2021 Hazardous Waste Scanning Project

File Form Naming Convention.

(File_Type).(Program).(Site_Number).(YYYY-MM-DD).(File_Name).pdf

Note 1: Each category is separated by a period "." Note 2: Each word within category is separated by an underscore "_"

Specific File Naming Convention Label:

Report. ERP, B00025. 2000-05-01, SI_Revised

New York State Department of Environmental Conservation SEE AUGUST 1, 2001 APPROVAL LATTER AND FEBRUARY 9, 2001 CORRESPONDENCE Approved Approved As Noted Recabanit With Revisions Bisapproved COMMISSIONER OF ENVIRONMENTAL CONSELVATION Estated Repar Data

Report

Site Investigation Report Roblin Steel City of North Tonawanda, NY

May 1999 Revised May 2000

SITE INVESTIGATION REPORT

RECEIVED

AUG 13 2001

NYSDEC REG.9

ROBLIN STEEL

CITY OF NORTH TONAWANDA, NEW YORK

Prepared for

CITY OF NORTH TONAWANDA, NEW YORK

Prepared by

STEARNS & WHELER, LLC Environmental Engineers and Scientists One Remington Park Drive Cazenovia, NY 13035

> May 1999 Revised May 2000

Project No. 80049FA

TABLE OF CONTENTS

Page

CHAPTER 1 - INTRODUCTION

1.1	General	1-1
1 2	Daviour of Existing Information	1_2
1.2	Review of Existing Information	1-2

CHAPTER 2 - PROJECT APPROACH

CHAPTER 3 - FIELD ACTIVITIES

3.1	Soil Sampling	3-1
3.2	Monitoring Well Installation and Development	3-2
	Groundwater Sampling	
	Slug Tests	

CHAPTER 4 - RESULTS

4.1	Geology	4-1
4.2	Hydrogeology	4-2
4.3	Groundwater Analytical Results	4-4
	Soil Analytical Results	

CHAPTER 5 - FISH AND WILDLIFE IMPACT ANALYSIS

5.1	Introduction	5-1
5.2	Site Location	5-1
5.3	Topographic Features	5-2
5.4	Surface Drainage Patterns	5-2
5.5	Vegetation	5-2
5.6	Fish and Wildlife	5-3
5.7	Rare, Threatened, Endangered, and Special Concern Species	5-4
5.8	Value of Fish and Wildlife Resources	5-4

CHAPTER 6 - BASELINE HUMAN HEALTH RISK ASSESSMENT

6.1	Introduction	6-1
6.2	Site Background and Environmental Setting	6-2
6.3	Selection of Exposure Pathways	6-3
6.4	Summary of Site Contamination and Identification of Chemicals of Concern	6-5
6.5	Hazard Identification	6-8
6.6	Toxicity Assessment	6-10
6.7	Risk Characterization	6-11
6.8	Conclusions	6-12

TABLE OF CONTENTS (continued)

Page

CHAPTER 7- CONCLUSIONS AND RECOMMENDATIONS

7.1	Geology	7-1
7.2	Hydrogeology	7-1
7.3	Groundwater Analytical Results	7-2
7.4	Soil Analytical Results	7-3
	Fish and Wildlife Impact Analysis Conclusion	
7.6	Risk Assessment	7-5
7.7	Recommendations	7-65

LIST OF TABLES

Table No.

1	\sim 1 4	
1 1	Groundwat	er Elevations

- 2 Hydraulic Conductivity and Seepage Velocity Summary
- 3 Groundwater Analytical Results Volatile Organic Compounds
- 4 Groundwater Analytical Results Total Metals
- 5 Groundwater Analytical Results Dissolved Metals
- 6 Groundwater Analytical Results Wet Chemistry
- 7 Groundwater Analytical Results Semi-Volatile Organic Compounds
- 8 Soils Analytical Results Semi-Volatile Organic Compounds
- 9 Soils Analytical Results PCBs
- 10 Soils Analytical Results Metals
- 11 Soils Analytical Results STARS Volatile Organic Compounds
- 12 Soils Analytical Results Semi-Volatile Organic Compounds
- 13 Summary of Potential Exposure Pathways
- 14 Historical Analytical Results Monitoring Well 3S
- 15 Groundwater Screening VOCs
- 16 Groundwater Screening Metals
- 17 Summary of Initial Screening Interior Residue/Soil Samples SVOC Results
- 18 Summary of Initial Screening Outside Soil Samples SVOC and PCB Results
- 19 Initial Screening of Metal Analytical Results Exterior Soil Samples
- 20 Identification of Non-Carcinogenic Health Effects Soil Contaminants
- 21 Identification of Carcinogenic Health Effects Contaminants in Soil
- 22 Identification of Non-Carcinogenic Health Effects Groundwater Contaminants
- 23 Identification of Carcinogenic Health Effects Contaminants in Soil
- 24 Summary Calculated Risk Levels

ii

LIST OF FIGURES

Figure
No.

- 1 Site Map
- 2 Soil Sample Locations
- Cross CHAPTER A-A' 3
- **4** · Cross CHAPTER B-B'
- 5 Deep Aquifer Groundwater Flow Patterns
- Shallow Aquifer Groundwater Flow Patterns 6
- 7 Surface Soil Areas of Concern
- 8 Risk Assessment, Four Steps in Risk Assessment Process
- 9 Data Screening Steps
- Potential Pathways of Human Exposure 10

LIST OF APPENDICES

Appendix

- Well Logs Α
- Slug Test Results В
- Field Parameters
- Ē D Validated Analytical Results
- Ε
- Fish and Wildlife Impact Figures Fish and Wildlife Impact Letters F
- G Exposure and Risk Calculations

CHAPTER 1

INTRODUCTION

1.1 GENERAL

In 1997, through tax delinquency, the City of North Tonawanda obtained the former Roblin Steel facility (Figure 1). The facility is abandoned, most fixtures of any value have been salvaged, and vandalism and miscellaneous refuse are apparent. In 1995, a preliminary site assessment (PSA) performed by Ecology and Environment Engineering, P.C. reported the presence of soil and groundwater contamination at the site.

The City of North Tonawanda has received a "Brownfields" redevelopment grant through the New York State Clean Water/Clean Air Bond Act to facilitate the rehabilitation of the site so that it may be beneficially used by a new tenant, resulting in new jobs and an enhanced property tax position for the City.

With the ultimate goal of redevelopment of the site, the City of North Tonawanda established their project goals:

1. Fully characterize the site in terms of contaminants present, media impacted, potential fate and migration of contaminants present, potential exposure and risk associated with those contaminants, and site hydrogeology. The City is seeking a complete and thorough review so that there can be a high level of confidence that all significant property conditions are known and can be dealt with appropriately.

2. Use a phased approach to complete the project so the investigation can be performed in an iterative manner. NYSDEC is receptive to investigations being completed in phases, understanding the benefits of being able to focus the investigation. In this way, the specific scope of subsequent phases can be based on results of earlier phases. This allows the investigation to be focused on the environmental media, locations, and contaminants of concern, allowing the investigation to be cost effective as well as thorough. 3. Use the information described above to identify appropriate forms of remediation for the site so that it may be returned to beneficial use without posing unacceptable risk to new occupants, neighbors or the environment in the area of the site.

Stearns & Wheler was retained to complete the necessary site investigation for fulfilling the above goals. This report presents the findings of the initial phase of that investigation, which occurred from November 1998 to January 1999.

1.2 REVIEW OF EXISTING INFORMATION

The PSA completed in 1995 provided valuable data which was used to determine the subsequent course of work at this site, including the investigation phase described in this report. The following discussion summarizes the findings of the PSA report. The summary is organized by matrix (soil and then groundwater), and then by types of contamination within each matrix (volatile organic compounds, semi-volatile organic compounds, PCBs and metals).

A. Soils.

1. Volatile Organic Compounds (VOCs). During the PSA, eight surface soil and four subsurface soil samples were collected from various locations around the site. Since the report was prepared, NYSDEC established cleanup goals for contaminants in soil. Prior to the publication of Technical and Administrative Guidance Memorandum (TAGM) HW-4046, there were no specific cleanup goals for VOCs or other contaminants in soil, making interpretation and decision making regarding cleanup difficult. The TAGM provides goals that help guide investigations such as this one.

With the exception of SS-8, collected from beneath the wood block floor at the northern end of the rolling mill building, none of the soil samples contained VOCs at levels that exceeded cleanup goals. At SS-8, three of the five VOCs present exceeded the cleanup goal concentrations.

The soil VOC results suggested that VOCs were not a significant concern in the soils at the site with the exception of the area at SS-8. However, groundwater impacts in Well GW-6 indicated

that solvents containing VOCs were probably used at the site and that an investigation for the source of those VOCs would, in all likelihood, include additional soil sampling.

2. Semi-Volatile Organic Compounds (SVOCs).SVOCs were found in greater frequency and concentrations than the VOCs. Polynuclear aromatic hydrocarbons (PAHs), a subset of the SVOCs, were detected in 8 of the 12 samples. The various PAHs were reported as a group rather than as the individual compounds, precluding comparison to the cleanup goals for the individual compounds. However, most PAHs have cleanup goals in the vicinity of 40 to 50 ppm. Total PAH concentrations in seven of the eight samples were 20 ppm, 3.3 ppm, 5.7 ppm, 44 ppm, and .52 ppm suggesting that PAH concentrations are generally at or below cleanup goals. Only Sample SS-8 with 1,100 ppm total PAHs represents a potentially significant occurrence of PAHs in site soils. Sample SS-4, from the vicinity of the pickle liquor tanks, contained hexachlorobenzene at a level that exceeded the cleanup goal.

The PAH results suggested that PAHs might have been a concern, specifically beneath the wood block flooring in the rolling mill building. Additional sampling for PAHs was therefore proposed at the site.

3. **PCBs**. PCBs in soil were demonstrated to be a concern at the site at the former location of Transformer A, where approximately 37 tons of soil were excavated. One soil sample was collected at each of two other transformer locations. Only the sample from the southern transformer location (SS-7) indicated PCBs were present. The sample from the northern transformer area did not indicate the presence of PCBs. SS-7 contained 0.360 ppm PCBs as compared to the cleanup goal of 1 ppm.

Although the one positive indication of PCBs at the site is below the cleanup goal, the prior history of PCBs at the site and indications of PCBs in the vicinity of transformers suggested that additional PCB testing was warranted.

4. Metals. As with the organic compounds, cleanup goals for metals in soil were established by NYSDEC in 1994. Because the concentrations of metals occurring naturally in the environment are so variable, cleanup goals are, for the most part, based on comparison to background levels. For some metals, the cleanup goal is defined as site background or some

specific calculated value, whichever is higher. A possible indicator of the significance of the levels of metals in soil is the fact that arsenic, cadmium, chromium, nickel, and mercury do exceed the numerical cleanup goal. The actual significance can only be defined after background conditions are defined. The occurrence of lead in Sample SS-1 from the vicinity of the electrical control building definitively identifies lead in soil as a concern, at least in that area. The presence of cadmium dust at levels that failed EP toxicity testing also indicates that metals may have been a concern in soils.

To determine the potential implications of the metals in soils, additional testing was warranted in the vicinity of the electrical control building near the galvanizing facilities, east of the rolling mill, and on the south side of the site, plus off-site sampling to determine background concentrations.

B. Groundwater.

1. General. Before groundwater quality can be accurately evaluated, an understanding of the groundwater flow regime must be developed. The PSA suggested that there was a deep aquifer and a shallow aquifer. In both aquifers, the PSA report suggested that there was a flow divide at the site and that groundwater flowed to the west and east, away from the middle of the site. Although this is possible, it is not probable given the fact that the Niagara River is close to the site and, in all likelihood, results in a reasonably strong western gradient. The PSA suggests that the divide may possibly be caused by recharge from the cooling basin; however, in each case, the concept of the flow divide is supported by the water level of just one well. Before additional conclusions are drawn regarding sources of contamination and the fate and migration of contamination in groundwater, a clearer understanding of groundwater flow was necessary. For that reason alone, additional control points were proposed.

2. **VOCs**. VOCs were detected in 3 (2 deep wells and 1 shallow well) of the 10 wells installed at the site during the PSA. Deep Well GW-2 on the east side of the site and deep Well GW-6 in the southwest corner of the site contained acetone at concentrations of 630 ppb and 390 ppb, respectively. The guidance value for acetone in groundwater is 50 ppb. Although acetone is often dismissed as a laboratory contaminant, the levels present and the fact that the acetone was observed in more than one well suggest that the results are valid. There is

currently no information as to where or how acetone was used at the site or how it would have come to be released to the environment. Based on water table mapping in the PSA report, GW-6 is not downgradient from the facility, and is in fact portrayed as a groundwater high point, making it difficult to draw any conclusions regarding the source of the acetone in that well. Based on the PSA water table mapping, GW-2 is downgradient from the building, and therefore finding a source may be easier.

Shallow Well GW-3S on the east side of the site near the south end of the rolling mill building produced a sample containing a blend of several chlorinated VOCs with a total concentration of 330 ppb. Each compound detected (TCE - 86 ppb, PCE - 180 ppb and 1,2 DCE - 70 ppb) exceeded the groundwater standard of 5 ppb. These chlorinated compounds are indicative of solvents, but no information is currently available as to where or how solvents were used at the site and where or how they may have been released.

During the development of the work plan for this investigation, a preliminary round of groundwater samples was collected from 8 of the 10 wells. We were unable to locate GW-8, and GW-4S has been damaged and could not be sampled.

The results of the preliminary sampling round verified the impacts found previously in Well GW-3S. Analysis indicated elevated concentrations of TCE, PCE, and DCE. There were no indications of groundwater impacts at GW-2 or GW-6 from the preliminary sampling round.

Additional investigation was deemed necessary to better understand groundwater flow directions, determine the extent of the impacts, and gain information that may help identify source areas.

3. **SVOCs**. No concentrations of SVOCs of any significance were detected in the groundwater samples. No additional work was warranted to evaluate SVOCs.

4. **PCBs**. No PCBs were detected in groundwater. No additional work was warranted to evaluate PCBs.

5. Metals. Standards were exceeded in at least one groundwater sample for cadmium, chromium, iron, lead, magnesium, manganese, sodium, and zinc. However, the PSA report also concluded that groundwater samples were extremely turbid due to the fine nature of the sediments in the well screen interval. When turbid samples (even samples with turbidities under 50 NTU) are acidified, the suspended sediment load is dissolved. Because the metals detected in site groundwater samples occur naturally in soils, the analytical results can be excessively biased by the chemical makeup of the aquifer materials. To obtain analytical results that truly convey the natural or impacted groundwater chemistry, it is necessary to either take extraordinary efforts to obtain samples of low turbidity or, even better, to filter the samples. NYSDEC groundwater standards are based on unfiltered samples, but the appropriateness of filtering can generally be justified to the state, such that filtered samples can be used in conjunction with unfiltered samples to demonstrate impacts (in contrast to demonstrating compliance with standards, which must be based on unfiltered data).

To complete a valid assessment of the impacts of the site operations on metal concentrations in groundwater, additional sampling, including filtering samples, was proposed.

C. Surface Water. For the PSA, "surface water" samples were collected from three locations at the site: the pickling basins, a trench in the rolling mill, and the concrete cooling pond. In a regulatory sense, these are not surface water samples, but samples from process structures at the site. This being the case, they are more correctly considered potential sources of contamination as opposed to receiving bodies that must be protected. Overall, these samples were relatively unimpacted. The oils in the trench were apparent, however, and characterization before removal and disposal was proposed in the PSA.

D. Summary and Conclusions of PSA. The PSA provided a preliminary assessment of the Roblin site upon which to base future phases of work. PSA conclusions are summarized below.

1. PAHs were found in surface soils at several locations around the site, especially below the wood block floor in the vicinity of the pickling tanks.

2. Acetone and chlorinated VOCs were detected in groundwater at levels that exceed NYSDEC standards.

3. PCBs were previously detected and remediated in one area, and were detected in a second transformer area.

4. Lead was detected in soils at levels that exceed the TCLP standard.

5. Asbestos-containing materials were identified in buildings in a 1993 survey.

6. Stained soils are present across the site.

7. Two, possibly three, USTs exist at the site which have not been investigated.

8. Waste piles are present on site, but are all apparently nonhazardous.

The above conclusions, especially the matrix and contaminant-specific discussions, provided Stearns & Wheler with a basis for developing a work plan for further investigation.

CHAPTER 2

PROJECT APPROACH

The City of North Tonawanda required a complete and thorough characterization of the Roblin site so the City could be confident the site could be redeveloped in such a manner that it would not represent an unacceptable risk to human health or the environment. The City also indicated it believed a phased investigation was most appropriate. The benefit of a phased approach is that tasks within each phase are determined based on the results of the prior phase. In that way, the investigation is more focused on the areas, contaminants, and matrices of concern.

The information provided in the PSA allowed the first phase of the site investigation to focus on the areas where additional investigation was necessary. These areas were identified in the discussion of matrices and contaminants of concern presented in Section 1.2.

A detailed scope of work was developed for the first phase of the site investigation. Concepts, generalized scope items, and goals of subsequent phases were provided in the investigation work plan. The first phase was completed during November 1998 to January 1999. A preliminary draft of field results was prepared in February 1999. In March 1999, a meeting was held with NYSDEC to discuss additional phases of work. It was determined at that time that the only additional investigative effort needed was another monitoring well southeast of Well GW-3. In March 1999, Well GW-18 was installed and sampled. Results for that sampling event are included in this report.

In general, the primary objective of the first phase of the investigation was to clarify and confirm the findings of the PSA. An additional goal of the first phase was to draw conclusions regarding the sources of contaminants, an issue not addressed in the PSA.

CHAPTER 3

FIELD ACTIVITIES

Based on the City's objectives and the information gathered in the PSA, the following field activities were completed as the initial phase of this study.

3.1 SOIL SAMPLING

Surface soil samples were collected and analyzed for PCBs, metals, PAHs, and VOCs. The locations of the sampling points were determined based on the analytical results documented in the PSA. Collection of soil samples began November 11, 1998. The samples were to be collected from locations noted on the work plan site and sampling point map (Figure 2). Several soil samples were proposed for the inside of buildings. It had been proposed that these samples would be collected from soils beneath the wood block flooring, adjacent to samples collected during the PSA. During sampling, it was discovered that the wood block flooring was on a concrete slab. The historical samples were apparently dust or dirt residues accumulated under the blocks rather than soils, as reported. In this investigation this residue was resampled in several locations. In some locations, there was no material to sample. Locations from which samples were not collected are shown on Figure 2 (those locations enclosed in squares).

The soil sampling procedure was outlined in the Field Sampling Plan. Samples were collected in the following manner:

1. The sampling point was identified on the site plan and sampling point map.

2. Using decontaminated trowels and disposable gloves the samples were collected and placed in the appropriate jars.

3. The samples were then packed in a cooler, iced and shipped to the laboratory for analysis.

4. Equipment was decontaminated between locations to limit the potential for cross contamination.

- 5. Upon receipt of analytical results, the data was delivered to a third party for validation.
- 6. The information was then tabulated in summary tables based on analysis performed.

Additional soil samples were collected from two newly installed monitoring wells (MW-16S and MW-17S) which were placed adjacent to existing or suspected underground storage tanks. These samples were analyzed for STARS VOCs and SVOCs in order to determine if potential impacts may have occurred from tank leaks or spills.

3.2 MONITORING WELL INSTALLATION AND DEVELOPMENT

Twelve new monitoring wells were installed at the site in November 1998. The wells were installed to provide a more thorough understanding of the hydrogeologic characteristics of the site, particularly groundwater flow directions in the shallow and deep aquifers, and to determine the extent of impacts of contaminants in groundwater. The locations of the wells were determined based on analytical results collected from the existing wells and through gas chromatograph analysis of groundwater collected from temporary wells. Nine temporary wells were installed using geoprobe methods. The geoprobe borings were advanced to specific depths based on information collected during the PSA. Once the depth was reached, a temporary 1-inch PVC monitoring well was installed. A groundwater sample was then collected from each location and analyzed using a field gas chromatograph. If excessive concentrations of VOCs were identified in the field analysis, an additional temporary well was installed in the projected downgradient direction and the analytical process was repeated. This process continued until substantially lower concentrations of VOCs were identified on the GC. At this point, a permanent monitoring well was installed using the procedures described below. This iterative approach was used to locate Wells GW-11S, GW-12S and GW-14 due to the existing impacts identified in Wells GW-3S and GW-2.

The majority of the permanent wells were installed using 4.25-inch hollow stem augers. Soil samples were collected at 5-foot intervals until the projected screen interval was reached. At this depth, continuous soil samples were collected. The soil samples were collected using a 2-inch split-spoon sampling device driven by a 140-pound hammer. The samples were physically described in the field by a hydrogeologist. In addition, the samples were monitored using a photoionization detector (PID) to determine if any VOCs were present. In locations where subsurface soil samples were collected (MW-16S and MW-17S), the sample with the highest PID reading was collected and transported to

the lab for analysis. If no elevated PID readings were noted, the sample closest to the water table was collected and sent for analysis.

Because of the apparent high concentration of VOCs in the shallow aquifer, monitoring well GW-3, proposed to evaluate the deep aquifer, was installed using a combination of hollow-stem augers and wash rotary drilling. Hollow-stem augers were used to install a 4-inch steel casing to a depth of 18 feet. The casing was used to limit the migration of impacted groundwater in the shallow aquifer into the deep aquifer. The casing was grouted into place. After a minimum of 24 hours, the well was completed using a wash rotary technique. The water for the drilling was from the City water supply. The well was then completed to its target depth.

The monitoring wells were constructed of 2-inch PVC risers and .01-inch slot PVC screens. The wells were completed using a No. 0 sand pack, a bentonite seal, and grout to the surface. Well-specific construction details and sample descriptions are provided in the well logs in Appendix A.

After installation, the monitoring wells were developed using disposable bailers. Development continued until 10 well volumes were removed.

3.3 GROUNDWATER SAMPLING

Groundwater samples were collected from all existing and newly installed wells. The methodology for the collection of the samples was described in the Field Sampling Plan. In general, the samples were collected using the following methods:

1. Before purging the well, depth to water and total depth of well measurements were recorded.

2. Using a disposable bailer, three well volumes of water were removed from each well. If the well went dry during purging, the well was allowed to recover and the samples were collected.

3. During purging, field parameters were recorded. The parameters recorded included water temperature, pH, conductivity, Eh, DO, salinity, and turbidity.

4. The samples were collected in the following order: VOCs, filtered metals, unfiltered metals and other analytes.

5. The samples were then packed in a cooler, iced and shipped to the laboratory. Appropriate QA/QC samples were also collected.

Groundwater samples were analyzed for VOCs, SVOCs, total dissolved metals, and wet chemistry parameters. Analytical results have been tabulated in summary form. Interpretation of the results is discussed in Chapter 4.

3.4 SLUG TESTS

In addition to groundwater sampling, slug tests were completed on all existing and new monitoring wells. Stearns & Wheler uses a bail-down method to complete slug tests, enabling hydraulic conductivity to be estimated by recording the change in water level as the water rises back to its static level. The slug tests were completed using the following methodology:

1. After recording the depth to groundwater measurements, a pressure transducer was installed in the water column.

2. The transducer was then linked to a datalogger which recorded the changing water levels during the test.

3. Once the datalogger and transducer were in place and set to record, a bailer was lowered into the well.

4. After completely submerging the bailer, the datalogger was started and the bailer was completely removed from the well.

5. The datalogger recorded water levels until a minimum of 90 percent recovery of the water was achieved.

6. The data were then downloaded to Aquifer Test[™], a commercially available software package (Waterloo Hydrogeologic, Inc.). Data were then analyzed using the Bouwer-Rice

Method. This technique establishes an order of magnitude estimate of the hydraulic conductivity of the aquifer immediately surrounding the monitoring well.

7. These data were then used to determine the groundwater seepage velocities within the screened interval and to determine lateral variations in hydraulic conductivity.

The slug test data are found in Appendix B and will be discussed in Chapter 4.

CHAPTER 4

RESULTS

4.1 GEOLOGY

Surficial geologic maps of the site indicate that the shallow overburden at the site consists of lacustrine silts and clays. Well logs from the site confirm that this is the case. After a short interval of fill material (from 1 to 2 feet below ground surface), there is a 6- to 10-foot thick sequence of silt followed by a 5- to 25-foot thickness of clay. Below the silt and clay is an interval of silt to sandy silt. This interval has been described as a till layer in the PSA; Stearns & Wheler agrees with this description. This layer extends to bedrock that has been identified as black fissile shale. Bedrock maps of the area indicate that the Camillus Shale of the Salina Group is found in this area.

Each of the overburden units was described in the field. The upper silt layer has various percentages of fine sand with wide ranges in moisture content, from saturated to damp. The damp or moist areas were mottled, suggesting that these are zones that are saturated during periods when the water table is elevated.

The clay layer varied in color from gray (when wet) to red (when dry) and had increased moisture content with depth. Typically, it was noted that the upper reaches of the clay were dry with the lower portion of the unit saturated. This further suggests that the clay is acting as a confining unit above the underlying till.

The till is a sandy silt or silty sand matrix with notable percentages of gravel-sized particles. It was difficult to determine the orientation of the large grain-size particles, and therefore not possible to determine the genesis of the till, i.e. whether it is an ablation or lodgement till.

Using the data from the recent well logs and previous investigations, additional cross sections have been constructed. The lines of section are identified on Figure 1. The cross sections (Figures 3 and 4) indicate that the lacustrine silt and clay deposits vary in thickness. In general, the upper silt varies from 2 to just over 10 feet in thickness. This unit is absent at GW-2S, GW-4 and GW-14. At these locations, clay was encountered immediately below the fill. These wells are located adjacent to roads and parking lots, suggesting that the overlying silt may have been removed from these locations. The field description of the interval below the fill at GW-2 and GW-2S differs. The earlier information indicates that the interval is a silt layer (GW-2); the recent information indicates that the zone is silty clay. Differentiating between silt and clay can be difficult in the field. Since we are unable to view the sample from the earlier drilling, and the description at GW-14 also indicates clay directly below the fill, the cross section through these points has been drawn using the original data at GW-2 and the new data at GW-14. In either case, it does not affect the conclusions of our investigation. The thickness of the unit in both descriptions is virtually identical. The underlying clay ranges from 10 to 20 feet thick. Although portions of the clay unit are saturated, the silt unit is considered the upper aquifer. The till layer, which is considered the deep aquifer, varies in thickness from 5 to 10 feet.

4.2 HYDROGEOLOGY

A. Groundwater Flow Patterns. Depth-to-groundwater measurements were collected January 12, 1999 during completion of the slug tests. The water levels were converted to groundwater elevations using recent survey data. This information is summarized on Table 1. In earlier investigations, it was determined that there were two aquifers on site -- the upper silt layer and the deeper till layer. The difference in elevation between the potentiometric surfaces of the two aquifers is between 1 and 6 feet. There is a downward gradient from the upper to the lower aquifer. The potentiometric surface of the deep aquifer is above the top of the till layer, indicating that the till aquifer is confined.

Groundwater flow patterns of both aquifers are illustrated on Figures 5 and 6. The presence of the Niagara River west of the site suggests that the river would act as the regional discharge zone. This is likely the case in a regional sense. Locally, however, the patterns for each aquifer indicate that a groundwater divide, which generally trends northeast to southwest, is found at the site. Groundwater flows east-southeast and in a westerly direction from the divide.

The cause of the divide is man-made. Groundwater potentiometric surfaces in unconsolidated deposits commonly mimic local topography. There are no significant changes in relief in this area which provide for the development of a natural groundwater divide. It has been determined that construction of a local combined sewer line along Oliver Street has created a french drain which has altered the natural flow pattern at the site. The sewer line was installed at a depth of approximately 20 feet, which would allow both aquifers to drain into the excavation. The location of this sewer line is illustrated on the drawing enclosed in the pouch (1955 Plan for General Sewerage, 1974 Revision, City of North Tonawanda).

B. Slug Tests And Seepage Velocities. Table 2 is a summary of the slug test results and associated seepage velocities. Slug tests were completed using the methodology mentioned in Section 3.3. The Aquifer Test software package calculates the hydraulic conductivity based on the imported data (elapsed time and change in water level), the height of groundwater in the well and well configuration. Based on the hydraulic conductivity, it is possible to calculate the seepage velocity of the groundwater in the area using the following equation:

V = KI/n

where:

V is seepage velocity K is hydraulic conductivity I is hydraulic gradient n is porosity

The range in hydraulic conductivity was from 1.7×10^{-2} (GW-2) to 6.74×10^{-5} cm/sec (GW-14). The hydraulic conductivity values fall within ranges for silt, sandy silts, clayey sands, silty sands and till, all of which are found at the site. Wide ranges in hydraulic conductivity values are very common, particularly in areas where there are mixed grain sizes. Smaller grain size material fills pore space between the larger grains, reducing the hydraulic conductivity of the unit. The data at this site indicate that there are reasonably consistent values for hydraulic conductivity at the wells screened in the silty clay or silt and clay (GW-2S, GW-4S, GW-11S, GW-12S, GW-16S and GW-17s). There are greater variations in the locations where either the clay or silt and the underlying till are intersected by the well screen (GW-2, GW-3, GW-5, GW-13 and GW-14). These locations have the highest (GW-2) and lowest (GW-14) calculated hydraulic conductivity values at the site.

The general hydrogeologic character of the site was discussed in the preceding paragraph. However, because there are two distinct water-bearing units at this site, it is more appropriate to discuss the hydrogeologic character of each unit individually, particularly when discussing the migration of impacted groundwater. Table 2 is a summary of the hydraulic properties of the deep and shallow aquifers. In order to simplify the discussion, the geometric mean values of hydraulic conductivity, hydraulic gradient, effective porosity, and seepage velocity will be used. In areas of impact, well-specific values will be discussed.

The deep aquifer has a range of hydraulic conductivity from 1.7×10^{-2} to 6.74×10^{-5} cm/sec and a mean value of 1.35×10^{-3} cm/sec. As stated earlier, the controlling factors in groundwater seepage velocity are the hydraulic conductivity of the material through which it is migrating, the gradient that drives flow, and the effective porosity of the material. The range of seepage velocities in the deep aquifer ranged from 2 to 754 ft/yr. The mean value for seepage velocity is 31 ft/yr. Any impacted groundwater moving through the aquifer would require approximately 19 years to move from the groundwater divide to beyond the property line. A discussion of natural attenuation of the compounds of concern on the site will be completed in succeeding sections.

The shallow aquifer has a range of hydraulic conductivity from 1.11×10^{-3} cm/sec (GW-16S) to 5.47×10^{-4} cm/sec (GW-7S). The mean hydraulic conductivity value is 1.09×10^{-3} cm/sec in the shallow aquifer. The range of seepage velocities is 1.4 to 25 ft/yr. The mean value is 7.6 ft/yr. Impacted groundwater migrating from the groundwater divide would take approximately 79 years to migrate off site.

It appears that the controlling factor in groundwater seepage velocity is the hydraulic gradient. The shallow and deep aquifer's mean hydraulic conductivity values are essentially the same, the effective porosities are comparable; however, the hydraulic gradients differ by a factor of nearly three (.008 in the deep aquifer versus .003 in the shallow aquifer). This slightly steeper gradient in the deep aquifer provides a higher seepage velocity.

4.3 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected and analyzed for the following analytes: TCL volatiles, TAL metals (total and dissolved), semi-volatiles (MW-16S and MW-17S only), and wet chemistry parameters (alkalinity, chloride, sulfate, etc.). Following is a discussion of the groundwater analytical results.

A. Volatile Organic Compounds. A number of VOCs were determined to be of concern during the PSA completed in 1995. These included acetone and the chlorinated compounds 1,2-dichloroethene, trichloroethene, and tetrachloroethene. Analytical methods and sampling protocols focused specifically on these compounds and their potential daughter products.

Table 3 is a summary of groundwater analytical results for TCL volatiles. The only location that appears to be impacted by VOCs is GW-3S. At this location, cis-1,2-DCE (62 ppb), TCE (56 ppb)

and PCE (40 ppb) were detected. A field GC was used to determine whether the impacts had migrated from this area. The field results were used to locate additional monitoring wells in the area (GW-11S and GW-12S). In addition, in order to determine possible impacts to the deep aquifer and to assist in determining groundwater flow directions in both aquifers, a deep well (GW-3) was installed adjacent to GW-3S. No impacts were identified in any of these additional wells. This suggests that the impact is localized. Currently, there is no information available that indicates where or how solvents were used at the site and where or how they may have been released.

B. Metals. During sampling, field parameter data were collected at each monitoring well. One of the parameters recorded was turbidity. Because samples for metals analysis require preservation by nitric acid, acid-soluble fractions of the suspended sediment will cause an increase in the concentrations of some of the metallic ions when the sample is analyzed. This boost in metallic ion concentrations results in false positives or concentrations of ions that may appear to be above groundwater standards, but which are actually the result of the dissolution of mechanically suspended aquifer materials rather than natural conditions. Because of this, both total and dissolved metals samples were collected at the site. Regulatory standards are based on unfiltered sample results, but the filtered results are considered when turbidity levels are high or significant exceedances of standards are indicated by the unfiltered results.

Table 4 is a summary of the results of the total metals concentrations. There are a number of metals at concentrations above the groundwater standards, including antimony, iron, magnesium, manganese, and sodium. However, a review of the dissolved metals data in Table 5 indicates that the concentrations of four out of six of these metals are significantly reduced when the samples were filtered. Sodium and antimony are apparently not affected by the acidification of the samples. The other ions -- aluminum, iron, magnesium and manganese -- are all affected by acidification. It follows then that dissolved results need to be considered when evaluating groundwater data.

Antimony and sodium are above standards at a number of wells. As stated earlier, antimony and sodium apparently are not affected by elevated turbidity. Magnesium and manganese were elevated at a number of locations. Iron concentrations were elevated at four locations.

Iron, magnesium, and manganese are some of the most common ions found naturally dissolved in groundwater. These ions can cause staining of fixtures and clogging of pipes. Rather than being of human health concerns, these ions are subject to standards that relate to their nuisance characteristics.

Antimony is similar in its chemical characteristics as arsenic, however, it appears to be only onetenth as abundant in rocks as arsenic. Antimony is also used in lead-acid batteries and in flame retardants.

C. Wet Chemistry. Six wet chemistry parameters were analyzed at the site (Table 6). Standards are only provided for two of these parameters (chloride and sulfate). Exceedances of standards for sulfate were detected at 10 well locations. High concentrations of sulfate are produced either by dissolving sulfate minerals (e.g., gypsum) or by oxidation of sulfide minerals. The levels of sulfate in site groundwater indicate that there is enough oxygen available in the groundwater to sustain it. This suggests that the groundwater is under aerobic conditions at these locations.

D. **STARS Semi-Volatile Organic Compounds**. Spill Technology and Remedial Series (STARS) semi-volatile organic compound analysis was completed at two well locations (GW-16S and GW-17S). This analysis was done as part of the underground storage tank investigation at the site. Brownfields guidelines require that if there are known or suspected USTs at a site, they must be investigated. The analysis indicates that are no exceedances of standards for SVOCs at either of these locations (Table 7).

STARS VOCs analysis was not completed on samples from these wells because the wells were sampled for TCL VOCs which has a larger list of compounds. No petroleum-related VOCs were detected.

4.4 SOIL ANALYTICAL RESULTS

As noted earlier, a number of the soil sample locations within facilities on the site were not collected because the material beneath the flooring at the site was not soil, but apparently process residue. Any samples collected from these locations will be noted as such and not compared to soil standards. For ease of understanding, the analytical results will be discussed based on location.

A. Semi-Volatile Organic Compounds. The preliminary site assessment identified PAHs in soil across the site. Because of the unavailability of data on specific PAHs, which prevented a comparison to state cleanup objectives, and the detection of PAHs in soils at a number of locations, additional soil sampling was warranted. Samples were collected in known areas of concern, and additional samples were collected to determine if these areas are impacted by PAHs. The locations where PAH samples were collected are noted on Figure 2, indicated by an orange dot.

Whether the soil samples were collected inside or outside, there appears to be elevated concentrations of semi-volatile organic compounds in all areas of the site (Table 8). Concentrations of these compounds are well above recommended soil cleanup objectives in the samples collected inside the buildings. Table 8 is a summary of the analytical results of the soil samples. Samples SS-9 through SS-18 were collected inside the wire mill building. All of the samples except SS-15 had exceedances of a number of compounds including phenanthrene, fluoranthene, pyrene, chrysene, and benzo (a) pyrene. The highest concentrations appear to be found in the northern end of the wire mill building (Figure 2).

The next series of samples (SS-19 to SS-28) was collected east of the wire mill building. Although each of the samples has concentrations of compounds that exceed cleanup objectives, the concentrations in these samples compared to those collected within the building are lower, and fewer compounds were identified in analysis.

The area west of the wire mill building (Samples SS-37, -38, -41, -42 and -45) had a number of exceedances of cleanup objectives. Samples SS-37 and SS-42 had no exceedances of standards.

Sample SS-49 was collected in the large central building (Figure 2). This sample indicated substantial exceedances of every semi-volatile on the analyte list. This sample was collected from beneath the wood blocks that line the floor of most of the buildings on site. Similar to all samples collected within the buildings, it is predominantly a process residue and not an analysis of the soils at this site. It has value in that it identifies all potential SVOC contaminants at the site.

Sample SS-52 was collected adjacent to the western wall outside of the central building. This sample also has extremely high concentrations of SVOCs. Sample SS-54 was collected between the two long buildings on the western portion of the site. Again, this sample has very high concentrations of SVOCs.

Samples SS-55 to SS-57 were collected adjacent to monitoring well GW-10S. Each of these samples had a number of exceedances of soil cleanup objectives, including pyrene, chrysene, benzo (k) fluoranthene, and dibenzo (a,h) anthracene.

It is readily apparent that the surface soil across this site and the material within the structures on the site has been impacted by the activities at the Roblin Steel facility.

B. **PCBs**. The location of the PCB soil sampling points was determined by the data available in the PSA. This data indicated that there was a single sample that contained PCBs, but at a below-standard concentration. This sample was SS-7, slightly north of GW-3S at the southeast corner of the wire mill building. Three transformers had been located in this area.

Soil samples were collected and analyzed for PCBs at SS-20, SS-21, SS-22, SS-27, SS-29, SS-32, SS-33, SS-34, SS-40, SS-52, and SS-62 (Table 9). SS-62 is the off-site or background sample that was collected from the schoolyard located at the intersection of Humphrey and Carr Streets. PCBs were detected at four of the sample locations: SS-29 (1,000 ppb); SS-32 (4,2000 ppb); SS-33 (1,000 ppb); and SS-34 (19,000 ppb). The concentrations at these locations were at or well above soil cleanup objectives of 1,000 ppb. Sample SS-29 is adjacent to Well GW-3 at the southeast corner of the wire mill building. The other three samples are located between the wire mill building and the large central building (Figure 2). These three samples were collected in an area that has undergone a PCB cleanup. In this location, 37 tons of PCB-impacted soil has been removed and disposed of. The impacts were the result of leakage of PCB-laden oil from transformers.

C. Metals. Elevated concentrations of metals in soils were detected at each location (Table 10). Soil standards are based on site background samples (this sample was collected at SS-62) or an established standard, whichever is higher. There were a number of exceedances for heavy metals on site, including antimony, beryllium, cadmium, chromium, mercury, and lead.

D. STARS VOCs and SVOCs. As required by the Brownfields program (Item 2.2-5 of the Procedures Handbook), all underground storage tanks must be investigated. In an agreement with the NYSDEC, the UST investigation at this site is taking place in a phased format. Initially, soil samples were collected from monitoring well locations GW-16S and GW-17S. Tables 11 and 12 summarize the results of the soils analysis in these locations.

A number of STARS standards for VOCs were exceeded at Well GW-17S. None were detected at GW-16S. There was no evidence of a UST in the vicinity of GW-16S.

The tank in the vicinity of GW-17S is in place and has had apparent leaks. Before installing the monitoring well, soil from the fill port area was dug out with a shovel. There was a strong organic odor in the soils removed from the area adjacent to the top of the tank. The tank appeared to be bare steel, but the condition of the tank deeper than 2 feet below ground surface is unknown. The sample collected from GW-17S was from a depth of 4 to 7 feet. A number of VOCs, including two isomers

of xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene were detected in the analysis. Trimethylbenzene, xylene, and naphthalene are found in petroleum products; however, the nature of the use of the tank is unknown.

A number of STARS SVOC compounds were detected above soil standards at both locations, including benzo(a)pyrene, benzo(k)fluoranthene, benzo(g,h,i)perylene, and chrysene. All of these are associated with petroleum products.

When all analytical results for soil were reviewed and considered in the context of general site conditions, three areas of concern were identified. The areas of concern for surface soils are shown on Figure 7 and include an area east of the rolling mill building, an interior area of the wire mill building, and an area on the west side of the site where the building runs are located.

CHAPTER 5

FISH AND WILDLIFE IMPACT ANALYSIS

5.1 INTRODUCTION

As specified in the approved work plan, a preliminary Fish and Wildlife Impact Analysis (FWIA) was completed on the Roblin Steel plant site. The FWIA was performed in accordance with the criteria outlined in NYSDEC Division of Fish and Wildlife's Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites (1994). Step 1 of the analysis was completed, including a description of the site and fish and wildlife resources and values within a 0.5- and 2-mile radius, and identification of applicable fish and wildlife regulations. Data were compiled from reviews of published maps and reports, information obtained from state and federal regulatory agencies, and from an October 6, 1998 field investigation of the site and the surrounding area. A photographic log of items described in the following sections is included as Appendix E. The numbered photographs correspond to the numbered locations indicated on the figures referenced below.

The property is essentially rectangular in shape, bordered on three sides by public roads and the fourth side by a railway. The plant has been abandoned for many years, and some of the buildings on the site have partially or completely collapsed. The vegetated areas of the site have herbaceous and shrub plant communities typical of disturbed sites.

5.2 SITE LOCATION

The Roblin Steel plant site is located on the west side of Oliver Street, north of Eighth Avenue, and south of East Avenue, in the Town of North Tonawanda, Niagara County, NY. The site is situated on the edge of a suburban residential area, where it meets a commercial/industrial area. Lands surrounding and within 0.5 miles and 2 miles of the site are dominated by suburban residential development and commercial/industrial development. Very little undisturbed or natural land exists within the 2-mile radius, with the majority being on Grand Island across the Niagara River. Maps showing dominant development/cover types in the study area are depicted in Figures 1 through 8 (Appendix E).

5.3 TOPOGRAPHIC FEATURES

The Roblin Steel plant site is located about 1/4 mile from the Niagara River on a relatively flat, level piece of land at an approximate elevation of 570 feet. The topography within a 0.5-mile and 2-mile radius of the site is characterized by very gently sloped land without significant topographic relief.

5.4 SURFACE DRAINAGE PATTERNS

The Roblin Steel plant site drains in all directions, but all surface runoff from the site ultimately drains to the Niagara River. Much of the surface runoff within a 2-mile radius of the site is collected in streetside storm drains, which presumably discharge to the Niagara River or one of its tribuataries. From the border of the subject property, the nearest waterway is the Niagara River, which is located +1,000 feet to the west at its closest point. The Niagara River flows north into Lake Ontario, which in turn discharges into the St. Lawrence River, and ultimately into the Atlantic Ocean.

5.5 VEGETATION

The dominant plant species were identified on the property within a 0.5-mile radius and within a 2-mile radius of the landfill site. The results of this vegetation survey are outlined in tabular form below. Diversity of vegetation was fairly low due to the developed nature of the area. A list of all plant species identified within the 2-mile and 0.5-mile radius areas is outlined below:

A. On and Around the Site.

Queen Anne's Lace Poverty Grass Aster spp. Post Oak Tree of Heaven Red Osier Dogwood Orchard Grass Bittersweet Common Ragweed Canada Goldenrod Staghorn Sumac Common Mullein Tartarian Honeysuckle Pussy Willow Choke Cherry Cottonwood Heal All Grape sp. Teasel Burdock Curly Dock Evening Primrose

Area Within 2 Miles of the Landfill Site. Β.

Silver Maple Blue Spruce Arbor Vitae Azalea Common Reed Grass Queen Anne's Lace Black Willow

Sugar Maple Norway Spruce Privet Crabgrass **Common Ragweed** Canada Goldenrod

Norway Maple. Scotch Pine Yew Bluegrass Aster Cottonwood

No evidence of stressed vegetation within the area of study was observed.

5.6 FISH AND WILDLIFE

The dense development of the site and surrounding area provides limited habitat for wildlife species. Wildlife typically found in urban and suburban areas is most likely to use this area. A list of wildlife species that were observed in the area, or are likely to use the area at some time of year, is outlined below:

Α. Birds.

European Starling Mourning Dove House Sparrow Song Sparrow Mockingbird Gray Catbird American Crow Black Capped Chickadee House Wren House Finch Common Grackle Black Duck Mallard Greater Scaup Lesser Scaup Bufflehead Red Breasted Merganser Gadwall Double Crested Cormorant Redhead Osprey Belted Kingfisher

Β. Mammals.

White-tailed Deer House Mouse Raccoon

Red Winged Blackbird Common Merganser Ring Billed Gull

American Robin Downy Woodpecker Rock Dove Blue Jay Dark eyed Junco Canada Goose Canvasback Goldeneve Hooded Merganser Common Loon Ring necked Duck Herring Gull

Cottontail Rabbit Norway Rat Muskrat

Gray Squirrel Meadow Vole Mole

C. Herptiles.

Common Snapping Turtle Eastern Box Turtle Spring Peeper Eastern Garter Snake American Toad Northern Water Snake Green Frog

The Niagara River, a large river, provides feeding, spawning, cover, and dispersal habitat for a wide variety of fish species. The stream varies in width, but is +1/2-mile wide near the subject site. Based on soundings provided on the Tonawanda West USGS topographic map, depth varies in the study area from 3 feet near shore to more than 30 feet in the channel.

5.7 RARE, THREATENED, ENDANGERED, AND SPECIAL CONCERN SPECIES

Requests were made to both the NYSDEC Natural Heritage Program (NHP) and Region 9 Bureau of Wildlife, as well as to the U.S. Fish & Wildlife Service for information regarding rare, threatened, endangered, or special concern species on the site or within the 2-mile radius area. The NHP's records indicate that Stiff-leaf Goldenrod (Solidago rigida), a state-threatened plant, is found along the banks of the Erie Canal south of the site, on Grand Island west of the site, and in Wheatfield, north of the site. Common Terns (Sterna hirundo), which are state-threatened birds, are known to nest on Grand Island, west of the site. In addition, the Niagara River is listed as an unprotected concentration area for waterfowl, and lower Spicer Creek on Grand Island is listed as an unprotected concentration area for warmwater fish. There is also an unprotected area of Silver Maple-Ash swamp, considered a rare community, on Grand Island. None of these resources should be impacted by the subject site, since none are directly downstream or downwind of the subject site. The request letters and responses are found in Appendix F.

5.8 VALUE OF FISH AND WILDLIFE RESOURCES

A. Value of Resources to Fish and Wildlife. There is little valuable terrestrial wildlife habitat within the study area except for the undeveloped woods on Grand Island, west of the site. This area is more than a mile from the subject site and is unlikely to be impacted. This area provides food, cover, and dispersal space resources to a wide variety of wildlife. Because of the heavy development of the surrounding area, this area is isolated and provides an island of habitat in an otherwise densely developed region. The most important resource for wildlife in the study area is probably the Niagara River. It provides water, food, and a travel corridor for many fish and wildlife species.

Remaining habitat is primarily suburban developed area, which favors urban wildlife species such as squirrels, raccoons, mice, rats, and cosmopolitan bird species commonly found at backyard bird feeders. Because of their close interaction with humans, some of these wildlife species may be considered nuisances.

B. Value of Resources to Humans. The primary value to humans of the natural resources surrounding the Roblin Steel plant lies in development and recreational opportunities. The area is already heavily developed in residential and commercial industrial corridors, and any vacant land is likely to be desired for further development. The Niagara River provides recreational boating and fishing opportunities, which draw tourists to the area, providing potential economic benefits from those people who come to the area and spend money on local businesses.

CHAPTER 6

BASELINE HUMAN HEALTH RISK ASSESSMENT

6.1 INTRODUCTION

This chapter presents the findings of the human health risk assessment for the Robin Steel site. Risk assessments are conducted as an integral part of the site investigation/remedial management decision-making process in order to characterize the potential for risk to human health posed by the presence of site-related contaminants. The analysis of risk helps determine the need for, and the extent of, potential remedial actions. During the remedial alternative selection process, then, remedial activities can be evaluated for their ability in reducing the risks to human health identified by the risk assessment.

This risk assessment was prepared in a manner consistent with methodologies presented in USEPA guidance documents (*Risk Assessment Guidance for Superfund. Volume I, Human Health Evaluation Manual [Part A] Interim Final [1989]*). Following procedures discussed in the guidance manual, a risk assessment consists of four activities. Figure 8 presents a flow chart that illustrates the role of each of the four steps in the risk assessment process.

Hazard Identification, is the first step undertaken in a risk assessment. The purpose of this activity is to define the extent to which contamination is present at the site, and then to identify the chemicals of potential concern. Samples of the various site media are collected and analyzed for quantitative information concerning concentrations of chemicals. The data obtained from the laboratories is then screened to identify chemicals of concern. As illustrated in Figure 9, the data screening includes steps such as data validation, comparison to background concentrations, and/or regulatory standards and guidance values. Chemicals that survive this screening process are termed "chemicals of concern" and are carried through the remaining steps of the risk assessment process.

The second risk assessment activity is termed exposure assessment. This activity considers the pathways by which humans or other populations might realistically be exposed to site chemicals, both now and in the future. This is a key step in identifying risks posed by contamination at a site, because exposure can only occur when a mechanism for contaminant transport and a receptor exist

simultaneously with a contaminant source. Included in this step is a calculation of the amount of chemicals to which receptors could be exposed.

The third activity is toxicity assessment. During this part of the risk assessment, toxicological databases are reviewed for relevant information about the chemicals of concern. If exposure doses have been calculated as part of the exposure assessment step, this activity also includes a comparison of the exposure doses to levels that are known to cause adverse health effects.

The final activity is called risk characterization. In this last step, the previous activities are integrated together and the potential for adverse effects on human health is characterized. Both carcinogenic (cancer-causing) and non-carcinogenic (toxic) effects on human health are examined. The result of this step is an understanding of whether a reduction in risk may be required and, if so, whether the focus should be on the source of the unacceptable risk, on stopping transport of the chemical to the receptor, or on control of the exposure.

The results of the risk assessment are based on the outcome of this four-step process. Normally, the results are presented as a quantitative estimate of the potential risk which site contaminants pose to identified human receptors. For some sites, this is not possible, as toxicological effects of some contaminants have not been determined. When this is the case, the conclusions of the risk assessment present a qualitative description of the potential risk that site contaminants pose to identified human receptors.

6.2 SITE BACKGROUND AND ENVIRONMENTAL SETTING

The environmental character and surrounding land uses of a site will, to a large degree, determine the amount of risk posed to human health by site conditions. Land use determines the extent to which potential receptors could contact impacted media (air, sediment, water, and soil). Isolated sites and those with minimal access pose less of a potential risk to human health than sites accessible to large numbers of people. The environmental setting of the site also determines the relative importance of transport of chemicals through the various media. In the risk assessment process, this environmental setting, including current and future land use combined with knowledge of siterelated, contaminated media, is integrated into an evaluation of current and future pathways by which exposure to site-related chemicals may occur. The paragraphs that follow describe the environmental setting of Roblin Steel site.

The Roblin Steel site is an inactive manufacturing (steel processing) facility in the City of North Tonawanda, Niagara County, NY. The site is bounded by East Avenue on the north, by Oliver Street on the east, by Eighth Avenue on the south, and by the Conrail-Erie Lackawanna railroad tracks on the west. Industrial areas are adjacent to the site on the north and west, and residential areas are located to the east and south. A school and park are located within 1,600 feet of the facility to the east. The Niagara River is located approximately 1,000 feet west of the site. One building, located on the eastern portion of the site, has been occupied by Armstrong Pumps since 1985 and is an active facility. Most of the rest of the buildings are empty and in various states of disrepair. Confer Plastics previously occupied two buildings on the western portion of the site. Both buildings have been burned. A concrete reservoir from a former cooling pond is located in the approximate center of the site, south of a burned brick building.

The City of North Tonawanda is served by municipal water. There is no evidence of any private, wells (potable or non-potable) on the site. The adjacent residential properties are small in size, with minimal yard areas. There is no evidence of private wells installed on any of these properties.

Although the site is fenced, access can be obtained through gaps in the perimeter fence and through gates that are not secure. Evidence of trespassers was noted by field personnel during the sampling and well installation field activities.

6.3 SELECTION OF EXPOSURE PATHWAYS

Figure 10 illustrates all the potential pathways of human exposure to site-related contaminants. The exposure pathways that could actually occur are only a subset of the entire range of possibilities. The site's environmental setting and surrounding land use, coupled with the nature and extent of chemical impacts, determine the feasible exposure routes. This section presents the rationale for including, or eliminating, one or more pathway from this risk assessment. As discussed above, human exposure from site-related contamination is only possible when there is a pathway of contaminant migration and a human receptor. The environmental setting, including current and future land use, is used to frame the possible pathways of exposure to site-related contaminants.

Any contractors working on site as part of implementation of remedial actions will be trained per the requirements of OSHA regulations (29 CFR Part 1910.120). Contractors would have personal protective equipment and medical surveillance in addition to the required education and training.

Consequently, exposure to site contaminants by remedial contractors is not considered as a potential exposure pathway in this risk assessment.

Ingestion of contaminated soils is a potential exposure pathway at any impacted site. Evidence of trespassers was noted during the field activities at the Roblin Steel site. Because the site is not secure, it is likely that both adults and adolescents will continue to visit the site until some form of development occurs that would include upgrading the perimeter fence. Therefore, accidental ingestion of chemicals in soil and building residue (mill and brick buildings) is considered a complete exposure pathway under current site conditions.

If the site were developed, workers would be exposed to chemicals in the exterior soil. It is likely that any development for commercial purposes would include cleanup of the residues in the abandoned structures (mill building and brick building). However, in an effort to be conservative, site worker exposure to soil and building residue was considered a complete exposure pathway.

Ingestion of groundwater on site is not considered a complete exposure pathway for the following reasons. Currently, there are no drinking water wells installed on the site. Installation of a well on the site for potable purposes in the future is not likely, as deed restrictions can be enacted to prevent such activities in the future. Any non-potable well can be posted to make it clear that the water should not be used for drinking water purposes. However, there are residential properties located to the southeast in the flow direction of the VOC groundwater impacts. It is possible, however unlikely, that a property owner could install a well for garden irrigation purposes in this area. If that occurred, it is possible that the well could be used for drinking purposes during the growing season. Therefore, ingestion of groundwater during the period of May through September is considered a possible exposure scenario.

In summary, exposure to impacted soil (by trespassers and future site workers) and groundwater (by off-site residents) are the only identified exposure pathways for this site. Table 13 presents a summary of possible exposure pathways and the reasons for inclusion in (of rejection from) the quantitative risk assessment.

6.4 SUMMARY OF SITE CONTAMINATION AND IDENTIFICATION OF CHEMICALS OF CONCERN

The sampling plan designed to evaluate environmental conditions at the Roblin Steel site has been described in detail in Chapter 2. Groundwater, surface soil, and indoor residue/soil samples were collected during December 1998 to address the objectives of the site investigation.

Each sample was analyzed in a laboratory certified in the NYSDEC Analytical Services Protocol program. Each analytical result was subject to data validation by scientists at Analytical Assurance Associates, Inc. Included in the data validation procedures is examination of each analytical result for compliance with the criteria specified by NYSDEC and USEPA for technically defensible data. Technically acceptable data underwent additional screening before inclusion in the assessment of site-related risk. This additional screening included comparison to background concentrations and comparison to applicable standards or clean-up goals.

A. **Groundwater Screening - VOCs.** Of all the groundwater samples collected during the site investigation, VOCs were only detected in the sample collected from Monitoring Well GW-3S. Tables 14 and 15 summarize analytical results for concentrations of volatile organic compounds in samples from Monitoring Well 3S and Monitoring Wells 3S, 11S, and 12S, respectively. These three wells have been grouped together, as they are all on the eastern/southeastern portion of the site, and because groundwater in this portion of the site flows toward the adjacent residential properties.

Historically groundwater samples from Well 3S have been found to contain detectable concentrations of cis-1,2-dichloroethene (cis-1,2-DCE), trichloroethene (TCE), and tetrachloroethene (PCE) (see Table 14). Although concentrations have decreased since 1995, the compounds were still present in samples collected in December at concentrations exceeding New York State groundwater standards. The quality of the shallow groundwater flowing toward the residential area was examined to identify volatile organic compounds of concern. Results from the screening are summarized in Table 15. Four compounds were detected in samples collected from the wells in this area (acetone, 1,2-DCE, TCE, and PCE). Mean concentrations listed in Table 15 are geometric means calculated with the 1998 data only. The calculations used a replacement value of one-half the detection limit for compounds whose concentrations were not detected by the laboratory. This screening led to the identification of the three chlorinated VOCs (1,2-DCE, TCE, and PCE) as compounds of concern in the groundwater.

80049FA.2

B. Groundwater Screening - Metals. The groundwater sample analytical results were also screened for identification of metal contaminants of concern using the same procedure as that used for the VOC analytical data. Table 16 presents the groundwater sample screening results. Again, only Wells 3S, 11S, and 12S were evaluated, as these wells are located in areas where the groundwater flow is toward a potential receptor. Although metals were detected in samples from other monitoring wells, the potential for a complete exposure scenario in wells located in the deeper portion of the aquifer, or located on other portions of the site, is negligible. Therefore, groundwater screening during this risk assessment concentrated on evaluation of the groundwater quality in the shallow aquifer from the portion of the site that would potentially migrate toward the off-site residential area. Only antimony, iron, and manganese were found to be present at mean concentrations greater than groundwater standards in the total metal samples; and antimony was the only compound found at mean concentrations exceeding groundwater standards for dissolved metals. Because iron and manganese are more associated with aesthetic standards, only antimony was retained as a contaminant of concern for this risk assessment.

C. **Building Residue Sample Screening - SVOCs.** Table 17 presents the results from screening indoor residue/soil analytical results for polycyclic aromatic hydrocarbon (PAH) compounds for inclusion in the risk assessment. Twelve samples were collected inside the former wire/rolling mill building, and one sample was collected inside the brick building. The samples collected in the former mill were initially evaluated by comparing the frequency of detection, the minimum detected concentrations, and the maximum detected concentrations. Mean concentrations were then calculated using replacement values equal to one-half the detection limit for compounds that were not detected. These mean concentrations were then compared to background soil concentrations (SS-62) and cleanup criteria for soil established by NYSDEC. Compounds with mean concentrations exceeding background concentrations and cleanup goals were retained for inclusion in the risk assessment as compounds of concern. For the mill samples, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene were found to be compounds of concern.

Because only one sample of the residue/soil was collected in the brick building, the concentrations of compounds detected in the sample were compared directly to NYSDEC cleanup criteria for soil. All PAHs detected were found at concentrations exceeding cleanup criteria. Therefore, all the PAH compounds detected were retained as compounds of concern for the residue/soil in the brick building.

D. **Outside Surface Soil Sample Screening - PAHs and PCBs.** Table 18 presents the screening surface soil sample analytical results for identification of organic chemical compounds of concern. Nineteen soil samples were collected and analyzed for PAH compounds. In addition, one sample was collected from an off-site location to serve as an indication of background soil quality. The full suite of PAH compounds was detected in all but two samples. As described previously for the other media, the screening process first included a comparison of the frequency of detection, the minimum detected concentrations, and the maximum detected concentrations. Mean concentrations were then calculated using replacement values equal to one-half the detection limit for compounds that were not detected. These mean concentrations were then compared to background soil concentrations (SS-62) and cleanup criteria established by NYSDEC for soil. Compounds retained as contaminants of concern in surface soil include benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(a)pyrene, and dibenzo(a,h)anthracene.

Eleven soil samples were collected from areas identified as being former locations of transformers. Each sample was analyzed for total PCBs. Six of the samples were found to contain detectable quantities of PCB 1260, with three of the samples containing concentrations in excess of PCB clean-up criteria, and one sample containing PCB 1260 at a concentration equal to the cleanup goal. For this screening, mean concentrations were calculated for samples SS-32, SS-33, and SS-34 only, as these samples were collected from a discrete area of the site, and all results were in exceedance of cleanup criteria. Other samples were from different areas of the site and were associated with potential PCB impacts; however, cleanup goals were not exceeded in these other areas. Therefore, it was decided that assessment of risks would focus on only that portion of the site with PCB concentrations above cleanup goals. The mean PCB concentration for this area was calculated to be 4.3 ppm, and PCBs were retained for inclusion in the risk assessment (see Table 6-6).

D. Metals in Soil Samples. Table 19 presents the results from screening outside soil sample analytical results for metals for inclusion in the risk assessment. The table includes the range of concentrations detected (minimum and maximum concentrations), the frequency of detection, and the mean concentration. For screening purposes, the mean and maximum concentrations were compared to NYSDEC cleanup goals for soil (TAGM HWR-94-4046), concentrations detected in the off-site/background soil sample, and concentrations reported by NYSDEC as occurring naturally in soils in the eastern United States. Those metals whose mean concentrations exceeded cleanup criteria, or background concentrations if no cleanup goal is established; were retained for inclusion in the risk assessment. Metals that were retained include antimony, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc.

6.5 HAZARD IDENTIFICATION

The next step of a quantitative risk assessment process is to calculate representative exposure doses that could be expected to occur for each of the "complete" exposure pathways. Representative media concentrations have been estimated as described in Section 6.4. As discussed previously, only the VOCs cis-1,2-DCE, TCE, and PCE, and the metal antimony have been identified as chemicals of concern in groundwater. Soil chemicals of concern include several PAH compounds, PCBs (PCB 1260), and several metals.

In order to identify potential health hazards at the Roblin Steel site, exposure doses were then calculated for each of the potential exposure pathways identified as being associated with site contaminants of concern. After exposure doses are calculated, the doses are compared to levels known to be associated with health effects. The following paragraphs describe the exposure assessment calculations and how health effects are quantified from the exposure doses.

A. **Exposure Due to Accidental Ingestion of Contaminants in Soil.** Surficial soils on the site property exhibited elevated concentrations of PAHs, metals, and in certain areas, PCBs. In addition, soil and residue located in the former mill building and brick building were found to exhibit elevated concentrations of PAHs. As the site is not secure, incidental ingestion of contaminated soil and/or building residue is a complete exposure pathway. Should the site be developed in the future, worker exposure due to incidental ingestion of contaminated soil is also a complete exposure pathway.

Exposure to trespassers from accidental ingestion of contaminated soils was estimated using the following model:

Exposure dose $(mg/kg-day) = (Cs \times IR \times CF \times FI \times EF \times ED)/(BW \times AT)$

where:

- Cs = Chemical concentration in soil (mean concentration in mg/kg)
- IR = Ingestion rate (mg soil/day). In this case, 10 mg soil/day per USEPA guidance
- CF = Conversion factor, (10⁻⁶ kg/mg)
- FI = Fraction ingested from source; assume 25% (1/4 of daily exposure, with 1/8 for PCBs)
- EF = Exposure factor; assume 100 times/year

80049FA.2

- ED = Exposure duration; assume 25 years for adult, not used for adolescent calculation.
- BW = Body weight; assume 70 kg for adult and 45 kg for adolescent
- AT = Averaging time, (days). For adults' carcinogenic effects, 70 years; noncarcinogenic effects (chronic), 25 years, 100 days; 1 year used for adolescent calculation

There are no standards or default values for estimating exposure occurrences for trespassers. Therefore, a reasonable assumption must be made for calculation of exposure doses. In this case, it was assumed that trespassers may enter the site 100 times/year (about 2 times/week), and the amount of exposure from the site would be approximately 1/4 of the total exposure experienced by the individual. Because the PCB impacts are limited to a very small part of the site, it was assumed that only 1/8 of the exposure would be to soil with PCB impacts. Results of these calculations are included in Appendix G.

Similarly, exposure to site workers from accidental ingestion of contaminated soils was estimated using the same model; however, EF, the exposure factor, was assumed to be 250 days/year (equivalent to 5 days/week for 50 weeks/year). Results of these calculations are also included in Appendix G.

B. Exposure Due to Ingestion of Contaminants in Groundwater. Groundwater migrating toward residential properties has been found to contain elevated concentrations of halogenated VOCs and antimony. Because there is a slight possibility that an adjacent property owner could install a private well, most likely for garden irrigation purposes, this has been retained as a potential future exposure scenario. Exposure to off-site residents from ingestion of groundwater has been estimated using the following model:

Exposure dose (mg/kg-day) = ($C_{gw} \times IR \times CF \times FI \times EF \times ED$)/(BW x AT)

where:

Cgw = Chemical concentration in groundwater (mean concentration in mg/l)

IR = Amount of water consumed/day (Liters). In this case 2 L per USEPA guidance

- FI = Fraction ingested from source; assume 25% (1/4 of daily exposure)
- EF = Exposure factor; assume 120 times/year

ED = Exposure duration; assume 25 years for adult, not used for child calculation

BW = Body weight, assume 70 kg for adult and 15 kg for child

80049FA.2

AT = Averaging time, (days) For adults carcinogenic effects, 70 years; noncarcinogenic effects (chronic) 25 years, 120 days; 1 year used for child calculation

The results of these calculations are included in Appendix G.

6.6 TOXICITY ASSESSMENT

Toxicity assessment determines the extent to which adverse health impacts could arise from exposure to the identified site-related compounds of concern. Data on known health impacts for each identified compound of concern was obtained from the Integrated Risk Information System (IRIS) on-line database. The database is maintained by the USEPA and includes information on known and suspected health impacts for a large number of chemicals. When data was not available in the IRIS database, the International Toxicity Estimates for Risk (ITER) database maintained by Toxicology Excellence for Risk Assessment (TERA) was consulted to see if alternative health effects information was available. The ITER database includes information from the Agency for Toxic Substances and Disease Registry (ATSDR) and Health Canada.

Two types of health impacts from exposure to chemicals are possible. Toxicity, both subchronic and chronic, is the first type of health impact. Carcinogenicity is the second. Subchronic and chronic toxic effects are health impacts that are exerted slowly over the same time period as exposure occurs. A "threshold" model is used to conceptualize these effects; that is, there is a dose below which no adverse effects will occur. Carcinogenic effects, in contrast, are molecular events that evoke changes on the cellular level that can lead to uncontrolled cellular proliferation and eventually to the disease cancer. Exposure can lead to clinical effects later in life, in comparison to the subchronic and chronic effects where the impacts occur over the same time period as exposure. Carcinogenesis is conceptualized as a "non-threshold" model, because there is no exposure that produces a zero chance of a carcinogenic response.

Toxicity assessment calculations reflect the differences between the two human health responses. The potential impacts of exposure to non-carcinogenic chemicals are evaluated by comparing the calculated exposure to the published "reference dose" (RfD in units of mg/kg/day) or "reference concentration" (RfC in units of mg/cubic meter for exposure to toxics in air) for the chemical of concern. The RfD (or RfC) is the estimated exposure at which no adverse health impacts will occur,

even among sensitive subpopulations. Exposure at the reference dose may occur without deleterious effects for a lifetime. Uncertainty in the RfD (or RfC), however, may span an order of magnitude.

In contrast, carcinogenic effects are quantified by using a "slope factor" which is the unit risk per mg/kg/day exposure dose. The slope factors resulting from human and animal studies are published by the USEPA and reflect consensus judgements of the agency scientists. Each slope factor is qualified by a "weight of evidence" factor denoting the uncertainty in prediction of human carcinogenicity.

Tables 20 and 21 summarize the health effect parameters obtained from IRIS for the various chemicals of concern identified in soil and building residue at the Roblin Steel site. As indicated in Table 20, chronic non-carcinogenic effects have been associated with exposure, via ingestion, to several PAH compounds, PCBs, and metals. Several PAH compounds and metals are also identified as carcinogens. Table 22 and 23 summarize assessments of toxicity and carcinogenic health effects, respectively, for the groundwater chemicals of concern. At the present time, none of the groundwater chemicals of concern are associated with carcinogenic effects. Two of the groundwater chemicals of concern (antimony and PCE) are, however, associated with chronic toxicity effects.

The next step in toxicity assessment includes evaluating the exposure concentrations (discussed in Section 6.5, above) for their potential impact on human health. Action levels for chronic toxicity and carcinogenic effects differ. Chronic toxicity indices (or Hazard Indices, HI) are the ratio between exposure from site contamination and the RfD. As the individual and summary hazard indices approach unity, the potential for unacceptable exposure exists. Carcinogenic effects, on the other hand, are calculated by multiplying exposure amounts (mg/kg-day) times the carcinogenic slope factor (unit risk per mg/kg-day). The product is thus the unit risk of developing carcinogenic effects. The typical accepted standard in New York State is a risk of 1×10^{-6} , or one in a million. Therefore, levels of concern are greater than unity (chronic toxicity effects) and greater than 1×10^{-6} (carcinogenic effects).

6.7 RISK CHARACTERIZATION

The final step in the risk assessment process, risk characterization, integrates the previous activities and characterizes the potential for adverse effects on human health. Both carcinogenic (cancercausing) and non-carcinogenic (toxic) effects on human health are examined. The goal of this final step is an understanding of whether a reduction in risk is necessary. Table 24 presents a summary of the quantitative toxicity assessment. In general, hazard indices greater than unity are associated only with ingestion of groundwater by a child. However, no calculations were possible for ingestion of soil impacted by lead, as the RfD for lead has been withdrawn from toxicity databases maintained by the USEPA and ATSDR. The reason behind this action is that experts currently believe that the toxic effects of lead can occur without a threshold. It is likely that if an RfD was published for lead, the calculated hazard index for exposure via accidental ingestion of surface soil would be greater than one.

Carcinogenic unit risks exceeding one in a million were calculated for trespassers' exposure to the residue in the buildings on the site (especially the brick building) and for future site workers' exposure to surface soil and the residue in the buildings. Similar to the issues raised by lead, several PAH compounds are currently classified as potential human carcinogens, but to date, carcinogenic slope factors have not been determined for these compounds. Although there are no human data that specifically link exposure to these compounds (pyrene, benz(a)anthracene, chrysene, and benzo(b)fluoranthene, among others), these PAHs are all components of mixtures that have been associated with human cancer, including coal tar, soot, coke oven emissions, and cigarette smoke. For these reasons, it is likely that the carcinogenic unit risk may be underestimated by the calculations in this risk assessment.

6.8 CONCLUSIONS

In conclusion, the results of this quantitative risk assessment indicate that there would likely be unacceptable risks associated with site-related contamination. However, most of the risks are due to the potential for contact with the soil and residue in the buildings. Improvements to site security could reduce the magnitude of these risks by preventing access by trespassers. Alternatively, options that prevent contact with the impacted soil, such as capping or removal, should be considered to reduce the magnitude of the potential risks to health.

Because the site is located in an area served by public water, restrictions can be placed to prevent installation of private wells for drinking water purposes. The areal extent of the impacted groundwater is small, indicating that well restrictions would not need to be placed on many properties. It is also possible that groundwater impacts are not leaving the site. A well located hydraulically downgradient from GW-3S could verify this. If this was the case and impacted groundwater is not leaving the site, then there is not a completed exposure pathway, and the risks associated with exposure to impacted groundwater are negligible.

CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Using information generated during the preliminary site assessment, Stearns & Wheler developed and executed a site investigation and remedial alternatives work plan. The work plan identified the goals of the City of North Tonawanda and the means by which those goals would be achieved. The results of the completion of the work plan were discussed in Chapter 4. Based on the results, Stearns & Wheler has reached the following conclusions.

7.1 GEOLOGY

1. Five stratigraphic units have been identified on the site: fill, a silt layer, a clay layer, a till layer and shale bedrock.

2. The silt later acts as a shallow aquifer. The clay unit acts as a confining layer for the underlying till.

3. During drilling, bedrock was encountered but no monitoring wells were installed in the bedrock.

7.2 HYDROGEOLOGY

1. Groundwater flow patterns for the aquifers indicate that a groundwater divide trends from north-northeast to south-southwest in the deep aquifer and north-south in the shallow aquifer. The divide is the result of groundwater draining to the sewer line that runs beneath Oliver Street. The sewer line excavation intersects the upper and lower aquifers, causing the water to drain away from the Niagara River in this area.

2. Potentiometric surface elevations of the deep aquifer suggest that the clay layer acts as a confining layer for the till. This may limit the potential impact of any contaminants in the shallow aquifer from migrating downward into the deep aquifer.

3. Slug test results indicate that the range of hydraulic conductivity in the deep aquifer is between 1.7×10^{-2} and 6.74×10^{-5} cm/sec. The mean hydraulic conductivity value for the till is 1.35×10^{-3} cm/sec. This indicates that there are wide variations in hydraulic conductivity in the till layer, which is not uncommon.

4. The estimated seepage velocity of the groundwater in the deep aquifer ranges from 2 to 754 ft/yr, with a mean value of 31 ft/yr. This further exemplifies the variations in hydraulic conductivity at the site.

5. Hydraulic conductivity results for the shallow aquifer range from 1.11×10^{-3} to 5.47 x 10^{-4} cm/sec, with a mean value of 1.09 x 10^{-3} cm/sec.

6. Estimated seepage velocities in the shallow aquifer range from 1.4 to 25 ft/yr with a mean value of 7.6 ft/yr.

7. Because the hydraulic conductivities for the upper silt and lower till are similar, the factor with the greatest influence over seepage velocity appears to be hydraulic gradient. The hydraulic gradients between the upper and lower aquifers vary by a factor of nearly 3, with much steeper gradients occurring in the lower till.

7.3 GROUNDWATER ANALYTICAL RESULTS

1. Well GW-3S was the only location where there were groundwater impacts of volatile organic compounds. Concentrations of cis-1,2-dichloroethene (62 ppb), trichloroethene (56 ppb), and tetrachloroethene (40 ppb) exceeded groundwater quality standards.

2. Analytical results indicated that turbidity is a factor that influences the concentration of a number of the total metallic ions.

3. Using dissolved analysis, concentrations of antimony, iron, magnesium, manganese, and sodium are above groundwater standards at a number of locations.

4. STARS semi-volatile compound analysis was completed at two well locations: GW-16S and GW-17S. These wells were placed adjacent to suspected and known underground storage tanks. Although an underground storage tank was found near GW-17S and an apparent leak

had taken place, there was no evidence of volatile organic compound or semi-volatile organic compound impacts in groundwater at this location. No tank was identified at GW-16S, and the groundwater data indicated no evidence of a leak.

7.4 SOILS ANALYTICAL RESULTS

1. Samples collected within site buildings were identified as not being native soils, but debris generated during activities at the site. These samples were not compared to NYSDEC cleanup objectives.

2. Samples collected inside and outside the buildings indicate that semi-volatile organic compound concentrations were elevated across the site. Figure 7 illustrates three areas of concern, where total semi-volatile organic compound analysis may warrant further investigation or remediation.

3. PCBs were detected at four sampling locations: SS-29, SS-32, SS-33 and SS-34. The areas that these samples were collected from were former transformer locations. Samples SS-32, SS-33, and SS-34 were located in an area where 37 tons of PCB impacted soil had been removed. Recent analytical results indicate that further investigation into this area is warranted.

4. There were a number of exceedances for heavy metals in soils on the site, including beryllium, cadmium, chromium, mercury, and lead. In addition, the element antimony was also found in samples collected on the site.

5. As part of the UST investigation, soil samples were collected at GW-16S and GW-17S. A number of compounds were identified in concentrations above the STARS VOCs standards at GW-17S. None were detected at GW-16S.

6. The tank in the vicinity of GW-17S has had either leaks or overfilling incidents. A strong organic odor was detected in the vicinity of the tank before Well GW-17S was installed. The nature of the release is unknown.

7. A number of STARS VOCs were detected at both GW-16S and GW-17S.

7.5 FISH AND WILDLIFE IMPACT ANALYSIS CONCLUSION

Step 1 of the NYSDEC Division of Fish and Wildlife's Fish and Wildlife Impact Analysis for inactive hazardous waste sites (1994) was completed on this site. The following conclusions were reached:

1. Surface runoff drains in all directions, but ultimately drains to the Niagara River.

2. Diversity of vegetation is fairly low due to the developed nature of the area.

3. The dense development of the site and surrounding areas provides limited habitat for wildlife species.

4. The Niagara River provided feeding, spawning, cover, and dispersal habitat to a wide variety of fish species.

5. The Natural Heritage Program's records indicate that Stiff-Leaf Goldenrod (*Solidago rigida*), a state-threatened plant, is found along the banks of the Erie Canal south of the site on Grand Island west of the site, and in Wheatfield north of the site.

6. Common terns *(Sterna hirundo)*, which are state-threatened birds, are known to nest on Grand Island, west of the site.

7. The Niagara River is listed as an unprotected concentration area for water fowl, and Lower Spicer Creek on Grand Island is listed as an unprotected concentration area for warm water fish.

8. There is an unprotected area of Silver Maple-Ash swamp, considered a rare community on Grand Island.

None of the resources noted in paragraphs 5, 6, 7, and 8 should be impacted by the subject site, since none are directly downstream or downwind of the subject site.

9. There is little valuable terrestrial wildlife habitat within the study area except for the undeveloped woods on Grand Island, west of the site.

10. The primary value to humans of the natural resources surrounding the Roblin Steel plant lies in development and recreational opportunities.

7.6 RISK ASSESSMENT

1. The qualitative risk assessment indicates that there would likely be unacceptable risks associated with site-related contamination.

2. Most of the risks are due to the potential for contact with the soil and residue in the buildings. Improvements in site security could reduce the magnitude of these risks by preventing access by trespassers. Alternative measures that prevent contact, such as capping or removal, should also be considered.

3. Because the site is located in an area served by public water, restrictions can be placed to prevent installation of private wells for drinking water purposes.

4. The areal extent of groundwater impact is small, indicating well restrictions would not need to be placed on many properties.

7.7 RECOMMENDATIONS

Based on the conclusions noted above, Stearns & Wheler has the following recommendations:

1. There are very limited impacts to groundwater with respect to volatile organic compounds. The area of concern in the vicinity of GW-3S should be monitored periodically, and an analysis of the trends should be completed. Any further remediation should be considered only after several sampling rounds for the four wells in this area have been completed.

2. The underground storage tank adjacent to GW-17S should be removed and endpoint soil samples should be collected to determine if all impacted soil has been removed. Removal of the source of the impacts is essential before any decision can be made on additional remedial measures.

3. No underground storage tank was detected in the vicinity of GW-16S; however, the analysis of the soil sample collected from this location indicates that there are impacts of semi-volatile organic compounds in the area. Excavations should be completed in this area to determine if the UST is still in place. This could be completed during the same mobilization to remove the tank at GW-17S. Additionally, a third UST reportedly exists in the northwest portion of the site. No evidence of this tank has been observed yet. Exploratory test pits will be conducted in an effort to locate the tank.

4. Although the soil samples inside and outside of the buildings have notable impacts, any type of remedial effort would have to be determined after the fate of any structures on the site and the final use of the area has been determined. It should be understood that the degree of cleanup is a function of the future use of the property. The Remedial Alternatives Report (RAR) yet to be completed will evaluate alternatives for managing the impacted soil. It may be determined in the course of completing the RAR that additional soil sampling may be needed to evaluate areal extent and depth of impact.

5. Improved security and possible restrictions on the installation of potable water wells on some adjacent properties would significantly reduce potential exposure to known impacts.

TABLES

GLOSSARY OF DATA QUALIFIERS

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
 [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

CODES RELATING TO QUATITATION

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

OTHER CODES

 \mathbf{Q} = NO ANALYTICAL RESULT.

TABLE 1GROUNDWATER ELEVATIONSJan-98Roblin Steel Site InvestigationCity of North Tonawanda, NY

Well ID	Depth to Water; (ft)	PVC Ele:	Groundwater Ele.
GW-1	10.1	579.32	569.22
GW-2	14.37	579.17	564.8
GW-2S	9.28	579.54	570.26
GW-3	15.1	578.22	563.12
GW-3S	NA	576.77	NA
GW-4	14.34	579.25	564.91
GW-4S	7.8	579.38	571.58
GW-5	8.39	579.45	571.06
GW-5S	5.15	577.02	571.87
GW-6	10.36	578.55	568.19
GW-7S	9.54	579.86	570.32
GW-8S	10.68	580.37	569.69
GW-9	11	579.57	568.57
GW-10S	7.38	578.38	571
GW-11S	9.14	579.23	570.09
GW-12S	9.52	579.18	569.66
GW-13*	30.17	580.04	549.87
GW-14	14.09	578.52	564.43
GW-16S	7.56	578.81	571.25
GW-17S	8.81	579.21	570.4

NA: Not Available due to heavy snow cover

* Depth to groundwater elevation unusual relative to others

S desgination indicates shallow wells

TABLE 2 HYDRAULIC CONDUCTIVITY AND SEEPAGE VELOCITY SUMMARY DEEP AQUIFER

Jan-98 Roblin Steel Site Investigation City of North Tonawanda, NY

Well ID	K (cm/sec)	K (ft/min)	I	n	V (ft/year)	Overburden
GW-1	5.99E-03	1.18E-02	0.004	0.35	70.85	
GW-2	1.70E-02	3.35E-02	0.015	0.35	754.00	Clay/Till
GW-3	8.13E-03	1.60E-02	0.012	0.35	288.47	Silt/Till
GW-4	1.26E-04	2.48E-04	0.012	0.35	4.47	Till
GW-5	3.38E-04	6.66E-04	0.012	0.35	11.99	Clay/Till
GW-6	8.80E-04	1.73E-03	0.003	0.35	7.81	Clay/Till
GW-9	4.79E-03	9.43E-03	0.004	0.35	56.65	Clay/Till
GW-13	1.51E-03	2.97E-03	<u></u>	0.35		Silt/Till
GW-14	6.74E-05	1.33E-04	0.015	0.4	2.62	Clay/Till
Geometric Means	1.35E-03	2.66E-03	0.008	0.36	31.44	

HYDRAULIC CONDUCTIVITY AND SEEPAGE VELOCITY SUMMARY SHALLOW AQUIFER

Jan-98 Roblin Steel Site Investigation City of North Tonawanda, NY

Well ID	K (cm/sec)	K (ft/min)	Ι	n	V (ft/year)	Overburden
GW-2S	1.87E-03	3.68E-03	0.004	0.45	17.20	Silty Clay
GW-4S	1.41E-03	2.78E-03	0.0006	0.45	1.95	Silty Clay
GW-5S	6.24E-04	1.23E-03	0.003	0.4	4.84	Silt/Clay
GW-7S	5.47E-04	1.08E-03	0.003	0.4	4.25	Silt/Clay
GW-8S	9.67E-04	1.90E-03	0.005	0.4	12.51	Silt
GW-10S	6.46E-04	1.27E-03	0.001	0.45	1.49	Silty Sand
GW-11S	1.45E-03	2.86E-03	0.003	0.45	10.00	Silt/Clay
GW-12S	1.70E-03	3.35E-03	0.003	0.4	13.20	Silt/Clay
GW-16S	1.11E-03	2.19E-03	0.009	0.4	25.85	Silt/Clay
GW-17S	1.56E-03	3.07E-03	0.004	0.4	16.14	Silt/Clay
Geometric Means	1.09E-03	2.15E-03	0.003	0.42	7.67	

K=Hydraulic Conductivity

n=Porosity

I=Hydraulic Gradient

V=Seepage Velocity

Unable to collect data at GW-3S due to heavy snow cover

Groundwater elevation data at GW-13 does not reflect other local data. Therefore, this information was not used in determining local hydrogeologic conditions

TABLE 3 GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS TCL Volatiles Dec-98 Roblin Steel Site Investigation City of North Tonawanda, NY

.

