-Butanone	78-93-3	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	1.9	<1.9	J <1	9 U
2-Hexanone	591-78-6	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1	<1	J <	1 U
4-Methyl-2-pentanone	108-10-1	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1	<1	J <	<u> </u>
Acetone	67-64-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.5	ND	1.5	<1.5	1 <0	.5 U
Bromochloromethane	71-43-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.16	<0.16	J <0.	10 0
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19	ND	0.19	<0.19	J <0.	.19 U
Bromoform	75-25-2	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.65	ND	0.65	<0.65	J <0.	.65 U
Bromomethane	74-83-9	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Carbon disulfide	75-15-0	ug/l	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1	<1	J <	1 U
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.13	<0.13	J <0.	.13 U
Chlorobenzene	108-90-7	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Chloroethane	75-00-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Chloroform	67-66-3	ug/l	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Chloromethane	74-87-3	ug/l	NL	ND	ND	ND 40.0	ND	ND 10 F	ND	ND	ND	ND	ND 0.00	ND	0.7	ND	0.7	<0.7	J <0	./ U
cis-1,2-Dichloroethene	156-59-2	ug/l	5	31 ND	30 ND	16.3	24.2	13.5 ND	10 ND	7.97	6.53	5.1 ND	2.62 ND	1 J	0.7	1.9 J	0.7	<0.7	J 1.	1 J
Cis-1,3-Dichloropropene	110-82-7	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.14	ND	0.14	<0.14	J <0.	27 11
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.15	ND	0.15	<0.15	J <0	15 II
Dichlorodifluoromethane	75-71-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	1	<1	J <	1 U
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Freon-113	76-13-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Isopropylbenzene	98-82-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.23	ND	0.23	<0.23	J <0.	23 U
Methyl cyclohexane	108-87-2	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	0.4	<0.4	J <0	.4 U
Methyl tert butyl ether	1634-04-4	ug/l	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	./ U
Methylene chloride	75-09-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
o-xylene	95-47-6	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7		.7 U
Styrene	100-42-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	17 11
Tetrachloroethene	127-18-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	ND	0.18	<0.18	J <0.	.18 U
Toluene	108-88-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
trans-1,2-Dichloroethene	156-60-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.16	ND	0.16	<0.16	J <0.	.16 U
Trichloroethene	79-01-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	ND	0.18	<0.18	J <0.	.18 U
Trichlorofluoromethane	75-69-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	ND	0.7	<0.7	J <0	.7 U
Vinyl chloride	75-01-4	ug/l	2	79	110	60.7	150 E	43.6	46.3	98.4	84.8	123	79.2	57	0.07	130	0.07	13	6	ô
METALS		ug/l														0.00	0.10	0.40	1	
Arsenic, Total	7440-38-2	ug/l	25	5 U	5.79 J	1.8 U	10 UN	10 UN	10 U	10 U	10 U	10 U	10 U	0.7	0.16	0.82	0.16	2.48	0.6	55 7 0
Barium, Total	7440-39-3	ug/l	1000	86.1	/9.5	/0	118 N	70.1 N	84.1	97.4	93.1	102	97.8	93.96 ND	0.17	(9.55 ND	0.1/	81.49	11	05 ''
Chromium Total	7440-43-9	ug/I	50	2.5 U	1.5 U	U.0 U	5 UN	57 N*	5 31	2 U	2 U	2 0	2 U	0.72	0.05	0.76	0.05	1 25	- <0.	52 0
Lead. Total	7439-92-1	ug/i	25	8.52	7.33	2 11	6 IN	6 "	6 11	5 1	5 11	5 "	5 11	ND 0.72 J	0.34	1.1	0.34	1.34	1.	37 1
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0,2 11	0.2 U	0.2 U	0.2 U	0.2 U	0.2 11	0.2 1	ND	0.09	0.11 /	0.09	<0.09	J <0.	.09 U
Selenium, Total	7782-49-2	ug/l	10	5.81 J	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 R	ND	1.73	ND	1.73	<1.73	J <1.	.73 U
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	5 U	ND	0.16	ND	0.16	<0.16	J <0.	.16 U

Notes: ug/l - micrograms per liter ND - Not Detected Conc - Concentration Q - Laboratory Qaulifier MDL - Methoid Detection Limit J - Estimated result Yellow highlight denotes results-NL - Not Listed ted above the NYSDEC Part 703 Groundwater Standard

TABLE 1

Former Photech Imaging Site 1000 Driving Park Avenue Rochester, New York NYSDEC Site No. B00016

<u>Well-09</u>

LAB ID:			NYSDEC Part 703	D3257-02	D4241-03	SB67810-06	E3912-14	F1474-03	F2732-09	L793892-10	L858898-12	L937868-03	L1028256	L2035374-03		L2207321-02	L2325663-05	L2403725-04	L2403725-01
COLLECTION DATE:	CAS #	Units	Groundwater	6/25/2012	9/13/2012	4/11/2013	9/26/2013	2/21/2014	6/10/2014	10/8/2015	9/8/2016	9/18/2017	9/21/2018	8/27/2020		2/10/2022	5/9/2023	1/22/2024	1/22/2024
SAMPLE MATRIX:			Standards	Water	Water	Water	Water	Water	Water	Water	Water	Water	Water	WATER		WATER	WATER	WATER	WATER
VOLATILE ORGANIC COMPOUNDS																			
1,1,1-Trichloroethane	71-55-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,1,2,2-Tetrachloroethane	79-34-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	7 N	ND 0.17	<0.17 U	<0.17 U	<0.17 U
1,1,2-Trichloroethane	79-00-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.5	5 N	ND 0.5	<0.5 U	<0.5 U	<0.5 U
1,1-Dichloroethane	75-34-3	ug/l	5	6.3	12 ND	7.39 ND	16 U	10.3	5.2 ND	/.55	10.1	9.06 J	6.5/ J	3./ 0./	7 2	.6 0.7	5 1.8	4.2	3.8
1,1-Dichlorobenzene	87-61-6	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	7 N	ND 0.17	±.0 ≤0.7 II	-0.7 11	-0.7 11
1,2,4-Trichlorobenzene	120-82-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,2-Dibromo-3-chloropropane	96-12-8	ug/l	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,2-Dibromoethane	106-93-4	ug/l	0.0006	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.6	5 N	ND 0.65	<0.65 U	<0.65 U	<0.65 U
1,2-Dichlorobenzene	95-50-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,2-Dichloroethane	107-06-2	ug/l	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	3 N	ND 0.13	<0.13 U	<0.13 U	<0.13 U
1,2-Dichloropropane	78-87-5	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	4 N	ND 0.14	<0.14 U	<0.14 U	<0.14 U
1,3-Dichlorobenzene	541-73-1	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	N N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,4-Dichlorobenzene	106-46-7	ug/l	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	/ N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
1,4-Dioxane	123-91-1	ug/l	NL EQ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 61	. N	ND 61	<61 U	<61 U	<61 U
2 Hovanono	70-93-3 501 78 6	ug/I	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.5	7 IN	ND 1.9	<1.9 U	<1.9 U	<1.9 U
4-Methyl-2-pentanone	108-10-1	ug/i	NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	N	ND 1	<1 11	<1 !!	<1 !!
Acetone	67-64-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1.5	5 N	ND 1.5	<1.5 U	<1.5 U	<1.5 U
Benzene	71-43-2	ug/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	6 N	ND 0.16	<0.16 U	<0.16 U	<0.16 U
Bromochloromethane	74-97-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Bromodichloromethane	75-27-4	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	9 N	ND 0.19	<0.19 U	<0.19 U	<0.19 U
Bromoform	75-25-2	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.6	5 N	ND 0.65	<0.65 U	<0.65 U	<0.65 U
Bromomethane	74-83-9	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	'N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Carbon disulfide	75-15-0	ug/l	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	N	ND 1	<1 U	<1 U	<1 U
Carbon tetrachloride	56-23-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	3 N	ND 0.13	<0.13 U	<0.13 U	<0.13 U
Chlorobenzene	108-90-7	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	N N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Chloroform	75-00-3	ug/I	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	U.:	.93 J 0.7	<0.7 U	<0.7 U	<0.7 U
Chloromethane	74-87-3	ug/I	/ NI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
cis-1.2-Dichloroethene	156-59-2	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
cis-1.3-Dichloropropene	10061-01-5	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	4 N	ND 0.14	<0.14 U	<0.14 U	<0.14 U
Cyclohexane	110-82-7	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.2	7 N	ND 0.27	<0.27 U	<0.27 U	<0.27 U
Dibromochloromethane	124-48-1	ug/l	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	5 N	ND 0.15	<0.15 U	<0.15 U	<0.15 U
Dichlorodifluoromethane	75-71-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 1	N	ND 1	<1 U	<1 U	<1 U
Ethylbenzene	100-41-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Freon-113	76-13-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Isopropylbenzene	98-82-8	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Methyl Acetate	79-20-9	ug/l	NL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.2	3 N	ND 0.23	<0.23 U	<0.23 U	<0.23 U
Methyl tert butyl ether	108-87-2	ug/I	NL 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.4		ND 0.4	<0.4 U	<0.4 U	<0.4 U
Methylene chloride	75,09.2	ug/i	10		ND	ND	ND	ND			ND		ND	ND 0.7			<0.7 U	<0.7 U	<0.7 U
o-Xvlene	95-47-6	ug/1	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
p/m-Xvlene	179601-23-1	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Styrene	100-42-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Tetrachloroethene	127-18-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	8 0.:	.23 J 0.18	<0.18 U	0.56	0.62
Toluene	108-88-3	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
trans-1,2-Dichloroethene	156-60-5	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
trans-1,3-Dichloropropene	10061-02-6	ug/l	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.1	6 N	ND 0.16	<0.16 U	<0.16 U	<0.16 U
Trichloroethene	79-01-6	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4 J 0.1	8 0.	.84 0.18	0.57	0.79	0.76
Trichlorofluoromethane	75-69-4	ug/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.7	7 N	ND 0.7	<0.7 U	<0.7 U	<0.7 U
Vinyi chloride	75-01-4	ug/l	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 0.0	/ N	0.07 עו	<0.07 U	<0.07 U	<0.07 U
METALS Arsenic Total	7440-29.2	ug/I	25	5 1	612	1.8 1	10 10	10 UN	10 11	10 !!	10 ''	10	10 11	0.28 1 0.1	6 0	82 0.16	<0.16	0.20	0.41
Barium Total	7440-38-2	ug/I	2⊃ 1000	70.5	81.7	1.0 U 913	10 UN	51 N	10 U 56.1	519	52.7	54.4	45.5 U	4138 0.1	7 70	0.10	20.10 0	0.29 J	0.41 J
Cadmium, Total	7440-43-9	ug/i	5	1.5 U	1.5	0.8 11	3 IIN	3 11	3 11	3 11	3 11	2 11	2 1	ND 0.1	5 N	ND 0.05	<0.05	<0.05	<0.05
Chromium, Total	7440-47-3	u¢/i	50	2.5 11	2.5 11	1.3 11	5 UN	92 N*	5 11	5 11	5 11	10 11	10 11	0.37 1 0.0	7 0	.76 J 0.17	0.55 1	1	1.15
Lead, Total	7439-92-1	ug/l	25	9.44	8.26	2.3	6 UN	4.31 J	6 U	6 U	6 U	5 U	5 U	ND 0.3	4 1	L.1 0.34	<0.34 U	<0.34 U	<0.34 U
Mercury, Total	7439-97-6	ug/l	0.7	0.1 U	0.1 U	0.08 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	ND 0.0	9 0.	.11 J 0.09	<0.09 U	<0.09 U	<0.09 U
Selenium, Total	7782-49-2	ug/l	10	5 U	5 U	3 U	10 UN	10 U	10 U	10 U	10 U	10 U	10 R	ND 1.7	3 N	ND 1.73	<1.73 U	<1.73 U	<1.73 U
Silver, Total	7440-22-4	ug/l	50	2.5 U	2.5 U	0.9 U	5 UN	5 U	5 U	5 U	5 U	5 U	5 U	ND 0.1	6 N	ND 0.16	<0.16 U	<0.16 U	<0.16 U