	· · · · · · · · · · · · · · · · · · ·	81 (C. 24)	e		* We		· · · · · · · · · · · · · · · · · · ·			.	GW
Analyte (úg/l)	- GW-1.5	GW-2	GW-2S	GW-3	- GW-3S)	. GW-4 *	tGW-4S	GW-5 🏹	GW-5S	GW-6	Std.
Chloromethane	U	U	U	U	U	U	U	U	U	U	NS
Bromomethane	ហ	IJ	ហ	បរ	ហ	បរ	U	IJ	۲U	ប្រ	5
Vinyl Chloride	U	U	U	U	U	U	Ū	U	U	U	2
Chloroethane	បរ	ເບ	IJ	បរ	UJ	U	IJ	U	U	U	5
Methylene Chloride	U	U	U	U	U	U	U	U	U	U	5
Acetone	6UJ	ເປ	ហ	ບມ	UI /	IJ	ເບ	ເບ	U	ເປ	50G
Carbon Disulfide	U	U	U	U	U	Ŭ	U	U	U	U	NS
Vinyl Acetate	U	U	Ŭ	U	U	U	U	U	U	U	NS
1,1-Dichloroethene	U	U	Ų	U	U	U	U	U	U	U	5
1,1-Dichloroethane	υ	2J	2J	U	U '	U	U	U	U	U	5
cis-1,2-Dichloroethene	U	U	U	U	62	Ŭ	U	U	U	U	5
Trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	U	U	5
Chloroform	U	U	Ü	U	U	U	U.	U'	U	U	7
1,2-Dichloroethane	U	U	U	U	U	Ü	U	U	U	U	0.6
2-Butanone	U	U	U	U	U	U	U	U.	U	U	50G
1,1,1-Trichloroethane	U	U	U	U	U	U	U	U	U	U	· 5
Carbon Tetrachloride	U	U	U	U	U	U	U	U	Ŭ	U	5
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	50G
1,2-Dichloropropane	U	U	U	U	U	U	U	U	Ŭ	U	1
cis-1,3-Dichloropropene	υ	U	U	U	U	U	U	Ŭ	U	U	0.4
Trichloroethene	U	U	U	U	56	U	U	U	U	U	5
Dibromochloromethane	U	U	U	U	U	U	U	Ŭ	U	U	5
1,1,2-Trichloroethane	U	U	U	U	U	Ŭ	U	U	U	U	1
Benzene	U	U	U	U	U	U	U	U	U	U	I
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	Ŭ	U	0,4
Bromoform	U	U	U	U	ប	U	U	Ú	U	U	50G
4-Methyl-2-Pentanone	U	U	U	U	U	U	U	U	U	U	NS
2-Hexanone	U	U	U	U	U	U	U	U	U	U	50G
Tetrachloroethene	ប	U	4J .	U	40	U	U	U	Û	U	5
1,1,2,2-Tetrachloroethane	ប	U	U	U	U	U	U	U	U	U	5
Toluene	U	U	U	U	U	U	U	U	U	U	5
Chlorobenzene	U	U	U	U	U	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	υ	U	U	U	U	U	5
Styrene	U	ប	U U	U	ប	U	U	U	U	υ	5
Xylene (total)	U	U	Ŭ	U ·	U	· U	U	บ	U	U	5

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

(]

G: Guidance Value

NOTE: Data has been validated

TABLE 3 (continued) GROUNDWATER ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS TCL Volatiles Dec-98 Roblin Steel Site Investigation City of North Tonawanda, NY

		. • •			We	ID			· · · ·		GW
Analyte (ug/l)	GW-7S	GW-8S	GW-9	GW-105	GW-115	GW-12S	GW-13	GW-14	GW-16S	GW-175	Std.
Chloromethane	U	U	U	U	U	U	Ŭ	U	Ū	U	NS
Bromomethane	IJ	U	U	U	ເບ	τŪ	UJ	τυ	ເບ	LU	5
Vinyl Chloride	U	U	U	۰U	U	U	U	U	U	U	2
Chloroethane	U	Ū	IJ	U	ເບ	ບາ	U	U	ເບ	U	5
Methylene Chloride	U	U	U	U	U	U	U	υ	U.	U	5
Acetone	ເບ	ហ	ហ	15UJ	UJ	6UJ	υ	ບ	LU I	U	50G
Carbon Disulfide	U	U	U	2J	1]	U	U	U	U	U	NS
Vinyl Acetate	U	υ	U	U	υ	U	U	U	U	υ	NS
1,1-Dichloroethene	U	U	U	U	υ	U	U	U	U	U	5
1,1-Dichloroethane	U	U	U	U	U	IJ	υ	U.	U	Ŭ.	5
cis-1,2-Dichloroethene	U	U	U	U	U	U	υ	U	U	U	5
Trans-1,2-Dichloroethene	U	U	U	U	U	U	U	U	U	U	5
Chloroform	U	Ŭ	U	U	U	U	U	U	U	U	7
1,2-Dichloroethane	U	U	U	U	Ū	U	U	U	υ	U	0.6
2-Butanone	U	U	U	U	U	U	U	U	U	U	NS
1,1,1-Trichloroethane	Û	U	U	U	U	U	U	U	U	U	5
Carbon Tetrachloride	U	U	U	U	U	U	U	U	U	U	5
Bromodichloromethane	U	U	U	U	U	U	U	U	U	U	50G
1,2-Dichloropropane	U	U	U	U	U	U	U	U	U	U	1
cis-1,3-Dichloropropene	U	U	U	Ŭ	Ű	U	U	U	U	U	0.4
Trichloroethene	U	U	U	υ	U	U	U	U	U	U	5
Dibromochloromethane	U	U	U	ບ	U	U	U	U	Ü	U	5
1,1,2-Trichloroethane	U	U	U	U	U	U	U	U	U	U	1
Benzene	U	U	U	U	U	U	U	U	U	U	1
trans-1,3-Dichloropropene	U	U	U	U	U	U	U	U	U	U	0.4
Bromoform	U	U	U	U	U	U	U	U	U	U	50G
4-Methyl-2-Pentanone	U	Ū	U	U	U	U	U	U	U	U	NS
2-Hexanone	U	U	U	U	U	U	U	υ	U	U	50G
Tetrachloroethene	U	U	U	U	U	U	U	U	U	U	5
1,1,2,2-Tetrachloroethane	U	U	U	U	Ŭ	U	U	U	U	U	5
Toluene	U	U	U	U	U	U	U	U	U	U	5
Chlorobenzene	U	U	U	U	υ	U	U	U	U	U	5
Ethylbenzene	U	U	U	U	U	U	U	U	U	U	5
Styrene	U	U	U	U	U	U	υ	U	U	U	5
Xylene (total)	U	U	U	U	U	U	U	U	U	U	5

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

NOTE: Data has been validated

G: Guidance Value

TABLE 4GROUNDWATER ANALYTICAL RESULTSTOTAL METALSTAL MetalsDec-98Roblin Steel Site InvestigationCity of North Tonawanda, NY

					Well ID	en an			a tatan a	GW
Analyte (ug/l)	GW-1	GW-2	GW-2S	GW-3	GW-3S	GW-4	GW-4S	GW-5	GW-5S	Std.
Aluminum	2810	4470	1900	1510	1460	1520	928	3320	2510	NS
Antimony	9U	6.6U	5.1U	9.5U	7.7U	10.1U	10.7U	6U	5.4U	3
Arsenic	3.2U	8.9U	6.8U	6.8U	23.7	5.7U	3.0U	8.2U	6.9U	25
Barium	8.9J	90.5J	68.2J	50.3J	83.1J	36.6J	64J	63.8J	92.7J	1000
Beryllium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	3G
Cadmium	1.4	1	1.0U	1.2	1.0U	1.0U	1.0U	1.0U	1.0U	5
Calcium	130000	224000	11400	168000	137000	157000	106000	176000	193000	NS
Chromium	5.6	7.8	3.2	3.8	3.6	3.2	2.2	8.3	4.6	50
Cobalt	9.6U	10.4U	9U	8.3U	13.4U	9U	8U	10.2U	10.7U	NS
Copper	30.2	18.4	10.4U	6.8U	11.6U	8.9U	10U	15	19.2	200
Iron	6300J	8980J	3340J	3090J	17600J	3050J	2460J	8080J	5800J	300
Lead	10.6	14	4	2.0U	3.2	4.5	8.6	14.7	17.3	25
Magnesium	62000	104000	21100	52800	20000	76300	27800	82300	30900	35000G
Manganese	397	502	314	187	4170	242	138	735	1200	300
Mercury	NR	.1U	.10U	NR	.1U	0.10U	.1U	.1U	.10U	0.7
Nickel	8.5	8.4	6.0U	6.0U	6.4	6.0U	6.0U	8	9.2	100
Potassium	6000	5180	1080	2880	740	2420	2150	3600	888	NS
Selenium	7U	7.5U	8.6U	5.4U	8.1U	6.1U	6.8U	6.3U	9.5U	10
Silver	7.5U	7.5U	7.4U	7.4U	7.8U	7.7U	7.5U	7.5U	7.3U	50
Sodium	69600J	78600J	5130J	68200J	2780J	64300J	46100J	64000J	18100J	20000
Thallium	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	5.0U	7.3U	5.0U	.5G
Vanadium	12.2U	13U	11U	8.1U	11.9U	8.2U	8.7U	13.6U	12.5U	NS
Zinc	33.8J	38J	19.3J	16.4J	26.1J	19.3J	4.8J	54.8J	74.4J	2000G

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

NOTE: Data has been validated

G: Guidance Value

TABLE 4 (continued) GROUNDWATER ANALYTICAL RESULTS TOTAL METALS TAL Metals Dec-98 Roblin Steel Site Investigation

City of North Tonawanda, NY

					Well ID	-				GW
Analyte (ug/l)	GW-6	GW-7S	GW-8S	GW-9	GW-10S	GW-11S	GW-12S	GW-13	GW-14	Std.
Aluminum	605	744	466	1070	143	6460J	564	1550	280	NS
Antimony	4.0U	4.0U	4.0U	8.8U	4.0U	4.0U	5.4U	10.6B	4.0U	3
Arsenic	19	10.5	6.9	8.4U ·	20.5	15.5U	5.4U	3.5B	4.5	25
Barium	43.6	66.6	26.5	40.2J	374J	217J	62.8J	33.1B	34.8	1000
Beryllium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	3G
Cadmium	3.4	7.2	2.7	1.0U	1.7	4	1.1	1.0B	2.5	5
Calcium	74300	86800	241000	67100	930000	376000J	136000	182000	106000	NS
Chromium	1.0U	2.1	1.9	1.6	1.0U	10.1	1.0U	13.3	1.0U	50
Cobalt	2.0U	2.0U	3.8	8U	20.4	23.9	7.4U	9.2B	2.0U	NS
Copper	3	6.2	10.5	6.3U	3.1U	74.8	6.8U	10.8B	3.7	200
Iron	1960	9190	1550	2670J	2190J	16100J	1120J	5020E	454	300
Lead	R	2.8J	R	2.0U	2.0U	36.2J	2.0U	2.0U	3.7J	25
Magnesium	43800	20500	50100	41600	58000	72700J	29800	116000	54900	35000G
Manganese	144	1220	1610	176	7410	2400J	261	241	54.2	300
Mercury	0.1U	0.16	0.39	0.1U	1.6	0.1U	0.1U	.1U	.1U	0.7
Nickel	7.5	9	8.5	6.0U	18.9	28.9	6.0U	6.0U	6.0U	100
Potassium	1690	661	1120	1700	6930	4290	3380	16100	4180	NS
Selenium	2.6U	1.8U	2.8U	9.5U	29.5	14.9	6.5U	4.9B	R	10
Silver	1.0U	1.0U	1.0U	7.5U	7.6U	7U	7.5U	7.6B	1.0U	50
Sodium	41600	18400	33200	50300J	35400J	25400J	28700J	96400E	61700	20000
Thallium	5.0U	UJ	UJ	5.5U	5.0U	5.0U	5.0U	5.0U	UJ	.5G
Vanadium	ιυ	4.8	1.0U	8.1U	5.2U	25U	6.8U	8.4B	1.0U	NS
Zinc	7.9	12.3	15.5	9.7J	32.6J	141J	6.7J	23.5	4.3	2000G

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

G: Guidance Value

NOTE: Data has been validated

TABLE 5
GROUNDWATER ANALYTICAL RESULTS
DISSOLVED METALS
TAL Metals
Dec-98
 Roblin Steel Site Investigation

City of North Tonawanda, NY

					Well ID	· · · · · · · · ·	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			GW
Analyte (ug/l)	GW-1	GW-2	GW-2S	GW-3	GW-3S	GW-4	GW-4S	GW-5	GW-5S	Std.
Aluminum	51.9B	53U	31.IU	26.9	36.5U	58.1U	49U	42.8U	40.7U	NS
Antimony	13.6U	15.4U	10.1U	4.0U	11.7U	12.9U	8.8U	14.5U	9.8U	3
Arsenic	3.0U	3.3U	5.7U	4.6	3.0U	6.9U	3.0U	3U	3.4U	25
Barium	22.9J	21.6J	39.8J	49.1	32J	19J	50.5J	16.4J	53.6J	1000
Beryllium	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	3G
Cadmium	1.0U	1.0U	1.0U	3.4	1.0U	1.0U	1.0U	1.0U	1.0U	5
Calcium	51500	74300	88600	169000	98000	131000	98400	48000	136000	NS
Chromium	1.0U	1.0U	1.0U	1.3	1.0U	1.0U	1.0U	1.0U	1.0U	50
Cobalt	11.5U	7.9U	6.6U	2.0U	7.5U	13.9U	7.2U	7.1U	7.8U	NS
Copper	2.6U	2.6U	2.6U	1.0U	2.2U	2.7U	3U	2U	3.3U	200
Iron	74.5R	62.5R	71.4R	10U	194R	73.2R	61.4R	81.5R	76.8R	300
Lead	UJ	UJ	UJ	R	UJ	UJ	UJ	IJ	UJ	25
Magnesium	39400	37400	17700	54200	12200	69400	27100	40900	17700	35000G
Manganese	24.2	16.2	75.2	99.5	319	62.4	42.6	12.9	808	300
Mercury	0.10U	0.1U	.1U	.1U	.1U	.1U	0.1U	0.1U	.1U	0.7
Nickel	6.0U	6.0U	6.0U	6U	6.0U	6.0U	6.0U	6.0U	6.0U	100
Potassium	5510	3280	994	3160	758	2370	1930	2140	588	NS
Selenium	3.4U	4.4U	5.3U	R	7.1U	2.6U	6.5U	2.8U	3.9U	10
Silver	7.4UJ	7.6UJ	7.6UJ	1.0U	7.5UJ	8.3UJ	7.5UJ	7.6UJ	7.6UJ	50
Sodium	67800J	72400J	5740J	73500	2920J	65200J	43200J	57200J	18200J	20000
Thallium	6.8U	5.7U	5U	5.0U	7.7U	5.0U	5.0U	5.0U	5.0U	.5G
Vanadium	5.8U	6U	5.7U	1.0U	5.9U	5.7J	5.7J	6.5U	6.1U	NS
Zinc	UJ	បរ	ເບ	1.2	ບງ	UJ	UJ	UJ	UJ	2000G

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

NOTE: Data has been validated

G: Guidance Value

TABLE 5 (continued) GROUNDWATER ANALYTICAL RESULTS DISSOLVED METALS

TAL Metals Dec-98 Roblin Steel Site Investigation City of North Tonawanda, NY

					Well ID					GW
Analyte (ug/l)	GW-6	GW-7S	GW-8S	GW-9	GW-10S	GW-11S	GW-12S	GW-13	GW-14	Std.
Aluminum	15U	15U	15U	35.6U	225	193	30.9U	38U	17.2	NS
Antimony	4U	4U	4U	14.4U	8.9U	9.1U	10.5U	11.2U	4.0U	3
Arsenic	16.4	6.9	3.9	9.4U	5.6U	3.7U	4.6U	3.0U	5	25
Barium	34.3	58.4	21.4	29J	51.9J	49.1J	52.7J	18.1J	31.5	1000
Beryllium	1U	IU	IU	1.0U	1.0U	1.0U	1U	1.0U	1.0U	3G
Cadmium	2.3	3.9	2.4	1.0U	1.0U	1.0U	2.8	1.0U	3.1	5
Calcium	61200	79600	235000	46100	120000	85300	133000	167000	99400	NS
Chromium	1U	IU	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	1.0U	50
Cobalt	2U	2U	2.0U	7.4U	25.2U	14.3U	7.3U	7.9U	2.0U	NS
Copper	1.0U	1U	1.0U	2.2U	2.9U	3.6U	2.7U	2.2U	1.0U	200
Iron	24.4	1930	208	367R	450R	382R	93.5R	14.4R	10U	300
Lead	R	R	R	UJ	UJ	UJ	UJ	UJ	R	25
Magnesium	40900	21800	47800	35600	34100	27100	28800	108000	52600	35000G
Manganese	44.2	817	543	32.9	414	266	242	130	23	300
Mercury	.1U	.1U	.1U	.1U	0.19	0.10U	0.1U	.IU	.1U	0.7
Nickel	6U	6U	6U	6.0U	6.0U	6U	6U	6.0U	6.0U	100
Potassium	1880	882	1180	1500	2500	2520	3410	15000	4140	NS
Selenium	3.2U	4.2U	3U	1.0U	9.4U	5.7U	6.7U	4.2U	R	10
Silver	IU	۱U	IU	7.6UJ	7.3UJ	7.7UJ	7.7UJ	7.3UJ	1.0U	50
Sodium	41400	19800	30900	49500J	23600J	21400J	28500J	95800J	6100	20000
Thallium	UJ	UJ	UJ	5.0U	5.0U	5U	5.0U	5.0U	UJ	.5G
Vanadium	1U	IU	1U	5.5U	5.8U	6.4U	5.5U	4.4U	1.0U	NS
Zinc	IU	1U	4.6B	UJ	UJ	UJ	UJ	UJ	1.0U	2000G

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

4

G: Guidance Value

NOTE: Data has been validated

TABLE 6GROUNDWATER ANALYTICAL RESULTSWET CHEMISTRYDec-98Roblin Steel Site InvestigationCity of North Tonawanda, NY

					. Well ID		•			, GW,
Analyte (mg/l)	GW-1	GW-2	GW-2S	GW-3	- GW-3S	GW-4	- GW-4S	GW-5	GW-5S	Std:
Alkalinity	145	230	310	311	330	94	368	254	344	
Bicarbonate	143	229	310	309	330	93.2	367	251	343	
Carbonate	2.2	2.0U	2.0U	2.2	2.0U	2.0U	2.0U	2.7	2.0U	
Chloride	9.97	4.58	8.07	15.8	4.16	5.79	19.7	9.66	31.9	250
Hardness	580	988	. 374	637	424	706	379	778	609	1
Sulfate	532	521	48.4	702	19.6	907	131	313	158	250

TABLE 6 (continued) GROUNDWATER ANALYTICAL RESULTS WET CHEMISTRY

Dec-98

Roblin Steel Site Investigation City of North Tonawanda, NY

				9 an 1	Well ID	ter de la com	the second second	R y 1		GW [
Analyte (ug/l)	GW-6	GW-7S	GW-8S	.GW-9	_GW-10S	GW-11S	GW-12S	; GW-13	GW-14	Std.
Alkalinity	225	328	296	202	262	520	377	111	40	
Bicarbonate	224	328	296	201	262	519	377	111	39.6	
Carbonate	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	2.0U	
Chloride	9.99J	12.2J	15.6J	7.72	17.6	13.6	50.2	31.2	7.04J	250
Hardness	366J	301J	808J	339	2560	1240J	462	932	491J	
Sulfate	251	22.2	690	244	260	126	168	1280	625	250

NOTE: Data has been validated

Standards based on Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (NYSDEC June 1998)

Bold face indicates locations of concentrations above standards

NS: No Standard

G: Guidance Value

TABLE 7

GROUNDWATER ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS

STARS Semivolatiles Dec-98 Roblin Steel Site Investigation City of North Tonawanda, NY

	We	ll ID	GW		
Analyte (ug/l)	GW-16S	GW-17S	Std.		
Naphthalene	U	U	10G		
2-Methylnaphthalene	U	U	NS		
Acenapthylene	U	U	NS		
Acenapthene	U	U	20G		
Fluorene	U	U	50Ġ		
Phenanthrene	U	U	50G		
Anthracené	U	U	50G		
Fluroanthene	U	U	50G		
Pyrene	.06J	U	50G		
Benzo (a) anthracene	U	U	.002G		
Chrysene	U	U	.002G		
Benzo (b) fluoranthene	U	U	.002G		
Benzo (k) fluoranthene	U	U	.002G		
Benzo (a) pyrene	.06J	U	.002G		
Indeno (1,2,3-cd) pyrene	U	U	.002G		
Dibenzo (a,h) anthracene	U	U	50G		
Benzo (g,h,I) perylene	U	U	.002G		

Bold face indicates locations of concentrations above

NYSDEC STARS groundwater standards

NS: No Standard

G: Guidance Value

NOTE: Data has been validated

TABLE 8 SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS EPA Method 8270 TCL Semivolatiles Nov-98 Roblin Steel Site Investigation City of North Tonawanda, NY

		•													
	· · · ·			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		San 😪 San	ople ID	い お し い				2 .		Setting 1	Soil
Compound (ug/kg)	SS-9	SS-9B	SS-10	SS-11	SS-12	SS-12B	SS-13	SS-14	*/ SS-15 🔍	SS-16	. SS-17	SS-18	SS-19	SS-20	Std. (ug/kg)
Naphthalene	1,300	15,000J	16J	6,300J	5J	960J	690J	88J	3J	U	490J	39J	230J	23U	13,000
2-Methylnaphthalene	510	5,900J	20J	2,800J	U	450J	330J	66J	U	U	920J	54J	220J	31J	36,400
Acenapthylene	100	680J	20J	440J	34J	140J	1,100J	43J	U	U	2,500	94J	140J	160J	41,000
Acenapthene	1,100	13,000J	14J	7,800J	8J	1,200J	670J	81J	U	U	170J	36J	210J	32J	50,000
Fluorene	1,200	14,000J	9J	8,400J	9J	1,400J	840J	79]	U	680J	2,200	60J	190J	71J	50,000
Phenanthrene	7,700J	100000J	180J	588,0001	98J	9,700	6,600	990	40J	6,900J	6,100	510	2,000	630	50,000
Anthracene	1,800	21,000J	38J	13,000J	45J	2,600	2,700	220J	U	2,000J	2,400	160J	460	130J	50,000
Fluoranthene	2,500	110,000J	320J	64,400J	420	11,000	7,700	1,100	40J	2,800J	4,900	560	2,200	1,000	50,000
Pyrene	10,000J	97,000J	230J	50,000J	500	10,000	11,000	1,700J	19U	4,200J	4,300	1,200J	4,300J	1,100J	50,000
Benzo (a) anthracene	3,800J	49000J	170J	29000J	420	5,300	4,400	830J	14J	5,400J	2,800	330J	1300J	490	224 or MDL
Chrysene	3,500J	51000J	250J	30000J	460	5,500	4,400	880J	37J	6,400J	2,000	380J	1400J	620	400
Benzo (b) fluoranthene	3,500J	32,000J	270J	26,000J	310J	4,800	6,200J	1,100J	25J	ບງ	1,800	630J	2000J	590	1,100
Benzo (k) fluoranthene	2,800J	55,000J	290J	24,000J	410J	6,000J	8,900J	920J	13J	ບງ	2,400	340J	1700J	620	1,100
Benzo (a) pyrene	3,100J	38000J	190J	25,000J	280J	4,700	4,300J	790J	9J	ບງ	1,700	230J	1300J	480	61 or MDL
Indeno (1,2,3-c,d) pyrene	1,900J	14,000J	46J	8,400J	230J	1,300J	2,700J	530J	4J	UJ	280J	210J	550J	98J	3,200
Dibenzo (a,h) anthracene	950J	7,900J	18J	4,400J	89J	700J	880J	210J	U	ហ	110J	73J	270J	54J	14 or MDL
Benzo (g,h,i) perylene	1,600J	10,000J	26J	5,100J	120J	780J	2,800J	460J	6J	3,100J	180J	230J	430J	82J	50,000
Considerate based on Deserviceston	66 1 01	01		1 1 01	VODEO I	100.0									

Standards based on Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, January 1994)

Boldfaced areas indicate locations of concentrations above standards

MDL: Method Detection Limit

Data has been validated

Shaded sample locations indicates samples collected within buildings Only samples in these locations are compared to standards

TABLE 8 (continued) SOIL ANALYTICAL RESULTS SEMIVOLATILE ORGANIC COMPOUNDS EPA Method 8270 TCL Semivolatiles Nov-98 Roblin Steel Site Investigation City of North Tonawanda, NY

			`		1		Sample I	D .			, a				Soil
Compound (ug/kg)	SS-21	SS-22	SS-23	SS-25	SS-26	SS-27	SS-28	SS-37	SS-38	SS-41	SS-42	SS-49	SS-45	SS-52	Std. (ug/kg)
Naphthalene	55J	38J	720J	160J	200J	58J	210J	6J	67J	350J	10J	100000J	400J	2,400J	13,000
2-Methylnaphthalene	100J	57J	450J	180J	160J	69J	370J	14J	110J	750J	U	96,000J	480J	1,100J	36,400
Acenapthylene	30J	70J	290J	330J	110J	100J	880	12J	100J	1,500J	3J	53,000J	540J	500J	41,000
Acenapthene	12J	27J	1,000J	540J	430	150J	130J	5J	25J	310J	U	240,000J	450J	4,200J	50,000
Fluorene	19J	44J	1,100J	500J	470	150J	150J	6J	23J	1,800	U	230,000J	640J	4,100J	50,000
Phenanthrene	220J	420	10,000	4,600	3,000	1,300	2,100	57J	410	7,100	7J	1,900,000J	7,100	39000J	50,000
Anthracene	49J	110J	2,300J	1,200J	660	320J	1,000	18J	150J	2,300	6J	350,000J	1,600J	7,800J	50,000
Fluoranthene	230J	670	14,000J	8,500	2,800	1,800	3,600J	100JB	670	8,300	10J	3,800.000J	8,700	43000J	50,000
Pyrene	330J	560	13,000J	7,700	3,700J	1,900	4,600J	110J	1,900J	8,100	22J	3,500,000J	15,000J	70000J	50,000
Benzo (a) anthracene	140J	340J	6,600J	4,300	1200J	880J	2000J	52J	340J	4,800	U	1,400,000J	7,000J	26000J	224 or MDL
Chrysene	180J	440	6,500J	4,600	1400J	1,000J	2600J	68J	470J	4,400	22J	1,600,000J	7,600J	28000J	400
Benzo (b) fluoranthene	210J	510	6,600J	5,800	1900J	1,300J	4,800J	100JB	610J	5,600J	UJ	1,200,000J	7,100J	22000J	1,100
Benzo (k) fluoranthene	180J	540	6,900J	4,800	2100J	1,200J	3,100J	60J	480J	4,800J	ເປ	1,700,000J	5,500J	20000J	1,100
Benzo (a) pyrene	120J	390	6,000J	4,900	1,300J	970J	2500J	57J	330J	3,900J	ບ	1,400,000J	6,000J	23000J	61 or MDL
Indeno (1,2,3-c,d) pyrene	41J	85J	1,200J	1,000J	460J	180J	650J	15J	230J	720J	ບ	620,000J	3.900J	17000J	3,200
Dibenzo (a,h) anthracene	22J	40J	600J	480J	190J	83J	320J	5J	79J	390J	UJ	260,000J	1,400J	8,200J	14 or MDL
Benzo (g,h,i) perylene	55J	70J	910J	610J	630J	160J	680J	42J	310J	490J	ប្រ	550,000J	3,000J	11000J	50,000

.

Standards based on Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, January 1994)

Boldfaced areas indicate locations of concentrations above standards

MDL: Method Detection Limit

Data has been validated

Shaded sample locations indicates samples collected within buildings Only samples in these locations are compared to standards

> Stearns Wheler 80049FA

TABLE 8 (continued)SOIL ANALYTICAL RESULTSSEMIVOLATILE ORGANIC COMPOUNDSEPA Method 8270 TCL Semivolatiles

Nov-98

Roblin Steel Site Investigation

City of North Tonawanda, NY

	1. 		Sample ID			Soil
Compound (ug/kg)	SS-54	SS-55	SS-56	SS-57	SS-62	Std. (ug/kg)
Naphthalene	3,700	110J	23J	110J	430U	13,000
2-Methylnaphthalene	1,500J	130J	160J	160J	430U	36,400
Acenapthylene	660J	290J	960J	190J	430U	41,000
Acenapthene	4,300	54J	76J	37J	430U	50,000
Fluorene	4,500	66J	1,500J	89J	430U	50,000
Phenanthrene	41,000J	1,000	5,400J	970	16J	50,000
Anthracene	7,900	390	1,400J	260	430U	50,000
Fluoranthene	41,000J	1,700	3,400J	990	34J	50,000
Pyrene	50,000J	2,200	4,700J	930J	28J	50,000
Benzo (a) anthracene	18000J	1,100	2,000J	540	12J	224 or MDL
Chrysene	18000J	1,500	1,600J	840	20J	400
Benzo (b) fluoranthene	29,000J	1,900J	1,200J	730	17J	1,100
Benzo (k) fluoranthene	20,000J	2,600J	1,600J	800	19J	1,100
Benzo (a) pyrene	17000J	1,500J	990J	560	14J	61 or MDL
Indeno (1,2,3-c,d) pyrene	9100J	260J	370J	120J	12J	3,200
Dibenzo (a,h) anthracene	4300J	120J	740J	64J	430U	14 or MDL
Benzo (g,h,i) perylene	8,700J	220J	290J	68J	11J	50,000

Standards based on Determination of Soil Cleanup Objectives and Cleanup

Levels (NYSDEC, January 1994)

Boldfaced areas indicate locations of concentrations above standards

MDL: Method Detection Limit

Data has been validated

Shaded sample locations indicates samples collected within buildings

Only samples in these locations are compared to standards

TABLE 9 SOIL ANALYTICAL RESULTS PCBs EPA Method 8082 PCBs Nov-98 Roblin Steel Site Investigation City of North Tonawanda, NY

		· . ·	.s. 11			Sample ID						Soil
Compound (ug/kg)	SS-20	SS-21	SS-22	SS-27	SS-29	SS-32	SS-33	SS-34	SS-40	SS-52	SS-62	Std. (ug/kg)
Aroclor 1016	78U	37U	40U	72U	210U	760U	390U	4,600U	·U	U ·	U	1,000
Aroclor 1221	160U	75U	81U	150U	420U	1,500U	790U	9,300U	U	U	U	1,000
Aroclor 1232	78U	37U	40U	72U	210U	760U	390U	4,600U	U	U	U	1,000
Aroclor 1242	78U	37U	40U	72U	210U	760U	390U	4,600U	U	U	U	1,000
Aroclor 1248	78U	37U	40U	72U	210U	760U	390U	4,600U	U	U	U	1,000
Aroclor 1254	78U	37U	40U	72U	210U	760U	390U	4,600U	U	U	U	1,000
Aroclor 1260	78U	37U	40U	200J	1,000J	4,200J	1,000J	19,000J	U	120J	13J	1,000

Standards based on Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, January 1994)

Shaded areas indicate locations of concentrations above standards

Data has been validated

TABLE 10SOIL ANALYTICAL RESULTSMETALSNov-98Roblin Steel Site InvestigationCity of North Tonawanda, NY

		.		Sam	ple ID				Soil
Compound (mg/kg)	SS-19	SS-20	SS-21					SS-36	Std. (mg/kg)
Aluminum	3,690	2,620	1,230	9,510	5,100	4,470	5,260	4,650	SB
Antimony	116J	3.7J	4.7J	2.1J	25.4J	7.7J	4.4J	9.4J	SB
Arsenic	41.4	15.5	19.1	12.1	27.6	15.8	21.2	35.8	7.5/SB
Barium	80.4	51.4	584	105	95.4	102	94.5	133	300/SB
Beryllium	0.51	0.46	0.22	0.65	0.82	0.93	0.64	0.75	0.16/SB
Cadmium	12.2	27.5	60	1.8	11	12.4	40.3	27.5	1/SB
Calcium	2,180	5,620	4,500	6,070	6,010	41,400	13,900	6,360	SB
Chromium	520	25.6	66.3	54.5	187	122	40.1	116	10/SB
Cobalt	57	7.8	10	8.9	22.9	13.3	14.3	22.2	30/SB
Copper	698	192	133	69.4	314	197	208	266	25/SB
Iron	286,000	69,500	163,000	55,500	258,000	162,000	64,900	145,000	2,000/SB
Lead	1390J	365J	103J	113J	353J	164J	369J	749J	SB****
Magnesium	807	963	245	2,310	1,100	12,900	4,050	1,670	SB
Manganese	2,080	437	1,120	462	2,100	1,610	614	1,090	SB
Mercury	0.12J	0.35J	0.063BJ	0.18J	0.94J	0.036J	0.27J	0.3J	0.1
Nickel	176	42.3	74.9	38.6	157	109	74.7	175	13/SB
Potassium	403	250	71.4	874	427	417	357	467	SB
Selenium	15.4J	5.3U	10.3J	4.4U	13.9J	8.2J	4.9U	9.5J	2/SB
Silver	0.89	0.21U	0.28	0.22	0.86	0.51	0.24U	0.62	SB
Sodium	485	549	490	609	636	674	675	718	SB
Thallium	4.8J	1.2J	1.8J	1.3J	3.8J	1.1UJ	1.4UJ	1.5J	SB
Vanadium	22.5	10.1	7.3	25.2	24.6	16.2	17.6	19.8	150/SB
Zinc	450J	188J	1420J	156J	234J	185J	3540J	2490J	20/SB
Cyanide									***

Standards based on Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, January 1994)

Shaded areas indicate locations of concentrations above standards

****Background levels for lead vary widely.

*Soil background

Data has been validated

TABLE 10 (continued) SOIL ANALYTICAL RESULTS METALS Nov-98 Roblin Steel Site Investigation City of North Tonawanda, NY

.

]	- 14 - L	1	······································	Sample ID				Soil
Compound (mg/kg)	SS-39	SS-40	SS-43	SS-44	SS-46	SS-51	SS-62*	Std. (mg/kg)
Aluminum	5,060	1,630	1,260	5,680	4,010	5,760	11,000	SB
Antimony	6.0J	7	17.2J	7.7J	6J	10	UJ	SB
Arsenic	22.1	25.6J	28.9	22.4	24.2	44J	5	7.5/SB
Barium	107	50.6	53.6	160	131	180	46	300/SB
Beryllium	0.85	0.36	0.23	0.36	0.81	1.2	0.5	0.16/SB
Cadmium	10.4	32	51.5	295	39.3	8	1	1/SB
Calcium	38,800	7,090	7,100	6,230	6,120	9,050	46,100	SB
Chromium	151	147J	551	54	116	223J	14.9	10/SB
Cobalt	50	20	37.4	6.9	35.7	168	5	30/SB
Copper	224	259J	446	668	230	296J	17.6J	25/SB
Iron	145,000	91,600	515,000	116,000	101,000	122,000	16,500	2,000/SB
Lead	297J	663	317J	266J	439J	334	15.4J	SB****
Magnesium	13,300	1,840	2,100	481	1,900	1,460	24,900J	SB
Manganese	1,540	966	3,810	697	795	1,230	348J	SB
Mercury	0.25J	0.11	0.15J	0.1J	1.1J	0.19	0.04	0.1
Nickel	189	289J	502	44	105	139J	12.9	13/SB
Potassium	672	236	144	141	315	526	1,900J	SB
Selenium	8.4J	3J	20J	8.4J	7.4	6J	UJ	2/SB
Silver	0.57	0.4J	1.6	0.37	0.99	0.42J	0.21U	SB
Sodium	753	211	528	661	700	152	154	SB
Thallium	1.3UJ	1.3	6.4J	UJ	UJ		1.1U	SB
Vanadium	27.3	24.1	111	15.1	22.1	38.3	19.9	150/SB
Zinc	542J	1,450J	955J	2,610J	882J	455J	76.2	20/SB
Cyanide								***

Standards based on Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, January 1994)

Shaded areas indicate locations of concentrations above standards

****Background levels for lead vary widely.

*Soil background

Data has been validated

TABLE 11SOIL ANALYTICAL RESULTSSTARS VOLATILE ORGANIC COMPOUNDSEPA Method 8021 TCL Volatiles

Nov-98 Roblin Steel Site Investigation City of North Tonawanda, NY

	Sam	ple ID	Soil		
Compound (ug/kg)	SS-16S	'SS-17S	Std. (ùg/kg)		
Benzene	1.2U	760U	14		
Toluene	1.5	760U	100		
Ethylbenzene	1.2U	760U	100		
m,p-Xylene	1.2U	\$ 860	100		
o-Xylene	1.2U	830	100		
Isopropylbenzene	1.2U	940	100		
4-Isopropyltoluene	1.2U	690J.	100		
n-Propylbenzene	1.2U	2,000	100		
sec-Butylbenzene	1.2U	1,500	100		
1,3,5-Trimethylbenzene	1.2U	4,200	100		
1,2,4-Trimethylbenzene	1.2U	6,000	100		
n-Butylbenzene	1.2U	6,000	100		
Naphthalene	1.2U	1,300	200		
MTBE	1.2U	760U	NS		
tert-Butylbenzene	1.2U	760U	100		

NS: No Standard

Standards based on STARS Memo 1 (August 1992).

Samples collected during installation of monitoring wells

Shaded areas indicate locations of concentrations above standards

TABLE 12SOIL ANALYTICAL RESULTSSTARS SEMIVOLATILE ORGANIC COMPOUNDSEPA Method 8270 TCL Semivolatiles

Nov-98

Roblin Steel Site Investigation City of North Tonawanda, NY

	Sam	ple ID	Soil
Compound (ug/kg)	SS-16S	SS-17S	Std. (ug/kg)
Naphthalene	8J	260J	200
Acenapthene	1,600	14J	400
Anthracene	58J	9J	1,000
Benzo (a) anthracene	290J	6U	0.04
Benzo (b) fluoranthene	370J	7 U	0.04
Benzo (k) fluoranthene	690	8U	0.04
Benzo (g,h,i) perylene	59J	12U	0.04
Chrysene	500	14U	0.04
Dibenz (a,h) anthracene	46J	400U	1,000
Fluoranthene	760	9U	1,000
Fluorene	23J	26J	1,000
Indeno (1,2,3-c,d) pyrene	100J	4U	0.04
Phenanthrene	340J	75J	1,000
Benzo (a) pyrene	360J	5U	0.04
Pyrene	2,400J	12U	1,000

NS: No Standard

Standards based on STARS Memo 1 (August 1992).

Samples collected during installation of monitoring wells

Shaded areas indicate locations of concentrations above standards Data has been validated

Table 13Summary of Potential Exposure PathwaysRoblin Steel Site InvestigationCity of North Tonawanda, NY

Contaminated	Potential Exposure	Selected	Reason for
Media	Pathway	Yes or No	Inclusion or Rejection
Air - VOC	Inhalation by site workers	No	No evidence of VOC emissions
	Inhalation by off site residents	No	No evidence of VOC emissions
Surface Soil	Accidental Ingestion by trespassers	Yes	Evidence of Tresspassers on site
	Accidental Ingestion by future workers	Yes	Site may be redeveloped
	Dermal Contact by trespassers	No	Potential pathway was evaluated only qualitatively
	Dermal Contact by future site workers	No	Potential pathway was evaluated only qualitatively
	Inhalation of emissions by trespassers	No	Potential pathway was evaluated only qualitatively
	Inhalation by future site workers	No	Potential pathway was evaluated only qualitatively
Groundwater	Ingestion of well water (residents)	Yes	Potential for installation of private well
	Ingestion of well water (workers)	No	Deed Restrictions could be enacted
	Inhalation of soil vapor entering homes	No	Concentrations are too low
Surface water	Aquatic bioaccumulation	No	Groundwater impacts appear to be
	Volatile emissions	No	Minimal off-site concentrations; would not impact
	Swimming/recreational contact	No	Niagara River

Table 14Historical Analytical Results - Monitoring Well 3SRoblin Steel Site InvestigationCity of North Tonawanda, NY

	GW Std ¹	Results for samples collected during:							
Contaminant	(µg/L)	PSA (1995)	Jul-98	Dec-98					
VOCs - Monitoring Wells MGW-3S - Historical Analytical Results									
Acetone	50 G	N D	N D	N D					
cis-1,2-Dichloroethene	5	70	25	62					
Trichloroethene	5	86	66	56					
Tetrachloroethene	5	180	68	40					

* Laboratory results from PSA and July 1998 sampling rounds are for both isomeric forms of 1,2-DCE.

¹ GW standard as listed in NYSDEC DOW TOGS 1.1.1, revised June 1998.

Table 15Groundwater Screening - VOCsRoblin Steel Site InvestigationCity of North Tonawanda, NY

	GW Std ¹	Frequency of	Maximum	Mean ²					
Contaminant	(µg/L)	Detection	Conc. (µg/L)	Conc. (µg/L)					
VOCs - Monitoring Wells MGW-3S, GW-11S, and GW-12S									
Acetone	50 G	1 of 3	6	8					
cis-1,2-Dichloroethene	5	1 of 3	62	18					
Trichloroethene	5	1 of 3	56	18					
Tetrachloroethene	5	1 of 3	40	16					

¹ GW standard as listed in NYSDEC DOW TOGS 1.1.1, revised June 1998.

² Mean Concentration is geometric mean calculated using replacement value of 1/2 the detection limit for concentrations that were not detected.

Table 16Groundwater Screening - MetalsRoblin Steel Site InvestigationCity of North Tonawanda, NY

		GW-3S,	GW-11S, G	W-12S		GW-3S	, GW-11S, G	W-12S	
	GW Std ¹	Frequency of	Maximum	Mean ²	Selected	Frequency of	Maximum	Mean ²	Selected
Contaminant	(µg/L)	Detection	Conc. (µg/L)	Conc. (µg/L)	Yes or No	Detection	Conc. (µg/L)	Conc. (µg/L)	Yes or No
Metals (Total) - Shallow	(S) Wells				Metals (Disso			
Aluminum	NS	3 of 3	6,460	1,746	No	3 of 3	193	60	No
Antimony	3	2 of 3	8	4.4	Yes	3 of 3	12	10	Yes
Arsenic	25	3 of 3	24	12.6	No	2 of 3	11	2.9	No
Barium	1000	3 of 3	217	104	No	3 of 3	93	44	No
Beryllium	3G	0 of 3	N D	N D	No	0 of 3	N D	ND	No
Cadmium	5	2 of 3	4	1.3	No	1 of 3	7	0.9	No
Calcium	NS	3 of 3	376,000	191,344	· No	3 of 3	193,000	103,596	No
Chromium	50	2 of 3	10	2.6	No	0 of 3	N D	ND ·	No
Cobalt	NS	3 of 3	24	13.3	No	3 of 3	11	9.2	No
Copper	200	3 of 3	75	18.1	No	3 of 3	19	2.8	No
Iron	300	3 of 3	17,600	6,821	. Yes	3 of 3	9,190	191	No .
Lead	25	2 of 3	36	4.9	No	0 of 3	N D	N D	No
Magnesium	35000G	3 of 3	72,700	35,123	Yes	3 of 3	30,900	21,195	No
Manganese	300	3 of 3	4,170	1377	Yes	3 of 3	1,220	274	No
Mercury	0.7	0 of 3	N D	N D	No	0 of 3	N D	N D	, No
Nickel	100	2 of 3	29	8.2	No	0 of 3	N D	N D	No
Potassium	NS	3 of 3	4,290	2,206	No	3 of 3	2,150	1868	No
Selenium	10 -	3 of 3	15	9.2	No	3 of 3	10	6.5	No
Silver	50	3 of 3	8	7.4	No	3 of 3	8	7.6	No
Sodium	20,000	3 of 3	28,700	12,655	No	3 of 3	46,100	12,121	No
Thallium	0.5 G	0 of 3	N D	N D	No	1 of 3	N D	N D	No
Vanadium	NS	3 of 3	25	12.6	No	3 of 3	13	5.9	No
Zinc	2000G	3 of 3	141	29	No	0 of 3	ND	ND	No

¹ GW standard as listed in NYSDEC DOW TOGS 1.1.1, revised June 1998.

 2 Mean concentration is the geometric mean calculated with 1/2 the detection limit for concentrations that were not detected.

Table 17 Summary of Initial Screening - Interior Residue/Soil Samples - SVOC Results Roblin Steel Site Investigation City of North Tonawanda, NY

	NYSDEC	Background	Wire Mill/R	olling Mill S	Samples (Co	ncentratio	n.in ug/kg)	Brick B	ldg
	Clean-up	Soil	Frequency	Minimum	Maximum	Mean	Selected	SS-49	Selected
Compound	Goal (ug/kg)	Conc. (ug/kg)	of Detection	Conc.	Conc.	Conc.	Yes or No	Conc. (ug/kg)	Yes or No
Naphthalene	13,000	13,000	11 of 12	3	15,000	288	No	100,000	Yes
2-Methylnaphthalene	36,400	36,400	10 of 12	1	10,000	260	No	96,000	Yes
Acenaphthylene	41,000	41,000	10 of 12	20	10,000	240	No	53,000	Yes
Acenapthene	50,000	50,000	10 of 12	8	13,000	366	No	240,000	Yes
Fluorene	50,000	50,000	11 of 12	9	14,000	386	No	230,000	Yes
Phenanthrene	50,000	50,000	12 of 12	40	588,000	2,950	No	1,900,000	Yes
Anthracene	50,000	50,000	11 of 12	38	21,000	835	No	350,000	Yes
Fluoranthene	50,000	50,000	12 of 12	40	110,000	2,528	No	3,800,000	Yes
Pyrene	50,000	50,000	12 of 12	19	97,000	2,947	No	3,500,000	Yes
Benzo(a)anthracene	224	224	12 of 12	14	49,000	1,684	Yes	1,400,000	Yes
Chrysene	400	400	12 of 12	37	51,000	1,910	Yes	1,600,000	Yes
Benzo(b)fluoranthene	1,100	1,100	11 of 12	25	32,000	1,903	Yes	1,200,000	Yes
Benzo(k)fluoranthene	1,100	1,100	11 of 12	13	55,000	1,905	Yes	1,700,000	Yes
Benzo(a)pyrene	61	61	11 of 12	9	38,000	1,452	Yes	1,400,000	Yes
Indeno(1,2,3-c,d)pyrene	3,200	3,200	11 of 12	4	14,000	683	No	620,000	Yes
Dibenzo(a,h)anthracene	14	14	10 of 12	18	10,000	447	Yes	260,000	Yes
Benzo(g,h,i)perylene	50,000	50,000	12 of 12	6	10,000	491	No	550,000	Yes
Total PAHs				900	893,040	27,292	No	18,999,000	

Soil Clean-up Criteria are listed in NYSDEC TAGM HWR-94-4046, dated January 1994.

Bold entry in table indicates value exceeds clean-up criteria.

S&W Project 80049FA

Table 18 Summary of Initial Screening - Outside Soil Samples - SVOC and PCB Results Roblin Steel Site Investigation City of North Tonawanda, NY

	NYSDEC	Off-site /		Outdoor Soil	Sample Result	ts - Entire site.	
	Clean-up	Background	Frequency	Minimum	Maximum	Mean	Selected
Compound	Goal (ug/kg)	SS-62	of Detection	Conc. (ug/kg)	Conc. (ug/kg)	Conc. (ug/kg)	Yes or No
Naphthalene	13,000	215	19 of 19	6	3,700	122	No
2-Methylnaphthalene	36,400	215	18 of 19	14	1,500	176	No
Acenaphthylene	41,000	. 215	19 of 19	3	1,500	169	No
Acenapthene	50,000	215	18 of 19	5	4,300	139	No
Fluorene	50,000	215	18 of 19	6	4,500	214	No
Phenanthrene	50,000	16	19 of 19	7	41,000	1,525	No
Anthracene	50,000	-215	19 of 19	6	7,900	428	No
Fluoranthene	50,000	34	19 of 19	10	43,000	1,954	No
Pyrene	50,000	28	19 of 19	22	70,000	2,557	No
Benzo(a)anthracene	224	12	18 of 19	52	26,000	1,250	Yes
Chrysene	400	20	19 of 19	22	28,000	1,314	Yes
Benzo(b)fluoranthene	1,100	17	18 of 19	100	29,000	1,670	Yes
Benzo(k)fluoranthene	1,100	19	18 of 19	60	20,000	1,534	Yes
Benzo(a)pyrene	61	14	18 of 19	57	23,000	1,221	Yes
Indeno(1,2,3-c,d)pyrene	3,200	12	18 of 19	15	17,000	397	No
Dibenzo(a,h)anthracene	14	215	17 of 19	5	8,200	187	Yes
Benzo(g,h,i)perylene	50,000	11	18 of 19	42	11,000	365	No
Total PAHs		183		727	327,300	16,778	No
PCB 1260 (SS-32,33,34 only)	1000	13	3 of 3	1,000	19,000	4,305	Yes

Soil Clean-up Criteria are listed in NYSDEC TAGM HWR-94-4046, dated January 1994.

Shaded cell indicates compound was not detected. Value listed is 1/2 the detection limit.

Bold indicates concentration exceeds clean-up criteria.

Table 19 Initial Screening of Metal Analytical results - Exterior Soil Samples Roblin Steel Site Investigation City of North Tonawanda, NY

	NYSDEC	Off-site /	Eastern USA		····	· · · · · · · · · · · · · · · · · · ·		
Compound	Clean-up	Background	background	Frequency	Minimum	Maximum	Mean	Selected
(mg/kg)	Goal (mg/kg)	SS-62*	conc. (mg/kg)	of Detection	Conc. (mg/kg)	Conc. (mg/kg)	Conc. (mg/kg)	Yes or No
Aluminum	SB	11,000	33,000	14 of 14	1,230	9,510	3,688	No .
Antimony	SB	0.85UN	N/A	14 of 14	2.10	116	8.57	Yes
Arsenic	7.5/SB	5	3 - 12	14 of 14	12.1	44.0	23.8	Yes
Barium	300/SB	46	15 - 600	14 of 14	50.6	584	109	No
Beryllium	0.16/SB	0.5B	0 - 1.75	14 of 14	0.22	1.20	0.56	No
Cadmium	1/SB	1.0B	0.1 - 1	14 of 14	1.80	295	22.5	Yes
Calcium	SB	46,100E	130 - 35,000	14 of 14	2,180	41,400	8,069	No
Chromium	10/SB	14.9E	1.5 - 40	14 of 14	25.6	551	117	Yes
Cobalt	30/SB	5.0B	2.5 - 60	14 of 14	6.90	168	21.9	No
Copper	25/SB	17.6E	1 - 50	14 of 14	69.4	698	255	Yes
Iron	2,000/SB	16,500	2,000 - 550,000	14 of 14	55,500	515,000	135,336	No
Lead	SB****	15.4	****	14 of 14	103	1,390	336	Yes
Magnesium	SB	24,900	100 - 5,000	14 of 14	245	13,300	1,767	No
Manganese	SB	348	50 - 5,000	14 of 14	437	3,810	1,106	No
Mercury	0.1	0.04B	0.001 - 0.2	13 of 14	0.04	1.10	0.21	Yes
Nickel	13/SB	12.9	0.5 - 25	14 of 14	38.6	502	116	Yes
Potassium	SB	1,900	8,500 - 43,000	14 of 14	71.4	874	316	No
Selenium	2/SB	0.64U	0.1 - 3.9	11 of 14	2.20	20	6.82	Yes
Silver	SB	0.21U	N/A	12 of 14	0.11	1.60	0.44	Yes
Sodium	SB	154B	6,000 - 8,000	14 of 14	152	753	517	No
Thallium	SB	1.1U	N/A	8 of 14	0.06	6.40	1.29	Yes
Vanadium	150/SB	19.9	1 - 300	14 of 14	7.30	111	21.8	No
Zinc	20/SB	76.2	9 - 50	14 of 14	156	3,540	691	Yes

Standards based on Determination of Soil Cleanup Objectives and Cleanup Levels (NYSDEC, January 1994)

Bold values indicate concentrations above clean-up objectives and background concentrations.

****Background levels for lead vary widely.

U indicates compound was not detected B indicates compound was detected in blank.

S&W Project 80049FA

Roblin soil.xls, Revised 5/27/99

Table 20 Identification of Non-carcinogenic Health Effects - Soil Contaminants Roblin Steel Site Investigation City of North Tonawanda, NY

Chemical of Concern	So	il Sample	Location		RfD ¹	Uncert.	Mod.	Target organ	Confi-
SVOCs	Mill	Brick Bldg	Outdoor	UST	(mg/kg/day)	Factor	Factor	or effect	dence
Naphthalene	SS-9B only	X		17S	0.2	3000	1	dec. body weight	low
2-methylnaphthalene		X			Not listed in IRIS or ITER TERA Databases.				
Acenaphthylene		X			N/A				
Acenapthene		X			0.06	3000	1	blood	low
Fluorene		X			0.04	3000	1	blood	low
Phenanthrene	SS-9B, 11	X			N/A		•		<u></u>
Anthracene		X			0.3	3000	1	kidney	low
Fluoranthene		X			0.04	3000	1	kidney, liver	low
Pyrene		Ϋ́Χ	,	16S	0.03	3000	1	kidney	low
Benzo[a]anthracene	Х	X	Х	16S	N/A				
Chrysene	X	X	Х	16S	N/A		· · · · · · · · · · · · · · · · · · ·		
Benzo[b]fluoranthene	Х	X	Х	16S	N/A				
Benzo[k]fluoranthene	X	X	Х	16S	N/A				
Benzo[a]pyrene	Х	X	Х	16S	N/A				
Indeno[1,2,3 - cd]pyrene		X		16S	N/A			•	
Dibenzo[a,h]anthracene	Х	Х	Х		N/A				
Benzo[g,h,I]perylene		X		16S	N/A				
PCB 1260			X		0.00002	300		immune system	····

X indicates mean concentration exceeds clean-up goals established by NYSDEC (TAGM 1994)

N/A indicates the parameter is not available at this time.

Health information obtained from EPA's Integrated Risk Information System (IRIS) database. RfD for PCB 1260 is RfD obtained from ASTDR, as listed in ITER TERA database (RfD is based on study for PCB 1254).

Table 20 (continued)

	So	il Sample	Location		RfD ¹	Uncert.	Mod.	Target organ	Confi-
Metals	Mill	Brick Bldg	Outdoor	UST	(mg/kg/day)	Factor	Factor	or effect	dence
Antimony	·····		X		0.0004	1000	1	blood chemistry	low
Arsenic (> 20 ppm)			X		0.0003	3	1	skin, vasc. System	medium
Cadmium (in food)			X		0.001	10	1	kidney	high
Cadmium (in water)			X		0.0005	10	1	proteinuria	high
Copper			X		N/A				
Chromium ² (trivalent)			Х		1.5	100	10		low
Chromium ² (hexavalent)			х		0.003	300	3		low
Lead (> 400 ppm)			X		Effects	appear to	o occur	without thresho	old.
Mercury			X		0.0003	1000	1	autoimmune sys.	high
Nickel			X		0.02	300	1	dec body/organ wt.	medium
Selenium			X		0.005	3	1	selenosis	high
Silver			X		0.005	3	1	Argyria	low
Thalllium			X		0.00008	3000	1	blood chemistry	low
Zinc			X		0.3	3	1	-	medium
	So	il Sample	Location		RfD ¹	Uncert.	Mod.	Target organ	Confi-
VOCs - UST samples only	SS	-16	SS-	17	(mg/kg/day)	Factor	Factor	or effect	dence
Xylenes			X		2	100	1	-	medium
Isopropylbenzene			X		Not lis	ted in IRIS	or ITER	TERA Databas	es.
4-Isopropyltoluene			X		Not lis	ted in IRIS	or ITER	TERA Databas	es.
n-Propylbenzene			X		Not lis	ted in IRIS	or ITER	TERA Databas	es.
sec-Butylbenzene			X		Not lis	ted in IRIS	or ITER	TERA Databas	es.
1,3,5-Trimethylbenzene			X Not listed in IRIS or ITER T					TERA Databas	es.
1,2,4-Trimethylbenzene			X Not listed in IRIS					TERA Databas	es.
n-Butylbenzene			X		Not lis	ted in IRIS	or ITER	TERA Databas	es.

X indicates mean concentration exceeds clean-up goals established by NYSDEC (TAGM 1994)

N/A indicates the parameter is not available at this time.

¹ Health information obtained from EPA's Integrated Risk Information System (IRIS) database.

² Sample results are for total Chromium. Analysis was not done to determine whether hexavalent or trivalent chromium are present.

Table 21 Identification of Carcinogenic Health Effects - Contaminants in Soil Roblin Steel Site Investigation City of North Tonawanda, NY

Chemical of Concern	Sc	oil Sample	Location		Slope factor		Target	
SVOCs	Mill	Brick Bldg	Outdoor	UST	1/(mg/kg/day)	Class *	organ	
Naphthalene	SS-9B only	x		17S	Not derived	C ¹		
2-methylnaphthalene		X			Not listed in IRIS or ITER Database.			
Acenaphthylene		X			None	D		
Acenaphthene		X			Pulled for	or re-evalu	ation 5/93	
Fluorene		X			None	D		
Phenanthrene	SS-9B, 11	X			None	D		
Fluoranthene		X			None	D		
Anthracene		X			None	D		
Pyrene		X		165	N/A	B2	multiple	
Benz[a]anthracene	X	X	X	16S	N/A	B2	multiple	
Chrysene	X	X	Х	165	N/A	B2	multiple	
Benzo[b]fluoranthene	X	X	Х	16S	N/A	<u> </u>	multiple	
Benzo[k]fluoranthene	Х	X	·X	16S	N/A	B2	multiple	
Benzo[a]pyrene	X	X	X	16S	7.3	B2	multiple	
Indeno[1,2,3 - cd]pyrene		Х		16S	N/A	B2		
Dibenz[a,h]anthracene	Х	X	Х		N/A	B2	**************************************	
Benzo[g,h,I]perylene		X		165	None	D		
PCB 1260			Х		1.0 to 2.0	B2	liver	
* Weight of Evidence C	lassification:		A = Know	wh to cau	se cancer in huma	ine		

* Weight of Evidence Classification:

A = Known to cause cancer in humans.

B1 = Probable Human Carcinogen, limited human data.

¹ EPA reclassified Naphthalene to Class C B2 = Probable Human Carcinogen, inadequate human data.

in Sept. 1998, however human cancer

potential "cannot be determined."

- C = Possible Human Carcinogen
- D = Not classifiable as to Human Carcinogenicity.
- N/A = Not available at this time.

Table 21 (continued)

	So	il Sample	Location		Slope factor		Target
Metals	Mill	Brick Bldg	Outdoor	UST	1/(mg/kg/day)	Class *	organ
Arsenic (> 20 ppm)			X		1.5	Α	multiple
Barium (> 300 ppm)			SS-21 only			D	
Cadmium			X		None	D	
Copper			X			D	
Lead (> 400 ppm)	_		X			B2	kidney
Mercury			X		None	C (HgCl)	
Nickel			X		None	D	
Selenium			X		None	D	
Silver			Χ				
Thallium			X				
Zinc			X			D	
	So	il Sample	Location		Slope factor		Target
VOCs - UST samples only	SS	-16	SS	-17	1/(mg/kg/day)	Class *	organ
Xylenes			У	ζ ·	None	D	
Isopropylbenzene			У	ζ	Not listed in	IRIS or IT	ER Database.
4-Isopropyltoluene			Σ	ζ	Not listed in	IRIS or IT	ER Database.
n-Propylbenzene			Σ	ζ	Not listed in	IRIS or IT	ER Database.
sec-Butylbenzene			У	ζ	Not listed in	IRIS or IT	ER Database.
1,3,5-Trimethylbenzene			Х	ζ	Not listed in	IRIS or IT	ER Database.
1,2,4-Trimethylbenzene			У	ζ	Not listed in	IRIS or IT	TER Database.
n-Butylbenzene			Х	ζ	Not listed in	IRIS or IT	ER Database.
* Weight of Evidence Cl	assification:		A = Knov	wn to cau	se cancer in huma	ins.	
	B1 = Probable Human Carcinogen, limited human data.						ian data.
¹ EPA reclassified Naphthalene	ne to Class C B2 = Probable Human Carcinogen, inadequate human data.						human data.
in Sept. 1998, however human	wever human cancer C = Possible Human Carcinogen						
potential "cannot be determined." D = Not classifiable as to Human Carcinogenicity.						ity.	
			N/A = No	t availabl	e at this time.		
· ·							

.

.

Table 22 Identification of Non-carcinogenic Health Effects - Groundwater Contaminants Roblin Steel Site Investigation City of North Tonawanda, Ny

Chemical of Concern VOCs	RfD ¹ (mg/kg/day)	Uncert. Factor	Mod. Factor	Target organ or effect	Confi- dence
cis-1,2-Dichloroethene	N/A				
Trichloroethene	N/A				
Tetrachloroethene	0.01	1000	1	hepatotoxicity	medium
Metals					
Antimony	0.0004	1000	1	blood glucose	low '

N/A indicates the parameter is not available at this time.

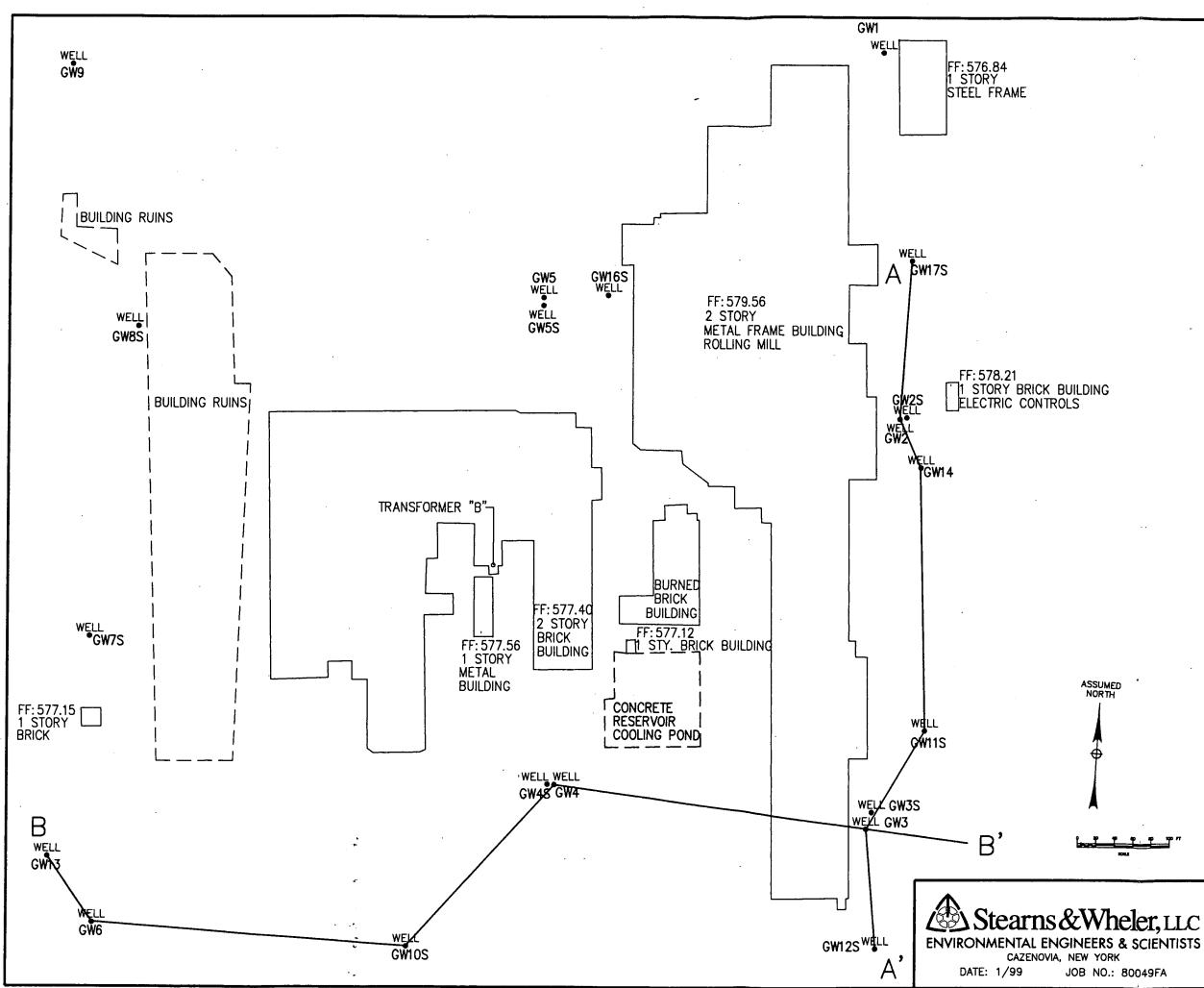
 Table 23

 Identification of Carcinogenic Health Effects - Contaminants in Soil

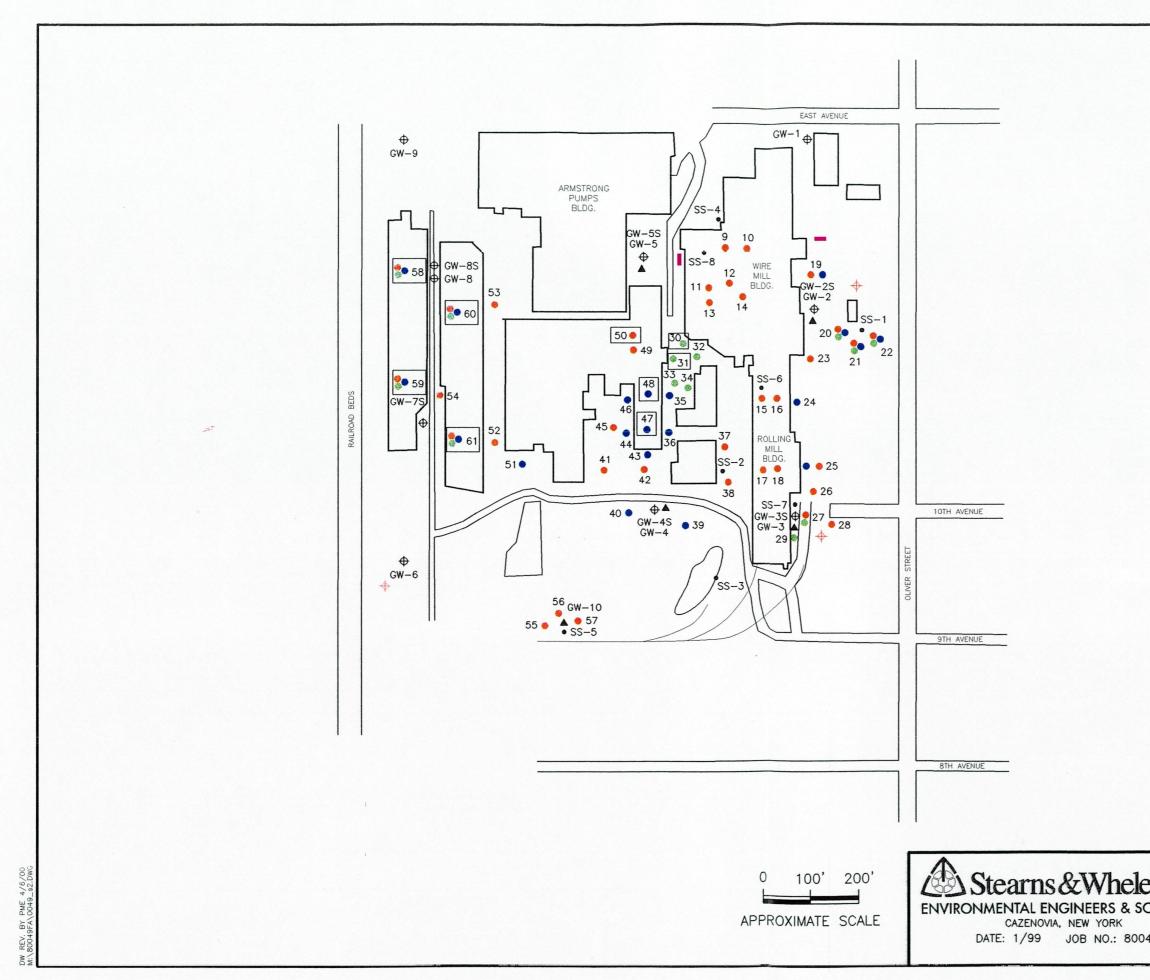
 Roblin Steel Site Investigation

 City of North Tonawanda, NY

Chemical of Concern	Slope factor		Target				
VOCs	1/(mg/kg/day)	Class *	organ				
cis-1,2-Dichloroethene	None	D					
Trichloroethene	Withdrawn following further review						
Tetrachloroethene	Not available		······································				
Metals							
Antimony	Not evaluated						


Table 24Summary - Calculated Risk LevelsRoblin Steel Site InvestigationCity of North Tonawanda, NY

Exposure			Cancer
Pathway	Media	HI	Unit Risk
Adolescent Tresspassers	Outdoor Soil	0.00	N/A
	Indoor Residue - Mill	0.003	N/A
	Indoor Residue - Brick Building	0.00	N/A
	Total HI or Unit Risk	0.01	N/A
Adult Tresspassers	Outdoor Soil	3.795E-04	8.37E-08
	Indoor Residue - Mill	8.731E-05	7.41E-07
	Indoor Residue - Brick Building	0.000	7.14E-04
	Total HI or Unit Risk	0.001	7.15E-04
Adjacent Adult Resident	Groundwater	0.25	-
Adjacent Child Resident	Groundwater	1.16	
Future Site Workers	Outdoor Soil	0.01	4.18E-07
	Indoor Residue - Mill	0	1.85E-07
	Indoor Residue - Brick Building	0.01	8.93E-05
	Total HI or Unit Risk	0.01	8.99E-05

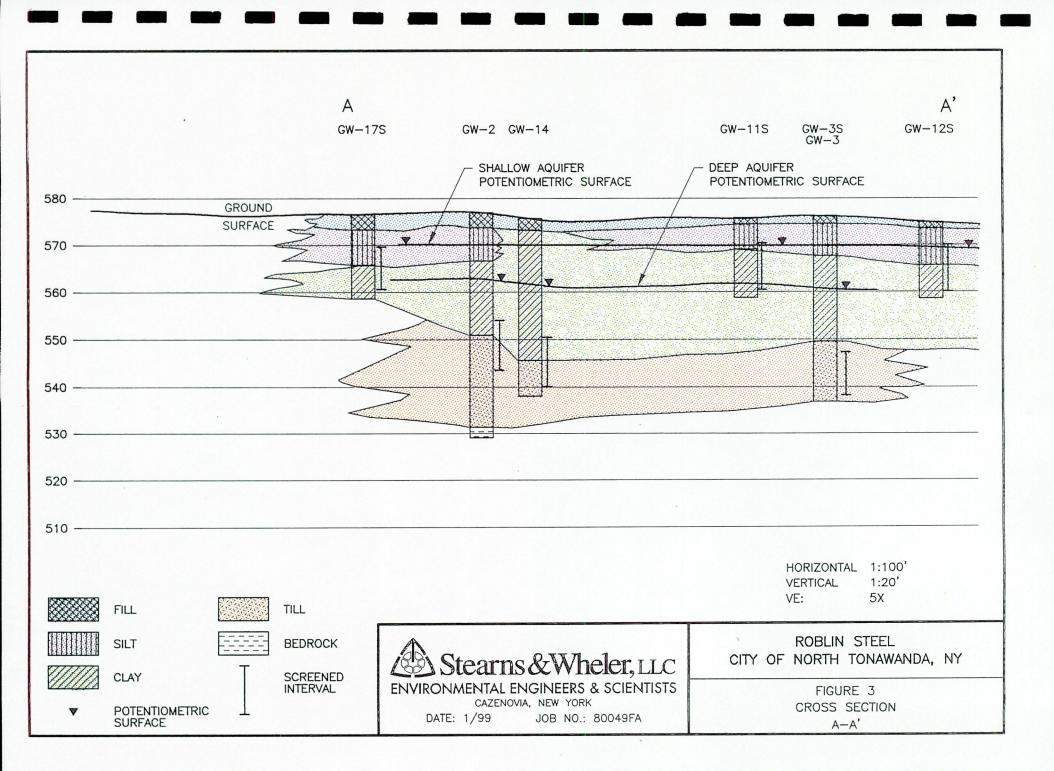

Action Levels: H I > 1.0 Unit Risk > 1.00E-06

FIGURES

.

ROBLIN STEEL CITY OF NORTH TOWAWANDA, NY SINEERS & SCIENTISTS NEW YORK JOB NO.: 80049FA

• • • • 61	PROPOSED SURFACE SOIL SAMPLE – PAHs PROPOSED SURFACE SOIL SAMPLE – PCBs PROPOSED TEMPORARY GW SAMPLE LOCATION (UP TO 4 AT EACH LOCATION) UNDERGROUND STORAGE TANK NO SAMPLE COLLECTED
CIENTISTS	ROBLIN STEEL CITY OF TONAWANDA, NY
49FA	FIGURE 2 SOIL SAMPLE LOCATIONS


PROPOSED SURFACE SOIL SAMPLE - METALS

LEGEND

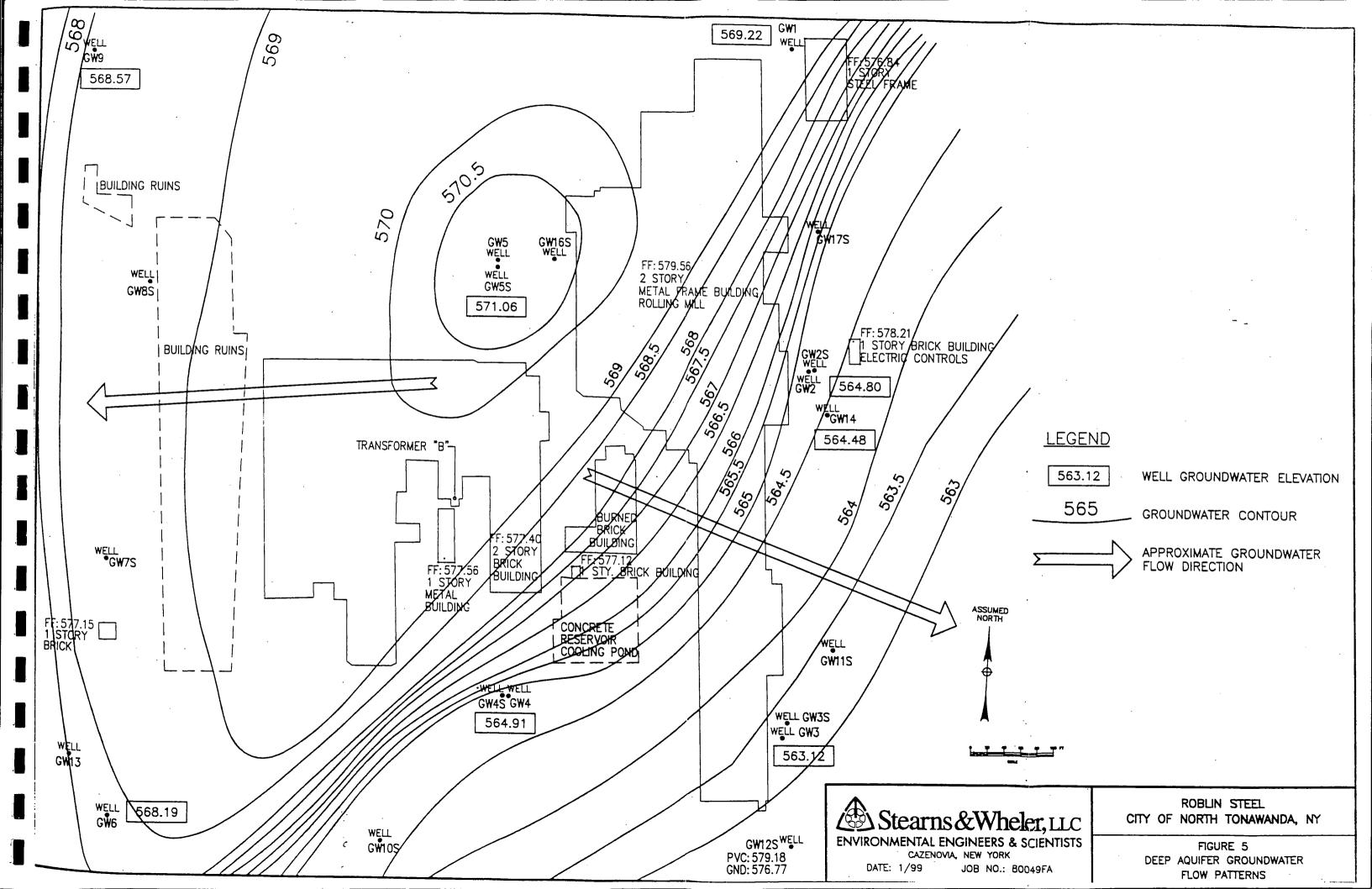
- EXISTING SOIL SURFACE SAMPLE

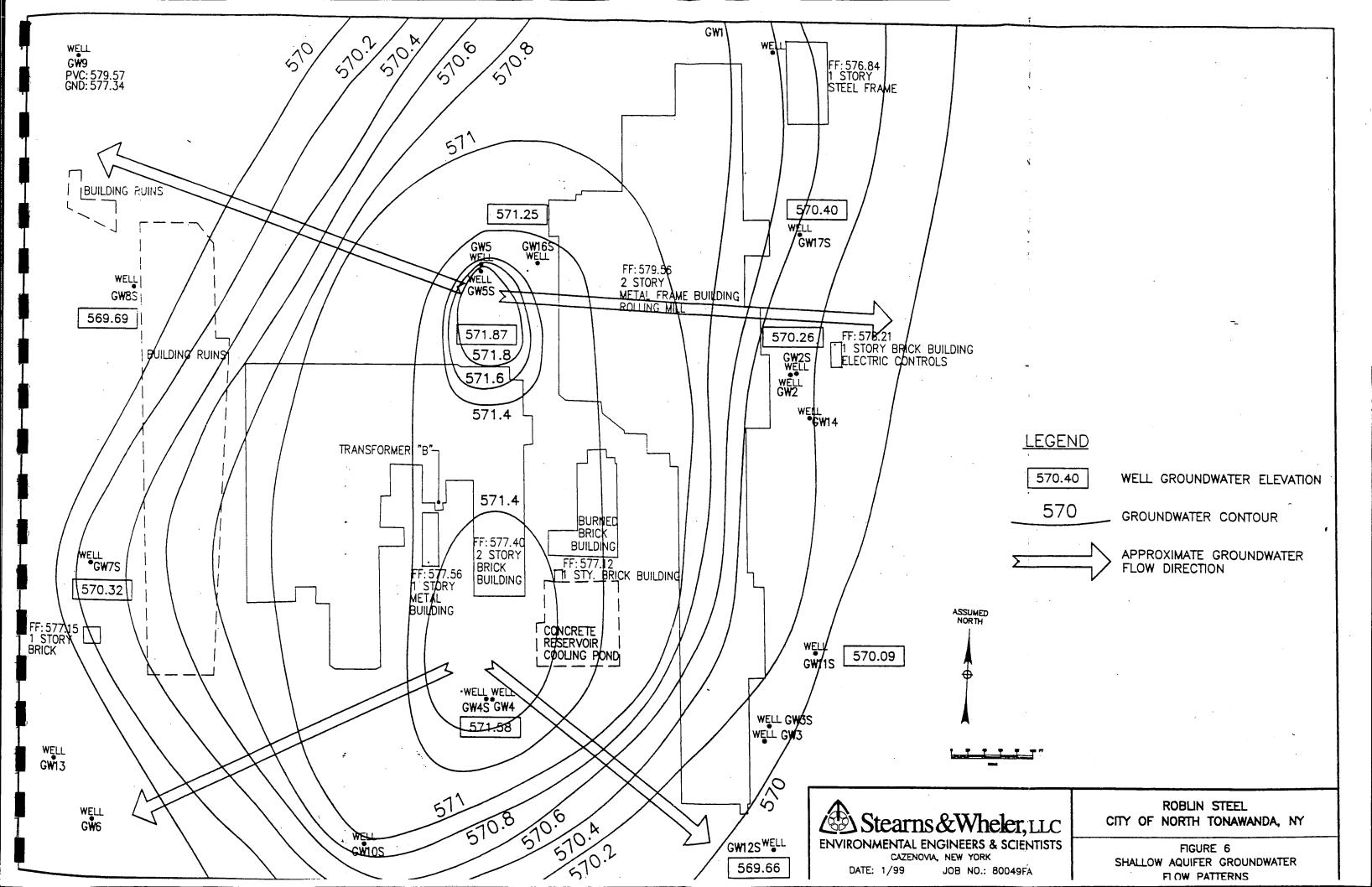
PROPOSED MONITORING WELL

- \$
- EXISTING MONITORING WELL

B B' GW-13 GW-6 GW-105 GW-4 GW-3 590 -DEEP AQUIFER POTENTIOMETRIC SURFACE 580 GROUND SURFACE 570 -TT <u>ل</u>م 560 -550 -540 530 520 HORIZONTAL 1:100' FILL TILL VERTICAL 1:20' VE: 5X SILT -----BEDROCK CLAY SCREENED **ROBLIN STEEL** NTERVAL Stearns & Wheler, LLC CITY OF NORTH TONAWANDA, NY SAND **ENVIRONMENTAL ENGINEERS & SCIENTISTS** FIGURE 4 CAZENOVIA, NEW YORK

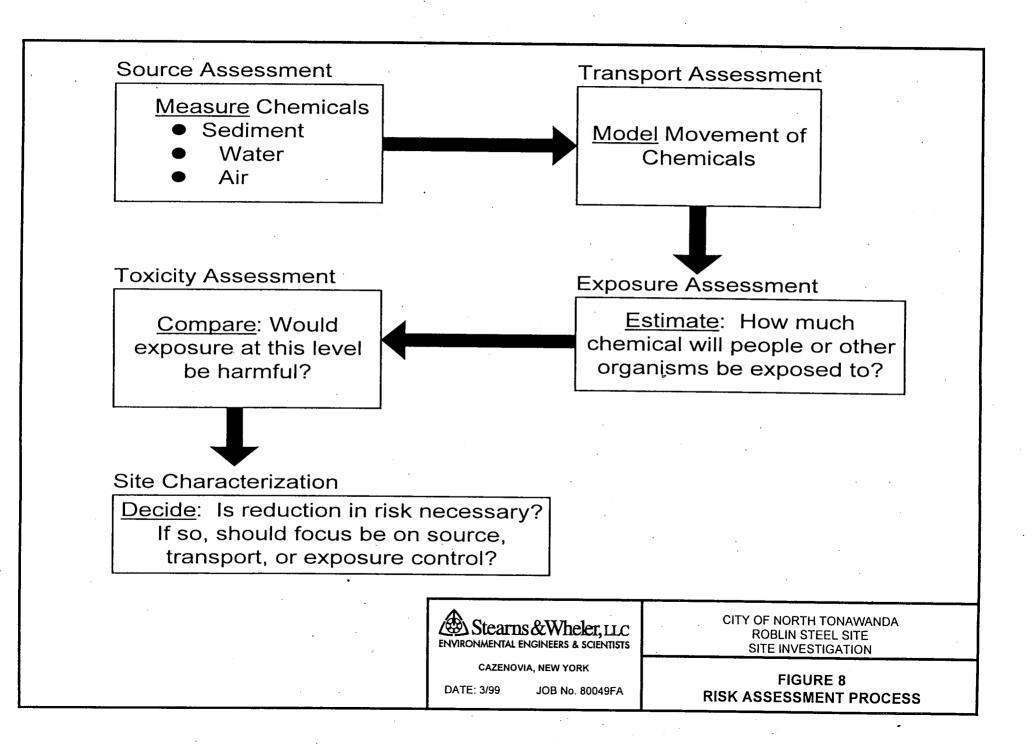
DATE: 1/99

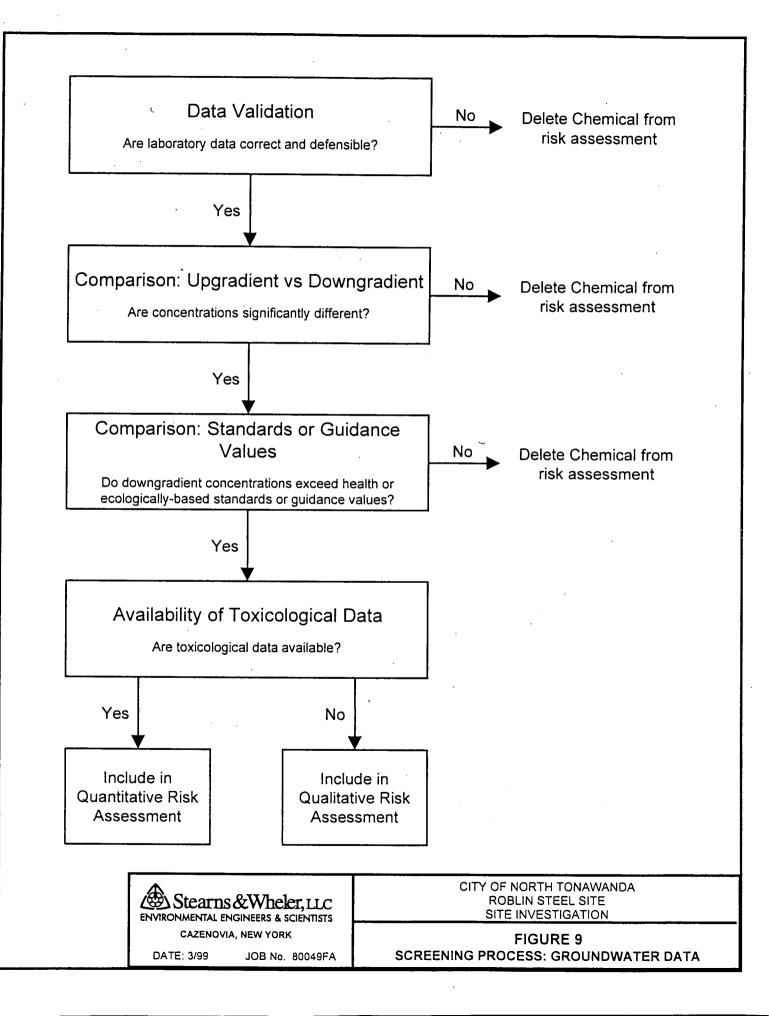

JOB NO .: 80049FA

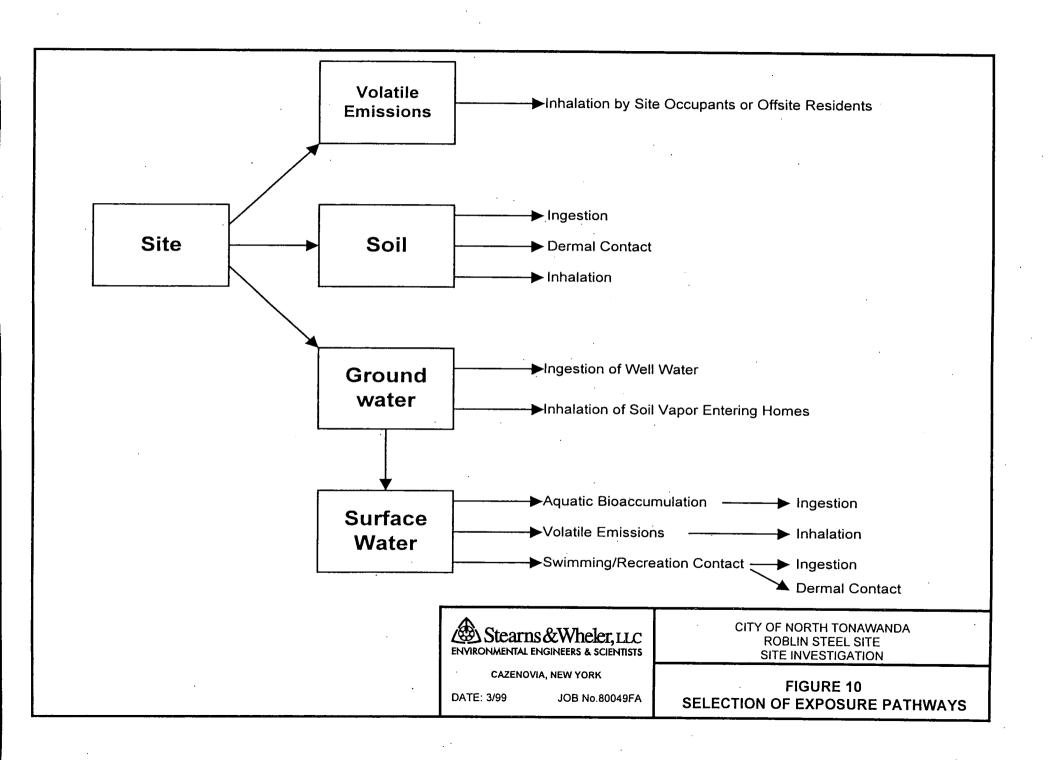

CROSS SECTION

B-B'

POTENTIOMETRIC SURFACE


V





EAST AVENUE GW−1⊕ \oplus GW-9 ARMSTRONG PUMPS BLDG. GW-5S GW-5 ⊕ ▲ q 10 . 19 GW-2S GW-2 Φ \$5-8 GW-8S ಶ 58 12 GW-8 \$ 53 . 14 80 📚 13 20 23 21 22 21 22 50 🔴 30 3 9 49 23 3 υp SS-6 • • 15 16 ಶ 59 48 64 BEDS GW-75 46 35 • 2 47 OAD 45 🔷 🎳 52 37 ROLLING MILL BLDG. • • 17 18 61 44 43 🔍 41 SS-2 51 • . . 42 . 9 26 38 40 ● **◆**▲ GW-4S ● 39 GW-4 SS-7 GW-3S GW-3 GW-3 29 € 27 € 10TH AVENUE ″|[−]′ • 28 \$ GW-6 \$ SS-3 56 GW−10 55 • 57 • SS−5 9TH AVENUE 8TH AVENUE PME 4/6/00 80049F4\800 Stearns & Whele 0 100' 200' 99/06 DW REV. BY F FS2\DATA1\CADUSE\E ENVIRONMENTAL ENGINEERS & SO APPROXIMATE SCALE CAZENOVIA, NEW YORK DATE: 1/99 JOB NO.: 800

	AREAS OF CONCERN
 	EXISTING MONITORING WELL EXISTING SOIL SURFACE SAMPLE PROPOSED MONITORING WELL PROPOSED SURFACE SOIL SAMPLE – METALS PROPOSED SURFACE SOIL SAMPLE – PAHS PROPOSED SURFACE SOIL SAMPLE – PCBS PROPOSED TEMPORARY GW SAMPLE LOCATION (UP TO 4 AT EACH LOCATION) UNDERGROUND STORAGE TANK NO SAMPLE COLLECTED
C, LLC ENTISTS DFA	ROBLIN STEEL CITY OF TONAWANDA, NY FIGURE 7 SURFACE SOILS AREAS OF CONCERN

APPENDICES

APPENDIX A

0

WELL LOGS

Boring/Well ID: GW-2S

	Groundwater Observations
Project Name: Roblin Steel	
Job No: 80049	Time:
Start Date & Time: 11/10/98 1200	Casing Depth:
Finish Date & Time:11/10/98 1400	Boring Depth: 1 <u>5'</u>
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: J. Percy	below surface below meas. pt
S&W Inspector: DSS	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4,25" HSA	Groundwater Elevation:
Weather:	
	L L

Depth (ft)	Blow Counts	(Mdd) Clid	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
1		0.4		1			Fill	T		Concrete Pad
2								2		
3								3		Bentonite
4								4		2" ID PVC
5		0.2		0.5			Moist, gray mottled, silty CLAY	5		Riser
6								6		
7								7		
8								8		#0 Sand Pack
9 10		0		0.5				9		
		0		0.5			Ded because were dense CLAV extracted at 14.91	10		
11							Red-brown., very dense CLAY, saturated at 16.8'			2" ID, .01" PVC Screen
12								12		PVC Screen
13										
15		0		2		<u></u>	Bottom of Boring	14 15		
16				-			bottom of borning	16	(i = R	
17								17		
18								18		
19								19		
20								20		
21								21		
22								22		
23								23		.
24								24		
25								25		
. 26								. 26		
27								27		
28								28		
29								29		
30								30		

Boring/Well ID: GW-3

	Groundwater Observations
Project Name: Roblin Steel	
Job No: 80049	Time:
Start Date & Time: 11/16/98 1300	Casing Depth:
Finish Date & Time: 11/18/98 1330	Boring Depth:37'
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: J. Percy	below surface below meas. pt
S&W inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4,25" HSA	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(MAA) CII4	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	<u>नराव</u> Well Diagram	1	
			<u> </u>			13333	Fill	1	-15 18	†	Concrete Pad
2			<u> </u>					2			
3								3		11	
4				\square			Dry, mottled gray SILT grading to wet rust/gray mottled SILT	4			4" steel casing
5							and f SAND	5			to 18'
6								6			
7			Γ					7			
8								8			Grout
9			•					9			
10								10			
11							Dry, gray, medium dense CLAY	11			
12							·	12			
13								13			
14								14			2" ID PVC
15								15			Riser
16							Moist, red CLAY	16			
17	·							17			
18								18			
19								19			
20								20			
21								21			
22								22			
23								23			
24								24 25		11	
25								25			
26								26	UU		
27								27			Bentonite
28								28			Pellets
29							Dry, red, f sandy SILT, some m-c angular gravel (till)	29			#0 Sand Pack
30								30			

C O Bu Depth to Groundwater E O Depth to Groundwater E O Depth to Groundwater Depth to Groundwater <th>ley: Sent for Lab Analysis</th> <th>Sample Log Key: NAPL Key:</th> <th></th> <th></th> <th>₩ E</th> <th>ę [</th> <th>unts</th> <th></th>	ley: Sent for Lab Analysis	Sample Log Key: NAPL Key:			₩ E	ę [unts	
38 0 1 39 0 0 40 0 0 41 0 0 42 0 0 43 0 0 44 0 0 45 0 0 46 0 0 47 0 0 48 0 0 50 0 0 51 0 0 52 0 0 53 0 0 54 0 0 55 0 0 56 0 0 57 0 0 58 0 0 59 0 0 60 0 0 61 0 0	Depth to Groundwater		ithology	APL	ecovery	ID (PPN	low Cot	epth (ft
38 39 39 39 39 39 39 39 39 39 39 39 39 30 40 30 39 40 40 40 40 40 40 40 40 40 40 40 41 42 41 42 41 42 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 46 47 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 55 50 <td< td=""><td></td><td></td><td></td><td>z</td><td>ñ 🗠</td><td></td><td><u>@</u></td><td></td></td<>				z	ñ 🗠		<u>@</u>	
38 39 39 39 39 39 39 39 39 39 39 39 39 30 40 30 39 40 40 40 40 40 40 40 40 40 40 40 41 42 41 42 41 42 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 46 47 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 55 50 <td< td=""><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td></td<>				+				
38 39 39 39 39 39 39 39 39 39 39 39 39 30 40 30 39 40 40 40 40 40 40 40 40 40 40 40 41 42 41 42 41 42 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 46 47 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 55 50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
38 39 39 39 39 39 39 39 39 39 39 39 39 30 40 30 39 40 40 40 40 40 40 40 40 40 40 40 41 42 41 42 41 42 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 46 47 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 55 50 <td< td=""><td>dy SILT, some m-c angular gravel (till) 2" ID, .0</td><td>Dry, red, f sandy SII</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	dy SILT, some m-c angular gravel (till) 2" ID, .0	Dry, red, f sandy SII						
38 39 39 39 39 39 39 39 39 39 39 39 39 30 40 30 39 40 40 40 40 40 40 40 40 40 40 40 41 42 41 42 41 42 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 46 47 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 55 50 <td< td=""><td>35 PVC Scr</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	35 PVC Scr							
38 39 39 39 39 39 39 39 39 39 39 39 39 30 40 30 39 40 40 40 40 40 40 40 40 40 40 40 41 42 41 42 41 42 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 45 45 46 47 43 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44 45 55 50 <td< td=""><td>36</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>36</td></td<>	36				_			36
39	37							37
40 40 40 41 41 41 42 41 42 43 44 41 44 45 43 44 45 45 45 46 45 46 46 45 47 41 45 48 41 49 50 50 50 51 51 51 53 54 55 56 56 57 56 58 56 59 50 59 50 51 56 56 56 57 56 58 56 59 56 59 56 59 50 59 50 59 50 59 50 51 55 52 55 53 55 54 56 57 56<	38							38
41 1 1 42 1 1 43 1 1 44 1 1 45 1 46 1 47 1 48 1 49 1 50 1 51 1 52 1 53 1 54 1 55 1 56 1 57 1 58 1 59 1 60 1 61 1								
42 43 44 43 44 44 45 45 46 47 48 49 49 50 50 51 50 52 50 53 55 56 56 57 56 58 59 60 60 61 60								
43		Bottom of Boring			_			
44 44 44 45 46 47 46 47 48 49 49 50 50 51 50 52 51 53 54 55 55 56 55 57 58 59 50 60 60 61 60								
45 45 45 46 47 48 47 48 47 48 49 48 49 50 50 51 50 50 51 51 50 52 51 51 53 54 55 55 56 55 56 56 57 56 58 57 59 50 60 50 61 51								
46 47 48 47 48 49 48 49 50 50 50 50 51 50 51 50 52 51 52 51 53 54 55 56 55 56 56 56 56 56 59 50 58 59 56 60 50 59 50 59 60 50 51 52 56 60 50 51 52 56 60 50 51 52 56 60 50 51 52 53 51 52 53 56 56 53 55 56 57 56 54 50 56 57 58 59 50 50 59 50 60 50 60 61 61	44		ł	 	_			
47 48 47 48 49 48 49 40 49 50 50 50 51 50 51 52 50 51 53 51 52 54 55 56 56 56 56 57 56 56 59 50 58 59 50 59 60 50 60 61 51 51					_			
48 48 48 49 50 50 50 50 50 51 50 51 52 50 51 53 51 52 54 55 56 56 56 56 57 56 56 59 50 58 59 50 59 60 50 50 61 50 60					—			
49 49 50 50 51 50 52 51 53 51 54 55 55 56 57 56 58 59 60 60 61 60			{ }					
50 50 50 51 50 51 50 52 50 53 50 54 50 55 50 56 50 57 50 58 50 59 50 60 60 61 60								
51 51 51 52 51 52 53 53 53 54 55 56 55 56 55 56 56 56 57 56 56 58 59 56 60 61 60 61 51								
52 53 52 53 54 55 54 55 55 56 57 56 58 57 59 56 60 60 61 60								
53 53 53 54 55 55 56 56 56 57 56 58 59 60 61 61 61								
54 54 55 56 56 55 57 56 58 57 59 58 60 61 61 61			· .	<u> </u>				
55 56 55 56 56 57 58 59 58 60 61 61 61								
57 57 58 59 60 61 61 61								
58 58 59 60 61 61	56							56
59 59 60 60 61 61	57							57
60 60 60 61<	58							58
61 61								
62 62 62				\square				
	62				_			62
63 63 63 64 63 64								

•

Boring/Well ID: GW-4S

Groundwater Observations
[]
Time:
Casing Depth:
Boring Depth:15
Depth to Water:
below surface below meas. pt
Surface Elevation:
Measuring Point Elevation:
Groundwater Elevation:

.

2 2 2 3 2 3 3 3 3 3 4 3 4 2" 5 5 5 5 6 5 5 6 6 6 7 5 6 6 6 6 7 8 6 6 9 9 9 9 9 9 9 9 9 10 10 11 11 12 12 2" 2"	oncrete Pad
3 3 3 3 4 2" 4 4 4 2" 8 4 6 6 6 6 6 6 6 6 7 8 9 6 6 7 8 9 9 10 10 10 11 12 12 12 12 12 12 13 14 14 14 14 14 14 14 16 16 16 16 16 16 16 16 16 18 18 18 18 18 10 11 11 12 11 11 11 11 11 11 11 11 11 11 11	
4 4 4 2" 5 6 6 6 7 6 6 7 8 6 7 8 9 6 7 8 10 7 8 9 11 7 10 10 12 12 12 12 13 14 15 15 16 10 16 16 17 18 16 17	1
16 16 17	entonite
16 16 17	ID PVC
16 16 17	iser
16 16 17	
16 16 17	
16 16 17	
16 16 17) Sand Pack
16 16 17	
16 16 17	
16 16 17	'ID, .01"
16 16 17	VC Screen
16 16 17	
17	
18	
19	
20 20	
24 24 25 25	
26 Moist, red, dense, SILT and SAND (till) 26	
27 27	1
	1

Boring/Well ID: GW-4

	Groundwater Observations	
Project Name: Roblin Steel		
Job No: <u>80049</u>	Time:	
Start Date & Time: 11/12/98 1300	Casing Depth:	
Finish Date & Time: 1 <u>1/12/98 1730</u>	Boring Depth:15'	
Drilling Co:Parratt-Wolff	Depth to Water:	
Driller: J. Percy	below surface below meas. pt	
S&W Inspector: SLG	Surface Elevation:	
Drill Rig Type: Mobile B-56	Measuring Point Elevation:	,
Drilling Method: 4,25" HSA	Groundwater Elevation:	
Weather:		

Depth (ft)	Blow Counts	(MPP) (DIP	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
1							Fill	1		Concrete Pad
2								2		
3								3		
4								4		
5								5		
6								6		
7							Moist, gray, mottled, silty CLAY	7		
8								8		Grout
9								9		
10								10		
11								11		
12								12		
13								13		·
14								14		2" ID PVC
15								15		Riser
16								16		
17							Wet, brown, soft, CLAY	17		
18								18		· [
19							· ·	19		
20	-	-						20	11	
21								21		
22								22		
23								23		1
24								24		
25								25		Bentonite
26							Moist, red, dense, SILT and SAND (till)	26		Pellets
27								27		
28				-			•	28		
29								29	鬮	#0 Sand Pack
30				<u> </u>				30	圕	

æ 🗌	ounts	Ŷ	Log	y (f)		8	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed	2	ıgram
Depth (ft)	Blow Counts	(Mad) Clid	Sample Log	Recovery (ft)	NAPL	Lithology	Depth to Groundwater	Depth (ft)	Well Diagram
31								31	
32								32	
33								33	
34			•				Moist, red, dense, SILT and SAND (till)	34	2" ID, .01'
35								35	PVC Scree
36								36	PVC Scree
37								37	
38								38	
39							Bottom of Boring	39	
40								40	
41								41	
42								42	
43								43	
44								44	
45								45	
46								46	
47								47	
48								48	
49								49	
50								50	
51								51	
52	· · · · · ·							52	
53								53	
54					\neg				
55								54	
56								56	
57								57	
58					{			58	
59	·							59	
60								60	
61								61	
62								62	
63								62	
64	· · ·							64	
65		<u> </u>	L					65	

· .

.

Boring/Well ID: GW-5S

	Groundwater Observations
Project Name: Roblin Steel	
Job No: 80049	Time:
Start Date & Time: 11/11/98 1500	Casing Depth:
Finish Date & Time: 1 <u>1/11/98 1530</u>	Boring Depth:15
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: J. Percy	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4,25" HSA	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(M44) CII4	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
ι								1		Concrete Pad
2								2		
3						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3		Bentonite
4							Strong, petroleum odor from 3 to 6 feet, evidence of impacted soil,	4		2" ID PVC
5							source unknown	5		Riser
6								6		
7			L					7		
8							Moist, gray, mottled, SILT	8		
9								9		#0 Sand Pack
10			<u> </u>					10		
11								п		
12		·	·					12		2" ID, .01"
13								13		PVC Screen
14							Wet, brown, soft, CLAY	14		
15								15		
16								16		
17							Bottom of Boring	17		
18							Bottom of Boring	18		
20			· ·					19		
20					··			20 21		
22								21		
23				_				22		
24								23		
25	-							25		
26							Moist, red, dense, SILT and SAND (till)	26		
27							· · · · · · · · · · · · · · · · · · ·	27		
28								28		
29					<u> </u>			29		
30								30		

Boring/Well ID: GW-10S

	Groundwater Observations
Project Name: Roblin Steel	
Job No: <u>80049</u>	Time:
Start Date & Time: 11/13/98 1010	Casing Depth:
Finish Date & Time: 11/16/98 1110	Boring Depth:15'
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: J. Percy	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile_B-56	Measuring Point Elevation:
Drilling Method: 4.25" HSA	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(Mdd) Clid	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagran	
1						13333	Fill	1		Concrete Pad
2							Fill Black grading to tan, moist sandy SILT, trace clay	2		
3								3		Bentonite
4								4	8	2" ID PVC
5							Brown mottled, wet, silty f SAND	5		Riser
6								6		
7								7		
8					1			8		
9								9		#0 Sand Pack
10							· · · · · · · · · · · · · · · · · · ·	10		
11							Gray, reddish, damp, silty CLAY	n		
12								12		2" ID, .01"
13								13		PVC Screen
14									圕	
15							Red, moist, soft, CLAY	14 15		
16								16		
17								17		
18]	Bottom of Boring	18		
19								19		
20]		20		
21]		21		
22]		22		
23								23		
24								24		
25								25		
26							Moist, red, dense, SILT and SAND (till)	26		
27								27		
28]		28		
29								29 30		
30						L	· · · · · · · · · · · · · · · · · · ·	30		

Boring/Well ID: GW-11S

	Groundwater Observations
Project Name: Roblin Steel	
Job No: <u>80049</u>	Time:
Start Date & Time: 11/16/98_1600	Casing Depth:
Finish Date & Time: 1 <u>1/16/98 1715</u>	Boring Depth:15
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: J. Percy	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4.25" HSA	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(Mdd) Clid	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Dwell Diagram	
1				2		133333	Fill	1		Concrete Pad
2							Dry, gray mottled, SILT	2		
3						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		3	× ~	Bentonite
4						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		4		2" ID PVC
5				2				5		Riser
6		-					Wet, gray SILT	6		
7								7		
8								8		
9			•					9		#0 Sand Pack
10				2				10		
11							Dry, gray CLAY	11		
12								12		2" ID, .01"
13								13	圕	PVC Screen
14								14		
15				2			Moist, gray, soft, CLAY	15		
16			:					16		
17								17		
18							Bottom of Boring	18		
19			:					19		
20								20		
21	_							21		
22								22		
23								23		
24								24		
25								25		
26							Moist, red, dense, SILT and SAND (till)	26		
27								27		
28								28		
29								29		
30								30		

Boring/Well ID: GW-12S

* 17

	Groundwater Observations
Project Name: Roblin Steel	
Job No: <u>80049</u>	Time:
Start Date & Time: 11/19/98 0900	Casing Depth:
Finish Date & Time:11/19/98_1015	Boring Depth: 1 <u>5'</u>
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: <u>D. Richmond</u>	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4.25" HSA	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(M99) CII4	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
1		0		1.5			Fill	1		Concrete Pad
2								2		
3								3		Bentonite
4							Dry, mottled, sandy SILT	4		2" ID PVC
5		0		2				5		Riser
6								6		
7							Wet, mottled, sandy SILT	7		
8								8		#0 Sand Pack
9								9		
10		0		2				10		
11								<u> </u>		2" ID, .01"
12								12		PVC Screen
13							Dry, red-gray, CLAY	13		
14								14 15		1
15		0		2				15		
16							Dry, red-gray, CLAY	16		
17								17		
18							Bottom of Boring	18		
19								19		
20			\square					20		
21								21		
22								22		
23								23		
24								24 25		
25										
26								26		
27								27		
28								28		
29								29		
_ 30								30		

Boring/Well ID: GW-13

	Groundwater Observations
Project Name: Roblin Steel	
Job No: <u>80049</u>	Time:
Start Date & Time: 11/17/98 0900	Casing Depth:
Finish Date & Time: 11/17/98 1300	Boring Depth:35
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: J. Percy	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4 <u>.25" HSA</u>	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(Mdd) (IId	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: SSS NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
1		0		1.5			Fill	1		Concrete Pad
2								2		
3								3		
4							Wet, mottled rust-gray SILT and f SAND	4		
5		0		2				5		
6								6		
7								7		
8								8		Grout
9								9		
10		0		2			- -	10		
							Dry, red, medium dense CLAY, trace silt	11		
12								12		
13								13		
14		0		2				14		2" ID PVC
15				- 2			Dry, red, medium dense CLAY, trace silt	15		Riser
17							Dry, red, medium dense CLAF, trace sht	16		
18								17		
19								18 19		
20		0		2				20		
21							Wet, red, medium dense CLAY, trace silt	21		
22								21	00	Bentonite
23								23	I	Pellets
24								24	8 8	
25		0		2				25		
26							Moist-damp, red, f sandy SILT, some c subangular gravel (till)	26		#
27								27		#
28								28		
29								29		#0 Sand Pack
30		0		2				30		

Joinig/V	Vell ID;_		<u></u>					
Depth (ft)	cinuo word (MPM)	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater	Depth (ft)	Well Diagram
31							31	
32						Moist-damp, red, f sandy SILT, some c subangular gravel (till)	32	2" ID, .01" PVC Scree
33							33 34	
34							34	2" ID, .01"
35	0		2				35	PVC Scree
36						Bottom of Boring	36	
37							37	
38							38	
39							39	
40							40	
41							41	
42							42	
43							43	
44 45							44 45	
45								
40							46	
48							47 48	
49							48	
50		-					50	
51							51	
52							52	
53							53	
54							54	
55							54 55	
56							56	
57							57	
58							58	
59							59	
60							60	
61							61	
62							62	
63							63	-
64							64	f .
65							65	

. .

Boring/Well ID: GW-14

i

	Groundwater Observations
Project Name: Roblin Steel	
Job No: 80049	Time:
Start Date & Time: 11/17/98 1330	Casing Depth:
Finish Date & Time: 11/17/98 1800	Boring Depth:35'
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: D. Richmond	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Orill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4 <u>.25" HSA</u>	Groundwater Elevation:
Weather:	
1	

Depth (ft)	Blow Counts	(MPP) (DIP	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: MAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
1							Fill	1		Concrete Pad
2								2		
3								3		
4							Moist, gray mottled, silty CLAY	4		
5								5		
6								6		
7								7		
8								8		Grout
9								9		
10								10		1 1
11							Red-brown, very dense CLAY, saturated at 16.8'	11		
12								12		
13								13		
14								14		2" ID PVC
15								15		Riser
16								16		
17								17		· ·
18								18		
19			·					19		
20		0		2				20		
21							Wet, red-brown, CLAY	21		
22								22		Bentonite
23								23		Pellets
24								24]
25		0		2				25		
26							Wet, red-brown, CLAY	26		#
27							· · ·	27	[]]	#
28								28		
29								29		#0 Sand Pack
30		0		2				30		

Soli	ng/Well	<u>וט:_</u>	Gvv	-14	n an an an		<u>8</u>		
(¥)	Blow Counts	(Mq	e Log	Recovery (ft))BV	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed	(JJ	well Diagram
Depth (ft)	Blow ((Mdd) Clid	Sample Log	Recov	NAPL	Lithology	Depth to Groundwater	Depth (ft)	Well D
31								31	
32		1	1				Red, wet, f sandy SILT, some to little m gravel (till)	32	
33	<u>.</u>	1	1					33	
34									2" ID, .01" PVC Screet
35		0		2				34 35	PVC Screer
36							Red, wet, f SAND and SILT, some to little m gravel (till)	36	
37								37	
38							Bottom of Boring	38	
39			1					38 39	
40		1	1					40	
41			1		•			41	
42								41	
43								43	
44								44	
45								44 45	
46		1						46	
47								46	
48								48	
49		1						49	
50								49 50	
51								51	
52								52	
53		1						53	
54								53 54 55	
55								55	
56								56	
57			<u> </u>					56 57	
58								58	
59		t –						59	
60	· · · ·	 						60	
61	<u>`</u>							61	
62		†						62	
63		<u> </u>						63	
64		<u> </u>	<u> </u>					64	
65								65	

•

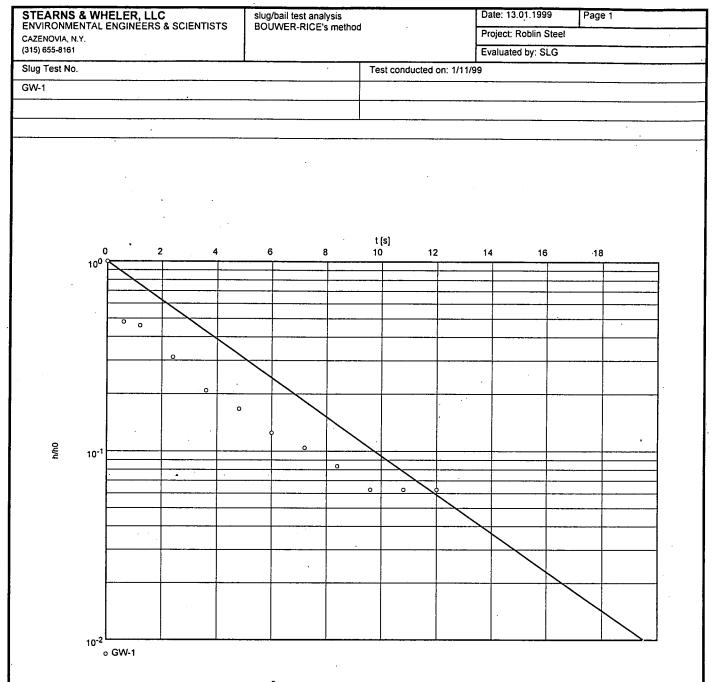
Boring/Well ID: GW-16S

٩

	Groundwater Observations	
Project Name: Roblin Steel		
Job No: 80049	Time:	
Start Date & Time: 11/18/98 1430	Casing Depth:	
Finish Date & Time:11/18/98 1515	Boring Depth: 15'	
Drilling Co:Parratt-Wolff	Depth to Water:	
Driller: D. Richmond	below surface below meas. pt	
S&W Inspector: SLG	Surface Elevation:	
Drill Rig Type: Mobile B-56	Measuring Point Elevation:	
Drilling Method: 4.25" HSA	Groundwater Elevation:	
Weather:		

Depth (ft)	Blow Counts	(MAG) CIIA	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	www.	
1		0.4		1		133333	Fill	1		Concrete Pad
2				1			· · ·	2		
.3								3		Bentonite
4								4		2" ID PVC
5		0.2		0.5			Damp, tan, sandy SILT	5		Riser
6								6		
7								7		
8								8		#0 Sand Pack
9								9		,
10		0		0.5				10		
п							· · · · · · · · · · · · · · · · · · ·	11		2" ID, .01"
12								12		PVC Screen
13							Dry, gray, CLAY	13		
14				L			STARS sample collected here	14		
15		0		2				15		
16							Wet, gray, CLAY	16	1	
17			[·	17	1	
18							Bottom of Boring	18		
19								19	1	
20								20		
21								21	1	
22	·							22	1	
23								23	1	
24								24	1	
25				1	ļ			25	1	
26								26		
27					L			27		
28								28		
29								29	1	1
30	i I				l			30	ł	

.


Boring/Well ID: GW-17S

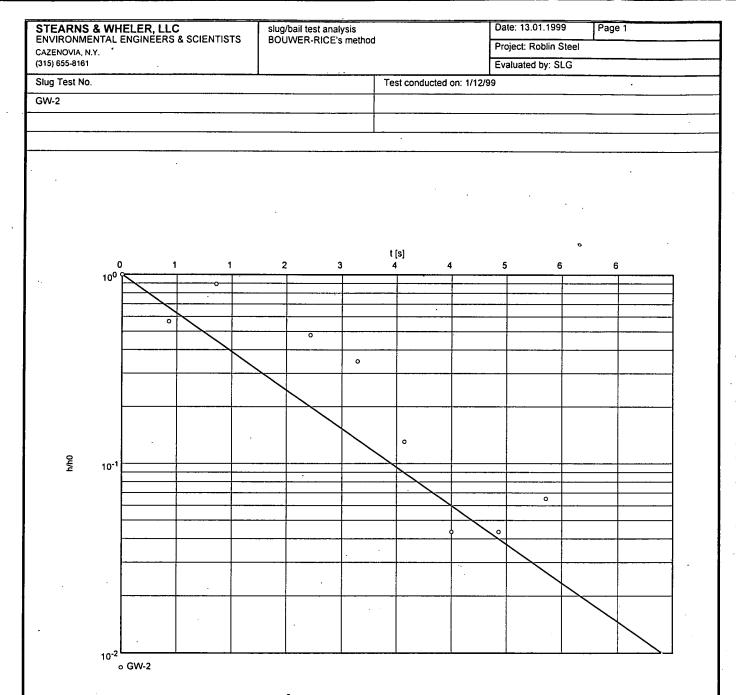
	Groundwater Observations
Project Name: Roblin Steel	
Job No: <u>80049</u>	Time:
Start Date & Time: 11/18/98 1515	Casing Depth:
Finish Date & Time:11/18/98 1615	Boring Depth: 1 <u>5'</u>
Drilling Co:Parratt-Wolff	Depth to Water:
Driller: D. Richmond	below surface below meas. pt
S&W Inspector: SLG	Surface Elevation:
Drill Rig Type: Mobile B-56	Measuring Point Elevation:
Drilling Method: 4 <u>.25" HSA</u>	Groundwater Elevation:
Weather:	

Depth (ft)	Blow Counts	(Mdd) Clid	Sample Log	Recovery (ft)	NAPL	Lithology	Sample Log Key: Sent for Lab Analysis NAPL Key: SSS NAPL Observed Depth to Groundwater Sample Description	Depth (ft)	Well Diagram	
1		0		1.5			Fill	1		Concrete Pad
2								2		
3								3		Bentonite
4								4		2" ID PVC
5		0		2			Gray-green, wet, f sandy SILT, strong petroleum odor	5		Riser
6							STARS sample collected here	6		
7								7		
8								8		#0 Sand Pack
9								9		
10		0		2				10		
11								11		2" ID, .01"
12								12		PVC Screen
13							Moist, red-brown CLAY	13		
14			i					14		
15		0		NR				15		
16							Wet, red-brown CLAY	16		
17								17		
18							Bottom of Boring	18		
19 20								19		
20								20		
21								21		
22								22		
23						1		23		
25								24		
26								25		
20								20		
28								27		
29								20		
30								30		

APPENDIX B

SLUG TEST RESULTS

Hydraulic conductivity [cm/s]: 5.99 x 10⁻³


STEA	RNS & WHELER, LLC	slug/bail test analysis	Date: 1	3.01.1999	Page 2	
	ONMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method	Projec	: Roblin Steel	i	
	5-8161		Evalua	ted by: SLG		
lug To	est No.	Те	st conducted on: 1/11/99			
W-1		GW-1				
Static v	water level: 100.00 ft below datum			·		
	Pumping test duration	Water level	Drawdown	[
1	[min]0.00	[ft]03.58	[ft]	642		
2	0.00	93.58 93.83		6.42		
2	0.01	93.83		6.17 5.72		
4	0.02	94.28		5.72 6.01		
5	0.04	94.21		5.79		·····-
6	0.05	94.02		5.98		
7	0.06	94.16		5.84		
8	0.07	94.05		5.95		
9	0.08	94.14		5.86		
10	0.09	94.06		5.94		
11	0.10	94.12		5.88		
12	0.11	94.07	-	5.93	· · · · · · · · · · · · · · · · · · ·	
13	0.12	94.11		5.89		···_
14	0.13	94.08	•	5.92		
15	0.14	94.10	-	5.90		
16	0.15	94.08		5.92	· · · · · · · · · · · · · · · · · · ·	
17	0.16	94.09		5.91		
18	0.17	94.08		5.92		
19	0.18	94.09		5.91		
20	0.19	94.08	<u>.</u>	5.92		
21	0.20	94.09		5.91		
22	0.21	94.08		5.92		
23	0.22	94.08		5.92		
24	0.23	94.08		5.92		
25	0.24	94.08		5.92		
26	0.25	94.08		5.92		
27 28	0.26	94.08		5.92		
28		94.08		5.92 5.92		
30	0.28	94.08 94.08		5.92		
31	0.30	94.08		5.92		
32	0.30	94.08		5.92	·	
33	0.31	94.08		5.92		•
34	0.33	94.08		5.92		
35	0.35	94.08		5.92	<u> </u>	
36	0.37	94.08		5.92		
37	0.38	94.08	· · · · · · · · · · · · · · · · · · ·	5.92		
38	0.40	94.08		5.92		
39	0.42	94.07		5.93		
40	0.43	94.07		5.93		
41	0.45	94.07		5.93		
42	0.47	94.07	-	5.93		
43	0.48	94.07	-	5.93		
44	0.50	94.07	•	5.93		
45	0.52	94.07		5.93	<u> </u>	
46	0.53	94.07	-	5.93	···	
47	0.55	94.07	-	5.93	<u> </u>	
48	0.57	94.07		5.93		
49	0.58	94.07	-	5.93		
50	0.60	94.07	•	5.93		

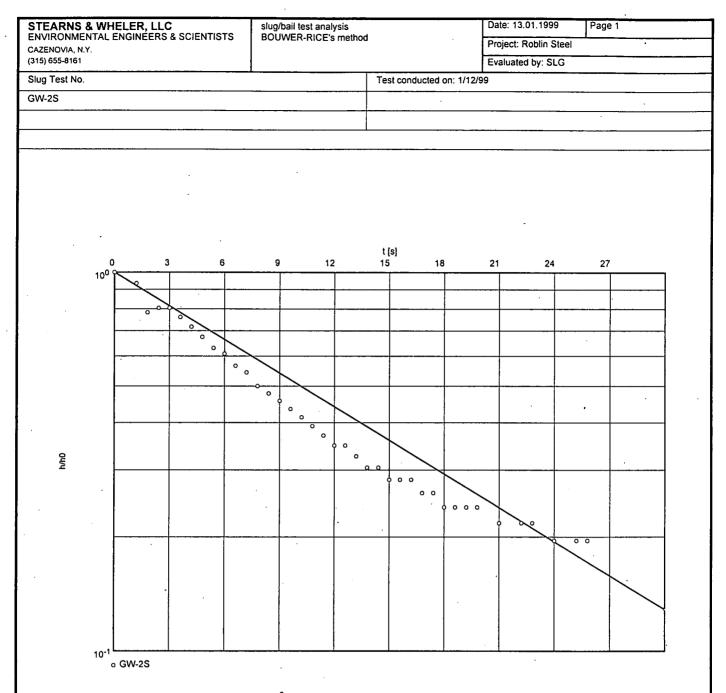
ENVIRO	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method	1	Destant D bit Of 1		
CAZENOV		•		Project: Roblin Steel		
(315) 655-	8161			Evaluated by: SLG		
Slug Tes	it No.		Test conducted on: 1/11/9	9		
GW-1			GW-1			
			·		· · · · · ·	
Static wa	ater level: 100.00 ft below datum					
	Pumping test duration	Water level	Drawdowr	<u> </u>		
		Water level	Ciawdowi			
	(min)	[ft]		-		
51	0.62	94.07		-5.93		
52	0.63	94.07		-5.93		
53	0.65	94.07		-5.93		
54	0.67	94.07		-5.93		
55	0.68	94.07		-5.93		
56	0.70	94.07		-5.93		
57	0.72	94.07		-5.93		
58	0.73	94.07		-5.93		
59	0.75	94.07		-5.93		
60	0.77	94.07		-5.93	· · · · · · · · · · · · · · · · · · ·	
61	0.78	94.07		+5.93		
62	0.80	94.07		-5.93		
63	0.82	94.07		-5.93		
64	0.83	94.07		-5.93		
65	0.85	94.07		-5.93	· · · · · · · · · · · · · · · · · · ·	
66	0.87	94.07		-5.93		
67	0.88	94.07		-5.93	······	
68	0.90	94.07	·	-5.93		
69	0.92	94.07		-5.93		
70	0.93	94.07		-5.93		
71	0.95	94.07		-5.93		
72	0.95			-5.93		
73	0.97	94.07				
73	1.00	94.07		-5.93	· · · · · · · · · · · · · · · · · · ·	
		94.07		-5.93		
75	1.20	94.06		-5.94	·	
76	1.40	94.06		-5.94		
77	1.60	94.06		-5.94	···· •	
78	1.80	94.06		-5.94		
79	2.00	94.06		-5.94		
80	2.20	94.06		-5.94		
81	2.40	94.06		-5.94		
82	2.60	94.06		-5.94		
83	2.80	94.06		-5.94		
84	3.00	94.06		-5.94		
85	3.20	94.06		-5.94		
86	3.40	94.06		-5.94		
87	3.60	94.06		-5.94		
88	3.80	94.06		-5.94		
89	4.00	94.06		-5.94		
90	4.20	94.06		-5.94		
91	4.40	94.06		-5.94		
92	4.60	94.06		-5.94		
93	4.80	94.06		-5.94		
94	5.00	94.06	· · · · · · · · · · · · · · · · · · ·	-5.94		
95	5.20	94.06		-5.94		
96	5.40	94.06		-5.94		
97	5.60	94.06		-5.94		
98	5.80	94.06		-5.94		
99	6.00	94.06		-5.94		
	6.20	04.00				

·

	NS & WHELER, LLC	slug/bail test analysis		Date: 13.01.1999		Page 4	
	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin St	eel	<u> </u>	
AZENOVI. 115) 655-8				Evaluated by: SL			
ilug Test		<u>1</u>	Fest conducted on: 1/11/9			······	
GW-1		G	GW-1				
Static wat	ter level: 100.00 ft below datum						
<u> </u>	Pumping test duration	Water level	Drawdowr	1		·····	
101	(min)6.40	[ft]94.06	(ft]	-5.94			
102	6.60	94.06		-5.94			
103	6.80	94.06		-5.94		·····	
104	7.00	94.06		-5.94			
105	7.20						
		94.06		-5.94			
106	7.40	94.06		-5.94			
107	7.60	94.06	+	-5.94			
108	7.80			-5.94			
109	8.00	94.06		-5.94			
110	8.20	94.06		-5.94			
111	8.40	94.06		-5.94			
112	8.60	94.06		-5.94			
113	8.80	94.06	.	-5.94			
114	9.00	94.06		-5.94			
115	9.20	94.06		-5.94			
116	9.40	94.06		-5.94			
117	9.60	94.06		-5.94			
118	9.80	94.06		-5.94			
119	10.00	94.06		-5.94			
120	12.00	94.06		-5.94			
121	14.00	94.06		-5.94		· · · · · · · · · · · · · · · · · · ·	
122	16.00	94.06		-5.94			
123	18.00	94.06		-5.94			
				1			
		· · · · · · · · · · · · · · · · · · ·					
1	·····						
						· · · ··	
	······						
			· · · · · · · · · · · · · · · · · · ·				
							
	·····	- ··· · · · · · · · · · · · · · · · · ·					
						·- ·· - ·· ···························	
		· · · · · · · · · · · · · · · · · · ·					
							<u></u>
			· · · · · · · · · · · · · · · · · · ·			·····	
						· · · · · · · · · · · · · · · · · · ·	
	·····						
		,					

.

: .


Hydraulic conductivity [cm/s]: 1.70 x 10⁻²

TEAR	NS & WHELER, LLC	slug/bail test analysis	·	Date: 13.01.199	9	Page 2	
	NMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin S	Steel	L	
315) 655-8				Evaluated by: S	LG		····
lug Test	t No.	•	Test conducted on: 1/12	. I			
6W-2			GW-2				
tatic wa	ter level: 100.00 ft below datum						
	Pumping test duration	Water level	Drawdov	wp			
- 1	[min]0.00	[ft]99.54	[ft][ft]	-0.46			
2	0.01	99.74	<u> </u>	-0.26			
3	0.02	99.59		-0.20			
4	0.03	100.06		0.06			
5	0.04	100.22		0.22			
6	0.05	100.16		0.16			
7	0.06	100.06		0.06			
8	0.07	100.02		0.02			
9	0.08	100.02	· · · ·	0.02			
10	0.09	100.03		0.03			
11	0.10	100.04		0.04			
12	0.11	100.04		0.04			
13	0.12	100.04		0.04			
14	0.13	100.03		0.03			
15	0.14	100.03		0.03			
16	0.15	100.03		0.03		<u> </u>	
17	0.16	100.03		0.03			
18	0.17	100.03		0.03			
19 [.] 20	0.18	100.03		0.03			
20	0.19	100.03		0.03			
22	0.20	100.03	- 	0.03			
23	0.22	100.03		0.03		······	
24	0.23	100.03		0.03		· ·	
25	0.24	100.03		0.03			
26	0.25	100.03		0.03			
27	0.26	100.03		0.03			
28	0.27	100.03		0.03			
29	0.28	100.03		0.03			
30	0.29	100.03		0.03			
31	0.30	100.03		0.03			
32	0.31	100.03		0.03		··· ·	
33	0.32	100.03		0.03			
34	0.33	100.03		0.03			
35 36	0.35	100.03		0.03			
37	0.37	100.03		0.03			
38	0.38	100.03		0.03		<u>.</u>	
39	0.40	100.03		0.03			
40	0.42	100.03		0.03			
41	0.45	100.03		0.03			
42	0.47	100.03		0.03			
43	0.48	100.02		0.02			
44	0.50	100.02		0.02			
45	0.52	100.02		0.02			
46	0.53	100.02		0.02			
47	0.55	100.02		0.02			
48	0.57	100.02		0.02			
49	0.58	100.02		0.02			
50	0.60	100.02		0.02			

SIEAR	RNS & WHELER, LLC	slug/bail test analysis	1	Date: 13.01.1999	Page 3	
	NMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method	F	Project: Roblin Steel		
CAZENOV (315) 655-				Evaluated by: SLG		
Slug Tes		_1	st conducted on: 1/12/99			
GW-2		GV	V+Z			
Static wa	ater level: 100.00 ft below datum				·····,· ····	
	Pumping test duration	Water level	Drawdown		<u> </u>	
	[]	161)				
51	[min]0.62	(ft) 100.02	[ft]	0.02		
52	0.63	100.02		0.02		
53	0.65	100.02		0.02		
54	0.67	100.02		0.02	······································	
55	0.68	100.02	· · · · · · · · · · · · · · · · · · ·	0.02		
56	0.70	100.02	· · · · · · · · · · · · · · · · · · ·	0.02	.	
57	0.72	100.02		0.02		
58	0.72	100.02		0.02		
59	0.75	100.02		0.02	· · ·	
60	0.75	100.02		0.02		
61	0.77	100.02	·····	0.02		
62	0.78	100.02		0.02		
63	0.80	100.02				
64	0.82	100.02		0.02		
65	0.85	100.02		0.02		
66	0.87	100.02		0.02		
67						
	0.88	100.02		0.02		
68	0.90	100.02		0.02		
69	0.92	100.02		0.02		
70	0.93	100.02		0.02		
71	0.95	100.02		0.02		
72		100.02		0.02		
73	0.98	100.02		0.02		
74	1.00	100.02		0.02	. .	
75	1.20	100.02	·	0.02		
76	1.40	100.02		0.02		
77	1.60	100.02		0.02		
78	1.80	100.02		0.02	· · · ·	
79	2.00	100.02	, .	0.02		
80	2.20	100.01		0.01		
81	2.40	100.01		0.01		
82	2.60	100.01		0.01	· · ·	
83	2.80	100.01		0.01		
84	3.00	100.01		0.01		
85	3.20	100.01		0.01		
86	3.40	100.01		0.01		
87	3.60	100.01		0.01		
88	3.80	100.01	·	0.01		
89	4.00	100.01		0.01		
90	4.20	100.01		0.01		
91	4.40	100.01		0.01		
92	4.60	100.01		0.01		
93	4.80	100.01	· · · · · · · · · · · · · · · · · · ·	0.01		
94	5.00	100.01		0.01		
95	5.20	100.01		0.01		
96	5.40	100.01		0.01		
97	5.60	100.01		0.01		
98	5.80	100.01		0.01		
99	6.00	100.01		0.01		
100	6.20	100.01		0.01	····	

.

STEARN	NS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 13.01.199	99	Page 4	
ENVIRON CAZENOVIA		BOUWER-RICE's method		Project: Roblin	Steel		
315) 655-81				Evaluated by: S	LG		
Slug Test	No.	L	Test conducted on: 1/12/9				
W-2			GW-2				
Static wate	er level: 100.00 ft below datum						
	Pumping test duration	Water level	Drawdow	n			
i	[min]	[ft]	(ft]				
101	6.40	100.01		0.01			
102	6.60	100.01		0.01			-
103	6.80	100.01		0.01			
104	7.00	100.01		0.01			
105	7.20	100.01		0.01			
106	7.40			0.01			
107	7.60						
		100.01		0.01			
108	7.80	100.01		0.01			
109	8.00	100.01		0.01			
110	8.20	100.01		0.01			
111	8.40	100.01		0.01			
112	8.60	100.00		0.00			
113	8.80	100.00		0.00			
114	9.00	100.00		0.00			
115	9.20	100.00		0.00			
116	9.40	100.00		0.00			
117	• 9.60	100.00		0.00			
118	9.80	100.00		0.00			
119	10.00	100.00		0.00			
120	12.00	100.00		0.00			
120	12.00	100.00	· · · · ·	0.00		•	
					•		
	•						
	· · · · · · · · · · · · · · · · · · ·						
			1				
		······································					
						··· ·	
<u> </u>					•		
	· · · - · · · · · · · · · · · · · · · ·						
		· · · · · · · · · · · · · · · · · · ·				·····	
	······	<u> </u>				·. ·.	
						·····	
	······			<u> </u>		<u></u>	
1			1				

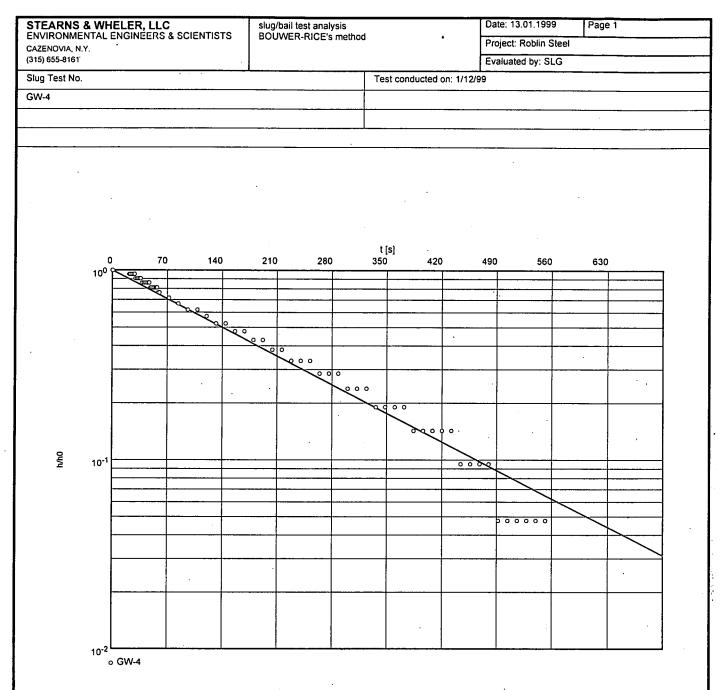
Hydraulic conductivity [cm/s]: 1.87 x 10⁻³

STEAF	RNS & WHELER, LLC	slug/bail test analysis		Date: 13.01.199	9	Page 2
	RNS & WHELER, LLC DNMENTAL ENGINEERS & SCIENTISTS VIA, N.Y.	BOUWER-RICE's method		Project: Roblin S	Steel	L
315) 655				Evaluated by: SI		
Slug Te	st No.		Test conducted on: 1/12			
GW-2S			GW-2S			
				·		
Ctatio	atas lavali 100 00 ft balavi datum		· · · · · · · · · · · · · · · · · · ·			
Static w	ater level: 100.00 ft below datum			· · · · · · · · · · · · · · · · · · ·		
	Pumping test duration	Water level	Drawdov	wn		
	(min)	(ft]	[ft]			
1	0.00	100.46		0.46		
2	0.02	100.43		0.43		
3	0.03	100.36		0.36		
4	0.04	100.37		0.37		
5	0.05	100.37		0.37		
6	0.06	100.35		0.35		
7	0.07	100.33		0.33		
8	0.08	100.31		0.31		
9	0.09	100.29		0.29		
10	0.10	100.28		0.28		
11	0.11	100.26		0.26		
13	0.12	100.25		0.25		· · · · · · · · · · · · · · · · · · ·
14	0.14	100.23		0.23		•
15	0.15	100.22		0.22		
16	0.16	100.20		0.21		
17	0.17	100.19		0.19		· · · · · · · · · · · · · · · · · · ·
18	0.18	100.18		0.18		
19	0.19	100.17		0.17		••••••••••••••••••••••••••••••••••••••
20	0.20	100.16		0.16		<u>.</u>
21	0.21	100.16		0.16		
22	0.22	100.15		0.15		···· · · ·
23	0.23	100.14	· · · · · · · · · · · · · · · · · · ·	0.14		
24	0.24	100.14		0.14		
25	0.25	100.13		0.13		
26	0.26	100.13		0.13		
27	0.27	100.13		0.13		
28	0.28	100.12		0.12		
29	0.29	100.12		0.12		· · · · · · · · · · · · · · · · · · ·
30	0.30	100.11		0.11	_	·····
31	0.31	100.11		0.11		
32	0.32	100.11		0.11		
33	0.33	100.11		0.11		
34	0.35	100.10		0.10		
35	0.37	100.10		0.10		
36	0.38	100.10		0.10		
37	0.40	100.09		0.09		·
38	0.42	100.09		0.09		
39	0.43	100.09		0.09		
		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·				
			_			
1			1			

.

Hydraulic conductivity [cm/s]: 8.13 x 10⁻³

	RNS & WHELER, LLC INMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method	1	Date: 13.01.1999	Page 2
AZENO		BOUWER-RICE's method	I	Project: Roblin Stee	1
315) 655-				Evaluated by: SLG	
Slug Tes	st No.	····	Test conducted on: 1/		
GW-3	······································	· · · · · · · · · · · · · · · · · · ·	GW-3		
Noti-	ator lough 09.26.6 betwy datum				
Static wa	ater level: 98.36 ft below datum		·····		
	Pumping test duration	Water level	Drawo	fown	
	(min)	(ft]	[
.1	0.00	97.86		-0.50	
2	0.00	97.91		-0.45	
3.	0.01	98.10		-0.26	· ····
4	0.01	98.10		-0.26	· · · · · · · · · · · · · · · · · · ·
5	0.01	98.49		0.13	
6	0.02	. 98.52		0.16	
7	. 0.02	98.52		0.16	
8	0.02	98.26		-0.10	
9	0.03	98.72		0.36	
10	0.03	98.72		0.36	
11	0.03	98.18		-0.18	
12	0.04	98.58		0.22	
13	0.04	98.58		0.22	
14	0.04	98.20		-0.16	
15	0.05			0.08	· · · · · · · · · · · · · · · · · · ·
16	0.05	98.44		0.08	
17	0.05	98.28		-0.08	
18	0.05				
18	0.06	98.36		-0.00	
20	· · · · · · · · · · · · · · · · · · ·			0.00	· · · · ·
	0.06	98.35		-0.01	
21	0.07	98.32		-0.04	· · · · · · · · · · · · · · · · · · ·
22	0.07	98.32		-0.04	
23	0.07	98.41		0.05	
24	0.08	98.32		-0.04	
25	0.08	98.32		-0.04	
26	0.08	98.43		0.07	
27	0.09	98.34		-0.02	
28	0.09	98.34		-0.02	
29	0.09	98.43		0.07	· · · · · · · · · · · · · · · · · · ·
30	0.10	98.37		0.01	
31	0.10	98.36		0.01	
32	0.10	98.42		0.06	
33	0.11	98.39		0.03	
34	0.11	98.39		0.03	
35	0.11	98.40		0.04	· · · · · · · · · · · · · · · · · · ·
36	0.12	98.40		0.04	
37	0.12	98.40		0.04	· · · · · · · · · · · · · · · · · · ·
38	0.12	98.39		0.03	······································
39	0.13	98.40		0.04	
40	0.13	98.40		0.04	· · · · · · · · · · · · · · · · · · ·
41	0.13	98.38		0.02	
42	0.14	98.40		0.04	
43	0.14	. 98.40		0.04	
44	0.14	98.38		0.02	
45	0.15	98.39		0.03	
46	0.15	98.39		0.03	
47	0.15	98.38		0.02	
47	0.15	98.39		0.02	· · · · · · · · · · · · · · · · · · ·
49	0.16	98.39		0.03	
50	0.16	98.38		0.02	

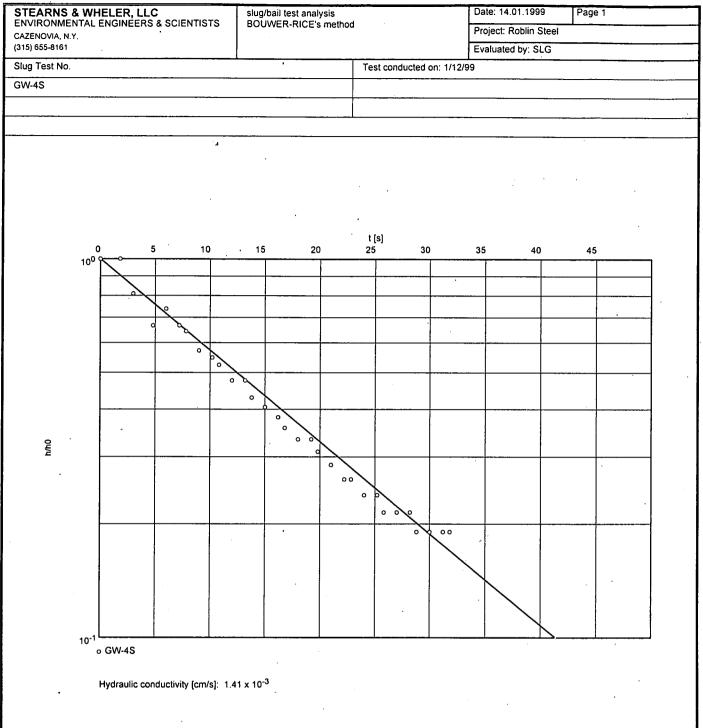

SIEARP	NS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 13.01.1999	Page 3
CAZENOVIA		BOUWER-RICE's method		Project: Roblin Steel	· · · · · · · · · · · · · · · · · · ·
(315) 655-8 ⁻				Evaluated by: SLG	
Slug Test		<u></u>	Test conducted on: 1/12/	<u> </u>	
GW-3			GW-3		
Static wate	er level: 98.36 ft below datum	·			<u></u>
	Pumping test duration	Water level	Drawdow	n	
	(min)	[ft]	(ft]		
51	0.17	98.38		0.02	
52	0.17	98.39		0.03	
53	0.17	98.38		0.02	
54	0.18	98.38		0.02	•
55	0.18	98.39		0.03	
56	0.18	98.39		0.03	
57	0.19	98.38		0.02	
58	0.19	98.39		0.03	· · · · ·
59	0.19	98.39		0.03	· · ·
60	0.20	98.38		0.03	
	0.20	98.38			
61				0.02	
62	0.20	98.39		0.03	
63	0.21	98.38		0.02	
64	0.21	98.38		0.02	
65	0.21	98.39		0.03	
66	0.22	98.38		0.02	
67	0.22	98.38		0.02	
68	0.22	98.38		0.02	
69	0.23	-98.38		0.02	
70	0.23	98.38		0.02	
.71	0.23	98.38		0.02	
72	0.24	98.38		0.02	
73	0.24	98.38		0.02	
74	0.24				
		98.38		0.02	•
75	0.25	98.38		0.02	
76	0.25	98.38		0.02	
77	0.25	98.38		0.02	
78	0.26	98.38		0.02	
79	0.26	98.38		0.02	
80	0.26	98.38		0.02	
81	0.27	98.38		0.02	
82	0.27	98.38		0.02	
83	0.27	98.38		0.02	
84	0.28	98.38		0.02	
85	0.28	98.38		0.02	
86	0.28	98.38		0.02	
87	· · · · · · · · · · · · · · · · · · ·				
	0.29	98.38		0.02	
88	0.29	98.38		0.02	
89	0.29	98.38		0.02	
90	0.30	98.38		0.02	
91	0.30	98.38		0.02	· · ·
92	0.30	98.38		0.02	
93	0.31	98.38		0.02	
94	0.31	98.38		0.02	
95	0.31	98.38		0.02	
96	0.32	98.38		0.02	·
97	0.32	98.38		0.02	
98	0.32	98.38		0.02	·
99	0.33	98.38		0.02	
100	0.33	98.38	1	0.02	

.

ł

ENVIRON	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 13.01.199		Page 4
CAZENOVI	A, N.Y.	· · · · · · · · · · · · · · · · · · ·		Project: Roblin S		
(315) 655-8	1161		· .	Evaluated by: SI	LG	
Slug Test	No.		Test conducted on: 1/12/9	9		
GW-3			GW-3			
·		·				
Chatlanual						
Static wat	ter level: 98.36 ft below datum					
	Pumping test duration	Water level	Drawdow	n .		
	[min]	(ft)	(ft)			
101	0.33	98.38		0.02		
102	0.35	98.38		0.02		
103	0.37	98.38		0.02		···· ··· · ··· ···
104	0.38	98.38		0.02		
105	0.40	98.38		0.02		
106	0.42	98.38		0.02		· · · · · · · · · · · · · · · · · · ·
107	0.43	98.38		0.02		
107	0.45	98.38		0.02		
108	0.45	98.38		0.02		
110	0.47	98.38		0.02		<u></u>
	0.48	98.38		0.02		
111						
112	0.52	98.38	1	0.02		
113	0.53	98.38		0.02		
114	0.55	98.38		0.02		·
115	0.57	98.38		0.02		
116	0.58	98.38		0.02		
117	0.60	98.38		0.02		
118	0.62	98.38		0.02		
119	0.63	98.38		0.02		
120	0.65	98.38		0.02		
121	0.67	98.38		0.02		
122	0.68	98.38		0.02		
123	0.70	98.38		0.02		
124	0.72	98.38	· · · · · ·	0.02		
125	0.73	98.38		0.02		
126	0.75	98.38		0.02		
127	0.77	98.38		0.02		·····
128	0.78	98.38		0.02		
129	0.80	98.38		0.02		· · · · · · · · · · ·
130	0.82	98.38		0.02		
131	0.83	98.38		0.02		
132	0.85	98.38		0.02		
133	0.87	98.38	+	0.02		
134	0.88	98.38		0.02		
135	0.90	98.38		0.02		
135	0.90	98.38	<u> </u>	0.02		
137	0.93	98.38		0.02		
138	0.95	98.38		0.02		
139	0.97	98.38		0.02		·
140	0.98	98.38		0.02		
141	1.00	98.38		0.02		
142	1.20	98.37		0.01		
143	1.40	98.37		0.01		
144	1.60	98.37		0.01		
145	1.80	98.37		0.01		
146	2.00	98.37	· ·	0.01		
147	2.20	98.37	· [· · · · · · · · · · · · · · · · · ·	0.01		
148	2.40	98.37		0.01		· <u> </u>
149	2.60	98.37	· · · · · · · · · · · · · · · · · · ·	0.01		
150	2.80	98.37		0.01		

ENIVIDO	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method			Page 5
CAZENOVI		BOUWER-RICE'S MELIND		Project: Roblin Steel	
(315) 655-6				Evaluated by: SLG	
Slug Test	No	I	Test conducted on: 1/12/9		
GW-3			GW-3		
Static wat	ter level: 98.36 ft below datum		· · · ·		· · · · · · · · · · · · · · · · · · ·
	Pumping test duration	Water level	Drawdowr	1	
151	(min]3.00	(ft]98.37	(ft]	0.01	
152	3.20	98.37			
152	3.40	98.37		0.01	
154	3.60			0.01	
154		98.37		0.01	
	3.80	98.37	-	0.01	
156	4.00	98.37		0.01	
157	4.20	98.37		0.01	
158	4.40	98.37		0.01	
159	4.60	98.37		0.01	
160	4.80	98.37		0.01	<u> </u>
161	5.00	98.37		0.01	
162	5.20	98.37		0.01	
163	5.40	98.37		0.01	
164	5.60	98.37		0.01	
165	5.80	98.37		0.01	
166	6.00	98.37		0.01 .	
167	6.20	98.37		0.01	
168	6.40	98.37		0.01	
169	· 6.60	98.37		0.01.	
170	6.80	98.37		0.01	
171	7.00	98.37		0.01	· · · · · · · · · · · · · · · · · ·
172	7.20	98.37		0.01	
173	7.40	98.36		0.01	
174	7.60	98.36		0.01	
175	7.80	98.36	· · ·	0.01	
176	8.00	98.36	· / ··· -· · · · · · · · · · · · · · · ·	0.01	
177	8.20	98.36		0.01	
178	8.40	98.36		0.01	
179	8.60	98.36		0.01	
180	8.80	98.36		0.01	
181	9.00	98.36	+	0.01	
182	9.20	98.36	+	0.01	
183	9.40	98.36	+	0.01	
184	9.60	98.36		0.01	
185	9.80	98.36		0.00	
186	10.00	98.36		0.00	· · · · · · · · · · · · · · · · · · ·
		30.30		0.00	
			-		
		· · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·	······································			
					·



Hydraulic conductivity [cm/s]: 1.26 x 10⁻⁴

STEAR	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 13.01.1999	Page 2
		BOUWER-RICE's method		Project: Roblin Stee	
AZENOV 315) 655-				Evaluated by: SLG	
lug Tes	st No.	-4	Test conducted o		
GW-4			GW-4		
	·····				
tatio wo	ater level: 99.35 ft below datum	[·
	Pumping test duration	Water level		rawdown	
		vvalet level		lawdown	
	(min)	[ft]		(ft)	
1	0.00	99.14		-0.21	
2	0.01	99.14		-0.21	
4	0.02	99.60		0.25	
5	0.03	99.68 99.59		0.33	
6	0.04	99.59		0.24	
7	0.05	99.60		0.25	. 6 2019 5 - 1 - 1
8	. 0.07	99.59		0.24	
9	0.08	99.59		0.24	
10	0.09	99.58		0.23	
11	0.10	99.58		0.23	
12	0.11	99.58		0.23	
13	0.12	99.58		0.23	· · · · · · · · · · · · · · · · · · ·
14	0.13	99.58	_	0.23	
15	0.14	99.58		0.23	
16	0.15	99.57		0.22	· · ·
17	0.16	99.57		0.22	
18	0.17	99.57		0.22	······
19	0.18	99.57	-	0.22	·····
20	0.19	99.57		0.22	
21	0.20	99.57		0.22	
22	0.21	99.57		0.22	
23	0.22	99.57		0.22	
24	0.23	99.56		0.21	
25	0.24	99.56		0.21	
26	0.25	99.56		0.21	
27	0.26	99.56		0.21	
28	0.27	99.56		0.21	·····
29	0.28	99.56		0.21	•
30	0.29	99.56		0.21	
31	0.30	99.56		0.21	
32 33	0.31	99.56 99.56		0.21	<u> </u>
34	0.32	99.56		0.21	
35	0.35	99.55		0.21	
36	0.37	99.55		0.20	·····
37	0.38	99.55		0.20	
38	0.40	99.55		0.20	
39	0.42	99.55		0.20	
40	0.43	99.55		0.20	
41	0.45	99.55		0.20	
42	0.47	99.55		0.20	
43	0.48	99.54		0.19	
44	0.50	99.54		0.19	
45	0.52	99.54		0.19	
46	0.53	99.54		0.19	
47	0.55	99.54		0.19	····
48	0.57	99.54		0.19	<u> </u>
49	0.58	99.54		0.19	
50	0.60	99.54		0.19	

	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis	Date: 13.01	1999 Page 3
CAZENOV		BOUWER-RICE's method	Project: Rot	lin Steel
(315) 655-	•		Evaluated b	y: SLG
Slug Tes	t No.		Test conducted on: 1/12/99	
GW-4				
Check -				
Static wa	iter level: 99.35 ft below datum			
	Pumping test duration	Water level	Drawdown	
	[min]	(ft]	[ft]	
51	0.62	99.53	0.18	
52	0.63	99.53	0.18	
53	0.65	99.53	0.18	
54	0.67	99.53	0.18	
55	0.68	99.53	0.18	
56	0.70	99.53	0.18	
57	0.72	99.53	0.18	
58	0.73	99.53	0.18	
59	0.75	99.53	0.18	
60	0.77	99.53	0.18	
61	0.78	99.53	0.18	
62	0.80	99.52	0.17	
63	0.82	99.52	0.17	
64	0.83	99.52	0.17	
65	0.85	99.52	0.17	
66	0.87	99.52	0.17	
67	0.88	99.52	0.17	
68	0.90	99.52	0.17	
69	0.92	99.52	0.17	
70	0.93	99.52	0.17	· · · · · · · · · · · · · · · · · · ·
71	0.95	99.52	0.17	
72	0.93	99.52	0.17	
73	0.97	99.51		
73	1.00		0.16	
74			0.16	
75	1.20	99.50 99.49	0.15	
			0.14	
77	1.60	99.48	0.13	
78	1.80	99.48	0.13	
79	2.00	99.47	0.12	
80	2.20	99.46	0.11	
81	2.40	99.46	0.11	
82	2.60	99.45	0.10	
83	2.80	99.45	0.10	
84	3.00	99.44	0.09	
85	3.20	99.44	0.09	
86	3.40	99.43	0.08	
87	3.60	99.43	0.08	
88	3.80	99.42	0.07	
89	4.00	. 99.42	0.07	
90	4.20	99.42	0.07	
91	4.40	99.41	0.06	
92	4.60	99.41	0.06	
93	4.80	99.41	0.06	
94	5.00	99.40	0.05	
95	5.20	99.40	0.05	
96	5.40	99.40	0.05	
97	5.60	99.39	0.04	
98	5.80	99.39	0.04	
99	6.00	99.39	0.04	
100	6.20	99.39	0.04	1

SILARN	IS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 13.01.19	99	Page 4	
ENVIRONI AZENOVIA		BOUWER-RICE's method	l	Project: Roblin	Steel	L	_
315) 655-81				Evaluated by: S			
ilug Test I	No.	· · · · ·	Test conducted or				
	·····		GW-4				
				· · · ·			
Static wate	er level: 99.35 ft below datum						
	Pumping test duration	Water level		rawdown			
		vvaler level		awuuwii			
	(min)	(ft)		_[ft]			
101	6.40	99.38		0.03			
102	6.60 6.80	99.38 99.38		0.03			
103	7.00	99.38		0.03			
105	7.20	99.38		0.03			
106	7.40	99.37		0.03			
107	7.60	99.37		0.02			
108	7.80	99.37		0.02		·	
109	8.00	99.37		0.02		<u> </u>	
110	8.20	99.36		0.01			
111	8.40	99.36		0.01			
112	8.60	99.36		0.01			
113	8.80	99.36		0.01			
114	9.00	99.36		0.01			
115	9.20	99.36		0.01		· · · · · · · · · · · · · · · · · · ·	
116	9.40	99.35	,	0.00			
117	9.60	99.35		0.00			
118	9.80	99.35		0.00			
119	10.00	99.35		0.00			
							-
				·			
						· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·					
		<u> </u>				······	
					. <u>.</u>	· · · ·	
							-
			. .	-			
					•		
	·····	· · · · · · · · · · · · · · · · · · ·					
		·					

TEAR	NS & WHELER, LLC	slug/bail test analysis		Date: 14.01.1999	Page 2	
	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin Ste		
AZENOVI 15) 655-8				Evaluated by: SLG		
lug Test			Tost conducted on: 1/12/5			
			Test conducted on: 1/12/9			
W-4S			GW-4S			
_						
tatic wat	ter level: 101.00 ft below datum	······				····
<u> </u>	Pumping test duration	Water level	Drawdow	n		H
1	[min]0.00	[ft] 100.93	[ft]	-0.07		
2	0.01	100.93		-0.07	······································	
3	0.02	101.17	· ·	0.17		
4	0.02					
5		101.42		0.42		····
	0.04	101.21	,	0.21		
6	0.05	101.34		0.34		
7	0.06	101.42		0.42		
8	0.07	101.33		0.33		
9	0.08	101.28		0.28	<u> </u>	
10	0.09	101.30		0.30		- 441
11	0.10	101.31	·····	0.31		
12	0.11	101.28		0.28		
13	0.12	101.26		0.26		
14	0.13	101.27		0.27		
15	0.14	101.26		0.26		
16	0.15	101.24		0.24		
17	0.16	101.23		0.23		
18	0.17	101.23		0.23		
19	0.18	101.22		0.22		
20	0.19	101.21		0.21		
21	0.20	101.20	1	0.20	· · · ·	
22	0.21	101.20	1	0.20	· · · ·	
23	0.22	101.19		0.19	·······	
24	0.23	101.18	· · · · · · · · · · · · · · · · · · ·	0.18	,, <u>,,,,</u> ,,	
25	0.24	101.18		0.18		
26	0.25	101.17	*****	0.17		
27	0.26	101.16	•	0.16		
28	0.27	101.16		0.16		
29	0.28	101.15	-	0.15		
30	0.29	101.15	+	0.15		
31	0.30	101.14	·	0.14		
32	0.31	101.14		0.14		
33	0.32	101.14		0.14		
34	0.32	101.13		0.13	·	
35	0.35	101.13		0.13	<u></u>	
36	0.35				······	
		101.11	· · · · · · · · · · · · · · · · · · ·	0.11		
37	0.38	101.11		0.11		
38	0.40	101.10		0.10		
39	0.42	101.10		0.10		
40	0.43	101.09		0.09	<u>-</u>	
41	0.45	101.09		0.09		
42	0.47	101.09	<u> </u>	0.09		
43	0.48	101.08		0.08		
	0.50	101.08		0.08		
45	0.52	101.08		0.08		
46	0.53	101.08		0.08		
47	0.55	101.07		0.07		
48	0.57	101.07		0.07		
49	0.58	101.07	+······	0.07		
50	0.60	101.07	+	0.07	·	

STEAP	RNS & WHELER, LLC	slug/bail test analysis	Date: 14.01.199	Page 3
ENVIRO CAZENOV	ONMENTAL ENGINÉERS & SCIENTISTS	BOUWER-RICE's method	Project: Roblin S	Steel
(315) 655-			Evaluated by: SI	LG
Slug Tes	,st No.		Test conducted on: 1/12/99	
GW-4S			GW-4S	
	to the set of on the along detring	l		
Static wa	vater level: 101.00 ft below datum			
	Pumping test duration	Water level	Drawdown	
	(min]	(ft)	(ft]	
51	0.62		0.07	
52	0.63	101.07	0.07	·,
53	0.65	101.06	0.06	· · · · · · · · · · · · · · · · · · ·
54	0.67	101.06	0.06	,
55	0.68	101.06	0.06	
56	0.70	101.06	0.06	
57	0.72	101.06	0.06	
58	0.73	101.06	0.06	
59	0.75	101.06	0.06	
60	0.77	101.06	0.06	
61	0.78	101.06	0.06	
62	0.80	101.06	0.06	
63	0.82	101.06	0.06	
64	0.83	101.05	0.05	
65	0.85	101.05	0.05	2010-00-0
66	0.87	101.05	0.05	
67	0.88	101.05	0.05	
68	0.90	101.05	0.05	
69	0.92	101.05	0.05	
70	0.93	101.05	0.05	· · · · · ·
71	0.95	101.05	0.05	
72	0.97	101.05	0.05	_ · ·
73	0.98	101.05	0.05	
74	1.00	101.05	0.05	
75	1.20	101.04	0.04	<u> </u>
76	1.40	101.04	0.04	
77	1.60	101.04	0.04	
78	1.80		0.03	
79	2.00	101.03	0.03	
80	2.20	101.03	0.03	······································
81	2.40	101.03	0.03	
82	2.60	101.03	0.03	
83	2.80	101.03	0.03	
84	3.00	101.03	0.03	
85	3.20	101.03	0.03	
86	3.40	101.03	0.03	
87	3.60	101.02	0.02	
88	3.80	101.02	0.02	
89	4.00	101.02	0.02	
90	4.20	101.02	0.02	
91	4.40	101.02	0.02	
92	4.60	101.02	0.02	
93	4.80	101.02	0.02	
94	5.00	101.02	0.02	
95	5.20	101.02	0.02	<u></u>
95	5.40	101.02	0.02	
96				<u></u>
97	5.60	101.02 101.02	0.02	
98				
	6.00	101.02	0.02	
100	6.20	101.02	0.02	

CALLAR.	NS & WHELER, LLC IMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 14.01.1999	Page 4	
		BOUWER-RICE's method		Project: Roblin Stee	el	
(315) 655-8				Evaluated by: SLG		<u></u>
Slug Test	No.	•	Test conducted on: 1			
GW-4S			GW-4S			
Statio	er level: 101.00 ft below datum					
Static wat	Pumping test duration					
	Pumping test duration	Water level	Draw	/down		
	(min)	(ft)	[ft]		
101	6.40	101.02		0.02		
102	6.60	101.01		0.01		
103	6.80	101.01		0.01		
104	7.00	101.01		0.01		_
105	7.20	101.01		0.01		
106	7.40	101.01		0.01		
107	7.60	101.01		0.01		
108	7.80	101.01		0.01		
109	8.00	101.01		0.01		
110	8.20	101.01		0.01	· · · · · · · · · · · · · · · · · · ·	
111	8.40	101.01		0.01		
112	8.60	101.01		0.01		
113	8.80	101.01		0.01		
114 115	9.00			0.01		
116	9.20	101.01		0.01	•	
117	9.60	101.01		0.01		
118	9.80	101.01		0.01		
119	10.00	101.01		0.01		<u> </u>
120	12.00	101.00		0.00		
		· · · · · · · ·				
				···		<u> </u>
					···· ··· · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·		······	t	
					······································	
	· · · · · ·		· · · · · · · · · · · · · · · · · · ·			<u></u>
		· · · · · · · · · · · · · · · · · · ·				
		······				
					· · · ·	
		•				

STEARNS & WHELER, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS		slug/bail test analysis BOUWER-RICE's me		Date: 14.01.1999 Page 1				
CAZENOVIA, N.Y.	INEERS & SCIENTISTS	BOUWER-RICE's me	thod	Project: Roblin Steel	······			
(315) 655-8161				Evaluated by: SLG				
Slug Test No.			Test conducted on: 1/12/	98				
GW-5		<u> </u>						
					<u> </u>			
	· .			· · · · · · · · · · · · · · · · · · ·				
			······································					
	·							
			t [s]					
0 10 ⁰ 9	3 6	9 12	15 18	21 24	27			
	0		·					
		0						
	°							
		• • • • • • • • • • • • • • • • • • •						
		· .						
•								
04/4								
-				· · · · · · · · · · · · · · · · · · ·				
10 ⁻¹								
ه GW	/-5							

Hydraulic conductivity [cm/s]: 3.38 x 10⁻⁴

STEAR	NS & WHELER. LLC	slug/bail test analysis		Date: 14.01.199	9	Page 2	1 (
	ONMENTAL ENGINEERS & SCIENTISTS BOUWER-RICE's method Project: Roblin Steel			-			
AZENOV 315) 655-8				Evaluated by: SI			`
lug Tesl			Test conducted				
		GW-5					
GW-5			GVV-5	······			
Static wa	ter level: 100.20 ft below datum						
	Pumping test duration	Water level	-	Drawdown			
	(min)	[ft]		[ft]			
1	0.00	100.80		0.60			
2	0.06	100.58		0.38			
3	0.07	100.67		0.47			
4	0.08	100.72		0.52			
5	0.09	100.58		0.38		<u></u>	
6	0.10	100.68		0.48			
7	0.11	100.66		0.46			
8	0.12	100.60	-	0.40			
9	0.13	100.67		0.47			
10	0.14	100.63	·	0.43			
11	0.15	100.62		0.42		<u> </u>	—]
12	0.16	100.65		0.45			——['
13	. 0.17	100.61		0.41			
14	0.18	100.63		0.43			
15	0.19	100.64		0.44			
16	0.20	100.61	·····	0.41			
17	0.21	100.63		0.43			
18	0.22	100.62		0.42			
19	0.23	100.62		0.42			
20	0.24	100.63		0.43			
21	0.25	100.62		0.42			
22	0.26	100.62		0.42			
23	0.27	100.62		0.42			
24	0.28	100.62		0.42			
25	0.29	100.62		0.42			
26	0.30	100.62		0.42			
27	0.31	100.61		0.41			
28	0.32	100.62		0.42			
29	0.33	100,62		0.42	1		
30	0.35	100.62		0.42			
31	0.37	100.61		0.41			
32	0.38	100.61		0.41			
33	0.40	100.61		0.41			$\neg \uparrow$
34	0.42	100.61		0.41		· · · · · · · · · · · · · · · · · · ·	
35	0.43	100.60		0.40		·	
36	0.45	100.60		0.40			
37	0.47	100.60		0.40			
38	0.48	100.60		0.40			
39	0.50	100.60		0.40		<u> </u>	
40 -	0.52	100.60		0.40			
41	0.53	100.60		0.40	_		
42	0.55	100.60		0.40			
43	0.57	100.60		0.40			
44	0.58	100.60		0.40			
45	0.60	100.60		0.40			
46	0.62	100.60		0.40			
47	0.63	100.60		0.40			
48	0.65	100.60		0.40		<u></u>	
49	0.67	100.60		0.40		- <u>-</u>	
50	0.68	100.60		0.40		<u> </u>	[

ENVIRONM	& WHELER, LLC ENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 3
CAZENOVIA, N	I.Y.		i	Project: Roblin Ste	
(315) 655-8161				Evaluated by: SLC	3
Slug Test No).		Test conducted on: 1/12/9	8	
GW-5			GW-5		
Chati			· · · · · · · · · · · · · · · · · · ·		
Static water I	evel: 100.20 ft below datum				
	Pumping test duration	Water level	Drawdowr	ו	
	(min)	(ft]	. [ft]		
51	0.70	100.60		0.40	
52	0.72	100.60		0.40	
53	0.73	100.60		0.40	
54	0.75	100.60		0.40	
55	0.77	100.60	•	0.40	·····
56	0.78	100.60		0.40	
57	0.80	100.60		0.40	
58	0.82	100.60		0.40	
59	0.83	100.60		0.40	
60	0,85	100.60		0.40	
61	0.87	100.60		0.40	
62	0.88	100.60	· ·	0.40	
63	0.90	100.60		0.40	
64	0.92	100.60		0.40	
65	0.93	100.60		0.40	
66	0.95	100.59	···	0.39	
67	0.97	100.59		0.39	
68	0.98	100.59		0.39	
69	1.00	100.59		0.39	
70	1.20	100.59		0.39	
71	1.40	100.59		0.39	
72	1.60	100.59		0.39	
72	1.80	100.59		0.39	· · ·
	2.00	100.59			
74 75	2.00	100.59		0.39	· · ·
75	2.20				
76	2.40	100.58		0.38	· · ·
78	2.80	100.58			
79				0.38	
80	3.00	100.58		0.38	
		100.58		0.38	
81	3.40	100.58		0.38	
82	3.60	100.58		0.38	
83	3.80	100.58		0.38	
84	4.00	100.58		0.38	
85	4.20	100.58		0.38	
86	4.40	100.58		0.38	
87	4.60	100.58		0.38	
88	4:80	100.58		0.38	
89	5.00	100.58		0.38	
90	5.20	100.58		0.38	
91	5.40	100.58		0.38	
92	5.60	100.58		0.38	
93	5.80	100.58		0.38	
94	6.00	100.57		0.37	
95	6.20	100.57		0.37	
96	6.40	100.57		0.37	
97	6.60	100.57		0.37	
98	6.80	100.57		0.37	
99	7.00	100.57		0.37	
100	7.20	100.57		0.37	1

Į

ENVIRON	IS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 4	
CAZENOVIA		BUUWER-RICE'S METHOD		Project: Roblin Steel		
(315) 655-81				Evaluated by: SLG		
Slug Test	No.		Test conducted or	: 1/12/98		
GW-5			GW-5	·		
	······································				<u> </u>	
Static wate	er level: 100.20 ft below datum	·	· · · · ·			•
	Pumping test duration	Water level		awdown		
	Pumping test duration	vvaler level		awdown		
	(min)	[ft]		[ft]		_
101	7.40	100.57		0.37		
102	7.60	100.57		0.37		
103	7.80	100.57		0.37		
104	8.00	100.57		0.37		
105	8.20	100.57		0.37		
106 ·	8.40	100.57		0.37		
107	8.60	100.57		0.37		
108	8.80	100.57		0.37		
109	9.00	100.57		0.37		
110	9.20	100.57	1	0.37		
111	9.40	100.57		0.37		
112	9.60	100.57		0.37		
113	9.80	100.57		0.37		
114	10.00	100.57		0.37		
115	12.00	100.57		0.37		
						-
					-	
		·				
		· · · · · · · · · · · · · · · · · · ·				
	-				· · · · · · · · · · · · · · · · · · ·	
		- 1096				
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
		<u> </u>				
		······				
		······································				
		- · · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·				·	
				·		
	····					
		·				
		• • • •			<u> </u>	
<u> </u>				····		
					 	
		<u> </u>				
1			1			

NVIRONME			C & SCIENTISTS	slug	/bail test anal JWER-RICE's	ysis method			4.01.1999		ge 1		
AZENOVIA, N.	Y.					meanou			Project: Roblin Steel				
15) 655-8161				.					Evaluat	ed by: SL	G		
lug Test No.							Test conduc	ted on: 1/12	2/99				
W-5S	5S												
					F								
					· · ·	l_,	·····						
				•									
					· .								
						н. 1							
					_		t [s]						
	0 10 ⁰ ĵ~		5 10	15	5 20) T	25	30	35	40		15	7
	-		\leftarrow										4
	-	o											_
		o			L								_
		۰.	°°°°			L							
													1
			2°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		00000								
					000	° •,			\square				
				_			° ° ° ° °			\leq	-		
								00	° •	Γ			
04/4													
2				•									Ē
						•							
				· •									
							r.						
													1

Hydraulic conductivity [cm/s]: 6.24 x 10⁻⁴

•

•

STEAR	NS & WHELER, LLC	slug/bail test analysis		Date: 14.01.199	9	Page 2
ENVIRON CAZENOVI	MENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin S	Steel	L
(315) 655-8				Evaluated by: SI		
Slug Test	No.	· · ·	Test conducted on	··· ··· ·· · · · · · · · · · · · · · ·		
GW-5S	1 100		GW-5S		_	
Static wat	er level: 100.00 ft below datum		· · · · · · · · · · · · · · · · · · ·			
Static wat		Makes laws!		awdown		
	Pumping test duration	Water level		awdown		
	(min)	[ft]		_[ft]		
1	0.00	100.90		0.90		
2	0.00	3.29		-96.71		
3	0.00	3.30		-96.70		· · · · · · · · · · · · · · · · · · ·
4	0.00	3.31		-96.69		
6	0.00			-96.69		
7	0.00	3.31		-96.69		
8	0.00	3.29		-96.71 -96.69		· · ·
9	0.00	3.31		-96.69		
10	0.00	3.31		-96.69		
11	0.00	3.31		-96.69		<u></u>
12	0.00			-96.70		
13	0.00	3.30		-96.70		
14	0.00	3.30		-96.70		
15	0.00	3.30		-96.70		
16	0.00	3.30		-96.70		
17	0.00	3.30		-96.70		
18	0.00	3.30		-96.70		
19	0.00	3.30		-96.70		
20	0.00	3.30		-96.70		
21	0.00	3.30		-96.70		<u></u>
22	0.00	3.30		-96.70		
23	0.00	3.30		-96.70		
24	0.00	3.30		-96.70		
25	0.00	3.30		-96.70		· • • • • • • • • • • • • • • • • • • •
26	0.00	3.30		-96.70		
27	0.00	3.30		-96.70		
28	0.00	3.30		-96.70		
29	0.00	3.30		-96.70		
30	0.00	3.30		-96.70		
31	0.00	3.30		-96.70		
32	0.00	3.30		-96.70	-	
33	0.00	3.30		-96.70		
34	0.00	3.30		-96.70	<u></u>	
35 36	0.00	3.30		-96.70		
36	0.00	3.30		-96.70		· · · · · · · · · · · · · · · · · · ·
37	0.00	3.30		-96.70		
39	0.00	3.30		-96.70 -96.70		
40	0.00	3.30		-96.70		
41	0.00	3.30		-96.70		
42	0.00	3.30		-96.70		
43	0.00	3.30		-96.70		· · · · · · · · · · · · · · · · · · ·
44	0.00	3.30		-96.70		
45	0.00	3.30		-96.70		
46	0.00	3.30	·····	-96.70		
47	0.00	3.30		-96.70		<u></u>
48	0.00	3.30		-96.70		<u></u>
49	0.00	3.30		-96.70		
50	0.00	3.30		-96.70		·····

CNN/IDO	RNS & WHELER, LLC DNMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis	Date: 14.01.1999	Page 3
CAZENOV		BOUWER-RICE's method	Project: Roblin Ste	el
(315) 655-8			Evaluated by: SLG	3
Slug Test	it No.	т	Fest conducted on: 1/12/99	
GW-5S			GW-5S	<u> </u>
				-
Static wa	ater level: 100.00 ft below datum			
	Pumping test duration	Water level	Drawdown	
	(min)	(ft]	[ft]	
51	0.00	3.30	-96.70	······································
52	0.00	3.30	-96.70	
53	0.00	3.30	-96.70	
54	0.00	3.30	-96.70	
55	0.00	3.30	-96.70	
56	0.00	3.30	-96.70	
57	0.00	3.30	-96.70	e
58	0.00	3.30	-96.70	P
59	0.00	3.30	-96.70	
60	. 0.00	3.30	-96.70	
61	0.00	3.30	-96.70	
62	0.00	3.30	-96.70	
63	0.00	3.30	-96.70	
64	0.00	3.30	-96.70	
65	0.00	3.30	-96.70	
66	0.00	3.30	-96.70	
67	0.00	3.30	-96.70	
68	0.00	3.30	-96.70	
69	0.00	3.30	-96.70	
70	0.00	3.30	-96.70	
71	0.00	3.30	-96.70	,
72	0.00	3.30	-96.70	
73	0.00	3.30	-96.70	
74	0.00	3.30	-96.70	
75	0.00	3.30	-96.70	
76	0.00	3.30	-96.70	
77	0.00	3.30	-96.70	· · · · · · · · · · · · · · · · · · ·
78	0.00	3.30	-96.70	
79	0.00	3.30	-96.70	
80	0.00	3.30	-96.70	······
81	0.00	3.30	-96.70	
82	0.00	3.30	-96.70	
83	0.00	3.30	-96.70	
84	0.00	3.30	-96.70	<u> </u>
85	0.00	3.30	-96.70	
86	0.00	3.30	-96.70	
87	0.00	3.30	-96.70	
88	0.00	3.30	-96.70	
89	0.00	3.30	-96.70	
90	0.00	3.30	-96.70	
91	0.01	3.30	-96.70	· · ·
92	0.01	3.30	-96.70	
93	0.01	3.30	-96.70	
94	0.01	3.30	-96.70	
95	0.01	3.30	-96.70	
96	0.01	3.30	-96.70	
97	0.01		2	
97		3.30	-96.70	
90]	0.01	3.30	-96.70	
99	0.01	3.30	-96.70	

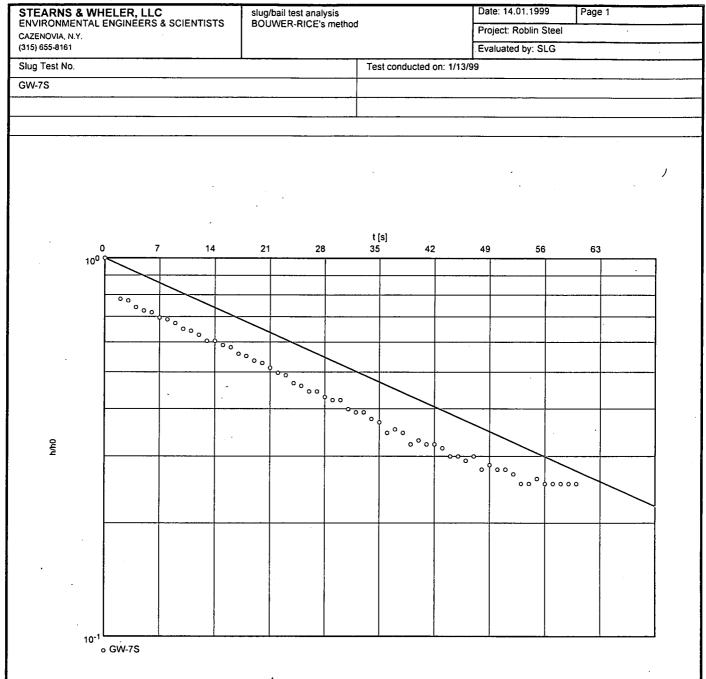
STEAR	NS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis	Date: 1	4.01.1999	Page 4	
	VIRONMENTAL ENGINEERS & SCIENTISTS BOUWER-RICE's method Project: Roblin Steel					
15) 655-8	655-8161 Evaluated by: SLG					
lug Test	No.	. Tes	t conducted on: 1/12/99			
W-5S	·····	. GW	/-5S			
,						
tatic wat	er level: 100.00 ft below datum	<u></u>		-		
	Pumping test duration	Water level	Drawdown	<u> </u>		
101	[min] 0.01	[ft]	[ft]	. 74		
101	0.01	3.29		6.71 6.71		
102	0.01	3.29		6.71		
104	0.01	3.29		5.71		······································
105	0.01	3.29		6.71		. <u></u>
106	0.01	3.29		5.71		
107	0.01	3.29		6.71		
108	0.01	3.29		3.71		
109	0.01	3.29		6.71		
110	0.01	3.29		6.71		
111	0.01	3.29		6.71		
112	0.01	3.29	-9	6.71		
113	0.01	3.29	-9	5.71		
114	0.01	3.29	-9	6.71		
115	0.01	3.29	-9	6.71		
116	0.01	3.29	-9	3.71		
117	0.01	3.29	-90	6.71		
118	0.01	3.29	-91	6.71		
119	0.01	3.29	-90	6.71		
120	0.01	3.29	-90	6.71		
121	0.01	3.29		6.71		
122	0.01	3.29		6.71		
123	0.01	3.29		6.71		
124	0.01	3.29		5.71		
125	0.01	3.29		5.71		
126	0.01	3.29		5.71		
127	0.01	3.29		6.71		
128	0.01	3.29		5.71		<u> </u>
129 130	0.01	3.29		5.71 5.71		
130	0.01	3.29 3.29		5.71 5.71		
132	0.01	3.29		5.71		
133	0.01	3.29		5.71		<u></u>
134	0.01	3.29		5.71		
135	0.02	3.29		5.71		
136	0.02	3.29		5.71		<u></u>
137	0.02	3.29		6.71		
138	0.02	3.29		5.71		
139	0.02	3.29		6.71		<u> </u>
140	0.02	3.29		6.71		
141	0.02	3.29		5.71	· · ·	
142	0.02	3.29		5.71		
143	0.02	3.29	-90	5.71		
144	0.03	3.29		6.71		
145	0.03	3.29		6.71		
146	0.03	3.29		6.71		<u></u>
147	0.04	3.29		6.71		
148	0.04	100.73		0.73	· · · · ·	
149	0.04	3.29	-96	6.71		
150	0.05	3.29	-90	5.71		

SIEAP	RNS & WHELER, LLC	slug/bail test analysis		Date: 14.01.1999	Page 5
CAZENO	ONMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin Steel	
(315) 655				Evaluated by: SLG	
Slug Tes	st No	ـــــــــــــــــــــــــــــــــــــ	fest conducted on: 1/12/9		
GW-5S					
Gvv-55			GW-5S		
Static wa	ater level: 100.00 ft below datum				<u></u>
	Pumping test duration	Water level	Drawdowr	<u>ا</u> . ۱	
		<i>2</i> 23			
151	[min]0.05	(ft] 100.66	[ft]_[ft]	0.66	
152	0.05	3.29		-96.71	
153	0.06	3.29		-96.71	
154	0.06	100.63		0.63	
155	0.06	3.29		-96.71	
156	0.07	3.29			
157				-96.71	
157	0.07	3.29		-96.71	
158	0.07	100.61		0.61	
	0.07	3.29		-96.71	
160	0.08	3.29		-96.71	
161	0.08	100.60	•	0.60	,
162	0.08	3.29		-96.71	<i></i>
163	0.09	3.29		-96.71	
164	0.09	100.60		0.60	·
165	0.09	3.29		-96.71	
166	0.10	3.29		-96.71	
167	0.10	100.59		0.59	
168	0.10	3.29		-96.71	
169	0.11	3.29		-96.71	•
170	0.11	100.58		0.58	
171	0.11	3.29		-96.71	
172	0.12	3.29		-96.71	
173	0.12	100.58		0.58	
174	0.12	3.29		-96.71	
175	0.13	. 3.29		-96.71	
176	0.13	3.29		-96.71	
177	0.13	100.57		0.57	
178	0.13	3.29		-96.71	
179	0.14	. 3.29		-96.71	
180	0.14	3.29		-96.71	
181	0.14	100,56	· · · ·	0.56	• •
182	0.14	3.29		-96.71	· · · · · · · · · · · · · · · · · · ·
183	0.15	3.29		-96.71	
184	0.15	100.55	· · · · · · · · · · · · · · · · · · ·	0.55	
185	0.15	3.29		-96.71	
186	0.16	3.29		-96.71	
187	0.16	100.55		0.55	
188	0.16	3.29		-96.71	
189	0.17	3.29		-96.71	
190	0.17	100.54	· ·	0.54	
191	0.18	100.53		0.53	
192	0.19	100.52		0.52	
193	0.20	100.52		0.52	······
194	0.21	100.51		0.51	
195	0.22	100.50		0.50	
196	0.23	100.50	<u> </u>	0.50	
197	0.23	3.29		-96.71	
198	0.23	100.49	 	0.49	
199	0.24	100.49		0.49	, <u></u>
200			L		
	0.26	100.47	1	0.47	

STEAR	RNS & WHELER, LLC INMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 14.01.199	9 Page 6	
ENVIRO CAZENOV		BOUWER-RICE's method		Project: Roblin S	Steel	
315) 655-				Evaluated by: SI		
Slug Tes	st No.		Test conducted on: 1/1			
GW-5S			GW-5S			····
					·	
Statio	ater level: 100.00 ft below datum					
	Pumping test duration	Water level	Drawd			
	Fumping test duration	vvater level	Drawu	own		
	(min)	(ft]	(ft]		<u></u>	
201	0.27	100.47		0.47		
202	0.28	100.46		0.46		
203	0.29	100.46		0.46		
204	0.30	100.45		0.45		
205	0.31	100.44		0.44		
200	0.32	100.44		0.44		
207	0.35	100.43		0.43		
208	0.37	100.42		0.42	·	· · · · · ·
210	0.38	100.40		0.40		
211	0.40	100.39		0.39		·····
212	0.42	100.39		0.39		
213	0.43	100.38		0.38		
214	0.45	100.37		0.37		
215	0.47	100.37		0.37		
216	0.48	100.36		0.36		
217	0.50	100.36		0.36		· ·
218	0.52	100.35		0.35		
219	0.53	100.35		0.35		
220	0.55	100.35		0.35		
221	0.57	100.34		0.34		
		· · · · · · · · · · · · · · · · · · ·				
					·····	
		· · · · · · · · · · · · · · · · · · ·				
					· * *	
						·= ·· · · ·
		······································	· · · · · · · · · · · · · · · · · · ·			
	·····	·····				
						u
	······					
		<u> </u>				
						······································
						·····
		······			·····	
1						

STEARNS & WHELER, LLC slug/bail test analysis ENVIRONMENTAL ENGINEERS & SCIENTISTS BOUWER-RICE's me				sis			Date: 14.01.199		Page 1	age 1		
CAZENOVIA, N.Y.	301EN 11313	BOUWE	R-RICE'S I	nethod			Project: Roblin S					
(315) 655-8161							Evaluated by: S	LG				
Slug Test No.				Te	est conducted	on: 1/13/99						
GW-6												
					<u></u>							
					_ · · · · -							
· · · · · · · · · · · · · · · · · · ·												
		•	-	t	: [s] 5 6		-		-			
0 1 10 ⁰ 0	2	3	4	·	1	i 	7 8	3 T	9	ר ר		
					· ·					-		
		Î		0				<u> </u>		-		
										-		
· · · · · · · · · · · · · · · · · · ·												
										1		
								-				
· · · · · · · · · · · · · · · · · · ·										-		
10 ⁻¹										l .		
o GW-6										· ·		
	,											

.