Notes: ug/1 - micrograms per liter ND - Not Detected Conc - Concentration Q - Laboratory Qaulifier MDL - Methoid Detection Limit J - Estimated result **Vellow highlight** denotes results NL - Not Listed ults detected above the NYSDEC Part 703 Groundwater Standard

APPENDIX 1

ANALYTICAL REPORT

Lab Number:	L2325663
Client:	LaBella Associates, P.C.
	300 State Street
	Suite 201
	Rochester, NY 14614
ATTN:	Mike Pelychaty
Phone:	(585) 295-6253
Project Name:	PHOTECH GW SAMPLING
Project Number:	2202121
Report Date:	05/23/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:05232312:46

Project Name:PHOTECH GW SAMPLINGProject Number:2202121

 Lab Number:
 L2325663

 Report Date:
 05/23/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2325663-01	RMW-4-20230509	WATER	ROCHESTER, NY	05/09/23 12:40	05/09/23
L2325663-02	RMW-9-20230509	WATER	ROCHESTER, NY	05/09/23 11:40	05/09/23
L2325663-03	WELL-09-20230509	WATER	ROCHESTER, NY	05/09/23 13:50	05/09/23
L2325663-04	RMW-3-20230509	WATER	ROCHESTER, NY	05/09/23 14:45	05/09/23
L2325663-05	BD-20230509	WATER	ROCHESTER, NY	05/09/23 14:50	05/09/23
L2325663-06	TRIP BLANK	WATER	ROCHESTER, NY	05/09/23 08:00	05/09/23

Project Name:PHOTECH GW SAMPLINGProject Number:2202121

Lab Number: L2325663 Report Date: 05/23/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: PHOTECH GW SAMPLING Project Number: 2202121

Lab Number: L2325663 **Report Date:** 05/23/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Lelly Mill Kelly O'Neill

Title: Technical Director/Representative

Date: 05/23/23

ORGANICS

VOLATILES

		Serial_No	0:05232312:46
Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RESULTS		
Lab ID: Client ID: Sample Location:	L2325663-01 RMW-4-20230509 ROCHESTER, NY	Date Collected: Date Received: Field Prep:	05/09/23 12:40 05/09/23 Not Specified
Sample Depth: Matrix: Analytical Method: Analytical Date: Analyst:	Water 1,8260D 05/19/23 21:03 MKS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	1.6	J	ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					:	Serial_No	0:05232312:46	
Project Name:	PHOTECH GW SAMPI	LING			Lab Nu	mber:	L2325663	
Project Number:	2202121				Report	Date:	05/23/23	
-		SAMP	LE RESULTS	5	-			
Lab ID: Client ID: Sample Location:	L2325663-01 RMW-4-20230509 ROCHESTER, NY				Date Col Date Ree Field Pre	lected: ceived: ep:	05/09/23 12:40 05/09/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics b	by GC/MS - Westborough	Lab						
1.2 Disklanskansens		ND			25	0.70	4	
1,3-Dichlorobenzene		ND		ug/I	2.5	0.70	1	
1,4-Dichlorobenzene		ND		ug/I	2.5	0.70	1	
		ND		ug/I	2.5	0.70	1	
p/m-Xylene		ND		ug/I	2.5	0.70	1	
o-Xylene		ND		ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1	
Acetone		2.0	J	ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	105		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	101		70-130	

ug/l

10

0.40

ND

1

Methyl cyclohexane

			Serial_No:05232312:46			
Project Name:	PHOTECH GW SAMPLING		Lab Number:	L2325663		
Project Number:	2202121		Report Date:	05/23/23		
	SA	MPLE RESULTS				
Lab ID:	L2325663-02		Date Collected:	05/09/23 11:40		
Client ID:	RMW-9-20230509		Date Received:	05/09/23		
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified		
Sample Depth:						
Matrix:	Water					
Analytical Method:	1,8260D					
Analytical Date:	05/19/23 21:24					
Analyst:	MKS					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Volatile Organics by GC/MS - Westborough Lab											
Methylene chloride	ND		ug/l	2.5	0.70	1					
1,1-Dichloroethane	3.4		ug/l	2.5	0.70	1					
Chloroform	ND		ug/l	2.5	0.70	1					
Carbon tetrachloride	ND		ug/l	0.50	0.13	1					
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1					
Dibromochloromethane	ND		ug/l	0.50	0.15	1					
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1					
Tetrachloroethene	ND		ug/l	0.50	0.18	1					
Chlorobenzene	ND		ug/l	2.5	0.70	1					
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1					
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1					
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1					
Bromodichloromethane	ND		ug/l	0.50	0.19	1					
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1					
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1					
Bromoform	ND		ug/l	2.0	0.65	1					
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1					
Benzene	ND		ug/l	0.50	0.16	1					
Toluene	ND		ug/l	2.5	0.70	1					
Ethylbenzene	ND		ug/l	2.5	0.70	1					
Chloromethane	ND		ug/l	2.5	0.70	1					
Bromomethane	ND		ug/l	2.5	0.70	1					
Vinyl chloride	13		ug/l	1.0	0.07	1					
Chloroethane	ND		ug/l	2.5	0.70	1					
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1					
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1					
Trichloroethene	ND		ug/l	0.50	0.18	1					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1					

						Serial_No	ว:05232312:46	
Project Name:	PHOTECH GW SAMP	LING			Lab Nu	umber:	L2325663	
Project Number:	2202121				Report	Date:	05/23/23	
		SAMP		S				
Lab ID: Client ID: Sample Location:	L2325663-02 RMW-9-20230509 ROCHESTER, NY				Date Co Date Re Field Pre	llected: ceived: ep:	05/09/23 11:40 05/09/23 Not Specified	
Sample Depth:								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics I	by GC/MS - Westborough	Lab						
1.3-Dichlorobonzono		ND			2.5	0.70	1	
1 4-Dichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1	
p/m-Xylene		ND		ug/l	2.5	0.70	1	
o-Xvlene		ND		ug/l	2.5	0.70	1	
cis-1.2-Dichloroethene		ND		ug/l	2.5	0.70	1	
Styrene		ND		ug/l	2.5	0.70	1	
Dichlorodifluoromethane	•	ND		ug/l	5.0	1.0	1	
Acetone		ND		ug/l	5.0	1.5	1	
Carbon disulfide		ND		ug/l	5.0	1.0	1	
2-Butanone		ND		ug/l	5.0	1.9	1	
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1	
2-Hexanone		ND		ug/l	5.0	1.0	1	
Bromochloromethane		ND		ug/l	2.5	0.70	1	
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1	
1,2-Dibromo-3-chloropro	ppane	ND		ug/l	2.5	0.70	1	
Isopropylbenzene		ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1	
Methyl Acetate		ND		ug/l	2.0	0.23	1	
Cyclohexane		ND		ug/l	10	0.27	1	
1,4-Dioxane		ND		ug/l	250	61.	1	
Freon-113		ND		ug/l	2.5	0.70	1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	100		70-130	

ug/l

ND

1

0.40

10

Methyl cyclohexane

		Serial_No	Serial_No:05232312:46			
Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663			
Project Number:	2202121	Report Date:	05/23/23			
	SAMPLE	RESULTS				
Lab ID:	L2325663-03	Date Collected:	05/09/23 13:50			
Client ID:	WELL-09-20230509	Date Received:	05/09/23			
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified			
Sample Depth:						
Matrix:	Water					
Analytical Method:	1,8260D					
Analytical Date:	05/19/23 21:45					
Analyst:	MKS					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	5.0		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	1.8		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	0.57		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:05232312:46					
Project Name:	PHOTECH GW SAMPL	ING			Lab Nu	mber:	L2325663
Project Number:	2202121				Report	Date:	05/23/23
-		SAMP		5			
Lab ID: Client ID: Sample Location:	L2325663-03 WELL-09-20230509 ROCHESTER, NY				Date Col Date Rec Field Pre	lected: ceived: p:	05/09/23 13:50 05/09/23 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	101		70-130	

			Serial_No:05232312:46		
Project Name:	PHOTECH GW SAMPLING		Lab Number:	L2325663	
Project Number:	2202121		Report Date:	05/23/23	
	SA	AMPLE RESULTS			
Lab ID:	L2325663-04		Date Collected:	05/09/23 14:45	
Client ID:	RMW-3-20230509		Date Received:	05/09/23	
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified	
Sample Depth:					
Matrix:	Water				
Analytical Method:	1,8260D				
Analytical Date:	05/19/23 22:06				
Analyst:	MKS				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.5		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