Hydraulic conductivity [cm/s]: 8.80 x 10⁻⁴

.

STEARI	NS & WHELER, LLC	slug/bail test analysis		Date: 14.01.1999	Page 2	
ENVIRON AZENOVI		BOUWER-RICE's method		Project: Roblin Ste	el	
42ENOVI. 15) 655-8				Evaluated by: SLG		
lug Test	No.		Test conducted on: *			
GW-6		·	GW-6			
Static wat	er level: 98.41 ft below datum					
	Pumping test duration	Water level	Draw	vdown		
		Water level	Dia			
	(min)	[ft]		ft]		
1	0.00	99.10		0.69	·	
2	0.05	98.99		0.58		
4	0.06	98.90		0.49		
5	0.08	98.94		0.53		
6	0.09	98.96		0.55		
7	0.00	98.95		0.54	· · · · · · · · ·	
8	0.11	98.94		0.53		<u> </u>
9	0.12	98.94		0.53		
10	0.13	98.94		0.53		
11	0.14	98.94		0.53		<u> </u>
12	0.15	98.94		0.53		, <u></u> ,
13	0.16	98.94		0.53		
14	0.17	98.94		0.53		
15	0.18	98.94		0.53		
16	0.19	98.94		0.53		
17	0.20	. 98.94		0.53		
18	0.21	98.94		0.53		
19	0.22	98.94		0.53		
20	0.23	98.94		0.53		
21	0.24	98.94		0.53		
22	0.25	98.94		0.53		
23	0.26	98.94		0.53		
24	0.27	98.94		0.53	<u> </u>	
25	0.28	98.94		0.53		
26	0.29	98.94		0.53		
27 28	0.30	98.94 98.94		0.53		
28	0.32	98.94	· · · · · · · · · · · · · · · · · · ·	0.53		
30	0.32	98.94		0.53	<u></u>	
31	0.35	98.93		0.52		
32	0.37	98.93		0.52	<u> </u>	·
33	0.38	98.93	+	0.52		
34	0.40	98.93		0.52		
35	0.42	98.93		0.52		
36	0.43	98.93		0.52		
37	0.45	98.93		0.52		
38	0.47	98.93		0.52		
39	0.48	98.93		0.52		
40	0.50	98.93		0.52		
41	0.52	98.93		0.52		
42	0.53	98.93		0.52		
43	0.55	98.93		0.52		
44	0.57	98.93		0.52		
45	0.58	98.93		0.52		
46	0.60	98.93		0.52		
47	0.62	98.93		0.52		
48	0.63	98.93		0.52		
49	0.65	98.93 98.93		0.52		

ENVIRON	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method			Page 3
CAZENOVI				Project: Roblin St	eel
(315) 655-8			F	Evaluated by: SL	G
Slug Test	No.	· · · · · · · · · · · · · · · · · · ·	Test conducted on: 1/13/99		
GW-6			GW-6		
Static wat	er level: 98.41 ft below datum	·.			
·	Pumping test duration	Water level	Drawdown		
	(min)	(ft]	(ft]		
51	0.68	98.93		0.52	
52	0.70	98.93		0.52	
53	0.72	98.92		0.51	
54	0.73	98.92		0.51	
55	0.75	98.92		0.51	
56	0.77	98.92		0.51	
57	0.78	98.92		0.51	
58			+		
	0.80	98.92		0.51	
59	0.82	98.92		0.51	
60	0.83	98.92		0.51	
61	0.85	98.92		0.51	
62	0.87	98.92		0.51	
63	0.88	98.92		0.51	······································
64	0.90	98.92		0.51	
65	0.92	98.92		0.51	
66	0.93	98.92		0.51	
67		98.92		0.51	
68	0.97	98.92			
				0.51	
69	0.98	98.92		0.51	
70	1.00	98.92		0.51	
71	1.20	98.91		0.50	
72	1.40	98.91		0.50	
73	1.60	98.91		0.50	
74	1.80	98.91		0.50	
75	2.00	98.90		0.49	
76	2.20	98.90		0.49	
77	2.40	98.90		0.49	······································
78	2.60	98.90	• • • • • • • • • • • • • • • • • • • •	0.49	
79	2.80	98.89		0.48	
80	3.00	98.89			
81				0.48	····· ·
	3.20	98.89		0.48	
82	3.40	98.89		0.48	
83	3.60	98.89		0.48	
84	3.80	98.88		0.47	
85	4.00	98.88		0.47	
86	4.20	98.88		0.47	
87	4.40	98.88		0.47	
88	4.60	98.88	1	0.47	
89	4.80	98.88		0.47	
90	5.00	98.87		0.46	
91	5.20	98.87			
92				0.46	
	5.40	98.87		0.46	
93	5.60	98.87		0.46	
94	5.80	98.87		0.46	
95	6.00	98.87		0.46	
96	. 6.20	98.86		0.45	
97	6.40	98.86		0.45	
98	6.60	98.86		0.45	
99	6.80	98.86		0.45	
	3.00	55.55	1	0.70	

SIEAR	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method	ł	Date: 14.01.1999	Page 4
CAZENOV			i da serie de la constante de la c	Project: Roblin Stee	
(315) 655-				Evaluated by: SLG	
Slug Tes	t No.	<u>.</u>	Test conducted on:	1/13/99	····
GW-6			GW-6		Managara
					· · · · · · · · · · · · · · · · · · ·
Static wa	iter level: 98.41 ft below datum				
	Pumping test duration	Water level	Drav	wdown	
	()	141		161	
101	[min]7.20	[ft] 98.86		[ft]0.45	
102	7.40	98.85	1	0.44	
103	7.60	98.85		0.44	
104	7.80	98.85		0.44	
105	8.00	98.85	!	0.44	
106	8.20	98.85		0.44	
107	8.40	98.85		0.44	
108	8.60	98.85		0.44	
109	8.80	98.85		0.44	
110	9,00	98.84		0.43	
111	9.20	98,84		0.43	
112	9.40	98.84		0.43	
113	9.60	98.84		0.43	
114	9.80	98.84		0.43	
115	10.00	98.84		0.43	
			·		· · · · · · · · · · · · · · · · · · ·
		· · · · · ·			
		- · · · · · · · · · · · · · · · · · · ·			
				<u></u>	
		<u></u>			
		·····			
				· · · ·	
	····				
		······································			
_					
		· · · · ·			
		······································			
		······			
	· · · ·	· · · · ·			
			····		······································
	····				• • <u>•</u>
		· · · · · · · · · · · · · · · · · · ·			
	·····				
		. <u></u>		_	· ····································
	1				

Hydraulic conductivity [cm/s]: 5.47 x 10⁻⁴

STEARNS & WHELER, LLC	slug/bail test analysis		Date: 14.01.199	99	Page 2	
NVIRONMENTAL ENGINEERS & SCIENTIS	STS BOUWER-RICE's method	I	Project: Roblin	Steel	1	
AZENOVIA, N.Y. 115) 655-8161			Evaluated by: S		· · · · · · · · · · · · · · · · · · ·	
lug Test No.	L	Test conducted of				
GW-7S		GW-7S				
Static water level: 99.72 ft below datum						
Pumping test duration	Water level		Drawdown			
[min]	(ft]		(ft]			
1 0.00	100.15		0.43			
2 0.00	99.73		0.01			
3 0.01	100.15		0.43			
4 0.01	99.91		0.19			
5 0.01	100.08		0.36			
6 0.02	100.07		0.35			
7 0.02	100.07		0.35			
8 0.02	100.06		0.34			
9 0.03	100.06		0.34			
10 0.03	100.06		0.34			
11 0.03	100.05		0.33			
12 0.04	100.05		0.33			
13 0.04	100.05		0.33			
14 0.04	100.05		0.33			
15 0.05	100.05		0.33			
16 0.05	100.05		0.33			
17 0.05	100.04		0.32			
18 0.06 19 0.06	100.04		0.32			
19 0.06 20 0.06	100.04		0.32			
21 0.07	100.04		0.32		<u> </u>	<u> </u>
22 0.07	100.04		0.32			
23 0.07	100.04		0.32			
24 0.08	100.04		0.31		······	
25 0.08	100.03		0.31			
26 0.08	100.03		0.31			
27 0.09	100.03		0.31		· · · · · · · · · · · · · · · · · · ·	
28 0.09	100.03		0.31			
29 0.09	100.03		0.31			
30 0.10	100.03		0.31			
31 0.10	100.03		0.31			
32 0.10	100.02		0.30		· • • • • • • • • • • • • • • • • • • •	
33 0.11	100.02	· · · · · · · · · · · · · · · · · · ·	0.30			
34 0.11	100.02	:	0.30			
35 0.11	100.02		0.30		·····	
36 0.12	100.02	<u> </u>	0.30			
37 0.12	100.02	: · · ·	0.30			
38 0.12	100.02		0.30			
39 0.13	100.02		0.30			
40 0.13	100.02		0.30			
41 0.13	100.01		0.29			
42 0.14	100.01		0.29			
43 0.14	100.01		0.29			
44 0.14	100.01		0.29			
45 0.15	100.01		0.29			
46 0.15	100.01		0.29			
47 0.15	100.01		0.29			
48 0.16	100.00)	0.28			
49 0.16	100.00)	0.28			
50 0.16	100.00		0.28			

ENVIRO	RNS & WHELER, LLC DNMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		14.01.1999 Page 3
CAZENO	VIA, N.Y.			ct: Roblin Steel
(315) 655			Evalu	ated by: SLG
Slug Te	st No.		Test conducted on: 1/13/99	
GW-7S			GW-7S	
				·
Static w	ater level: 99.72 ft below datum			
	Pumping test duration	Water level	Drawdown	······································
	Fumping test duration	vvalet level	Drawdown	
	(min)	(ft]	[ft]	
51	0.17	100.00		0.28
52	0.17	100.00		0.28
53	0.17	100.00		0.28
54	0.18	100.00		0.28
55	0.18	100.00		0.28
56	0.18	99.99		0.27
57	0.19	99.99		0.27
58	0.19	99.99		0.27
59	0.19	. 99.99		0.27
60	0.20	99.99		0.27
61	0.20	99.99		0.27
62	0.20	99.99		0.27
63	0.21	99.98		0.27
64	0.21	99.98		0.26
65	0.21	99.98		0.26
66	0.22	99.98		0.26
67	0.22	99.98		0.26
68	0.22	99.98		0.26
69	0.23	99.98		0.26
70	0.23	99.98		0.26
71	0.23	99.98		0.26
72	0.24	99.97		0.26
73	0.24	99.97		0.25
74	0.24	99.97	- <u></u>	0.25
75	0.25	99.97		0.25
76	0.25	99.97		0.25
77	0.25	99.97		0.25
78	0.26	99.97		0.25
79	0.26	99.97		0.25
80	0.26	99.97		0.25
81	0.27	99.96		0.24
82	0.27	99.96		0.24
83	0.27	99.96		0.24
84	0.28	99.96		0.24
85	0.28	99.96		0.24
86	0.28	99.96		0.24
87	0.28	99.96		0.24
88	0.29	99.96		0.24
89	0.29	99.96		
90	0.29	99.96		0.24
90	0.30			
		99.96		0.24
92	0.30	99.95		0.23
93	0.31	99.95		0.23
94	0.31	99.95	· · · · · · · · · · · · · · · · · · ·	0.23
95	0.31	99.95		0.23
96	0.32	99.95		0.23
97	0.32	99.95		0.23
98	0.32	99.95		0.23
99	0.33	99.95		0.23
100	0.33	99.95		0.23

•

. .

STEARNS	& WHELER, LLC	slug/bail test analysis		Date: 14.01.1999		Page 4			
NVIRONM AZENOVIA, I	ENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin St	leel				
15) 655-816				Evaluated by: SL		,,,,,,,			
lug Test No	- <u> </u>	-1	Test conducted on: 1/13/		<u> </u>				
W-7S			GW-7S						
	· · · · · · · · · · · ·		<u>, ,</u> , ,,, ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,						
Static water	level: 99.72 ft below datum								
	Pumping test duration	Water level	Drawdov	vn I		_			
	r unping test duration		Diawdov	411					
	(min)	(ft]	(ft)						
101	0.33	99.94		0.22					
102	0.35	99.94		0.22					
103	0.37	99.93		0.21		<u> </u>			
104	0.37	99.93 99.93		0.21					
105	0.38	99.93		0.21					
107	0.40	99.93		0.21		···			
108	0.40	99.92		0.20					
109	0.42	99.92		0.20					
110	0.42	99.91		0.19		<u> </u>			
111	0.43	99.91		0.19					
112	0.45	99.91		0.19					
113	0.47	99.90		0.18					
114	0.47	99.90		0.18		-			
115	0.48	99.90		0.18					
116	0.48	99.90		0.18					
117	0.50	99.90		0.18					
118	0.52	99.89		0.17					
119	0.52	99.89		0.17					
120	0.53	99.89		0.17					
121	0.53	99.89		0.17		······································			
122	0.55	99.89		0.17					
123	0.57	99.88		0.16					
124	0.57	99.88		0.16					
125	0.58	99.88		0.16					
126	0.58	99.88		0.16					
127	0.60	99.87		0.15					
128	0.62	99.87		0.15					
129	0.62	99.87		0.15					
130	0.63	99.87		0.15					
131	0.63	99.87		0.15					
132	0.65	99.86		0.14					
133 134	0.67	99.86 99.86		0.14					
134	0.68	99.86		0.14					
136	0.68	99.86		0.14					
137	0.70	99.86		0.14					
138	0.72	99.85		0.14		· · · · · · · · · · · · · · · · · · ·			
139	0.72	99.85	· · · · · · · · · · · · · · · · · · ·	0.13					
140	0.73	99.85		0.13					
141	0.73	99.85	1	0.13					
142	0.75	99.85		0.13					
143	0.77	99.85		0.13		· · · · ·			
144	0.77	99.85		0.13					
145	0.78	99.85		0.13		<u>.</u>			
146	0.78	99.85		0.13					
147	0.80	99.84		0.12					
148	0.82	99.84		0.12					
149	0.82	99.84		0.12		<u> </u>			
150	0.83	99.84		0.12					

SICAR FNVIRO	RNS & WHELER, LLC INMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 5
CAZENOV			Γ	Project: Roblin Stee	el
(315) 655-			F	Evaluated by: SLG	· · · · · · · · · · · · · · · · · · ·
Slug Tes	st No.	Te	est conducted on: 1/13/99		
GW-7S			W-7S		
Static wo	ater level: 99.72 ft below datum				
	······································	Water level	Desudence		
	Fumping test duration		Drawdown		
	(min)	[ft]	(ft]		
151	0.83	99.84		0.12	
152	0.85	99.84		0.12	
153	0.87	99.84		0.12	· · · · · · · · · · · · · · · · · · ·
154	0.87	99.84	;	0.12	
155	0.88	99.83		0.11	
156	0.88	99.83		0.11	
157	0.90	99.83		0.11	
158	0.92	99.83		0.11	
159	0.92	99.83		0.11	
160	0.93	99.83		0.11	
161	0.93	99.83		0.11	
162	0.95	99.83		0.11	
163	0.97	. 99.83		0.11	
164	0.97	99.83		0.11	
165	0.98	99.83		0.11	
166	0.98	99.83		0.11	
167	1.00	99.83		0.11	······································
168	1.20	99.81		0.09	· · · ·
169	1.40	99.81		0.09	
170	1.60	99.80		0.08	
171	1.80	99.79		0.07	
172 173	2.00	99.79		0.07	
173	2.20	99.78 99.78		0.06	
175	2.60	99.78	- · · .	0.06	
176	2.80	99.77		0.05	
177	3.00	99.77		0.05	
178	3.20	99.77		0.05	
179	3.40	99.77		0.05	
180	3.60	99.77		0.05	
181	3.80	99.76		0.04	<u> </u>
182	4.00	99.76		0.04	
183	4.20	99.76		0.04	<u> </u>
184	4.40	99.76		0.04	
185	4.60	99.76		0.04	
186	4.80	99.75		0.03	
187	5.00	99.75		0.03	
188	5.20	99.75		0.03	· · · · · ·
189	5.40	99.75		0.03	······································
190	5.60	99.75		0.03	
191	5.80	99.75		0.03	• • • • • • • • • • • • • • • • • • •
192	6.00	99.75		0.03	<u> </u>
193	6.20	99.74		0.02	<u> </u>
194	6.40	99.74		0.02	
195	6.60	99.74		0.02	· · · · · ·
196	6.80	99.74		0.02	
197	7.00	99.74		0.02	
198	7.20	99.74		0.02	
199	7.40	99.74		0.02	· · · · · · · · · · · · · · · · · · ·
200	7.60	99.74		0.02	

NS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS A, N.Y. 161 No. er level: 99.72 ft below datum Pumping test duration	GV	Project: Roblin Evaluated by: st conducted on: 1/13/99	
I61 No. er level: 99.72 ft below datum	GV	Evaluated by: st conducted on: 1/13/99	
No. er level: 99.72 ft below datum	GV	est conducted on: 1/13/99	
er level: 99.72 ft below datum	GV		
		N-7S	···
Pumping test duration			·····
. amping tour duration	Water level	Drawdown	
[min] 7.80	[ft]99.73	[ft]0.02	
			· · · · · · · · · · · · · · · · · · ·
			New:
9.40		0.01	
9.60	99.73	0.01	
9.80	99.73	0.01	
10.00	99.72	0.01	
12.00	99.72	-0.00	
			· · · · · · · · · · · · · · · · · · ·
	· · · · ·	<u></u>	
		· · ·	
			- · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·
		<u></u>	
			······································
			· · · ·
· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·	
	8.00 8.20 8.40 8.60 8.60 9.00 9.20 9.40 9.60 9.80 10.00	8.00 99.73 8.20 99.73 8.40 99.73 8.40 99.73 8.60 99.73 8.60 99.73 9.00 99.73 9.00 99.73 9.00 99.73 9.00 99.73 9.00 99.73 9.00 99.73 9.00 99.73 9.40 99.73 9.60 99.73 9.80 99.73 10.00 99.72	8.00 99.73 0.01 8.20 99.73 0.01 8.40 99.73 0.01 8.40 99.73 0.01 8.60 99.73 0.01 8.60 99.73 0.01 8.60 99.73 0.01 9.00 99.73 0.01 9.00 99.73 0.01 9.00 99.73 0.01 9.00 99.73 0.01 9.00 99.73 0.01 9.00 99.73 0.01 9.00 99.73 0.01 9.20 99.73 0.01 9.40 99.73 0.01 9.60 99.73 0.01 9.80 99.73 0.01 9.80 99.73 0.01 10.00 99.72 0.01

			l alua	A			10-	te: 14.01.199	9 Page	o 1			
STEARNS & WH ENVIRONMENTAL	ENGINEERS	& SCIENTIST	S BOL	/bail test analy IWER-RICE's	ysis method								
CAZENOVIA, N.Y. (315) 655-8161								oject: Roblin s					
						<u> </u>		aluated by: S	LG				
Slug Test No.	-					Test conducted on: 1/13/98-9							
GW-8S	<u> </u>	· · · · · ·											
						•							
			-			t [s]				_			
10 ⁰		3 6 	9	12	: !	15 18	3 21	24	1 27	/	1		
				· ·							-		
	0												
	0	000		· · · ·		$\overline{\langle}$				· · ·	1		
			-0										
			0000	>									
				00000	} 						-		
					0000	0 0					· ·		
04/4						000	9000 (>			ļ		
								0 0	000				
								00		Ĭ			
i													
					•								

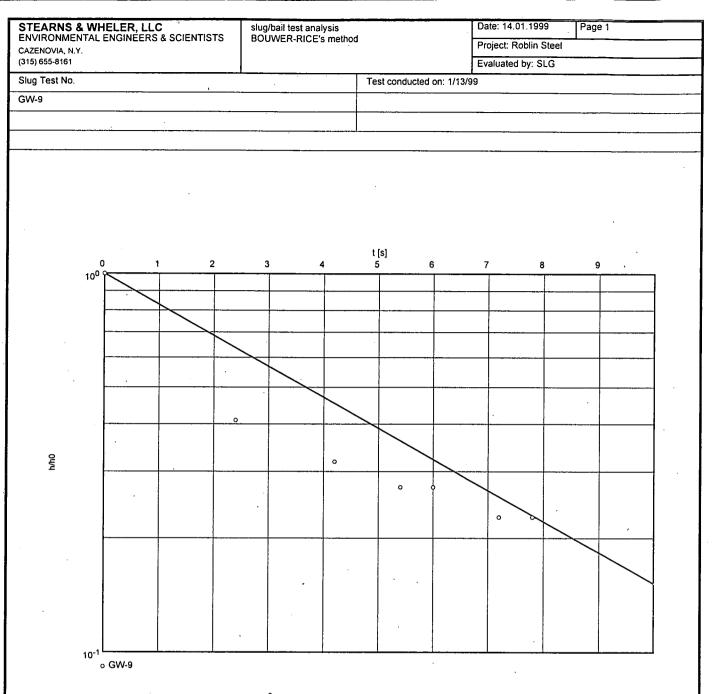
I

Hydraulic conductivity [cm/s]: 9.67 x 10⁻⁴

10-1

o GW-8S

STEAR	NS & WHELER, LLC	slug/bail test analysis	Date: 14.01.19	99	Page 2	
	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method	Project: Roblin	Steel	4	
AZENOVI 15) 655-8	•		Evaluated by:		<u> </u>	
lug Test	No.	Test co	nducted on: 1/13/98-9			
W-8S		GW-8S				
tatic	tor level: 102 90 # holes: detur	<u> </u>			•	
static wat	ter level: 102.80 ft below datum	Mataslavel	Drawdawa		•	
	Pumping test duration	Water level	Drawdown			
	(min)	[ft]	(ft)			
1	0.00	103.02	0.22			
2	0.00	3.37	-99.43	ļ		
3	0.00	3.37	-99.43			···-
4	0.00	3.37	-99.43			
5	0.00	3.38	-99.42			
6	0.00	3.37	-99.43	<u> </u>		
7	0.00	3.38	-99.42			
8	0.00	3.38	-99.42			
9	0.00	3.38	-99.42 			
10	0.00	3.38	-99.42 			
11	0.00	3.38	-99.42		· »—»-	
13	0.00	3.38	-99.42		<u></u>	
14	0.00	3.38	-99.42			
15	0.00	3.38	-99.42			
16	0.00	3.38	-99.42		···-	
17	0.00	3.38	-99.42			
18	0.00	3.38	-99.42		- <u></u>	
19	0.00	3.38	-99.42			
20	0.00	3.38	-99.42		·····	
21	0.00	3.38	-99,42			
22	0.00	3.38	-99.42	†		
23	0.00	3.38	-99.42	1	<u> </u>	
24	0.00	3.38	-99.42			
25	0.00	3.38	-99.42	ļ	· · · · · · · · · · · · · · · · · · ·	
26	0.00	3.38	-99.42			
27	0.00	3.38	-99.42			
28	0.00	3.38	-99.42			
29	0.00	3.38	-99.42			
30	0.00	3.38	-99.42			
31	0.00	3.38	-99.42			
32	0.00	3.38	-99.42	ļ		
33	0.00	3.38	-99.42	ļ		
34	0.00	3.38	-99.42	<u> </u>	<u></u> , <u>.</u>	
35	0.00	3.38	-99.42	ļ		
36	0.00	3.38	-99.42	<u> </u>	··· · · · · · ·	-
37	0.00	3.38	-99.42 -99.42			
38	0.00	3.38 3.38	-99.42 -99.42			
39 40	0.00	3.38	-99.42		<u></u>	
40	0.00	3.38	-99.42			
41	0.00	3.38	-99.42	<u> </u>	<u> </u>	
42	0.00	3.38	-99.42			
43	0.00	3.38	-99.42			
44	0.00	3.38	-99.42			
45	0.00	3.38	-99.42			
40	0.00	3.38	-99.42			<u> </u>
48	0.00	3.38	-99.42	<u>+</u>		
49	0.00	3.38	-99.42			
50	0.00	3.38	-99.42	<u> </u>		

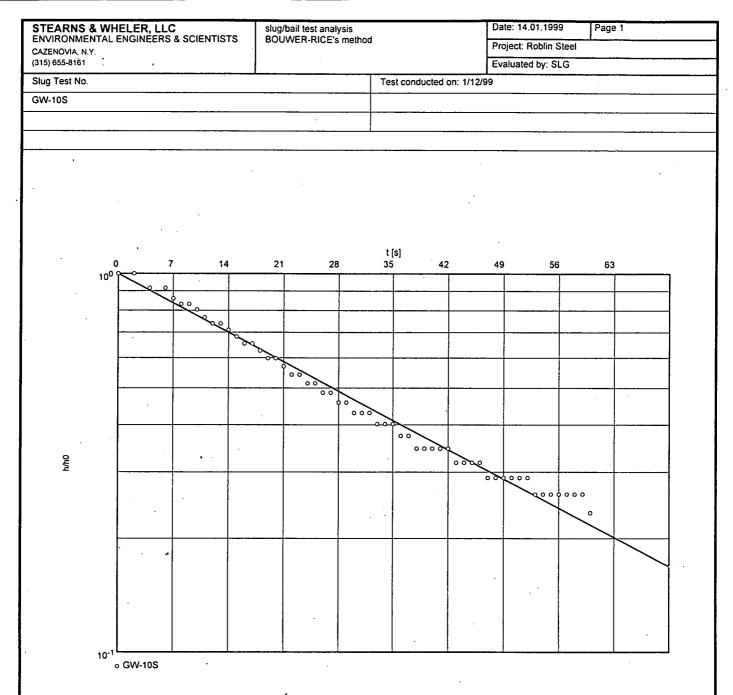

ENVIRO	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 3
CAZENOV	/IA, N.Y.	Section and a method		Project: Roblin Stee	2
(315) 655-	8161			Evaluated by: SLG	
Slug Tes	it No.	•	Test conducted on: 1/13/	98-9	
GW-8S			GW-8S		
					··J18-A
Chatia					
Static wa	ater level: 102.80 ft below datum				
	Pumping test duration	Water level	Drawdow	n	
	(min)	[ft]	[ft]		
51	0.00	3.38		-99.42	
52	0.00	3.38		-99.42	
53	0.00	3.38		-99.42	
54	0.00	3.38		-99.42	
55	. 0.00	3.38		-99.42	
56	0.00	3.38		-99.42	
57	0.00	3.38		-99.42	
58	0.00	3.38		-99.42	
59	0.00	3.38		-99.42 .	<u> </u>
60	0.00	3.38		-99.42	
61	0.00	3.38		-99.42	
62	0.00	3.38		-99.42	
63	0.00	3.38		-99.42	<u></u>
64	0.00	3.38		-99.42	
65	0.00	3,38		-99.42	
66	0.00	3.38		-99.42	
67	0.00	3.38		-99.42	
68	0.00	3.38		-99.42	· · · · · · · · · · · · · · · · · · ·
69	0.00	3.38		-99.42	
70	0.00	3.38		-99.42	
71	0.00	3.38		-99.42	
72	0.00	3.38		-99.42	
73	0.00	3.38		-99.42	
74	0.00	3.38		-99.42	
75	0.00	3.38		-99.42	······································
76	0.00	3.38		-99.42	
77	0.00	3.38		-99.42	
78	0.00	3.38		-99.42	
79	0.00	3.38		-99.42	
80	0.00	3.38		-99.42	
81	0.00	3.38		-99.42	
82	0.00	3.38		-99.42	,
83	0.00	3.38		-99.42	<u></u>
84	0.00	3.38		-99.42	
85	0.00	3.38		-99.42	<u></u>
86	. 0.00	3.38		-99.42	
87	0.00	3.38		-99.42	· · · ·
	0.00				
88	0.00	3.38		-99.42	
89	0.00	3.38		-99.42	
90	0.00	3.38		-99.42	
91	0.01	3.38		-99.42	
92	0.01	3.38		-99.42	·····
93	0.01	3.37		-99.43	
94	0.01	3.37		-99.43	
95	0.01	3.37		-99.43	
96	0.01	3.37		-99.43	
97	0.01	3.37		-99.43	
98	0.01	3.37		-99.43	
99	0.01	3.37		-99.43	
100	0.01	3.37		-99.43	

	NS & WHELER, LLC	slug/bail test analysis	1		Page 4	
AZENOVIA	IMENTAL ENGINÉERS & SCIENTISTS	BOUWER-RICE's method	Pro	oject: Roblin Stee		
15) 655-81			Ev	aluated by: SLG		
lug Test	No.	Tes	st conducted on: 1/13/98-9		<u> </u>	
			V-8S			
Statio wat	er level: 102.80 ft below datum				<u> </u>	
Janc wate	Pumping test duration	Water level	Drawdown	<u>-</u>		
	Fumping test duration	VVALCI IEVEI	Drawuown			
	(min)	(ft)	[ft]			
101	0.01	3.37		-99.43		
102	0.01	3.37		-99.43		· • • • • • • • • • • • • • • • • • • •
103	0.01	3.37		-99.43		
104	0.01	3.37		-99.43		
105	0.01	3.37		-99.43		
106	0.01	3.37		-99.43		
107	0.01	3.37		-99.43		
108	0.01	3.37		-99.43 -99.43		
109	0.01	3.37		-99.43		
111	0.01	3.37		-99.43		
112	0.01	3.37		-99.43		
113	0.01	3.37		-99.43		
114	0.01	3.37		-99.43		
115	0.01	3.37		-99.43		
116	0.01	3.37		-99.43	· · · · · · · · · · · · · · · · · · ·	-
117	0.01	3.37		-99.43	· · · · · · · · ·	
118	0.01	3.37		-99.43		
119	0.01	3.37		-99.43		
120	0.01	3.37	· · · ·	-99.43		
121	0.01	3.37		-99.43	<u></u>	
122	0.01	3.37	· · ·	-99.43	<u></u>	
123	0.01	3.37		-99.43		
124	0.01	3.37		-99.43		
125	0.01	3.37		-99.43		
126	0.01	3.37		-99.43		
127	0.01	3.37		-99.43		
128	0.01	3.37		-99.43		
129	0.01	3.37		-99.43	··· ·· ··	
130	0.01	3.37	· · · · · · · · · · · · · · · · · · ·	-99.43		
131	0.01	3.37		-99.43		
132	0.01	3.37		-99.43		
133	0.01	3.37		-99.43		
134	0.01	3.37		-99.43		
135	0.02	3.37		-99.43		
136	0.02	3.37		-99.43		
137	0.02	3.37		-99.43		
138	0.02	3.37		-99.43		
139	0.02	3.37		-99.43	<u>.</u>	
140	0.02	3.37	<u> </u>	-99.43		<u></u>
141	0.02	3.37		-99.43		
142	0.02	3.37		-99.43		
143	0.02	3.37	<u></u>	-99.43		
144	0.03	3.37		-99.43		
145	0.03	102.94		0.14	···	
146	0.03	3.37		-99.43	.	
147	0.04	3.37		-99.43		
148	0.04	102.93		0.13		
149	0.04	3.37		-99.43		

SIEAR	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 14.01.1999	l s
CAZENOV		BOUWER-RICE's method		Project: Roblin St	eel
(315) 655-6				Evaluated by: SLC	3
Slug Test	t No.	1	Test conduc	ted on: 1/13/98-9	
GW-8S	·····		GW-8S		
	· · · · · · · · · · · · · · · · · · ·				
Chatte				•	······································
Static wa	ter level: 102.80 ft below datum	· · · · · · · · · · · · · · · · · · ·			
	Pumping test duration	Water level		Drawdown	
	[min]	(ft)		(ft)	
151	0.05	102.93		0.13	
152	0.05	3.37		-99.43	
153	0.06	3.37	-	-99.43	,
154	0.06	102.92		0.12	
155	0.06	3.37		-99.43	
156	0.07	3.37		-99.43	· · · · · · · · · · · · · · · · · · ·
157	0.07	3.37		-99.43	
158	0.07	102.92		0.12	·····
159	0.07	3.37		-99.43	
160	0.08	3.37		-99.43	
161	0.08	102.92		0.12	
162	0.08	3.37		-99.43	
163	0.09	3.37		-99.43	
164	0.09	102.91		0.11	
165	0.09	3.37		-99.43	
166	0.10	3.37		-99.43	
167	0.10	102.91		0.11	
168	0.10	3.37		-99.43	· · · · · · · · · · · · · · · · · · ·
169	0.11	3.37		-99.43	
170	0.11	102.91		0.11	
171	0.11	3.37			
172	0.12	3.37	· · · · · ·	-99.43	
173	0.12	102.90		0.10	· · · · · · · · · · · · · · · · · · ·
174	0.12	3.37		-99.43	
175	0.12	3.37		-99.43	
176	0.13	3.37			
177	0.13	102.90		-99.43	
.178	0.13			0.10	
179		3.37		-99.43	
	0.14	3.37		-99.43	<u>.</u>
180	0.14	3.37		-99.43	
181	0.14	102.90		0.10	
182	0.14	3.37		-99.43	
183	0.15	3.37		-99.43	
184	0.15	102.90		0.10	
185	0.15	3.37		-99.43	
186	0.16	3.37		-99.43	
187	0.16	102.89		0.09	
188	0.16	3.37		-99.43	
189	0.17	3.37		-99.43	
190	0.17	102.89		0.09	
191	0.18	102.89		0.09	
192	0.19	102.89		0.09	
193	0.20	102.89		0.09	
194	0.21	102.88		0.08	
195	0.22	102.88		0.08	
196	0.23	102.88		0.08	
197	0.24	102.88		0.08	
198	0.25	102.88		0.08	
199	0.26	102.88		0.08	
200	0.27	102.87		0.07	

.

STEAR	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.199	99	Page 6	
ENVIRON CAZENOVI		BOUWER-RICE's method		Project: Roblin Steel			
315) 655-8				Evaluated by: S	SLG	<u> </u>	
Slug Test	t No.		Test conducted on: 1/13/	98-9			
GW-8S			GW-8S				
Static wat	ter level: 102.80 ft below datum	<u> </u>					
	Pumping test duration	Water level	Drawdov	vn [· · · · · · · · · · · · · · · · · · ·	
201	[min]0.28	[ft] 102.87	(ft]	0.07			
201	0.28	102.87		0.07			
202	. 0.30	102.87		0.07			
204	0.31	102.87		0.07			
205	0.32	102.87	· · · ·	0.07	•••		
206	0.33	102.87		0.07			
207	0.35	102.87		0.07			
208	0.37	102.86		0.06			
209	0.38	102.86		0.06			
210	0.40	102.86	-	0.06			· · · · · ·
211	0.42	102.86		0.06			
212	0.43	102.86		0.06			
213	0.45	102.86		0.06			
214	0.47	102.86		0.06			
					·		
					<u> </u>		
			-				n
<u> </u>							
		· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·						
						·	
	· · · · · · · · · · · · · · · · · · ·					<u></u>	
						<u> </u>	
						-	
						· ·- ·	
		· · · · · · · · · · · · · · · · · · ·					

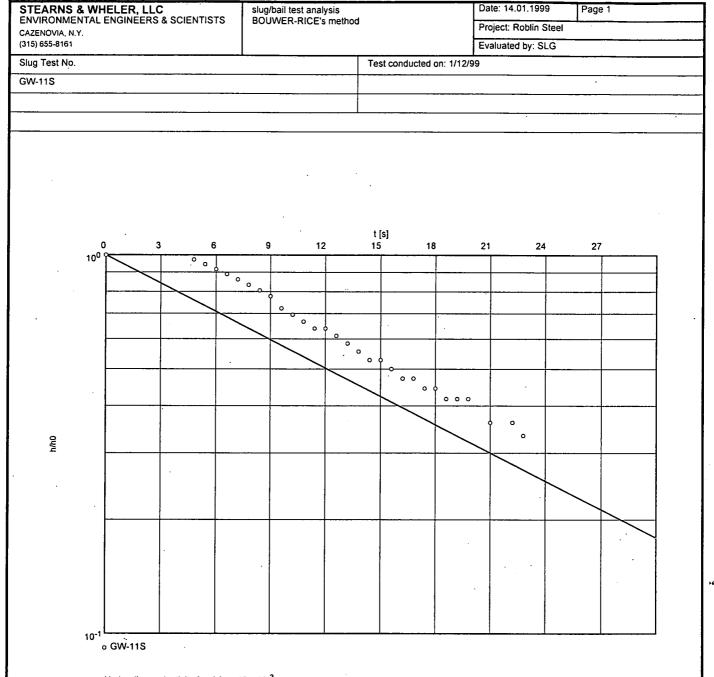


Hydraulic conductivity [cm/s]: 4.79 x 10⁻³

STEAR	INS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis	D	ate: 14.01.1999)]	Page 2	
NVIRO		BOUWER-RICE's method	P	roject: Roblin S	teel		
42ENOV 15) 655-1				valuated by: SL			
lug Tes	t No.	Tes	t conducted on: 1/13/99	· ·		······.	
	· · · · · · · · · · · · · · · · · · ·	GW				· · · · · · · · · · · · · · · · · · ·	
<u> </u>		· · · · · · · · · · · · · · · · · · ·					
Static wa	ater level: 100.34 ft below datum						
	Pumping test duration	Water level	Drawdown				
		vvaler level	Diawdowii				
	[min]	[ft]	[ft]				_
1	0.00	100.56		0.22			<u> </u>
3	0.04	100.43		0.09			
4	0.06	100.43		0.09			
5	0.07	100.43		0.09			
6	0.08	100.37		0.03			
7	0.09	100.40	· · · · · ·	0.06			
8	0.10	100.40		0.06			
9	0.11	100.38		0.04			
10	0.12	100.39	· · · · · ·	0.05		· · · · · · · · · · · · · · · · · · ·	
11	0.13	100.39		0.05			
12	0.14	100.39	a	0.05		·····	
13	0.15	100.39	· · · · · · · · · · · · · · · · · · ·	0.05			
14	0.16	100.39		0.05			
15	0.17	100.39		0.05			
16	0.18	100.39		0.05			
17	0.19	100.39		0.05		·	
18	0.20	100.39		0.05		<u> </u>	
19	0.21	100.39	<u></u>	0.05			
20	0.22	100.38		0.04			
21	0.23	100.38		0.04			
22	0.24	100.38		0.04			
23	0.25	100.38	<u></u>	0.04		<u> </u>	
25	0.27	100.38		0.04			
26	0.28	100.38		0.04			
27	0.29	100.38		0.04		· • •	
28	0.30	100.38		0.04			
29	0.31	100.38		0.04	<u> </u>	· · · · · · · · · · · · · · · · · · ·	
30	0.32	100.38		0.04			
31	0.33	100.38		0.04			
32	0.35	100.38		0.04		11.000	
33	0.37	100.38		0.04			
34	0.38	100.38		0.04			
35	0.40	100.38		0.04			
36	0.42	100.38	· · · · · · · · · · · · · · · · · · ·	0.04			
37	0.43	100.38		0.04			
38	0.45	100.38		0.04			
39	0.47	100.38		0.04			
40	0.48	100.38		0.04			<u>. </u>
41	0.52	100.38		0.04		<u></u>	
42	0.52	100.38		0.04			
44	0.55	100.38		0.04		•	
45	0.57	100.38		0.04			
46	0.58	100.38		0.04	<u>_</u>		
47	0.60	100.38		0.04		·····	
48	0.62	100.38		0.04			
49	0.63	100.38		0.04			
50	0.65	100.38		0.04			

SIEAF	RNS & WHELER; LLC INMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 14.01.1999	Page 3
ENVIRO CAZENO\		BOUWER-RICE's method		Project: Roblin Steel	
(315) 655-				Evaluated by: SLG	··-
Slug Tes	st No.		Test conducted on: 1/13/9		
GW-9			GW-9		- <u>-</u>
				·	, <u>, , , , , , , , , , , , , , , , , , </u>
Static wa	ater level: 100.34 ft below datum				
	Pumping test duration	Water level	Drawdowi	ז ו	
	(min)	(ft)	(ft]		
51	0.67	100.38	['\]	0.04	
52	0.68	100.38		0.04	
53	0.70	100.38		0.04	
54	0.72	100.38		0.04	
55	0.73	100.38		0.04	
56	0.75	100.38		0.04	
57	0.77	100.38		0.04	· · · · · ·
58	0.78	100.38		0.04	
59	0.80	100.33		0.03	
60	0.82	100.37		0.03	<u></u>
61	0.83	100.37		0.03	
62	0.85	100.37		0.03	
63	0.87	100.37		0.03	
64	0.87	100.37		0.03	
65	0.90				
		100.37		0.03	<u> </u>
66	0.92	100.37		0.03	
67	0.93	100.37		0.03	,
68	0.95	100.37		0.03	
69	0.97	100.37		0.03	<u> </u>
70	0.98	100.37		0.03	
71	1.00	100.37		0.03	
72	1.20	100.37		0.03	
73	1.40	100.37		0.03	
74	1.60	100.37		0.03	
75	1.80	100.36		0.02	
76	2.00	100.36		0.02	
77	2.20	100.36		0.02	
78	2.40	100.36		0.02	
79	2.60	100.36		0.02	
80	2.80	100.36		0.02	
81	3.00	100.36		0.02	******
82	3.20	100.36		0.02	
83	3.40	100.36		0.02	· · · - ·
84	3.60	100.35		0.01	<u> </u>
85	3.80	100.35		0.01	
86	4.00	100.35		0.01	· · · · · · · · · · · · · · · · · · ·
87	4.20	100.35		0.01	
88	4.40	100.35		0.01	
89	4.60	100.35		0.01	
90	4.80	100.35		0.01	
91	5.00	100.35		0.01	
92	5.20	100.35		0.01	
93	5.40	100.35		0.01	
94	5.60	100.35		0.01	
95		100.35		0.01	
96	6.00	. 100.35		0.01	
97	6.20	100.35	<u>.</u>	0.01	
98	6.40	100.35		0.01	
99	6.60	100.35		0.01	
100	6.80	100.35		0.01	

STEARN	NS & WHELER, LLC IMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.199	99	Page 4	
		BOUWER-RICE's method		Project: Roblin			
315) 655-81				Evaluated by: S		<u> </u>	
Slug Test	No.		Test conducted on:				
GW-9			GW-9			· · · · · · · · · · · · · · · · · · ·	
						· · · · ·	
Static wate	er level: 100.34 ft below datum						<u></u>
	Pumping test duration	Water level	0.00	wdown			
	Fullping test duration		Dia	WOOWII			
	(min)	[ft]		_(ft)			
101	7.00	100.35		0.01			
102	7.20	100.35		0.01			
103	7.40	100.35		0.01			
104	7.60	100.35		0.01			
105	7.80	100.35		0.01			•
106	8.00	100.35 100.35		0.01			
107	8.20	100.35		0.01			
109	8.60	100.34		0.00		· · · · · · · · · · · · · · · · · · ·	
110	8.80	100.34		0.00			
111	9.00			0.00			
112	9.20	100.34		0.00		···· · •••••••••••••••••••••••••••••••	
113	9.40	100.34		0.00		· · · · ·	
114	9.60	100.34		0.00	.		
115	9.80	100.34		0.00		·	
116	10.00	100.34		0.00			
		n • • •			·····		
	· · · ·	<u>,</u>					
						·····	
		• • • • • • • • • • • • • • • • • • •			<u></u>		
		· · · ·			-		
					_		
							~ -
						"	
· · ·			_				
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
		- · · · · · ·					
						-	<u></u> .
		·····					
		· · · · · · · · · · · · · · · · · · ·					
					<u> </u>		
						.	
	··						
			+				
					<u> </u>		<u> </u>



Hydraulic conductivity [cm/s]: 6.25 x 10⁻⁴

STEAR	RNS & WHELER, LLC	slug/bail test analysis		Date: 14.01.199	9	Page 2	
		BOUWER-RICE's method	ŀ	Project: Roblin	Steel	I	
AZENOV 15) 655-	/IA, N.Y. -8161			Evaluated by: S			
, lug Tes		 مT	st conducted on: 1/12/99				
W-10				······································			
104-10		GV	/v-1U			<u></u>	<u> </u>
itatic wa	ater level: 99.62 ft below datum						
	Pumping test duration	Water level	Drawdown				
	[min]	(ft]	[ft]				
1	0.00	[II]99.51	[II]	-0.11		· · · · · · · · · · · · · · · ·	
2	0.02	99.90	· · · · · · · · · · · · · · · · · · ·	0.28		·	
3	0.03	99.97		0.35			
4	0.04	99.85		0.23			
5	0.05	99.88		0.26			
6	0.06	99.94	<u> </u>	0.32			
7	0.07	99.97	<u>.</u>	0.35			
8	0.08	99.98		0.36			
9	0.09	99.96		0.34			
10	0.10	99.94		0.32			
11	0.11	99.92		0.30			
12	0.12	99.91		0.39			
13	0.12	99.91		0.29			<u> </u>
14	0.13	99.91		0.29			
15	0.15	99.91		0.29			
16	0.16	99.90	· · · · · · · · · · · · · · · · · · ·	0.29			
17	0.17	99,89		0.20			
18	0.18	99.89 99.88		0.27		- · ·	
19				0.26			
20	0.20	99.88		0.26			
21	0.21	99.88		0.26			- <u>-</u>
22	0.22	99.87		0.25			
23	0.23	99.87		0.25			
24	0.24	99.86		0.24			
25	0.25	99.86		0.24			
26	0.26	99.85		0.23			
27	0.27	99.85		0.23			
28	0.28	99.85		0.23			
29	0.29	99.84	·	0.22			
30	0.30	99.84		0.22			
31	0.31	99.83		0.21		-	
32	0.32	99.83		0.21			
33	0.33	99.83		0.21			
34	0.35	99.82		0.20			····
35	0.37	99.81		0.19			
36	0.38	99.81		0.19			
37	0.40	99.80		0.18			
38	0.42	99.80		0.18			
39	0.43	99.79		0.17			
40	0.45	99.79		0.17			
41	0.47	99.78		0,16			
42	0.48	99.78		0.16			
43	0.50	99.77		0.15			
44	0.52	99.77		0.15		• •	
45	0.53	99.77		0.15			
46	0.55	99.76	· · · · · ·	0.14			
47	0.57	99.76		0.14			
48	0.58	99.76	· · · · · ·	0.14			
49	0.60	99.75		0.13			
50	0.62	99.75		0.13			

ENVIR	RNS & WHELER, LLC ONMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method			Page 3
	VIA, N.Y.	BOOWER-RICE's method		Project: Roblin Ste	el
(315) 655				Evaluated by: SLC	3
Slug Te	est No.		Test conducted on: 1/		
GW-10			GW-10		
<u> </u>					
Static w	vater level: 99.62 ft below datum				
	Pumping test duration	Water level	Drawo	lown	· · · · · · · · · · · · · · · · · · ·
			1		
51	(min)	[ft]00.74	(ft		
	0.63	99.74		0.12	····
52	0.65	99.74		0.12	
53	0.67	99.74		0.12	
54	0.68	99.74		0.12	
55	0.70	99.74		0.12	
56	0.72	99.73		0.11	
57	0.73	99.73		0.11	
58	0.75	99.73		0.11	·
59	0.77	00.73		0.11	<u>, </u>
60	0.78	99.72		0.10	
61					
	0.80	99.72		0.10	
62	0.82	99.72		0.10	
63	0.83			0.10	
64	0.85	99.72		0.10	
65 .	0.87	99.72		0.10	
66	0.88	99.71		0.09	,
67	0.90	99.71		0.09	
68	0.92	99.71		0.09	
69	0.93	99.71		0.09	
70	0.95	99.71			
71	0.95			0.09	
		99.71		0.09	
72	0.98	99.71		0.09	· · · · · · · · · · · · · · · · · · ·
73	1.00	99.70		0.08	
74	1.20	99.69		0.07	
75	1.40	99.68		0.06	
76	1.60	99.68		0.06	
77	1.80	99.67		0.05	
78	2.00	99.67		0.05	
79	2.20	99.67		0.05	
80	2.40	99.66		0.04	
81	2.60	99.66		0.04	
82	2.80	99.66		0.04	····
83	3.00	99.66			
				0.04	
84	0.20			0.03	
85	3.40	99.65		0.03	
86	3.60	99.65		0.03	
87	3.80	99.65		0.03	
88	4.00	99.65		0.03	
89	4.20	99.65		0.03	
90	4.40	-99.64		0.02	···.
91	4.60	99.64		0.02	
92	4.80	99.64		0.02	
93	5.00		··	-	<u>.</u>
		99.64		0.02	
94	5.20	99.64		0.02	
95	5.40	99.64		0.02	
96	5.60	99.64		0.02	
97	5.80	99.64		0.02	
98	6.00	99.64		0.02	
99	6.20	99.63		0.01	

ENVIRON	NS & WHELER, LLC IMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method	1	Date: 14.01.1999	Page 4
CAZENOVI	A, N.Y.	BOOWER-RICE'S MELNOO	i de la constante de	Project: Roblin Stee	el
(315) 655-8				Evaluated by: SLG	····
Slug Test	No.	•	Test conducted on: 1/12	/99	
GW-10			GW-10		·····
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
Chatle					
Static wat	er level: 99.62 ft below datum		· · · · · · · · · · · · · · · · · · ·		
	Pumping test duration	Water level	Drawdo	wn	
	(min)	(ft)	(ft)		
101	6.60	99.63	(rq	0.01	· · ii · ====
102	6.80	99.63		0.01	
103	7.00	99.63		0.01	
104	7.20	99.63		0.01	
105	7.40	99.63		0.01	
106	7.60	99.63		0.01	
107	7.80	99.63		0.01	
108	8.00	99.63		0.01	· · · · · · · · · · · · · · · · · · ·
109	8.20	99.63		0.01	- · · ·
110	8.40	99.63		0.01	
111	8.60	99.62		0.00	
112	8.80	99.62		0.00	
113	9.00	99.62		0.00	
114	9.20	99.62		0.00	
115	9.40	99.62		0.00	
116	9.60	99.62		0.00	
117	9.80	99.62		0.00	
118	10.00	99.62		0.00	
		•			
				1	
-1					
		· · · · ·			<u> </u>
					·
					<u> </u>
				·····	
	······································				
	· · · · · · · · · · · · · · · · · · ·				
	······				
			· · · · · · · · · · · · · · · · · · ·		

Hydraulic conductivity [cm/s]: 1.45 x 10⁻³

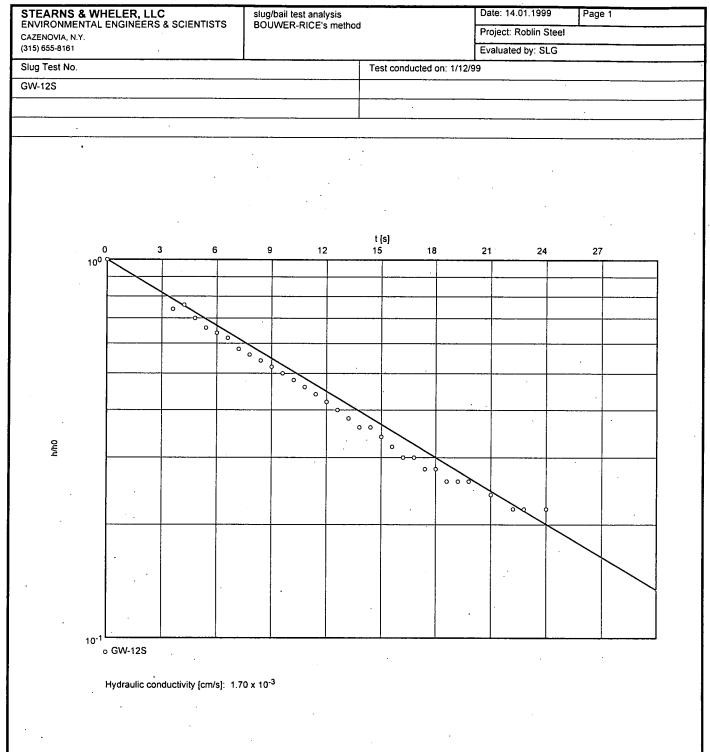
.

& WHELER, LLC NTAL ENGINEERS & SCIENTISTS Y. evel: 101.98 ft below datum Pumping test duration	Slug/bail test analysis BOUWER-RICE's method Water level [ft] 102.34 3.35 3.35 3.35 3.35 3.36 3.35 3.36 3.37 3.36	Test conducted on: GW-11S Dra	Project: Roblin Stee Evaluated by: SLG 1/12/99 awdown [ft] 0.36 -98.64 -98.63 -98.63 -98.63 -98.63	
evel: 101.98 ft below datum Pumping test duration[min] 0.00 0.00 0.00 0.00 0.00 0.00 0	[ft]	GW-11S	Evaluated by: SLG 1/12/99 wdown [ft]	
evel: 101.98 ft below datum Pumping test duration [min] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	[ft]	GW-11S	1/12/99 awdown [ft] 0.36 -98.64 -98.63 -98.63 -98.63 -98.62	
evel: 101.98 ft below datum Pumping test duration [min] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	[ft]	GW-11S	wdown _[ft] 0.36 	
Pumping test duration [min] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	[ft]	Dra	[ft] 0.36 -98.64 -98.63 -98.63 -98.63 -98.62	
Pumping test duration [min] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	[ft]		[ft] 0.36 -98.64 -98.63 -98.63 -98.63 -98.62	
Pumping test duration [min] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	[ft]		[ft] 0.36 -98.64 -98.63 -98.63 -98.63 -98.62	
[min] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	[ft]		[ft] 0.36 -98.64 -98.63 -98.63 -98.63 -98.62	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	102.34 3.35 3.35 3.35 3.36 3.36 3.36 3.37 3.36		0.36 -98.64 -98.63 -98.63 -98.62	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.35 3.35 3.36 3.36 3.36 3.35 3.36 3.37 3.36		-98.64 -98.63 -98.63 -98.62	· · · · · · · · · · · · · · · · · · ·
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.35 3.35 3.36 3.35 3.36 3.36 3.37 3.36		-98.63 -98.63 -98.62	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.35 3.36 3.35 3.36 3.37 3.37 3.36		-98.63 -98.62	
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.36 3.35 3.36 3.37 3.36		-98.62	
0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.35 3.36 3.37 3.36			
0.00 0.00 0.00 0.00 0.00 0.00	3.36 3.37 3.36		• 20 (1.)	
0.00 0.00 0.00 0.00 0.00	3.37 3.36		-98.62	
0.00 0.00 0.00 0.00	3.36		-98.61	
0.00			-98.63	
0.00	3.36		-98.62	
	3.36		-98.62	
	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
0.00	3.36		-98.62	
				· · · · · · · · · · · · · · · · · · ·
0.00		···		
0.00				
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
0.00	3.36		-98.63	
			-98.63	
			-98.63	
				<u>.</u>
I				
	3.35	1		
	0.00 0.00	0.00 3.36 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35 0.00 <td>0.00 3.36 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35</td> <td>0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00</td>	0.00 3.36 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35 0.00 3.35	0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.62 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00 3.36 -98.63 0.00

SIEAR	NS & WHELER, LLC	slug/bail test analysis	Delle.	4.01.1999	Page 3		
STEARNS & WHELER, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS CAZENOVIA, N.Y.		BOUWER-RICE's method	Project	Roblin Steel			
CAZENOV (315) 655-				ted by: SLG			
Slug Tes		1 Tes	t conducted on: 1/12/99				
GW-11S							
		GV	GW-11S				
			- · · ·		<u> </u>		
Static wa	ter level: 101.98 ft below datum						
	Pumping test duration	Water level	Drawdown				
	[min]	[ft]	[ft]				
51	0.00	3.35		8.63	· · · · · · · · · · · · · · · · · · ·		
52	0.00	3.35	-9	8.63			
53	0.00	3.35	-9	8.63			
54	0.00	3.35	-9	8.63	·		
55	0.00	3.35	-9	8.63			
56	0.00	3.35	-9	8.63	······································		
57	0.00	3.35	-9	8.63			
58	0.00	. 3.35	-9	B.63			
59	0.00	3.35	-9	8.63			
60	0.00	3.35	-9	8.63	•••••••••••••••••••••••••••••••••••••••		
61	0.00	3.35	-9	8.63			
62	0.00	3.35	-9	8.63	10.00		
63	0.00	3.35	-9	8.63	· · · · · · · · · · · · · · · · · · ·		
64	0.00	3.35	-9	8.63	·		
65	0.00	3.35	-9	8.63			
66	0.00	3.35	-9	8.63	• • • •		
67	0.00	3.35	-9	8.63			
68	0.00	3.35	-9	8.63	-		
69	0.00	3.35	-9	8.63			
70	0.00	3.35	-9	8.63			
71	0.00	3.35	-9	8.63			
72	0.00	3.35	-9	3.63			
73	0.00	3.35	-9	8.63			
74	0.00	3.35	-9	3.63			
75	0.00	3.35	-9	3.63	······································		
76	0.00	3.35		3.63			
77	0.00	3.35	-98	3.63	· · · · · · · · · · · · · · · · · · ·		
78	0.00	3.35		3.63			
79	0.00	3.35	-9	3.63			
80	0.00	3.35	-9	3.63			
81	0.00	3.35	-9;	8.63			
82	0.00	3.35	-9	3.63			
83	0.00	3.35		3.63			
84	0.00	3.35	-9	3.63			
85	0.00	3.35	-9	3.63			
86	0.00	3.35		3.63			
87	0.00	3.35	-9	8.63			
88	0.00	3.35		8.63			
89	0.00	3.35		8.63			
90	0.00	3.35		9.63			
91	0.01	3.35		8.63			
92	0.01	3.35		8.63	· · ·		
93	0.01	3.35		8.63			
94	0.01	3.35		8.63			
95	0.01	3.35		8.63			
96	0.01	3.35		8.63			
97	0.01	3.35		8.63			
98	0.01	3.35		8.63			
99	0.01	3.35		8.63	· · · · · ·		
	0.01	3.55	-9				

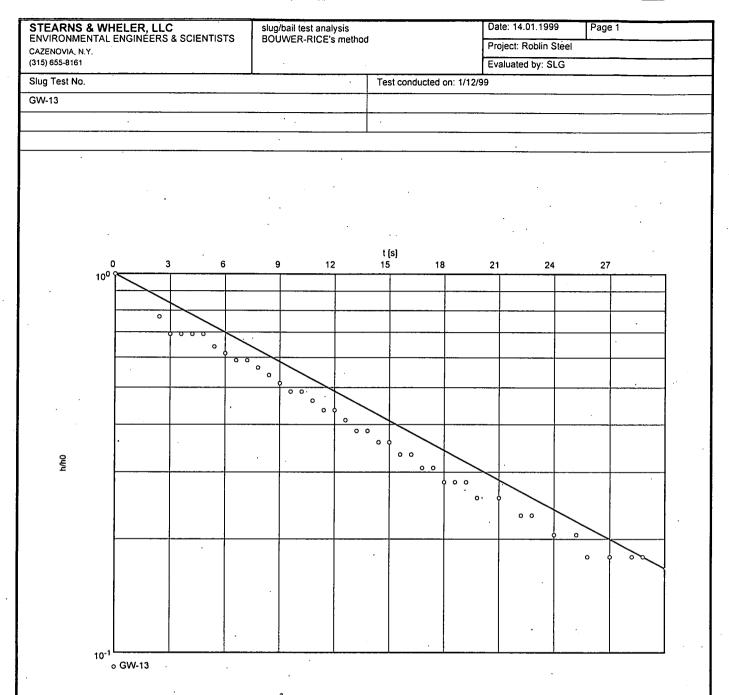
STEARNS & WHELER, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS		slug/bail test analysis		Date: 14.01.19	99 Page 4	
ENVIRONMENTAL ENGINEERS & SCIENTISTS CAZENOVIA, N.Y.		BOUWER-RICE's method	l	Project: Roblin	Steel	
315) 655-8161				Evaluated by: SLG		
ilug Test No.			Test conducte	d on: 1/12/99		
W-11S			GW-11S			
Static water leve	el: 101.98 ft below datum		La		<u></u>	
P	umping test duration	Water level		Drawdown		
	(min)	[ft]		[ft]		
101	0.01	3.35		-98.63		· · ·
102	0.01	3.35		-98.63		
103	0.01	3.35		-98.63	· · · ·	
104	0.01	3.35		-98.63		
105	0.01	3.35		-98.63		
106	0.01	3.35		-98.63		
107	0.01	3.35		-98.63		
108	0.01	3.35		-98.63		
110	0.01	3.35		-98.63		
111	0.01	3.35		-98.63		
112	0.01	3.35		-98.63		
113	0.01	3.35		-98.63		
114	0.01	3.35		-98.63		
115	0.01	3.35		-98.63	···· •• •• •• •• •• •• •• •• •• ••	
116	0.01	3.35		-98.63		
117	0.01	3.35		-98.63		
118	0.01	3.35		-98.63		
119	0.01	3.35		-98.63		
120	0.01	3.35		-98.63		
121	0.01	3.35		-98.63		
122	0.01	3.35		-98.63		
123	0.01	3.35		-98.63		
124	0.01	3.35		-98.63	Managa a tama 1962 men	
125	0.01	3.35		-98.63		
126 127	0.01	3.35		-98.63 -98.63		
127	0.01	3.35		-98.63	·	
129	0.01	3.35		-98.63		
130	0.01	3.35		-98.63		
131	0.01	3.35		-98.63	· · · · ·	
132	0.01	3.35		-98.63		
133	0.01	3.35		-98.63	······································	
134	0.01	3.35		-98.63	·······	
135	0.02	3.35		-98.63		
136	0.02	3.35		-98.63	· · · · · · · · · · · · · · · · · · ·	
137	0.02	3.35		-98.63		
138	0.02	3.35		-98.63		
139	0.02	3.35		-98.63		
140	0.02	3.35		-98.63		
141	0.02	3.35		-98.63		
142	0.02	3.35		-98.63		
143	0.02	3.35		-98.63		
144	0.03	3.35		-98.63 -98.63		
145	0.03	3.35		-98.63		
146	0.03	3.35		-98.63		
147	0.04	3.35		-98.63		
149	0.04	3.35		-98.63	······································	
150	0.05	3.35		-98.63		

ENV/IDO	NING & WHELLER, LEG	slug/bail test analysis		Date: 14.01.1999	Page 5		
STEARNS & WHELER, LLC slug/bail test and BOUWER-RICE ENVIRONMENTAL ENGINEERS & SCIENTISTS BOUWER-RICE (315) 655-8161 State of the st		BOUWER-RICE's method	BOUWER-RICE's method				
				Evaluated by: SLG			
Slug Tes	st No.	_L	Test conducted on: 1/12/9				
GW-11S							
GVV-115			GW-11S				
Static wa	ater level: 101.98 ft below datum						
	Pumping test duration	Water level	Drawdowr				
	(min)	[ft]	761				
151	0.05	3.35	(ft]	-98.63	· · · ·		
152	0.05	3.35	·	-98.63			
153	0.06	3.35		-98.63			
154	0.06	3.35		-98.63			
155	0.06	3.35		-98.63			
156	0.07	3.35		-98.63			
157	0.07	3.35		-98.63	· · · · · · · · · · · · · · · · · · ·		
158	0.07	3.35		-98.63			
159	0.08	3.35	· · ·	-98.63			
160	0.08	102.33		0.35	•		
161	0.08	3.35		-98.64			
162	0.09	3.35	·	-98.64			
163	0.09	102.32		0.34			
164	0.09	3.35		-98.64	·····		
165	0.10	3.35		-98.64			
166	0.10	102.31		0.33			
167	0.10	3.35		-98.64	, <u>r e 147718</u>		
168	0.11	3.35		-98.64			
169	0.11	102.30		0.32			
170	0.11	3.35		-98.64	· · · ·		
171	0.12	3.35		-98.64			
172	0.12	102.29		0.31			
173	0.12	3.35		-98.64			
174	0.13	3.35		-98.64			
175	0.13	3.35		-98.64			
176	0.13	102.28		0.30			
177	0.13	3.35	· ·	-98.64			
178	0.14	3.35		-98.64	· · · <u>-</u> ····		
179	0.14	3.35		-98.64			
180	0.14	102.27		0.29			
181	0.14	3.35		-98.64			
182	0.15	3.35		-98.64	· · · · · · · · · · · · · · · · · · ·		
183	0.15	102.26		0.28			
184	0.15	3.35		-98.64	<u>.</u>		
185	0.16	3.35		-98.64			
186	0.16	102.24		0.26			
187	0.16	3.35		-98.64	· · · · · · · · · · · · · · · · · · ·		
188	0.17	3.35		-98.64			
189	0.17	102.23		0.25			
190	0.18	102.22		0.24	· · ·		
191	0.19	102.21		0.23			
192	0.20	102.21		0.23	<u> </u>		
193	0.21	102.20		0.22			
194	0.22	102.19		0.21	<u>_</u>		
195	0.23	102.18		0.20	·		
196	0.24	102.17		0.19			
197	0.25	102.17		0.19			
198	0.25	102.17		0.19			
199	0.20	102.15		0.18			
	0.27	102.15	1	U.17			


.

/

TEARN	NS & WHELER, LLC IMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.199	19 P	age 6
ENVIRONMENTAL ENGINEERS & SCIENTISTS CAZENOVIA, N.Y.		BOUWER-RICE's method		Project: Roblin Steel		
315) 655-8				Evaluated by: SLG		
lug Test	No.	- I	Test conducted on:	1/12/99		
W-11S			GW-11S			
-						
totio wat	er lough 101.09.ft bolow datum	<u> </u>				· · · · · · · · · · · · · · · · · · ·
	er level: 101.98 ft below datum		· ·			- · · · · ·
	Pumping test duration	Water level	Orav	wdown		
	(min)	(ft]		(ft]		
201	0.29	102.14		0.16		
202	0.30	102.14		0.16		·····
203	0.31	102.13		0.15		
204	0.32	102.13		0.15		
205	0.33	102.13		0.15		·····
206	. 0.35	102.11		0.13		
207	0.37	102.11		0.13		
208	0.38	102.10		0.12		
		· · · · · · · · · · · · · · · · · · ·				
· ·						
<u> </u>			1			
		· · · · · · · · · · · · · · · · · · ·				
					<u>.</u>	
						<u> </u>
				•		
						· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·				
		· · ·			•	
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·					······································
	· · · · · · · · · · · · · · · · · · ·					
						· · · · · · · · · · · · · · · · · · ·
	,					· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·


•

	INS & WHELER, LLC	Pumping test analysis		Date: 14.01.1999	Page 2		
ENVIRONMENTAL ENGINÉERS & SCIENTISTS CAZENOVIA, N.Y.		Time-Drawdown plot with discharge		Project: Roblin Steel			
15) 655-		inter electricitye		Evaluated by: SLG			
umping	Test No.		Test conducted on: 1/1	I			
W-12S			GW-12S				
				······································			
1 - 1° -							
tatic wa	ater level: 101.20 ft below datum				· · · · · · · · · · · · · · · · · · ·		
	Pumping test duration	Water level	Drawdo	nwo			
	[min]	(ft)	[ft]				
1	0.00	101.15		-0.05			
2	0.01	101.31		0.11	· · · · ·		
3	0.02	101.50		0.30	- <u> </u>		
4	0.03	101.63		0.43	······································		
5	0.04	101.70		0.50	· · · · · · · · · · · · · · · · · · ·		
6	0.05	101.56		0.36		-	
7	0.06	101.57		0.37	•		
8	0.07	101.58		0.38			
9	0.08	101.55		0.35			
10	0.09	101.53	· ·	0.33			
11	0.10	101.52		0.32			
12	· 0.11	101.51		0.31			
13	0.12	101.49		0.29			
14	0.13	101.48	· · ·	0.28			
15	0.14	101.47		0.27			
16	0.15	101.46		0.26			
17	0.16	101.45		0.25	<u></u>		
18	0.17	101.44		0.24			
19	0.18	101.43		0.23			
20	0.19	101.43		0.22			
21	0.20	101.42		0.22			
22	0.21	101.41		0.20		,	
22	0.22			0.19			
23	0.22	101.39		0.19			
24	0.23	101.38	-	0.18			
25	0.24	101.38		0.18			
27	0.26	101.37		0.16			
28	0.26	101.36		0.15	·····		
			<u> </u>				
29	0.28	101.35		0.15			
30	0.29	101.34		0.14			
31	0.30	101.34		0.14	· · · · · · · · · · · · · · · · · · ·		
32	0.31	101.33		0.13			
33	0.32	101.33		0.13	· · · · · · · · · · · · · · · · · · ·		
34	0.33	101.33		0.13			
35	0.35	101.32		0.12			
36	0.37	101.31		0.11			
37	0.38	101.31		0.11			
38	0.40	101.31		0.11	· · · · · · · · · · · · · · · · · · ·		
39	0.42	101.30		0.10			
40	0.43	101.30		0.10			
41	0.45	101.30		0.10			
42	0.47	101.30		0.10			
43	0.48	101.30		0.10			
44	0.50	101.29		0.09			
45	0.52	101.29		0.09			
46	0.53	101.29		0.09			
47	0.55	101.29		0.09			
48	0.57	101.29		0.09			
49	0.58	101.29		0.09			
50	0.60	101.28		0.08			

SIEAR	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	Pumping test analysis		Date: 14.01.1999	Page 3	
		Time-Drawdown plot with discharge		Project: Roblin Steel		
(315) 655-4			Evaluated by: SLG			
Pumping	Test No.		Test conducted on: 1/12/99			
GW-12S		·	GW-12S			
Chatle	ter level: 101.20 ft beleve detur]				
	ter level: 101.20 ft below datum	NATION AND A				
	Pumping test duration	Water level	Drawdowr	י 		
	(min)	(ft]	[ft]			
51	0.62	101.28		0.08	•	
52	0.63	101.28		0.08		
53	0.65	101.28		0.08		
54	0.67	101.28		0.08		
55	0.68	101.28		0.08	•	
56	0.70	. 101.28		0.08		
57	0.72	101.28		0.08		
58	0.73	101.28		0.08		
59	0.75	101.27	· · · · · · · · · · · · · · · · · · ·	0.07		
60	0.77	101.27		0.07	· · · · · · · · · · · · · · · · · · ·	
61	0.78	101.27		0.07		
62	0.80	101.27	1	0.07		
63	0.82	101.27	· · · · · · · · · · · · · · · · · · ·	0.07	<u>_</u>	
64	0.83	101.27		0.07		
65	0.85	101.27		0.07		
66	0.87	101.27		0.07		
67	0.88	101.27		0.07		
68	0.90	101.27		0.07	· · · · · · · · · · · · · · · · · · ·	
69	0.92	101.27		0.07	· · · · · · · · · · · · · · · · · · ·	
70	0.93	101.27		0.07	·	
71	0.95	101.27		0.07		
72	0.97	101.27		0.07		
73	0.98	101.27		0.07		
74	1.00	101.26		0.06	······································	
75	1.20	101.26		0.06		
76	1.40	101.25		0.05		
77	1.60	101.25		0.05		
78	1.80	101.25		0.05		
79	2.00	101.23		0.04		
80	2.20	101.24		0.04		
81	2.20	101.24		0.04	·· · ·· · · · · ·	
82	2.40	101.24		0.04		
83	2.80	101.24		0.04		
84	3.00					
85	3.20	101.23		0.03		
86		101.23		0.03		
	3.40	101.23		0.03		
87	3.60	101.23		0.03		
88	3.80	101.23	,	0.03		
89	4.00	101.23		0.03		
90	4.20	101.22		0.02		
91	4.40 .	101.22	· · · · · ·	0.02		
92	4.60	101.22		0.02		
93	4.80	101.22		0.02		
94	5.00	101.22		0.02		
95	5.20	101.22		0.02		
96	5.40	101.22		0.02		
97	5.60	101.22		0.02		
98	5.80	101.21		0.01		
99	6.00	101.21		0.01		
100	6.20	101.21		0.01		

STEAR	NS & WHELER, LLC	Pumping test analysis		Date: 14.01.1999	Page 4		
	NS & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	Time-Drawdown plot		Project: Roblin Stee			
AZENOVI (15) 655-8		with discharge	nu disenarge				
-	Test No.	1	Evaluated by: SLG Test conducted on: 1/12/99				
W-12S							
ovv-125			GW-12S				
static wat	er level: 101.20 ft below datum						
	Pumping test duration	Water level	Drawd	own			
	[min]	(ft)	(ft)				
101	6.40	101.21	((t)	0.01			
102	6.60	101.21	······	0.01			
103	6.80	101.21		0.01			
104	7.00	101.21		0,01	····		
105	7.20	101.21		0.01			
106	7.40	101.21		0.01	· · · · · · · · · · · · · · · · · · ·		
107	7.60	101.21		0.01	·······		
108	7.80	101.21	1	0.01			
109	8.00	101.21		0.01			
110	8.20	101.21		0.01			
111	8.40	101.20		0.00			
112	8.60	101.20	1	0.00			
113	8.80	101.20		0.00			
114	. 9.00	101.20		0.00			
115	9.20	101.20		0.00			
116	9.40	101.20		0.00			
117	9.60	101.20		0.00			
118	9.80	101.20		0.00			
119	10.00	101.20		0.00	-,		
			-1				
	····		1				
		· · · · · · · · · · · · · · · · · · ·					
	·····	<u> </u>					
	···· ···	·					
		· · · ·					
					10 FL - 1 - 1		
			·				
			· · ·				
-							
				1			
	· · · · · · · · · · · · · · · · · · ·		1				
					· · · · · · · · · · · · · · · · · · ·		
					· · · · · · · · · · · · · · · · · · ·		
					·		
		· · · · ·					
1							

Hydraulic conductivity [cm/s]: 1.51 x 10⁻³

.

.

. .

. .

FNVIDO	RNS & WHELER, LLC DNMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method	1	Date: 14.01.1999	Page 2	
CAZENO			1	Project: Roblin Stee	1	
(315) 655				Evaluated by: SLG	·	
Slug Tes	st No.		Test conducted on:	1/12/99		
GW-13	,		GW-13		, <u>_</u>	
	······································				·····	
Static w	ater level: 98.80 ft below datum	· · · · ·				
Static W	Pumping test duration	10/242212	·			
	Fumping test duration	Water level	Dra	awdown		
	(min)	[ft]		_[ft]		
1	0.00	99.19		0.39		
2	0.00	3.24		-95.56		
3	0.00	3.24		-95.56	· · · · · · · · · · · · · · · · · · ·	
4	0.00	3.24		-95.56	· · · · ·	
5	0.00	3.25		-95.55		
6	0.00	. 3.24		-95.55		
7	0.00	3.25		-95.55		
8	. 0.00	3.25		-95.55	· · · ·	
9	0.00	3.25		-95.55	<u></u>	
10	ú 0.00	3.25		-95.55		
11	0.00	3.25		-95.55	· • .	
12	0.00	3.25		-95.55		
13	0.00	3.25		-95.55		
14	0.00	3.25		-95.55	· · · · · · · · · · · · · · · · · · ·	
15	0.00	. 3.25		-95.55	· · · · · ·	
16	0.00	3.25		-95.55		
17	0.00	3.25		-95.55		
18	0.00	3.25		-95.55	•	
19	0.00	3.25		-95.55		
20	0.00	3.25		-95.55	····· ,	
21	0.00	3.25		-95.55	· · · · · · · · · · · · · · · · · · ·	
22	0.00	3.25		-95.55		••••••
23	0.00	3.25		-95.55	· ···	
24	0.00	3.25		-95.55		
25	0.00	3.25		-95.55		
26	0.00	3.25		-95.55		
27	0.00	3.25		-95.55		
28	0.00	3.25		-95.55		
29	0.00	3.25		-95.55		
30	0.00	3.25		-95.55		
31	0.00	3.25		-95.55		
32	0.00	3.25		-95.55		
33	0.00	3.25		-95.55		
34	0.00	3.25		-95.55		
35	0.00	3.25		-95.55		
36	0.00	3.25		-95.55		
37	0.00	3.25		-95.55		
38	0.00	3.25		-95.55		
39	0.00	3.25		-95.55		
40	0.00	3.25		-95.55		
41	0.00	3.25		-95.55		
42	0.00	3.25		-95.55		
43	0.00	3.25		-95.55		
44	0.00	3.25		-95.55		
45	0.00	3.25		-95.55		
45	0.00	3.25		-95.55		
40	0.00	3.25		-95.55		
47	0.00	3.25		-95.55		
		3.25		-95.55		
49	0.00	3.25	1	-95.55		

SIEAR	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 14.01.1999	Page 3
ENVIRO CAZENOV		BOUWER-RICE's method	F	Project: Roblin Steel	
(315) 655-			F	Evaluated by: SLG	
Slug Tes	t No.		Test conducted on: 1/12/99	· · · · · · · · · · · · · · · · · · ·	
GW-13	·		GW-13		· · · · · ·
	· ·				
<u>.</u>					
Static wa	iter level: 98.80 ft below datum		1		
	Pumping test duration	Water level	Drawdown		
	[min]	(ft)	(ft)		
51	0.00	3.25		-95.55	
52	0.00	3.25		-95.55	
53	0.00	. 3.25		-95.55	····
54	0.00	3.25		-95.55	
55	0.00	3.25		-95.55	
56	0.00	3.25		-95.55	
57	0.00	3.25		-95.55	· · · · · · · · · · · · · · · · · · ·
58	0.00	3.25		-95.55	, , ere meridik.
59	0.00	3.25		-95.55	
60	0.00	3.25		-95.55	
61	0.00	3.25		-95.55	
62	0.00	3.25		-95.55	
63	0.00	3.25		-95.55	
64	0.00	3.25	· · · · · · · · · · · · · · · · · · ·	-95.55	
65	0.00	3.25		-95.55	
66	0.00	3.25		-95.55	
67	0.00	3.25		-95.55	
68	0.00	3.25		-95.55	
69	0.00	3.25		-95.55	
70	0.00	3.25		-95.55	
71	0.00	3.25		-95.55	
72	0.00	3.25		-95.55	
73	. 0.00	3.25		-95.55	
74	0.00	3.25		-95.55	• • • •
75	0.00	3.25		-95.55	
76	0.00	3.25		-95.55	· · · ·
77	0.00	3.25		-95.55	
78	0.00	3.25		-95.55	
79	0.00	. 3.25		-95.55	
80	0.00	3.25		-95.55	<u> </u>
81	0.00	3.25		-95.55	
82	0.00	3.25		-95.55	
83	0.00	3.25		-95.55	
84	0.00	3.25		-95.55	· · · ·
85	0.00	3.25		-95.55	
86	0.00	3.25		-95.55	. · ·
87	0.00	3.25		-95.55	
88	0.00	3.25		-95.55	· · · · · · · · · · · · · · · · · · ·
89	0.00	3.25		-95.55	
90	0.00	3.25		-95.55	
91	0.01	3.25		-95.55	
92	0.01	3.25		-95.55	
93	0.01	3.25		-95.55	
94	0.01	3.24		-95.55	
95	0.01	3.24		-95.55	
96	0.01	3.24		-95.55	
97	0.01	3.24		-95.55	······.
97	0.01	3.24		-95.55	• • • • · · · · · · · · · · · · · · · ·
99		3.24			
	0.01			-95.55	· · · · · · · · · · · · · · · · · · ·
100	0.01	3.24	1	-95.55	

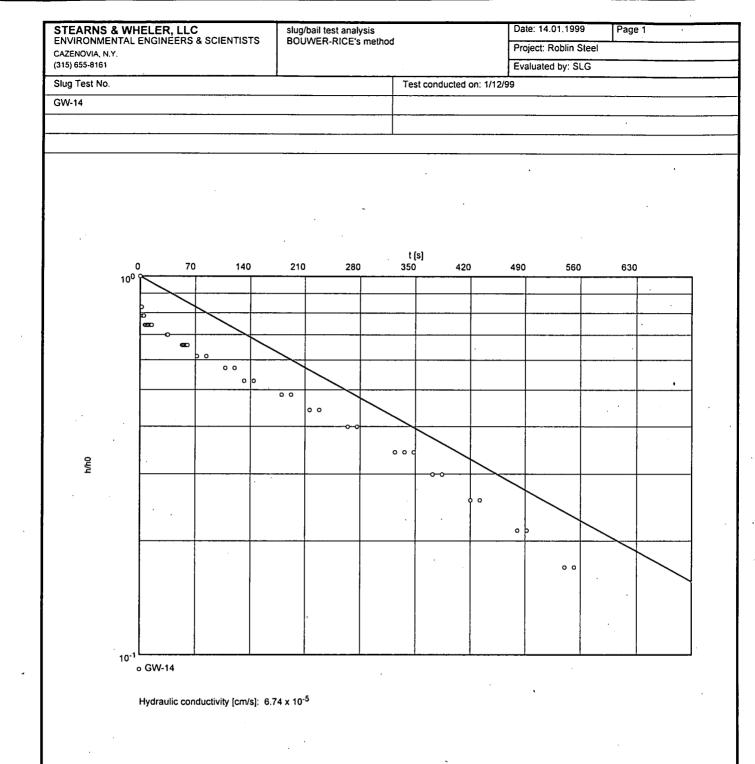
.

Î

Į

STEAR	NS & WHELER, LLC	slug/bail test analysis		Date: 14.01.199	9	Page 4	7
ENVIRO	NMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method		Project: Roblin	Steel	L	-1
CAZENOVI 315) 655-8				Evaluated by: S			
Slug Test			Tost conducted on: 1/12	I			
			Test conducted on: 1/12	2/99			_
GW-13			GW-13				/
Static wa	ter level: 98.80 ft below datum						
	Pumping test duration	Water level	Drawdo	wn			-
	[min]	[ft]	[ft][ft]	05.55	•		
101	0.01	3.24		-95.55			_
102	0.01	3.24		-95.55			
103	0.01	3.24		-95.55		· · <u></u> ······	
104	0.01	3.24		-95.55			
105	0.01	3.24		-95.56			
106	0.01	3.24		-95.56		· ·	
107	0.01	3.24		-95.56			
108	0.01	3.24		-95.56			-
109	0.01	3.24		-95.56			-1
110	0.01	3.24		-95.56		·····	-1
111	0.01	3.24		-95.56			-
112	0.01	3.24		-95.56		·····	
113	0.01	3.24		-95.56			-
114	0.01	3.24		-95.56			4
115	0.01	3.24		-95.56			,
116		3.24		-95.56			_
	0.01						
117	0.01	3.24		-95.56			
118	0.01	3.24		-95.56			
119	0.01	3.24		-95.56		· · · · · · · · · · · · · · · · · · ·	
120	0.01	3.24		-95.56			
121	0.01	3.24		-95.56			^
122	0.01	3.24		-95.56			
123	0.01	3.24		-95.56			7
124	0.01	3.24		-95.56			
125	0.01	3.24		-95.56		·	-1
126	0.01	3.24		-95.56			
127	0.01	3.24		-95.56		· · · · · · · · · · · · · · · · · · ·	-
128	0.01	3.24		-95.56			-
129	0.01	3.24		-95.56			
130	0.01	3.24		-95.56			
131	0.01	3.24		-95.56			-
132	0.01	3.24		-95.56		<u></u>	4
133	0.01	3.24		-95.56		···	4
							1
134	0.01	3.24		-95.56			_
135	0.02	3.24		-95.56		· · · · · · · · · · · · · · · · · · ·	
136	0.02	3.24		-95.56			
137	0.02	3.24		-95.56			
138	0.02	3.24		-95.56			
139	0.02	3.24		-95.56			
140	0.02	3.24	;	-95.56		·····	1
141	0.02	3.24		-95.56			
142	0.02	3.24		-95.56		· · · · · · · · · · · · · · · · · · ·	
143	0.02	3.24		-95.56			-
144	0.03	3.24	•	-95.56			-
145	0.03	3.24		-95.56		- · · · · · · · · · · · · · · · · · · ·	-
146	0.03	3.24		-95.56			-1,
	0.03	•				. <u> </u>	-1
147		3.24		-95,56			_
148	0.04	99.10		0.30			
149	0.04	3.24		-95.56			
150	0.05	3.24		-95.56			1

,


SIEAR	NS & WHELER, LLC	slug/bail test analysis		Date: 14.01.1999	Page 5
		BOUWER-RICE's method		Project: Roblin Steel	
CAZENO\ (315) 655-				Evaluated by: SLG	
Slug Tes		1f	Test conducted on: 1/12/9		
GW-13			GW-13		
Static wa	ater level: 98.80 ft below datum	. <u></u>			
	Pumping test duration	Water level	Drawdown	· · · · · · · · · · · · · · · · ·	
151	[min]0.05	[ft]00.07	(ft)	0.07	
151	0.05	99.07	•	0.27	
		3.24		-95.56	
153	0.06	3.24		-95.56	
154	0.06	99.07		0.27	-
155	0.06	3.24		-95.56	
156	0.07	3.24		-95.56	
157	0.07	3.24		-95.56	
158	0.07	99.07		0.27	
159	0.07	3.24		-95.56	
160	0.08	3.24		-95.56	
161	0.08	99.07		0.27	
162	0.08	3.24		-95.56	
163	0.09	. 3.24		-95.56	
164	0.09	99.05		0.25	
165	0.09	3.24		-95.56	
166	0.10	3.24		-95.56	
167	0.10	99.04		0.24	
168	. 0.10	3.24		-95.56	
169	0.11	3.24		-95.56	
170	0.11	99.03	······································	0.23	
171	0.11	3.24		-95.56	
172	0.12	3.24		-95.56	
173	0.12	99.03		0.23	
174	0.12	3.24		-95.56	· · · · · · · · · · · · · · · · · · ·
175	0.13	3.24		-95.56	··· · · · · · · · · · · · · · · · · ·
176	0.13	3.24		-95.56	
177	0.13 .	99.02		0.22	
178	0.13	3.24		-95.56	·····
179	0.14	3.24		-95.56	
180	. 0.14	3.24		-95.56	
181	0.14	99.01		0.21	
182	0.14	3.24		-95.56	· · · · · ·
183	. 0.15	3.24		-95:56	
184	0.15	99.00		0.20	
185	0.15	3.24		-95.56	<u> </u>
186	0.16	3.24		-95.56	······································
187	0.16	98.99		0.19	
188	0.16	3.24		-95.56	
189	0.17	3.24		-95.56	······
190	0.17	98.99		. 0.19	
191	0.18	98.98		0.18	·
192	0.18	98.98		0.18	
192	0.19	98.97		0.17	
193					
	0.21	98.96		0.16	
195	0.22	98.95		0.15	
196	0.23	98.95		0.15	
197	0.24	98.94		0.14	
198	0.25	98.94		0.14	
199	0.26	98.93		0.13	
200	0.27	98.93		0.13	

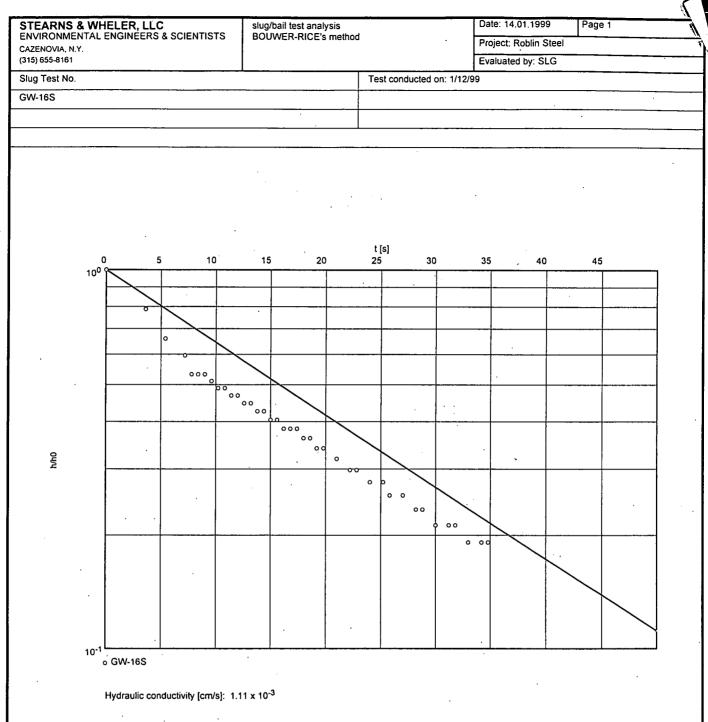
1

.

STEARN	S & WHELER, LLC MENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 6	
ENVIRONN CAZENOVIA,		BOUWER-RICE's method		Project: Roblin S		
(315) 655-816				Evaluated by: SL		
Slug Test N	lo.		Test conducted on: 1/	12/99		
GW-13			GW-13			
Static water	r level: 98.80 ft below datum				<u>.</u>	
	Pumping test duration	Water level	Drawo	fown		,
201	[min]0.28	(ft]98.92	(ft	0.12		·
202	0.29	98.92		0.12		<i>1</i>
203	0.30	98.91		0.11		
204	0.31	98.91	······································	0.11		
205	0.32	98.91		0.11		V
206	0.33	98.90		0.10		
207	0.35	98.90		0.10		
208	0.37	98.89 98.89		0.09		
210	0.38	98.88		0.09		
210	0.40	98.88		0.08		
212	0,43	98.87		0.07	· · · · · · · · · · · · · · · · · · ·	v
213	0.45	98.87		0.07	· · ·	
214	0.47	98.87		0.07		
215	0.48	98.87		0.07		· · ·
	· · · · · · · · · · · · · · · · · · ·					
		······				
	, , , , , , , , , , , , , , , , ,				· · · · · ·	 _
					· · · · · · · · · · · · · · · · · · ·	
						/
					· · · · · · · · · · · · · · · · · · ·	
	•	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··				
		·····				
		<u>.</u>				
		- .				
					· · <u>a</u> tan e e · · e	,
		<u></u>			<u></u>	
			·		· · · · · · · · · · · · · · · · · · ·	

•

STEAR	NS & WHELER, LLC	Pumping test analysis		Date: 14.01.1999	Page 2
NVIROI	NMENTAL ENGINEERS & SCIENTISTS	Time-Drawdown plot with discharge		Project: Roblin Steel	· · · · · · · · · · · · · · · · · · ·
315) 655-{		l		Evaluated by: SLG	· · · · · · · · · · · · · · · · · · ·
umping	Test No.		Test conducted on: 1/12		
GW-14			GW-14		·
					· · · · · · · · · · · · · · · · · · ·
Static wa	ter level: 100.23 ft below datum	I			
	Pumping test duration	Water level	Drawdo	wo l	
	· ·	Water level	Diawac		
	[min]	[ft]	(ft]		
1	0.00	99.91		-0.32	
2	0.01	100.09		-0.14	
	0.02	100.46		0.23	- u - ₁₄ .
5	0.03	100.42		0.19	· · · · · · · · · · · · · · · · · · ·
6	0.04	100.42		0.19	
7	0.06	100.41	<u> </u>	0.18	
8	0.08	100.41		0.17	·
9	0.08	100.40		0.17	******
10	0.09	100.41		0.18	· · · · · · · · ·
11	0.10	100.40	· ·	0.17	
12	0.11	100.40		0.17	······································
13	0.12	100.40		0.17	
14	0.13	100.40		0.17	
15	0.14	100.40		0.17	
16	0.15	100.40		0.17	
17	0.16	100.40		0.17	
18	0.17	100.40		0.17	
19	0.18	100.40		0.17	
20	0.19	100.40		0.17	
21	0.20	100.40		0.17	
22	0.21	100.40		0.17	
23	0.22	100.40		0.17	<u>-</u>
24	0.23	100.40		0.17	
25	0.24	100.40		0.17	
26	0.25	100.40		0.17	
27	- 0.26	100.39		0.16	
28	0.27	100.39		0.16	
29	0.28	100.39		0.16	
30	0.29	100.39		0.16	
31	0.30	100.39		0.16	- ··
32	0.31	100.39		0.16	
33	0.32	100.39		0.16	·····
34	0.33	100.39		0.16	
35	0.35	100.39		0.16	
36	0.37	100.39		0.16	
37	0.38	100.39		0.16	
39	0.40	100.39		0.16	. <u></u>
40	0.42	100.39		0.16	<u> </u>
40	0.45	100.39		0.18	
42	0.47	100.39		0.16	
43	0.48	100.39		0.16	
44	0.50	100.39		0.16	
45	0.52	100.39		0.16	
46	0.53	100.39		0.16	
47	0.55	100.39		0.16	
48	0.57	100.39		0.16	
49	0.58	100.39		0.16	
50	0.60	100.38		0.15	


ENVIR	ARNS & WHELER, LLC RONMENTAL ENGINEERS & SCIENTISTS	Pumping test analysis Time-Drawdown plot		
CAZEN	OVIA, N.Y.	with discharge		
(315) 65	55-8161			Evaluated by: SLG
Pumpi	ng Test No.		Test conducted on: 1/	Project: Roblin Steel Evaluated by: SLG
GW-14	4		GW-14	Evaluated by: SLG on: 1/12/99 Drawdown [ft] 0.15 0.16 0.17 0.13 0.13 <t< td=""></t<>
Static	water level: 100.23 ft below datum			
ļ	Pumping test duration	Water level	Draw	down
	[min]	(ft]	14	n
51	0.62	100.38	^l	
52	0.63	100.38		
53	0.65	100.38		
54	0.67	100.38		
55	0.68			
56				
	0.70	100.38		
57	0.72	100.38		
58	0.73	100.38		
59	0.75	100:38		0.15
60	0.77	100.38		0.15
61	0.78	100.38		. 0.15
62	. 0.80	100.38		0.15
63	0.82	100.38		0.15
64	0.83	100.38		0.15
65	0.85	100.38	· .	0.15
66	0.87	100.38		
67	0.88	100.38		
68	0.90	100.38		
69	0.92	100.38		
70	0.93	100.38		
71	0.95	100.38		
72	0.95	100.38		
73	0.97			
73	1.00	100.38		
		100.38		
75	1.20	100.37		
76	. 1.40			
77	1.60	100.36		
78	1.80	100.36		
79	2.00	100.36		
80	2.20	100.35		0.12
81	2.40	100.35		0.12
82	2.60	100.35		0.12
83	2.80	. 100.34		0.11
84	3.00	100.34		0.11
85	3.20	100.34		0,11
86	3.40	100.33		
87	3.60	100.33		
88		100.33		
89	4.00	100.33		
90	4.20	100.32		
91	4.40	100.32		
92	4.60	100.32		
93				
	4.80	100.32		
94	5.00	100.31		0.08
95	5.20	100.31		0.08
96	5.40	100.31		0.08
97	5.60	100.31		0.08
98	5.80	100.31		0.08
99	6.00	100.30		0.07
100	6.20	100.30		0.07

.

1

Í

	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	Pumping test analysis		Date: 14.01.1999		Page 4	
NVIROI		Time-Drawdown plot with discharge		Project: Roblin St	teel		
315) 655-8				Evaluated by: SL			
umping	Test No.	· · · · · · · · · · · · · · · · · · ·	Test conducted on: 1/12/				
SW-14			GW-14				
				. <u></u>			
atic wa	ter level: 100.23 ft below datum			,		· · · · · · · · · · · · · · · · · · ·	
	Pumping test duration	Water level	Drawdow	/n			
	(min]	(ft]	(ft)				
101	6.40	100.30	t.vj	0.07			
102	6.60	100.30		0.07			
103	6.80	100.29		0.06			
104	7.00	100.29		0.06			
105	7.20	100.29		0.06			
106	7.40	100.29		0.06		· ···· ··	
107	7.60	100.29		0.06		· · ·	
108	7.80	100.28		0.05			<u> </u>
109	8.00	100.28		0.05			
110	8.20	100.28		0.05			
111	8.40	100.28		0.05			
112	8.60	100.27		0.04			
113	8.80	100.27		0.04			
114	9.00	100.27		0.04			
115	9.20	100.27		0.04			
116	9.40	100.27		0.04			
117	9.60	100.27		0.04			
118	9.80	100.26		0.03			
119	10.00	100.26		0.03			
120	12.00	100.24		0.01			<u></u>
121	14.00	100.23		0.00			
						<u>_</u>	
	······································			·			
							<u> </u>
	·····						
							<u> </u>
		· · · · · · · · · · · · · · · · · · ·			·····		
						<u> </u>	
		·····					
						- 12	<u> </u>
						•••••	. <u></u>
	· · · · · · · · · · · · · · · · · · ·						
					<u> </u>		
		,					
	<u> </u>						
1						-	

STEARNS & WHELER, LLC	slug/bail test analysis	Date: 14.01.19	199 Page 2	
NVIRONMENTAL ENGINEERS & SCIENTISTS	BOUWER-RICE's method	Project: Roblin		
AZENOVIA, N.Y 15) 655-8161		Evaluated by:		
ilug Test No.		t conducted on: 1/12/99		
GW-16S	GW	-16S		
Static water level: 100.78 ft below datum		· · · · · · · · · · · · · · · · · · ·	•	
Pumping test duration	Water level	Drawdown		
(min)	[ft]	[ft]		
1 0.00	101.25	0.47		
2 0.04	101.05	0.27		·····
3 0.05	101.05	0.27		
4 0.06	101.15	0.37		·
5 0.07	101.06	0.28		
6 0.08	101.05	0.27		
7 0.09	101.09	0.31		
8 0.10	101.05	0.27		
9 0.11	101.04	0.26		
10 0.12	101.06	0.28		
11 0.13	101.03	0.25		
12 0.14	101.03	0.25		
13 0.15	101.03	0.25		
14 0.16	101.02	0.24		
15 0.17 16 0.18	101.01	0.23		<u></u>
16 0.18 17 0.19	101.01	0.23		
	101.00	0.22		
18 0.20 19 0.21	101.00	0.22		
20 0.22	100.99	0.21		
21 0.23	100.99	0.21		
22 0.24	100.98	0.20		
23 0.25	100.97	0.19		
24 0.26	100.97	0.19	ļ	
25 0.27	100.96	0.18		
26 0.28	100.96	0.18		······
27 0.29	100.96	0.18		
28 0.30	100.95	0.17		
29 0.31	100.95	0.17	<u> </u>	
30 0.32	100.94	0.16		
31 0.33	100.94	0.16		
32 0.35	100.93	0.15		· <u> </u>
33 0.37	100.92	0.14		
34 0.38	100.92	0.14		
35 0.40	100.91	0.13		
36 0.42	100.91	0.13		
37 0.43	100.90	0.12		
38 0.45	100.90	0.12		
39 0.47	100.89	0.11		
40 0.48	100.89	0.11		
41 0.50	100.88	0.10		
42 0.52	100.88	0.10		
43 0.53	100.88	0.10	L	
44 0.55	100.87	0.09		
45 0.57	100.87	0.09		
46 0.58	100.87	0.09		
47 0.60	100.86	0.08		
48 0.62	100.86	0.08		
49 0.63	100.86	0.08		
50 0.65	100.86	0.08		

SIEAR	RNS & WHELER, LLC INMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis		Date: 14.01.1999	Page 3
ENVIRO CAZENO\		BOUWER-RICE's method		Project: Roblin Steel	
(315) 655-				Evaluated by: SLG	
Slug Tes	st No.	L	Test conducted on: 1/12/	1	
GW-16S		·	GW-16S		
	·				
04-4				- <u></u>	
Static wa	ater level: 100.78 ft below datum	······			
	Pumping test duration	Water level	Drawdow	'n	
	[min]	[ft]	[ft]		
51	0.67	100.85		0.07	
52	0.68	. 100.85		0.07	
53	0.70	100.85		0.07	
54	0.72	100.85		0.07	
55	0.73	100.85		0.07	
56	0.75	100.85		0.07	
57	0.77	100.84		0.06	
58	0.78	100.84		0.06	
59	0.80	100.84		0.06	· · · · · ·
60	0.82	100.84	· ·	0.06	
61	0.83	100.84		0.06	
62	. 0.85	100.84		0.06	
63	0.87	. 100.84		0.06	
64	0.88	100.84	1	0.06	
65	0.90	100.84		0.06	•
66	0.92	100.84		0.06	•
67	0.93	100.83		0.05	
68	0.95	100.83		0.05	
69	0.97	100.83		0.05	
70	0.98	100.83		0.05	
71	1.00	100.83		0.05	
72	1.20	100.82		0.04	
73	1.40	100.82		0.04	
74	1.60	100.81		0.03	
75	1.80	100.81		0.03	
76	2.00	100.81		0.03	
77	2.20	100.81		0.03	
78	2.40	100.80		0.02	
79	2.60	100.80		0.02	
80	2.80	100.80		0.02	
81	3.00	100.80		0.02	
82	3.20	100.80		0.02	
83	3.40	100.80		0.02	- · · ·
84	3.60	100.80		0.02	
85	3.80	100.30		0.02	
86	4.00	100.79		0.01	
87	4.00	100.79		0.01	
88	4.40	100.79		0.01	·····
89	4.60	100.79		0.01	<u></u>
90	4.80	100.79	· · · ·	0.01	
90 • 91	5.00			0.01	
91 92		100.79			
	5.20	100.79		0.01	
93	5.40	100.79	· · · - · · · · · · · · · · · · · · · ·	0.01	
94	5.60	100.79		0.01	
95	5.80	100.79		0.01	
96	6.00	100.79		0.01	
97	6.20	100.79		0.01	
98	6.40	100.79		0.01	
99	6.60	100.79		0.01	
100	6.80	100.79		0.01	

.

1

Í

•

STEARNS	S & WHELER, LLC IENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.199	9	Page 4	
NVIRONM AZENOVIA, I		BOUWER-RICE's method		Project: Roblin	Steel	L	
AZENOVIA, 1 15) 655-816				Evaluated by: S			
lug Test N	0.	······	Test conducted				
W-16S			GW-16S			·······	
	····						
Static water	level: 100.78 ft below datum						· · ·
	Pumping test duration	Water level		Drawdown			
	(min)	[ft]		[ft]			
101	7.00	100.79		0.01			
102 103	7.20	100.79		0.01			
103	7.40	100.79		0.01			
104	7.80	100.79		0.01			
105	8.00	100.78	····	0.00			
107	8.20	100.78		0.00			
108	8.40	100.78		0.00			
109	8.60	100.78		0.00	·····•		
110	8.80	100.78		0.00			
111	9.00	100.78		0.00			<u></u>
112	9.20	100.78		0.00			
113	9.40	100.78		0.00		· ··· ••	
114	9.60	100.78		0.00			;
115	9.80	100.78		0.00			
116	10.00	100.78		0.00			
117	12.00	100.78		0.00		· . <u></u>	•
118	14.00	100.78		0.00			
119	16.00	100.78	·	0.00			
_				· · · ·			
		·····					
		· · · · · · · · · · · · · · · · · · ·					
	·						
							<u>.</u>
							<u>.</u>
 							
		·					
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				X	
1				-			

STEARNS & WHELER, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 1
CAZENOVIA, N.Y.	BOUWER-RICE's method	ė	Project: Roblin Steel	
(315) 655-8161			Evaluated by: SLG	
Slug Test No.		Test conducted on: 1/12/9	9	
GW-17S				
· ·				
	•			•
· ·		t [s]	•	
	9 12	15 18	21 24	27
	<u> </u>			
	, , ,, , ,, , ,, , ,, , ,, , ,, , ,, , , , , , , , , , , , , , , , , , , ,			
	• ·			
		00		
оч <i>ч</i> ч				
É				
			· \	·
· .				
10 ⁻¹				

Hydraulic conductivity [cm/s]: 1.56 x 10⁻³

STEARN	S & WHELER, LLC	slug/bail test analysis		Date: 14.01.1999	9	Page 2	
ENVIRONMENTAL ENGINEERS & SCIENTISTS CAZENOVIA, N.Y.		BOUWER-RICE's method		Project: Roblin S	iteel	L	
CAZENOVIA 315) 655-81				Evaluated by: SL			
Slug Test N		- I	Test conducted on: 1/12/99				
GW-17S	····						
300-175			GW-17S	·····		······································	
Static wate	r level: 100.03 ft below datum						
	Pumping test duration	Water level	Drawdo	wn			
	[min]	(ft]	(ft](ft]				
1	0.00	100.35	(⁽¹⁾	0.32			
2	0.03	100.33		0.30		·	
3	0.04	100.32		0.29			
4	0.05	100.34		0.31			
5	0.06	100.35		0.32		· · · ·	
6	0.07	100.35		0.32			
7	0.08	100.34		0.31			
8	0.09	100.34	1	0.31			
9	0.10	100.33		0.30			
10	0.11	100.31		0.28			
11	0.12	100.30		0.27			
12	0.13	100.29		0.26		······································	
13	0.14	100.28		0.25			
14	0.15	100.27		0.24			
15	0.16	100.26		0.23			
16	0.17	100.25		0.22		· · · · · · · · · · · · · · · · · · ·	
17	0.18	100.24		0.21			
18	0.19	100.23		0.20			
19	0.20	100.22		0.19			
20	0.21	100.21		0.18			
21	0.22	100.20		0.17			
22	0.23	100.20		0.17			
23	0.24	100.19		0.16			
24	0.25	100.19		0.16			
25	0.26	100.18		0.15			
26	0.27	100.18		.0.15		· · · · · · · · · · · · · · · · · · ·	
27	0.28	100.17		0.14			
28	0.29	100.17		0.14			
29	0.30	100.16		0.13			
30	0.31	100.16		0.13			
31	0.32	100.15		0.12			
32	• 0.33	100.15		0.12		· · ·	
33	0.35	100.14		0.11			
34	0.37	100.14		0,11			
35	0.38	100.13		0.10			
36	0.40	100.13		0.10			
37	0.42	100.13		0.10			
38	0.43	100.12		0.09			
39	0.45	100.12		0.09			
40	0.47	100.12		0.09			
41	0.48	100.12		0.09			
42	0.50	100.11		0.08			
43	0.52	100.11		0.08			
44	0.53	100.11		0.08			
45	0.55	100.11		0.08			
46	0.57	100.11		0.08			
47	0.58	100.10		0.07			
48	0.60	100.10		0.07			
49	0.62	100.10		0.07			
50	0.63	100.10	1	0.07			

	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method		Date: 14.01.1999	Page 3			
CAZENOV		BOUWER-RICE'S METHOD		Project: Roblin Steel				
(315) 655-6				Evaluated by: SLG	valuated by: SLG			
Slug Tesi	t No.	· ·	Test conducted on: 1/12/99					
GW-17S		(GW-17S					
	·							
Static wa	ter level: 100.03 ft below datum			<u> </u>				
	Pumping test duration	Water level	Drawdowi					
	Fumping test duration		Diawdowi	1				
	(min)	(ft)	(ft]					
51	0.65	100.10		0.07				
52	. 0.67	100.10		0.07				
53	0.68	100.10		0.07				
54	0.70	100.10		0.07				
55	0.72	100.09		0.06				
56	0.73	100.09		0.06				
57	0.75	100.09		0.06				
58	0.77	100.09		0.06				
59	0.78	100.09		0.06				
60	0.80	100.09		0.06				
61	0.82	100.09		0.06				
62	0.83	100.09		0.06				
63	0.85	100.09		0.06	-			
64	0.87	100.09		0.06				
65	0.88	100.09		0.06				
66	0.90	100.09		0.06				
67	0.92	100.09		0.06				
68	0.93	100.09		0.06	<u> </u>			
69	0.95	100.08		0.05				
70	0.97	100.08		0.05				
71	0.98	100.08		0.05				
72	1.00	100.08		0.05				
73	1.20	100.08		0.05				
74	1.40	100.07		0.04				
75	1.60	100.07	· · · · · · · · · · · · · · · · · · ·	0.04				
76	1.80	100.06		0.03				
77	2.00	100.06		0.03				
78	2.20	100.06		0.03	· · · · · · · · · · · · · · · · · · ·			
79	2.40	100.06		0.03				
80	2.60	100.05	1	0.02	<u></u>			
81	2.80	100.05		0.02				
82	3.00	100.05		0.02				
83	3.20	100.05		0.02				
84	3.40	100.05		0.02				
85	3.60	100.05	· · · · · · · · · · · · · · · · · · ·	0.02				
86	3.80	100.05		0.02	·			
87	4.00	100.05		0.02	· · · · · · · · · · · · · · · · · · ·			
88	4.20	100.04		0.02				
89	4.40	100.04		0.01				
90	4.60	100.04		0.01				
91	4.80	100.04	<u> </u>	0.01	•			
92	5.00	100.04		0.01				
93	5.20	100.04		0.01				
93	5.20							
94		100.04		0.01				
	5.60	100.04		0.01				
96	5.80	100.04		0.01	· · · · · · · · · · · · · · · · · · ·			
97	6.00	100.04		0.01				
98	6.20	100.04		0.01				
99	6.40	100.04		0.01				
100	6.60	100.03		0.00				

Ì

STEAR	NS & WHELER, LLC	slug/bail test analysis		Date: 14.01.199	9 Page 4	
	NS & WHELER, LLC NMENTAL ENGINEERS & SCIENTISTS	slug/bail test analysis BOUWER-RICE's method	BOUWER-RICE's method			
CAZENOV (315) 655-8						
			T	Evaluated by: S		
Slug Test			Test conducted on: 1/1	2/99		
GW-17S			GW-17S			f
Static wa	ter level: 100.03 ft below datum	· · · · · · · · · · · · · · · · · · ·				
	Pumping test duration	Water level	Drawd	own		
101	[min]6.80	[ft] 100.03	[ft]	0.00		(1
102	7.00	100.03		0.00		
102	7.20	100.03		0.00		[~]
104	7.40	100.03		0.00	<u>,</u>	6
105	7.60	100.03		0.00		1
106	7.80	100.03		0.00	·	`
107						
107	8.00	100.03		0.00		
108	8.20	100.03		0.00		
	8.40	100.03		0.00	<u>.</u>	
110	8.60	100.03		0.00		
111	8.80	100.03		0.00		
112	9.00	100.03		0.00		
113	9.20	100.03		0.00		É
114	9.40	100.03		0.00		
115	9.60	100.03		0.00	<u>.</u>	
116	9.80	100.03		0.00		
117	10.00	100.03		0.00		
118	12.00	100.03		0.00		
						Y
					· · · ·	
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	🝙
					<u></u>	
					· · · · · · · · · · · · · · · · · · ·	_
					<u></u>	 `
	·····					1
		· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·			
						1 1

APPENDIX C

FIELD PARAMETERS

¢

0

Stearns & Wheler, LLC
ENVIRONMENTAL ENGINEERS & SCIENTISTS

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-1	
12/15/98	
33.13	
40	
4	

SITE NAME: ROBLIN STEEL

Observations Bailed dry after two gallons, water milky brown

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
· · · · · · · · · · · · · · · · · · ·	Bailed	11	1.03	8.30	140	999	7.53	0.04
						-		
		•				·		
			·					

Sample Time	
Total Volume Purged	
Final Turbidity	
Duplicate	
MS/MSD	

12:15	•
999	
· · · ·	

Purging method:

Disp. Bailer

Well Capacities	Well Capacities					
Diameter	Capacity					
(in)	(gal/ft)					
1	0.042					
2	0.164					
4	0.651					

Peristaltic Pump

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals)

Γ	GW-2	
	12/13/98	
	12/15/98	
	30	
	8	

SITE NAME: ROBLIN STEEL

Observations Bailed dry after 3 gallons

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.7	1.18	7.90	75	406	3.63	0.05

			Well Capacities	
Sample Time	14:15	Purging method:	Diameter	Capacity
Total Volume Purged			(in)	(gal/ft)
Final Turbidity	406	Disp. Bailer	1	0.042
Duplicate			2	0.164
MS/MSD		Peristaltic Pump	4	0.651
	·			

Stearns & Wheler, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS

SITE INVESTIGATION & REMEDIATION FIELD PARAMETERS

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals)
 GW-2S

 12/15/98

 9.37

 15

 3

SITE NAME: ROBLIN STEEL

Observations Water light brown, to rust

Time	Purge Rate (L/min)	Тетр. (С)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	12	0.607	7.20	150	999	6.55	0.02
		• .				ļļ.		
				· · · ·				
				· · ·				
						<u> </u>		
	·					1 1		

				Well Capacities	
Sample Time	•	13:00	Purging method:	Diameter	Capacity
Total Volume Purged				(in)	(gal/ft)
Final Turbidity		999	Disp. Bailer	1	0.042
Duplicate			·	2	0.164
MS/MSD		****	Peristaltic Pump	4 ·	0.651

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-3
12/15/98
28.03
40
6

SITE NAME: ROBLIN STEEL

Observations	
Very low volume	of water took samples only not enough water for parameters

Time	Purge Rate (L/min)	Temp. ` (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.7	1.18	7.90	75	406	3.63	0.05
	• .							
							·····	

Well Capacities 14:15 **Purging method:** Sample Time Diameter Capacity **Total Volume Purged** (gal/ft) (in) Disp. Bailer 0.042 **Final Turbidity** 406 1 Duplicate 2 0.164 MS/MSD **Peristaltic Pump** 4 0.651

Stearns & Wheler, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS

SITE INVESTIGATION & REMEDIATION FIELD PARAMETERS

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals) GW-3S 12/15/98 7.26 10 1.5

Observation	S ,			
Water rusty b	rown and t	urbid		
•				
-			•	

Time	Purge Rate (L/min)	Тетр. (С)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.9	0.588	7.30	160	753	4.34	0.02
			·····				· · ·	
·							· · ·	

			Well Capacities	
Sample Time	16:30	Purging method:	Diameter	Capacity
Total Volume Purged			 (in)	(gal/ft)
Final Turbidity	753 .	Disp. Bailer	1	0.042
Duplicate			 2	0.164
MS/MSD		Peristaltic Pump	4	0.651

SITE NAME: ROBLIN STEEL

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-4
12/16/98
14.72
40
12

SITE NAME:	ROBLIN STEEL							
	Observations							
	Observations -							
	Water pinkish, cloudy							
	Dup-2							

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.2	1.51	8.00	145	999	3.22	0.06
		<u> </u>			·	_		
						-		

			Well Capacities	
Sample Time	14:00	Purging method:	Diameter	Capacity
Total Volume Purged			 (in)	(gal/ft)
Final Turbidity	999	Disp. Bailer	1	0.042
Duplicate	*****		 2	0.164
MS/MSD		Peristaltic Pump	4	0.651
	· · ·			

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals)

GW-4S	
12/16/98	
8.34	
15	
3.5	

SITE NAME: ROBLIN STEEL

Observations			•	
Water brown, re				
			,	· ·

Time	Purge Rate (L/min)	Тетр. (С)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	11.6	0.91	7.30	140	362	5.20	0.03
		•		· · · · · ·				
					·			
				, ÷				
	•				•			

				X	Well Capacities	
Sample Time	13:30	. •	Purging method:		Diameter	Capacity
Total Volume Purged				· · · · · · · · · · · · · · · · · · ·	(in)	(gal/ft)
Final Turbidity	362		Disp. Bailer	· · · · · · · · · · · · · · · · · · ·	1 .	0.042
Duplicate					2	0.164
MS/MSD	****		Peristaltic Pump		4	0.651

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gal

10100	
12/16/98	
7.79	
34.5	
12	

SITE NAME:	ROBLIN STEEL

Observations Bailed dry after 9.5 gals

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	11.4	1	8.00	135	999	4.37	0.04
								ļ
				<u>+</u>				
	-				·····			
				·				
]

			Well Capacities	
Sample Time	11:45	Purging method:	Diameter	Capacity
Total Volume Purged			 (in)	(gal/ft)
Final Turbidity	999	Disp. Bailer	1	0.042
Duplicate			2	0.164
MS/MSD		Peristaltic Pump	4	0.651

Stearns & Wheler, LLC ENVIRONMENTAL ENGINEERS & SCIENTISTS

SITE INVESTIGATION & REMEDIATION FIELD PARAMETERS

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals

	GW-5S
	12/16/98
	5.21
- ,	14
	4.5

SITE NAME: ROBLIN STEEL

Observations Sheen and strong odor, purged 1.5 gals and sampled

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	12	0.837	7.40	150	999	5.02	- 0.03
		· · · ·						
					·			
				· · · · · · · · · · · · · · · · · · ·		· · · · ·		
		·····,				<u> </u>		· · · · · · · · · · · · · · · · · · ·
	<u> </u>		I		<u> </u>			

Sample Time	
Total Volume Purged	
Final Turbidity	
Duplicate	
MS/MSD	

11:30	
999	

Purging method:

Peristaltic Pump

Disp. Bailer

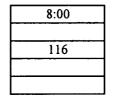
Well Capacities				
Diameter	Capacity			
(in)	(gal/ft)			
1	0.042			
2	0.164			
4	0.651			

Stearns & Wheler, LLC **ENVIRONMENTAL ENGINEERS & SCIENTISTS**

30

12

SITE INVESTIGATION & REMEDIATION **FIELD PARAMETERS**


Well ID GW-6 Date 12/17/98 DTW(ft) 10.41 Well Depth (ft) 3 Volumes (gals)

SITE NAME: ROBLIN STEEL

Observations			
Bailed dry at 6 gals			
, ,			
		•	

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	9.9	0.809	8.00	175	116	3.80	0.03
					·			
		· · · · ·						
		<u></u>	1				· · · · · · · · · · · · · · · · · · ·	

Sample Time
Total Volume Purged
Final Turbidity
Duplicate
MS/MSD

Purging method:

Disp. Bailer

Peristaltic Pump

wen Capacities	_
Diameter	
(in)	
1	
2	
4	

Wall Compatition

Capacity (gal/ft)

0.042

0.164

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals)

GW-7S	
12/16/98	
<u>9</u> .72	
12.32	
1.5	

SITE NAME: ROBLIN STEEL

Observations					
Bailed dry, water	is turbid des	spite turbidity	reading		
					•
		•		•	

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10	0.637	6.60	165	2	8.13	0.02
		• · ·						
							*	
	_							
	· •							

Sample Time Total Volume Purged Final Turbidity Duplicate MS/MSD

8:30	
2	

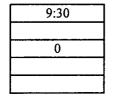
Purging method:

Disp. Bailer

Peristaltic Pump

	 •	
1	٦	

Well Capacities					
Diameter	Capacity				
(in)	(gal/ft)				
1	0.042				
2	0.164				
4	0.651				


Well ID GW-8S Date 12/16/98 10.68 DTW(ft) Well Depth (ft) 12.27 3 Volumes (gals) 1

SITE NAME: ROBLIN STEEL

Observations		
• •		

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
•	Bailed	10.1	1.58	6.70	105	0	8.78	0.07
					·			
· · ·	•							
								•

Sample Time **Total Volume Purged Final Turbidity** Duplicate MS/MSD

Purging method:

Disp. Bailer

Peristaltic Pump

Well Capacities Diameter Capacity (in) 1 2

4

(gal/ft)

0.042

0.164

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-9	
12/15/98	
10.99	
32.85	
10	
	10.99 32.85

SITE NAME: ROBLIN STEEL

Observations	5			
Water slightly	/ turbid, red/brown			
н. 1				

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.1	0.96	8.00	80	999+	3.94	0.04
				· · · · ·	·		· · · · · · · · · · · · · · · · · · ·	
						· · · ·		
	·							
		· · · · · · · · · · · · · · · · · · ·						

			Well Capacities	
Sample Time	9:15	Purging method:	Diameter	Capacity
Total Volume Purged		· · · · · · · · · · · · · · · · · · ·	(in)	(gal/ft)
Final Turbidity	999	Disp. Bailer	1	0.042
Duplicate		· · · ·	2	0.164
MS/MSD		Peristaltic Pump	4	0.651

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

[GW-10
[12/15/98
[7.76
[15
	4

SITE NAME: ROBLIN STEEL

Observations Water extremely turbid, with dark brown color, well dry after sampling

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.4	0.816	7.30	105	730	3.99	0.03
······································								

	<u>.</u>		Well Capacities	
Sample Time	10:45	Purging method:	Diameter	Capacity
Total Volume Purged			 (in)	(gal/ft)
Final Turbidity	730	Disp. Bailer	1	0.042
Duplicate			 2	0.164
MS/MSD		Peristaltic Pump	4	0.651

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-11S
12/15/98
9.87
15
3

SITE NAME:	ROBLIN STEEL

Observations					
Water extremely turbid	•			•	
Dup-1					
	• ·	•			

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.6	0.712	7.50	110	680	3.95	0.03
·			· · · ·					
					·			
			· · · ·	· - · · · · · · · · · · · · · · · · · ·			·····	<u> </u>
							· .	
			-					

			Well Capacities	
Sample Time	10:00	Purging method:	Diameter	Capacity
Total Volume Purged		·.	 (in)	(gal/ft)
Final Turbidity	680	Disp. Bailer	1	0.042
Duplicate	*****		 2	0.164
MS/MSD		Peristaltic Pump	4	0.651

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-12S	
12/16/98	
9.86	
15	
3	

SITE NAME: ROBLIN STEEL

Observations Water clear

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	12.1	1.07	7.10	125	304	4.43	0.04
		<u>. . </u>						
			·			ļ		
·			•					
			· .					

			Well Capacities	
Sample Time	10:00	Purging method:	Diameter	Capacity
Total Volume Purged			 (in)	(gal/ft)
Final Turbidity	304	Disp. Bailer	1	0.042
Duplicate			 2	0.164
MS/MSD		Peristaltic Pump	4	0.651

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals)

GW-13]
12/16/98	
35.13	
37.5	
	-

SITE NAME: ROBLIN STEEL

Observations

Did not purge due to low volume of water

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.2	0.897	7.30	170	347	3.80	0.02
				······				
						· · · · · · · · · · · · · · · · · · ·		
				· · · · · · · · · · · · · · · · · · ·				
		· · ·		• • • • •				
					•			

Sample Time Total Volume Purged Final Turbidity Duplicate MS/MSD

15:00	
347	

Purging method:

Disp. Bailer

Peristaltic Pump

Well Capacities		
Diam	eter	Capacit
(in)	(gal/ft)
1		0.042
2		0.164

4

SITE INVESTIGATION & REMEDIATION FIELD PARAMETERS

Well ID Date DTW(ft) Well Depth (ft) 3 Volumes (gals)

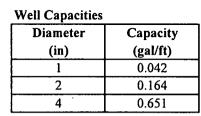
GW-14	
12/17/98	
14.37	
40	
12.5	

SITE NAME: ROBLIN STEEL

Observations			

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.1	1.27	7.40	70	45	4.27	0.05
· · · · · · · · · · · · · · · · · · ·								
							·	
•								

Sample Time
Total Volume Purged
Final Turbidity
Duplicate
MS/MSD


10:30	
45	

Purging method:

Disp. Bailer

Peristaltic Pump.

SITE INVESTIGATION & REMEDIATION FIELD PARAMETERS

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

GW-16S
12/16/98
7.05
15
4

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	10.2	1.67	7.10	140	413	7.58	0.07
								,
¥ ′								
				-				

SITE NAME: ROBLIN STEEL

Sample Time Total Volume Purged Final Turbidity Duplicate MS/MSD

11:00	
413	

Purging method:

Disp. Bailer

Peristaltic Pump

Well Capacities					
Diameter	Capacity				
(in)	(gal/ft)				
1 ·	0.042				
2	0.164				
4	0.651				

SITE INVESTIGATION & REMEDIATION FIELD PARAMETERS

Well ID
Date
DTW(ft)
Well Depth (ft)
3 Volumes (gals)

1	GW-17S
	12/16/98
	8.98
	15
	3

SITE NAME: ROBLIN STEEL

Observations Water brown with slight sheen, strong organic odor

Time	Purge Rate (L/min)	Temp. (C)	Cond. (ms/cm)	рН	Eh (mV)	Turbidity (NTU)	DO (ppm)	Salinity %
	Bailed	11.5	0.547	7:30	160	999	2.96	0.02
		·····						

				Well Capacities	
Sample Time	9:00	Purging method:	[Diameter	Capacity
Total Volume Purged				(in)	(gal/ft)
Final Turbidity	999	Disp. Bailer		1	0.042
Duplicate				2	0.164
MS/MSD		Peristaltic Pump		4	0.651
		•	-		

APPENDIX D

VALIDATED ANALYTICAL RESULTS

Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

ORGAINC & INORGANIC QUALITY ASSURANCE DATA REVIEW

STEARNS & WHELER, LLC

SITE: ROBLIN STEEL CASE NO.: 7098-2469C/ SDG NO.: C2469

REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. JANUARY 12, 1999

ORGANIC ANALYSES

STEARNS & WHELER SITE NAME: ROBLIN STEEL CASE NO.:7098-2469C/SDG NO.: C2469

INTRODUCTION

This quality assurance report is provided based upon a review of all data generated from two (2) soil samples for specific aromatic Volatile compounds, eight (8) soil samples for Poly Aromatic Hydrocarbons (PAH), and two (2) soil samples for Poly Chlorinated Biphenyl (PCB) compounds. The samples were collected on 11-12,13,17,18-98 and were analyzed by Severn Trent Laboratories according to criteria set forth in USEPA CLP OLM3.1 for PAH and PCB target compound. However, the volatile samples were subbed to the IEA laboratory and were analyzed according SW 846, Method 8021.

The following samples are contained within this report:

SS-54	SS-57	SS-40*	GW-16S**
SS-45	SS-52+	SS-56	GW-17S**
SS-55	SS-16S	SS-17	

* Sample was solely analyzed for PCB fraction.

** Sample was analyzed for volatile fraction only.

+ sample analyzed for PAH and PCB fractions

The QC (MS/MSD) sample was not performed on sample SS-52 for PAH and PCB. Also sample SS-40 was anlyzed as a QC sample in PCB analysis. The MS/MSD analysis was performed on an alternate sample for volatile analysis.

All data have been validated with regard to usability according to the quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

QUALITY ASSURANCE REVIEW

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No.: 7098-2469C/ SDG No.:C2469

DATA COMPLETENESS

The data package completeness was satisfactory.

HOLDING TIME

Volatile

Both samples were analyzed within 7-days from collections.

PAH & PCB

All samples were extracted within 7-days from collection, and analyzed within 40-days from extraction as cited in the Methods for both fractions

CALIBRATION

Volatile

The %RSDs and %Ds for the corresponding target compounds were within the control limits.

PAH

All RSDs, %Ds and response factors were within the control limits in both initial and continuing calibrations for the PAH compounds with the exception of the following %Ds.

Compound Name	CC 12-03-98	CC 12-08-98
Benzo (k) fluoranthene Benzo(B)fluoranthene	32	29.4
Associated Samples:	SS-17S SS-55	SS-54DL SS-56DL SS-57 SS-52 SS-52MS SS-52MSD SS-16S SS-16S SS-45 SS-55Re

The reported sample results were qualified estimated in the associated samples.

PCBs

The %RSD for alpha BHC (21.4%) and DDT (25.7%) exceeded the 20% QC limits. Also, %Ds for DDT and methoxychlor were above 20% in the continuing calibrations. The data were not qualified since the initial calibration criteria met the requirements and these compounds were not PCB compounds.

Stearns & Wheler Case No.: 7098-2469C/ SDG No.:C2469

BLANKS

Volatile

The low level and medium level blanks were free of target compounds.

PAH

The method blank SBLKVR contained fluoranthene (2 ug/kg), pyrene (2 ug/kg), benzo (b & K) fluoranthene (2 ug/kg) and benzo (g,h,i) perylene (4 ug/kg) at levels below the CRQLs. Also, blank SBLKCR contained 10 PAH compounds at levels below 4 ug/kg. These compounds were detected in the samples at relatively high levels, (above the action levels) with the exception of sample SS-17S. The reported result up to action levels were qualified "U" in this sample.

Tentatively Identified Compounds were not searched/reported for this analysis.

PCBs

The preparation blanks and instrument blanks were free of target compounds.

SURROGATE RECOVERIES

Volatile

The surrogate recoveries for both samples were within the control limits.

PAH

All samples and the corresponding QC samples were spiked with eight surrogate compounds as required by the applied methods. The recoveries were within the control limits with the exception of terphenyl-d14 in samples SS-54 (187%) and SS-56DL (141%). The data were not qualified based on these outliers since the surrogate recovery criteria, (i.e., one outlier per fraction and no recoveries below 10%) has been met.

PCBs

The DCB surrogate recoveries diluted out for both samples and the corresponding QC samples. Also, the recovery for DCB in the first column (170%) was above the control limit of 150% in SS-52MBS. The reported sample data were qualified estimated due to the dilutions. Additional qualifier codes were not applied.

MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Volatile

The recoveries and RPDs in low level spike analysis were within the control limits. The medium level analysis was not provided.

Stearns & Wheler

Case No.: 7098-2469C/ SDG No.: C2469

PAH

The matrix spike recoveries for 4-nitrophenol (117%), 2,4-dinitrotoluene (90%), and pyrene (195%) were above the upper control limits. Also, the RPD for pyrene (40%) was above 34% control limit. The reported results for pyrene were qualified estimated.

PCBs

The spike recovery for aroclor-1260 (39%) and aroclor 1242 (32%) in MS & MSD samples respectively were below the lower control limits. The sample data were not qualified based on these outliers since the recoveries were above 10%.

LABORATORY CONTROL SAMPLE

Volatile

The recoveries for the specific spike compounds were within the control limits.

PAH & PCBs

The LCS sample was analyzed in PAH fraction. Also, two BS sample analyses were performed for PCB fraction. The recoveries were within the control limits with the exception of 4-nitrophenol (100%) in PAH fraction. This compound is not a target compounds. Therefore, the data were not impacted.

INTERNAL STANDARD

PAH

All internal standard recoveries and retention times were within the control limits established by the laboratory with the exception of the following:

Sample ID	Internal Standard
SS-54	CRY &PRY
SS-54DL	PRY
SS-55	PRY .
SS-55Re	PRY
SS-56DL	PRY
SS-52	PRY
SS-52MS/MSD	PRY
SS-45	PRY
SS-56	PHN/CRY/PRY
SS-45Re	PRY

PHN = Phenantherene-d10 CRY = Chrysene-d12 PRY = Perylene-d12 Page 4

Stearns & Wheler Case No.: 7098-2469C/ SDG No.:C2469

The comparison of the initial sample results and the reanalysis gave the satisfactory reproducibility. Therefore, the reanalysis sample results were reported on the data summary. The sample data were qualified based on the aforementioned outliers.

DUPLICATE ANALYSIS

VOA, PAH & PCBs

Duplicate analysis was performed under batch # 2496B for PAH fraction. This QC sample was not analyzed for volatile and PCB samples.

SAMPLE RESULTS

Volatile

Sample GW-17S was analyzed according to the medium level analysis. The confirmation analysis (secondary column and/or GC/MS) was not provided. Therefore, the sample results were qualified estimated.

PAH

Four samples were initially analyzed at 2-fold dilutions. Sample SS-54 was also reanalyzed at five fold dilution due to the high concentration of the target compounds. The results for these compounds were transferred from the 5-fold-dilution and listed in the initial sample data. These compounds were identified with an asterisk on the data validation summary.

Sample SS-52 was also analyzed under SDG # 2469B with the different results. The chain-ofcustody in batch 2469B indicated that this sample was not received. This issue must be clarified by the laboratory.

All target compounds were detected in the samples. The base line for all sample chromatograms with the exception of samples SS-16S and SS-17S were elevated from the retention time approximately "RT= 19 minutes". The GC/MS spectra for the detected compounds showed an interference with petroleum hydrocarbons (TPHC) which may cause the elevated base lines and the internal standard outlier.

PCBs

Both samples were analyzed at 10-fold dilutions due to the sample background contamination. Therefore the results were biased low and the possibility of false negative exists. The reported results and non-detected values for these two samples were qualified estimated.

The %D for the results detected/reported from two different columns exceeded 25% control limits. All positive results were qualified estimated.

Stearns & Wheler Case No.: 7098-2469C/ SDG No.:C2469

SUMMARY

The cooler temperature was not listed on the chain-of-custody. The sample results below the CRQLs were qualified estimated, due to the uncertainty near the detection limits in the both fractions.

Overall, major analysis problems were not encountered during the sample analyses. The most important issue was sample background contamination and internal standard outliers. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

Page 6

1. Appendix A- Glossary of Data Qualifier

Appendix B- Data Summary Forms
 Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

Appendix A Glossary of Data Qualifier

Appendix B Data Summary Forms

ANALYTICAL ASSURANCE ASSOCIATES (A3) PESTICIDE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469C SDG NO.: 2469C

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:		SS-40 982469C-07 15 10.0	SS-52 982469C-09 24 10.0
TARGET COMPOUNDS:			•
	CRQL		
Aroclor-1016	33	UJ	UJ
Aroclor-1221	67	UJ	ŬĴ
Aroctor-1232	33	UJ	ŬĴ
Aroclor-1242	33	UJ	150 J
Aroclor-1248	33	UJ	UJ
Aroclor-1254	33	UJ	UJ
Aroclor-1260	33	UJ	120 J

ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469C SDG NO.: 2469C

LIENT SAMPLE ID: AB SAMPLE ID: MOISTURE: MUUTION FACTOR:	98	SS-17S 32469C-11 18 1.0								
ARGET COMPOUNDS:			 			,				
	CRQL				•					
laphthalene	330	260 J								
-Methylnaphthalene	330	NA						-		
cenaphthylene	330	NA								
cenaphthene	330	14 J					•			
luorene	330	26 J								
henanthrene	330	75 J								
nthracene	330	9 J					•			
luoranthene	330	9 U								
yrene	330	12 U							•	
enzo(a)anthracene	330	6 U		•				•		
hrysene	330	14 U								
enzo(b)fluoranthene	330	7 U								
enzo(k)fluoranthene	330	8 U								
enzo(a)pyrene	330	5 U								
ideno(1,2,3-cd)pyrene	330	4 U								
ibenzo(a,h)anthracene	330									
enzo(g,h,i)perylene	330	12 U								

ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469C SDG NO.: 2469C

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE:		SS-54 982469C-02 20	SS-45RE 982469C-03RE 26	SS-55RE 982469C-04RE 14	SS-56 982469C-05 11	SS-57 982469C-06 14	SS-52 982469C-09 15	SS-16S 982469C-10 22
DILUTION FACTOR:		2.0/5.0*	5.0	1.0	2.0	1.0	2.0	1.0
TARGET COMPOUNDS:						<u>.</u>		
	CRQL							
Naphthalene	330	3700	400 J	110 J	23 J	110 J ·	87 J	L 8
2-Methylnaphthalene	330	1500 J	480 J	130 J	160 J	160 J	120 J	NĂ
Acenaphthylene	330	660 J	540 J	290 J	960 J	190 J	130 J	NA
Acenaphthene	330	4300	450 J	54 J	76 J	37 J	160 J	1600
Fluorene	330	4500	640 J	66 J	1500 J	89 J	160 J	23 J
Phenanthrene	330	41000 J*	7100	1000	5400 J	970	2000	340 J
Anthracene	330	7900	1600 J	390	1400 J	260 J	470 J	58 J
Fluoranthene	330	41000 J*	8700	1700	3400 J	990	3400	760
Pyrene	330	50000 J*	15000 J	2200	4700 J	930 J	4100 J	2400 J
Benzo(a)anthracene	330	18000 J	7000 J	1100	2000 J	540	1800	290 J
Chrysene	330	18000 J	7600 J	1500	1600 J	840	2100	500
Benzo(b)fluoranthene	330	29000 J*	7100 J	1900 J	1200 J	730 J	2300 J	370 J
Benzo(k)fluoranthene	330	20000 J	5500 J	2600 J	1600 J	800	2300 J	690
Benzo(a)pyrene	330	17000 J	6000 J	1500 J	990 J	560	1900 J	360 J
Indeno(1,2,3-cd)pyrene	330	9100 J	3900 J	260 J	370 J	120 J	350 J	100 J
Dibenzo(a,h)anthracene	330	4300 J	1400 J	120 J	· ÚJ	64 J	160 J	46 J
Benzo(g.h.i)perylene	330	8700 J	3000 J	220 J	290 J	68 J	310 J	59 J

ANALYTICAL ASSURANCE ASSOCIATES (A3) VOLATILE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469C SDG NO.: 2469C CLIENT SAMPLE ID: GW-16S **GW-17S** LAB SAMPLE ID: 195659-01 195659-02 % SOLID: 80.4 82.2 **DILUTION FACTOR:** 1.0 1.0* TARGET COMPOUNDS: CRQL Benzene 1.0 Toluene 1.0 1.5 Ethylbenzene 1.0 m,p-Xylene 1.0 860 J o-Xylene 1.0 830 J Isopropylbenzene 1.0 940 J 4-Isopropyltoluene 1.0 690 J n-Propylbenzene 1.0 2000 J sec-Butylbenzene 1.0 1500 J 1,3,5-Trimethylbenzene 1.0 4200 J 1,2,4-Trimethylbenzene 1.0 6000 J n-Butylbenzene 1.0 6000 J Naphthalene 1.0 1300 J MTBE 1.0 tert-Butylbenzene 1.0