						Serial_No	0:05232312:46
Project Name:	PHOTECH GW SAMP	LING			Lab Nu	umber:	L2325663
Project Number:	2202121				Report	Date:	05/23/23
•		SAMP		S	•		00/20/20
Lab ID: Client ID: Sample Location:	L2325663-04 RMW-3-20230509 ROCHESTER, NY				Date Co Date Re Field Pre	llected: ceived: ep:	05/09/23 14:45 05/09/23 Not Specified
Sample Depth:							
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	by GC/MS - Westborough	Lab					
1 3-Dichlorobenzene		ND			25	0.70	1
1 4-Dichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
n/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xvlene		ND		ug/l	2.5	0.70	1
cis-1.2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ua/l	5.0	1.0	1
Acetone		12		ua/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		2.0	J	ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	61.	1
Freon-113		ND		ug/l	2.5	0.70	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	99		70-130	

ug/l

10

0.40

ND

1

Methyl cyclohexane

			Serial_No:05232312:46			
Project Name:	PHOTECH GW SAMPLING		Lab Number:	L2325663		
Project Number:	2202121		Report Date:	05/23/23		
	5	SAMPLE RESULTS				
Lab ID:	L2325663-05		Date Collected:	05/09/23 14:50		
Client ID:	BD-20230509		Date Received:	05/09/23		
Sample Location:	ROCHESTER, NY		Field Prep:	Not Specified		
Sample Depth:						
Matrix:	Water					
Analytical Method:	1,8260D					
Analytical Date:	05/21/23 18:15					
Analyst:	MJV					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	1.7		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					Serial_No:05232312:46				
Project Name:	PHOTECH GW SAMPL	ING			Lab Nu	ımber:	L2325663		
Project Number:	2202121				Report	Date:	05/23/23		
-		SAMP		S					
Lab ID: Client ID: Sample Location:	L2325663-05 BD-20230509 ROCHESTER, NY				Date Col Date Ree Field Pre	llected: ceived: əp:	05/09/23 14:50 05/09/23 Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	by GC/MS - Westborough	Lab							
1,3-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
1,4-Dichlorobenzene		ND		ug/l	2.5	0.70	1		
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1		
p/m-Xylene		ND		ug/l	2.5	0.70	1		
o-Xylene		ND		ug/l	2.5	0.70	1		
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1		
Styrene		ND		ug/I	2.5	0.70	1		
Dicniorodifiuoromethane		ND		ug/I	5.0	1.0	1		
Acetone		6.6		ug/l	5.0	1.5	1		
Carbon disulfide		ND		ug/l	5.0	1.0	1		
2-Butanone		4.2	J	ug/l	5.0	1.9	1		
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1		
2-Hexanone		ND		ug/l	5.0	1.0	1		
Bromochloromethane		ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1		
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene		ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1		
Methyl Acetate		ND		ug/l	2.0	0.23	1		
Cyclohexane		ND		ug/l	10	0.27	1		
1,4-Dioxane		ND		ug/l	250	61.	1		
Freon-113		ND		ug/l	2.5	0.70	1		
Methyl cyclohexane		ND		ug/l	10	0.40	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	110		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	109		70-130	

		Serial_No	05232312:46
Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RE	ESULTS	
Lab ID:	L2325663-06	Date Collected:	05/09/23 08:00
Client ID:	TRIP BLANK	Date Received:	05/09/23
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified
Sample Depth:			
Matrix:	Water		
Analytical Method:	1,8260D		
Analytical Date:	05/19/23 22:27		
Analyst:	MKS		
Analytical Method: Analytical Date: Analyst:	1,8260D 05/19/23 22:27 MKS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1		
Chloroform	ND		ug/l	2.5	0.70	1		
Carbon tetrachloride	ND		ug/l	0.50	0.13	1		
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1		
Dibromochloromethane	ND		ug/l	0.50	0.15	1		
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1		
Tetrachloroethene	ND		ug/l	0.50	0.18	1		
Chlorobenzene	ND		ug/l	2.5	0.70	1		
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1		
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1		
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1		
Bromodichloromethane	ND		ug/l	0.50	0.19	1		
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1		
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1		
Bromoform	ND		ug/l	2.0	0.65	1		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1		
Benzene	ND		ug/l	0.50	0.16	1		
Toluene	ND		ug/l	2.5	0.70	1		
Ethylbenzene	ND		ug/l	2.5	0.70	1		
Chloromethane	ND		ug/l	2.5	0.70	1		
Bromomethane	ND		ug/l	2.5	0.70	1		
Vinyl chloride	ND		ug/l	1.0	0.07	1		
Chloroethane	ND		ug/l	2.5	0.70	1		
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1		
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1		
Trichloroethene	ND		ug/l	0.50	0.18	1		
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1		

					Serial_No:05232312:46				
Project Name:	PHOTECH GW SAMPI	LING			Lab Nu	mber:	L2325663		
Project Number:	2202121				Report	Date:	05/23/23		
-		SAMP		S	-				
Lab ID: Client ID: Sample Location:	L2325663-06 TRIP BLANK ROCHESTER, NY				Date Col Date Ree Field Pre	llected: ceived: p:	05/09/23 08:00 05/09/23 Not Specified		
Sample Depth:									
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics b	by GC/MS - Westborough	Lab							
1.3-Dichlorobonzono		ND			2.5	0.70	1		
1,3-Dichlorobenzene				ug/I	2.5	0.70	1		
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1		
n/m-Xylene		ND		ug/l	2.5	0.70	1		
o-Xvlene		ND		ug/l	2.5	0.70	1		
cis-1.2-Dichloroethene		ND		ug/l	2.5	0.70	1		
Styrene		ND		ua/l	2.5	0.70	1		
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1		
Acetone		ND		ug/l	5.0	1.5	1		
Carbon disulfide		ND		ug/l	5.0	1.0	1		
2-Butanone		ND		ug/l	5.0	1.9	1		
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1		
2-Hexanone		ND		ug/l	5.0	1.0	1		
Bromochloromethane		ND		ug/l	2.5	0.70	1		
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1		
1,2-Dibromo-3-chloropro	pane	ND		ug/l	2.5	0.70	1		
Isopropylbenzene		ND		ug/l	2.5	0.70	1		
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1		
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1		
Methyl Acetate		ND		ug/l	2.0	0.23	1		
Cyclohexane		ND		ug/l	10	0.27	1		
1,4-Dioxane		ND		ug/l	250	61.	1		
Freon-113		ND		ug/l	2.5	0.70	1		
Methyl cyclohexane		ND		ug/l	10	0.40	1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	99		70-130	

L2325663

05/23/23

Lab Number:

Report Date:

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

02121

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/19/23 17:49Analyst:TMS

Parameter	Result	Qualifier	Units	RL	-	MDL	
Volatile Organics by GC/MS - We	stborough Lab	o for sampl	e(s):	01-04,06	Batch:	WG1781421-5	
Methylene chloride	ND		ug/l	2.5	5	0.70	
1,1-Dichloroethane	ND		ug/l	2.5	5	0.70	
Chloroform	ND		ug/l	2.5	5	0.70	
Carbon tetrachloride	ND		ug/l	0.5	0	0.13	
1,2-Dichloropropane	ND		ug/l	1.()	0.14	
Dibromochloromethane	ND		ug/l	0.5	0	0.15	
1,1,2-Trichloroethane	ND		ug/l	1.5	5	0.50	
Tetrachloroethene	ND		ug/l	0.5	0	0.18	
Chlorobenzene	ND		ug/l	2.5	5	0.70	
Trichlorofluoromethane	ND		ug/l	2.5	5	0.70	
1,2-Dichloroethane	ND		ug/l	0.5	0	0.13	
1,1,1-Trichloroethane	ND		ug/l	2.5	5	0.70	
Bromodichloromethane	ND		ug/l	0.5	0	0.19	
trans-1,3-Dichloropropene	ND		ug/l	0.5	0	0.16	
cis-1,3-Dichloropropene	ND		ug/l	0.5	0	0.14	
Bromoform	ND		ug/l	2.0)	0.65	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.5	0	0.17	
Benzene	ND		ug/l	0.5	0	0.16	
Toluene	ND		ug/l	2.5	5	0.70	
Ethylbenzene	ND		ug/l	2.5	5	0.70	
Chloromethane	ND		ug/l	2.5	5	0.70	
Bromomethane	ND		ug/l	2.5	5	0.70	
Vinyl chloride	ND		ug/l	1.()	0.07	
Chloroethane	ND		ug/l	2.5	5	0.70	
1,1-Dichloroethene	ND		ug/l	0.5	0	0.17	
trans-1,2-Dichloroethene	ND		ug/l	2.5	5	0.70	
Trichloroethene	ND		ug/l	0.5	0	0.18	
1,2-Dichlorobenzene	ND		ug/l	2.5	5	0.70	
1,3-Dichlorobenzene	ND		ug/l	2.5	5	0.70	

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

0101

 Lab Number:
 L2325663

 Report Date:
 05/23/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/19/23 17:49Analyst:TMS

Parameter	Result	Qualifier Units	s RL		MDL
Volatile Organics by GC/MS - Westh	orough Lab	for sample(s):	01-04,06	Batch:	WG1781421-5
1,4-Dichlorobenzene	ND	ug/l	2.5	5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	;	0.70
p/m-Xylene	ND	ug/l	2.5	5	0.70
o-Xylene	ND	ug/l	2.5	5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	5	0.70
Styrene	ND	ug/l	2.5	5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0)	1.0
Acetone	ND	ug/l	5.0)	1.5
Carbon disulfide	ND	ug/l	5.0)	1.0
2-Butanone	ND	ug/l	5.0)	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0)	1.0
2-Hexanone	ND	ug/l	5.0)	1.0
Bromochloromethane	ND	ug/l	2.5	5	0.70
1,2-Dibromoethane	ND	ug/l	2.0)	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	5	0.70
Isopropylbenzene	ND	ug/l	2.5	5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	5	0.70
Methyl Acetate	ND	ug/l	2.0)	0.23
Cyclohexane	ND	ug/l	10		0.27
1,4-Dioxane	ND	ug/l	250)	61.
Freon-113	ND	ug/l	2.5	;	0.70
Methyl cyclohexane	ND	ug/l	10		0.40

L2325663

05/23/23

Project Name:PHOTECH GW SAMPLINGLab Number:Project Number:2202121Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/19/23 17:49Analyst:TMS

Parameter	Result	Qualifier	Units	s R	L	MDL	
Volatile Organics by GC/MS - Wes	stborough La	ab for sample	e(s):	01-04,06	Batch:	WG1781421-5	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	102		70-130			
Toluene-d8	96		70-130			
4-Bromofluorobenzene	100		70-130			
Dibromofluoromethane	100		70-130			

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

0404

 Lab Number:
 L2325663

 Report Date:
 05/23/23

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/21/23 17:43Analyst:MJV

Parameter	Result	Qualifier Units	RL	MDL		
Volatile Organics by GC/MS	- Westborough Lat	o for sample(s): 05	5 Batch:	WG1782112-5		
Methylene chloride	ND	ug/l	2.5	0.70		
1,1-Dichloroethane	ND	ug/l	2.5	0.70		
Chloroform	ND	ug/l	2.5	0.70		
Carbon tetrachloride	ND	ug/l	0.50	0.13		
1,2-Dichloropropane	ND	ug/l	1.0	0.14		
Dibromochloromethane	ND	ug/l	0.50	0.15		
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50		
Tetrachloroethene	ND	ug/l	0.50	0.18		
Chlorobenzene	ND	ug/l	2.5	0.70		
Trichlorofluoromethane	ND	ug/l	2.5	0.70		
1,2-Dichloroethane	ND	ug/l	0.50	0.13		
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70		
Bromodichloromethane	ND	ug/l	0.50	0.19		
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16		
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14		
Bromoform	ND	ug/l	2.0	0.65		
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17		
Benzene	ND	ug/l	0.50	0.16		
Toluene	ND	ug/l	2.5	0.70		
Ethylbenzene	ND	ug/l	2.5	0.70		
Chloromethane	ND	ug/l	2.5	0.70		
Bromomethane	ND	ug/l	2.5	0.70		
Vinyl chloride	ND	ug/l	1.0	0.07		
Chloroethane	ND	ug/l	2.5	0.70		
1,1-Dichloroethene	ND	ug/l	0.50	0.17		
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70		
Trichloroethene	ND	ug/l	0.50	0.18		
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70		
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70		