Appendix C Laboratory Reported Results

a

	~~~	Volatile Orga	anics Analysis Data Sheet Form I VOA 8021-STAR		
Client ID:	GW-16S		Date Co	llected: 18-NOV-9	8
STL Sample Number:	195659-01		Date F	eceived: 24-NOV-9	8
Client Name:	SEVERN TREN	т ст.	Date Ex	tracted:	
Project Name:	CT 7609		Date A	nalyzed: 24-NOV-9	8
X Solid:	80.4		Repo	ort Date: 09-DEC-9	8
Matrix:	3 Soil/Sldg			Column: RTX-502.	2.
Sample Wt/Vol:	5g		Lab	File Id: A9523.D	
Level:	LOW		Dilutior	Factor: 1.00	
			Detection Limit	Conc.	Data
CAS NO.	·	Compound	ug/kg	ug/kg	Qualifier
71-43-2 108-88-3 100-41-4 108-38-3/	106-42-3	Benzene Toluene Ethylbenzene m.p.Xylene o.Xylene	1.2 1.2 1.2 1.2	1.5	U
95-47-6 98-82-8 00 97 6	549 <b>839</b> 855 7 - 11284 - 1	o XyTene Isopropylbenzene 4 Isopropyltoluene	1.2 1.2 1.2	and the second secon	U
103-65-1 135-98-8		n-Propylbenzene sec-Butylbenzene	1.2 1.2 1.2		Ü .
108-67-8 95-63-6	i gestate e	1,3,5-Trimethylbenzene 1,2,4 Trimethylbenzene	1.2 1.2		ย
104-51-8 91-20-3		n-Butylbenzene Naphthalene	1.2 1.2		Ü
1634-04-4 98-06-6	· · · · · · · · · · · · · · · · · · ·	MTBE tert-Butylbenzene	1.2 1:2		U U
			1. S.		
					·
		<u> </u>			3
-					
				7	
• •					
					•



For	s Analysis Data Sheet m I VOA 21-STAR	
Client ID: GW-17S	Date Coll	ected: 18-NOV-98
STL Sample Number: 195659-02	Date Rec	ceived: 24-NOV-98
Client Name: SEVERN TRENT CT.	Date Extr	racted:
Project Name: CT 7609	Date Ana	alyzed: 24-NOV-98
<b>X</b> Solid: 82.2	Report	: Date: 16-DEC-98
Matrix: 3 Soil/Sldg	C	Column: RTX-502.2
Sample Wt/Vol: 10000ul	Lab Fi	ile`Id: A9523.D
Level: MED	Dilution F	actor: 1.00
CAS NO. Compound	Detection Limit ug/kg	Conc. Data ug/kg Qualifier
71.43.2       Benzene         108.88.3       Toluene         100.41.4       Ethylbenzene         108.38.3/106.42.3       m.p.Xylene         95.47.6       o.Xylene         98.82.8       Isopropylbenzene         99.87.6       4-Isopropylbenzene         103.65.1       n.Propylbenzene         108.67.8       1.3.5-Trimethylbenzene         108.67.8       1.2.4 Trimethylbenzene         104.51.8       n.Butylbenzene         91.20.3       Naphthalene         1634.04.4       MTBE         98.06.6       tert Butylbenzene	760 760 760 760 760 760 760 760 760 760	U U 860 830 940 690 J 2000 1500 4200 6000 6000 1300 U U



#### TABLE SV-1.0 . 7098-2469C STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

<b>All</b>	values	are	ug/Kg	dry	weight	basis.	

Client Sample I.D.	Method Blank	SS-54	SS-54	
Lab Sample I.D. Method Blank I.D. Quant. Factor	SBLKVR SBLKVR 1.00		982469C-02DL SBLKVR 25.0	Quant. Limits with no Dilution
Naphthalene	υ	3700	3700JD	330
2-Methylnaphthalene	U	1500J	1500JD	330
Acenaphthylene	. U	660J	690JD	330
Acenaphthene	U	4300	4400JD	330
Fluorene	U	4500	4600JD	330
Phenanthrene	U	36000E	41000D	330
Anthracene	υ	7900	7800JD	330
Fluoranthene	2J	30000EB	41000DB	330
Pyrene	2J	73000EB	50000DB	330
Benzo(a) anthracene	U	18000	19000D	330
Chrysene	Ŭ	18000	20000D	330
Benzo(b)fluoranthene	2J	28000EB	29000DB	330
Benzo(k) fluoranthene	2J	20000B	26000DB	330
Benzo (a) pyrene	U	17000	16000D	330
Indeno(1,2,3-cd)pyrene	U U	9100	3600JD	330
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	4J	4300 8700B	1600JD	330
Deuro (3'u' t) bet à teue	<u> </u>	8700B	3000JDB	330
Date Received		11/13/98	11/13/98	
Date Extracted	11/18/98	11/18/98	11/18/98	
Date Analyzed	12/02/98	12/02/98	12/04/98	

.

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

#### TABLE SV-1.1 7098-2469C STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

## All values are ug/Kg dry weight basis.

		r	<u>г</u>	
	Method		SS-45	
Client Sample I.D.	Blank	SS-45	RE	
				Quant.
Lab Sample I.D.	SBLKCR	982469C-03	982469C-03RE	Limits
Method Blank I.D.	SBLKCR	SBLKCR	SBLKCR	with no
Quant. Factor	1.00	6.76	6.76	Dilution
			l line in the second	
Naphthalene	U	420J	400JD	330
2-Methylnaphthalene	U	510J	480JD	330
Acenaphthylene	l U	1100J	540JD	330
Acenaphthene		470J	450JD	330
Fluorene	U	780J	640JD	330
Phenanthrene	2J	7200B	7100DB	330
Anthracene	Ū	2200	1600JD	330
Fluoranthene	3J 3J	11000B	8700DB	3.3.0
Pyrene	3J	12000B	15000DB	330
Benzo(a)anthracene	2J	7000B	7000DB	330
Chrysene	] 2J ·	7800B	7600DB	330
Benzo(b)fluoranthene		9000B	7100DB	330
Benzo(k)fluoranthene	3J	10000B	5500DB	330
Benzo (a) pyrene	2J	6400B	6000DB	330
Indeno(1,2,3-cd)pyrene	2J	1300JB	3900DB	330
Dibenzo(a, h) anthracene	<u></u> ЗЈ	650J	1400JD	330
Benzo(g,h,i)perylene	3J	900JB	3000DB	330
Date Received		11/17/98	11/17/98	
Date Extracted	11/21/98	11/21/98	11/21/98	
Date Analyzed	12/03/98	12/04/98	12/07/98	
	L		L	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE SV-1.2 7098-2469C STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

## All values are ug/Kg dry weight basis.

Client Sample I.D.	SS-55	SS-55 RE	SS-56	
Lab Sample I.D.	982469C-04	982469C-04RE	982469C-05	Quant. Limits
Method Blank I.D.	SBLKCR	SBLKCR	SBLKCR	with no
Quant. Factor	1.16	1.16	2.25	Dilution
Naphthalene	100J	110Ј	23JD	330
2-Methylnaphthalene	120J	1300	160JD	330
Acenaphthylene	280J	290J	960D	330
Acenaphthene	53J		76D	330
Fluorene	64J	66J	1500D	330
Phenanthrene	1000B	1000B	5400DB	330
Anthracene	400	390	1400D	330
Fluoranthene	1700B	1700B	3400DB	330
Pyrene	2200B	2200B	4700DB	330
Benzo (a) anthracene	1000B	1100B	2000DB	330
Chrysene	1600B	1500B	1600DB	330
Benzo(b) fluoranthene	2100B	1900B	1200DB	330
Benzo(k)fluoranthene	2500B	2600B	1600DB	330
Benzo (a) pyrene	1400B	1500B	990DB	330
Indeno (1,2,3-cd) pyrene Dibenzo (a,h) anthracene	280JB	260JB	370JDB	330
Benzo(g,h,i)perylene	130J	120J	U	330
Denzo (g, n, 1) ber à tene	270JB	220JB	290JDB	330
Date Received	11/17/98	11/17/98	11/17/98	
Date Extracted	11/21/98	11/21/98	11/21/98	
Date Analyzed	12/03/98	12/04/98	12/07/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

#### TABLE SV-1.3 7098-2469C STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

## All values are ug/Kg dry weight basis.

(*************************************	T	1		· · · · · · · · · · · · · · · · · · ·
	SS-56			
Client Sample I.D.	DL	SS-57	SS-52	
				Quant.
Lab Sample I.D.	982469C-05DL	982469C-06	982469C-09	Limits
Method Blank I.D.	SBLKCR	SBLKCR	SBLKCR	with no
Quant. Factor	5.62	1.16	2.35	Dilution
Naphthalene	24J	110J	87J	330
2-Methylnaphthalene	160J	160J	120J	330
Acenaphthylene	1300J	190J	130J	330
Acenaphthene	75J	37J	160J	330
Fluorene	1600J	89J	160J	330
Phenanthrene	5200B	970B	2000B	330
Anthracene	1700J	260J	470J	330
Fluoranthene	4500B	990B	3400B	330
Pyrene	4700B	930B	4100B	330
Benzo (a) anthracene	2000B	540B	1800B	330
Chrysene	1600JB	840B	2100B	330
Benzo(b)fluoranthene	1300JB	730B	2300B	330
Benzo(k)fluoranthene	2700B	800B	2300B	330
Benzo (a) pyrene	1000JB	560B	1900B	330
Indeno(1,2,3-cd)pyrene	200JB	120JB	350JB	330
Dibenzo(a,h)anthracene	U	64J	160J	330
Benzo(g,h,i)perylene	150JB	68JB	310JB	330
Date Received	11/17/98	11/17/98	11/20/98	
Date Extracted	11/21/98	11/21/98	11/21/98	
Date Analyzed	12/04/98	12/04/98	12/04/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE SV-1.4 7098-2469C STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

## All values are ug/Kg dry weight basis.

	Γ			r
	66 52	SS-52		
Client Sample I.D.	SS-52 MS			
CITEIL Sample I.D.	m5	MSD		0
Lab Sample I.D.	982469C-09MS	982469C-09 MSD		Quant.
Method Blank I.D.	SBLKCR	SBLKCR		Limits
Quant. Factor	2.35	2.35		with no
	2.35	2.35		Dilution
Naphthalene	85J	95J		330
2-Methylnaphthalene	110J	120J	kons Postakova –	330
Acenaphthylene	180J	160J	geboli i stati i glata pali sulli soli	330
Acenaphthene	2000X	2200X		330
Fluorene	180J	250J	aanta (nataat talahatti bita dha dha yaana) I	330
Phenanthrene	2400B	3400B		330
Anthracene	580J	730J	en i i tra secol	330
Fluoranthene	4100B	5200B		330
Pyrene	6700EBX	8000EBX	ana na kana zakao na kalaktora (k. 1995). Mari	330
Benzo (a) anthracene	2200B	2700B		330
Chrysene	2500B	3000B	nander i nadalan bunu narih dalah dalah 1996 - 20	330
Benzo(b)fluoranthene	3000B	3400B		330
Benzo(k)fluoranthene	2700B	2800B		330
Benzo(a)pyrene	2400B	2600B		330
Indeno(1,2,3-cd)pyrene	430JB	460JB		330
Dibenzo(a,h)anthracene	200J	210J		330
Benzo(g,h,i)perylene	350JB	380JB		330
Date Received	11/20/98	11/20/98		
Date Extracted	11/21/98	11/21/98		
Date Analyzed	12/04/98	12/04/98		

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE SV-2.0 7098-2469C STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

#### Method Client Sample I.D. Blank SS-16S SS-17S Quant. Lab Sample I.D. SBLKCR 982469C-10 982469C-11-Limits Method Blank I.D. with no SBLKCR SBLKCR SBLKCR 1.00 Quant. Factor 1.28 1.22 Dilution 8J Naphthalene TT 260J 330 330 Acenaphthene ប 1600 14J Fluorene U 23J 26J 330 Phenanthrene 75JB 2J 340JB 330 Anthracene U 58J 9J 330 9JB 3. Fluoranthene 760B 330 3J 330 Pyrene 2400B 12**J**B Benzo(a)anthracene 2J 290JB 6JB 330 Chrvsene 2J500B 14**J**B 330 Benzo(b)fluoranthene 2J 370JB 7JB 330 Benzo(k) fluoranthene 3**J** 690B 8JB 330 Benzo(a)pyrene 360JB 2J 5JB 330 Indeno (1,2,3-cd) pyrene 100JB 2J 4JB330 Dibenzo(a, h) anthracene U 46J U 330 Benzo(q,h,i)perylene 3J 59JB 12**J**B 330 Date Received 11/20/98 11/20/98 Date Extracted 11/21/98 11/21/98 11/21/98 Date Analyzed 12/03/98 12/04/98 12/03/98

### All values are ug/Kg dry weight basis.

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE GC-1.0 7098-2469C STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

## All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D.	Method Blank 112598-B02	SS-40 982469C-07	SS-40 MS 982469C-07MS	Quant. Limits
Method Blank I.D. Quant. Factor	PBLK63 1.00	PBLK63 11.8	PBLK63	with no Dilution
Aroclor-1016	U	Ū.	u	33.
Aroclor-1221 Aroclor-1232	Ü	Ŭ	Ŭ	67.
Aroclor-1242	U	U U	0 210JX	33. 33.
Aroclor-1248 Aroclor-1254	Ŭ	U U	U II	33. 33.
Aroclor-1260	Ŭ	Ŭ	260JPX	33. <u>33</u> .
Date Received Date Extracted Date Analyzed	11/25/98 12/04/98	11/20/98 11/25/98 12/08/98	11/20/98 11/25/98 12/08/98	· · ·

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE GC-1.1 7098-2469C STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

## All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-40 MSD 982469C-07 MSD PBLK63 11.8	SS-52 982469C-09 PBLK63 13.2	SS-52 MS 982469C-09MS PBLK63 13.2	Quant. Limits with no Dilution
Aroclor-1016	U	U	U	33.
Aroclor-1221	U	U	U	67.
Aroclor-1232	U	U	U	33.
Aroclor-1242	290JPX	150J	340JX	33.
Aroclor-1248	U	U	U	33.
Aroclor-1254	U	U	U	33.
Aroclor-1260	270JPX	120JP	290JX	<u>33.</u>
Date Received	11/20/98	11/20/98	11/20/98	
Date Extracted	11/25/98	11/25/98	11/25/98	
Date Analyzed	12/08/98	12/04/98	12/04/98	

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE GC-1.2 7098-2469C STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

## All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-52 MSD 982469C-09 MSD PBLK63 13.2		Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221	U		33.
Aroclor-1232	U U		67. 33.
Aroclor-1242 Aroclor-1248	290JX		33.
Aroclor-1254	U		33.
Aroclor-1260	300JPX		33.
Date Received	11/20/98		
Date Extracted Date Analyzed	11/25/98 12/04/98		

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Appendix D Support Documentation/Resubmission

.

0

**INORGANIC ANALYSIS DATA REVIEW** 

.

-

,

•

•

•

•

## STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7098-2469C/ SDG NO.: C2469

#### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from two (2) soil samples collected on 11-11-98. The samples were received by Severn Trent Laboratories on 11-13-98 and analyzed according to criteria set forth in SOW3,90 (ILM03.0) for TAL metals.

The following samples are contained within this report:

SS-40 SS-51

The QC samples (MS & MD) was analyzed on sample SS-40.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

## Stearns & Wheler Case No. 7098-2469C / SDG No. C2469

#### Page 2

## **DATA COMPLETENESS**

The data for spike outliers in the matrix spike sample were not qualified with an "N" on form V and forms I as required by the Method. Also, the post digestion spike sample analysis was not performed. Therefore, the possibility of matrix interference could not be evaluated. The laboratory has been contacted. The Forms I and V were corrected and resubmitted.

## HOLDING TIME

All samples were digested/analyzed within the requirements established in the method.

## **CALIBRATIONS & CRDL Analyses**

The recoveries for all analytes in the initial and continuing calibrations were within the control limits of 90-110%.

The CRDL sample analysis was performed prior and after all samples analysis. The %recoveries were within the control limits with the exception of As (70.2 & 77.2%) in initial and final CRDL analyses. The results were above the 3 times the corresponding CRDLs. Therefore, the data were not qualified based on these outliers.

#### **BLANKS**

The laboratory preparation blank had Al (5.8 mg/kg), Mg (1.36 mg/kg), Hg (0.01 mg/kg) and Zn (5.5 mg/kg) contamination at levels below the CRDL. The reported sample results were above the action limits (5 x the blank concentrations). Therefore, the sample data were not impacted.

#### **ICP INTERFERENCE CHECK SAMPLE**

The recoveries were within the control limit of 80-120%.

### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed on sample SS-40. The spike recoveries for the following analytes were outside the control limits of 75-125%.

Analyte	% Recovery
As	41.9
Cr	-10.2
Cu	33.3
Ni	40.6
Se	70.7
Ag	20.1

Stearns & Wheler Case No. 7098-2469C / SDG No. C2469

Page 3

The reported sample data for chromium and silver were considered biased low and the possibility of false negative exist. However, the data for other outliers were considered estimated.

The analytical spike post digestion sample was not analyzed as required for this method. Therefore, the matrix interference could not be evaluated.

The review of the data indicated that the SW 846 Method was utilized to analyze the spike sample. All these analytes were detected in both samples. The reported positive results were qualified "J".

The recoveries of Cd (-106%), Pb (656%), Mn (-45.5%) and Zn (62.7%) were also outside the control limits. However, the data were not impacted since the initial sample results were above 4 times the amount of spike added to the sample.

## MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was also performed on sample SS-40. The RPDs for all analytes were within the analysis and validation control limits with the exception of Cr (38.2%) and Fe (22.8%). The data for iron was not qualified since the RPD was within the data validation control limit of 35%. The reported positive sample results for chromium were qualified estimated.

## LABORATORY CONTROL SAMPLE

The recoveries for all analyses were within the control limits.

## **ICP SERIAL DILUTION**

The %Ds for Zn (16.1%) was above the 10% requirement. The reported positive results were qualified estimated.

## **INSTRUMENT DETECTION LIMITS**

All analytes with the exception of mercury were analyzed with ICP. The reported IDLs were below the CRDL.

## **DUPLICATE ANALYSIS**

Duplicate analysis was analyzed on sample SS-39/Dup-2 from the other batch. The RPDs were within the control limits.

Stearns & Wheler Case No. 7098-2469C / SDG No. C2469

Page 4

### SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions. The reported sample results were within the calibration range.

The calculation of the sample results with the provided factors did not match the reported sample data. The examination of the raw data indicated that the % solids were incorrectly listed on the Forms I. The corrected %solid was listed on the data validation summary.

#### **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. Overall, major problems with the exception of the lack of analytical spike sample were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

Appendix A Glossary of Data Qualifier

٥

## **GLOSSARY OF DATA QUALIFIERS**

# **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
   [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

## **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

Appendix B Data Summary Forms

٥

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) METAL SOIL ANALYSIS mg/Kg

CLIENT: STEARNS & WH LABORATORY NAME: ST STL ID: 7098-2469C SDG NO.: 2469C					· .				
CLIENT SAMPLE ID: LAB SAMPLE ID: % SOLID:		98	SS-40 2469C-07 79.2	SS-51 982469C-08 77.5	 			 	
TARGET COMPOUNDS:						 	 		 
	IDL								
Aluminum	6	P	1630	5760					
Antimony	5	Р	7	10					
Arsenic	3	Р	25.6 J	44 J					
Barium	1	Ρ	50.6	180					
Beryllium	1	Р	0.36	1.2					
Cadmium	1	Р	32	8					
Calcium	4	Р	7090	9050					
Chromium	1	Р	147 J	223 J					
Cobalt	1	Р	20	168					
Copper	2	Р	259 J	296 J					
Iron	7	Р	91600	122000					
Lead	2	Р	663	334					
Magnesium	5	P	1840	1460					
Manganese	1	Р	966	1230					
Mercury	0.1	CV	0.11	0.19					
Nickel	5	Р	289 J	139 J					
Potassium	29	Р	236	526				•	
Selenium	2	Р	3 J	6 J					
Silver	1	Р	0.4 J	0.42 J					
Sodium	15	Р	211	152					
Thallium	6	Р	1.3						
Vanadium	1	Р	24.1	38.3					
Zinc	1.	Р	1450 J	455 J					

4

Appendix C Laboratory Reported Results

# TABLE AS-1.0 7098-2469C STEARNS & WHELER TAL METALS

Client Sample I.D. Lab Sample I.D.	SS-40 982469C-07	SS-40 D 982469C-07D	SS-40 S 982469C-07S	SS-51 982469C-08
Aluminum	1630	1930	1960	5760
Antimony	7.0B	7.5B	172.	10.0B
Arsenic	25.6	26.9	32.0	44.0
Barium	50.6	53.9	746.	180.
Beryllium	0.36B	0.32B	18.0	1.2B
Cadmium	32.0	27.8	<b>29.9</b>	8.0
Calcium	7090	10700	NR	9050
Chromium	147.*	99.9*	139.	223.*
Cobalt	20.0	13.2	176.	168.
Copper	259.	262.	290.	296.
Iron	91600*	72900*	60700	122000*
Lead	663.	790.	712.	334.
Magnesium	1840	3120	NR	1460
Manganese	966.	829.	879.	1230
Mercury	0.11	0.12	0.54	0.19
Nickel	289.	294.	366.	139.
Potassium	236.B	289.B	NR	526.B
Selenium	3.0	2.6	5.7	6.0
Silver Sodium	0.40B 211.B	0.25U	4.2	0.42B
Thallium	1.3B	244.B	NR 18.7	152.B
Vanadium	24.1	1.3U 21.2	182.	1.30 38.3
Zinc	1450E	1470	1570	38.3 455.E
alle.	13005	17/U	LJ/U	7JJ.L

# All values are mg/Kg dry weight basis.

See Appendix for qualifier definitions

1.80/12=79.2

77.5

Appendix D Support Documentation/Resubmission

# U.S. EPA - CLP

# 5A SPIKE SAMPLE RECOVERY

EFA SAMPLE NO.

								······································
Lab	Name:	STL		· ·	Contract:		\$9- <i>.</i>	40S
Lab	Code:	STL	Case No.	: <u>2469C-</u>	SAS No.:		SDG No.:	<u>C2469</u>
Mat	rix:	SOFL				Level	(low/med):	LOW
€ S	olids :	for Sample:	: <u>77</u>					

Concentration Units (ug/L or mg/kg dry weight) : MG/KG

3-21-0	Limit %R	Spiked Sample Result (SSR) C	Sample Result (SR)	С	Spike Added (SA)	%R	c	м
Analyte	ъ <i>р</i> ,	Result (SSR) C	RESULC (SA)	C	FURIEL (DR)		Ι¥.	1.3
Aluminum	75-125		1631.5738		757.48	43.5		P
Antimony	75-125		6.9940	З	189.37	87.4		P
Arsenic	75-125	31.9646	25.6169		15.15	41.9		<u>q</u>
Barium	75-125		50.5969		757,48	91.8		P
Beryllium	75-125		0.3651	В	18.94	92.9		P
Cadmium		29.9416	31.9504		1.89	-106.1		P
Calcium			7092.4782		0.00	0.0		P
Chromium	75-125		147.1526		75.75	-10.2		P
Cobalt	75-125		20.0307		189.37	82.3		P
Copper	75-125		258.8256		94.63		N	P
Iron		60669,4104	91656.0283			-8181.5		P
Lead		712.5365	662.7961		7.57	656.6		P
Magnesium			1840.7602		0.00			P
Manganese		879.460?	965.5581		189.37	-45.5		F
Mercurv	.75-125		0.1082		0.48	89.5		<u>t.7</u>
Nickel	75-125	366.0674	289.0933		189.37	40.6		P
Potassium			235.6621	В	0.00	0.0		P
Selenium	75-125		3.0138		3.79	70.7	<u>N</u>	1 2
Silver	75-125	4.2108	0.4008		18.94	20.1	N	P
Sodium					0.00			13
Thallium	75-1.25		1.3093	B	18.94	92.0		
Vanadium	75-125		24.0737		-189.37	83.5		2
Zinc		1568.0154	1449.2728		189.37	62.7		1
Cyanide							L	NR

Comments:

FORM V (PART 1) - IN

ILM03.0

#### U.S. EPA - CLP

#### 1 INCRGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

SS-40	
-------	--

Lab Name: STL Lab Code: STL Case No.: 2469C SAS No.: SDG No.: C2469 Matrix (soil/water) : <u>SOIL</u> Level (low/med): 19.2

% Solids:

Contract:

Lab Sample ID: <u>982469C-07</u>

Date Received: 11/20/98

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg

CAS No.	Analyte	Concentration	с	Q	Μ
7429-90-5	Aluminum	1630			P P
7440-36-0	Antimony	7.0	B		P
7440-38-2	Arsenic	25.6		Ň	
7440-39-3	Barium	50.6			P
7440-41-7	Beryllium	0.36	51		P
7440-43-9	Cadmium	32.0			T P
7440-70-2	Calcium	7090			P
7440-47-3	Chromium	147.		*N	P
7440-48-4	Cobalt	20.0			P
7440-50-8	Copper	259.		N	P
7439-89-6	Iron	91600		*	P
7439-92-1	Lead	663.			P
7439-95-4	Magnesium	1840			P
7439-96-5	Manganese	966.			
7439-97-6	Mercury	0.11			CV
7440-02-0	Nickel	289.		N	P
7440-09-7	Potassium	236.	9		P
7782-49-2	Selenium	3.0		N	P
7440-22-4	Silver	0.40	<b>B</b> .	N	ध
7440-23-5	Sodium	211.	В		P
7440-28-0	Thallium	1.3	E		P
7440-62-2	Vanadium	24.1			P P P P P P P
7440-66-5	Zinc	1450		E	
57-12-5	Cyanide				NR
					<u> </u>

Color Before: BROWN Clarity Before: OPACUE Texture: MED Clarity After: <u>CLEAR</u> Artifacts: Color After: YELLOW Comments:

FORM I - IN

ILM03.0

, r

#### U.S. EPA - CLP

INORGANIC AMALYSES DATA SHEET

# EPA SAMPLE NO.

Lab Name: STL		Contract:
Lab Code: <u>STL</u>	Case No.: <u>2469C</u>	SAS No.:
Matrix (soil/water)	SOIL	Lab Sam
Level (low/med):	LOW	Date Re
<pre>% Solids:</pre>	84.7	

SS-51

SDG No.: <u>C2469</u>

Lab Sample ID: <u>982469C-08</u>

Date Received: 11/20/98

77.5 #

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg

CAS No.	Analyte	Concentration	C	Q	М
7429-90-5	Aluminum	5760			P
7440-36-0	Antimony	10.0	3		P
7440-38-2	Arsenic	44.0		N	
7440-39-3	Barium	180.			P
7440-41-7	Beryllium	1.2	Ë		P
7440-43-9	Cadmium	8.0			P
7440-70-2	Calcium	9050			P
7440-47-3	Chromium	223.		*N	P
7440-48-4	Cobalt	168.		-	P
7440-50-8	Copper	296.		N	9
7439-89-6	Iron	122000		Ħ	P P P
7439-92-1	Lead	.334.			P
7439-95-4	Magnesium	1460			P
7439-96-5	Manganese	1230			P
7439-97-6	Mercury	0.19		·	CV
7440-02-0	Nickel	139.		N	P P
7440-09-7	Potassium	526.	B		P
7782-49-2	Selenium	6.0		N	P
7440-22-4	Silver	0.42	В	N	P
7440-23-5	Sodium	152.	Б		p
7440-28-0	Thallium	1.3	Ŭ		P
7440-62-2	Vanadium	38.3			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
7440-66-6	Zinc	455.		E	
57-12-5	Cyanide				NR
Г (					]

Color Before: <u>BROWN</u> Clarity Before: <u>OPAQUE</u> Texture: <u>MED</u> Color After: <u>YELLOW</u> Clarity After: <u>CLEAR</u> Artifacts: _____ Comments:

FORM I - IN

ILM03.0

# **END OF DATA PACKAGE**

•

.



# **Analytical Assurance Associates, Inc.**

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGAINC & INORGANIC QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

SITE: ROBLIN STEEL CASE NO.: 7098-2469A/ SDG NO.: A2469

# REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. JANUARY 14, 1999

# **ORGANIC ANALYSES**

٠

# STEARNS & WHELER SITE NAME: ROBLIN STEEL CASE NO.:7098-2469A/SDG NO.: A2469

#### **INTRODUCTION**

This quality assurance report is provided based upon a review of all data generated from twelve (12) soil samples for Poly Aromatic Hydrocarbons (PAH), and eight (8) soil samples for Poly Chlorinated Biphenyl (PCB) compounds. The samples were collected on 11-11-98 and were analyzed by Severn Trent Laboratories according to criteria set forth in USEPA CLP OLM3.1.

The following samples are contained within this report:

SS-37	SS-21*	SS-26	SS-29**
SS-38	SS-22*	SS-27*	SS-32**
SS-19	SS-23	<b>SS-28</b>	SS-33**
SS-20*	SS-25	SS-9	SS-34**

* The sample was analyzed for PAH and PCB fractions.

**The sample was solely analyzed for PCB fraction.

The QC (MS/MSD) sample was not performed on the samples from this batch.

All data have been validated with regard to usability according to the quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No.: 7098-2469A/ SDG No.: A2469

## PCBs

The DCB surrogate recoveries for samples SS21 (500/182%) in both columns and SS-22 (153%) in second column exceeded 150% requirements. The target compounds were not detected in these two samples. Therefore, the data were not qualified. Also, the recoveries were diluted out in sample SS-34 due to the high level of dilution (100-fold). The sample result was qualified.

# MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

### PAH & PCBs

Matrix spike/spike duplicate sample analyses were not performed for these fractions.

#### LABORATORY CONTROL SAMPLE

#### PAH & PCBs

Two LCS samples were analyzed in PAH fraction. Also, one BS/BSD sample analyses was performed for PCB fraction. The recoveries and RPDs were within the control limits

#### **INTERNAL STANDARD**

#### PAH

All internal standard recoveries and retention times were within the control limits established by the laboratory with the exception of the following:

Sample ID	Internal Standard
SS-38/SS-38Re	CRY &PRY
SS-19/SS-19DL	PRY
SS-21/SS-21Re	PRY
SS-26/SS-26DL	PRY
SS-27/SS-27Re	PRY
SS-28/SS-28DL	PRY
SS-37/SS-37Re	PRY
SS-9/SS-9DL	CRY &PRY

CRY = Chrysene-d12 PRY = Perylene-d12

The comparison of the initial sample results and the reanalysis gave the satisfactory reproducibility. Therefore, the reanalysis sample results were reported on the data summary. The sample data were qualified based on the aforementioned outliers.

Stearns & Wheler Case No.: 7098-2469A/ SDG No.:A2469

#### **DATA COMPLETENESS**

The data package completeness was satisfactory.

#### **HOLDING TIME**

## PAH & PCB

All samples were extracted within 7-days from collection, and analyzed within 40-days from extraction as cited in the Methods for both fractions

#### **CALIBRATION**

### PAH

All RSDs, %Ds and response factors were within the control limits in both initial and continuing calibrations for the PAH compounds. The %D for 2-fluorophenol (38.2%) was above 25% control limits in calibration standard analyzed on 11-24-98. The sample data were not impacted since this compound is a surrogate compound.

#### **PCBs**

The %RSD for alpha BHC (20.8%) exceeded the 20% QC limits. The data were not qualified since the initial calibration criteria met the requirements.

#### **BLANKS**

#### PAH

The method blanks contained naphthalene (4 ug/kg), fluoranthene (2 ug/kg), pyrene (2 ug/kg), benzo (b & k) fluoranthene (2 ug/kg) and benzo (a) pyrene (2 ug/kg) at levels below the CRQLs. These compounds were detected in the samples at relatively high levels, (above the action levels) with the exception of naphthalene in sample SS-20. The reported result was qualified "U". Tentatively Identified Compounds were not searched/reported for this analysis.

#### **PCBs**

The preparation blanks and instrument blanks were free of target compounds.

### SURROGATE RECOVERIES

#### PAH

All samples and the corresponding QC samples were spiked with eight surrogate compounds as required by the applied methods. The recoveries were within the control limits with the exception of terphenyl-d14 in samples SS-38/SS-38 Re (184/199%), SS-19 (171%) and SS-9 (149%). The data were not qualified based on these outliers since the surrogate recovery criteria, (i.e., one outlier per fraction and no recoveries below 10%) has been met.

Page 2

Stearns & Wheler Case No.: 7098-2469A/ SDG No.: A2469

## **DUPLICATE ANALYSIS**

### PAH & PCBs

Duplicate analysis was not performed with this batch. This QC sample was analyzed with batch number 2469B.

### SAMPLE RESULTS

#### PAH

Six samples were analyzed at higher dilutions. Samples SS-19, SS-26, SS-28 and SS-9 were reanalyzed at 2 and 4-fold dilutions due to the high concentration of the target compounds in the corresponding samples. The results for these compounds were transferred from the higher dilution sample and listed in the initial sample data. These compounds were identified with an asterisk on the data validation summary.

The reported data for sample SS-23 was qualified estimated since the sample was analyzed at above 5-fold dilution. TICs were not searched/reported for this fraction.

All target compounds were detected in the samples. The base line chromatogram was elevated in all samples from the retention time approximately "RT= 17 minutes". The GC/MS spectra for the detected compounds showed an interference with petroleum hydrocarbons (TPHC) which may cause the elevated base lines and the internal standard outlier.

### PCBs

All samples with the exception of samples SS-21 and SS-22 were analyzed at higher dilutions due to the sample background contamination. Therefore the results were biased low and the possibility of false negative exists. The reported results and non-detected values for all samples analyzed at above 5-fold dilutions were qualified estimated.

The %Ds for the results detected/reported from two different columns exceeded 25% control limits. All positive results were qualified estimated.

The laboratory case narrative indicated that samples SS-29 & SS-27 appeared to contain a late eluting PCBs, possibly either Aroclor-1262 or Aroclor-1268. This lab does not quantify for either of these PCBs.

#### **SUMMARY**

The cooler temperature was not listed on the chain-of-custody. The sample results below the CRQLs were qualified estimated, due to the uncertainty near the detection limits in the both fractions.

Stearns & Wheler Case No.: 7098-2469A/ SDG No.: A2469

Aroclors were not analyzed as continuing calibration during the analyses. It is the validator's opinion that either a more suitable method utilized to characterize these specific compounds or aroclors must be analyzed as the calibration points during the entire sample analysis runs.

Overall, major analysis problems were not encountered during the sample analyses. The most important issue was sample background contamination. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

Page 5

Appendix A- Glossary of Data Qualifier
 Appendix B- Data Summary Forms
 Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

## **GLOSSARY OF DATA QUALIFIERS**

# **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

## **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

 $\mathbf{Q} = \mathbf{NO}$  ANALYTICAL RESULT.

Appendix B Data Summary Forms

		ANALYTICAL ASSU PESTICIDE S	URANCE ASSOCIATES (A3) SOIL ANALYSIS ug/Kg		
CLIENT: STEARNS & W LABORATORY NAME: S STL ID: 7098-2469A SDG NO.: 2469A					•
CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:	SS-27 982469A-18 9 2.0				
TARGET COMPOUNDS: Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1254 Aroclor-1260	CRQL 33 67 33 33 33 33 33 33 33 200 J				

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) PESTICIDE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469A SDG NO.: 2469A

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:		SS-29 982469A-01 20 5.0	SS-32 982469A-02 13 20.0	SS-33 982469A-03 15 10.0	SS-34 982469A-04 28 100.0	SS-20 982469A-11 15 2.0	SS-21 982469A-12 11 1.0	SS-22 982469A-13 17 1.0
ARGET COMPOUNDS:	<u> </u>							
	CRQL							
voclor-1016	33		IJ	UJ	UJ			
roclor-1221	67		UJ	· UJ	UJ			
roclor-1232	33		UJ	UJ UJ	UJ			
roclor-1242	33		UJ	UJ	UJ			
roclor-1248	33		UJ	UJ	UJ			
roclor-1254	33		ŬĴ	· UJ	UJ			
Aroclor-1260	33	1000 J	4200 J	1000 J	19000 J			

ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

•

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469A SDG NO.: 2469A

CLIENT SAMPLE ID: LAB SAMPLE ID: 6 MOISTURE: DILUTION FACTOR:		SS-25 982469A-16 19.00 4.0	SS-26 982469A-17 12.00 1.0/2.0*	SS-27RE 982469A-18RE 14.00 1.0	SS-28 982469A-19 14.00 1.0/2.0*	SS-9 982469A-20 32.00 1.0/4.0*	
ARGET COMPOUNDS:							
ARGET COMPOUNDS:	CRQL						
laphthalene	330	160 J	200 J	58 J	210 J	1200	
-Methylnaphthalene	330	180 J	160 J	58 J	370 J	1300	
cenaphthylene	330	330 J	110 J	100 J	880	510 100	
cenaphthene	330	540 J	430	150 J	130 J	1100	
luorene	330	500 J	470	150 J	150 J		,
henanthrene	330	4600	3000	1300	2100	1200 7700 J*	
Anthracene	330	1200 J	660	320 J	1000	1800	
luoranthene	330	8500	2800	1800	3600 J*	2500	
yrene	330	7700	3700 J*	1900	4600 J*	10000 J*	
Senzo(a)anthracene	330	4300	1200 J	880 J	2000 J	3800 J	
Chrysene	330	4600	1400 J	1000 J	2600 J	3500 J	
lenzo(b)fluoranthene	330	5800	1900 J	1300 J	4800 J*	3500 J	
Benzo(k)fluoranthene	330	4800	2100 J	1200 J	3100 J*	2800 J	
Benzo(a)pyrene	330	4900	1300 J	970 J	2500 J	2000 J 3100 J	
ndeno(1,2,3-cd)pyrene	330	1000 J	460 J	180 J	650 J	1900 J	
Dibenzo(a,h)anthracene	330	480 J	190 J	83 J	320 J	950 J	
Senzo(g,h,i)perylene	330	610 J	630 J	160 J	680 J	950 J	

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL

STL ID: 7098-2469A

SDG NO.: 2469A

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:		SS-37RE 2469A-07RE 7.00 1.0	SS-38RE 982469A-08RE 20.00 1.0	SS-19 982469A-10 20.00 1.0/2.0*	SS-20 982469A-11 14.00 1.0	SS-21RE 982469A-12RE 11.00 1.0	SS-22 982469A-13 16.00 1.0	SS-23 982469A-14 15.00 10.0
TARGET COMPOUNDS:								
	CRQL							
Naphthalene	330	6 J	67 J	230 J	23 U	55 J	38 J	720 J
2-Methylnaphthalene	330	14 J	110 J	220 J	31 J	100 J	57 J	450 J
Acenaphthylene	330	12 J	100 J	140 J	160 J	30 J	70 J	290 J
Acenaphthene	330	5 J	25 J	210 J	32 J	12 J	· 27 J	1000 J
Fluorene	330	6 J	23 J	190 J	71 J	12 J	44 J	1100 J
Phenanthrene	330	57 J	410	2000	630	220 J	420	1000 J
Anthracene	330	18 J	150 J	460	130 J	49 J	110 J	
Fluoranthene	330	100 J	670	2200	1000	230 J	670	2300 J
Pyrene	330	110 J	1900 J	4300 J*	1100	330 J		14000 J
Benzo(a)anthracene	330	52 J	· 340 J	1300 J	490	140 J	560	13000 J
Chrysene	330	68 J	470 J	1400 J	620		340 J	6600 J
Benzo(b)fluoranthene	330	100 J	610 J	2000 J	590	180 J	440	6500 J
Benzo(k)fluoranthene	330	60 J	480 J	1700 J	620 ⁻	210 J	510	6600 J
Benzo(a)pyrene	330	57 J	330 J	1300 J		180 J	540	6900 J
Indeno(1,2,3-cd)pyrene	330	15 J	230 J	550 J	480	120 J	390	6000 J
Dibenzo(a,h)anthracene	330	5 J	79 J		98 J	41 J	85 J	1200 J
Benzo(g,h,i)perylene	330	42 J		270 J	54 J	22 J	40 J	600 J
Bouro(8, 1, 1)ber Merre	330	42 J	310 J	430 J	82 J	55 J	70 J	910 J

# Appendix C Laboratory Reported Results

#### TABLE SV-1.0 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKQR SBLKQR 1.00	SS-38 982469A-08 SBLKOR 1.25	SS-38 RE 982469A-08RE SBLKOR 1.25	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	4J U U U U U U U U U U U U U U U U U U U	69JB 110J 99J 24J 22J 400J 150J 710 1700 340J 490 760 380J 340J 230J 66J 310J	67JB 110J 25J 23J 410 150J 670 1900 340J 470 610 480 330J 230J 79J 310J	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/16/98 11/23/98	11/13/98 11/16/98 11/23/98	11/13/98 11/16/98 11/24/98	

### All values are ug/Kg dry weight basis.

#### TABLE SV-1.1 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

				·····
Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-19 982469A-10 SBLKOR 1.25	SS-19 DL 982469A-10DL SBLKOR 2.50	SS-20 982469A-11 SBLKOR 1.16	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (b) fluoranthene Benzo (c) pyrene Indeno (1, 2, 3 - cd) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene Date Received Date Extracted	230JB 220J 140J 210J 190J 2000 460 2200 4300E 1300 1400 2000 1700 1300 550 270J 430 11/13/98 11/16/98	250JDB 250JD 150JD 240JD 210JD 2200D 500JD 2600D 4300D 1500D 1500D 1500D 1500D 1500D 1300D 490JD 220JD 360JD 11/13/98 11/16/99	23JB 31J 160J 32J 71J 630 130J 1000 1100 490 620 590 620 480 98J 54J 82J 11/13/98 11/16/98	330 330 330 330 330 330 330 330 330 330
Date Analyzed	11/23/98	12/02/98	11/23/98	

#### All values are ug/Kg dry weight basis.

#### TABLE SV-1.2 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D.	SBLKQR	SS-21 RE 982469A-12RE SBLKQR	SBLKQR	Quant. Limits with no
Quant. Factor	1.12	1.12	1.19	Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene	56JB 96J 30J 11J	55JB 100J 30J 12J	38JB 57J 70J	330 330 330
Acenaphthene Fluorene Phenanthrene Anthracene	17J 210J 46J	19J 220J 49J	27J 44J 420 110J	330 330 330 330
Fluoranthene Pyrene Benzo(a)anthracene Chrysene	240J 280J 130J 170J	230J 330J 140J 180J	670 560 340J 440	330 330 330 330 330
Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene	200J 190J 120J 32J	210J 180J 120J 41J	510 540 390 85J	330 330 330 330
Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	10J 40J	22J 55J	40J 70J	330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/16/98 11/24/98	11/13/98 11/16/98 12/02/98	11/13/98 11/16/98 11/24/98	

#### All values are ug/Kg dry weight basis.

# TABLE SV-1.3 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

<b>A</b> 11	values	are	ug/Kg	dry	weight	basis.
-------------	--------	-----	-------	-----	--------	--------

	1	1		
Client Sample I.D.	SS-23	SS-25	SS-26	
				Quant.
Lab Sample I.D.	982469A-14	982469A-16	982469A-17	Limits
Method Blank I.D.	SBLKQR	SBLKQR	SBLKQR	with no
Quant. Factor	11.8	4.94	1.14	Dilution
	<u> </u>			
Naphthalene	720JB	160JB	200JB	330
2-Methylnaphthalene	450J	180J	160J	330
Acenaphthylene	290J	330J	110J	330
Acenaphthene	1000J	540J	430	330
Fluorene	1100J	500J	470	330
Phenanthrene	10000	4600	3000	330
Anthracene	2300J	1200J	660	330
Fluoranthene	14000	8500	2800	330
Pyrene	13000	7700	3800E	330
Benzo (a) anthracene	6600	4300	1200	330
Chrysene	6500	4600	1400	330
Benzo(b)fluoranthene	6600	5800	1900	330
Benzo(k)fluoranthene	6900	4800	2100	330
Benzo (a) pyrene	6000	4900	1300	330
Indeno(1,2,3-cd)pyrene	1200J	1000J	460	330
Dibenzo (a, h) anthracene	600J	480J	190J	330
Benzo(g,h,i)perylene	910J	610J	630	330
			Î	
Date Received	11/13/98	11/13/98	11/13/98	
Date Extracted	11/16/98	11/16/98	11/16/98	
Date Analyzed	12/02/98	12/02/98	11/24/98	
_				

.

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

.

#### TABLE SV-1.4 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-26 DL 982469A-17DL SBLKOR 2.27	SS-27 982469A-18 SBLKOR 1.16	SS-27 RE 982469A-18RE SBLKQR 1.16	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	200JDB 160JD 100JD 440JD 480JD 2900D 700JD 2900D 3700D 1300D 1400D 1900D 1800D 1300D 390JD 160JD 510JD	61JB 70J 110J 150J 160J 1400 310J 1900 1800 830 1000 1200 1300 1000 1300 1000 180J 81J 150J	58JB 69J 100J 150J 150J 1300 320J 1800 1900 880 1000 1300 1200 970 180J 83J 160J	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/16/98 12/02/98	11/13/98 11/16/98 11/24/98	11/13/98 11/16/98 12/02/98	

All values are ug/Kg dry weight basis.

# TABLE SV-1.5 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

<b>A</b> 11	values	are	ug/Kg	dry	weight	basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-28 982469A-19 SBLKQR 1.16	SS-28 DL 982469A-19DL SBLKQR 2.32	SS-9 982469A-20 SBLKQR 1.47	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	210JB 370J 880 130J 150J 2100 1000 3400E 4700E 2000 2600 4800E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3400E 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 3200 32	200JDB 360JD 750JD 130JD 150JD 2000D 890D 3600D 4600D 2100D 2800D 4800D 3100D 2600D 530JD 260JD 500JD	1300B 510 100J 1100 1200 7000E 1800 2500 13000E 3800 3500 3500 3500 3500 3500 3500 3500	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/16/98 11/24/98	11/13/98 11/16/98 12/02/98	11/13/98 11/16/98 12/02/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE SV-1.6 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

#### All values are ug/Kg dry weight basis.

Client Sample I.D.	SS-9 DL				
Lab Sample I.D. Method Blank I.D. Quant. Factor	982469A-20DL SBLKOR 5.88				
Naphthalene	1300JDB			3	30
2-Methylnaphthalene	500JD	ing second and second	e de la composition d Camposition de la composition de la comp		3.0
Acenaphthylene Acenaphthene	91JD	n an shekari tu Mara shekari tu			30 30
luorene	1200JD	lite e effection of the second fil	na fanta e m		30
Phenanthrene	7700D				30
nthracene	2100D				30
luoranthene	6400D				30
Pyrene Jenzo (a) anthracene	10000D 3700D		eren en e		30 30
Chrysene	3700D		s deservent of a	· · · · · · · · · · · · · · · · · · ·	30
Benzo(b)fluoranthene	4200D				30
enzo(k)fluoranthene	4300D				30
lenzo (a) pyrene Indeno (1,2,3-cd) pyrene	3000D 1000JD				30 30
libenzo(a, h) anthracene	520JD		Maria di Kalina da sa		30
Senzo(g,h,i)perylene	810JD		anan kana kana kana kana kana kana kana		30
Date Received Date Extracted					
Date Analyzed	11/16/98 12/02/98				

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

#### TABLE SV-1.7 7098-2469A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

# All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKUR SBLKUR 1.00	SS-37 982469A-07 SBLKUR 1.08	SS-37 RE 982469A-07RE SBLKUR 1.08	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3 - cd) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	U U U U U 2J 2J U U 2J 2J 2J 2J 2J 2J 2J 2J 2J 2J 2J 2J 2J	7J 14J 12J 5J 4J 57J 18J 100JB 100JB 51J 68J 92JB 77JB 55JB 16J 6J 40JB	6J 14J 12J 5J 6J 57J 18J 100JB 100JB 52J 68J 100JB 60JB 57JB 15J 5J 42JB	330 330 330
Date Received Date Extracted Date Analyzed	11/17/98 12/02/98	11/13/98 11/17/98 12/02/98	11/13/98 11/17/98 12/02/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

### TABLE GC-1.0 7098-2469A STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

# All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank 111698-B06 PBLK42 1.00	PBLK42 MS 111698-B06MS PBLK42 1.00	PBLK42 MSD 111698-B06 MSD PBLK42 1.00	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	ប ប ប ប ប ប	ប ប ប ប ប ប	U U U U U U U U U	33. 67. 33. 33. 33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/16/98 12/01/98	11/16/98 12/01/98	11/16/98 12/01/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

### TABLE GC-1.1 7098-2469A STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

		1		
Client Sample I.D.	SS-29	SS-32	SS-33	
Lab Sample I.D. Method Blank I.D. Quant. Factor	982469A-01 PBLK42 6.25	982469A-02 PBLK42 23.0	982469A-03 PBLK42 11.8	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242	U U U U	U U U	U U U	33. 67. 33. 33.
Aroclor-1248 Aroclor-1254 Aroclor-1260	U U 1000P	U U 4200P	U U 1000P	33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/13/98 11/16/98 12/02/98	11/13/98 11/16/98 12/02/98	11/13/98 11/16/98 12/02/98	

### All values are ug/Kg dry weight basis.

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

### TABLE GC-1.2 7098-2469A STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D.	SS-34 982469A-04	SS-20 982469A-11	SS-21 982469A-12	Quant. Limits
Method Blank I.D. Quant. Factor	PBLK42 139.	PBLK42 2.35	PBLK42 1.12	with no Dilution
Aroclor-1016 Aroclor-1221	U U	U U	U	33.
Aroclor-1232	U U	U U U	U U	67. 33.
Aroclor-1242 Aroclor-1248	U	U.	Ŭ	33.
Aroclor-1254	U U	UU	្រប ប	33. 33.
Aroclor-1260	19000P	Ŭ	<u> </u>	33.
Date Received '	11/13/98	11/13/98	11/13/98	
Date Extracted Date Analyzed	11/16/98 12/02/98	11/16/98 12/02/98	11/16/98 12/02/98	

. .

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

### TABLE GC-1.3 7098-2469A STEARNS & WHELER POLYCHLORINATED BIPHENYLS (PCB"s)

## All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-22 982469A-13 PBLK42 1.20	SS-27 982469A-18 PBLK42 2.20	Quant. Limits with no Dilution
Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260	U U U U U U U U U	U U U U U 200P	33. 67. 33. 33. 33. 33. 33. 33.
Date Received Date Extracted Date Analyzed	11/13/98 11/16/98 12/02/98	11/13/98 11/16/98 12/02/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

# Appendix D Support Documentation/Resubmission

# **INORGANIC ANALYSIS DATA REVIEW**

# STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7098-2469A/ SDG NO. A2469

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from nine (9) soil samples collected on 11-11-98. The samples were received by Severn Trent Laboratories on 11-13-98 and analyzed according to criteria set forth in SOW3,90 (ILM03.0) for TAL metals.

The following samples are contained within this report:

SS-35	SS-39	SS-20	SS-22	SS-25
SS-36	SS-19	<b>SS-2</b> 1	SS-24	

The QC samples (MS & MD) was assigned to the alternate samples with sample IDs SP1-F2 and DAF95E for the ICP metals and mercury respectively.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

## **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No. 7098-2469A / SDG No. A2469

Page 2

## **DATA COMPLETENESS**

The 8-hour analysis holding time for CRDL and ICS samples exceeded in the analysis run log "Form XIV", however; the review of the raw data indicated that these QC samples were analyzed within the 8-hour requirements. The laboratory has been contacted. The corrected Forms II (part 2), Forms IV and forms XIV were resubmitted.

## HOLDING TIME

All samples were digested/analyzed within the requirements established in the method.

# CALIBRATIONS & CRDL Analyses

The recoveries for all analytes in the initial and continuing calibrations were within the control limits of 90-110%.

The CRDL sample analysis was performed prior and after all samples analysis. The %recoveries were within the control limits with the exception of Pb (72.9%), Se (124.8%) and Zn (201%) in initial CRDL and Tl (68.5% & 72.8%) in final CRDL analysis runs. The results for lead and zinc were above 3x the CRDLs. Therefore, the data were not qualified based on these outliers. The positive results for selenium and the results and non-detected values foe thallium were qualified estimated.

## **BLANKS**

The laboratory preparation blank had Se (0.914 mg/kg) contamination at a level below the CRDL. The reported sample results up to 5 times the blank level were qualified "U" and considered as the laboratory artifact. Affected samples: SS-35, SS-20, SS-22.

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for Cd (78.9%) in initial ICS sample was below the lower control limit of 80%. The data were not impacted since the deviation was marginal and also, the final ICS recoveries were within the control limit.

# MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed on the alternate samples. The spike recoveries were within the control limits with the exception of Sb (32%) and Hg (-9.1%). The post digestion spike sample was analyzed for antimony as required by the method. The recovery (96%) was within the control limit. The results and non-detected values for antimony were qualified estimated "J & UJ". However, the results for mercury were considered biased low and the possibility of false

# Stearns & Wheler Case No. 7098-2469A / SDG No. A2469

### Page 3

negative exist. Therefore, the positive results were qualified estimated and non-detected values were rejected for this analyte.

## MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was also performed on samples SP1-F2 and DAF95E for ICP metals and mercury respectively. The RPDs for all analytes were within the analysis and validation control limits with the exception of Cr (21.2%) and Pb (77.1%). The data for chromium was not qualified since the RPD was within the data validation control limit of 35%. The reported positive sample results for lead were qualified estimated.

## LABORATORY CONTROL SAMPLE

The recoveries for all analyses were within the control limits.

## **ICP SERIAL DILUTION**

The %Ds for Zn (44.42%) was above the 10% requirement. The reported positive results were qualified estimated.

## **INSTRUMENT DETECTION LIMITS**

All analytes with the exception of mercury were analyzed with ICP. The reported IDLs were below the CRDL.

## **DUPLICATE ANALYSIS**

Duplicate analysis was analyzed on sample SS-39/Dup-2. The RPDs were within the control limits. Sample Dup-2 was analyzed with batch # 2469B.

## SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions. The reported sample results were within the calibration range.

## **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. Overall, major problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

- 1. Appendix A- Glossary of Data Qualifier
- Appendix B- Data Summary Forms
   Appendix C- Laboratory Results (Form I)
- 4. Appendix D Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

۶ ۹ ۰.۰

.

# **GLOSSARY OF DATA QUALIFIERS**

# **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
   [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

# **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

# **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

Appendix B Data Summary Forms

.

ANALYTICAL ASSURANCE ASSOCIATES (A3) METAL SOIL ANALYSIS mg/Kg

4

e Se Eg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469A SDG NO.: 2469A

CLIENT SAMPLE ID: LAB SAMPLE ID: % SOLID:		98	SS-24 32469A-15 85	SS-25 982469A-16 85.2
TARGET COMPOUNDS				
	IDL			
Aluminum	6	Р	5100	4470
Antimony	5	Р	25.4 J	7.7 J
Arsenic	3	Р	27.6	15.8
Barium	1	Р	95.4	102
Beryllium	1	Р	0.82	0.93
Cadmium	1	Р	- 11	12.4
Calcium	4	Р	6010	41400
Chromium	_ 1	Р	187	122
Cobalt	1	Р	22. <del>9</del>	13.3
Copper	2	Р	314	197
Iron	7	Р	258000	162000
Lead	2	Р	353 J	164 J
Magnesium	5	Р	1100	12900
Manganese	1	Р	2100	1610
Mercury	0.1	CV	0.94 J	0.036 J
Nickel	5	Р	157	109
Potassium	29	Р	427	417
Selenium	2	Р	13.9 J	8.2 J
Silver	1	Р	0.86	0.51
Sodium	15	P	636	674
Thallium	6	P	3.8 J	UJ UJ
Vanadium	1	P	24.6	16.2
Zinc	1	P	234 J	185 J

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) METAL SOIL ANALYSIS mg/Kg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469A SDG NO.: 2469A

CLIENT SAMPLE ID: LAB SAMPLE ID: % SOLID:		98	SS-35 2469A-05 82.5	SS-36 982469A-06 78.9	SS-39 982469A-09 78.2	SS-19 982469A-10 78.9	SS-20 982469A-11 84.7	SS-21 982469A-12 89.1	SS-22 982469A-13 84.3
TARGET COMPOUNDS:									
	IDL								
Aluminum	6	Р	5260	4650	5060	3690	2620	1230	9510
Antimony	5	Р	4.4 J	9.4 J	6 J	116 J	3.7 J	4.7 J	2.1 J
Arsenic	3	Р	21.2	35.8	22.1	41.4	15.5	19.1	12.1
Barium	1	Ρ	94.5	133	107	80.4	51.4	584	105
Beryllium	1	Р	0.64	0.75	0.85	0.51	0.46	0.22	0.65
Cadmium	1	Р	40.3	27.5	10.4	12.2	27.5	60	1.8
Calcium	4	Р	13900	6360	38800	2180	5620	4500	6070
Chromium	1	Р	40.1	116	151	520	25.6	66.3	54.5
Cobalt	1	Р	14.3	22.2	20	57	7.8	10	8.9
Copper	2	Р	208	266	224	698	192	133	69.4
ron	7	Ρ	64900	145000	145000	286000	69500	163000	55500
_ead	2	Р	369 J	749 J	297 J	1390 J	365 J	103 J	113 J
Magnesium	5	Р	4050	1670	13300	807	963	245	2310
Manganese	1	Ρ	614	1090	1540	2080	437	. 1120	462
Mercury	0.1	CV	0.27 J	0.3 J	0.25 J	0.12 J	0.35 J	0.063 J	0.18 J
Nickel	5	Р	74.7	175	189	176	42.3	74.9	38.6
Potassium	29	Р	357	467	672	403	250	71.4	874
Selenium	2	Р	4.9 U	9.5 J	8.4 J	15.4 J	5.3 U	10.3 J	4.4 U
Silver	1	Р		0.62	0.57	0.89		0.28	0.22
Sodium	15	Р	675	718	753	485	549	490	609
Thallium	6	Р	UJ	1.5 J	UJ	4.8 J	1.2 J	1.8 J	1.3 J
/anadium	1	Р	17.6	19.8	27.3	22.5	10.1	7.3	25.2
Zinc	1	Р	3540 J	2490 J	542 J	450 J	188 J	1420 J	156 J

Appendix C Laboratory Reported Results

# TABLE AS-1.0 7098-2469A STEARNS & WHELER TAL METALS

# All values are mg/Kg dry weight basis.

		L. L.		
Client Sample I.D.	SS-35 ,	SS-36	SS-39	SS-19
Lab Sample I.D.	982469A-05	982469A-06	982469A-09	982469A-10
Aluminum	5260	4650	5060	3690
Antimony	<b>4.4</b> BN -	9.4BN	6.0BN	116.N
Arsenic	21.2	35.8	22.1	41.4
Barium	94.5	133.	107.	80.4
Beryllium	0.64B	0.75B	0.85B	0.51B
Cadmium	40.3	27.5	10.4	12.2
Calcium	13900	6360	38800	2180
Chromium	. 40.1*	116.*	151.*	520.*
Cobalt	14.3	22.2	20.0	57.0
Copper	۱ <u>208</u> .	266.	224.	698.
Iron	64900	145000	145000	286000
Lead	369.*	749.*	297.*	1390*
Magnesium	4050	1670	13300	807.B
langanese	614.	1090	1540	2080
lercury	0.27N	0.30N	0.25N	0.12N
Nickel	74.7	175.	189.	176.
Potassium	357.B	467.B	672.B	403.B
Selenium	• 4.9	9.5	8.4	15.4
Silver	0.240	0.62B	0.57B	0.89B
Sodium	675.B	718.B	753.B	485.B
Challium	1.40	1.5B	1.30	4.8
Vanadium	17.6	19.8	27.3	22.5
Zinc	3540E	2490E	542.E	450.E

See Appendix for qualifier definitions ,

Soil

.

2

به

# TABLE AS-1.1 7098-2469A Stearns & Wheler Tal Metals

# All values are mg/Kg dry weight basis.

	<u>.</u>			
		,		
Client Sample I.D.	SS-20	SS-21	SS-22	SS-24
Lab Sample I.D.	982469A-11	982469A-12	982469A-13	982469A-15
<b>.</b>	2620	1000		ETAA
Aluminum Antimony	2620 3.7BN	1230 4.7BN	9510 2.1BN	5100 25.4N
Arsenic	15.5	4./BN 19.1	2.15N 12.1	25.4N 27.6
Barium	51.4	584.	105.	27.0 95.4
Beryllium	0.46B	0.22B	0.65B	0.82B
Cadmium	27.5	60.0	1.8	11.0 .
Calcium	5620	4500	6070	6010
Chromium	25.6*	66.3*	54.5*	187.*
Cobalt	7.8B	10.0B	8.9B	22.9
Copper	192.	133.	69.4	314.
Iron	69500	163000	55500	258000
Lead	365.*	103.*	113.*	353.*
Magnesium	963.B	245.B	2310	1100
Manganese	437.	1120	462.	2100
Mercury	0.35N	0.063BN	0.18N	0.94N
Nickel	42.3	74.9 71.4B	38.6	157.
Potassium Selenium	250.B 5.3	10.3	874.B	427.В 13.9
Silver	0.210	0.28B	0.220	0.86B
Sodium	549.B	490.B	609.B	636.B
Thallium	1.20	1.8B	1.3U	3.8
Vanadium	10.1B	7.3B	25.2	24.6
Zinc	188.E	1420E	156.E	234.E

See Appendix for qualifier definitions

#### TABLE AS-1.2 7098-2469A STEARNS & WHELER TAL METALS

# All values are mg/Kg dry weight basis.

Client Sample I.D.	SS-25	н. Настраната (1996)	•	
Lab Sample I.D.	982469A-16	· · · -		•
Aluminum	4470		· · · ·	
Antimony	7.7BN			· · · · · · · · · · · · · · · · · · ·
Arsenic Barium	15.8 102.			
Beryllium Cadmium	0.93 12.4			
Calcium Chromium	41400 122.*			
Cobalt	13.3			
Copper Iron	197. 162000			
Lead Magnesium	164.* 12900			
Manganese	1610			
Mercury Nickel	0.036BN 109.			
Potassium Selenium	417.B 8.2			
Silver Sodium	0.51B 674.B			
Thallium	1.10			
Vanadium Zinc	16.2 185.E			

See Appendix for qualifier definitions

Soil

Appendix D Support Documentation/Resubmission -----

STL CONNECTICUT

____

Committed To Your Success	Severn Trent Laboratorie: 200 Monroe Turnpike Monroe CT 06468
FACSIMILE COVER SHEET	Tel: (203) 261-4458 Fax: (203) 268-5346
DATE:	
NUMBER OF PAGES (INCLUDING COVER SHEET)	
TO: Zohreh Hanid	
LOCATION: Sterns + Wheler	
TELEPHONE NOFAX NO	10-269-9989
FROM: PAUL HOBART	
LOCATION:	
TELEPHONE NO: (203) 261-4458 FAX NO	(203) 268-5346
MESSAGE	
Roblin Steel Project STL Report 6	7098.2469A.B.C
Attached one the corrected metals for.	~~ 40×
requested for the project listed above	
requised for the project listed above requise any additional information please	
requised for the project listed above require any additional information please laboration director Jeff Corran, or y	

16203 Park Row, Suite 110, Houston TE 27084
 120 Southeaster Court, Saite 300, Morrisvilla NC 27560

I 1531 Give Arber, Prinsone / C.32014
 Wested Departs Firl, 53 Southandon Rost, Wested MA 01085
 G33 Route 10, Whipping AU 07591

Ø 001

## U.S. EPA - CLP

2B CRDL STANDARD FOR AA AND ICP

Lab Name:	STL		Contract:	 	
Lab Code:	<u>STL</u> Ca	se No.:	SAS No.:	 SDG No.:	<u>A2469</u>
AA CRDL S	tandard Sourc	e: INORG. VENT.			
ICP CRDL	Standard Sour	ce: <u>INORG. VENT.</u>			-

### Concentration Units: ug/L

	CRDL S	tandard f	for AA		CRDL St. Initial	andard f	or ICP Final	
Analyte	True	Found	€R(1)	True	Found	<b>%</b> R(1) .	Found	\$R(1)
Aluminum			1	400.0	11.48	2.9		
Antimony	.		1	120.0	122.15	101.8	118.13	98.4
Arsenic				20.0	18.17	90.8	17.64	88.2
Barium				400.0				
Beryllium				10.0	10.09	100.9	9.52	95.2
Cadmium				10.0	9.93	99.3	10.69	105.9
Calcium				10000.0	4.28			
Chromium				20.0	19.43	97.2	19.13	95.6
Cobalt		• •	}	100.0	100.90	100.8	96.02	96.0
Copper			· ·	50.0	50.67	101.4	48.05	96.1
Iron			1	200.0	-2.82	-1.4		
Lead				6.0	4.37	72.9	5.16	86.0
Magnesium			1	10000.0	5.21			
Manganese				30.0	29.91	99.7	29.31	97.7
Mercury								ا
Nickel				80.0	78.81	98.5	80.43	100.5
Fotassium				10000.0				
Selenium				10.0			11.90	
Silver				20.0			19,58	97.9
Sodium				10000.0				
Thallium				20.0		84.1	14.56	
Vanadium				100.0			95.64	95.5
Zinc				40.0	80.38	201.0	51.41	128.5
Cyanide								
								· .

FORM II (PART 2) - IN

# U.S. EPA - CLP

# ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL Lab Code: <u>STL</u> Case No.: ID Number: JA61E

Contract: _____ SAS No.: _____ SDG No.: A2469 ICS Source: EPA-LV87

.

# Concentration Units: ug/L

	Tru			tial Found	1		nal Found	
Analyte	Sol. A	Sol. AB	Sol. A	Sol. AB	%R	Sol. A	Sol. AB	*R
Aluminum	500000	500000	469142	461845.5	92.3	455257	452610.9	90.5
Antimony		500	C	578.7	115.7	5	568.5	113.7
Arsenic		100	- 3	100.5	100.5	2	97.2	97.2
Barium	1	500	2	459.1	91.8	2	454.8	92.9
Beryllium		500	1	433.5	\$6.7	0	427.5	85.5
Cadmium		1000	-2	789.4	78.9		845.2	84.5
Calcium	500000	500000	425258	417349.0	83.4	415455	413994.9	82.7
Chromium		500	3	433.7	86.7	3	432.3	36.4
Cobalt		500	0	440.9	88.1	Ç	424.4	84.8
Copper		500	2	511.7	102.3	0	502. <u>6</u> '	100.5
Iron	200000	200000	183525	181111.0	90.5	184805	184076.4	92.0
Lead		50	- 21	45.5	91.Ĉ	- 3	44.5	89.0
Magnesium	500000	500000	473123	465653.5	93.3		463718.7	92.7
Manganese		500	- 1	425.4	85.0	-1	433.6	86.7
Mercury								
Nickel		1000	3	304.9	80.4		851.5	85.1
Potassium			-14	-20.3		-12	-19.8	
Selenium		50	6	53.7	107.4	5	53.6	107.2
Silver		200	0	203.4	101.7	0	202.8	101.4
Sodium			-171	-167.3		-173	-155.1	
Thallium	·····	100	6	96.3	96.3	5	98.0	9.8.0
Vanadium		500	- 21	447.2	89.4		436.8	57.3
Zinc	i	1000		903.6	90.3	- 3]	920.3	92.0
Cyanide								
			†					

FORM IV - IN

.

# U.S. EPA - CLP

4 ICP INTERFERENCE CHECK SAMPLE

Contract: Lab Name: <u>STL</u> -----SAS NO.: _____ SDG NO.: A2469_ Lab Code: STL Case No.: _____ ID Number: JA61E ICS Source: <u>EPA-LV87</u>

Concentration Units: ug/L

	Tru	ıe.	Int	itial Found	a		inal Found	
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	А	AB	A	AB	% R	A	AB	÷R.
							DL 1/14	1151
Aluminum	500000	500000	464775	451976.0	90.3		451976.0	
Antimony		500	1	571.4	114.2		571.4	114.
Arsenic	1	100	0	94.2	94.2		94.2	94.
Barium		500	2[	457.9	93.5	-	467.9	93.
Beryllium		500	0	423.8	84.7		423.8	84.
Cadmium		1000	~ 5j	853.9	85.3		8\$3.9	85.
Calcium	500000	500000	424152	410761.1	82.1		410761.1	82.
Chromium		500		431.7	86.3		431.7	96.
Cobalt		500	0	419.1	83.8		419,1	83.
Copper		500	0	503.2	100.6		503 \2	100.
Iron	200000	200000	186744	181281.1	90.6		181281 1	90.
Lead		50	- 2	46.8	93.6		46.8j	93.
Magnesium	500000	500000	476454	452451.9	92.4		462451.9	92.
Manganese	1	500	- 1	435.7	87.1		435.7	87.
Mercury	T							1
Nickel	T	1000	3]	861.0	86.1		861.0	86.
Potassium			-14	-14.6			-14.6	
Selenium		50	7	54.7	109.4		54.7	109.
Silver		200	. 0	203.2	101.6		203.2	101.
Sodium			-169	-169.4			-169.4	<u> </u>
Thallium		100	- 4	98.4	93.4		98.4	93.
Vanadium		500	-1	433.7	86.7		433.7	63
Zinc	1	1000	-13	894.8	89.4		894.8	29
Cyanide			1					

FORM IV - IN

Ø 006

U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: STL Lab Code: STL ____ Case No.: ____ SAS No.: ____ SDG No.: A2469

Instrument ID Number: JA61E

Start Date: <u>11/19/98</u>

_____ Contract: _____

Method: P

End Date: <u>11/19/98</u>

EPA			······		~								7	Ina	ij	/te	S				÷					-	
Sample	D/F	Time	% R	A	S B	A	B A	B	C	C	C	LC.	<b>C</b>	F. E	Р В	M	Μ	H G	N	ĸ	SE	A	IN	T	V	Z N	
NO.				L	В	A S	A	BE	C D	C A	C R	0	ม เป	E	в	G	N	G	I		B	G	A	L		N	N
E1 E7	1.00	1204		X	X	X	X	X	X	X		X	X	X	X	X	X	Ē	X	X	X	X	X	Х	Х	X	
G7	1.00	1210			X	X	X	X	X		Х	X					Х		X			Х			X		
28	1.00	1216		1	X	X	X	X	Х		Х	Х					X		Х			X	ļ	X		X	
S4	1.00	1222		X		X	X	X	X		X	X	X		X.		X		Х		X	X			Х	Х	
59	1.00	1228		X						X				X		Χ				X	L		X				: سيسا
56	1.00			X						Х			_	X		X				Х	L		X				
\$5	1.00				X																	l	L.	L			
53	1.00	3.243								Х				X		X				Х			X				
ICV1	1.00	1243	•	X	X	X	X	Х	X	X	X	X	X	X	X	X				X	X	X			X	X	
ICBI	1.00	1250		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	Х		X	X	X	X	
CRI1	1.00				X	X		X	X		X	X	X		Χ		X	1	Х		X	X		X	X	X	
ICSAI	1.00			X	X	X	X	Х	X	X	X	Х	X	X	X		X		X	X	X		X	Х	X	Х	
ICSABI	1.00			X	X	X	X	X.	X	Х	X	X	X	X	Х	X	X		Х	X		X		X	X	X	المحمد
CCV1	1.00	1317		X		X	X	X	X		X			X	Х				X	X			X	X		Х	
CCB1	1.00			X	X	X	X	X	X	X	X		X		X	X			X	X	X		X	X	X	Х	
PBS1	1,00	1331		X	X	X	X	X	X	X	X	X	X	X	X	X	X		Х	X	X	X	X	X	X	X	L
ZZZZZZ	1.00	1338																			L			1	L_		
ZZZZZZ	1.00	1344			Ι																						
ZZZZZZ	1.00	1351																						L	1		
ZZZZZZ	1.00	1358			1				1		1					Γ						<u>i</u>	L		<u> </u>		
982489A-09	1,00	1405		X	X	X	X	X	X		X	X	X	X	X	X	X	ļ	X		IX		X	X	X		
982489A-09D	1.00			X	IX	X	X	X	X	X		X	X	X	$\mathbf{X}$	X	X	İ	X	X	X		X		X		L
982489A-095	1.00			1	X	X	X	X	X		X	<u> X</u>	X		X		X		Х		X	X	1	X	<u>X</u>	X	
ZZZZZZ	1.00	1425				[ · ·						Γ	I				[						_			L	
LCSS1	1.00					X	X	X	X	X	X	X	X		X	X	X		X		X				X		L
CCV2	1.00	1439				X	X	X	X	X	X	X	X				[X	I	X		X				X		ļ
CCB2	1.00	1446		X	X	X	X	X	X	X	X	X	X	X	X	X	X	1	X	X	X	X	X	X	X	X	
ZZZZZZ	1.00	1453			1											[		1					<b>_</b>			Ļ	<u> </u>
ZZZZZZ	1.00	1500			T	I		T		[	1	Γ					}	1		1							L
982469A-05	1.00			X	X				X		X			X	X	X	ŢX			X	X	X	ΙX.	X	X		L_
982469A-06	1.00	1513		X	X	X	X	X	X		X			TX			X		Х		X	X	TX.	X	X	X	1
932469A-09	1.00	1520		X	X	X	X	X	X	X	X	X	X	X	X	X			X		X.	X	X	X	X		
982459A-10	1.00			X	X	X	X	X	X			X	X		X		X	1	X	[A	X	X	X	X	IX.	<u>IX</u>	1

FORM XIV - IN

007

U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: STL Lab Code: STL Case No.: Instrument ID Number: JA61E Start Date: <u>11/19/98</u>

Contract: SAS NO.: _____ SDG NO.: A2469

Method: P

End Date: <u>11/19/98</u>

EPA					Τ									ŀ	ln:	113	/te	<u>-</u> 5										
Sample	D/F	Time	8	R	A	S	A	[A]	В	C	त	C	rc	C	F	P	M	M	ГĦ	N	K	15	A	Ň	11	Ŵ	Z	7
NO.	5/1	1 June	•		L	B	S	Ā	E	D	A	Ř	ŏ	Ŭ	Е	B	G			I		E	G	A	L		N	
1.0.					12	<b>1</b>		••			•		Ň			5		••		-	ľ				-			1
82469A-11	1.00	1534						X						X	X	X			ļ	X	Х				X			[
E2469A-12	1.00	1540				X			X		X	Х	X	X	X	X	X			X					X			L
82469A-13	1.00	1547			X	X	X	X	X	X	X	X	X	X	X	Х	X					X		X				1_
82469A-15	1.00	1554			X	X	X	X	X	X	X	X	X	X	X	Х	X	X		X	X	X.	X	X	X	X	X	ļ.
ZZZZZ	1.00	1601																		1			L					L
CV3	1.00	1610			X	X	X	X	X	X	X	X	X	X	X	Х									X	COLUMN TWO IS NOT	· · · · · · · · · · · · · · · · · · ·	1
CB3	1.00	1616			X	X	X	X	X	X	X	Х	X		X		X			X					X			L
52459A-16	1.00	1623			X	X	X	X	X	X	X	Х	X	X	Х	Х	X	X		X	X	X	X	X	X	X	X	L
82469B-12	1.00	1630																		]	İ.	[	[		 •			
82469B-13	1.00	1637			1																							ĺ
82469B-14	1.00	1544			1																							
82469B-17	1.00	1651					1																<u> </u>					!
ZZZZZ	5.00	1657		· · · · · · · · · · · · · · · · · · ·																[				L				İ.
82469A-C5L	5.00	1706			X	X	X	X	X	X	X	X	X	X	X	Х	X	X		X	X	<u>X</u>	X	X	X	X	X.	
82469B-12L	5.00	1713			_																		[	L	<u> </u>	<u> </u>		
CV4	1.00	1720			X	X	X	X	X	X	X	Х	X	X	X					X	X	X		X		<u>IX</u>	X	A
CB4	1.00	1727			X	X	X	X	X	X	Х	X		X	X	Х		X.		X		X.	X	X	X	X.	X	4
RI2	1.00	1734			X	X	X	X	X	X	Х	X	X	X	X	X		X		X			<u>IX</u>	X	X		X	
CSAF	1.00	1740			X	X	X	X	X	X	X	X	X	X	X	X	X	X		X		X	X	X	X		X	L
CSABF	1.00	1747			X	X	X	X	X	X		X		Y.	X	X		X				X				X	X	I.
CV5	1.00	1754			TX	tx.	X	X	X	X	X	X	X	X	X	X	X	X.							X			
CB5	1.00	1801			X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	TX.	X	X	X	X	X	Í.
22222	1.00	1808			1						]									Γ					<u> </u>			Γ
ZZZZZ	1.00	1.815				1		1	†	1		1						1	1		<b>—</b>	İ					1	L
ZZZZZ	1.00	1821					Ī		<b></b>	1		1				[]	Ι			Γ		1	l ·					1
ZZZZZ	1.00	1828				1	ŀ		1					1	[				Γ		T		İ			I		1
ZZZZZ	1.00	1835				1	1										Γ	1				1	Γ	<u> </u>	<u> </u>	<u> </u>		
ZZZZZ	1.00					1	†	1	† 	-	1	1	1		1		Γ	1	Γ	Γ	1		T					Ι
22222	1.00				-	1-	1	1		1	1	ŗ	Γ			[			Γ			]	1					L
ZZZZZ	1.00					1	1	1	1	1			1	1			Ì	T		I					Γ			L
22222	1.00					1-	1	1-	÷	1		1	1	1	1			T	1	T			Γ		L			ſ
22222	1.00	and the second second second			+	<u>†</u>	1	†—	† –	1	1	1	1	1-	<b>†</b>	1	1	1	1	1	Γ		Τ	1	Γ	1		I
CV6	1.00				-†7	X	tx	tx	1x	1x	18	X	18	17	1x	X	<u>†x</u>	X	1	TX	TX	X	IX	X	X	X	X	Г

FORM XIV - IN

2008

U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: STL Lab Code: STL___ Case No .: _____

Instrument ID Number: JA61E

Start Date: <u>11/19/98</u>

.

SAS No.: _____ SDG No.: A2469___ Method: P

End Date: <u>11/19/98</u>

Contract: _____

EPA	T			Τ									J	Ina	11)	/te	8		<b>-</b>			بدان قري					<b>1</b>
Sample	D/F	Time	& R	A	S		R	Ē	7	2	<b>1</b> 71	171			5	M	M	ų	N	K	IS	A	N	T	1V	Z	1 <u>7</u> -1
No.	5,1			Ľ	S B	A N	B A	B E	Ď	C A	C R		υ	E E	B	G	N	H G	I		E	A G	A			N	N
			•	1	1		••	-	-						-				-		[-	-		-			
CCB6	1.00	1923		<u>1x</u>	X	X	X	X	X	X	Х	X	X	X	X	Х	X		X	X	X	X	X	X	X	X	<u> </u>
ZZZZZZ	1.00	1930		1																	1						Lame
ZZZZZZ	1,00	1937	<b></b>	1						_																	
ZZZZZZ	1.00	1943		1																		[					
ZZZZZZ	1.00	1950		1	<b>—</b>															1	1						
22222Z	1.00	1957		1	1							-								1							
222322	1.00	2004		$\dagger$																1	†		1				Ī
ZZZZZZ	1.00	2011		T															<b></b>		1						
ZZZZZZ	1.00	2018																			1-						
ZZZZZZ	1.00	2024		+																1							
ZZZZZZ	1.00	2031		1-							-					[			1		ľ	1					
CCV7	1.00	2038		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
CCB7	1.00	2045		X	X	X	X	X	X	X	X	X	X	X	Χ	X	X		X	X	X	X	X	X	X	X	1
ZZZZZZ	5.00	2052		1	1														Γ	ŀ	[						
ZZZZZZ	1.00	2059		1																							
ZZZZZZ	1.00	2106																					i				
ZZZZZZ	1.00	2112		T																							
222222	1.00	2119		T	Γ														Ĺ			L					
ZZZZZZ	1.00	2126		T	1						1									ļ							
982489A-09A	1.00	2133		Τ	X												1		1				Γ			:	
CRI2	1.00	2140		1		X		X			Х		X	Ī	X		X		X	[		X			X		
CRI3	1.00	2140		T	X	X			Х		X	X	X		X		X		X		ŢΧ		Í	X	X	X	
ICSAF	1.00	2147		X		X	X	Х	X	Х	X	X	X	X	X		X								X	X	
ICSABF	1.00					X					X					X				X		X			X		
CCV8	1.00	2200		X	X	X					X		X		X		X		X	X		X	X	X	X	X	L
CC38	1.00	2207		TX [	ΤX	X	X	X	X	X	X	X	X	18.	X	X	X		X	X	X	X	X	X	X	X	Įi
										ĺ											<u> </u>	Į	Ļ_	_	<b>_</b>		L
				1								ŀ			í	1				-		<b></b>	Ļ	<b> </b>	<u> </u>		
					L					1					L	Į	1						<b> </b>	ļ	Ļ	L	L
																<u>}</u>				L_		ļ	ļ	į	-	<b>-</b>	ļ
			1			1			1								<u> </u>	! +	<b> </b>	L	1	ļ		1	÷		
										1	<u> </u>								L	ļ.,	<b>_</b>	L	<u> </u>		<u></u>	<b>_</b>	ļ
			T		1	1				Γ		1		1	1	1	1			1	1	1	1	1	L	1	L

FORM XIV - IN

# **END OF DATA PACKAGE**

.



# Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGAINC & INORGANIC QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

SITE: ROBLIN STEEL CASE NO.: 7098-2469B/ SDG NO.: B2469

# REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. JANUARY 10, 1999

# **ORGANIC ANALYSES**

.

# STEARNS & WHELER SITE NAME: ROBLIN STEEL CASE NO.:7098-2469B/SDG NO.: B2469

## **INTRODUCTION**

This quality assurance report is provided based upon a review of all data generated from sixteen (16) soil samples collected on 11-11,12-98 and were received by Severn Trent Laboratories on 11-13-98. The samples were analyzed for Poly Aromatic Hydrocarbons (PAH) compounds according to criteria set forth in USEPA CLP OLM3.1.

The following samples are contained within this report:

<b>SS-10</b>	SS-14	SS-18	SS-9B
SS-11	SS-15	SS-41	SS-52
SS-12	SS-16	SS-42	SS-12B
SS-13	SS-17	DUP-1	SS-49

Two sets of QC (MS/MSD) sample analyses were performed on samples SS-9B and SS-52 from this batch.

All data have been validated with regard to usability according to the quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

# **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No.: 7098-2469B/ SDG No.:B2469

# **DATA COMPLETENESS**

The data package completeness was satisfactory.

## HOLDING TIME

All samples were extracted within 7-days from collection, and analyzed within 40-days from extraction as cited in the Method for this fraction.

# **CALIBRATION**

All RSDs, %Ds and response factors for the PAH compounds were within the control limits in both initial and continuing calibrations for the PAH compounds with the exception of the following %Ds:

Compound Name	СС	CC
	12-02-98	12-08-98
Indino(1,2,3-cd)Pyrene	35	
Dibenzo(a,h)anthracene	34	
Benzo(g,h,i)perylene	34	
Benzo(k)fluoranthene		27
Associated Samples:	SS-10	SS-11
	SS-12	SS-16Re
		SS-42
	•	SS-13Re
		SS-18
		SS-41
		DUP-1
		SS-9B
		SS-12B
		SS-49

CC= Continuing Calibration

The reported sample data for the above %d outliers were qualified estimated in the corresponding samples.

### **BLANKS**

The method blanks contained naphthalene (4 ug/kg), fluoranthene (2&3 ug/kg), pyrene (2&3 ug/kg), benzo (b & K) fluoranthene (2 ug/kg) and benzo (g,h,i) pyrene (2 ug/kg) at levels below the CRQLs. These compounds were detected in the samples at relatively high levels, (above the action levels) with the exception of pyrene in sample SS-15. The reported result was qualified "U". Tentatively Identified Compounds were not searched/reported for this analysis.

Stearns & Wheler Case No.: 7098-2469B/ SDG No.:B2469

## SURROGATE RECOVERIES

All samples and the corresponding QC samples were spiked with eight surrogate compounds as required by the applied methods. The recoveries were within the control limits with the exception of terphenyl-d14 in sample SS-18 (207%) and the corresponding reanalysis SS-18Re (172%). The data were not qualified based on these outliers since the surrogate recovery criteria, (i.e., one outlier per fraction and no recoveries below 10%) has been met.

All surrogate recoveries were diluted out in sample SS-49 due to the high level of the dilution. The reported sample data were qualified estimated.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Two sets of matrix spike/spike duplicate analyses were performed for these fractions. The recoveries of 17 out of 22 in sample SS-9B and 6 out of 22 in sample SS-52 were outside the QC limits. The recoveries were above 10% for all compounds with the exception of pentachlorophenol (0%) and pyrene (0%) in both QC samples. The data were not qualified since the concentration of pyrene in the original sample was above 4 times the amount of spike added. Also, pentachlorophenol was not listed as a target compound.

#### **INTERNAL STANDARD**

All internal standard recoveries and retention times were within the control limits established by the laboratory with the exception of the following:

Sample ID	Internal Standard
SS-14	· PHN
SS-52MSB	CRY/PRY
SS-13	CRY/PRY
SS-13Re	PRY
SS-14Re	CRY/PRY
SS-16	CRY/PRY
SS-52	CRY/PRY
SS-52 MS/MSD	CRY/PRY
SS-16Re	PRY
SS-42/SS-42Re	PRY
SS-18/SS-18Re	CRY/PRY
SS-41/SS-41Re	PRY

PHN= Phenanthrene CRY = Chrysene-d12 PRY = Perylene-d12 The analysis of MS/MSD samples fulfilled the reanalysis requirements for sample SS-52. Stearns & Wheler Case No.: 7098-2469B/ SDG No.:B2469

The comparison of the initial sample results and the reanalysis gave the satisfactory reproducibility. Therefore, the reanalysis sample results were reported on the data summary. The sample data were qualified based on the aforementioned outliers.

# LABORATORY CONTROL SAMPLE

Two LCS samples were analyzed for this fraction. The recoveries were within the control limits with the exception of 4-nitrophenol (88%) which exceeded the upper control limit of 80% in one LCS sample. This compound is not a target compound. Therefore, the data were not qualified.

### **DUPLICATE ANALYSIS**

One set of field duplicate samples "SS-12B/DUP-1" analysis was performed. The RPDs for all compounds were below 100% which is considered satisfactory for the corresponding matrix/analysis.

## SAMPLE RESULTS

The laboratory case narrative stated that sample SS-16 completely dissolved in the extract solvent. Therefore, the waste dilution technique was used for the preparation. This sample was analyzed according to the medium level.

Nine samples were analyzed at higher dilutions. Samples SS-11, SS-9B, SS-49 and SS-52 were initially analyzed at above 5-fold dilutions. The sample data were considered biased and the reported sample result and non-detected values were qualified estimated.

All target compounds were detected in the samples. The base line for all chromatograms were elevated from the retention time approximately "RT=19 minutes". The GC/MS spectra for the detected compounds showed an interference with petroleum hydrocarbons (TPHC) which may cause the elevated base lines and the internal standard outlier.

## **SUMMARY**

The cooler temperature was not listed on the chain-of-custody. The sample results below the CRQLs were qualified estimated, due to the uncertainty near the detection limits in the both fractions.

Overall, major analysis problems were not encountered during the sample analyses. The most important issue was sample background contamination. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix À Glossary of Data Qualifier

## **GLOSSARY OF DATA QUALIFIERS**

## **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
   [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

**N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

# **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

## **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix B Data Summary Forms

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469B SDG NO.: 2469B

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE:		SS-10 9824698-01 21	SS-11 982469B-02 21	SS-12 982469B-03 21	SS-13RE 982469B-04RE 21	SS-14RE 982469B-05RE 15	SS-15 982469B-06 1	SS-16RE 982469B-07 NA*
DILUTION FACTOR:	•	1.0	25.0	1.0	2.0	1.0	1.0	1.0
ARGET COMPOUNDS:						•		
•	CRQL							
Naphthalene	330	16 J	6300 J	5 J	690 J	88 J	3 J	
2-Methylnaphthalene	330	20 J	2800 J		330 J	66 J	50	
Acenaphthylene	330	20 J	440 J	34 J	1100 J	43 J		
Acenaphthene	330	14 J	7800 J	8 J	670 J	81 J		
Fluorene	330	9 J	8400 J	9 J	. 840 J	79 J		680 J
Phenanthrene	330	180 J	58000 J	98 J	6600	990	40 J	6900 J
Anthracene	330	38 J	13000 J	45 J	2700	220 J	40 0	0300 0
Fluoranthene	330	320 J	64000 J	420	7700	1100	40 J	2800 J
^D yrene	330	230 J	50000 J	500	11000	1700 J	40 3 19 U	4200 J
Benzo(a)anthracene	330	170 J	29000 J	420	4400	830 J	· 14 J	4200 0
Chrysene	330	250 J	30000 J	460	4400	880 J	37 J	6400 J
Benzo(b)fluoranthene	330	270 J	26000 J	310 J	6200 J	1100 J	25 J	0400 J
Benzo(k)fluoranthene	330	290 J	24000 J	410 J	8900 J	920 J	13 J	UJ
Benzo(a)pyrene	330	190 J	25000 J	280 J	4300 J	790 J	91	UJ
ndeno(1,2,3-cd)pyrene	330	46 J	8400 J	230 J	2700 J	530 J	9 J	UJ
Dibenzo(a,h)anthracene	330	18 J	4400 J	89 J	880 J	210 J	· •• J	U3 U3
Benzo(g,h,i)perylene	330	26 J	5100 J	120 J	2800 J	460 J	6 J	3100 J

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469B SDG NO.: 2469B

LIENT SAMPLE ID: AB SAMPLE ID:		SS-17 982469B-08	SS-18RE 982469B-09RE	SS-41RE 982469B-10RE	SS-42RE 982469B-11RE	DUP-1 982469B-15	SS-9B 982469B-16	SS-52 982469B-18
6 MOISTURE: DILUTION FACTOR:		7 4.0	5 1.0	21 4.0	7 1.0	6 4.0	30 50.0	25 25.0
				4.0				
ARGET COMPOUNDS:								
	CRQL							
Naphthalene	330	490 J	39 J	350 J	10 J	2800	15000 J	2400 J
2-Methylnaphthalene	330	920 J	54 J	750 J		1000 J	5900 J	1100 J
Acenaphthylene	330	2500	94 J	1500 J	3 J	190 J	680 J	500 J
Acenaphthene	330	170 J	36 J	310 J		2000 J	13000 J	4200 J
luorene	330	2200	60 J	1800		2500 J	14000 J	4100 J
Phenanthrene	330	6100	510	7100	7 J	15000	100000 J	39000 J
Anthracene	330	2400	160 J	2300	6 J	3600	21000 J	7800 J
luoranthene	330	4900	560	8300	10 J	16000	110000 J	43000 J
^o yrene	330	4300	1200 J	8100	22 J	15000	97000 J	70000 J
Benzo(a)anthracene	330	2800	330 J	4800		7700	49000 J	26000 J
Chrysene	330	2000	380 J	4400	22 J	7900	51000 J	28000 J
Benzo(b)fluoranthene	330	1800	630 J	5600 J	UJ	6900	32000 J	22000 J
Benzo(k)fluoranthene	330	2400	340 J	4800 J	ŬĴ	8600 J	55000 J	20000 J
Benzo(a)pyrene	330	1700	230 J	3900 J	UJ UJ	6400	38000 J	23000 J
ndeno(1,2,3-cd)pyrene	330	280 J	210 J	720 J	UJ	1500 J	14000 J	17000 J
Dibenzo(a,h)anthracene	330	110 J	73 J	390 J	· UJ	760 J	7900 J	8200 J
Benzo(g,h,i)perylene	. 330	180 J	230 J	490 J	UJ	1100 J	10000 J	11000 J

## ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS

ug/Kg

- 1

: 1

: -

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469B SDG NO.: 2469B

CLIENT SAMPLE ID:	SS-12B	SS-49	
LAB SAMPLE ID:	9824698-19	982469B-20	
% MOISTURE:	7	9	
DILUTION FACTOR:	5.0	250.0	

#### TARGET COMPOUNDS:

TARGET COMPOUNDS.			
	CRQL		· .
Naphthalene	330	960 J	100000 J
2-Methylnaphthalene	330	450 J	96000 J
Acenaphthylene	330	140 J	53000 J
Acenaphthene	330	1200 J	240000 J
Fluorene	330	1400 J	230000 J
Phenanthrene	330	9700	1900000 J
Anthracene	330	2600	350000 J
Fluoranthene	330	11000	3800000 J
Pyrene	330	10000	3500000 J
Benzo(a)anthracene	330	5300	1400000 J
Chrysene	· 330	5500	1600000 J
Benzo(b)fluoranthene	330	4800	1200000 J
Benzo(k)fluoranthene	330	6000 J	1700000 J
Benzo(a)pyrene	330	4700	1400000 J
indeno(1,2,3-cd)pyrene	330	1300 J	620000 J
Dibenzo(a,h)anthracene	330	700 J	260000 J
Benzo(g,h,i)perylene	330	780 J	550000 J

Appendix C Laboratory Reported Results

#### TABLE SV-1.0 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKUP SBLKUP 1.00	SS-10 982469B-01 SBLKUP 1.26	SS-12 982469B-03 SBLKUP 1.26	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	U U U U U U U 3J 3J U U U U U U U U U U	16J 20J 20J 14J 9J 180J 38J 320JB 230JB 230JB 170J 250J 270J 290J 190J 46J 18J 26J	5J U 34J 8J 9J 98J 45J 4208 5008 420 460 310J 410J 280J 230J 89J 120J	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/17/98 12/0_/98	11/13/98 11/17/98 12/02/95	11/13/98 11/17/98 12/03/98	

All values are ug/Kg dry weight basis.

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

٠

#### TABLE SV-1.1 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

All	values	are	ug/Kg	dry	weight	basis.	
-----	--------	-----	-------	-----	--------	--------	--

	1	<b>_</b>	I	
Client Sample I.D.	SS-14	SS-15		
_				Quant.
Lab Sample I.D.	982469B-05	982469B-06		Limits
Method Blank I.D.	SBLKUP	SBLKUP		with no
Quant. Factor	1.18	1.01		Dilution
Naphthalene	100J	3J		330
2-Methylnaphthalene	82J	υ		330
Acenaphthylene	110J	ប ប ប		330
Acenaphthene	98J	U U		330
Fluorene	86J			330
Phenanthrene	1100	40J		330
Anthracene	340J	υ		330
Fluoranthene	1800B	40JB		330
Pyrene	880B	19JB		330
Benzo(a) anthracene	820	14J		330
Chrysene	970	37J		330
Benzo(b)fluoranthene	1400	25J		330
Benzo(k) fluoranthene	1300	13J		330
Benzo(a)pyrene	850	9J		330
Indeno (1, 2, 3-cd) pyrene	100J	4J		330
Dibenzo(a, h) anthracene	25J	υ		330
Benzo(g,h,i)perylene	61J	6J		330
Date Received	11/13/98	11/13/98		
Date Extracted	11/17/98	11/17/98		
Date Analyzed	12/03/98	12/03/93		

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE SV-1.2 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKQR SBLKQR 1.00	SS-52 982469B-18 SBLKQR 33.3	SS-52 MS 982469B-18MS SBLKQR 33.3	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene Benzo(c) fluoranthene	4J U U U U U U U U U U U U U U U U U U U	2400JB 1100J 500J 4200J 4100J 39000 7800J 43000 70000 26000 28000 22000 22000 23000 17000 8200J 11000	3900JB 1700J 710J 10000JX 7500J 70000 14000 71000 120000EX 47000 50000 34000 41000 43000 32000 14000 30000	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/16/98 11/23/98	11/13/98 11/16/98 12/07/98	11/13/98 11/16/98 12/07/98	

All values are ug/Kg dry weight basis.

#### TABLE SV-1.3 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

## All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-52 MSD 982469B-18 MSD SBLKQR 33.3		Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	14000 62000 110000EX 41000 44000		330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/16/98 12/07/98		

#### TABLE SV-1.4 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKUR SBLKUR 1.00	SS-11 982469B-02 SBLKUR 31.6	SS-13 982469B-04 SBLKUR 5.06	Quant. Limits with no Dilution
Naphthalen	U	6300J	640J	330
2-Methylnaphthalene	U	2800J	300J	330
Acenaphthylene Acenaphthene	U U U	440J	340J 650J	330 330 330