L2325663

05/23/23

Lab Number:

Report Date:

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: Analyst: MJV

05/21/23 17:43

Parameter	Result	Qualifier	Units	RL	MDL		
Volatile Organics by GC/MS -	Westborough Lab	for sample	e(s): 05	Batch:	WG1782112-5		
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70		
Methyl tert butyl ether	ND		ug/l	2.5	0.70		
p/m-Xylene	ND		ug/l	2.5	0.70		
o-Xylene	ND		ug/l	2.5	0.70		
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70		
Styrene	ND		ug/l	2.5	0.70		
Dichlorodifluoromethane	ND		ug/l	5.0	1.0		
Acetone	ND		ug/l	5.0	1.5		
Carbon disulfide	ND		ug/l	5.0	1.0		
2-Butanone	ND		ug/l	5.0	1.9		
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0		
2-Hexanone	ND		ug/l	5.0	1.0		
Bromochloromethane	ND		ug/l	2.5	0.70		
1,2-Dibromoethane	ND		ug/l	2.0	0.65		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70		
Isopropylbenzene	ND		ug/l	2.5	0.70		
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70		
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70		
Methyl Acetate	ND		ug/l	2.0	0.23		
Cyclohexane	ND		ug/l	10	0.27		
1,4-Dioxane	ND		ug/l	250	61.		
Freon-113	ND		ug/l	2.5	0.70		
Methyl cyclohexane	ND		ug/l	10	0.40		

L2325663

05/23/23

Project Name:PHOTECH GW SAMPLINGLab Number:Project Number:2202121Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method:1,8260DAnalytical Date:05/21/23 17:43Analyst:MJV

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sampl	e(s): 05	Batch:	WG1782112-5	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	114		70-130			
Toluene-d8	100		70-130			
4-Bromofluorobenzene	94		70-130			
Dibromofluoromethane	111		70-130			

Lab Control Sample Analysis

Batch Quality Control

Project Number: 2202121

Lab Number: L2325663 Report Date: 05/23/23

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-04,06 Batch: WG1781421-3 WG1781421-4 Methylene chloride 100 100 70-130 0 20 1,1-Dichloroethane 100 100 70-130 0 20 Chloroform 98 100 70-130 2 20 Carbon tetrachloride 98 99 63-132 20 1 100 70-130 20 1,2-Dichloropropane 100 0 Dibromochloromethane 91 93 63-130 2 20 1.1.2-Trichloroethane 97 100 70-130 3 20 Tetrachloroethene 100 110 70-130 10 20 Chlorobenzene 100 110 75-130 10 20 Trichlorofluoromethane 100 110 62-150 10 20 1.2-Dichloroethane 99 100 70-130 1 20 1,1,1-Trichloroethane 99 100 67-130 1 20 Bromodichloromethane 94 96 67-130 2 20 70-130 20 trans-1,3-Dichloropropene 98 100 2 cis-1,3-Dichloropropene 96 100 70-130 4 20 Bromoform 84 88 54-136 5 20 1,1,2,2-Tetrachloroethane 98 100 67-130 2 20 70-130 20 Benzene 100 100 0 70-130 20 Toluene 100 100 0 Ethylbenzene 99 100 70-130 1 20 Chloromethane 100 100 64-130 0 20 Bromomethane 20 71 77 39-139 8 100 20 Vinyl chloride 110 55-140 10

Project Number: 2202121

Lab Number: L2325663

Report Date: 05/23/23

Paramotor	LCS %Recovery	Qual	LCSD %Recovery	%ł Qual	Recovery Limits	חפפ	Qual	RPD Limits	
Falameter	/orrecovery	Quai	/incource y	Quai	Liinitä		Quai	Linits	
Volatile Organics by GC/MS	- Westborough Lab Associated	sample(s):	01-04,06 Batch:	WG1781421-3	WG1781421	-4			
Chloroethane	110		110		55-138	0		20	
1,1-Dichloroethene	100		100		61-145	0		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	89		93		70-130	4		20	
1,2-Dichlorobenzene	99		100		70-130	1		20	
1,3-Dichlorobenzene	100		110		70-130	10		20	
1,4-Dichlorobenzene	98		100		70-130	2		20	
Methyl tert butyl ether	96		97		63-130	1		20	
p/m-Xylene	105		105		70-130	0		20	
o-Xylene	100		105		70-130	5		20	
cis-1,2-Dichloroethene	98		100		70-130	2		20	
Styrene	100		105		70-130	5		20	
Dichlorodifluoromethane	100		100		36-147	0		20	
Acetone	100		110		58-148	10		20	
Carbon disulfide	100		100		51-130	0		20	
2-Butanone	88		95		63-138	8		20	
4-Methyl-2-pentanone	89		99		59-130	11		20	
2-Hexanone	91		99		57-130	8		20	
Bromochloromethane	96		100		70-130	4		20	
1,2-Dibromoethane	99		100		70-130	1		20	
1,2-Dibromo-3-chloropropane	94		100		41-144	6		20	
Isopropylbenzene	99		100		70-130	1		20	
1,2,3-Trichlorobenzene	100		100		70-130	0		20	

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Lab Number: L2325663 Report Date: 05/23/23

	LCS		LCSD	%Rec	overy			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual Lin	nits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-04,06 Batch:	WG1781421-3 W	/G1781421-4				
1,2,4-Trichlorobenzene	100		110	70-	130	10		20	
Methyl Acetate	100		100	70-	130	0		20	
Cyclohexane	100		110	70-	130	10		20	
1,4-Dioxane	100		96	56-	162	4		20	
Freon-113	110		110	70-	130	0		20	
Methyl cyclohexane	100		100	70-	130	0		20	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	102	70-130
Toluene-d8	101	102	70-130
4-Bromofluorobenzene	97	100	70-130
Dibromofluoromethane	100	102	70-130

Project Number: 2202121 Lab Number: L2325663 05/23/23

Report Date:

	LCS		LCSD		%Recovery		RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual Limits	
Volatile Organics by GC/MS - W	estborough Lab Associated	sample(s): 0	5 Batch: WG	61782112-3	WG1782112-4			
Methylene chloride	120		110		70-130	9	20	
1,1-Dichloroethane	130		130		70-130	0	20	
Chloroform	120		110		70-130	9	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	130		130		70-130	0	20	
Dibromochloromethane	98		100		63-130	2	20	
1,1,2-Trichloroethane	110		110		70-130	0	20	
Tetrachloroethene	100		98		70-130	2	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	97		93		62-150	4	20	
1,2-Dichloroethane	120		120		70-130	0	20	
1,1,1-Trichloroethane	110		110		67-130	0	20	
Bromodichloromethane	110		110		67-130	0	20	
trans-1,3-Dichloropropene	110		110		70-130	0	20	
cis-1,3-Dichloropropene	110		110		70-130	0	20	
Bromoform	87		94		54-136	8	20	
1,1,2,2-Tetrachloroethane	95		100		67-130	5	20	
Benzene	120		110		70-130	9	20	
Toluene	110		100		70-130	10	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	150	Q	150	Q	64-130	0	20	
Bromomethane	97		100		39-139	3	20	
Vinyl chloride	110		110		55-140	0	20	

Project Number: 2202121 Lab Number: L2325663 05/23/23

Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recove	ery Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westbor	ough Lab Associated	sample(s): 0	5 Batch:	WG1782112-3	WG1782112-4				
Chloroethane	110		110		55-138	0		20	
1,1-Dichloroethene	110		100		61-145	10		20	
trans-1,2-Dichloroethene	110		110		70-130	0		20	
Trichloroethene	100		96		70-130	4		20	
1,2-Dichlorobenzene	94		98		70-130	4		20	
1,3-Dichlorobenzene	97		99		70-130	2		20	
1,4-Dichlorobenzene	96		98		70-130	2		20	
Methyl tert butyl ether	98		100		63-130	2		20	
p/m-Xylene	110		105		70-130	5		20	
o-Xylene	105		105		70-130	0		20	
cis-1,2-Dichloroethene	110		110		70-130	0		20	
Styrene	105		105		70-130	0		20	
Dichlorodifluoromethane	95		90		36-147	5		20	
Acetone	130		93		58-148	33	Q	20	
Carbon disulfide	120		110		51-130	9		20	
2-Butanone	120		110		63-138	9		20	
4-Methyl-2-pentanone	100		100		59-130	0		20	
2-Hexanone	100		100		57-130	0		20	
Bromochloromethane	110		110		70-130	0		20	
1,2-Dibromoethane	100		100		70-130	0		20	
1,2-Dibromo-3-chloropropane	74		85		41-144	14		20	
Isopropylbenzene	94		96		70-130	2		20	
1,2,3-Trichlorobenzene	88		88		70-130	0		20	

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121 Lab Number: L2325663 Report Date: 05/23/23

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	/ Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	05 Batch: W	/G1782112-3	WG1782112-4				
1,2,4-Trichlorobenzene	88		88		70-130	0		20	
Methyl Acetate	120		120		70-130	0		20	
Cyclohexane	130		120		70-130	8		20	
1,4-Dioxane	88		88		56-162	0		20	
Freon-113	100		99		70-130	1		20	
Methyl cyclohexane	110		100		70-130	10		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	l %Recovery Qual	Criteria
1,2-Dichloroethane-d4	115	116	70-130
Toluene-d8	105	104	70-130
4-Bromofluorobenzene	92	97	70-130
Dibromofluoromethane	105	106	70-130

Matrix Spike Analysis Batch Quality Control

Project Name:	PHOTECH GW SAMPLING

Project Number: 2202121

 Lab Number:
 L2325663

 Report Date:
 05/23/23

Parameter	Native Sample	MS Added	MS Found	MS %Recoverv	MSD Qual Found	MSD %Recoverv	Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/N	MS - Westborough L	_ab Assoc	ciated sample	e(s): 01-04,06	QC Batch ID: WG17	81421-6 WG1	781421-7 QC San	nple: L2	2325663-04 Client ID:
RMW-3-20230509									
Methylene chloride	ND	10	11	110	11	110	70-130	0	20
1,1-Dichloroethane	ND	10	12	120	12	120	70-130	0	20
Chloroform	ND	10	11	110	11	110	70-130	0	20
Carbon tetrachloride	ND	10	12	120	11	110	63-132	9	20
1,2-Dichloropropane	ND	10	11	110	11	110	70-130	0	20
Dibromochloromethane	ND	10	9.7	97	10	100	63-130	3	20
1,1,2-Trichloroethane	ND	10	10	100	11	110	70-130	10	20
Tetrachloroethene	ND	10	11	110	11	110	70-130	0	20
Chlorobenzene	ND	10	11	110	11	110	75-130	0	20
Trichlorofluoromethane	ND	10	12	120	12	120	62-150	0	20
1,2-Dichloroethane	ND	10	11	110	11	110	70-130	0	20
1,1,1-Trichloroethane	ND	10	11	110	11	110	67-130	0	20
Bromodichloromethane	ND	10	10	100	10	100	67-130	0	20
trans-1,3-Dichloropropene	ND	10	10	100	10	100	70-130	0	20
cis-1,3-Dichloropropene	ND	10	11	110	10	100	70-130	10	20
Bromoform	ND	10	8.7	87	8.8	88	54-136	1	20
1,1,2,2-Tetrachloroethane	ND	10	11	110	11	110	67-130	0	20
Benzene	ND	10	12	120	12	120	70-130	0	20
Toluene	ND	10	11	110	12	120	70-130	9	20
Ethylbenzene	ND	10	11	110	12	120	70-130	9	20
Chloromethane	ND	10	11	110	11	110	64-130	0	20
Bromomethane	ND	10	6.7	67	7.4	74	39-139	10	20
Vinyl chloride	ND	10	12	120	12	120	55-140	0	20

Matrix Spike Analysis Batch Quality Control

Project Name:	PHOTECH GW SAMPLING

Project Number: 2202121

```
        Lab Number:
        L2325663

        Report Date:
        05/23/23
```

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Four	MSD MSD %Recovery	Recovery Qual Limits	, RPD	RPD Qual Limits
Volatile Organics by GC/MS RMW-3-20230509	- Westborough	Lab Assoc	ciated sample	(s): 01-04,06	QC Batch ID: WG	61781421-6 WG	1781421-7 QC Sa	mple: L2	2325663-04 Client ID:
Chloroethane	ND	10	12	120	12	120	55-138	0	20
1,1-Dichloroethene	ND	10	12	120	12	120	61-145	0	20
trans-1,2-Dichloroethene	ND	10	11	110	12	120	70-130	9	20
Trichloroethene	1.5	10	11	95	10	85	70-130	10	20
1,2-Dichlorobenzene	ND	10	11	110	11	110	70-130	0	20
1,3-Dichlorobenzene	ND	10	11	110	11	110	70-130	0	20
1,4-Dichlorobenzene	ND	10	11	110	11	110	70-130	0	20
Methyl tert butyl ether	ND	10	10	100	10	100	63-130	0	20
p/m-Xylene	ND	20	23	115	24	120	70-130	4	20
o-Xylene	ND	20	23	115	23	115	70-130	0	20
cis-1,2-Dichloroethene	ND	10	11	110	11	110	70-130	0	20
Styrene	ND	20	22	110	22	110	70-130	0	20
Dichlorodifluoromethane	ND	10	11	110	11	110	36-147	0	20
Acetone	12	10	27	150	Q 30	180	Q 58-148	11	20
Carbon disulfide	ND	10	12	120	12	120	51-130	0	20
2-Butanone	2.0J	10	11	110	13	130	63-138	17	20
4-Methyl-2-pentanone	ND	10	11	110	11	110	59-130	0	20
2-Hexanone	ND	10	10	100	10	100	57-130	0	20
Bromochloromethane	ND	10	11	110	10	100	70-130	10	20
1,2-Dibromoethane	ND	10	11	110	11	110	70-130	0	20
1,2-Dibromo-3-chloropropane	ND	10	11	110	11	110	41-144	0	20
Isopropylbenzene	ND	10	11	110	11	110	70-130	0	20
1,2,3-Trichlorobenzene	ND	10	11	110	11	110	70-130	0	20

Matrix Spike Analysis

Project Name:	PHOTECH GW SAMPLING	Batch Quality Control	Lab Number:	L2325663
Project Number:	2202121		Report Date:	05/23/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou	D Ind	MSD %Recovery	R Qual	Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS · RMW-3-20230509	- Westborough	Lab Assoc	iated sample(s	s): 01-04,06	QC Batch ID: W	'G178	31421-6 WG1	781421-7	QC Sam	ple: L2	325663-04 Client ID:
1,2,4-Trichlorobenzene	ND	10	11	110	1.	1	110		70-130	0	20
Methyl Acetate	ND	10	10	100	10)	100		70-130	0	20
Cyclohexane	ND	10	11	110	10)	100		70-130	10	20
1,4-Dioxane	ND	500	520	104	51	0	102		56-162	2	20
Freon-113	ND	10	12	120	1'	1	110		70-130	9	20
Methyl cyclohexane	ND	10	10	100	10)	100		70-130	0	20

	MS	5	MS	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	102		100		70-130	
4-Bromofluorobenzene	98		99		70-130	
Dibromofluoromethane	103		102		70-130	
Toluene-d8	102		102		70-130	

METALS

Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RESULTS		
Lab ID:	L2325663-01	Date Collected:	05/09/23 12:40
Client ID:	RMW-4-20230509	Date Received:	05/09/23
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Matala Manad											
Total Metals - Mansi	leid Lab										
Arsenic, Total	0.00379		mg/l	0.00050	0.00016	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV
Barium, Total	0.01627		mg/l	0.00050	0.00017	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV
Chromium, Total	0.00068	J	mg/l	0.00100	0.00017	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV
Lead, Total	0.00047	J	mg/l	0.00100	0.00034	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV
Mercury, Total	ND		mg/l	0.00020	0.00009	1	05/16/23 09:16	05/18/23 19:01	EPA 7470A	1,7470A	DMB
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/16/23 08:09	05/22/23 22:13	EPA 3005A	1,6020B	SMV

Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RESULTS		
Lab ID:	L2325663-02	Date Collected:	05/09/23 11:40
Client ID:	RMW-9-20230509	Date Received:	05/09/23
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Motals - Manet	ield Lab										
Arsenic, Total	0.00248		mg/l	0.00050	0.00016	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV
Barium, Total	0.08149		mg/l	0.00050	0.00017	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV
Chromium, Total	0.00125		mg/l	0.00100	0.00017	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV
Lead, Total	0.00134		mg/l	0.00100	0.00034	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV
Mercury, Total	ND		mg/l	0.00020	0.00009	1	05/16/23 09:16	05/18/23 19:04	EPA 7470A	1,7470A	DMB
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/16/23 08:09	05/22/23 22:18	EPA 3005A	1,6020B	SMV

Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RESULTS		
Lab ID:	L2325663-03	Date Collected:	05/09/23 13:50
Client ID:	WELL-09-20230509	Date Received:	05/09/23
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
ield I ab										
ND		mg/l	0.00050	0.00016	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
0.000.40				0 000 47			05/40/00 40.05		4 00000	010/
0.03940		mg/I	0.00050	0.00017	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
ND		mg/l	0.00020	0.00005	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
0.00055	J	mg/l	0.00100	0.00017	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
ND		mg/l	0.00100	0.00034	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
ND		mg/l	0.00020	0.00009	1	05/16/23 09:16	05/18/23 18:19	EPA 7470A	1,7470A	DMB
ND		mg/l	0.00500	0.00173	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
ND		mg/l	0.00040	0.00016	1	05/16/23 08:09	05/18/23 19:35	EPA 3005A	1,6020B	SMV
	Result field Lab ND 0.03940 ND 0.00055 ND ND ND ND ND ND	Result Qualifier field Lab	ResultQualifierUnitsfield Labmg/lNDmg/l0.03940mg/lNDmg/l0.00055JNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/lNDmg/l	Result Qualifier Units RL field Lab mg/l 0.00050 ND mg/l 0.00050 0.03940 mg/l 0.00020 ND mg/l 0.00020 0.00055 J mg/l 0.00100 ND mg/l 0.00200 0.00100 ND mg/l 0.00100 mg/l ND mg/l 0.00500 0.00500 ND mg/l 0.00500 mg/l ND mg/l 0.00500 mg/l ND mg/l 0.00500 mg/l	Result Qualifier Units RL MDL field Lab mg/l 0.00050 0.00016 ND mg/l 0.00050 0.00017 ND mg/l 0.00020 0.00005 ND mg/l 0.00100 0.00017 ND mg/l 0.00100 0.00017 ND mg/l 0.00100 0.00017 ND mg/l 0.00100 0.00034 ND mg/l 0.00100 0.00034 ND mg/l 0.00100 0.00034 ND mg/l 0.00100 0.00034 ND mg/l 0.00100 0.00104 ND mg/l 0.00500 0.00173 ND mg/l 0.00500 0.00173 ND mg/l 0.00040 0.0016	ResultQualifierUnitsRLMDLPilutionfield LabNDmg/l0.000500.0001610.03940mg/l0.000500.000171NDmg/l0.000500.000171NDmg/l0.001000.000171NDmg/l0.001000.000171NDmg/l0.001000.000171NDmg/l0.001000.000311NDmg/l0.005000.001731NDmg/l0.005000.001731NDmg/l0.000400.00161	Result Qualifier Units RL MDL Dilution Factor Date Prepared field Lab mg/l 0.00050 0.00016 1 05/16/23 08:09 ND mg/l 0.00050 0.00017 1 05/16/23 08:09 0.03940 mg/l 0.00020 0.00005 1 05/16/23 08:09 ND mg/l 0.00020 0.00017 1 05/16/23 08:09 0.00055 J mg/l 0.00100 0.00017 1 05/16/23 08:09 ND mg/l 0.00100 0.00017 1 05/16/23 08:09 ND mg/l 0.00100 0.00034 1 05/16/23 08:09 ND mg/l 0.00100 0.00034 1 05/16/23 08:09 ND mg/l 0.00100 0.00173 1 05/16/23 08:09 ND mg/l 0.00500 0.00173 1 05/16/23 08:09 ND mg/l 0.00160 0.00173 1 05/16/23 08:09 ND	Result Qualifier Units RL MDL Pilution Factor Date Prepared Date Analyzed field Lab ND mg/l 0.00050 0.00016 1 05/16/23 08:09 05/18/23 19:35 0.03940 mg/l 0.00050 0.00017 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00020 0.00005 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00100 0.00017 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00100 0.00017 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00100 0.00034 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00100 0.00034 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00050 0.00173 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00050 0.00173 1 05/16/23 08:09 05/18/23 19:35 ND mg/l 0.00500 0.00173 1 05/16/23 08:09 05/18/23 19:35	ResultQualifierUnitsRLMDLPiechDate PreparedDate AnalyzedPrep MethodResultUnitsRLMDLFrequenciesSecondarySeconda	ResultQualifierUnitsRLMDLDilutionDate PreparedDate AnalyzedPrep MethodAnalytical MethodResultKICKICNDMg/I0.00050.00016105/16/23 08:0905/18/23 19:35EPA 3005A1,6020B0.03940mg/I0.000500.00017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.000200.00017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.00017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.00017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.00017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.00017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.00107105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.0017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BNDmg/I0.001000.0017105/16/23 08:0905/18/23 19:35EPA 3005A1,6020BND0.00100105/16/23 08

Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RESULTS		
Lab ID:	L2325663-04	Date Collected:	05/09/23 14:45
Client ID:	RMW-3-20230509	Date Received:	05/09/23
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	ield I ab										
										_	
Arsenic, Total	0.00346		mg/l	0.00050	0.00016	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV
Barium, Total	0.07871		mg/l	0.00050	0.00017	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV
Chromium, Total	0.00985		mg/l	0.00100	0.00017	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV
Lead, Total	0.00114		mg/l	0.00100	0.00034	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV
Mercury, Total	ND		mg/l	0.00020	0.00009	1	05/16/23 09:16	05/18/23 18:51	EPA 7470A	1,7470A	DMB
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/16/23 08:09	05/22/23 21:11	EPA 3005A	1,6020B	SMV

Project Name:	PHOTECH GW SAMPLING	Lab Number:	L2325663
Project Number:	2202121	Report Date:	05/23/23
	SAMPLE RESULTS		
Lab ID:	L2325663-05	Date Collected:	05/09/23 14:50
Client ID:	BD-20230509	Date Received:	05/09/23
Sample Location:	ROCHESTER, NY	Field Prep:	Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	efield Lab										
Arsenic, Total	0.00330		mg/l	0.00050	0.00016	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV
Barium, Total	0.07872		mg/l	0.00050	0.00017	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV
Chromium, Total	0.00639		mg/l	0.00100	0.00017	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV
Lead, Total	0.00091	J	mg/l	0.00100	0.00034	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV
Mercury, Total	ND		mg/l	0.00020	0.00009	1	05/16/23 09:16	6 05/18/23 19:08	EPA 7470A	1,7470A	DMB
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV
Silver, Total	ND		mg/l	0.00040	0.00016	1	05/16/23 08:09	05/22/23 22:23	EPA 3005A	1,6020B	SMV

Project Name: PHOTECH GW SAMPLING Project Number: 2202121
 Lab Number:
 L2325663

 Report Date:
 05/23/23

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-05 E	Batch: WG	6177928	34-1				
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV
Barium, Total	ND	mg/l	0.00050	0.00017	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV
Lead, Total	ND	mg/l	0.00100	0.00034	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV
Selenium, Total	ND	mg/l	0.00500	0.00173	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV
Silver, Total	ND	mg/l	0.00040	0.00016	1	05/16/23 08:09	05/18/23 18:56	1,6020B	SMV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-05	Batch: WG	G17792	88-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	05/16/23 09:16	05/18/23 18:12	1,7470A	DMB

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis

Batch Quality Control

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Lab Number: L2325663 Report Date: 05/23/23

LCS LCSD %Recovery %Recovery %Recovery Limits Qual RPD **RPD Limits** Parameter Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01-05 Batch: WG1779284-2 104 Arsenic, Total -80-120 -Barium, Total 102 80-120 --Cadmium, Total 105 80-120 --Chromium, Total 98 80-120 --Lead, Total 107 80-120 --Selenium, Total 104 80-120 --Silver, Total 107 80-120 --Total Metals - Mansfield Lab Associated sample(s): 01-05 Batch: WG1779288-2 80-120 Mercury, Total 96 --

Matrix Spike Analysis

Batch Quality Control

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Lab Number: L2325663 Report Date: 05/23/23

MS RPD Native MS MS MSD MSD Recovery Sample %Recovery Qual Found Limits Added Found Limits %Recovery Qual **RPD** Qual Parameter Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG1779284-11 WG1779284-12 QC Sample: L2325743-06 Client ID: MS Sample ND 0.12 0.1194 100 0.1181 98 75-125 Arsenic. Total 1 20 0.0005J 2 1.950 98 1.933 97 75-125 20 Barium. Total 1 Cadmium. Total ND 0.053 0.05145 97 0.05208 98 75-125 1 20 Chromium, Total 0.0003J 0.2 0.1899 95 0.1886 94 75-125 1 20 Lead. Total ND 0.53 0.5095 96 0.5072 96 75-125 0 20 Selenium, Total ND 0.12 0.124 103 0.124 103 75-125 0 20 Silver, Total ND 0.05 0.04880 0.04875 98 0 20 98 75-125 Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG1779284-3 WG1779284-4 QC Sample: L2325663-03 Client ID: WELL-09-20230509 Arsenic. Total ND 0.1214 95 6 0.12 101 0.1144 75-125 20 0.03940 2 2.075 102 2.022 99 Barium. Total 75-125 3 20 ND 0.053 0.05524 0.05458 Cadmium, Total 104 103 75-125 1 20 Chromium, Total 0.00055J 0.2 0.1856 93 0.1792 90 75-125 4 20 Lead. Total ND 0.53 0.5723 108 0.5644 106 75-125 1 20 ND 0.12 0.125 0.118 98 Selenium. Total 104 75-125 6 20 ND 0.05 0.05354 0.05273 2 Silver, Total 107 105 75-125 20

Matrix Spike Analysis Batch Quality Control

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

 Lab Number:
 L2325663

 Report Date:
 05/23/23

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found %	MSD 6Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab 20230509	Associated sar	nple(s): 01-05	QC Bat	ch ID: WG1779284	-7 WG1779284-	8 QC Sam	nple: L2325663-04	Client I	D: RMW-3-
Arsenic, Total	0.00346	0.12	0.1250	101	0.1236	100	75-125	1	20
Barium, Total	0.07871	2	2.017	97	1.978	95	75-125	2	20
Cadmium, Total	ND	0.053	0.05248	99	0.05097	96	75-125	3	20
Chromium, Total	0.00985	0.2	0.2014	96	0.1961	93	75-125	3	20
Lead, Total	0.00114	0.53	0.5293	100	0.5180	98	75-125	2	20
Selenium, Total	ND	0.12	0.122	102	0.123	102	75-125	1	20
Silver, Total	ND	0.05	0.04885	98	0.04762	95	75-125	3	20
Total Metals - Mansfield Lab 20230509	Associated sar	mple(s): 01-05	QC Bat	ch ID: WG1779288	-3 WG1779288-	4 QC Sam	nple: L2325663-03	Client I	D: WELL-09-
Mercury, Total	ND	0.005	0.00472	94	0.00475	95	75-125	1	20
Total Metals - Mansfield Lab 20230509	Associated sar	nple(s): 01-05	QC Bat	ch ID: WG1779288	-5 WG1779288-	6 QC Sam	nple: L2325663-04	Client I	D: RMW-3-
Mercury, Total	ND	0.005	0.00487	97	0.00495	99	75-125	2	20

Project Name: Project Number:	PHOTECH GW SAMPLING 2202121		Lab Serial Dil Analysis Batch Quality C	ution S ontrol	b Number: port Date:	L2325663 05/23/23	
Parameter		Native Sample	Serial Dilution	on Units	% D	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sample(s): 01-0	05 QC Batch ID:	WG1779284-10 QC	Sample: L2325663-04	1 Client ID	: RMW-3-2	0230509
Barium, Total		0.07871	0.07758	mg/l	1		20
Total Metals - Mansfield	Lab Associated sample(s): 01-0	05 QC Batch ID:	WG1779284-6 QC S	ample: L2325663-03	Client ID:	WELL-09-2	20230509
Barium, Total		0.03940	0.03954	mg/l	0		20

Project Name: PHOTECH GW SAMPLING Project Number: 2202121

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent

Container Information

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2325663-01A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-01B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-01C	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-01D	Plastic 950ml HNO3 preserved	A	<2	<2	2.8	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),AG- 6020T(180),CD-6020T(180),HG-T(28)
L2325663-02A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-02B	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-02C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-02D	Plastic 950ml HNO3 preserved	A	<2	<2	2.8	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),AG- 6020T(180),CD-6020T(180),HG-T(28)
L2325663-03A	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-03B	Vial HCl preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-03C	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-03D	Plastic 950ml HNO3 preserved	A	<2	<2	2.8	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),CD- 6020T(180),HG-T(28),AG-6020T(180)
L2325663-04A	Vial HCl preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04A1	Vial HCI preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04A2	Vial HCI preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04B	Vial HCI preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04B1	Vial HCl preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04B2	Vial HCl preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04C	Vial HCI preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)

Project Name: PHOTECH GW SAMPLING Project Number: 2202121

Serial_No:05232312:46 *Lab Number:* L2325663 *Report Date:* 05/23/23

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2325663-04C1	Vial HCl preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-04C2	Vial HCl preserved	В	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L2325663-04D	Plastic 950ml HNO3 preserved	В	<2	<2	3.7	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),CD- 6020T(180),AG-6020T(180),HG-T(28)
L2325663-04D1	Plastic 250ml HNO3 preserved	В	<2	<2	3.7	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),CD- 6020T(180),AG-6020T(180),HG-T(28)
L2325663-04D2	Plastic 250ml HNO3 preserved	В	<2	<2	3.7	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),CD- 6020T(180),AG-6020T(180),HG-T(28)
L2325663-05A	Vial HCl preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-05B	Vial HCI preserved	В	NA		3.7	Y	Absent		NYTCL-8260-R2(14)
L2325663-05C	Vial HCl preserved	В	NA		3.7	Υ	Absent		NYTCL-8260-R2(14)
L2325663-05D	Plastic 250ml HNO3 preserved	В	<2	<2	3.7	Y	Absent		SE-6020T(180),BA-6020T(180),CR- 6020T(180),PB-6020T(180),AS-6020T(180),CD- 6020T(180),AG-6020T(180),HG-T(28)
L2325663-06A	Vial HCI preserved	А	NA		2.8	Y	Absent		NYTCL-8260-R2(14)
L2325663-06B	Vial HCI preserved	А	NA		2.8	Υ	Absent		NYTCL-8260-R2(14)

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Lab Number: L2325663

Report Date: 05/23/23

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Lab Number: L2325663 **Report Date:**

05/23/23

Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name: PHOTECH GW SAMPLING

Project Number: 2202121

Lab Number: L2325663

Report Date: 05/23/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Project Name:PHOTECH GW SAMPLINGProject Number:2202121

 Lab Number:
 L2325663

 Report Date:
 05/23/23

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D/8270E: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Дерна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	Rd, Suite 5 ay oper Ave, Suite 10	15	Page	1		Date I in L	Rec'd ab S	10	23	1	ALPHA JOB # L2325	663		
Westborough, MA 01581	Mansfield, MA 02048 320 Earbes Blud	Project Information		a charter			Deliv	erables	i		22.11		Billing Information			
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Phot	ec GI	N SOM	1P1/na	0	ASP-A ASP-B					Same as Client Info				
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: 1300	nester	M. N				EQuis	S (1 File)		QuIS (4 File)	PO #			
Client Information	and the second second second	Project # 2202	121		0.000			Other								
Client (OBRILO		(Use Project name as Pro	piect #)				Regu	latory I	Requireme	nt	Part in		Disposal Site Info	rmation		
Address 200 CANIA	of Chile 201	Broject Manager Mil	P DP II	what	٨			NY TO	GS		Y Part 3	75	Please identify below	v location of		
BOCNESTER IN	14614	ALPHAQuote #:	to per	gunari	3		AWQ Standards NY CP-51				applicable disposal facilities.					
Phone: 585-454	-6110	Turn-Around Time						NY Res	stricted Use		Other		Disposal Facility:	N		
Fax:		Standard	×	Due Date:				NY Uni	restricted Us	B			и 🗌	NY NY		
Email: MPALUCHON	10 labellape un	Rush (only if pre approved)		# of Days:				NYC S	ewer Discha	rge			Other:			
These samples have be	en previously analyze	d by Alpha	1 - 11)				ANA	LYSIS					Sample Filtration	7	T	
Other project specific	requirements/comm	ents:					8						Done		o t	
							2	20	81.1				A Lab to do		а	
CC: espirit	Dalabella	000.00				15	6	5t					Preservation		3.b.,	
Please specify Metals	or TAL						3	27					Lab to do		в	
riease speeny metals					_		NC	Ea					Please Specify	below)	•	
			Calle	atlan			-	50					(ricuse opening i	, cion		
ALPHA Lab ID	Sa	mple ID	Colle	ection	Sample	Sampler's	0	23					Sample Specific Co	mmente	1	
(Lab Use Only)	0	245.60	Date	Time	IVIDUIA	mindas	1				_	_	Sample Specific Co	munents	e -	
25663-01	KMW-4-20	230009	519163	12:40	GW	E	Å.	X	_		-	-			7	
02	KMW-9-2	0230509	519123	11.40	GW.	ES		X				_			4	
03	Well-09-2	0230509	519123	13:5D	GW	ES	X	X	_		_	_			4	2.4.0
04	RMW-3-20	230509	5/9/23	14:45	GW	PS	X	X				_	msimsp		N.	MA
05	BD-2023	0509	519123	14:50	GW	ES	X	\times							×	24
00	TVID-BIO	NY	Siglar	0800	GW	ES	X									2
THE STREET																
The second second second														1.1		
								\square								
							-									
Preservative Code:	Container Code	Weethorn: Certification N	- MA935	_				n					Please print cle	arly legibly		
A = None	P = Plastic	Menefield: Certification No	- MA015		Cont	tainer Type	V	P					and completely	. Samples c	an	
B = HCI C = HNO	A = Amber Glass V = Vial	Mansheid. Ceruication No	5. IMAU 15				1	\vdash		\vdash			not be logged in	n and		
$D = H_2SO_4$	G = Glass			1	P	reservative	B	C					turnaround time	e clock will n	ot	
E = NaOH	B = Bacteria Cup C = Cube											220	start until any a	mbiguities a	re	
F = MeOH G = NaHSO	O = Other	Relinguished B	iy:	Date/	7 1/ 213	1	Receiv	ved By:		-1-	Jate/11	1/ 20	THIS COC, TH	E CLIENT		
$H = Na_2S_2O_3$	E = Encore	amugeophi	ne .	oppla	2 10.00	Hand	5	TOPA	NE AML	5/7/	330	1100	HAS READ AN	D AGREES		
K/E = Zn Ac/NaOH	D - BOD Bottle	DECUKE STOPAG	EAAL	5/1/23	1455	14/1	apr	hi 1	TAL	5/9/	2.51	633	TO BE BOUND	BY ALPHA	S	
0 = Other		1.4 Mapoli .	AAL	5/9/23	1655	more	a	in	GN	GIOL	150	20,20	(See reverse si	de.)		
Form No: 01-25 HC (rev. 30	-Sept-2013)				1									2020 C		

APPENDIX 2

SPECTION FORM) S.K WSDER S.K. No. BODO/6 - Rectand, NY		COMMENTS AND/OR ACTIONS TAKEN	COMMENTS AND/OR ACTIONS TAKEN
SITE-WIDE IN Dr Ner Make 4 I and 202/21 June An 202/21 June An 202/21 June An 202/21 June An		ARE CURRENT SOIL CONDITIONS IN ACCORDANCE WITH THE EXCAVATION WORK	SITE RECORDS UP TO DATE
Project Name: Location: Project No.: Inspected By: Date of Inspection: Weather Conditions:		TAKE PHOTOGRAPHS OF OUTFALL AREAS	CURRENT USE OF SITE (COMMERCIAL) RESIDENTIAL/ETC.)
Associates, P.C. Associates, P.C. 300 State Street Rochester, New York 14614 Phone: (585) 454-6110 Fax: (585) 454-3066	INSPECTION FINDINGS	INSPECTION OF SOIL COVER SYSTEM OPPO- in Mat	GENERAL SITE CONDITIONS - Gaul used Are commend

Site Management Plan NYSDEC BCP ID #C828134 3865 and 3875 West Henrietta Road, Henrietta, New York

-				Project N	ame: For	mer Photech	Imaging Site	- NYSDEC EI	RP Site # BO	0016	
	LaRe	lla		Location:	100	00 Driving Pa	ark Avenue. Ro	ochester, Nev	v York		
	Powered by par	thership		Proiect N	0.: 220)2121	0				
	2.1			Sampled	By: D I	ait					
	We	11-09		Dato	Dy. <u>D.</u>	7717.	574				
	. +4	la rad			-17	20160	$\frac{1}{2}$				
	J	<u> </u>		Weather:	-6	100	oren				
WELL SAN	MPLING INFOR	RMATION	2712 S				C. Colorado				
Well Diam	eter:	211				C+	tatio Wator Lo		au Du		
Depth of \	Well:	17.924	>+			0.	ength of Well S	Screen:	4174		
Measurin	g Point:	TOC				De	epth to Top of	Pump: ~	17F+		
Pump Typ	e:	Bladder	-			Τι	ubing Type:	14	LOPE		
Sample A	nalysis:					Sa	ample Time:	12.	30		
Purge Sta	rt Time:	11:20				Pu	urge End Time	: 12	:20		
FIELD PAR	RAMETER ME	ASUREMENT									
Time	Pump Rate	Static Water Level	pН	Temp ⁰C	Conductivity (mS/cm)	Turbidity (NTU)	Dissolved O ₂ (mg/l)	Redox (mV)	Alkalinity (mg/l)	Iron (II) (mg/l)	Comments
		<0.3 ft	+/-0.1	< 0.3	+/-3%	< 50	+ 10%	+/- 10 mV	Hach test kit	Hach test kit*	
11:25	30 051	6.45	6.51	2.0	1.190	220.43	2.02	34.8			
1120		• 1	6.80	9.1	1.215	68.99	1.97	38.2			
1125		6 60	6.81	9.1	1.7.10	55.91	1.66	57.5			
1145		6.45	6.83	9.2	1.196	38.87	1.59	35 6			
1190		14	6.84	9.3	1.188	50.11	1.41	34.8			
1155		41	6.84	9.2	1-186	60.64	1:35	33.5			
17,05			6.84	9.2	1.188	63.90	1.75	32.5			
1210		1) 11	6.89	5.9	1.176	7.2.0	4.01	21.9			
1215			are the		170	11.01	001	20.0	-		
100		4	6.86	8.9	1-096	200	USC .	0.0	1		
1220		ห 1	6.86	8.9	1.178	13.72	1.15	28.0			
1220		4 h	6.86	8.9	1.178	13.72	1.15	28.0			
120		4 h	6.86	8.9 9.8	1.178	13.72	1.15	28.0			

٥x.

Total 4.0 Gallons Purged

OBSERVATIONS Cloudy brown Giw to start then clear MS/MSD + BD taken

WELL I.D	LaBe Powered by part	lla nership	F L S C	Project Na Location: Project Na Sampled Date: Weather:	ame: For <u>100</u> o.: 220 By: D. T <u>1/7</u>	mer Photech)0 Driving Pa)2121 ait 201207	n Imaging Site ark Avenue, Rc	– NYSDEC EF	P Site # BO	0016	
WELL SAM Well Diame Depth of W Measuring Pump Type Sample An Purge Star	IPLING INFOR eter: Vell: g Point: e: nalysis: t Time:	RMATION Z" R.7574 TOC Bladder 13:40				S' La D Ti S P	tatic Water Lev ength of Well S epth to Top of ubing Type: ample Time: urge End Time	vel: 7 ccreen: Pump: 7 14	·84.Ft 11.Ft 35 30		
Time	Pump Rate	Static Water Level	рН +/- 0.1	Temp ∘C <0.3	Conductivity (mS/cm) +/- 3%	Turbidity (NTU) < 50	Dissolved 0 ₂ (mg/l) + 10%	Redox (mV) +/- 10 mV	Alkalinity (mg/l) Hach test kit	Iron (II) (mg/l) Hach test kit	Comments
13:40 13:45 1350 1355 1400 1405 1405 1410 1415 1415 1415 14	37/5		7.98 7.45 7.34 7.34 7.34 7.34 7.34 7.34 7.34 7.34	9.5 10.5 10.6 10.7 10.8 10.8 10.9 10.9 10.9 10.9	16.403 11.715 8.70 7.197 6.260 5.009 4.562 4.163 5.961 5.764 5.518	1293 722.50 529.30 515.2 213.1 157.4 117.2 101.9 77.5 20.9	9.17 9.04 9.67 8.99 9.04 9.07 1.03 9.08 9.09 9.09 9.09 9.06	54.8 34.5 37.7 39.5 40.5 42.4 42.4 43.4 44.5 45.0 45.0 45.0			
	Total	4.0	Gallons	Purged						I	

OBSERVATIONS

	D:: <u>2</u> M	lla Inership	 	Project N Location: Project N Sampled Date: Weather:	ame: Forr 100 0.: 220 By: D. T // 3 3 7	ner Photech 0 Driving Pa 2121 ait 27/207	n Imaging Site ark Avenue, Ro 4	- NYSDEC EF chester, New	P Site # BO	0016	
WELL SAN Well Diam Depth of V Measuring Pump Typ Sample An Purge Sta	IPLING INFOF eter: Vell: g Point: e: nalysis: rt Time:	RMATION Z'' Bladder Bladder 1515	≯			S ^r	tatic Water Lev ength of Well S epth to Top of ubing Type: ample Time: urge End Time	vel: creen: Pump: 16	4 Ft 15 Ft 10 05		
Time	Pump Rate	ASUREMENT Static Water Level <0.3 ft	рН +/- 0.1	Temp ∘C <0.3	Conductivity (mS/cm) +/- 3%	Turbidity (NTU) < 50	Dissolved 0 ₂ (mg/l) + 10%	Redox (mV) +/- 10 mV	Alkalinity (mg/l) Hach test kit	Iron (II) (mg/I) Hach test kit	Comments
1515	420 psi	9.1 11	7.59	8.9	0.786	271.5	3.63	93-Z 57.6			
1525		Ab	9.33	9.5	0.697	147.3	2.14	40.1			
1930		9.5	8.75	9.5	0.680	200.0	1.68	29.5			
1935			9.00	4.8	0.660	460.5	1.27	18.2			
1570		97	1.16	9.3	0.636	19754	1.04	44			
1550		11	9.40	9.9	0.640	13.6	M.74	-0.7			
1555		M	9.46	9.9	0.638	82.4	0.67	-43			
1600		EX.	9.49	10.0	0.635	63.2	0.67	-70			
1605			1.52	10.0	0.634	48.6	0.59	-8.5			

-

Total 9.5

OBSERVATIONS

Ç

WELL I.D.:	rtnership RMW-	4 1 1 1 1 1	Project Na Location: Project Na Date: Date: Weather:	ame: Forr <u>100</u> b.: <u>220</u> By: <u>D. T</u> <u>1</u> 3	ner Photech 20 Driving Pa 22121 Tait 23 /2027 1° SNOC	Imaging Site ark Avenue, Ro 1	- NYSDEC EF chester, New	RP Site # BO	0016	
WELL SAMPLING INFO Well Diameter: Depth of Well: Measuring Point: Pump Type: Sample Analysis: Purge Start Time:	RMATION Z'' ZI. 3-Ft TOC Bladde 1030				St Le De Tu Sa Pu	atic Water Lev ength of Well S epth to Top of Ibing Type: ample Time: urge End Time:	el:)7. creen: Pump:1	2792 197 :00 :55		
Time Pump Rate	Static Water Level	рН +/- 0.1	Temp ∘C <0.3	Conductivity (mS/cm) +/- 3%	Turbidity (NTU) < 50	Dissolved O ₂ (mg/l) + 10%	Redox (mV) +/- 10 mV	Alkalinity (mg/l) Hach test kit	lron (II) (mg/l) Hach test kit	Comments
1030 ~ 20 psi 1039 1040 1049 1090 1099 1099 1099 100	13.27.Ft 	4.98 7.00 7.00 7.00 7.00 7.00	10.8 H-1 II.3 II.3 9.6 II.3	2.200 2.310 2.348 2.358 2.449 2.378	200.3 202.1 70.91 30.47 30.88 21.59	1.61 0.97 0.74 0.67 0.71 0.57	12.9 73.8 2-3.8 30.8 35.9 36.6			

30

OBSERVATIONS

APPENDIX 3

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Name Former Photec Imaging 10-30 Phil Banks Site Address: 1000 Driving Pk. Avenue: Zip Code: 14613- County: Monroe 2023 Site Acreage: 12.500 2024 Reporting Period: February 24, 2023 2024 It NO, include handwritten above or on a separate sheet. 2 Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? X Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? X Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? X If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. X If you answered YES to questions 2 thru 4, include below? X If she current site use consistent with the use(s) listed below? X If THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	Sit	e No.	Site Details B00016			Box 1	
YES NO 1. Is the information above correct? X If NO, include handwritten above or on a separate sheet. X If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? X X 3. Has there been any change of use at the site during this Reporting Period (see 6NYCCRR 375-1.11(d))? X X 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? X X f you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. X 5. Is the site currently undergoing development? X X 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial X X 7. Are all ICs in place and functioning as designed? X X X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A corrective Measures Work Plan must be submitted along with this form to address these issues.	Site City Co Site Re	e Name For e Address: y/Town: Ro unty: Monro e Acreage: porting Peri	rmer Photec Imaging 1000 Driving Pk. Avenue Zip Code: 14613- chester 2 12.500 2023 pd: February 24, 2022 to February 24, 2023		10-30 Way, Banks Phil B 25-65 Way	Phil B 40-80 s Way, anks V Phil B	anks Phil 85-95 Vay, anks
1. Is the information above correct? X If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? X 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? X 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? X f you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. X 5. Is the site currently undergoing development? X G. Is the current site use consistent with the use(s) listed below? X Commercial and Industrial X 7. Are all ICs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.						YES	NO
If NO, include handwritten above or on a separate sheet. 4. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 4. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? 5. If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? 4. Box 2 4. YES NO 6. Is the current site use consistent with the use(s) listed below? 5. Commercial and Industrial 7. Are all ICs in place and functioning as designed? 4. If THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with this form to address these issues. 4. Corrective Measures Work Plan must be submitted along with t	1.	Is the infor	nation above correct?			X	
 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? 5. If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? X 8 Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? X X X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. 		If NO, inclu	de handwritten above or on a separate sheet.				
 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? X If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? X Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. 	2.	Has some tax map ar	or all of the site property been sold, subdivided, nendment during this Reporting Period?	merged, or underg	one a		X
 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? X Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. 	3.	Has there (see 6NYC	been any change of use at the site during this Re RR 375-1.11(d))?	eporting Period			X
If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? X Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? X Image: Commercial and Industrial 7. Are all ICs in place and functioning as designed? X Image: Commercial and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. Image: Commercial along with this form to address these issues.	4.	Have any for or at th	ederal, state, and/or local permits (e.g., building property during this Reporting Period?	, discharge) been i	ssued		X
5. Is the site currently undergoing development? Image: Comparison of the site o		lf you ans that docu	wered YES to questions 2 thru 4, include doo nentation has been previously submitted wit	cumentation or ev th this certification	idence 1 form.		
Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? X □ Commercial and Industrial X □ 7. Are all ICs in place and functioning as designed? X □ IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	5.	Is the site	currently undergoing development?				X
YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.						Poy 2	
 6. Is the current site use consistent with the use(s) listed below? X Commercial and Industrial 7. Are all ICs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. 						YES	NO
 7. Are all ICs in place and functioning as designed? X IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. 	6.	Is the curre Commerci	nt site use consistent with the use(s) listed belo al and Industrial	w?		X	
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues.	7.	Are all ICs	in place and functioning as designed?		X		
A Corrective Measures Work Plan must be submitted along with this form to address these issues.		IF T	HE ANSWER TO EITHER QUESTION 6 OR 7 IS N DO NOT COMPLETE THE REST OF THIS FORM	NO, sign and date I M. Otherwise cont	pelow a inue.	Ind	
	AC	Corrective N	easures Work Plan must be submitted along w	rith this form to add	dress ti	nese iss	ues.
Observations of Occurrent Development of Developmen	<u></u>				D -4		

SITE NO. B00016

Description of Institutional Controls

Parcel	Owner
090.63-001-001	FCP Driving Park LLC
090.62-1-8	1001 Driving Park, LLC
090.62-1-9	FSI Driving Park LLC
090.63-1-1.004	FSI Driving Park LLC
090.63-1-1.005	Workman Three LLC

Institutional Control

Ground Water Use Restriction Landuse Restriction Site Management Plan Soil Management Plan Monitoring Plan

IC/EC Plan

The Environmental Easement limits site use to commercial and/or industrial uses, prohibits the use of groundwater as a potable source, requires a site management plan, and requires periodic certification that all institutional and engineering controls are in place.

The Site Management Plan addresses: excavation of soils that may contain residual contamination; soil characterization and disposal/reuse in accordance with NYSDEC regulations; the potential for vapor intrusion into any buildings developed on the site; and operation and maintenance of the components of the remedy.

Box 4

Description of Engineering Controls

Parcel 090.63-001-001 **Engineering Control**

Vapor Mitigation

Periodic groundwater monitoring to determine the effectiveness of the remedy. The need for groundwater remediation and/or continued monitoring will be periodically evaluated. Groundwater monitoring will continue until the remedial objectives have been achieved, or until the NYSDEC determines that continued monitoring is no longer required.

A sub-slab mitigation system will be required for all new building construction. The SSDS shall be monitored on a periodic basis. The SSDS can be shutdown if NYSDEC determines the system is no longer required.

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the Engineering Control certification;	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene	in this ce rally acc	ertification epted
	engineering practices, and the information presented is accurate and compete.	YES	NO
		X	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the De	partmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control	e the ;	
	(d) nothing has occurred that would constitute a violation or failure to comply wi Site Management Plan for this Control; and	th the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in t	or the site	e, the ment.
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
	A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	sues.
	Signature of Owner, Remedial Party or Designated Representative Date		

Γ

IC CERTIFICATIONS SITE NO. B00016	
For Site Property / Address 10-30 and 85-95 Phil Banks Way Owner: FSI Driving Park LLC	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand tha statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 2" Penal Law.	t a false 10.45 of the
Frank Inburgia at 2213 Brighton Hurrietta TLRd. print name print business address	Roch. 104/14/623
am certifying as Owner/Mm.br/Manager (Owner or Re	emedial Party)
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Date	24
Rendering Certification	

	IC CERTIFICATIONS SITE NO. B00016	
For Site Prop Owner: 1001	perty / Address 25-65 Phil Banks Way Driving Park, LLC	Box 6
SITE OWNER I certify that all information and statement made herein is punis Penal Law.	OR DESIGNATED REPRESENTATIVE SIGNATU statements in Boxes 1,2, and 3 are true. I underst shable as a Class "A" misdemeanor, pursuant to Se	JRE and that a false ection 210.45 of the
Ramsey Elshafei print name	at 2200 Cabot Dr., Suite 110, Lisle, I print business address	L 60532 ,
am certifying as Owner	(Owi	ner or Remedial Party
for the Site named in the Site I	Details Section of this form.	
Ramsey Elshafeir	dministrative Manager for 1001 Driving Park, LLC 3/16/20)24
Signature of Owner, Remedial Rendering Certification	Party, or Designated Representative Date	9

ا C S For Site Property / Ad (Owner: Workman Th	CERTIFICATIONS ITE NO. B00016 Idress 40-80 Phil Banks Way Iree LLC)	Box 6
SITE OWNER OR DESIGI I certify that all information and statements statement made herein is punishable as a 0 Penal Law.	NATED REPRESENTATIVE SIGNATURE in Boxes 1,2, and 3 are true. I understand t Class "A" misdemeanor, pursuant to Section	that a false 1 210.45 of the
Tyler Workman	650 NE 32nd St, Apt. 2402	Miami, FL 33137
print name	print business address	
am certifying asOwner	(Owner of	r Remedial Party)
for the Site named in the Site Details Section	on of this form.	
Tyles Workman	3/15/2024	4
Signature of Owner, Remedial Party, or De Rendering Certification	signated Representative Date	

EX	CCERTIFICATIONS
	Box 7
Profes	ssional Engineer Signature
certify that all information in Boxes 4 and punishable as a Class "A" misdemeanor, p	I 5 are true. I understand that a false statement made herein pursuant to Section 210.45 of the Penal Law.
DANIEL P. NOLL	LABELLA ASSOCIATES, DPC, 300 STATE ST, ROCHESTER, NY 14614
print name	print business address
am certifying as a Professional Engineer f	(Owner or Remedial Party)
am certifying as a Professional Engineer f	for the(Owner or Remedial Party)

Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
 - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
 - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
 - C. Compliance
 - 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
 - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
 - D. Recommendations
 - 1. recommend whether any changes to the SMP are needed
 - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
 - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
 - A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature
- and extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
 - A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.
 - B. IC/EC Certification
 - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
 - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
 - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
 - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
 - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
 - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
 - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
 - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
 - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
 - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
 - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
 - C. Future PRR Submittals
 - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
 - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.