Fluorene Phenanthrene	υ	8400J	720J 6600	330 330
Anthracene	บ	13000	1700	330
Fluoranthene	2J	64000B	6000B	330
Pyrene		50000B	8300B	330
Benzo(a) anthracene		29000	4400	330
Chrysene	U	30000	4400	330
Benzo(b)fluoranthene	2J	26000B	4500B	330
Benzo (k) fluoranthene	2J	24000B	3900B	330
Benzo (a) pyrene	2J	25000B	3700B	330
Indeno (1,2,3-cd) pyrene	U	8400J	3100	330
Dibenzo (a,h) anthracene	U	4400J	1000J	330
Benzo (g,h,i) perylene	3J	5100JB	3100B	330
Date Received Date Extracted Date Analyzed	11/17/98 12/02/98	11/13/98 11/17/98 12/03/98	11/13/98 11/17/98 12/07/98	

# All values are ug/Kg dry weight basis.

#### TABLE SV-1.5 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

## All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-13 RE 982469B-04RE SBLKUR 5.06	SS-14 RE 982469B-05RE SBLKUR 1.18	 Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(b) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	690J 330J 1100J 670J 840J 6600 2700 7700B 11000B 4400 4400 6200B 8900B 4300B 2700 880J 2800B	88J 66J 43J 81J 79J 990 220J 1100B 1700B 830 880 1100B 920B 790B 530 210J 460B	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/17/98 12/08/98	11/13/98 11/17/98 12/07/98	

See Appendix for qualifier definitions

Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution. 

#### TABLE SV-1.6 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

#### All values are ug/Kg dry weight basis.

^ · · · · · · · · · · · · · · · · · · ·		^	· · · · · · · · · · · · · · · · · · ·	
	Method	00.17	66.10	
Client Sample I.D.	Blank	SS-17	SS-18	0
Lab Sample I.D.	SBLKVR	982469B-08	982469B-09	Quant. Limits
Method Blank I.D.	SBLKVR	SBLKVR	SBLKVR	with no
Quant. Factor	1.00	4.30	1.05	Dilution
	<u> </u>	<u> </u>	1.05	DITUCION
Naphthalene	υ	490J	40J	330
2-Methylnaphthalene	U	920J	56J	330
Acenaphthylene	Ū	2500	96J	330
Acenaphthene	Ū	170J	36J	330
Fluorene	U	2200	62J	330
Phenanthrene	U	6100	510	330
Anthracene	υ	2400	160J	330
Fluoranthene	2Ј	4900B	570B	330
Pyrene	2J	4300B	1500B	330
Benzo(a) anthracene	U U	2800	310J	330
Chrysene		2000	410	330
Benzo(b)fluoranthene	2J	1800B	490B	330
Benzo(k)fluoranthene	2J	2400B	600B	330
Benzo(a) pyrene	U	1700	250J	330
Indeno(1,2,3-cd)pyrene	Ŭ	280J	160J	330
Dibenzo(a, h) anthracene	U	110J	_ <u>50J</u>	330
Benzo(g,h,i)perylene	<u>4J</u>	<u> 180JB</u>	170JB	330
Date Received		11/13/98	11/13/98	
Date Extracted	11/18/98	11/18/98	11/18/98	
Date Analyzed	12/02/98	12/09/98	12/08/98	
_				

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

# TABLE SV-1.7 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-18 RE 982469B-09RE SBLKVR 1.05	SS-41 982469B-10 SBLKVR 5.06	SS-41 RE 982469B-10RE SBLKVR 5.06	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	39J 54J 94J 36J 60J 510 160J 560B 1200B 330J 380 630B 340JB 230J 210J 73J 230JB	370J 780J 1500J 320J 1800 7200 2400 8500B 8200B 4600 4800 5400B 6100B 6100B 4100 690J 340J 490JB	350J 750J 1500J 310J 1800 7100 2300 8300B 8100B 4800 4400 5600B 4800B 3900 720J 390J 490JB	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/18/98 12/09/98	11/13/98 11/18/9£ 12/08/98	11/13/98 11/18/98 12/09/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE SV-1.8 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

### All values are ug/Kg dry weight basis.

	T			······
	У	SS-42		
Client Sample I.D.	SS-42	RE	DUP-1	
			201 1	Quant.
Lab Sample I.D.	982469B-11	982469B-11RE	982469B-15	Limits
Method Blank I.D.	SBLKVR	SBLKVR	SBLKVR	with no
Quant. Factor	1.08	1.08	8.51	Dilution
		,		
Naphthalene	9J	10J	2800	330
2-Methylnaphthalene	្ម័ម	υ	1000J	330
Acenaphthylene	3J	ប 3J	190J	330
Acenaphthene	U.S.	U	2000J	330
Fluorene	υ	υ	2500J	330
Phenanthrene	12J	7J	15000	330
Anthracene	5J	6J	3600	330
Fluoranthene	14JB	10JB	16000B	330
Pyrene	25JB	22JB	15000B	330
Benzo (a) anthracene	$\mathbf{U}_{\mathbf{U}}$	U	7700	330
Chrysene	27J	22J	7900	330
Benzo(b)fluoranthene		σ	6900B	330
Benzo(k)fluoranthene	υ	υ	8600B	330
Benzo (a) pyrene	U	U	6400	330
Indeno(1,2,3-cd)pyrene	U	U	1500J	330
Dibenzo(a,h)anthracene	U	U	760J	330
Benzo(g,h,i)perylene	U	U	1100JB	330
Date Received	11/13/98	11/13/98	11/13/98	
Date Extracted	11/18/98	11/18/98	11/18/98	
Date Analyzed	12/0٤/98	12/09/98	12/08/98	
t	1			

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Soil

#### TABLE SV-1.9 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

#### All values are ug/Kg dry weight basis.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	SS-9B 982469B-16 SBLKVR 71.4	SS-9B MS 982469B-16MS SBLKVR 71.4	SS-9B MSD 982469B-16 MSD SBLKVR 71.4	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenzo(a,h) anthracene Benzo(g,h,i) perylene	15000J 5900J 680J 13000J 14000J 100000 21000J 110000B 97000B 49000 51000 32000B 55000B 38000 14000J 7900J 10000JB	11000J 4300J 510J 11000JX 11000J 80000 18000J 86000B 75000BX 37000 40000 22000JB 50000B 31000 12000J 6600J 9600JB	9200J 3500J 520J 9300JX 9600J 69000 15000J 76000B 65000BX 32000 34000 21000JB 40000B 27000 11000J 6000J 8900JB	330 330 330 330 330 330 330 330 330 330
Date Received Date Extracted Date Analyzed	11/13/98 11/18/98 12/08/98	11/13/98 11/18/98 12/08/96	11/13/98 11/18/98 12/08/98	

See Appendix for qualifier definitions

#### TABLE SV-1.10 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

All values are ug/Kg dry weight basis.

		\ \		
Client Sample I.D.	SS-12B	SS-49		
Lab Sample I.D. Method Blank I.D. Quant. Factor	982469B-19 SBLKVR 5.38	982469B-20 SBLKVR 2200		Quant. Limits with no Dilution
Naphthalene	960J	100000J		330
2-Methylnaphthalene	450J	96000J		330
Acenaphthylene	140J	53000J		330
Acenaphthene	1200J	240000J		330
Fluorene	1400J	230000J		330
Phenanthrene	9700	1900000		330
Anthracene	2600	350000J		330
Fluoranthene	11000B	3800000B		330
Pyrene	10000B	3500000B	·	330
Benzo (a) anthracene	5300	1400000		330
Chrysene	5500	1600000		330
Benzo(b) fluoranthene Benzo(k) fluoranthene	4800B	1200000B	a harden de antre da	330
Benzo (a) pyrene	6000B 4700	1700000B 1400000	8.5.50.66655666-6526966.2.46.66.6	330
Indeno (1, 2, 3-cd) pyrene	1300J	620000J		330 330
Dibenzo(a, h) anthracene	700J	260000J		330
Benzo(g,h,i)perylene	780JB	550000JB		330
	1			
Date Received	11/13/98	11/13/98		
Date Extracted	11/18/98	11/18/98		
Date Analyzed	12/08/98	12/03/98		

Soil Medium

#### TABLE SV-1.11 7098-2469B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

# All values are ug/Kg dry weight basis.

Client Sample I.D.	Method Blank	SS-16	SS-16 RE	Quant.
Lab Sample I.D. Method Blank I.D.	SBLKXR SBLKXR	SBLKXR	982469B-07RE SBLKXR	with no
Quant. Factor	10.0	10.0	10.0	Dilution
Naphthalene 2-Methylnaphthalene	U U	3000J U	U U	20000 20000
Acenaphthylene Acenaphthene Fluorene	U U U	υ	U U 680J	20000
Phenanthrene Anthracene Fluoranthene	ប ប ប	U 2000T	6900J U 2800J	20000 20000 20000
Pyrene Benzo (a) anthracene	U U	20000 3700J U 5400J	4200J U	20000 20000
Chrysene Benzo (b) fluoranthene Benzo (k) fluoranthene	U U U		6400J ប ប	20000 20000 20000
Benzo (a) pyrene Indeno (1,2,3-cd) pyrene	ប ប ប	ם ד ש	U U	20000
Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	U U	и 7900Ј	3100J	20000 20000
Date Received Date Extracted Date Analyzed	11/18/98 12/07/98	11/13/98 11/18/98 12/07/98	11/13/98 11/18/98 12/08/98	

See Appendix for qualifier definitions

# Appendix D Support Documentation/Resubmission

**INORGANIC ANALYSES** 

.

# STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7098-2469B/ SDG NO.: B2469

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from four (4) soil samples collected on 11-11,12-98. The samples were received by Severn Trent Laboratories on 11-13-98 and analyzed according to criteria set forth in SOW3,90 (ILM03.0) for TAL metals.

The following samples are contained within this report:

SS-43			SS-46
SS-44	•	· .	DUP-2

The QC samples (MS & MD) was assigned to the alternate samples with sample IDs "SP1-F2" and "DAF95E" for the ICP metals and mercury respectively.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No. 7098-2469B / SDG No. B2469

#### DATA COMPLETENESS

The 8-hour analysis holding time for CRDL and ICS samples exceeded in the analysis run log "Form XIV", however, the review of the raw data indicated that these QC samples were analyzed within the 8-hour requirements. The laboratory has been contacted. The corrected Forms II (part 2), Forms IV and forms XIV were resubmitted.

### HOLDING TIME

All samples were digested/analyzed within the requirements established in the method.

#### CALIBRATIONS & CRDL Analyses

The recoveries for all analytes in the initial and continuing calibrations were within the control limits of 90-110%.

The CRDL sample analysis was performed prior and after all samples analysis. The %recoveries were within the control limits with the exception of Pb (72.9%), Se (124.8%) and Zn (201%) in initial CRDL and Tl (68.5% & 72.8%) in final CRDL analysis run. The results for lead and zinc were above the corresponding CRDLs. Therefore, the data were not qualified based on these outliers. The positive results for selenium and the results and non-detected values foe thallium were qualified estimated.

### **BLANKS**

The laboratory preparation blank had Se(0.914 mg/kg) contamination at a level below the CRDL. The reported sample results were above the action limit (5 x the blank concentration). Therefore, the sample data were not impacted.

#### ICP INTERFERENCE CHECK SAMPLE

The recoveries for Cd (78.9%) in initial ICS sample was below the lower control limit of 80%. The data were not impacted since the deviation was marginal and also, the final ICS recoveries were within the control limit.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed on the alternate samples. The spike recoveries were within the control limits with the exception of Sb (32%) and Hg (-9.1%). The post digestion spike sample was analyzed for antimony as required by the method. The recovery (96%) was within the control limit. The results and non-detected values for antimony were qualified estimated "J & UJ". However, the results for mercury were considered biased low and the possibility of false

Stearns & Wheler Case No. 7098-2469B / SDG No. B2469

#### Page 3

negative exist. Therefore, the positive results were qualified estimated and non-detected values were rejected for this analyte.

## MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was also performed on samples SP1-F2 and DAF95E for ICP metals and mercury respectively. The RPDs for all analytes were within the analysis and validation control limits with the exception of Cr (21.2%) and Pb (77.1%). The data for chromium was not qualified since the RPD was within the data validation control limit of 35%. The reported positive sample results for lead were qualified estimated.

#### LABORATORY CONTROL SAMPLE

The recoveries for all analyses were within the control limits.

### **ICP SERIAL DILUTION**

The %Ds for Zn (44.42%) was above the 10% requirement. The reported positive results were qualified estimated.

## **INSTRUMENT DETECTION LIMITS**

All analytes with the exception of mercury were analyzed with ICP. The reported IDLs were below the CRDL.

## **DUPLICATE ANALYSIS**

Duplicate analysis was analyzed on sample SS-39/Dup-2. The RPDs were within the control limits. Sample SS-39 was analyzed in batch # 2469A.

#### SAMPLE RESULTS

The samples from this batch were digested/analyzed with SDG No.A2469. Therefore, the QC sample results and outliers were identical.

All analytes were analyzed at one-fold dilutions. The reported sample results were within the calibration range.

## **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. Overall, major problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes. 1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

## **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

## **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

## **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix A Glossary of Data Qualifier

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) METAL SOIL ANALYSIS mg/Kg

.

.

.

CLIENT: STEARNS & WHELER LABORATORY NAME: STL STL ID: 7098-2469B SDG NO.: 2469B

CLIENT SAMPLE ID: LAB SAMPLE ID: % SOLID:		90	SS-43 824698-12 87.4	SS-44 982469B-13 82.7	SS-46 982469B-14 70.2	DUP-2 982469B-17 78.8
TARGET COMPOUNDS:						
A	IDL	_				
Aluminum	6	Р	1260	5680	4010	5480
Antimony	5	Р	17.2 J	7.7 J	6 J	5.4 J
Arsenic	3	Р	28.9	22.4	24.2	22.2
Barium	1	Р	53.6	160	131	107
Beryllium	1	Р	0.23	0.36	0.81	0.95
Cadmium	1	P	51.5	295	39.3	8.5
Calcium	4	Р	7100	6230	6120	28800
Chromium	1	Р	551	54	116	141
Cobalt	1	Р	37.4	6.9	35.7	22.5
Copper	2	Р	446	668	230	209
Iron	7	Р	515000	116000	101000	144000
Lead	2	Р	317 J	266 J	439 J	269 J
Magnesium	5	Р	2100	481	1900	9500
Manganese	1	P	3810	697	795	1420
Mercury	0.1	ċv	0.15 J	0.1 J	1.1 J	0.19 J
Nickel	5	P	502	44	105	198
Potassium	29	P	144	141	315	767
Selenium	2	P	20 J	8.4 J	7.4 J	9.2 J
Silver	- 1	P	1.6	0.37		
Sodium	15	P	528	661	0.99	0.52
Thallium	6	P	6.4 J	UJ	700	• 706
Vanadium	1	P	111		UJ	UJ
Zinc	1	P		15.1	22.1	29.1
	1	۲	955 J	2610 J	882 J	482 J

c

.

· .

.

Appendix C Laboratory Reported Results

## TABLE AS-1.0 7098-2469B Stearns & Wheler Tal Metals

# All values are mg/Kg dry weight basis.

Client Sample I.D.	SS-43	SS-44	SS-46	DUP-2	
Lab Sample I.D.	982469B-12	982469B-13	982469B-14	982469B-17	
Aluminum	1260	5680	4010	5480	
Antimony	17.2N	7.7BN	6.0BN	5.4BN	
Arsenic	28.9	22.4	24.2	22.2	
Barium	53.6	160.	131.	107.	
Beryllium	0.23B	0.36B	0.81B	0.95B	
Cadmium	51.5	295.	39.3	8.5	
Calcium	7100	6230	6120	28800	
Chromium Sobalt	551.*	54.0*	116.*	141.*	
Copper .	37.4 446.	6.9B 668.	35.7	22.5	
Iron	515000	116000	230. 101000	209. 144000	
Lead	317.*	266.*	439.*	269.*	
lagnesium	2100	481.B	1900	9500	
langanese	3810	697.	795.	1420	
fercury	0.15N	0.10N	1.1N	0.19N	
Nickel	502.	44.0	105.	198.	
Potassium	144.B	141.B	315.B	767.B	
Selenium	20.0	8.4	7.4	9.2	
Silver	1.6B	0.37B	0.99B	0.52B	
Sodium	528.B	661.B	700.B	706.B	
Challium	6.4	1.3U	1.6U	<b>1.2</b> 0	
<b>Janadium</b>	111.	15.1	22.1	29.1	
Zinc	955.E	2610E	882.E	482.E	

See Appendix for qualifier definitions

Soil

# Appendix D Support Documentation/Resubmission

# 2B CRDL STANDARD FOR AA AND ICP

Lab	Name :	STL			Contract:				
Lab	Code:	STL	Case	No.:	SAS No.:	******	SDG	No.:	<u>B2469</u>
AA	CRDL S	tandard	Source:	INORG. VENT.					
ICP	CRDL :	Standard	Source:	INORG VENT					

# Concentration Units: ug/L

	CRDL S	tandard 1	Eor AA	CRDL Standard for ICP					
		•			Initial		Final		
Analyte	True	Found	%R(1)	True	Found	%R(1)	Found	%R(1)	
Aluminum						r		Ι	
Antimony		annen en en en en en en en en en en en en		120.0	122.48	102.1			
Arsenic			1	20.0	17.47	87.4			
Barium									
Beryllium				10.0	10.05	100.6		1	
Cadmium		· · · · · · · · · · · · · · · · · · ·		10.0	11.02	110.2			
Calcium			11		. 1			1	
Chromium				20.0	19.80	99.0		T	
Cobalt				100.0	97.79			1	
Copper			Í	50.0	47.94	95.9		T	
Iron									
Lead				6.0	7.14	119.1		1	
Magnesium								i	
Manganese		·	1	30.0	30.63	102.1			
Mercury						Ī.		I	
Nickel		****		80.0	84.25	105.3			
Potassium				1					
Selenium		terningan and a statistic statistic statistics		10.0	11.89	118.9			
Silver				20:0	20.01	100.1			
Sodium									
Thallium			1	20.0	13.70	68.5			
Vanadium			1	100.0		97.4			
Zinc		<u>,</u>	1	40.0	42,91	107.3		I	
Cyanide			1						
				i					

FORM II (PART 2) - IN

# 2B CRDL STANDARD FOR AA AND ICP

Lab Name: STL Contract: Lab Code: <u>STL</u> Case No.: SAS No.: _____ SDG No.: <u>B2469</u> AA CRDL Standard Source: INORG. VENT. ICP CRDL Standard Source: INORG, VENT.

Concentration Units: ug/L

	CRDL Standard for AA			CRDL Standard for ICP Initial Final					
Analyte	True	Found	<b>%</b> R(1)	True	Found	%R(1)	Found	%R(1)	
Aluminum			T	400.0		2.9	1		
Antimony				120.0	122.15	101.8	118.13	98.4	
Arsenic				20.0	18.17	90.8	17.64	88.2	
Barium .				400.0					
Beryllium				10.0		100.9	9.52	95.2	
Cadmium		[	1.	10.0	9.93	99.3	10.69	106.9	
Calcium		.  .	1	10000.0	4.28				
Chromium			1	20.0	19.43	97.2	19.13	95.6	
Cobalt				100.0	100.80	100.8	96.02	96.0	
Copper		1		50.0	50.67	101.4	48.05	96.1	
Iron			1	200.0	-2.82	-1.4			
Lead	·		1	6.0	4.37	72,9	5.16	86.0	
Magnesium			1	10000.0	5.21				
Manganese		{	1	30.0	29.91	99.7	29.31	97.7	
Mercury	•	1							
Nickel				80.0	78.91	98.5	<u> 90.43</u>	100.5	
Potassium			1	10000.0	6.44	0.1			
Selenium		T		10.0	12.47	124.8	11.90	119.0	
Silver	· · · · · · · · · · · · · · · · · · ·			20.0	19.99	100.0	19.58	97.9	
Sodium			1	10000.0		-0.1,			
Thallium		1		20.0	16.82	84.1	14.56	72.8	
Vanadium		1	1	100.0	99.79	99.8	95.64	95.6	
Zinc		+		40.0	60.38	201.0	51.41	128.5	
Cyanide									

FORM II (PART 2) - IN

2B CRDL STANDARD FOR AA AND ICP

Lab Name: STL Contract: 
 Lab Code:
 STL
 Case No.:
 SAS No.:
 SDG No.:
 A2469
 AA CRDL Standard Source: <u>INORG. VENT.</u> ICP CRDL Standard Scurce: INORG. VENT.

#### Concentration Units: ug/L

	CRDL Standard for AA			CRDL Standard for ICP Initial Final					
Analyte	True	Found	\$R(1)	True	Found	%R(1)		\$R(1)	
Aluminum		<u></u>	1	1				1	
Antimony				120.0	122.48				
Arsenic				20.0	17.47	87.4			
Barium									
Beryllium				10.0	10.05	100.6			
Cadmium				10.0	11.02	1.10.2			
Calcium.									
Chromium				20.0	19.80				
Cobalt				100.0					
Copper				50.0j	47.94	95.9		·	
Iron									
Lead				G . O	7.14	119.1		1	
Magnesium									
Manganese			·	30.0	30.63	102.1		Ļ	
Mercury									
Nickel				50.0	84.25	105.3			
Potassium									
Selenium				10.0	11.89		<u> </u>		
Silver				20.0	20.01	100.1			
Sodium									
Thallium				20.0		68.5		_ <u></u>	
Vanadium		1		100.0					
Zinc				40.0	42.91	107.3			
Cyanide		L						·	
				{ }					

FORM II (PART 2) - IN

4 ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL Lab Code: STL Case No.: ID Number: JA61E

Contract: SAS No.: _____ SDG NO.: A2469 ICS Source: EPA-LV87

Concentration Units: ug/L

	True		Initial Found			Final Found		
	501.	Sol.	Sol.	Sol.		Sol.	Sol.	
Analyte	A	AB	A	AB	₹R	A	AP	FR
							"* 1/1V	151
Aluminum	500000		464775	451976.0			451976.0	
Antimony		500	1	571.4			571.4	114.2
Arsenic	]	100	0	94.2			94.2	94.2
Barium		500	2	467.9			467.9	93.5
Beryllium		500	C	423.8			423.8	84.7
Cadmium		1000	- 5	853.9			853.9	85.3
Calcium	500000	500000	424152	410761.1	82.1		410761.1	82.1
Chromium		500	3	431.7	85.3		431.7	86.3
Cobalt		500	0	419.1	83.8		419,1	83.8
Copper		500	0	503.2	100.6		503 \2	100.6
Iron	200000	200000	186744	181281.1	90.6		181281.1	90.6
Lead		50	- 2	46.8			46.8	93.6
Magnesium	500000	500000	476454	462451.9	92.4		462451.9	92.4
Manganese		500	-1	435.7	87.1		435.7	87.1
Mercury			1					
Nickel		1000		861.0	86.1		861.0	86.1
Potassium	·		-14	-14.6			-14.6	. \
Selenium		50	<u></u>	54.7	109.4		54.7	109.4
Silver		200	0	203.2	101.6		203.2	1.01.6
Sodium	1		-169	-169.4			-169.4	
Thallium		100	-4	98.4	98.4		98.4	98,4
Vanadium		500	-1	433.7	85.7		433.7	85.7
Zinc		1000	-13	894.8	89.4		894:8	- 29 4
Cyanide								
					li			

FORM IV - IN

# 4 ICP INTERFERENCE CHECK SAMPLE

Lab Name: STL Lab Code: <u>STL</u> Case No.: ID Number: JA61E

Contract: _____ SAS No.: _____ SDG No.: 82469_ ICS Source: EPA-LV87

## Concentration Units: ug/L

	True		Initial Found			Final Found		
	Sol.	Sol.	Sol.	Sol.		Sol.	Sol.	1
Analyte	A	AB	А	AB	5R	A	AB	%R
Aluminum	500000	500000	469142		92.3	455257	452610.9	90.5
Antimony		500	Ó	578.7	115.7	5	568.5	113.7
Arsenic		100	3	100.5	100.5	2	97.2	97.2
Barium		500	2	459.1	91.8	2	464.8	92.9
Beryllium		500	1	433.6	36.7	0	427.5	85.5
Cadmium		1000	- 2	789.4	78.9	-6	845.2	84.5
Calcium	500000	500000	425258	417349.0	83.4	415455	413994.9	82.7
Chromium		500	. 3	433.7	86.7	3	432.3	86.4
Cobalt		500	0	440.9	88.1	Q	424.4	84.8
Copper		500	2	511.7	102.3	C	502.6	100.5
Iron	200000	200000	183525	181111.0	90.5	184805	184076.4	92.0
Lead		50	-2	45.5	91.0	- 31	44.5	89.0
Magnesium	500000	500000	473123	466653.5	93.3	465929	463718.7	92.7
Manganese		500	-1	425.4	85.0	-1	433.6	86.7
Mercury	1							
Nickel	1	1000	3	804.9	80.4	2	851.5	85.1
Potassium	1	1	-14	-20.3		-12	-19.8	
Selenium	1	50	6	53.7	107.4	5	53.6	107.2
Silver		200	C	203.4	101.7	0	202.8	101.4
Sodium			-171	-167.3		-173	-165.1	
Thallium		100	6	96.3	96.3	5	98.0	98.0
Vanadium		500	- 2	447.2	89.4	- 2	436.8	87.3
Zinc		1000	-11	903.5	90.3	- 3	920.3	92.0
Cyanide	1		Î	·				
	1							

FORM IV - IN

#### U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: <u>STL</u> Contract: Lab Code: <u>STL</u> Case No.: Instrument ID Number: JA61E

Start Date: <u>11/19/98</u>

SAS No.: _____ SDG No.: <u>B2469</u>

Method: P

End Date: <u>11/19/98</u>

EPA													7	ina	13	/Ľé	28										
Sample No.	D/F	Time	¥ R	AL	S B	A S	B A	e E	Ċ Đ	C A	C R	0	C U	74 F4		M G	M N	H G	N I	K	S B	A G	N A	T L	V		C N
51	1.00	1204		X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X			X	X	X		
\$1 \$7	1.00	1210			X		Х	X	X		X	X	X				X		X		X	Х		Х	X		
55	1.00	1216			X	Х	Х	Х	X		X	X	X				Х		Х		X	Х		X	X	X	
S4 S9	1.00	1222		X		X	X	Χ	X		X	X	X		X		Х		X		Х	X		X	X	X	
S9	1,00	1228		X	[ _					Х				X		X				X			X			j	
S6	1.00	1233		X						X	<u> </u>		Γ	Х		X				X			Х				
<u>\$6</u> 55	1.00	1237			X																						
83	1.00	1243								X				Х		X				X			X				
ICV1	1.00	1243		X	X	X	Х	X				X		X	Х		Х		Х	Х					X		
ICEI	1.00	1230		TX		X	X	X	X	X	X	X	X	X	X	X			X,	X	X	X.	X		X	X	
CRII	1.00	1257		1	X			X	X		X	X	X		X.		Х		Х		X	X		X	X	X	
ICSAI	1.00	1303			X	X	X	Х	X	X	X	X	X.	X.	X		X			X	_	<u> </u>	X	Х			_
ICSABI	1.00	1310		X	Х	X	X	Х	X	X	X	X	X	X	X		X			X	X	X	X				
CCV1	1.00	1317		X	X	X	X	X	X	Х	X	X	X	X	X	X	Х		X		X	X	X	X			
CCB1	1.00	1324		X	X	X	X	X	X	X	X	X		X	X	X		·	Х			<u>X</u>	Х	X	X	X	
PBS1	1.00	1331		X	X	X	X	X	X	Х	X	X	X	X	X	X	X		Х	X	X	X	X	X	X	X	
ZZZZZZ	1.00				Γ						]																
222222	1.00	1344												i				5			·						-
ZZZZZZ	1.00	1351			Γ				Γ												1						
ZZZZZZ	1,00	1358									[																 
982489A-09	1.00	1405		X	X				X			X	X		X	X	X		X		X				X.		
982489A-09D	1.00	1412		X	X	X	X	X	X	X		X	X	X	X			I	X		X	X	X	X	X		
982489A-095	1.00	1419		X	X	X	X	X	X	Х	X	X	X	X	X	X	X		X	X	X.	X	X	X	X	X	i . ••••••
ZZZZZZ	1.00				T						<u> </u>																
LCSS1	1.00			X	X	X	X	X	X	X		IX	X	X	Х	X	X		X		X	TX		X	X	X	
CCV2	1.00	1439		X	X	X	X		X			X	X		X	X	X		X	X	X	X	X	Х	X		
CCB2	1.00			X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	Х	Х	X	
ZZZZZZ	1.00	1453	کشت محمد بدهم محمد		1	Γ			Γ		1	Γ													[]		_
ZZZZZZ	1.00	1500			<u> </u>	Γ			Π-		[					[											
982469A-05	1.00				1		· · ·	1	1	1	T	Г	T	T	[	1		Ţ					1		1		L
982469A-06	1.00				ī	1	<u> </u>		1		T	Г	Τ	Γ	1	T-'		1		L							
982469A-09	1.00	1520	· · ·		1	1			T	<b></b>	Γ	L		1						Γ					1		
982469A-10	1.00				1	1	1	1	1			Γ	Γ.	Γ		I	Γ	T						Ľ			

FORM XIV - IN

ILM03.0

U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: <u>STL</u> Contract: _____ Lab Code: <u>STL</u> Case No.: ____ Instrument ID Number: JA61E Start Date: <u>11/19/99</u>

.

SAS NO.: _____ SDG NO.: <u>B2469</u>

.

Method: P

End Date: <u>11/19/98</u>

ЕРА					Τ									7	his	ilj	rt.	es										
Sample	D/F	Time	<b>%</b> ]	R	A	SB	AS	H A	BE	ि D	Č	C R	C O	C U	F E	P B		M N	H G	N I	K	S E	A G	N A	T L		Z N	C
No.						Б	3	А	2	2	A	R		0	E	Б	G.	11	G	1		Ē	G	A			ы	IX
982469A-11	1.00																											
982469A-12	1.00	1540																						<u> </u>	L			 
982469A-13	1.00	1547							[										Ĺ			L			L	$\square$		L
982469A-15	1.00	1554								L												L		l				<u> </u>
ZZZZZZ	1.00	1601																								ليسل	L	L
CCV3	1.00	1610												X	X	X.	X	X	L		X					X		
CCB3	1,00	1616			X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	<u>X</u>	X	X	X	X	ļ
982459A-16	1.00	1623					Ľ															L			L			L
982469B-12	1.00	1630					X			X			X	X	X	X.		X								X		_
982459B-13	1.00	1637				X	X	X		X			X		X				L			X	X	X	X	ŢŢ	X	
982469B-14	1.00	1644				X	X	X		X					X					X						X		L-
982469B-17	1.00	1651			X	X	X	X	X	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
ZZZZZZ	5.00	1657	·																	_	L	L				ليبيها		
982469A-05L	5.00	1706			X	X	X	X	X	X	X	X	X	X	X	X	Х	X		X	X	X	X	X	X	X	<u>AX</u>	<b></b>
982469B-12L	5.00	1713									} 								L			L	L	<u> </u>		ا مربع بينية		
CCV4	1.00	1720			TX	X	X	X	X	[X					X	X				1	X	h				X		
CCB4	1.00	1727			X	X	X	X	X	X		X	X	_	X	X	X				ΓX.	X	X	L	X	X		L
CR12	1.00	1734			X	X	X	X	X	X	X	diamona di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di seconda di s	X	X	X	X		X		X		X	X		X		Х	L
ICSAF	1.00	1740			X		X	X	X	X	X		X	X		X	X		Ì		X	X	X		X		X	<b></b>
ICSABE	1.00				X		X	X	1		X		X		X	X	Х		İ		X	X		X	X		X	<b>_</b>
CCV5	1.00				X			X			X		X.		X			X	<u> </u>	X		X				X		
CCB5	1.00	1801			X	X	X	X	[X]	X	X	X	X	X	X	X	X	X		X	X	X	X	X	X	X	X	L
272222	2.00																						L		<b> </b>	<b>_</b>	$\vdash$	Ļ_
222222	1.00																		<u> </u>			L	<b></b>	<u> </u>		<u> </u>	Ì	
ZZZZZZ	1.00	1821										L	L	<u> .</u>			L.		Ĺ	L	-		L		Ì	<b>_</b>	ļ	<u> </u>
ZZZZZZ	1.00															Į				L	Ļ	L	L	Ļ	<u> </u>	<b>_</b>	L	<b>↓_</b> .
ZZZZZ	1.00	1835			1,	Ţ									]							L		<b> </b>	<b>İ</b>		L	<b></b>
ZZZZZZ	1,00					Γ				1									1				L.	<u> </u>	L	<u> </u>	-	1
ZZZZZZ	1.00	1849						Ι	Ι			Γ							1			L	<u> </u>	1.	ļ			_
ZZZZZZ	1.00	1856				1		I	1	i		1										L_	<b></b>	1		<b>_</b>	Ļ	L
ZZZZZZ	1.00							Γ		i		Ι										1			L	.L	L	1_
ZZZZZZ	1.00				T	Γ			Ţ.																+	L		<u> </u>
CCV6	1.00	1916			TX	TX	X	X	X	X	TX.	IX	X	X	X	X	X	X	1	X	X	X	<u>1 X</u>	IX.	X	X	X	1

FORM XIV - IN

ILM03.0

U.S. EPA - CLP

14 ANALYSIS RUN LOG

Lab Name: STL Lab Code: STL Case No.: SAS No.: SDG No.: 32469 Instrument ID Number: JA61E

Start Date: <u>11/19/98</u>

Contract:

Method: P

End Date: <u>11/19/98</u>

epa													3	u:a	ily	7ts	25		<b></b>	<b></b>							
Sampla No.	D/F	Time	8 R	A L	S	A S	B A	B E	C D	C A	C R	C C	C U	FE	р В	M G	M N	H G	N I	ĸ	S E	A G	N A	T L		Z N	C N
ССВС	1.00		÷	X	X	X	X	X	X	X	X	Х	X	X	X	X	X		X	X	X	X	X	X	X	X	
ZZZZZZ	1.00	1930																									
222222	1.00																								<u>i                                    </u>		_
ZZZZZZ	1.00	1943			Γ																						
ZZZZZZ	1.00			1																	· · · ·	L	[				
ZZZZZŻ	1.00	1957																									
222222	1.00			1										·													
ZZZZZZ	1.00			1																		1				L_I	
ZZZZZZ	1.00	2018																								L	
ZZZZZZ	1.00	2024		Ī								·													L		-
ZZZZZZ	1.00				Γ															1	<u>í</u>						
CCV7	1.00	2038		X	X	X	X	X	X	X	X	X	X	Х	Х	X	X	[	X	X	X	X	X	X	X		
CCE7	1.00			X	X	X	X	X	X	X	X	X	X	X	Х	X	X		X	X	X	X.	X	χ.	X	·X	
ZZZZZZ	5.00	2052																									
ZZZZZZ	1.00	2059		Τ																	L			L			
ZZZZZZ	1.00	2106			Γ												<u>.</u>	ĺ		1		l	<u> </u>				
ZZZZZZ	1.00	2112		1												[		1		ļ							
ZZZZZZ	1.00				-						T						; ;	Ι	[								
ZZZZZZ	1.00	2126			i							Ţ		1		I				I	Ι						
982489A-09A	1.00	2133	-11.6		X						Γ	Ι						I									
CR12	1.00				X	X			X		X	X	X		X		X		X			X		X		X	
CRI3	1.00	2140			X	X		X	X		X	X	X		X	}	X		X		X		1		X		
ICSAF	1.00	2147	·	X	X	X	Х		X	X	X	X	X	X	X	X	X	Γ	X		<u> </u>	Å		X		X	
ICSAFF	1.00	2153		X	X	X	X	X	X	X	X			X	Y.	X	X		X		<u>IX</u>			A	X	X	
CCV8	1.00	2200		TX	X	X		X	X	X	X	X		X.	X	X	X		Х	X	X	X	X	X			<b></b>
CCB8	1.30	2207		X	X.	X	X	X	X.	X	X	X	X	X	X	X	X	Ī	X	X	X	X	X	X	X	X	
				1	T	1	-	<b>[</b>	T	[	1.		Ι	Ē						[		}					
					T	<u> </u>		<b>—</b>	;		I	Ľ		1		[					1	Γ	1				_
					1	$\square$	[		T		I	Γ	Γ								Τ						
				-	1	Ī		<b>—</b>	T	T	T	Γ	T ·	I		<u> </u>			1					L	<u> </u>		
j				1	1	1	ţ	1	1			T	T	Γ_	<u> </u>	T		i			Γ		1_				
		t		-	1	<u>†</u>	1	-	1.		T-	1	1.	<u> </u>	<u> </u>	1		T	1	T.			Ι				1
		<u> </u>			1	+	1	1	1	1-	1	1	1	-	T	T	Γ-	T	T	T	1	T	T				

FORM XIV - IN

ILM03.0

# **END OF DATA PACKAGE**

•



## Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# METAL ANALYSIS TOTAL & DISSOLVED QUALITY ASSURANCE DATA REVIEW

## **STEARNS & WHELER, LLC**

SITE: ROBLIN STEEL CASE NO.: 7098-2557A/ SDG NO.: A2557

## REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY18, 1999

## STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7098-2557A/ SDG NO. A2557

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from sixteen (16) water samples collected on 12-15,16-98. The samples were received by Severn Trent Laboratories on 12-16,17-98 and analyzed according to criteria set forth in SOW3,90 (ILM03.0) for total and dissolved metals.

The following samples are contained within this report:

GW-1	GW-11S	GW-12S	GW-4S
GW-2	GW-9	GW-3 * '	GW-5
GW-2S	GW-3S	DUP-2	GW-5S
GW-10S	DUP-1	GW-4	<b>GW-13</b>

* Sample was not analyzed for dissolved metal.

The QC samples (MS & MD) were assigned to sample GW-2S in filtered and total analyses.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

## **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

## Stearns & Wheler Case No. 7098-2557A / SDG No. A2557

## Page 2

## **DATA COMPLETENESS**

The matrix spike recoveries for silver and iron were outside the control limits in dissolved and total sample analyses respectively. The corresponding sample data were not qualified with an "N" as required by the method.

The RPD for Se( 34%) was above 20% requirement in dissolved sample. The sample data were not qualified with an asterisk, however, the data for total samples were inadvertently flagged with an (*)

Mercury was not analyzed in total samples GW-1 and GW-3, also, the results for matrix spike sample GW-4S were reported in the raw mercury analysis, however; the corresponding QC forms were not included in the data package. Sample GW-3 was not analyzed for filtered metals. These issues were not listed on the case narrative.

The laboratory case narrative stated that samples GW-17S, GW-5S and GW-13 were cancelled due to samples being frozen.

The copy of the raw data for mercury analysis was illegible. The results for samples 2557A-13 and 18 in filtered and total analyses were not copied properly

## **HOLDING TIME**

All samples were digested/analyzed within the requirements established in the method.

## **CALIBRATIONS & CRDL Analyses**

The recoveries for all analytes in the initial and continuing calibrations were within the control limits of 90-110% with the exception of Ag (89.6%). The data were not qualified based on this outlier since the deviation is marginal.

The CRDL sample analysis was performed prior and after all samples analysis. The %recoveries were within the control limits with the exception of Ba (75.4/74.1%), Pb (72.4%), Se (137%), Ag (121.9%) Tl (138.7/127.2%) and Zn in two different runs (138.8/128.1%) & (79.3/72.5%). The positive results for silver, selenium, thallium were qualified "U" due to the blank contamination. Therefore, the data were not impacted by these outliers. The positive results and non-detected values for barium, lead and zinc were qualified estimated.

## **BLANKS**

The laboratory preparation blank, ICB and CCBs had iron at levels above the CRDL. The results in total sample analysis were above 10X the CRDL. Therefore, the data were not impacted. However, the results for dissolved samples up to 5X the CRDL (500 ug/l) were rejected.

Stearns & Wheler Case No. 7098-2557A / SDG No. A2557

The laboratory blanks had the following contamination at levels below the CRDLs. The maximum results were tabulated. The reported sample results up to 5 times the blank levels (action level) were qualified "U" and considered as the laboratory artifact.

Analyte Name	Blank Result ug/l	Action Level ug/l
Al	27	135
Sb	15	75
As	3.1	15.5
Ba	1.2	6
Со	6.4	32
Cu	2.7	13.5
Mg	58	290
K	28	140
Se	3	15
Ag	7.6	38
TI	5.3	26.5
v	6	30
Zn	16	80

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for all metals were within the control limits.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed on sample GW-2S. The spike recoveries were within the control limits with the exception of Ag (72.5%) and Fe (129.9%) in filtered and total sample analyses respectively. The post digestion analysis was performed for iron. The recovery was within the control limit. The sample data were not flagged "N" by laboratory as required by the method. The positive results for iron in total sample analyses were qualified estimated "J". However, the results for silver have been qualified "U" due to the blank contamination. The reported data were also qualified "J" based on the low matrix spike recovery.

## MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was also performed on samples GW-2S for ICP metals and mercury respectively. The RPDs for all analytes were within the analysis and validation control limits with the exception of Se (34%) in filtered analysis. The data for selenium was not qualified since the RPD was within the data validation control limit of 35%.

## LABORATORY CONTROL SAMPLE

The recoveries for all analyses were within the control limits of 80-120% with the exception of Be (120.6%) in total and Na (120.4%) in both total and filtered analyses. The data were not impacted since the deviations were marginal.

Stearns & Wheler Case No. 7098-2557A / SDG No. A2557

Page 4

## **ICP SERIAL DILUTION**

The %Ds for Na (19.6%) was above the 10% requirement in both analyses. The reported positive results were qualified estimated. Also, the %D for Fe (10.7%) was outside the control limits. The data were not qualified based on this outlier since the deviation was marginal.

## **INSTRUMENT DETECTION LIMITS**

All analytes with the exception of mercury were analyzed with ICP. The reported IDLs were below the CRDL.

## **DUPLICATE ANALYSIS**

Duplicate analysis was analyzed on sample GW-11S/Dup-1 and GW-4/DUP-2. The RPDs were within the 100% with the exception of Al, Ca, Fe, Pb, Mg, Mn, and Zn in samples GW-11S/DUP-1 in total sample analysis. The reported sample data were qualified estimated in these two samples for the RPD outliers.

## SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions. The reported sample results were within the calibration range.

#### **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. Overall, major problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes. 1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

## **GLOSSARY OF DATA QUALIFIERS**

## **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- **N** = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

## **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

## **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix B Data Summary Forms

G

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) TOTAL METAL WATER ANALYSIS

ug/L

.

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557

SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		798	GW-58 82557A-19	GW-13 T982557A-20	
TARGET COMPOUNDS:			<u> </u>		-
Aluminum	IDL 15	Р	2510	1550	
Antimony	13	P	5.4 U	10.6 U	
Arsenic	3	P	6.9 U	3.5 U	
Barium	1	P	92.7 J	33.1 J	
Beryllium	1	P	52.7 5	33. I J	
Cadmium	1	P		1	
Calcium	31	P	193000	182000	
Chromium	1	P	4.6	13.3	·
Cobalt	2	P	10.7 U	9.2 U	
Copper	1	P	19.2	10.8 U	
lron	10	P	5800 J	5020 J	
Lead	2	P	17.3	5626 5	
Magnesium	5	P	30900	116000	
Manganese	1	P	1200	241	
Mercury	0.1	ċv	1200	211	
Nickel	6	P	9.2		
Potassium	25	P	888	16100	÷
Selenium	1	Ρ	9.5 U	4.9 U	
Silver	1	P	7.3 U	7.6 U	·
Sodium	49	Ρ	18100 J	96400 J	
Thallium	5	Р			
Vanadium	1	Р	12.5 U	8.4 U	
Zinc	1	Ρ	74.4 J	23.5 J	

.. . .

.

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) TOTAL METAL WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557 SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		798	DUP-1 32557A-09	GW-12S T982557A-13	GW-3 T982557A-14	DUP 2 T982557A-15	GW-4 T982557A-16	GW-4S T982557A-17	GW-5 T982557A-18
TARGET COMPOUNDS:				······································			- m. <u>1 </u>		
	IDL								
Aluminum	15	Р	408 J	564	1510	2710	1520	928	3320
Antimony	4	Р	8.6 U	5.4 U	9.5 U	12.8 U	10.1 U	10.7 U	
Arsenic	3	Р	3.1 U	5.4 U	6.8 U	5.7 U	5.7 U	10.7 0	6 U
Barium	1	Р	42.6 J	62.8 J	50.3 J	53.5 J	36.6 J	64 J	8.2 U
Beryllium	1	Ρ				00.00	50.0 5	04 J	63.8 J
Cadmium	1	Ρ		1.1	1.2				
Calcium	31	Р	96300 J	136000	168000	180000	157000	400000	470000
Chromium	1	Р			3.8	5.9	3.2	106000	176000
Cobalt	2	Р	8.1 U	7.4 U	8.3 U	9.4 U	3.2 9 U	2.2	8.3
Copper	1	Р	5.3 U	6.8 U	6.8 U	14.5	8.9 U	8 U	10.2 U
ron	10	Р	965 J	1120 J	3090 J	5400 J		10 U	15
.ead	2	Р	LU .	1120 0	0000 0	9.8	3050 J 4.5	2460 J	8080 J
Magnesium	5	Р	22900 J	29800	52800	83000		8.6	14.7
Aanganese	1	P	619 J	261	187	381	76300	27800	82300
Aercury	0.1	Ċν	0.00	201	NR	301	242	138	735
Nickel	6	P				6.8			
^o otassium	25	P	764	3380	2880	2980	2420	0450	8
Selenium	1	P	10 U	6.5 U	5.4 U	2960 7.9 U	2420	2150	3600
Silver	1	P	7.6 U	7.5 U	7.4 U	7.9 U 7.6 U	6.1 U	6.8 U	6.3 U
Sodium	49	P	15200 J	28700 J	68200 J		7.7 U	7.5 U	7.5 U
hallium	5	P	10200 0	20/00 3	00200 J	65800 J	64300 J	46100 J	64000 J
/anadium	1	P	6.8 U	6.8 U	04.11	40.0.11			7.3 U
Zinc	1	P	7.7 J	6.7 J	. 8.1 U	10.6 U	8.2 U	8.7 U	13.6 U
	•		1.1 5	0.7 J	16.4 J	34.6 J	19.3 J	24.8 J	54.8 J

ANALYTICAL ASSURANCE ASSOCIATES (A3) TOTAL METAL WATER ANALYSIS

## ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557

SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		<b>1</b> 98	GW-1 92557A-01	GW-2 T982557A-02	GW-2S T982557A-03	GW-10S T982557A-04	GW-11S T982557A-05	GW-9 T982557A-06	GW-3S T982557A-08
TARGET COMPOUNDS:	IDL								
Aluminum	15	Р	2810	4470	1900	143	6460 J	1070	1460
Antimony	4	Ρ	9 U	6.6 U	5.1 U			8.8 U	7.7 U
Arsenic	3	Р	3.2 U	8.9 U	6.8 U	20.5	15.5 U	8.4 U	23.7
Barium	1	Р	78.9 J	90.5 J	68.2 J	374 J	217 J	40.2 J	83.1 J
Beryllium	1	Р							
Cadmium	1	Ρ	1.4	1		1.7	4		
Calcium	31	Р	130000	224000	114000	930000	376000 J	67100	137000
Chromium	1	Ρ	5.6	7.8	3.2		10.1	1.6	3.6
Cobalt	2	Р	9.6 U	10.4 U	9 U	20.4	23.9	8 U	13.4 U
Copper	1	P	30.2	18.4	10.4 U	3.1 U	74.8	6.3 U	11.6 U
Iron	10	Р	6300 J	8980 J	3340 J	2190 J	16100 J	2670 J	17600 J
Lead	2	Р	10.6	. 14	4		36.2 J		3.2
Magnesium	5	Р	62000	104000	21100	58000	72700 J	41600	20000
Manganese	1	Р	397	502	314	7410	2400 J	176	4170
Mercury	0.1	CV	NR			1.6			
Nickel	6	Р	8.5	8.4		18.9	28.9		6.4
Potassium	25	Р	6000	5180	1080	6930	4290	1700	740
Selenium	1	Р	7 U	7.5 U	8.6 U	29.5	. 14.9	9.5 U	8.1 U
Silver	1	Р	7.5 U	7.5 U	7.4 U	7.6 U	7 U	7.5 U	7.8 U
Sodium	49	Р	69600 J	78600 J	5130 J	35400 J	25400 J	50300 J	2780 J
Thallium	5	Р						5.5 U	
Vanadium	1	Р	12.2 U	13 U	11 U	5.2 U	25 U	8.1 U	11.9 U
Zinc	1	Р	33.8 J	38 J	19.3 J	32.6 J	141 J	9.7 J	, 26.1 J

## ANALYTICAL ASSURANCE ASSOCIATES (A3) FILTERED METAL WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557 SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		198	GW-13 82557A-20
TARGET COMPOUNDS:		4,4 <u></u>	
	IDL		
Aluminum	15	Р	38 U
Antimony	4	P	11.2 U
Arsenic	3	P	
Barium	1	P	18.1 J
Beryllium	1	P	
Cadmium	1	P	
Calcium	31	P	167000
Chromium	1	P	
Cobalt	2	P	7.9 U
Copper	1	P	2.2 U
Iron	10	Р	14.4 R
Lead	2	Ρ	UJ
Magnesium	5	Р	108000
Manganese	1	Р	130
Mercury	0.1	cv	
Nickel	6	Р	
Potassium	25	Ρ	15000
Selenium	1	Р	4.2 U
Silver	1	Р	7.3 UJ
Sodium	49	Р	95800 J
Thallium	5	Р	
Vanadium	1	P	4.4 U
Zinc	1	Р	ŪJ

ANALYTICAL ASSURANCE ASSOCIATES (A3) FILTERED METAL WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557 SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		<b>F</b> 98	DUP-1 2557A-09	GW-12S F982557A-13	DUP 2 F982557A-15	GW-4 F982557A-16	GW-4S F982557A-17	GW-5 F982557A-18	GW-5S F982557A-19
TARGET COMPOUNDS:					· · · ·				
	IDL								
Aluminum	15	P	36 U	30.9 U	43.9 U	58.1 U	49 U	42.8 U	40.7 U
Antimony	4	Р	9.8 U	10.5 U	11.5 U	12.9 U	8.8 U	14.5 U	9.8 U
Arsenic	3	Р	4.1 U	4.6 U	4.1 U	6.9 U		11.00	3.4 U
Barium	1	Р	37.5 J	52.7 J	18.5 J	19 J	50.5 J	16.4 J	53.6 J
Beryllium .	1	Р					00.00	10.4 0	55.0 5
Cadmium	1	Ρ		2.8					
Calcium	31	Р	89800	133000	128000	131000	98400	48000	13600
Chromium	1	Р					00400	40000	13000
Cobalt [·]	2	Р	13 U	7.3 U	7.5 U	13.9 U	7.2 U	. 7.1 U	7.8 U
Copper	1	Ρ	3.6 U	2.7 U	2.4 U	2.7 U	3 U	2.0	3.3 U
ron	10	Р	81.3 R	93.5 R	36.1 R	73.2 R	61.4 R	81.5 R	76.8 R
_ead	2	Ρ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Magnesium	5	Р	20700	28800	68200	69400	27100	40900	17700
Manganese	1	Р	579	242	44.5	62.4	42.6	12.9	808
Mercury	0.1	CV				<b>U2</b> . <b>I</b>	72.0	12.5	000
Nickel	6	Р							
Potassium	25	Р	795	3410	2280	2370	1930	2140	588
Selenium	1	Р	7.4 U	6.7 U	5 U	2.6 U	6.5 U	2.8 U	3.9 U
Silver	1	Ρ	7.5 UJ	7.7 UJ	7.3 UJ	8.3 UJ	7.5 UJ	7.6 UJ	7.6 UJ
Sodium	49	Р	14700 J	28500 J	64000 J	65200 J	43200 J	57200 J	18200 J
[hallium	5	Р			6.4 U	00200 0	10200 0	51200 5	10200 J
/anadium	1	Р	5.8 U	5.5 U	5 U	5.7 U	5.7 U	6.5 U	6.1 U
Zinc	1	P	ŬJ	UJ	ŬJ	UJ	UJ	UJ	- UJ

## ANALYTICAL ASSURANCE ASSOCIATES (A3) FILTERED METAL WATER ANALYSIS ug/L

.

CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557 SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		F9	GW-1 82557A-01	GW-2 F982557A-02	GW-2S F982557A-03	GW-10S F982557A-04	GW-11S F982557A-05	GW-9 F982557A-06	GW-3S F982557A-08
TARGET COMPOUNDS:								······	· · · · · · · · · · · · · · · · · · ·
	IDL			·			•		
Aluminum	15	Р	51.9 U	53 U	31.1 U	225	193	35.6 U	36.5 U
Antimony	4	Р	13.6 U	15.4 U	10.1 U	8.9 U	9.1 U	14.4 U	11.7 U
Arsenic	3	Р		3.3 U	5.7 U	5.6 U	3.7 U	9.4 U	11.7 0
Barium	1	P	22.9 J	21.6 J	39.8 J	51.9 J	49.1 J	29 J	32 J
Beryllium	1	Р						200	52 5
Cadmium	1	Р							
Calcium	31	Р	51500	74300	88600	120000	85300	46100	98000
Chromium	1	Р						40100	30000
Cobalt	2	Р	11.5 U	7.9 U	6.6 U	25.2 U	14.3 U	7.4 U	7.5 U
Copper	1	Р	2.6 U	2.6 U	2.6 U	2.9 U	3.6 U	2.2 U	2.2 U
ron	10	Ρ	74.5 R	62.5 R	71.4 R	450 R	382 R	367 R	194 R
_ead	2	Ρ	UJ	UJ	UJ	UJ	UJ	UJ	UJ
Magnesium	5	Р	39400	37400	17700	34100	27100	35600	12200
Manganese	1	Р	24.2	16.2	75.2	414	266	32.9	319
Mercury	0.1	CV				0.19	200	52.5	319
Nickel	6	Р		•		0.10		•	
Potassium	25	Р	5510	3280	994	2500	2520	1500	758
Selenium	1	Р	3.4 U	4.4 U	5.3 U	9.4 U	5.7 U	1000	7.1 U
Silver	1	Р	7.4 UJ	7.6 UJ	7.6 UJ	7.3 UJ	7.7 UJ	7.6 UJ	7.5 UJ
Sodium	49	P	67800 J	72400 J	5740 J	23600 J	21400 J	49500 J	2920 J
hallium	5	P	6.8 U	5.7 U	0, 100	20000 0			2920 J 7.7 U
/anadium	1	P	5.8 U	6 U	5.7 U	5.8 U	6.4 U	5.5 U	7.7 U 5.9 U
Zinc	1	P	UJ	ູບຸ	UJ	0.0 0 UJ	0.4 0 UJ	5.5 U UJ	5.9 UJ

• •

# Appendix C Laboratory Reported Results

١.

## TABLE AS-1.9 7098-2557A STEARNS & WHELER TAL METALS (Total)

All values are ug/L.

				· · · · · · · · · · · · · · · · · · ·
Client Sample I.D.	GW-5S	GW-13		
Lab Sample I.D.	982557A-19	982557A-20		
Aluminum	2510	1550	a sa sa sa sa sa sa sa sa sa sa sa sa sa	e wreigin gwlarae a gwl Rae y wrei a fewrai a farwyd a farwyd a gwlarae a gwlarae a gwlarae a gwlarae a gwlarae
Antimony Arsenic	5.4B 6.9B	10.6B 3.5B		
Barium Beryllium	92.7B 1.0U	33.1B 1.0U		
Cadmium Calcium	1.0U 193000	1.0B 182000		
Chromium Cobalt	4.6B 10.7B	· 13.3 9.2B		li a si si si si si si si si si si si si si
Copper Iron	19.2B 5800E	10.8B 5020E	9. 14. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19. ja 19	
Lead Magnesium	17.3 30900	2.0U 116000		
Manganese Mercury	1200 0.100	241. 0.10U		
Nickel Potassium	9.2B 888.B	6.0U 16100		
Selenium Silver	9.5* 7.3B	4.9B* 7.6B		
Sodium Thallium	18100E 5.0U	96400E 5.0U		
Vanadium Zinc	12.5B 74.4	8.4B 23.5		

١,

r

## TABLE AS-1.8 7098-2557A STEARNS & WHELER TAL METALS (Total)

All values are ug/L.

Client Sample I.D.	DUP 2	GW-4	GW-4S	GW-5
Lab Sample I.D.	982557A-15	982557A-16	<u>982557A-17</u>	982557A-18
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium	2710 12.8B 5.7B 53.5B 1.0U 1.0U 180000 5.9B 9.4B 14.5B 5400E 9.8 83000	1520 10.1B 5.7B 36.6B 1.0U 1.0U 157000 3.2B 9.0B 8.9B 3050E 4.5 76300	928. 10.7B 3.0U 64.0B 1.0U 1.0U 106000 2.2B 8.0B 10.0B 2460E 8.6 27800	3320 6.0B 8.2B 63.8B 1.0U 1.0U 176000 8.3B 10.2B 15.0B 8080E 14.7 82300
Manganese Mercury Nickel Potassium Selenium	381. 0.10U 6.8B 2980B 7.9*	242. 0.10U 6.0U 2420B 6.1*	138. 0.10U 6.0U 2150B 6.8*	735. 0.10U 8.0B 3600B 6.3*
Silver	7.6B	7.7B	7.5B	7.5B
Sodium	65800E	64300E	46100E	64000E
Thallium	5.0U	5.0U	5.00	7.3B
Vanadium	10.6B	8.2B	8.7B	13.6B
Zinc	34.6	19.3B	24.8	54.8

See Appendix for qualifier definitions

3

١,

.

## TABLE AS-1.7 7098-2557A STEARNS & WHELER TAL'METALS (Total)

## All values are ug/L.

	1			
Client Sample I.D. 💀	GW-3S	DUP-1	GW-125	-GW-3
_				
Lab Sample I.D.	982557A-08	982557A-09	982557A-13	982557A-14
-Aluminum	1460	408.	564.	1510
Antimony	7.7B	8.6B	5.4B	9.5B
Arsenic	23.7	3.1B	5.4B	6.8B
Barium	83.1B	42.6B	62.8B	50.3B
Beryllium	1.0U	1.0U	1.00	∞1.0 <b>U</b> ~~~~
Cadmium	1.0U	1.00	1.1B	1.2B
Ealcium	137000	96300	136000	168000
Chromium	3.6B	1.00	1.0U	3.8B
Cobalt	13.4B	8.1B	7.4B	8.3B
Copper	11.6B	5.3B	6.8B	6.8B
Lron '	17600E	965.E	1120E	3090E
Lead	3.2	2.0U	2.00	2.0U
Magnesium	20000	22900	29800	52800
langanese	4170	619.	261.	187.
fercury	0.10U	0.100	0.10U	NR
Nickel	6.4B	6.OU	6.0U	6.0U
Potassium	740.B	764.B	3380B	2880B +
Selenium	8.1*	10.0*	6.5*	5.4*
Silver	7.8B	7.6B	7.5B	7.4B
Sodium	2780BE	15200E	28700E	68200E
Thallium	5.OU	5.OU	5.0U	5.0U
Vanadium	11.9B	6.8B	6.8B	8.1B
Zinc	26.1	7.7B	6.7B	16.4B

## TABLE AS-1.6 7098-2557A STEARNS & WHELER TAL METALS (Total)

All values are ug/L.

	T		T	· · · · · · · · · · · · · · · · · · ·
Client Sample I.D.	GW-2S S	GW-10S	GW-11S	GW-9
Lab Sample I.D.	982557A-03S	982557A-04	982557A-05	982557A-06
Aluminum	4160	143.B	6460	1070
Antimony	428.	4.00	4.00	8.8B
Arsenic	44.4	20.5	15.5	8.4B
Barium	1800	374.	217.	40.2B
Beryllium	46.9	1.00	1.00	1.00
Cadmium	5.0B	1.7B	4.0B	1.00
Calcium	NR	930000	376000	67100
Chromium	178.	1.00	10.1	1.6B
Cobalt	437.	20.4B	23.9B	8.0B
Copper	234.	3.1B	74.8	6.3B 📲
Iron	4640N	2190E	16100E	2670E
Lead	23.3	2.00	36.2	2.0U
Magnesium	23 .3 NR 753.	58000	72700	41600
Manganese	753.	7410	2400	176.
Mercury	0.99	1.6	0.100	0.100
Nickel	434.	18.9B	28.9B	6.0U -
Potassium	NR	6930	4290B	1700B
Selenium	18.1	29.5*	14.9*	9.5*
Silver	46.1	7.6B	7.0B	7.5B
Sodium	NR	35400E	25400E	50300E
Thallium	49.6	5.OU	5.OU	5.5B
Vanadium	444.	5.2B	25.0B	8.1B
Zinc	448.	32.6	141.	9.7B

See Appendix for qualifier definitions

Aqueous

١,

.

Ļ.

•

## TABLE AS-1.5 7098-2557A STEARNS & WHELER TAL METALS (Total)

All values are ug/L.

	r			
Client Sample I.D. Lab Sample I.D.	GW-1 982557A-01	GW-2 982557A-02	GW-2S 982557A-03	GW-2S D 982557A-03D
Aluminum Antimony Arsenic Barium Beryllium Cadmium Cadmium Cadmium Chromium Cobalt Copper Iron Lead Magnesium Magnesium Magnese Mercury	2810 9.0B 3.2B 78.9B 1.0U 1.4B 130000 5.6B 9.6B 30.2 6300E 10.6 62000 397. NR	4470 6.6B 8.9B 90.5B 1.0U 1.0B 224000 7.8B 10.4B 18.4B 8980E 14.0 104000 502. 0.10U	1900 5.1B 6.8B 68.2B 1.0U 1.0U 114000 3.2B 9.0B 10.4B 3340E 4.0 21100 314. 0.10U	1910 6.2B 6.8B 68.9B 1.0U 1.0U 115000 3.3B 9.1B 10.2B 3350 2.4B 21200 316. 0.10U
Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	(NR 8.5B 6000 7.0* 7.5B 69600E 5.0U 12.2B 33.8	8.4B 5180 7.5* 7.5B 78600E 5.0U 13.0B 38.0	6.0U 1080B 8.6* 7.4B 5130E 5.0U 11.0B 19.3B	6.0U 1090B 7.6* 7.5B 5150 5.0U 11.4B 18.2B

## TABLE AS-1.4 7098-2557A STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

Client Sample I.D.	GW-13			
Lab Sample I.D.	982557A-20			
Aluminum	38.0В		). Marita di Sanà II	Sand Mathematica Part
Antimony Arsenic	11.2B 3.0U			
Barium Beryllium	18.1B 1.0U			
Cadmium Calcium	1.0U 167000			nie sasstjaa <b>n</b>
Chromium Cobalt	1.0U 7.9B	Miloniiti da		
Copper Iron	2.2B 14.4BE		4	
Lead Magnesium	2.0U 108000	ు వైద్య సంధితం చిల్లింది. సి. సందర్ఘతులు సంగారం చిల్లింది. చిల్లింది.		and in the second second second second second second second second second second second second second second se
Manganese Mercury	130. 0.10U			
Nickel Potassium	6.0Ŭ 15000		en serre s	l verske i 🗌
Selenium Silver	4.2B 7.3B			
Sodium Thallium	95800E 5.0U			
Vanadium Zinc	4.4B 1.0U	•		

See Appendix for qualifier definitions

١

Aqueous

\. •

١,

.

.

## TABLE AS-1.3 7098-2557A STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

Client Sample I.D.	GW-4	GW-4S	GW - 5	GW-5S
Lab Sample I.D.	982557A-16	982557A-17	982557A-18	982557A-19
Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium	58.1B 12.9B 6.9B 19.0B 1.0U 1.0U 131000 1.0U 13.9B 2.7B 73.2BE 2.0U 69400 62.4 0.10U 6.0U 2370B 2.6B 8.3B 65200E 5.0U	49.0B 8.8B 3.0U 50.5B 1.0U 1.0U 98400 1.0U 7.2B 3.0B 61.4BE 2.0U 27100 42.6 0.10U 6.0U 1930B 6.5 7.5B 43200E 5.0U	42.8B 14.5B 3.0U 16.4B 1.0U 1.0U 48000 1.0U 7.1B 2.0B 81.5BE 2.0U 40900 12.9B 0.10U 6.0U 2140B 2.8B 7.6B 57200E 5.0U	40.7B 9.8B 3.4B 53.6B 1.0U 1.0U 136000 1.0U 7.8B 3.3B 76.8BE 2.0U 17700 808. 0.10U 6.0U 588.B 3.9B 7.6B 18200E 5.0U
Vanadium Zinc	5.7B 1.0U	5.7B 1.0U	6.5B 1.0U	6.1B 1.0U

<u>!</u>,

p

## TABLE AS-1.2 7098-2557A STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Client Sample I.D.	GW-35	DUP-1	GW-12S	DUP 2
Lab Sample I.D.	982557A-08	982557A-09	982557A-13	982557A-15
Aluminum	36.5B	36.0B	30.9B	43.9B
Antimony	11.7B	9.8B	10.5B	11.5B
Arsenic	3.0U	4.1B	4.6B	4.1B
Barium Beryllium	32.0B	37.5B	52.7B	18.5B
Cadmium	1.0U	1.0U	1.0U	1.0U
	1.0U	1.0U	2.8B	1.0U
Calcium	98000	89800	133000	128000
Chromium	1.0U	1.0U	1.0U	1.0U
Cobalt	7.5B	13.0B	7.3B	7.5B
Copper	2.2B	3.6B	2.7B	2.4B
Iron	194.E	81.3BE	93.5BE	36.1BE
Lead	2.0U	2.0 <del>0</del>	2.0U	2.0U
Magnesium	12200	20700	28800	68200
Manganese	319.	579.	242.	44.5
Mercury	0.100	0.10U	0.10U	0.10U
Nickel	6.0U	6.0U	6.0U	6.0U
Potassium	758.B	795.B	3410B	2280B
Selenium	7.1	7.4	6.7	5.0
Silver	2920BE	7.5B	7.7B	7.3B
Sodium		14700E	28500E	64000E
Thallium	7.7B	5.0U	5.0U	6.4B
Vanadium	5.9B	5.8B	5.5B	5.0B
Zinc	1.0U	1.0U	1.0U	1.00

۱. ب

## TABLE AS-1.1 7098-2557A STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

Client Sample I.D.	GW-2S S	GW-10S	GW-11S	GW-9
Lab Sample I.D.	_ 98255/A-03S	<u>982557A-04</u>	982557A-05	982557A-06
Aluminum	1690	225.	193.В	35.6в
Antimony	385.	· 8.9B	9.1B	14.4B
Arsenic	26.6	5.6B	⇒ 3.7B	9.4B
Barium	1640 ·	51.9B	49.1B	29.0B
Beryllium Cadmium	43.3 3.0B	1.0U 1.0U	1.0U 1.0U	1.0U
Calcium	NR S.UB	120000	85300	1.0U 46100
Chromium	165.	1.0U	1.0U	1.0U
Cobalt	410.	25.2B	14.3B	7.4B
Copper	209.	2.9B	3.6B	2.2B
Irôn	915.	450.E	382.E	367.E
Lead	9.8	2.0U	2.00	2.00
Magnesium	NR	34100	27100	35600
langanese	489.	414.	266.	32.9
fercury	0.96	0.19B	0.100	0.100
Nickel	406.	6.0U	6.0U	6.0U
Potassium Selenium	NR 10.6	2500B	2520B 5.7	1500B 1.0U
Silver	43.8	7.3B	7.7B	7.6B
Sodium	NR	23600E	21400E	49500E
Thallium	30.2	5.00	5.0U	5.00 ⁵
Janadium	411.	5.8B	6.4B	5.5B
Zinc	407.	1.0Ū	1.OU	0U

## Aqueous

۱.

P

## TABLE AS-1.0 7098-2557A STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

	T	T		
Client Sample I.D. Lab Sample I.D.	GW-1 982557A-01	GW-2 982557A-02	GW-25 982557A-03	GW-2S D 982557A-03P
Aluminum	51.9B	53.0B	31.1B	33.6B
Antimony	13.6B	15.4B	10.1B	9.4B
Arsenic	3.0U	3.3B	5.7B	3.0U
Barium	22.9B	21.6B	39.8B	39.7B
Beryllium	1.0U	1.0U	1.0U	1.0U
Cadmium	1.0U	1.0U	1.0U	1.0U
Calcium	51500	74300	88600	88700
Chromium	1.0U	1.0U	1.0U	1.0U
Cobalt	11.5B	7.9B	6.6B	7.0B
Copper	2.6B	2.6B	2.6B	2.6B
Iron	74.5BE	62.5BE	71.4BE	70.1B
Lead	2.0U	2.0U	2.0U	2.0U
Magnesium	39400	37400	17700	17700
Manganese	24.2	16.2	75.2	75.1
Mercury	0.10U	0.10U	0.10U	0.10U
Nickel	6.0U	6.0U	6.0U	6.0U
Potassium	5510	3280B	994.B	1000B
Selenium	3.4B	4.4B	5.3	3.8B*
Silver	7.4B	7.6B	7.6B	7.7B
Sodium	67800E	72400E	5740E	5730
Thallium	6.8B	5.7B	5.0U	6.0B
Vanadium	5.8B	6.0B	5.7B	5.8B
Zinc	1.0U	1.0U	1.0U	1.0U

1

Appendix D Support Documentation/Resubmission **END OF DATA PACKAGE** 

.

-

.

6





600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# METAL ANALYSIS TOTAL & DISSOLVED QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

SITE: ROBLIN STEEL CASE NO.: 7098-2557B/ SDG NO.: B2557

REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

> REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY16, 1999

## STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7098-2557B/ SDG NO.: B2557

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from five (5) water samples collected on 12-17-98. The samples were received by Severn Trent Laboratories on 12-18-98 and analyzed according to criteria set forth in SOW3,90 (ILM03.0) for total and dissolved metals.

The following samples are contained within this report:

GW-7S	GW-14
GW-8S	GW-3*
GW-6	

* The total sample analysis was performed with SDG number 2557A.

The QC samples (MS & MD) for ICP metals was assigned to an alternate sample with sample ID: LP-01. However, the QC samples for mercury was analyzed on sample GW-6.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No. 7098-2557B / SDG No. B2557

Page 2

## **DATA COMPLETENESS**

The 8-hour analysis holding time for CRDL and ICS samples exceeded on Form XIV in the analysis run performed on 01-17-99 for the alternate QC samples. The review of the raw data showed that these samples were analyzed with in the analysis requirement. The form XIV must be corrected and resubmitted.

The laboratory case narrative stated that the analysis for sample GW-17S was cancelled due to sample being frozen.

The matrix spike recovery for Ag exceeded the upper control limit. However, the sample data were not qualified "N" for this outlier.

#### HOLDING TIME

All samples were digested/analyzed within the requirements established in the method.

## CALIBRATIONS & CRDL Analyses

The recoveries for all analytes in the initial and continuing calibrations were within the control limits of 90-110%.

The CRDL sample analysis was performed prior and after all samples analysis. The %recoveries were within the control limits with the exception of Cd (121%) and Tl (73.6%) in initial CRDL The results for cadmium was accepted unqualified since the deviation was marginal. The positive results and non-detected values for thallium were qualified estimated.

Two other analysis runs were provided for QC samples and analytical spike sample. Several recoveries were outside the control limits. However, the sample data were not impacted.

#### **BLANKS**

The laboratory preparation blank had Mg (5.4 ug/l) and Se (2.4 ug/l) contamination at a level below the CRDL. Magnesium was detected at levels above the action limits. The reported sample results up to 5 times the blank level for selenium were qualified "U" and considered as the laboratory artifact.

Stearns & Wheler Case No. 7098-2557B / SDG No. B2557

Page 3

The concentration of Tl and Se were below the negative CRDLs in analysis run performed for the QC samples. The sample data were not impacted by these outliers since the samples from this site were not analyzed under this analysis sequence.

## **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for Sb (120.5%), Pb (72.4/74.6%) and Se (129.4/120.6%) were outside the control limits of 80-120% in the ICS sample analyzed for the total and dissolved samples. The data for antimony was not qualified since the deviation was marginal. The reported sample results for lead and selenium and non-detected values for lead were considered estimated.

The recoveries of a few analytes were outside the QC limits in the other analysis runs performed for the QC samples. The sample data were not impacted by these outliers.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed on an alternate sample. The spike recoveries were within the control limits with the exception of Pb (13.8%), Se (0.0%) and Ag (133.7%). The post digestion spike sample was analyzed for lead and selenium as required by the method. The recoveries 12.6% and 101.5% were obtained. The data for Ag was not impacted since this analyte was not detected in the samples. The positive results were qualified estimated "J" and "U' for lead and selenium respectively. However, the non-detected values for these analytes were rejected since the possibility of false negative exist.

## MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was also performed on samples LP-01 and GW-6 for ICP metals and mercury respectively. The RPDs for were within the analysis and validation control limits.

## LABORATORY CONTROL SAMPLE

The recoveries for all analyses were within the control limits.

## **ICP SERIAL DILUTION**

The %Ds for all ICP analytes were within the control limits.

## **INSTRUMENT DETECTION LIMITS**

All analytes with the exception of mercury were analyzed with ICP. The reported IDLs were below the CRDL.

Stearns & Wheler Case No. 7098-2557B / SDG No. B2557

#### **DUPLICATE ANALYSIS**

Duplicate analysis was analyzed under SDG number 2557A.

#### SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions. The reported sample results were within the calibration range.

#### **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. The matrix spike recoveries for Pb and Se were extremely low. The matrix spike sample was not assigned to this site. Therefore, the matrix interference could not be evaluated. The major and minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

1. Appendix A- Glossary of Data Qualifier

Appendix II Clossary of Data Qualifier
 Appendix B- Data Summary Forms
 Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

Appendix A Glossary of Data Qualifier

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

## Appendix B Data Summary Forms

;

ANALYTICAL ASSURANCE ASSOCIATES (A3) TOTAL METAL WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-B2557 SDG NO.: B2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		-98	GW-7S 2557B-02	GW-8S T982557B-03	GW-6 T982557B-04	GW-14 T982557B-05					
TARGET COMPOUNDS:											
	IDL										
Aluminum	15	Р	744	466	605	280					
Antimony	4	Р									
Arsenic	3	Р	10.5	6.9	19	4.5					
Barium	1	Ρ	66.6	26.5	43.6	34.8					
Beryllium	1	Р				•					
Cadmium	1	Р	7.2	2.7	3.4	2.5			•		
Calcium	31	Р	86800	241000	74300	106000					
Chromium	1	Р	2.1	1.9			•				
Cobalt	2	Р		3.8							
Copper	1	Р	6.2	10.5	3	3.7					
Iron	10	Р	9190	1550	1960	454					
Lead	2	Р	2.8 J	· R	R	3.7	J				
Magnesium	5	Р	20500	50100	43800	54900				•	
Manganese	1	Р	1220	1610	144	54.2					
Mercury	0.1	CV	0.16	0.39							
Nickel	6	Р	9	8.5	7.5						
Potassium	25	Ρ	661	1120	1690	4180					
Selenium	.1	Р	1.8 U	2.8 U	2.6 U		R	:			
Silver	1	Ρ						•			
Sodium	49	Р	18400	33200	41600	61700					
Thallium	5	Р	UJ	UJ	UJ		UJ				
Vanadium	1	Р	4.8								
Zinc	1	Р	12.3	15.5	7.9	4.3					

.

· · ·

.

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) FILTERED METAL WATER ANALYSIS ug/L

1

CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-B2557 SDG NO.: B2557

CLIENT SAMPLE ID: LAB SAMPLE ID:		:98	GW-7S 2557B-02	GW-8S F982557B-03	GW-6 F982557B-04	GW-14 F982557B-05	GW-3 F982557B-07	
TARGET COMPOUNDS:								
	IDL							
Aluminum	15	Р				17.2	26.9	
Antimony	4	Р						
Arsenic	3	Р	6.9	3.9	16.4	5	4.6	
Barium	1	Р	58.4	21.4	34.3	31.5	49.1	
Beryllium	1	Р						
Cadmium	1	Р	3.9	2.4	2.3	3.1	3.4	
Calcium	31	Р	79600	235000	61200	99400	169000	
Chromium	1	Р					1.3	
Cobalt	2	Р						
Copper	1	Р						
Iron	10	Р	1930	208	24.4			
Lead	2	Р	R	R	R	R	R	
Magnesium	5	Р	21800	47800	40900	52600	54200	
Manganese	1	Р	817	543	44.2	23	99.5	
Mercury	0.1	ĊV				20	55.5	
Nickel	6	Р						
Potassium	25	Ρ	882	1180	1880	4140	3160	
Selenium	1	P	4.2 U	· 3 U	3.2 U	R	R	
Silver	1	P			J.L U		N	
Sodium	49	P	19800	30900	41400	6100	73500	
Thallium	5	P	UJ	UJ	UJ	UJ		1
Vanadium	1	P			00	05	0.	5
Zinc	1	P		4.6			1.2	

Appendix C Laboratory Reported Results ø

#### TABLE AS-1.0 7098-2557B STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

		· · · ·		
Client Sample I.D.	GW-7S	GW-85	GW-6	GW-14
Lab Sample I.D.	982557B-02	982557B-03	982557B-04	982557B-05
Aluminum	15.0 <del>0</del>	15.0U	15.00	17.2B
Antimony	4.0 <del>0</del>	4.0U	4.0 <del>0</del>	4.0 <del>0</del>
Arsenic Barium	6.9B 58.4B	3.9B 21.4B	16.4 34.3B	5.0B 31.5B
Beryllium Cadmium	1.0U 3.9B	1.0U 2.4B	1.0U 2.3B	1.0U 3.1B
Calcium	79600	235000	61200	99400
Chromium Cobalt	1.00	1.00	1.00	1.00
Copper	2.0U 1.0U	2.00	2.0U 1.0U	2.00 1.00
Iron	1930	208.	24.4B	10.00
Lead	2.0UN	2.0UN	2.0UN	2.0UN
Magnesium Manganese	21800 817.	47800	40900 44.2	52600 23.0
Mercury Nickel	0.10U 6.0U	0.10U 6.0U	0.10U 6.0U	0.10U 6.0U
Potassium	882.B	1180B	1880B	4140B
Selenium Silver	4.2BN	3.0BN	3.2BN	1.0UN
Sodium	1.0U 19800	1.0U 30900	1.0U 41400	1.0U 61000
Thallium	5.00	5.00	5.00	5.00
Vanadium	1.0 <del>0</del>	1.0 <b>0</b>	1.0U	1.0U
Zinc	1.00	4.6B	1.OU	1.OU

See Appendix for qualifier definitions

#### TABLE AS-1.1 7098-2557B STEARNS & WHELER TAL METALS (Dissolved)

All values are ug/L.

			1	T
Client Sample I.D.	GW-3			· · ·
	0005570 07			
Lab Sample I.D.	<u>982557B-07</u>			
Aluminum	26.9B			
Antimony	4.0	*		
Arsenic	4.6B			
Barium	<b>49.1B</b> .			
Beryllium Cadmium	1.0U 3.4B			
Calcium	169000			
Chromium	1.3B	•		
Cobalt	2.00			
Copper	1.00	-		
Iron	10.00			
Lead	2.0UN		х	
Magnesium	54200			
Manganese	99.5			
Mercury Nickel	0.10U 6.0U			
Potassium	3160B			
Selenium	1.0UN			
Silver	1.00			
Sodium	73500			1
Thallium	5.0U			
Vanadium	1.00		•	*
Zinc	<b>1.2B</b>			

See Appendix for qualifier definitions

#### TABLE AS-1.2 7098-2557B STEARNS & WHELER TAL METALS (Total)

All values are ug/L.

Client Cample T D	GW 76	<b>GW 90</b>		GTV 1.4
Client Sample I.D.	GW-7S	GW-85	GW-6	GW-14
Lab Sample I.D.	982557B-02	982557B-03	982557B-04	982557B-05
Aluminum	744.	466.	605.	280.
Antimony	4.0U	<b>4.0</b> <del>0</del>	<b>4.0</b> Ū	<b>4.0</b> <del>0</del>
Arsenic	10.5	6.9B	19.0	4.5B
Barium	66.6B	26.5B	43.6B	34.8B
Beryllium	1.00	1.00	1.00	1.00
Cadmium	7.2	2.7B	3.4B	2.5B
Calcium	86800	241000	74300	106000
Chromium	2.1B	<b>1.9</b> B	1.00	1.00
Cobalt	2.00	3.8B	2.00	2.00
Copper	6.2B	<b>10.5</b> B	3.0B	<b>3.7</b> B
Iron	9190	1550	1960	454.
Lead	2.8BN	2.0UN	2.0UN	3.7N
lagnesium	20500	50100	43800	54900
langanese	1220	1610	144.	54.2
lercury	0.16B	0.39	0.100	0.100
Nickel	9.0B	8.5B	7.5B	6.OU
Potassium	661.B	1120B	1690B	4180B
Selenium	1.8BN	2.8BN	2.6BN	<b>1.0UN</b>
Silver	1.00	1.00	1.00	1.00
Sodium	18400	33200	41600	61700
Thallium	5.00	5.00	5.00	5.0U
Vanadium .	4.8B	1.00	1.00	1.00

See Appendix for qualifier definitions

Appendix D Tentatively Identified compounds

4

ø

# **END OF DATA PACKAGE**



### **Analytical Assurance Associates, Inc.**

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

## INORGAINC QUALITY ASSURANCE DATA REVIEW

### **STEARNS & WHELER, LLC**

SITE: ROBLIN STEEL CASE NO.: 7098-2557A/ SDG NO.: A2557

### REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY17, 1999

#### STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7098-2557A/ SDG NO. A2557

#### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from sixteen (16) water samples collected on 12-15,16-98. The samples were received by Severn Trent Laboratories on 12-16,17-98 and analyzed according to criteria set forth in EPA 600, Methods 310.1 (alkalinity), 325.2 (chloride), 150.1 (pH), and 375.2 (sulfate) plus Standard Methods for examination water and wastewater, 18th edition,1992 Methods 2340B (hardness) and 2320B (carbonate/bicarbonate)..

The following samples are contained within this report:

GW-1	GW-11S	<b>GW-12S</b>	GW-4S
GW-2	GW-9	GW-3	GW-5
GW-2S	GW-3S	DUP-2	GW-5S
GW-10S	DUP-1	GW-4	GW-13

The QC samples (MS & MD) were assigned to sample GW-2S.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No. 7098-2557A / SDG No. A2557

Page 2

#### DATA COMPLETENESS

The laboratory case narrative stated that the analysis for samples GW-17S, GW-5S and GW-13 were cancelled due to samples being frozen.

The raw data for carbonate and bicarbonate were not included in the data package. The results for alkalinity was reported based on "mg of carbonate/L" unit, and the results for carbonate/bicarbonate were calculated in accordance with the alkalinity result in the corresponding samples. Therefore, the alkalinity results were solely reported on the data validation summary.

#### HOLDING TIME

All samples were prepared/analyzed within the holding time requirements established in the methods.

#### **CALIBRATIONS & CRDL Analyses**

The recoveries for chloride and sulfate in the initial and continuing calibrations were within the control limits of 90-110%.

#### **BLANKS**

The laboratory blanks, ICBs and CCBs were below the CRDLs for chloride and sulfate analyses.

#### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed for chloride, sulfate and hardness. The recoveries were within the control limits of 80-120%.

#### MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was performed on samples GW-2S for all analyses. The RPDs were below 20%, which indicated a satisfactory reproducibility.

#### LABORATORY CONTROL SAMPLE

This sample analysis was performed for chloride, sulfate, alkalinity and hardness. The recoveries for all analyses were within the control limits of 80-120%.

Stearns & Wheler Case No. 7098-2557A / SDG No. A2557

Page 3

#### **DUPLICATE ANALYSIS**

Duplicate analysis was performed on samples GW-11S/Dup-1 and GW-4/DUP-2. The RPDs were within the 100% with the exception of hardness in samples GW-11S/DUP-1. The reported sample data were qualified estimated in these two samples.

#### SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions with the exception of sulfate in samples 982557-(02,07, 15, 16, 18 and 20). These samples were analyzed at five-fold dilutions. The reported sample results were within the calibration range and considered acceptable.

#### **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. Overall, major problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

- Appendix A- Glossary of Data Qualifier
   Appendix B- Data Summary Forms
   Appendix C- Laboratory Results (Form I)

5

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

#### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix B Data Summary Forms

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) INORGANIC WATER ANALYSIS

.

.

.

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557 SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:	98	GW-1 2557A-01	GW-2 982557A-02	GW-2S 982557A-03	GW-10S 982557A-04	GW-11S 982557A-05	GW-9 982557A-06	GW-3 982557A-07
ARGET COMPOUNDS				· · · · · · · · · · · · · · · · · · ·				
Alkalinity Chloride Hardness bH Sulfate	mg/L* mg/L S.U. mg/L	145 9.97 580 8.22 532	230 4.58 988 7.68 521	310 8.07 374 7.2 48.4	262 17.6 2560 7.26 260	520 13.6 1240 J 7.32 126	202 7.72 339 7.55 244	311 15.8 637 7.87 702

* The unit is base on mg CaCO3/L

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) INORGANIC WATER ANALYSIS

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557 SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:	98	GW-3S 32557A-08	DUP-1 982557A-09	GW-12S 982557A-13	DUP 2 982557A-15	GW-4 982557A-16	GW-4S 982557A-17	GW-5 982557A-18
TARGET COMPOUNDS:								
Alkalinity	UNITS mg/L*	330	317	377	80	94	. 368	254
Chloride	mg/L	4.16	12.6	50.2	5.57	5.79	19.7	9.66
Hardness	mg/L	424	335 J	462	791	706	379	778
рН	S.U.	7.06	7.15	7.05	7.84	7.95	7.44	8.06
Sulfate	mg/L	19.6	59.1	168	715	907	131	313

* The unit is base on mg CaCO3/L

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) INORGANIC WATER ANALYSIS

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-A2557

SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID:	982	GW-5S 2557A-19	GW-13 982557A-20	
TARGET COMPOUND	 S:			
	UNITS			
Alkalinity	mg/L*	344	111	
Chloride	mg/L	31.9	31.2	
Hardness	mg/L	609	932	
pH	S.Ŭ.	7.3	7.65	
Sulfate	mg/L	158	1280	

_____

Appendix C Laboratory Reported Results

SAMPLE NO.

Lab Name: <u>STL</u>		Contract:	
Lab Code: <u>STL</u>	Case No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water)	WATER	Lab Sample ID:	<u>982557A-01</u>
% Solids:	<u>0</u>	Date Received:	<u>12/16/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	М
471-34-1	Alkalinity	145.		mg/L		T
71-52-3	Bicarbonate	143.		mg/L		Ť
471-34-1	Carbonate	2.2		mg/L		T
16887-00-6	Chloride	9.97		mq/L		L
	Hardness	580.		mq/L		D
12408-02-5	рН	8.22		S.U.		D
	Sulfate	532.		mg/L		L
	·					
·						
	· · · · · · · · · · · · · · · · · · ·	I				
		I [				

Comments:

SAMPLE NO.

	<b>GW - 2</b> th
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>255</u>	<u>7A</u> SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-02</u>
% Solids: 0	Date Received: <u>12/16/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
471-34-1	Alkalinity	230.		mg/L		T
71-52-3	Bicarbonate	229.	<u> </u>	mg/L		T
471-34-1	Carbonate	2.0	U	mg/L		Ť
16887-00-6	Chloride	4.58	<u> </u>	mg/L		L
	Hardness	988.		mg/L		D
12408-02-5	pH	7.68		S.U.		D
·····	Sulfate	521.		mg/L		L
	· · ·	· · · · · · · · · · · · · · · · · · ·				<u> </u>
		1				
						· · ·
	······					
		1		<u> </u>		
				·····		
				·		
·		† · · · · · · · · · · · · · · · · · · ·				

Comments:

.

FORM I - WC

.

.

SAMPLE NO.

Г

_	GW - 2'S
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>2557A</u>	SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-03</u>
% Solids: 0	Date Received: <u>12/16/98</u>

CAS No.	Analyte	Concentration	с	Units	Q	м
471-34-1	Alkalinity	310.		mg/L	·	T
71-52-3	Bicarbonate	310.		mg/L		$\frac{1}{T}$
471-34-1	Carbonate	2.0	Ū	mg/L		T
16887-00-6	Chloride	8.07		mg/L		L
	Hardness	374.		mg/L		D
12408-02-5	рН	7.20		S.U.		D
	Sulfate	48.4		mg/L		Ľ
			-			
	· · · · · · · · · · · · · · · · · · ·					
			_			
		·		· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·					
L.,	····				_ [	

comments:

SAMPLE NO.
------------

ł

· · · ·			GW-1'05
Lab Name: <u>STL</u>		Contract:	
Lab Code: <u>STL</u> Ca	se No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water): <u>W</u>	IATER	Lab Sample ID	: <u>982557A-04</u>
% Solids: <u>0</u>	)	Date Received	: <u>12/16/98</u>

		1			<u>`</u>	
CAS No.	Analyte	Concentration	С	Units	Q	M
471-34-1	Alkalinity	262.	· · ·	mg/L		T
71-52-3	Bicarbonate	262.		mg/L		T
471-34-1	Carbonate	2.0	U	mg/L		Ť
16887-00-6	Chloride	17.6		mg/L		Ĺ
	Hardness	2560		mg/L		D
12408-02-5	pH .	7.26		S.U.		D
	Sulfate	260.		mg/L		ī
				· ·		
	······································					
	······································					
	····					
		<u> </u>				
		L,				
L		,,,,,,, _				

Comments:

SAMPLE NO.

Г

ab Name CTI		<b>~</b>	GW-1'1'S
Lab Name: <u>STL</u>		Contract:	
Lab Code: <u>STL</u>	Case No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water):	WATER	Lab Sample ID:	<u>982557A-05</u>
% Solids:	<u>0</u>	Date Received:	12/16/98

CAS No.	Analyte	Concentration	С	Units	Q	M
471-34-1	Alkalinity	520.		mg/L		I
71-52-3	Bicarbonate	519.		mg/L		T
471-34-1		2.0	Ū.	mq/L		T
16887-00-6		13.6		mg/L		Τī
	Hardness	1240		mg/L		Ť
12408-02-5	Hq	7.32		S.U.		ŤĒ
	Sulfate	126.		mg/L		Ĩ
	· · · · · · · · · · · · · · · · · · ·					
				····		<u> </u>
						·
					~	
	· · · · · · · · · · · · · · · · · · ·					
						_
			·	·······		
·						
	······································			- <u></u>		
						_

Comments:

SAMPLE NO.

٦

	GW - 9 ^{t,1}
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>255</u>	7A SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-06</u>
% Solids: 0	Date Received: <u>12/16/98</u>

· · ·						r
CAS No.	Analyte	Concentration	С	Units	Q	м
471-34-1	Alkalinity	202.		mg/L		T
71-52-3	Bicarbonate	201.		mg/L		T
471-34-1	Carbonate	2.0	U	mg/L	· ·	T
16887-00-6	Chloride	7.72		mq/L		L
	Hardness	339.		mg/L		D
12408-02-5	рН	7.55		S.U.		D
	Sulfate	244.		mg/L		L
					-	
		•				
	······································					
· · · · · · · · · · · · · · · · · · ·						
	· · · · · · · · · · · · · · · · · · ·					

Comments:

SAMPLE	NO.
--------	-----

			GW-3 ^{1,1}
Lab Name: <u>STL</u>	Cc	ontract:	· · · · · · · · · · · · · · · · · · ·
Lab Code: <u>STL</u> Case	No.: <u>2557A</u> SA	AS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WAT</u>	ER	Lab Sample ID:	<u>982557A-07</u>
% Solids: <u>0</u>		Date Received:	<u>12/16/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	
471-34-1		311.		mg/L		+
71-52-3		309.		mg/L		+
471-34-1		2.2		mg/L		╀╴
16887-00-6	Chloride	15.8		mg/L		
L2408-02-5	рН	7.87		S.U.		+
	Sulfate	702.		mg/L		
						┢
						┢
				· · · · · ·	·	┢
					<u>.</u>	┢
					••	┢╌
						┢
						-
	······································		· -			-
	······································					$\vdash$
						_
						-
						_
	······································			·		
						_
						_
						_

omments:

	GW-3'S
Lab Name: <u>STL</u>	Contract
Lab Code: <u>STL</u> Case No.	<u>2557A</u> SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-08</u>
% Solids: 0	Date Received: <u>12/16/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
471-34-1	Alkalinity	330.		mali		
71-52-3	Bicarbonate	330.		mg/L	· ·	T T
471-34-1	Carbonate	2.0	ש	mg/L		
16887-00-6	Chloride	4.16		mg/L		
	Hardness	424.		mg/L mg/L		H H
12408-02-5	Н	7.06		<u> </u>		D
	Sulfate	19.6		mg/L		L L
		1				<u> </u>
						<b>├──</b> ┥
						<b></b>
• •						
· · · · · · · · · · · · · · · · · · ·						
						$\neg$

Comments:

FORM I - WC

.

SAMPLE NO.

SAMPLE	NO.	ο.
--------	-----	----

Г

	DUP-1
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>2557A</u>	SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-09</u>
% Solids: <u>0</u>	Date Received: <u>12/16/98</u>

CAS No.	Analyte	Concentration	с	Units	Q	м
471-34-1		317.		mg/L		T
71-52-3	Bicarbonate	317.		mg/L		Ť
471-34-1		2.0	U	mg/L		Ť
16887-00-6	Chloride	12.6		mg/L		Ē
	Hardness	335.		mg/L		D
12408-02-5	рН	7.15		<u> </u>		D
	Sulfate	59.1		mg/L		L
				<u> </u>		
					_	
					_	
· .						
	·					
L						

Comments:

SAMPLE NO.
------------

F

· ·	GW-1'2S
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>2557A</u>	SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-13</u>
% Solids: 0	Date Received: <u>12/17/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	M
471-34-1	Alkalinity	377.		mg/L		T
71-52-3	Bicarbonate	377.		mg/L		T
471-34-1	Carbonate	2.0	U	mg/L		T
16887-00-6	Chloride	50.2		mg/L		Ē
	Hardness	462.		mg/L		D
12408-02-5	рН	7.05		S.U.		D
	Sulfate	168.		mg/L		ī
				· · · · · · · · · · · · · · · · · · ·		
	•					
					_	
	· · · · · · · · · · · · · · · · · · ·					
	·					
~						

Comments:

SAMPLE NO.

tal Nama OT	GW-3',
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>2557A</u>	SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-14</u>
% Solids: <u>0</u>	Date Received: <u>12/17/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
	Hardness	637.		mg/L		D
		· · ·				
			·			
			-			
		-				
·····						
			_			• • • • • •
		•				

Comments:

1

SAMPLE NO.

Г

		DUP 2
Lab Name: <u>STL</u>	Contract:	
Lab Code: <u>STL</u> Case	No.: <u>2557A</u> SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATE</u>	<u>R</u> Lab Sample	e ID: <u>982557A-15</u>
% Solids: <u>0</u>	Date Recei	ived: <u>12/17/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
471-34-1	Alkalinity	80.0		mg/L		T
71-52-3	Bicarbonate	79.4		mg/L		T
471-34-1		2.0	U	mg/L		T
16887-00-6	Chloride	5.57		mg/L		L
	Hardness .	791.		mg/L		D
12408-02-5	рН	7.84		S.U.		D
	Sulfate	715.		mg/L		L
	· · · · · · · · · · · · · · · · · · ·					
·						
	· · · · · · · · · · · · · · · · · · ·					
		· · · · · · · · · · · · · · · · · · ·	T			

Comments:

SAMPLE NO
-----------

Г

	GW-4
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>2557A</u>	SAS No.: SDG No.: <u>A2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557A-16</u>
Solids: 0	Date Received: 12/17/98

CAS No.	Analyte	Concentration	С	Units	Q	M
471-34-1		94.0		mg/L		T
71-52-3	Bicarbonate	93.2		mg/L		Ť
471-34-1		2.0	U	mg/L		T
16887-00-6	Chloride	5.79		mg/L		L
	Hardness	706.		mg/L		D
12408-02-5	На	7.95		S.U.		D
	Sulfate	907.	*	mg/L		L
			·	<u> </u>	·	
	#					
						<u> </u>
				<u> </u>		
	· · · · · · · · · · · · · · · · · · ·					
<u>.</u>						
<u> </u>						
· · · · · · · · · · · · · · · · · · ·		····				· ·

Comments:

SAMPLE NO.

L

# 1 WET CHEM ANALYSIS DATA SHEET

			GW-4'S
Lab Name: <u>STL</u>		Contract:	L
Lab Code: <u>STL</u>	Case No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water):	WATER	Lab Sample ID	: <u>982557A-17</u>
% Solids:	0	Date Received	: <u>12/17/98</u>

CAS No.	Analyte	Concentration	С	Units	Q	м
471-34-1	Alkalinity	368.		mg/L		T
71-52-3	Bicarbonate	367.		mg/L		T
471-34-1	Carbonate	2.0	U	mg/L		Ť
16887-00-6	Chloride	19.7	· · · ·	mg/L		Ĺ
	Hardness	379.		mg/L		D
12408-02-5	pH	7.44		S.U.		D
	Sulfate	131.		mg/L		ī
	· · · · · · · · · · · · · · · · · · ·				•	
·						
- mm c/						ť
·						

Comments:

SAMPLE NO.

-			GW - 5 ^{1.1}
Lab Name: <u>STL</u>		Contract:	L
Lab Code: <u>STL</u> Ca	ase No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water): [	WATER	Lab Sample ID:	<u>982557A-18</u>
∛ Solids: (	0	Date Received:	<u>12/17/98</u>

.

.

CAS No.	Analyte	Concentration	С	Units	Q	M
471-34-1		254.		mg/L		T
71-52-3	Bicarbonate	251.		mg/L		T
471-34-1	Carbonate	2.7		mg/L		Ť
16887-00-6		9.66		mg/L		L
	Hardness	778.		mg/L		Ē
12408-02-5	Н	8.06		S.U.		D
	Sulfate	313.		mg/L		L L
			÷			
	······					
· · · · · · · · · · · · · · · · · · ·		·				
	······································					
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
	,,,,,,,					
				·	•	

Comments:

.

FORM I - WC

·

SAMPLE NO.
------------

			GW-55
Lab Name: <u>STL</u>		Contract.	
Lab Code: <u>STL</u>	Case No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/wat	ter): <u>WATER</u>	Lab Sample I	D: <u>982557A-19</u>
% Solids:	<u>0</u>	Date Receive	d: <u>12/17/98</u>

<u> </u>						
CAS No.	Analyte	Concentration	С	Units	Q	м
471-34-1	Alkalinity	344.		mg/L		T
71-52-3	Bicarbonate	343.		mg/L		T
471-34-1	Carbonate	2.0	U	mg/L		T
16887-00-6	Chloride	31.9		mg/L		L
	Hardness	609.		mg/L		D
12408-02-5	На	7.30		S.U.		D
	Sulfate	158.		mg/L		L
				,,		
		+				
						<b>├</b> ──┤
						<b>├</b> ───┤
		÷}				
· · · · ·	· · · · · · · · · · · · · · · · · · ·					
	Tribuch and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s					
		+				
		+				

Comments:

,

### SAMPLE NO.

			GW-13,
Lab Name: <u>STL</u>		Contract:	
Lab Code: <u>STL</u>	Case No.: <u>2557A</u>	SAS No.:	SDG No.: <u>A2557</u>
Matrix (soil/water):	WATER	Lab Sample ID:	<u>982557A-20</u>
% Solids:	<u>0</u>	Date Received:	12/17/98

CAS No.	Deelister					
	Analyte	Concentration	С	Units	Q	M
471-34-1		111.		mg/L		T
71-52-3	Bicarbonate	111.		mg/L		T
471-34-1		2.0	U	mg/L	-	T
16887-00-6	Chloride	31.2		mg/L		L
	Hardness	932.		mg/L		D
12408-02-5	рН	7.65		S.U.		D
	Sulfate	1280		mg/L		L
				· · · · ·		
				·		

Comments:

# Appendix D Support Documentation/Resubmission

**END OF DATA PACKAGE** 

.



# Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# INORGANIC ANALYSIS QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

# SITE: ROBLIN STEEL CASE NO.: 7098-2557B/ SDG NO.: B2557

# REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

# REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY 20, 1999

# **STEARNS & WHELER** SITE: ROBLIN STEEL CASE NO.: 7098-2557B/ SDG NO.: B2557

## **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from four (4) water samples collected on 12-17-98. The samples were received by Severn Trent Laboratories on 12-18-98 and analyzed according to criteria set forth in EPA 600, Methods 310.1 (alkalinity), 325.2 (chloride), 150.1 (pH), and 375.2 (sulfate) plus Standard Methods for examination water and wastewater, 18th edition, 1992 Methods 2340B (hardness) and 2320B (carbonate/bicarbonate).

The following samples are contained within this report:

GW-7S

GW-8S

GW-6 **GW-14** 

The QC samples (MS) were assigned to sample GW-2S from SDG A2557 for sulfate and IW-1 & LP-01 from alternate batches for chloride and hardness respectively.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- **Data Completeness**
- Holding Times
- Calibrations
- Blanks
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- Instrument Detection Limits
- **Field Duplicate Results**
- Sample Results

Stearns & Wheler Case No. 7098-2557B / SDG No. B2557

Page 2

#### DATA COMPLETENESS

The laboratory case narrative stated that the analysis for samples GW-17S was cancelled due to samples being frozen.

## HOLDING TIME

All samples were prepared/analyzed within the holding time requirements established in the methods.

#### CALIBRATIONS & CRDL Analyses

The recoveries for chloride and sulfate in the initial and continuing calibrations were within the control limits of 90-110%.

#### **BLANKS**

The laboratory blanks, ICBs and CCBs were below the CRDLs for chloride and sulfate analyses.

## MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed for chloride, sulfate and hardness. The recoveries were within the control limits of 80-120% with the exception of hardness (132%). The reported positive sample results were considered biased high and qualified estimated.

#### MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was performed on samples GW-2S, LPP DET-07, GW-14, IW-1 and LP-01 for sulfate, alkalinity, pH, chloride and hardness respectively. The RPDs were below 20% with the exception of chloride (27.8%). The positive results for this analyte was qualified estimated.

### LABORATORY CONTROL SAMPLE

This sample analysis was performed for chloride, sulfate, alkalinity and hardness. The recoveries for all analyses were within the control limits of 80-120%.

Stearns & Wheler Case No. 7098-2557B / SDG No. B2557

Page 3

### **DUPLICATE ANALYSIS**

Duplicate analysis was performed on samples GW-11S/Dup-1 and GW-4/DUP-2 in SDG number 2557A. The RPDs were within the 100% with the exception of hardness in samples GW-11S/DUP-1. The reported sample data were qualified estimated in these two samples.

#### SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions with the exception of sulfate in samples GW-8S and GW-14. These samples were analyzed at five-fold dilutions. The reported sample results were within the calibration range and considered acceptable.

#### **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. The spike analysis for chloride and hardness were analyzed on the samples from different site. Therefore, the matrix interference could not be evaluated. Overall, major problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

Appendix A- Glossary of Data Qualifier
 Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

### **GLOSSARY OF DATA QUALIFIERS**

### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

# **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix B Data Summary Forms

# ANALYTICAL ASSURANCE ASSOCIATES (A3) INORGANIC WATER ANALYSIS

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-B2557 SDG NO.: B2557

2

CLIENT SAMPLE ID:	98	GW-7S	GW-8S	GW-6	GW-14
LAB SAMPLE ID:		32557B-02	982557B-03	982557B-04	982557B-05
TARGET COMPOUNDS:	UNITS				
Alkalinity Bicarbonate Carbonate	mg/L mg/L mg/L	328 328	296 296	225 225	40 39.6
Chloride	mg/L	12.2 J	15.6 J	9.99 J	7.04 J
Hardness	mg/L	301 J	808 J	366 J	491 J
pH	S.U.	7.33	7.3	7.75	8.03
Sulfate	mg/L	22.2	690	251	625

# Appendix C Laboratory Reported Results

sample no 0507

٢

<i>.</i>		GW-7S
Lab Name: <u>STL</u>	Contract:	
Lab Code: <u>STL</u> Case No.: <u>2557B</u>	SAS No.:	SDG No.: <u>B2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID:	<u>982557B-02</u>
% Solids: <u>0</u>	Date Received:	<u>12/18/98</u>

CAS No.	Analyte	Concentration	C	Units	Q	м
471-34-1	Alkalinity	328.		mg/L		T
71-52-3		328.		mg/L		T
471-34-1	Carbonate	2.0	Ũ	mq/L		T
16887-00-6	Chloride	12.2		mq/L		L
	Hardness	301.		mg/L		D
12408-02-5	рН	7.33		S.U.		D
	Sulfate	22.2		mg/L		L
				· · · · · · · · · · · · · · · · · · ·		
ي مندي وريد .		The sector sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and the sector and				<u> </u>
• • • •	· · · · · · · · · · · · · · · · · · ·					
						<u> </u>
						-
				1.0 4 .0 1		1
· · · · · · · · · · · · · · · · · · ·						
						<u> </u>

Comments:

		1	
WET C	HEM ANA	LYSIS DA	TA SHEET

sample No. - 0508

	GW-8S
Lab Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>2557B</u>	SAS No.: SDG No.: <u>B2557</u>
Matrix (soil/water): <u>WATER</u>	Lab Sample ID: <u>982557B-03</u>
% Solids: <u>0</u>	Date Received: <u>12/18/98</u>

CAS No.	Analyte	Concentration	C	Units	Q	м
471-34-1	Alkalinity	296.		mg/L		Т
71-52-3	Bicarbonate	296.		mg/L		T
471-34-1	Carbonate	2.0	Ū	mg/L		T
16887-00-6	Chloride	15.6		mg/L	4	L
• •	Hardness	808.		mg/L		D
12408-02-5	pH	7.30		S.U.		D
· · · · ·	Sulfate	690.		mg/L		Ŀ
					·	
2 	· · ·	a and the first state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st		taburathang makanah su		
**ZA;						
						•
				· · ·		
·	· · · · · · · · · · · · · · · · · · ·					
				· · · ·		
	· · · · · · · · · · · · · · · · · · ·					
L		1				i 1

Comments:

· ...

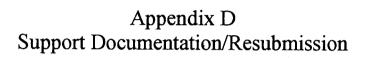
<ul> <li>Monthly and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec second second ></ul>	WET CHEM AN	1 ALYSIS DATA SHEET	sample not $-0509$		
		~ .	GW-6		
Lab Name: <u>STL</u>		Contract:	-		
Lab Code: <u>STL</u>	Case No.: <u>2557B</u>	SAS No.:	SDG No.: <u>B2557</u>		
Matrix (soil/water	): <u>WATER</u>	Lab Sample II	): <u>982557B-04</u>		
% Solids:	0	Date Received	l: <u>12/18/98</u>		

CAS No.	Analyte	Concentration	с	Units	Q	м
471-34-1		225.		mg/L		T
71-52-3	Bicarbonate	224.		mq/L		T
471-34-1	Carbonate	2.0	υ	mg/L		T
16887-00-6	Chloride	9.99		mg/L		L
	Hardness	366.		mg/L		D
12408-02-5	pH	7.75		<u>S.U.</u>		D
	Sulfate	251.		mq/L		L
	· · · · · · · · · · · · · · · · · · ·					
•	· · · · · · · · · · · · · · · · · · ·					
		and the second second second second second second second second second second second second second second second	****		• •	
					•	
				ъл. <b>п</b> . "		

Comments:

sample no. 0510

			GW-14
Lab Name: <u>STL</u>	·	Contract:	
Lab Code: <u>STL</u>	Case No.: <u>2557B</u>	SAS No.:	SDG No.: <u>B2557</u>
Matrix (soil/water):	WATER	Lab Sample ID:	<u>982557B-05</u>
% Solids:	0	Date Received:	<u>12/18/98</u>


1							
	CAS No.	Analyte	Concentration	С	Units	Q	М
	471-34-1	Alkalinity	40.0		mg/L		Т
	71-52-3	Bicarbonate	39.6		mg/L		T
·		Carbonate	2.0	ΰ	mg/L		T
	16887-00-6	Chloride	7.04		mg/L		L
		Hardness	491.		mg/L		D
	12408-02-5	рН	8.03		• S.U.		D
		Sulfate	625.		mg/L		L
•							
			·· .				
			ha in a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a sin a s		andrensenthalister institution for its and		
		·····					
		······································					
		·····					
							——
		······································					
			· · · · · ·		•.		
							<b>└──┤</b>

Comments:

-

Ø

Sec. And



# **END OF DATA PACKAGE**

Ì

R



# **Analytical Assurance Associates, Inc.**

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGAINC QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

SITE: ROBLIN STEEL CASE NO.: 7098-2557A/ SDG NO.: A2557

# REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY19, 1999

# STEARNS & WHELER SITE NAME: ROBLIN STEEL CASE NO.:7098-2557A/SDG NO.: A2557

### **INTRODUCTION**

This quality assurance report is provided based upon a review of all data generated from seventeen (17) water samples collected on 12-15,16-98 and received by Severn Trent Laboratories on 12-16,17-98. Samples were analyzed for volatile target compounds according to criteria set forth in USEPA CLP OLM3.1. In addition, one sample was analyzed for Poly Aromatic Hydrocarbons (PAH) based on NYSDEC' 95 protocol

The following samples are contained within this report:

GW-1	GW-9	<b>TB 121598</b>	<b>GW-12S</b>	<b>GW-4</b>
<b>GW-2</b>	GW-3	<b>GW-10S</b>	DUP-2	
GW-2S	GW-3S	GW-16S*	GW-4S	
GW-11S	DUP-1	<b>TB 2-4</b>	GW-5	

* Sample was analyzed for PAH fraction.

The QC (MS/MSD) analyses was performed on samples GW-2S & GW-4S for volatile fraction.

All data have been validated with regard to usability according to the quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No.: 7098-2557A/ SDG No.: A2557

### **DATA COMPLETENESS**

Three samples (GW 17S, GW-5S and GW-13) were listed on the chain-of-custody, however; the analysis was not included in the data package. The laboratory case narrative stated that these samples were not analyzed due to the samples begin frozen.

#### **HOLDING TIME**

All volatile samples were analyzed within 5-days from VTSR based on the NYSDEC requirements. Also, the PAH sample was extracted within 5-days and analyzed within 40-days from VTSR.

### **CALIBRATION**

#### Volatile

The response factors were within the data validation requirement limit of 0.05 in all calibrations. The following %RSDs ana %Ds were above 30% and 25% in the initial and continuing calibrations respectively.

Compound Name	IC	CC	СС
	12-14-98	12-19-98 @ 8:55	12-20-98 @ 10:53
Bromomethane	38.9		40
Acetone	36.2		
Chloroethane		29.4	36
Associated Samples:	All samples	TB 121598	GW-4
	_	GW-1	GW-4MS
		GW-2	GW-4MSD
		GW-2S	GW-2MS
		GW-11S	GW-2MSD
]		GW-9	
		GW-3	
		GW-3S	
		DUP-1	

IC= Initial Calibration

CC= Continuing Calibration

The reported sample results and not detected values were qualified "J" & "UJ" in the corresponding samples.

## PAH

All RSDs, %Ds and response factors were within the control limits in both initial and continuing calibrations for the PAH compounds.

### Case No.: 7098-2557A/ SDG No.: A2557

### **BLANKS**

#### Volatile

The method blanks contained acetone and 2-butanone at levels below 2 times the CRQLs. The reported sample results up to 10 times the CRQLs were qualified "U" and considered as the laboratory artifact. Two trip blanks were analyzed. The trip blanks were free of target and non-target compounds.

#### PAH

The laboratory method blank was free of target compounds. The TICs were not reported.

#### SURROGATE RECOVERIES

#### Volatile

All samples and the corresponding QC samples were spiked with three surrogate compounds as required by the applied methods. The recoveries were within the control limits.

#### PAH

Sample and the corresponding QC samples were spiked with eight surrogate compounds as recommended by the method. The recoveries were within the control limis.

# MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

#### Volatile

Two sets of matrix spike/spike duplicate sample analyses were performed for volatile fraction. The recoveries and RPDs were within the control limits with the exception of RPD for benzene (20%) in GW-4S MS/MSD. The data were not impacted since this compound was not detected in the samples.

#### PAH

Matrix spike analysis was not provided.

#### LABORATORY CONTROL SAMPLE

#### Volatile

Two LCS samples were analyzed in volatile fraction. The recoveries were within the control limits.

#### PAH

One blank spike sample was analyzed. The recoveries were within the control limits.

Stearns & Wheler Case No.: 7098-2557A/ SDG No.: A2557

### **INTERNAL STANDARD**

All internal standard recoveries and retention times were within the control limits established by the laboratory in both volatile and PAH analyses.

#### **DUPLICATE ANALYSIS**

Two sets of duplicate analysis (GW-11S/DUP-1 & GW-4/DUP-2) were analyzed for volatile fraction. Target compounds were not detected at levels above the CRQLs in these samples.

### SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. The Tentatively Identified Compound (TICs) were not detected in the samples with the exception of one TIC in sample GW-3S.

Sample for PAH was also analyzed at 1-fold dilution. The target compounds were not detected at levels above CRQLs. The TICs were not searched for this fraction.

#### **SUMMARY**

The cooler temperature was not listed on the chain-of-custody. This information must be provided by the laboratory. The sample results below the CRQLs were qualified estimated, due to the uncertainty near the detection limits in the both fractions.

Overall, major analysis problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

- Appendix A- Glossary of Data Qualifier
   Appendix B- Data Summary Forms
- 3. Appendix C- Laboratory Results (Form I)
- 4. Appendix D Support Documentation /Resubmission (if applicable)

Appendix A Glossary of Data Qualifier

## **GLOSSARY OF DATA QUALIFIERS**

## **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
   [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

# **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix B Data Summary Forms

# ANALYTICAL ASSURANCE ASSOCIATES (A3) VOLATILE WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STLICT STL ID: 7099-2557A

SDG NO.: A2557

CUIENT SAMPLE ID: LAB SAMPLE ID: DILUTION FACTOR:		GW-1 982557A-01 1.0:	GW-2 982557A-02 1.0	GW-2S 982557A-03 1.0	GW-10S 982557A-04 1.0	GW-111S 982557A-05 1L0	GW-9 982557A-06 1.0 [,]	GW-3 982557A-07 1.0
TARGET COMPOUNDS:				<u> </u>				
	CRQL							
Chloromethane	10						•	
Bromomethane	10	UJI	UJ	UJ	UU	UJ	LU	UJ
/inyl Chloride	10					••	05	
Chloroethane	10	UJI	UJ	UJ.		UJ	UJ	በገ
flethylene Chloride	10					••	0.5	
Acetone	10	6 U.J.	UJ	UJ	15 UU	UJ	LU	MJ
Carbon: Disulfide	10				2 J	1 J	05	00
I,1-Dichloroethene	10							
1,1-Dichloroethane	10			2 J				
,2-Dichloroethene (total):	10							
Chloroform	10		,				1	
1,2-Dichlbroethane	10						ĸ	
-Butanone	10							
1,1,1-Trichloroethane	10							
Carbon: Tetrachloride	10							
Bromodichloromethane	10							
I,2-Dichloropropane	10							
is-1,3-Dichloropropene	10							
irichloroethene:	10							
Dibromochloromethane	10							
1,2-Trichloroethane	10							
Senzene:	10							
rans-1,3-Dichloropropene	10							
Iromoform	10					•		
-Methyl-2-pentanone	10			·		·		
-Hexanone:	10							
etrachloroethene	10			4 J.				
,1,2,2-Tetrachloroethane	10							
oluene	10							
hlorobenzene	10							
thylbenzene	10							
ityrene	10							
ylene (total)	10							

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) VOLATILE WATER ANALYSIS: ug/Li

·

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-2557A, SDG NOI: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID: DILUTION FACTOR:		GW-3S 982557A-08 1.0;	DUP-1∣ 982557A⊧09; 1.0	TB 121598 982557A-10 1.0	GW-16S 982557A-11 1.0	TB 2-4 982557A-12 1/0	GW-12S 982557A-13 1.0	DUP 2: 982557A-15: 1.0
TARGET COMPOUNDS:						· · · · · · · · · · · · · · · · · · ·		<u></u>
Obder an and	CRQL							
Chloromethane Bromomethane	10							
Vinyl Chloride	10	U,J)	UJ	UJ,	UN	UJ	ĥ	MJ
Chloroethane	10							
Methylene Chloride	10 10	UJI	UJ	UJ,				
Acetone	10	11.6						
Carbon:Disulfide	10	(L)	UJ	UJ	n	UJ	6 UJ	UU
	10							
1,1-Dichloroethane	10							
1,2-Dichloroethene (total)	10	62						
Chloroform	10	02						
1,2-Dichloroethane	10							
2-Butanone	10							
1,1,1-Trichloroethane	10		•					
Carbon Tetrachloride	10							
Bromodichloromethane	10				•		•	
1,2-Dichloropropane	10							
cis-1,3-Dichloropropene	10							
Trichloroethene	10	56						
Dibromochloromethane	10							
ll,1,2-Trichloroethane	10							
Benzene:	10							
Irans+1,3-Dichloropropene	10					•		
Bromoform	10					•		
4-Methyl-2-pentanone:	10		•					
-Hexanone	10							
letrachloroethene	10	40						
1,1,2,2-Tetrachloroethane	10							
loluene	10							
Chlorobenzene	10							
Ethylbenzene	10							
Styrene	10							
Xylene (total)	10							

.

#### ANALYTICAL ASSURANCE: ASSOCIATES (A3) VOLATILE: WATER ANALYSIS: ug/Li

				ug/	U	
CLIENT:: STEARNS & WHE LABORATORY NAME: STI STIL ID: 7099-2557A, SDG NOI: A2557			•			
CUIENT SAMPLE ID: LAB SAMPLE ID: DILUTION: FACTOR:	•	GW-4 982557A-16 1.0;	GW:4S; 982557A-17 1.0	GW-5 982557A-18 1.0		
TARGET COMPOUNDS:						 
	CRQL					
Chloromethane	10					
Bromomethane	[•] 10	UJI	UJ	UJ,	•	
Vinyl Chloride	10					
Chloroethane	10	(LU				
Methylene Chloride	10				•	•
Acetone	10	U,J)	UJ	· UJ,		
Carbon:Disulfide	10					
11,1-Dichloroethene	10					
1,1-Dichloroethane	10					
1,2-Dichloroethene (total)	10					
Chloroform	10					
1,2-Dichloroethane:	10					
2-Butanone	10					
1,1,1-Trichloroethane	10					
Carbon Tetrachloride	10					
Bromodichloromethane	10	•				-
1,2-Dichloropropane	10					
cis-1,3-Dichloropropene	10					
Tirichloroethene:	10					
Dibromochloromethane	10					
1,1,2-Trichloroethane	10					
Benzene	10					
Trans-1,3-Dichloropropene	10					
Bromoform	10					•
4-Methyl-2-pentanone:	10					
2-Iflexanone	10					
Tetrachloroethene	10					
1,1,2,2-Tetrachloroethane	10					
Toluene	10					
Chlorobenzene	10					
Ethylbenzene	10					
Styrene	10					
Xylene (total)	10					

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-2557A SDG NO.: A2557

CLIENT SAMPLE ID: LAB SAMPLE ID: DILUTION FACTOR:		GW-16S 2557A-11 1.0	
TARGET COMPOUNDS:		-	<del>-</del> a
	CRQL	,	
Naphthalene	10		
2-Methylnaphthalene	10		
Acenaphthylene	10		
Acenaphthene	10		
Fluorene	10		
Phenanthrene	10		
Anthracene	10		•
Fluoranthene	10		
Pyrene	10	0.06 J	
Benzo(a)anthracene	10		
Chrysene	10		
Benzo(b)fluoranthene	10		
Benzo(k)fluoranthene	10		
Benzo(a)pyrene	10	0.06 J	
ndeno(1,2,3-cd)pyrene	10		
Dibenzo(a,h)anthracene	10		
Benzo(g,h,i)perylene	10		·

Appendix C Laboratory Reported Results

o

#### TABLE VO-1.0 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

All values are ug/L.

Client Sample I.D.	Method Blank	GW-1	GW-2	
Lab Sample I.D. Method Blank I.D. Quant. Factor	VBLKO5 VBLKO5 1.00	982557A-01 VBLKO5 1.00	982557A-02 VBLKO5 1.00	Quant. Limits with no Dilutior
Chloromethane	U	U U	U	10
Bromomethane	U U	บ บ	. U	10
Vinyl Chloride	Ŭ	U U	U	10
Chloroethane	U U	U U	υ	10
Methylene Chloride	U. U.	U U	U U	10
	9J	6JB	U	10
Acetone Carbon Disulfide	и 1 т	U U	υ υ	10
1,1-Dichloroethene	i on e <mark>π</mark> e satter		្រាំ មិនស្វារិ <mark>ម</mark> ្នា	10
1,1-Dichloroethane	U U	U U	U U	10
1,2-Dichloroethene (total)			U U	10
Chloroform	υ	U	U U	10
1,2-Dichloroethane		U U	ម	10
2-Butanone	4	U	U	10
1,1,1-Trichloroethane				10
Carbon Tetrachloride	TT	U U	Ŭ	10
Bromodichloromethane	Set on Tree of	$\mathbf{U}^{(1)}$	ŭ T	10
1,2-Dichloropropane	U U	Ŭ	U.	10
cis-1,3-Dichloropropene				10
Trichloroethene	U U	$\mathbf{U}$	Ŭ	10
Dibromochloromethane	υ	Ū	υ	10
1,1,2-Trichloroethane	Ū	Ŭ	Ū	10
Benzene	<b>.</b> .	Ū	Ū	10
trans-1,3-Dichloropropene	Ū	Ū	Ū	10
Bromoform	Ū	U	Ū	10
4-Methyl-2-Pentanone	υ	Ū	Ū	10
2-Hexanone	υ	. U	Ū	10
Tetrachloroethene	υ	Ū	Ū	10
1,1,2,2-Tetrachloroethane	. U	U	. U	10
Toluene	υ	Ū	Ū	10
Chlorobenzene	U	υ	υ	10
Ethylbenzene	U	U	υ	10
Styrene	U	υ	<b>ט</b> .	10
Xylene (total)	U	U	U	10
Date Received		12/16/98	12/16/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/19/98	12/19/98	12/19/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

۲. ,

١,

.

#### TABLE VO-1.1 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

#### All values are ug/L.

	T			
Client Sample I.D.	GW-2S	GW-11S	GW - 9	
Lab Sample I.D.	982557A-03	982557A-05	982557A-06	Quant.
Method Blank I.D.	VBLKO5	VBLK05	VBLKO5	Limits with no
Quant. Factor	1.00	1.00	1.00	Dilution
Quante. Pactor	1 1.00	1.00	1.00	DITUCION
Chloromethane	U	υ	υ	10
Bromomethane	ីប	<u>ט</u>	υ	10
Vinyl Chloride	U	U	υ	10
Chloroethane Methylene Chloride	U U	U	Ū	10
Methylene Chloride	I U	1 0	υ	10
Acetone	U.	U	Ŭ	10
Carbon Disulfide	U U	l 1J	l U	10 "
1,1-Dichloroethene	in the second second second second second second second second second second second second second second second	ne testa s <b>u</b> testa est	-	10
1,1-Dichloroethane 1,2-Dichloroethene (total)	2J	U	U	10
1,2-Dichloroethene (total)	U	Ŭ	Ŭ	10
CUTOLOLOLU	I U	U	U	10
1,2-Dichloroethane	U III	U	U	10
2-Butanone	U	U	U	10
1,1,1-Trichloroethane				10
Carbon Tetrachloride	Ŭ	U	U	10
Bromodichloromethane	t sa tu tu tu tu	Ŭ	U	10
1,2-Dichloropropane	<u>U</u>	Ŭ	U	10
cis-1,3-Dichloropropene	ale se <b>u</b> de se la c	Ū	<u>U</u>	10
IIICHIOLOGCHENE	I U	U U	Ŭ	10
Dibromochloromethane			Ŭ	10
1,1,2-Trichloroethane Benzene	Ŭ	U terrete U	Ŭ	10
benzene	Ŭ		U	10 10
trans-1,3-Dichloropropene Bromoform	Ŭ	U U	ប ប	
A-Methyl-2-Pentanone	Ŭ	U U	U U	10
4-Methyl-2-Pentanone 2-Hexanone	U U	U	U U	
Tetrachloroethene	4J	Ŭ	Ŭ	
1,1,2,2-Tetrachloroethane	Ŭ	υ	υ	10
Toluene	U U	υ	U U	10
Chlorobenzene	Ŭ	Ŭ	ប ប	10
Ethylbenzene	Ŭ	Ŭ	Ŭ.	10
Styrene	Ŭ	Ŭ	Ŭ	10
Xylene (total)	Ŭ	Ŭ	Ŭ	10
Date Received	12/16/98	12/16/98	12/16/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/19/98	12/19/98	12/19/98	
				L 1

See Appendix for qualifier definitions
Note: Compound detection limit = quantitation limit x quantitation factor
Quant. Factor = a numerical value which takes into account any
variation in sample weight/volume, % moisture and sample dilution.

#### TABLE VO-1.2 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

All values are ug/L.

	T			
Client Sample I.D.	GW-3	GW-3S	DUP-1	Quant.
Lab Sample I.D.	982557A-07	982557A-08	982557A-09	Limits
Method Blank I.D.	VBLKO5	VBLKO5	VBLKO5	with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene 2-Butanone 1,1,1-Trichloroethane 2-Butanone 1,1,1-Trichloroethane 1,2-Dichloropropane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Xylene (total)	U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	<b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b> <b>A</b>	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Date Received	12/16/98	12/16/98	12/16/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/19/98	12/19/98	12/19/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

1

~

#### All values are ug/L.

	T		1	T J
				1
Client Sample I.D.	TB 121598			
				Ouant.
Lab Sample I.D.	982557A-10			Limits
Method Blank I.D.	VBLK05			with no
Quant. Factor	1.00			Dilution
	<u> </u>			
Chloromethane	TT			
Bromomethane				10
Vinyl Chloride				10
Chloroethane			and the second second	
Methylene Chloride				
Acetone Childride		$e^{-i\omega_{\rm e}} = i\omega_{\rm e}$	No. N. A	
Carbon Digulfido			····	
1 1 Dightoroothone	U		a a gran a second	10
1 1 Dichlonocthano		, í		10
1.2 Dichioroethane				10
Chlensform	U			10
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1 2-Dichloroethane		. · ·		10
1,2-Dichloroethane 2-Butanone	e <b>- <u></u> -</b>	anda taka na kana sa kata sa k	Park Cart Barris	10
Figure 1 and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s second second cond second cond second d the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	and the second second second second second second second second second second second second second second second			
1,1,1-Trichloroethane	U			10
Carbon Tetrachloride	U	· · · ·		10
Bromodichloromethane	U			10
1,2-Dichloropropane	U			10
cis-1,3-Dichloropropene	U			10
Trichloroethene	U			10
1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene	, in the <b>U</b> ltraction	en ser en en estado	e estre est	10
1,1,2-Trichloroethane	U			10
Benzene	U			10
trans-1,3-Dichloropropene	U			10
Bromoform	U			10
4-Methyl-2-Pentanone	U			10
2-Hexanone	ប		n an that a	10
Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane	U			10
	υ			10
	TT			10
Chlorobenzene	υ			10
Ethylbenzene	υ			10
DCYTCHE	0	i		10 .
Xylene (total)	<u> </u>			10
	12/16/98			
Date Extracted	N/A			
Date Analyzed	12/19/98			
		· · · · · · · · · · · · · · · · · · ·		

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

ι,

#### TABLE VO-1.4 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

All values are ug/L.

		γ	<u> </u>	l
	Method			
Client Sample I.D.	Blank	GW-10S	GW-16S	Ownersh
Lab Sample I.D.	VBLKO6	982557A-04	982557A-11	Quant. Limits
Method Blank I.D.	VBLK06	VBLKO6	VBLKO6	with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chlementher -				
Chloromethane Bromomethane	U U	Ŭ	Ŭ	10
Vinyl Chloride	Ŭ	U	U	10
Chloroethane	Ŭ	Ŭ	Ŭ	10
Methylene Chloride	U U	U U	U	10
Acetone	6J	15B	U U	10
Carbon Disulfide	- 00. U	2J	U U	10
1,1-Dichloroethene	U U	_20 U	ប បើនដែរ បើដែរ	10 10
1,1-Dichloroethane	יט	Ŭ	ΰ	10
1,2-Dichloroethene (total)	se is s <b>u</b> tes in	U	and the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set	10
Chloroform	Ŭ	U	U	10
1,2-Dichloroethane	U U	Ŭ	Ū	10
2-Butanone	Ŭ	Ŭ	U	10
1,1,1-Trichloroethane	ΰ	ប	u u	10
Carbon Tetrachloride	Ū	Ŭ	U	10
Bromodichloromethane	υ	Ŭ	Ū	10
1,2-Dichloropropane	υ	υ	U	10
cis-1,3-Dichloropropene	υ	U	U	10
Trichloroethene	Ū	υ	υ	10
Dibromochloromethane	U.	U	<u>ប</u>	10
1,1,2-Trichloroethane	υ	υ	U	10
Benzene		U	. <b>U</b>	10
trans-1,3-Dichloropropene	ַד	U	U	10
Bromoform	U		U	10
4-Methyl-2-Pentanone	U	U	Ŭ	10
2-Hexanone	U	Ū	U	10
Tetrachloroethene	U	<u> </u>	U	10
1,1,2,2-Tetrachloroethane Toluene	. บ บ	U	U	10
Chlorobenzene		U	Ŭ	10
Ethylbenzene	U U	U U	U	10
Styrene	U U	U U	U	10
Xylene (total)	υ	υ	U U	10 10
			U	
Date Received		12/16/98	12/17/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/19/98	12/19/98	12/20/98	
			, , ,	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

۱.

۶

١,

۶

#### TABLE VO-1.5 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

#### All values are ug/L.

	7	1	1	· · · · · · · · · · · · · · · · · · ·
Client Sample I.D.	TB 2-4	GW-12S	DUP 2	
-		1		Quant.
Lab Sample I.D.	982557A-12	982557A-13	982557A-15	Limits .
Method Blank I.D.	VBLKO6	VBLKO6	VBLKO6	with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chloromethane	U	U	U U	10
Bromomethane	U U	· • • •	U	10
Vinyl Chloride	U	U	U	10
Chloroethane		U U	U	10
Methylene Chloride Acetone	Ŭ	U	U	10
Acetone	Ŭ	6JB	υ	10
Carbon Disulfide		Ŭ	Ŭ	10
1,1-Dichloroethene			U	10
1,1-Dichloroethane	U	U Set en tra Unationales	U	10
1,2-Dichloroethene (total)	Na sa interneti Unita interneti. T	-		10
Chloroform	Ū	Ū	Ŭ	10
1,2-Dichloroethane		U at	U	10
2-Butanone	U Sana ang di Sal <b>u</b>	Ŭ	<u>U</u>	10
1,1,1-Trichloroethane Carbon Tetrachloride	u a construction de la construction de la construction de la construction de la construction de la construction	U.	Ŭ	10
Bromodichloromethane	U Na na nasati sa <del>u</del> tasi na si	U U		10
	na tenti et nUe da na i a TT	· •	υ. 	10
1,2-Dichloropropane	U Date som de talfføre i støre af	<b>ט</b> קיני איז <b>ט</b> יני געניין איז איז איז איז איז איז איז איז איז איז	<b>ט</b> של היא איז איז	10
cis-1,3-Dichloropropene Trichloroethene		Partin set U − − TT	υ	10 10
Dibromochloromethane		U	U U	
1,1,2-Trichloroethane	sau no di ne <mark>lU</mark> municipal TT	U U	U U	10
	U TT	U U	U U	10
Benzene trans-1,3-Dichloropropene	ττ 1	ບ ບ	U	
Bromoform		U U	U U	
Bromoform 4-Methyl-2-Pentanone	π	υ	U U	
2-Hexanone	บ บ	υ	υ	10
Tetrachloroethene	U U	υ	U U	
1,1,2,2-Tetrachloroethane	•	υ	υ	10
Toluene	Ū	Ŭ	U U	
Chlorobenzene	-		ប	10
Ethylbenzene	Ŭ	Ŭ	U U	10
Styrene		· · · · · · · · · · · · · · · · · · ·	Ū	10
Xylene (total)	Ŭ	Ū	Ū	10
Date Received	12/17/98	12/17/98	12/17/98	
Date Extracted	N/A	N/A	N/A	1
Date Analyzed	12/20/98	12/20/98	12/20/98	
	L			1

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE VO-1.6 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

All values are ug/L.

Client Sample I.D.	GW-4S	GW-5	i	Quant.
Lab Sample I.D.	982557A-17	982557A-18		Limits
Method Blank I.D.	VBLKO6	VBLKO6		with no
Quant. Factor	1.00	1.00		Dilutio
Chloromethane	U	υ		10
Bromomethane	บั บั	- U		10
Vinyl Chloride	U U	U U U		10
Chloroethane	Ŭ	Ŭ		10
Methylene Chloride	Ŭ	U U U		10
Acetone	Ŭ			10
Acetone Carbon Disulfide	TT I	U		10
1,1-Dichloroathene	ំ ីបី	Ŭ		10
1,1-Dichloroethane	Ţ	Ŭ	· · ·	10
1,2-Dichloroethene (total)	$\overline{\mathbf{U}}$	Ŭ.		10
Chloroform	U	Ŭ		10
1,2-Dichloroethane	Ŭ	Ŭ		10
2-Butanone	Ŭ	Ū		10
1,1,1-Trichloroethane		u se <b>u</b> se se se se se se se se se se se se se	·	10
Carbon Tetrachloride	U	$\mathbf{U}$		10
Bromodichloromethane	$\mathbf{\tilde{U}}$			10
1 2-Dichloropropano	TT	i i i i i i i i i i i i i i i i i i i		10
cis-1,3-Dichloropropene Trichloroethene	an da na <b>v</b> era area	e en l'un <b>T</b> enses de po	Carlo and Carlo and Carlo and Carlo and Carlo and Carlo and Carlo and Carlo and Carlo and Carlo and Carlo and C	10
Trichloroethene	un de la companya de la companya de la companya de la companya de la companya de la companya de la companya de Un de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l	u se de la companya de la companya de la companya de la companya de la companya de la companya de la companya d La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp	n fallen nill	10
Dibromochloromethane	U			10
1,1,2-Tricnioroethane	U 1	U AN AN U AN AN AN AN AN AN AN AN AN AN AN AN AN		10
Benzene trans-1,3-Dichloropropene Bromoform	u U U	u <b>U</b> a ser esta		10
trans-1,3-Dichloropropene	υ	TT I		10
Bromoform	<b>ט</b> שלא היא און	Ŭ	get en stand state	10
4-Methyl-2-Pentanone	U 1	υ		10
2-Hexanone	υ			10
Tetrachloroethene	υ	Ū I		10
1,1,2,2-Tetrachloroethane	υ	σ		10
Toluene	Ū	υ		10
Chlorobenzene	υ	υ		10
Ethylbenzene	U	υ		10
Ethylbenzene Styrene	Ū	Ū		10
Xylene (total)	U	Ū		10
Date Received	12/17/98	12/17/98		
Date Extracted	N/A	N/A		
Date Analyzed	12/20/98	12/20/98		

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

١.

*

#### TABLE VO-1.7 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

#### All values are ug/L.

	Method	GW-25	GW-2S	
Client Sample I.D.	Blank	MS	MSD	
	Diank	140	982557A-03	Quant.
Lab Sample I.D.	VBLKO7	982557A-03MS		Limits
Method Blank I.D.	VBLK07	VBLK07		1 1
Quant. Factor			VBLKO7	with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chloromethane	U U	U U	U	10
	U U U	u u	Ŭ	10
Bromomethane Vinyl Chloride		τ	υ 	
		· · · ·	•	10
Chloroethane			<u>U</u>	10
Methylene Chloride	U	U	U	10
Methylene Chloride Acetone Carbon Digulfido	11	U	U	10
	1 U	U	U	10
1,1-Dichloroethene		53X	<b>49X</b>	10
1,1-Dichloroethane	U U	2J	2J	10
1,2-Dichloroethene (total)		U	U	10
Chloroform	J U	ບ <u>ບ</u>	U	10
1,2-Dichloroethane	υ	U	<u>ש</u>	10
2-Butanone	I 5J	Ū	Ŭ	10
1,1,1-Trichloroethane	ter i statu e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e ter e t	U	U	10
Carbon Tetrachloride	ττ 1	π	Ŭ	10
Bromodichloromethane	in all and the second	ំបំ បំ បំ	Ŭ	10
1,2-Dichloropropane	ΤΤ	υ	Ŭ	
cis-1,3-Dichloropropene	STRACE STRACT	en <b>u</b>	en statisti	10
Trichloroethene	TT	44X	44X	
Dibromochloromethane		110	U	10
1,1,2-Trichloroethane	terista and United and the second	U TT		10
		Ŭ	Ŭ	
Benzene trans-1,3-Dichloropropene	<u> </u>	55X	54X	10
trans-1,3-Dichloropropene	U	Ŭ	U	10
Bromoiorm	<u>U</u>	U	U	10
trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone	U U	U	ប	10
2-mexanone	parts in <b>U</b> ser still	U	<b>U</b>	10
Tetrachloroethene	Ū	3J	3J	10
1,1,2,2-Tetrachloroethane	in the second second second second second second second second second second second second second second second	· U	ិប	10
Toluene	U U	49X	47X	10
Chlorobenzene	an tea 😷 tean a tr	48X	46X	10
Ethylbenzene	U	U	υ	10
Styrene	υ	ប	U U	10
Xylene (total)	U	Ū	Ū	10
Date Received		12/16/98	12/16/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/20/98	12/20/98	12/20/98	
	l			

See Appendix for qualifier definitions
Note: Compound detection limit = quantitation limit x quantitation factor
Quant. Factor = a numerical value which takes into account any
variation in sample weight/volume, % moisture and
sample dilution.

#### TABLE VO-1.8 7098-2557A STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	VBLKO7	GW-4S MS 982557A-17MS VBLK07	VBLKO7	Quant. Limits with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene	U U U U U U U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Chlorobenzene Ethylbenzene Styrene Xylene (total)	ט ש ש ש	45X 44X U U U U	48X 47X U U U U	10 10 10 10 10
Date Received Date Extracted Date Analyzed	12/17/98 N/A 12/20/98	12/17/98 N/A 12/20/98	12/17/98 N/A 12/20/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Aqueous

1,

,

1

ļ.

,

#### TABLE SV-1.0 7098-2557A STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

#### All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKLR SBLKLR 1.00	GW-16S 982557A-11 SBLKLR 1.05	Quant. Limits with no Dilution
Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo (a) anthracene Chrysene Benzo (b) fluoranthene Benzo (c) fluoranthene Benzo (c) pyrene Indeno (1, 2, 3-cd) pyrene Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	U U U U U U U U U U U U	U U U U U U U U U U U U U U U U U U U	10 10 10 10 10 10 10
Date Received Date Extracted Date Analyzed	12/20/98 12/23/98	12/17/98 12/20/98 12/23/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

# TABLE VO-2.07098-2557ASTEARNS & WHELERVOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

Aqueous

۹.

.

#### Related Method Blank: VBLK05

Lab Sample Id: VBLKO5 Client Sample Id: Method Blank

	CAS#	····		(	Compound	·····	RT	Estimated Conc., ug/L
			NONEDI	ETEC	FED			
		Lał	Sample	e Id:	982557A-01	Clien	t Sample Id:	GW-1
	CAS#				Compound			Estimated <u>Conc., ug/L</u>
			NONE DE	STECI	ED			
		Lab	Sample	e Id:	982557A-02	Clien	t Sample Id:	GW - 2
	CAS#		±		Compound		RT	Estimated Conc., ug/L
			NONE DE	ETECI	ED			
		Lab	Sample	Id:	982557A-03	Client	Sample Id:	GW-2S
_	CAS#			C	compound			Estimated <u>Conc., ug/L</u>
			NONE DE	ETECI	ED			
		Lab	Sample	Id:	982557A-05	Client	Sample Id:	GW-11S
	CAS#			C	compound		RT	Estimated Conc., ug/L
			NONE DE	TECI	ED			

#### TABLE VO-2.1 7098-2557A STEARNS & WHELER VOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

Aqueous

١,

Related Method Blank: VBLK05

Lab Sample Id: 982557A-06 Client Sample Id: GW-9

CAS#	Compound RT	Estimated Conc., ug/L
	NONE DETECTED	
La	b Sample Id: 982557A-07 Client Sample Id:	GW-3
CAS#	CompoundRT	Estimated Conc., ug/L
	NONE DETECTED	
Lab	Sample Id: 982557A-08 Client Sample Id: 0	GW-35 '
CAS#	Compound RT	Estimated Conc., ug/L
1634-04-4	PROPANE, 2-METHOXY-2-METHYL- 10.54	20 JN
Lab	Sample Id: 982557A-09 Client Sample Id: I	DUP-1
CAS#	CompoundRT	Estimated Conc., ug/L
	NONE DETECTED	_
Lab Sa	ample Id: 982557A-10 Client Sample Id: TB	121598
CAS#	CompoundRT	Estimated Conc., ug/L
	NONE DETECTED	

#### TABLE VO-2.2 7098-2557A STEARNS & WHELER VOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

Aqueous ·

Ļ.

,

Related Method Blank: VBLK06

Lab Sample Id: VBLK06 Client Sample Id: Method Blank

CAS#		Compound		Estimated Conc., ug/L
		NONE DETECTED		
	Lab	Sample Id: 982557A-04	Client Sample Id:	GW-10S
CAS#		Compound	RT	Estimated Conc., ug/L
		NONE DETECTED		
	Lab	Sample Id: 982557A-11	Client Sample Id:	GW-16S
CAS#		Compound	RT	Estimated Conc., ug/L
		NONE DETECTED		
	Lab	Sample Id: 982557A-12	Client Sample Id:	TB 2-4
CAS#		Compound	RT	Estimated <u>Conc., ug/L</u>
		NONE DETECTED	<u></u>	<u>,,</u>
	Lab	Sample Id: 982557A-13	Client Sample Id:	GW-12S
CAS#		Compound	RT	Estimated Conc., ug/L
		NONE DETECTED		

#### TABLE VO-2.3 7098-2557A STEARNS & WHELER VOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

#### Related Method Blank: VBLK06

Lab Sample Id: 982557A-15 Client Sample Id: DUP 2

CAS#	Compound	RT	Estimated Conc., ug/L
	NONE DETECTED	• • • • •	
La	b Sample Id: 982557A-17	Client Sample Id:	GW-4S
CAS#	Compound	RT	Estimated <u>Conc., ug/L</u>
	NONE DETECTED		
L	ab Sample Id: 982557A-18	Client Sample Id:	GW-5
CAS#	Compound		Estimated Conc., ug/L
	NONE DETECTED		

#### TABLE VO-2.4 7098-2557A STEARNS & WHELER VOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

#### Related Method Blank: VBLK07

Lab Sample Id: VBLK07 Client Sample Id: Method Blank

CAS#	Compound NONE DETECTED	<u>RT</u>	Estimated Conc., ug/L
	Lab Sample Id: 982557A-16	Client Sample Id:	GW-4
CAS#	Compound	RT	Estimated <u>Conc., ug/L</u>
	NONE DETECTED		

See Appendix for qualifier definitions

<u>!</u>.

.

Appendix D Support Documentation/Resubmission

# **END OF DATA PACKAGE**



## Analytical Assurance Associates, Inc.

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC ANALYSIS QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

## SITE: ROBLIN STEEL CASE NO.: 7098-2557B/ SDG NO.: B2557

## REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY 20, 1999

#### STEARNS & WHELER SITE NAME: ROBLIN STEEL CASE NO.:7098-2557B/SDG NO.: B2557

#### **INTRODUCTION**

This quality assurance report is provided based upon a review of all data generated from five (5) water samples and one trip blank collected on 12-17-98. Samples were received by Severn Trent Laboratories on 12-18-98 and were analyzed for volatile target compounds according to criteria set forth in USEPA CLP OLM3.1. In addition, one sample was analyzed for Poly Aromatic Hydrocarbons (PAH) based on NYSDEC' 95 protocol

The following samples are contained within this report:

GW-17S*	<b>GW-6</b>
GW-7S	<b>GW-14</b>
GW-8S	<b>TB-5</b>

* Sample was analyzed for PAH fraction only.

The QC (MS/MSD) analyses was performed on samples GW-4S and GW17S for volatile and PAH analyses.

All data have been validated with regard to usability according to the quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No.: 7098-2557B/ SDG No.: B2557

#### DATA COMPLETENESS

The laboratory case narrative stated that sample 982557B-01 (GW-17S) was not analyzed for the volatile fraction due to sample being frozen.

#### HOLDING TIME

All volatile samples were analyzed within 5-days from VTSR based on the NYSDEC requirements. Also, the PAH sample was extracted within 5-days and analyzed within 40-days from VTSR.

#### **CALIBRATION**

#### Volatile

The response factors were within the data validation requirement limit of 0.05 in all calibrations. The following %RSDs and %Ds were above 30% and 25% in the initial and continuing calibrations respectively.

Compound Name	IC 12 14 09	CC
	12-14-98	12-20-98 @ 10:53
Bromomethane	38.9	40
Acetone	36.2	
Chloroethane		36
Associated Samples:	All samples	TB-5
-	•	GW-14

IC= Initial Calibration

CC= Continuing Calibration

The reported sample results and not detected values were qualified "J" & "UJ" in the corresponding samples.

#### PAH

All RSDs, %Ds and response factors were within the control limits in both initial and continuing calibrations for the PAH compounds.

#### **BLANKS**

#### Volatile

The method blanks contained acetone and 2-butanone at levels below the 2x the CRQLs. The reported sample data were not impacted since these compounds were not detected in the samples. The trip blank was free of target and non-target compounds.

Stearns & Wheler Case No.: 7098-2557B/ SDG No.: B2557

#### PAH

The laboratory method blank was free of target compounds. The TICs were not reported.

#### SURROGATE RECOVERIES

#### Volatile

All samples and the corresponding QC samples were spiked with three surrogate compounds as required by the applied methods. The recoveries were within the control limits.

#### PAH

Sample and the corresponding QC samples were spiked with eight surrogate compounds as recommended by the method. The recoveries were within the control limits.

#### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

#### Volatile

The matrix spike/spike duplicate sample analyses were performed on SDG number 2557A. The recoveries and RPDs were within the control limits with the exception of RPD for benzene (20%) in GW-4S MS/MSD. The data were not impacted since this compound was not detected in the samples.

#### PAH

Matrix spike analysis was performed on sample GW-17S. The recoveries and RPDs were within the control limits with the exception of 4-nitrophenol (90/84%) and pentachlorophenol (126/125%) which exceeded the upper control limits of 80% & 103% respectively. The data were not impacted since these compounds were not considered as the PAH target compounds.

#### LABORATORY CONTROL SAMPLE

#### Volatile

One LCS sample was analyzed in volatile fraction. The recoveries were within the control limits.

#### PAH

One blank spike sample was analyzed. The recoveries were within the control limits with the exception of 4-nitrophenol (83%) and pentachlorophenol (107%). The sample data were not impacted by these outliers.

#### **INTERNAL STANDARD**

All internal standard recoveries and retention times were within the control limits established by the laboratory in both volatile and PAH analyses.

Stearns & Wheler Case No.: 7098-2557B/ SDG No.:B2557

#### **DUPLICATE ANALYSIS**

Duplicate analysis (GW-11S/DUP-1 & GW-4/DUP-2) was analyzed for volatile fraction under SDG number 2557A. Target compounds were not detected at levels above the CRQLs in these samples.

#### SAMPLE RESULTS

All samples were analyzed at one-fold dilutions. The Tentatively Identified Compound (TICs) were not detected in the samples.

Sample for PAH was also analyzed at 1-fold dilution. The target compounds were not detected and the TICs were not searched for this fraction.

#### **SUMMARY**

The cooler temperature was not listed on the chain-of-custody. This information must be provided by the laboratory. The sample results below the CRQLs were qualified estimated, due to the uncertainty near the detection limits in the both fractions.

Overall, major analysis problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

Appendix B Data Summary Forms

о

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) VOLATILE WATER ANALYSIS ug/L

_____

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-2557B SDG NO.: B2557

De Non Broot

CRU           Choromethane         10           Bromomethane         10         UJ         UJ         UJ         UJ           Choromethane         10         UJ         UJ         UJ         UJ         UJ           Choromethane         10         UJ         UJ         UJ         UJ         UJ           Choromethane         10         UJ         UJ         UJ         UJ         UJ           Acetone         10         UJ         <	CLIENT SAMPLE ID: LAB SAMPLE ID: DILUTION FACTOR:		GW-7S 982557B-02 1.0	GW-8S 982557B-03 1.0	GW-6 982557B-04 1.0	GW-14 982557B-05 1.0	TB-5 982557B-06 1.0	
Chloromethane         10         UJ         UJ         UJ           Vinyl Choride         10         UJ         UJ         UJ           Methylene Chloride         10         UJ         UJ         UJ           Methylene Chloride         10         UJ         UJ         UJ         UJ           Carbon Diulifide         10         UJ         UJ         UJ         UJ         UJ           1,1 Dichloroethane         10         U         UJ         UJ <th>TARGET COMPOUNDS:</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	TARGET COMPOUNDS:							
Brownethane         10         UJ         UJ         UJ         UJ           Chloroethane         10         UJ         UJ         UJ           Methylene Chloride         10         UJ         UJ         UJ           Carlono Disulfide         10         UJ         UJ         UJ         UJ           Carlono Disulfide         10         UJ         UJ         UJ         UJ         UJ           Carlono Disulfide         10         UJ	• •							-
Viryl Chloride         10         U         U         U           Methylene Chloride         10         U         U         U         U           Acetone         10         U         U         U         U         U           Acetone         10         U         U         U         U         U         U           Carbon Disulfide         10         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U <td></td> <td>10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		10						
Chicorethane         10         UJ         UJ         UJ           Methylene Chioride         10         UJ         UJ         UJ         UJ         UJ           Carbon Disulfide         10         UJ         UJ         UJ         UJ         UJ         UJ           Carbon Disulfide         10         UJ         UJ         UJ         UJ         UJ         UJ         UJ           1.1-Dichloroethane         10         UJ         <			UJ	UJ.	UJ	UJ	UJ	
Methylene Chloride         10         UJ         UJ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Actione         10         UJ         UJ         UJ         UJ         UJ         UJ           Carbon Disulfide         10         1.1-Dichloroethene         10						UJ	UJ	
Carbon Disulfide         10         00         00           1.1-Dichloroethane         10         1.1-Dichloroethane         10           1.2-Dichloroethane         10         12-Dichloroethane         10           1.2-Dichloroethane         10         12-Dichloroethane         10           2-Butanone         10         12-Dichloroethane         10           2-Butanone         10         10         11.1-Tichloroethane         10           Carbon Tetrachloride         10         10         12-Dichloropropane         10           1.2-Dichloropropane         10         12-Dichloropropane         10         1.2-Dichloropropane         10           1.3-Dichloropropane         10         12-Dichloropropane         10         1.1-Tichloroethane         10           Dibromochloromethane         10         1.1.2-Tichloroethane         10         1.1.2-Tichloropropane         10           Paranes 1.3-Dichloropropane         10         1.1.2-Tichloroethane         10         1.1.2-Tichloroethane         10           4-Methyl-2-pentanone         10         1.1.2-Tiethaloroethane         10         1.1.2-Tiethaloroethane         10           1.1.2-Z-Tetrachloroethane         10         1.1.2-Z-Tetrachloroethane         10         1.1.2-		10						
1.1-Dichloroethane       10         1.1-Dichloroethane (otal)       10         1.2-Dichloroethane (otal)       10         2-Bichloroethane       10         2-Bichloroethane       10         2-Bichloroethane       10         2-Bichloroethane       10         2-Bichloroethane       10         2-Bichloroethane       10         1.1.1-Trichloroethane       10         1.2-Dichloropropane       10         1.3-Dichloropropane       10         1.3-Dichloropropane       10         Dibromochloromethane       10         1.1.2-Trichloroethane       10         1.1.2-Trichloroethane       10         1.1.2-Trichloroethane       10         Benzene       10         Bromoform       10         4-Methyl-2-pentanone       10         2-Hexanone       10         2-Hexanone       10         2-Hexanone       10         1.1.2-Z-Tetrachloroethane       10         1.1.2.2-Tetrachloroethane       10         1.1.2.2-Tetrachloroethane       10         1.1.2.2-Tetrachloroethane       10         1.1.2.2-Tetrachloroethane       10         1.1.2.2-Tetrach		10	UJ	UJ	ÚĴ	UJ	UJ	
1.1-Dichloroethane       10         1.2-Dichloroethane       10         1.2-Dichloroethane       10         1.2-Dichloroethane       10         1.1.1-Trichloroethane       10         Carbon Tetrachloride       10         Bromodichloromethane       10         1.2-Dichloropropane       10         1.3-Dichloropropane       10         Trichloroethane       10         1.3-Dichloropropane       10         Trichloroethane       10         Dibromochloromethane       10         Dibromochloromethane       10         Dibromochloropethane       10         Dibromochloromethane       10         Dibromochloromethane       10         Parene       10         Benzene       10         Bromodichloropropane       10         Hethyl-2-pentanone       10         4-Methyl-2-pentanone       10         1.1,2-Titakloroethene       10         1.1,2-Z-Tetrachloroethene       10         1.1,2-Z-Tetrachloroethene       10         1.1,2-Z-Tetrachloroethene       10         1.1,2-Z-Tetrachloroethene       10         Chlorobenzene       10         Ethylb								
1.2-Dichloroethane       10         1.2-Dichloroethane       10         2-Butanone       10         2-Butanone       10         1.1,1-Trichloroethane       10         Carbon Tetrachloride       10         Bromodichloromethane       10         1.2-Dichloroptopane       10         cis-1.3-Dichloroptopane       10         Dibromochloromethane       10         Dibromochloromethane       10         Trichloroethane       10         Dibromochloroptopane       10         Dibromochloromethane       10         Dibromochloroptopene       10         Trichloroethane       10         Benzene       10         Bromoform       10         P-Hexanone       10         1,1,2-Tichloroethane       10         Tetrachloroethene       10         1,1,2,2-Tetrachloroethene       10         Tetrachloroethene       10         Toluene       10         Chlorobenzene       10         Ethylbenzene       10         Ethylbenzene       10         Styrene       10								
Chloroform         10           1,2-Dichloroethane         10           2-Butanone         10           1,1-Trichloroethane         10           Carbon Tetrachloride         10           Bromodichloromethane         10           1,2-Dichloropropane         10           1,2-Dichloropropane         10           1,2-Dichloropropane         10           1,2-Dichloropropane         10           Dibromochloromethane         10           1,2-Trichloroethane         10           1,2-Trichloroethane         10           1,2-Trichloropthane         10           1,2-Trichloropthane         10           Benzene         10           Trans-1,3-Dichloropropane         10           Bromoform         10           4-Methyl-2-pentanone         10           2-Hexanone         10           1,1,2,2-Tetrachloroethane         10								
1,2-Dichloroethane       10         2-Butanone       10         1,1,1-Trichloroethane       10         Carbon Tetrachloride       10         Bromodichloromethane       10         1,2-Dichloropropane       10         Trichloroethane       10         Dibromochloromethane       10         Dibromochloromethane       10         1,1,2-Trichloroethane       10         Trians-1,3-Dichloropropane       10         Frans-1,3-Dichloropropane       10         Bromoform       10         Bromoform       10         Penzane       10         Bromoform       10         J-Leichloroethane       10         Bromoform       10         Fetrachloroethane       10         J-Leichloropropane       10         J-Leichloropropane       10         J-Leichloroethane       10         J.1,2,2-Tetrachloroethane       10         J.1,2,2-Tetrachloroethane       10         J.1,2,2-Tetrachloroethane       10         J.1,2,2-Tetrachloroethane       10         J.1,2,2-Tetrachloroethane       10         Chlorobenzene       10         Ethylbenzene								
2-Butanone       10         1,1,1-Trichioroethane       10         Carbon Tetrachloride       10         Bromodichloromethane       10         1,2-Dichloropropane       10         cis-1,3-Dichloropropane       10         Trichloroethene       10         Dibromochloromethane       10         Piotromochloromethane       10         Trichloroethene       10         Dibromochloromethane       10         Parane       10         Parane       10         Trans-1,3-Dichloropropene       10         Parane       10         Parane       10         Trans-1,3-Dichloropropene       10         Parane       td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,1,1-Trichloroethane       10         Carbon Tetrachloride       10         Bromodichloromethane       10         1,2-Dichloropropane       10         cis-1,3-Dichloropropene       10         Dibromochloromethane       10         1,1,2-Trichloroethane       10         1,1,2-Trichloroethane       10         Benzene       10         Bromoform       10         Parsense       10         Trans-1,3-Dichloropropene       10         Parsense       10         Toluene       10         Toluene       10         Chlorobenzene       10         Ethylbenzene       10         Styrene       10								
Carbon Tetrachloride       10         Bromodichloromethane       10         1,2-Dichloropropane       10         cis-1,3-Dichloropropene       10         Trichloroethene       10         Dibromochloromethane       10         Dibromochloromethane       10         Trichloroethene       10         Benzene       10         Bromoform       10         Bromoform       10         2-Hexanone       10         1,1,2-Tichtaroethene       10         2-Hexanone       10         1,1,2-Tichtarohorethane       10         2-Hexanone       10         2-Hexanone       10         1,1,2-Tichtarohorethane       10         2-Hexanone       10         Totloroethane       10         Ethylbenzene       10         Folloroethane       10         Styrene       10								
Bromodichloromethane101,2-Dichloropropane10cis-1,3-Dichloropropone10Trichloroethane10Dibromochloromethane101,1,2-Trichloroethane10Benzene10Trans-1,3-Dichloropropene10Bromoform104-Methyl-2-pentanone102-Hexanone101,1,2-Trichloroethane102-Hexanone101,1,2-Tetrachloroethane101,1,2-Tetrachloroethane102-Hexanone101,1,2-Z-Tetrachloroethane10Toluene10Toluene10Styrene10Ethylbenzene10Ethylbenzene10Styrene10								
1,2-Dichloropropane       10         cis-1,3-Dichloropropene       10         Trichloroethene       10         Dibromochloromethane       10         1,1,2-Trichloroethane       10         Benzene       10         Trans-1,3-Dichloropropene       10         Bromoform       10         4-Methyl-2-pentanone       10         2-Hexanone       10         1,1,2-Tirtachloroethane       10         2-Hexanone       10         7-terachloroethane       10         2-Hexanone       10         Toluene       10         Toluene       10         Styrene       10								
cis-1,3-Dichloropropene       10         Trichloroethene       10         Dibromochloromethane       10         1,1,2-Trichloroethane       10         Benzene       10         Trans-1,3-Dichloropropene       10         Bromoform       10         4-Methyl-2-pentanone       10         2-Hexanone       10         Tetrachloroethane       10         1,1,2,2-Tetrachloroethane       10         1,1,2,2-Tetrachloroethane       10         Toluene       10         Chlorobenzene       10         Toluene       10         Styrene       10								
Trichloroethene10Dibromochloromethane101,1,2-Trichloroethane10Benzene10Trans-1,3-Dichloropropene10Bromoform104-Methyl-2-pentanone102-Hexanone101,1,2,2-Tetrachloroethane101,1,2,2-Tetrachloroethane101,1,2,2-Tetrachloroethane101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10								
Dibromochloromethane101,1,2-Trichloroethane10Benzene10Trans-1,3-Dichloropropene10Bromoform104-Methyl-2-pentanone102-Hexanone10Tetrachloroethene101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Styrene10								
1,1,2-Trichloroethane       10         Benzene       10         Trans-1,3-Dichloropropene       10         Bromoform       10         4-Methyl-2-pentanone       10         2-Hexanone       10         1,1,2,2-Tetrachloroethane       10         1,1,2,2-Tetrachloroethane       10         1,1,2,2-Tetrachloroethane       10         Toluene       10         Chlorobenzene       10         Styrene       10								
Benzene10Trans-1,3-Dichloropropene10Bromoform104-Methyl-2-pentanone102-Hexanone10Tetrachloroethene101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10		10						
Trans-1,3-Dichloropropene10Bromoform104-Methyl-2-pentanone102-Hexanone10Tetrachloroethene101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10		10						
Bromoform104-Methyl-2-pentanone102-Hexanone10Tetrachloroethene101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10	Trans-1,3-Dichloropropene	10						
4-Methyl-2-pentanone102-Hexanone10Tetrachloroethene101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10	Bromoform	. 10						
Tetrachloroethene101,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10	4-Methyl-2-pentanone							
1,1,2,2-Tetrachloroethane10Toluene10Chlorobenzene10Ethylbenzene10Styrene10	2-Hexanone	10						
Toluene10Chlorobenzene10Ethylbenzene10Styrene10		10						
Chlorobenzene     10       Ethylbenzene     10       Styrene     10								
Ethylbenzene 10 Styrene 10				÷				
Styrene 10								
Xylene (total) 10								
	Xylene (total)	10						

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE WATER ANALYSIS ug/L

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-2557B SDG NO.: B2557

CLIENT SAMPLE ID: AB SAMPLE ID: DILUTION FACTOR:	GW-17S 982557B-01 1.0						
ARGET COMPOUNDS:		 	 • • • • • • • • • • • • • • • • • •	 	 		
	CRQL						
laphthalene	10						
2-Methylnaphthalene	10						
cenaphthylene	10						
cenaphthene	10						
luorene	10					•	
henanthrene	10						
Anthracene	10						
luoranthene	10						
yrene	10						
Benzo(a)anthracene	10						
Chrysene	10						
Benzo(b)fluoranthene	10						
enzo(k)fluoranthene	10						
lenzo(a)pyrene	10		•				
ndeno(1,2,3-cd)pyrene	10						
Dibenzo(a,h)anthracene	10						
Benzo(g,h,i)perylene	10						

Appendix C Laboratory Reported Results

## TABLE VO-1.0 7098-2557B STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

#### All values are ug/L.

	r .	γ	1	· · · · · · · · · · · · · · · · · · ·
Client Sample I.D.	Method Blank	GW-75	GW-85	
-				Quant.
Lab Sample I.D.	VBLKO6	982557B-02	982557B-03	Limits
Method Blank I.D.	VBLKO6	VBLKO6	VBLKO6	with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chloromethane	U	U	Ū	10
Bromomethane	Ū	Ŭ	Ŭ	īŏ
Vinyl Chloride	U	· U	Ū	10
Chloroethane	U	U	U	10
Methylene Chloride	Ŭ	U	U	10
Acetone Carbon Disulfide	6J	U U	ū	10
1,1-Dichloroethene	U U	ប ប	U U	10
1,1-Dichloroethane	U U	U U	U U	10 10
1,2-Dichloroethene (total)	Ū	Ŭ	U	10
Chloroform	Ū	Ū	Ŭ	10
1,2-Dichloroethane	Ū	Ū	Ū	īo
2-Butanone	<u>ט</u> .	U	U	10
1,1,1-Trichloroethane	υ	υ	υ	10
Carbon Tetrachloride	U	U	. <b>U</b>	10
Bromodichloromethane	Ü	U	U	10
1,2-Dichloropropane cis-1,3-Dichloropropene	U U	י ט ט	U U	10
Trichloroethene	U U	U U	U U	10 10
Dibromochloromethane	Ŭ	U	U	10
1,1,2-Trichloroethane	Ŭ	Ŭ	U	10
Benzene	U	Ū	Ū	10
trans-1,3-Dichloropropene	ប	υ	U	10
Bromoform	σ	ប	υ	10
4-Methyl-2-Pentanone	Ŭ	U	· <b>U</b> · · ·	10
2-Hexanone Tetrachloroethene	U U	U U	U	10
1,1,2,2-Tetrachloroethane	U U	U	U U	10 10
Toluene	Ŭ	Ŭ	un de la cart	10
Chlorobenzene	ប	Ŭ	Ŭ	10
Ethylbenzene	Ŭ	U	Ŭ	10
Styrene	U	ប	Ū	10
Xylene (total)	<u> </u>	U	<b>U</b>	10
Date Received		12/10/00	12/10/00	<u></u>
Date Extracted	N/A	12/18/98 N/A	12/18/98 N/A	•
Date Analyzed	12/19/98	12/20/98	12/20/98	
	,,		12,20,90	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE VO-1.1 7098-2557B STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

#### All values are ug/L.

			· · · · · · · · · · · · · · · · · · ·	1
				· ·
Client Sample I.D.	GW-6			
				Quant.
Lab Sample I.D.	982557B-04			Limits
Method Blank I.D.	VBLKO6	,		with no
Quant. Factor	1.00		<u> </u>	Dilution
Chloromethane	U	e -		10
Bromomethane	U		•	10   10
Vinyl Chloride	U U			10
Chloroethane	l ŭ			10
Methylene Chloride	Ŭ	·		.10
Acetone	Ū			10
Carbon Disulfide	U			10
1,1-Dichloroethene	U			10
1,1-Dichloroethane	U			10
1,2-Dichloroethene (total)	U			10
Chloroform	U		•	10
1,2-Dichloroethane	U			10
2-Butanone	U			10
1,1,1-Trichloroethane	<u>u</u>			10
Carbon Tetrachloride Bromodichloromethane	U U		f.	10 10
1,2-Dichloropropane	U U U			10
cis-1,3-Dichloropropene	U U		· · · · ·	10
Trichloroethene	U U			10
Dibromochloromethane	Ŭ			10
1,1,2-Trichloroethane	Ū			10
Benzene	U			10
trans-1,3-Dichloropropene	U		*	10
Bromoform	υ			10
4-Methyl-2-Pentanone	U		· · ·	10
2-Hexanone	U			10
Tetrachloroethene	U U		•	10
1,1,2,2-Tetrachloroethane Toluene	U U U			10
Chlorobenzene	U U		andanananan ka alamatan	10 10
Ethylbenzene	บ บ			10 10
Styrene	U U			10
Xylene (total)	υ			. 10
	<u> </u>			
Date Received	12/18/98			*
Date Extracted	N/A		· 6.	
Date Analyzed	12/20/98			
··· · · ·	1			

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

#### TABLE VO-1.2 7098-2557B STEARNS & WHELER TCL VOLATILE ORGANICS + TIC'S

All values are ug/L.

.

	- T	T	T	T
•	N			
Client Sample I.D.	Method Blank	GW-14	TB-5	
Lab Sample I.D.	VBLKO7	982557B-05	982557B-06	Quant. Limits
Method Blank I.D.	VBLK07	VBLK07	VBLKO7	with no
Quant. Factor	1.00	1.00	1.00	Dilution
Chloromethane	υ	<u> </u>		10.
Bromomethane	U U	U U	U U	10 .
Vinyl Chloride	U U	U U	U U	10 10
Chloroethane	Ŭ	Ŭ	U	10
Methylene Chloride	Ŭ	Ŭ	Ŭ	10
Acetone	11	Ū	Ŭ	10
Carbon Disulfide	U	U	U	10
1,1-Dichloroethene	ប	ប	U	10
1,1-Dichloroethane	U	U	U	10
1,2-Dichloroethene (total) Chloroform	ü	<u>n</u>	U	10
1,2-Dichloroethane	U U	U U	บ บ	10
2-Butanone	5J.	U U	UU	10
1,1,1-Trichloroethane	U U	U U	U	10
Carbon Tetrachloride	Ŭ	υ·	· U	10
Bromodichloromethane	Ŭ	Ū	Ŭ	10
1,2-Dichloropropane	υ.	υ	Ū	10
cis-1,3-Dichloropropene	U	U	U	10
Trichloroethene	U	Ŭ	ט י	10
Dibromochloromethane	U	ŭ	U	10
1,1,2-Trichloroethane	U	- <b>U</b> -	÷ U `	10
Benzene trans-1,3-Dichloropropene	U U	U U	Ŭ	10
Bromoform	U U	U	ប ប	10 10
4-Methyl-2-Pentanone	. Ŭ	υ	U U	10
2-Hexanone	Ū	Ŭ	Ŭ	īŏ
Tetrachloroethene	U	U	. U	10
1,1,2,2-Tetrachloroethane	U	ប	U	10
Toluene	U	U	U	10
Chlorobenzene	U	Ū	ប	10
Ethylbenzene Styrene	י ד ע ו	U U	U U	10 10
Xylene (total)	U U	U U	U U	10
	1			
Date Received		12/18/98	12/18/98	
Date Extracted	N/A	N/A	N/A	
Date Analyzed	12/20/98	12/20/98	12/20/98	
	_1.	لــــــــــــــــــــــــــــــــــــ		

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

.

٥

#### TABLE VO-2.0 7098-2557B STEARNS & WHELER VOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

#### Related Method Blank: VBLK06

Lab Sample Id: VBLK06 Client Sample Id: Method Blank

CAS#			(	Compound			Estimated Conc., ug/L
		NONE DE	TEC	<b>re</b> D			
1	Lab	Sample	Id:	982557B-02	Client	Sample Id:	GW-75
CAS#			(	Compound		RT	Estimated Conc., ug/L
		NONE DE	TECT	TED			
1	Lab	Sample	Id:	982557B-03	Client	Sample Id:	GW-85
CAS#	<b>—</b> ,	· · ·		Compound		RT	Estimated Conc., ug/L
		NONE DE	TECI	TED			
	Lab	Sample	Id:	982557B-04	Client	: Sample Id	
CAS#			C	Compound		RT	Estimated <u>Conc., ug/L</u>
		NONE DE	TECI	ED			

See Appendix for qualifier definitions

Aqueous

#### TABLE VO-2.1 7098-2557B STEARNS & WHELER VOLATILE TENTATIVELY IDENTIFIED COMPOUNDS

#### Related Method Blank: VBLK07

ι.

Lab Sample Id: VBLK07 Client Sample Id: Method Blank

CAS#	Compound	RT	Estimated Conc., ug/L
	NONE DETECTED		
La	b Sample Id: 982557B-05	Client Sample Id:	GW-14
CAS#	Compound	<u></u>	Estimated Conc., ug/L
	NONE DETECTED		
Li	ab Sample Id: 982557B-06	Client Sample Id:	TB-5
CAS#	Compound	<u>RT</u>	Estimated Conc., ug/L
	NONE DETECTED		Y
		·	

See Appendix for qualifier definitions

Aqueous

. •

#### TABLE SV-1.0 7098-2557B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	Method Blank SBLKLP SBLKLP 1.00	GW-17S 982557B-01 SBLKLP 1.05	GW-17S MS 982557B-01MS SBLKLP 1.05	Quant. Limits with no Dilution
Naphthalene	U	υ	U	10
2-Methylnaphthalene	Ŭ	ŭ	ü	10
Acenaphthylene Acenaphthene	U U	UUU	U 48X	10 10
Fluorene	U	U	<b>U</b>	10
Phenanthrene Anthracene	U U	U U	ប ប	10 10
Fluoranthene	U	U	U	10
Pyrene	U	<b>U</b> .	44X	10
Benzo(a) anthracene Chrysene	U U	Ŭ Ŭ	ប ប	10 10
Benzo (b) fluoranthene Benzo (k) fluoranthene	U U	Ŭ U	U U U	10 10 10
Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene	U U	U U	ប ប	10 10
Dibenzo (a, h) anthracene Benzo (g, h, i) perylene	U U U	U U	ប ប	10 10
Date Received Date Extracted Date Analyzed	12/20/98 12/31/98	12/17/98 12/20/98 12/31/98	12/17/98 12/20/98 12/31/98	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any var ion in sample weight/volume, % moisture and sam - dilution.

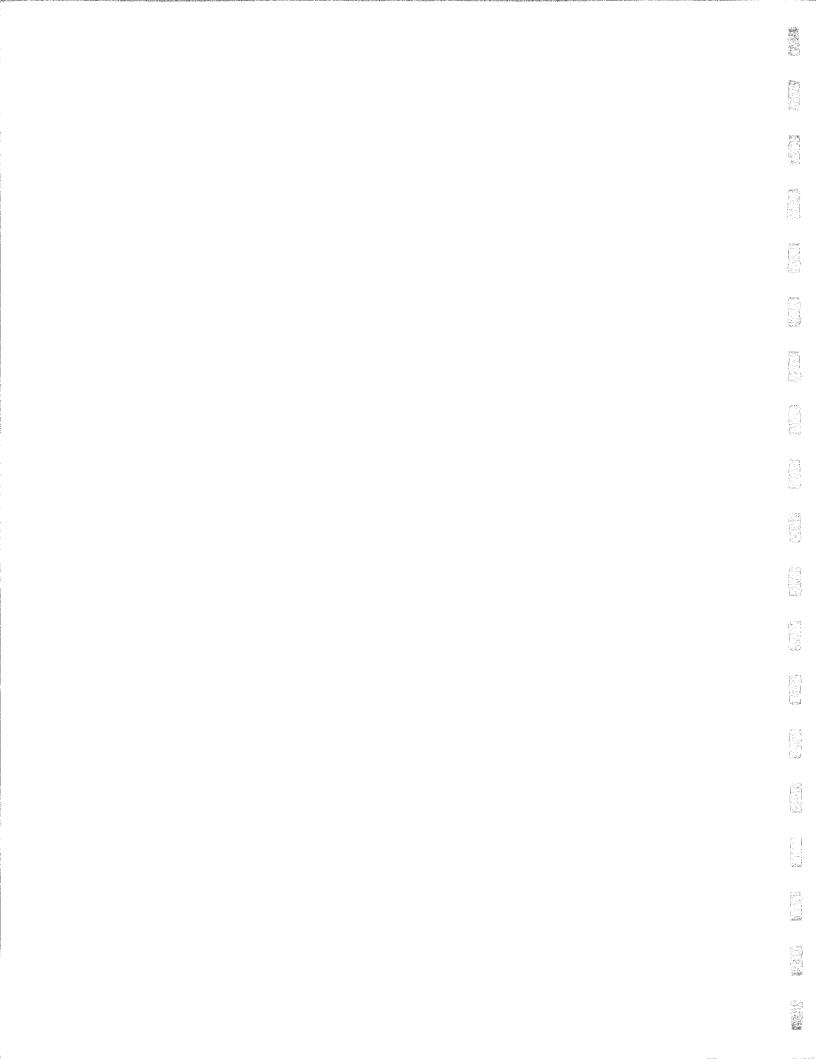
#### TABLE SV-1.1 7098-2557B STEARNS & WHELER MISCELLANEOUS BASE-NEUTRALS

#### All values are ug/L.

Client Sample I.D. Lab Sample I.D. Method Blank I.D. Quant. Factor	GW-17S MSD 982557B-01 MSD SBLKLP 1.05			Quant. Limits with no Dilution
Naphthalene	υ			10
2-Methylnaphthalene Acenaphthylene	U U			10 10
Acenaphthene Fluorene	46X U	· · ·		10 10 10
Phenanthrene Anthracene	บ บ			10 10
Fluoranthene Pyrene	U 42X			10 10 10
Benzo (a) anthracene Chrysene	 ט ט	· · · · ·		10 10
Benzo (b) fluoranthene Benzo (k) fluoranthene	บ บ	-		10 10 10
Benzo (a) pyrene Indeno (1, 2, 3-cd) pyrene	ប ប			10 10
Dibenzo(a,h)anthracene Benzo(g,h,i)perylene	บ บ			10 10
Date Received Date Extracted Date Analyzed	12/17/98 12/20/98 12/31/98		1	

See Appendix for qualifier definitions Note: Compound detection limit = quantitation limit x quantitation factor Quant. Factor = a numerical value which takes into account any variation in sample weight/volume, % moisture and sample dilution.

Appendix D Support Documentation/Resubmission


# **END OF DATA PACKAGE**

.

•

.

•





### **Analytical Assurance Associates, Inc.**

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# METAL ANALYSIS QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

### SITE: ROBLIN STEEL CASE NO.: 7099-0012A/ SDG NO.: A0012

## REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY 24, 1999

### STEARNS & WHELER SITE: ROBLIN STEEL CASE NO.:7099-0012A/ SDG NO.: A0012

### **INTRODUCTION**

This quality assurance review is based upon a review of all data generated from two (2) soil samples collected on 01-05-99. The samples were received by Severn Trent Laboratories on 01-06-99 and analyzed according to criteria set forth in SOW3,90 (ILM03.0) for TAL metals.

The following samples are contained within this report:

#### SS-62 DUP

The QC samples (MS & MD) were assigned to sample SS-62.

All data have been validated with regard to usability according to the quality assurance set forth in National Functional Guidelines for Evaluating Inorganic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations & CRDL Analyses
- Blanks
- ICP Interference Check Sample
- Matrix Spike Analysis
- Matrix Duplicate Analysis
- Laboratory Control Sample Analysis
- ICP Serial Dilution Analysis
- Instrument Detection Limits
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No. 7099-0012A / SDG No. A0012

#### **DATA COMPLETENESS**

Matrix spike recoveries for lead and manganese were outside the control limits. The reported sample data were not qualified "N" by the laboratory. The corresponding form Is and form V should be corrected and resubmitted.

The copy of the raw data for ICP analysis was illegible.

#### **HOLDING TIME**

All samples were digested/analyzed within the requirements established in the method.

#### **CALIBRATIONS & CRDL Analyses**

The recoveries for all analytes in the initial and continuing calibrations were within the control limits of 90-110%.

The CRDL sample analysis was performed prior and after all samples analysis. The %recoveries were within the control limits with the exception of Se(71.4%) in final CRDL and Zn (76.2//74.7). The positive results and non-detected values were qualified estimated.

#### **BLANKS**

The laboratory preparation blank, ICB and CCBs were free of target analyte at levels above the CRDLs.

#### **ICP INTERFERENCE CHECK SAMPLE**

The recoveries for all metals were within the control limits with the exception of Sb (120.2/120.5%), and final ICS recoveries for Se (121%) & Tl (128.3%). The reported data for Sb and Se were not impacted since the deviations were marginal. Also, thallium were not detected in the samples. Therefore, the data were not impacted by these outliers.

#### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

Matrix spike analysis was performed on sample SS-62. The spike recoveries were within the control limits with the exception of Sb(47%), Pb (67.7%) and Mn (131.6%). The reported sample data were not flagged with "N" qualifier codes for lead and manganese as required by the method. Consequently, the analytical post digest spike sample analyses were not performed. Therefore, the matrix interference could not be evaluated. The reported sample results and non-detected values were qualified estimated.

Stearns & Wheler Case No. 7099-0012A / SDG No. A0012

Page 3

The recoveries for Al and Fe were outside the control limits. However, the data were not impacted since the sample results were above 4x the amount of spike added to the sample.

### MATRIX DUPLICATE ANALYSIS

The matrix duplicate analysis was also performed on sample SS-62 for ICP metals and mercury. The RPDs for all analytes were within the analysis control limits with the exception of Al (26.6%), Ca (28.9%) and Mg (38.2%). The data for aluminum and calcium were not qualified since the RPDs were within the data validation control limit of 35%. The positive results for magnesium were qualified estimated.

#### LABORATORY CONTROL SAMPLE

The recoveries for all analyses were within the control limits established in the soil matrix sample analysis.

#### **ICP SERIAL DILUTION**

The %Ds for Ca (10.5%), Cr (10.2%), Cu (15%) and K (17.6%) were above the 10% requirement limit. The reported positive results were qualified estimated for copper and potassium. The data for calcium and chromium were not qualified based on these outliers since the deviations were marginal.

#### **INSTRUMENT DETECTION LIMITS**

All analytes with the exception of mercury were analyzed with ICP. The reported IDLs were below the CRDL.

#### **DUPLICATE ANALYSIS**

Duplicate analysis was analyzed on sample SS-62/DUP. The RPDs were less than 50%, which indicated satisfactory reproducibility.

#### SAMPLE RESULTS

All analytes were analyzed at one-fold dilutions. The reported sample results were within the calibration range.

#### **SUMMARY**

The cooler temperature was not reported on the chain-of-custody. Overall, major problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes. 1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

# Appendix A Glossary of Data Qualifier

#### **GLOSSARY OF DATA QUALIFIERS**

#### CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of compounds):

- U = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS. [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.
- N = NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- UJ = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

# Appendix B Data Summary Forms

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) METAL SOIL ANALYSIS mg/Kg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-0012A SDG NO.: A0012

CLIENT SAMPLE ID: LAB SAMPLE ID: % SOLID:		99	SS-62 90012A-06 76.6	DUP 990012A-07 77
TARGET COMPOUNDS:				
TARGET COMPOUNDS:	IDL			
Aluminum	15	Р	11000	10200
Antimony	4	P	UJ	10200 UJ
Arsenic	3	P	5	6.4
Barium	1	P	46	49.3
Beryllium	1	P	0.5	0.49
Cadmium	1	P	1	1.4
Calcium	31	P	46100	53100
Chromium	1	P,	14.9	12.9
Cobalt	2	P	5	5
Copper	1	P	17.6 J	17.7 J
Iron	10	P	16500	18800
Lead	2	Р	15.4 J	15.9 J
Magnesium	5	Р	24900 J	30600 J
Manganese	1	P	348 J	361 J
Mercury	0.1	cv	0.04	
Nickel	6	Р	12.9	13
Potassium	25	Р	1900 J	1320 J
Selenium	1	Р	UJ UJ	0.8 J
Silver	1	Р		
Sodium	49	Р	154	148
Thallium	5	Р		
Vanadium	1	Р	19.9	20.3
Zinc	1	Р	76.2 J	70.8 J

# Appendix C Laboratory Reported Results

#### U.S. EPA - CLP

	1			
INORGANIC	ANALYSES	DATA	SHEET	

EPA SAMPLE NO.

DUP

L b Name: <u>STL</u>	Contract:
Lab Code: <u>STL</u> Case No.: <u>0</u>	
M_trix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>990012A-07</u>
Level (low/med): LOW	Date Received: 01/06/99
Solids: 77	

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg

CAS No.	Analyte	Concentration	с	Q	м	•
7429-90-5		10200		*	P	
7440-36-0	Antimony	0.73	Ū	N	P	
7440-38-2	Arsenic	6.4			P	
7440-39-3	Barium	49.3			P	
7440-41-7	Beryllium	0.49	В		P P P	
7440-43-9	Cadmium	1.4			P	÷
7440-70-2	Calcium	53100		*E	P	
7440-47-3	Chromium	12.9		E	P	
7440-48-4	Cobalt	5.0	В		P P	
7440-50-8	Copper	17.7		Е	P	
7439-89-6	Iron	18800			P	;
7439-92-1	Lead	15.9		N	P P P	ZH
7439-95-4	Magnesium	30600	۹.	*	P	1
7439-96-5	Manganese	361.		N	P	W
7439-97-6	Mercury	0.052	U		CV	
7440-02-0	Nickel	13.0			P	
7440-09-7	Potassium	1320		E	P	
7782-49-2	Selenium	0.80	В		P	
7440-22-4	Silver	0.18	U		P	
7440-23-5	Sodium	148.	В		P	
7440-28-0	Thallium	0.91	U		P	
7440-62-2	Vanadium	20.3			P	
7440-66-6	Zinc	70.8			P	· •
57-12-5	Cyanide				NR	

Color Before: <u>BROWN</u> Clarity Before: <u>OPAQUE</u> Texture: _____ Color After: <u>YELLOW</u> Clarity After: <u>CLEAR</u> Artifacts: _____ Comments:

### U.S. EPA - CLP

#### 1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

Lab Name: <u>STL</u>	SS-62
Lab Code: <u>STL</u> Case No.: <u>0012A</u>	SAS No.: SDG No.: <u>A0012</u>
Matrix (soil/water): <u>SOIL</u>	Lab Sample ID: <u>990012A-06</u>
Level (low/med): <u>LOW</u>	Date Received: <u>01/06/99</u>
% Solids: <u>76.6</u>	

Concentration Units (ug/L or mg/kg dry weight): Mg/Kg

CAS No.	Analyte	Concentration	С	Q	м
7429-90-5	Aluminum	11000		*	P
7440-36-0	Antimony	0.85	U	N	P
7440-38-2	Arsenic	5.0			P
7440-39-3	Barium	46.0			P P P P P P P P P P P P C V
7440-41-7	Beryllium	0.50	B		P
7440-43-9	Cadmium	1.0	В		P
7440-70-2	Calcium	46100		*E	P
7440-47-3	Chromium	14.9		Е	P
7440-48-4	Cobalt	5.0	В		P
7440-50-8	Copper	17.6		E	P
7439-89-6	Iron	16500			P
7439-92-1	Lead	15.4		N	P '
7439-95-4	Magnesium	24900		*	Р
7439-96-5	Manganese	348.	· ·	N	T P
7439-97-6	Mercury	0.040	B		CV
7440-02-0	Nickel	12.9			P
7440-09-7	Potassium	1900		E	P
7782-49-2	Selenium	0.64	Ũ		P P P P
7440-22-4	Silver	0.21	U		P
7440-23-5	Sodium	154.	В		P
7440-28-0	Thallium	1.1	U		P P
7440-62-2	Vanadium	19.9			P
7440-66-6	Zinc	76.2			P
57-12-5	Cyanide				NR

)

Color Before:	BROWN	Clarity	Before:	<u>OPAQUE</u>	Texture:	
Color After:	YELLOW	Clarity	After:	CLEAR	Artifacts:	
Comments:		-			-	
	. <u></u>					

Appendix D Support Documentation/Resubmission

# END OF DATA PACKAGE

•



**Analytical Assurance Associates, Inc.** 

600 Rock Raymond Road Downingtown, PA 19335 Phone: 610 - 269 - 9989 Fax: 610 - 269 - 9989

# ORGANIC ANALYSIS QUALITY ASSURANCE DATA REVIEW

# **STEARNS & WHELER, LLC**

# SITE: ROBLIN STEEL CASE NO.: 7099-0012A/ SDG NO.: A0012

## REPORTED BY: ANALYTICAL ASSURANCE ASSOCIATES (A³) 600 ROCK RAYMOND ROAD DOWNINGTOWN, PA 19335

REVIEWED BY: ZOHREH HAMID, Ph.D. FEBRUARY 22, 1999

### STEARNS & WHELER SITE NAME: ROBLIN STEEL CASE NO.:7099-00012A/SDG NO.: A0012

### **INTRODUCTION**

This quality assurance report is provided based upon a review of all data generated from five (5) water samples and two soil samples collected on 01-05-99 and received by Severn Trent Laboratories on 01-06-99. Samples were analyzed for volatile target compounds according to criteria set forth in USEPA CLP OLM3.1. In addition, two soil samples were analyzed for Poly Aromatic Hydrocarbons (PAH) and PCB fractions based on NYSDEC' 95 and USEPA OLM03.1 protocols respectively.

The following samples are contained within this report:

GW-13	GW-17S	SS-62	ΤB
GW-5S	DUP-3	DUP	

The QC (MS/MSD) analyses was performed on samples GW-17S and SS-62 for water and soil samples respectively.

All data have been validated with regard to usability according to the quality assurance set forth in NYSDEC ASP for Evaluating Organic analyses. If you have any questions or comments on this data review, please call Zohreh Hamid at (610) 269-9989.

#### **QUALITY ASSURANCE REVIEW**

The finding offered in this report are based upon a review of the following criteria:

- Data Completeness
- Holding Times
- Calibrations
- Blanks
- Surrogate Recoveries
- Internal Standards Recovery
- Matrix Spike/Spike Duplicate/Blank Spike Analyses
- Instrument Performance
- Field Duplicate Results
- Sample Results

Stearns & Wheler Case No.: 7099-0012A/ SDG No.: A0012

#### **DATA COMPLETENESS**

The data package completeness was satisfactory.

#### HOLDING TIME

All volatile samples were analyzed within 5-days from VTSR based on the NYSDEC requirements. Also, the PAH and PCB sample were extracted within 5-days and analyzed within 40-days from VTSR.

#### **CALIBRATION**

#### Volatile

The response factors were within the data validation requirement limit of 0.05 in all calibrations. The following %RSDs and %Ds were above 30% and 25% in the initial and continuing calibrations respectively.

Compound Name	IC 12-14-98	CC 12-20-98 @ 10:53
Acetone	38.2	
2-Hexanone		26.7
Associated Samples:	Soil Samples	Soil Samples

IC= Initial Calibration CC= Continuing Calibration

The reported sample results and not detected values were qualified "J" & "UJ" in the corresponding samples. The results for acetone were qualified "U" due to the laboratory blank. The results were also qualified estimated based on the RSD outlier.

#### PAH

All RSDs, %Ds and response factors were within the control limits in both initial and continuing calibrations for the PAH compounds with the exception of %Ds for indeno(1,2,3-cd) pyrene (27.3%) and benzo(g,h,I) perylene (30.8%). The reported sample results and non-detected values were qualified estimated.

#### **BLANKS**

#### Volatile

The water laboratory blank and trip blank were free of target and non-target compounds. The laboratory soil blank contained methylene chloride, acetone and 2-butanone at levels below the CRQLs. The reported sample results up to 10 times the CRQLs were qualified "U" and considered as the laboratory artifact.

Stearns & Wheler

Case No.: 7099-0012A/ SDG No.: A0012

#### PAH

The laboratory method blank was free of target compounds. The TICs were not reported for this fraction.

#### PCB

The laboratory blank was free of target compounds.

#### SURROGATE RECOVERIES

#### Volatile

All samples and the corresponding QC samples were spiked with three surrogate compounds as required by the applied methods. The recoveries were within the control limits.

#### PAH

Sample and the corresponding QC samples were spiked with eight surrogate compounds as recommended by the method. The recoveries were within the control limits.

#### PCB

Samples and the corresponding QC samples were spiked with two surrogate compounds as recommended by the method. The recoveries within the control limits.

### MATRIX SPIKE/SPIKE DUPLICATE ANALYSIS

#### Volatile

One set of matrix spike/spike duplicate sample analysis was performed for each matrix. The recoveries and RPDs were within the control limits in both matrices.

#### PAH

Matrix spike analysis was performed on sample SS-62. The recoveries and RPDs were within the control limits.

#### PCB

Sample SS-62 was analyzed as a QC sample. The recoveries and RPD for the spiking compound (aroclor-1260) were within the control limits.

#### LABORATORY CONTROL SAMPLE

#### Volatile

Two LCS samples (soil & water) were analyzed in volatile fraction. The recoveries were within the control limits.

Stearns & Wheler Case No.: 7099-0012A/ SDG No.:A0012

One blank spike sample was analyzed for this fraction. The recoveries were within the control limits with the exception of 4-nitrophenol (88%) which exceeded the upper control limit of 80%. The reported sample data were not impacted since this compound is not a target compound.

#### PCB

The laboratory control sample was not analyzed for this fraction.

#### **INTERNAL STANDARD**

All internal standard recoveries and retention times were within the control limits established by the laboratory in both volatile and PAH analyses.

#### **DUPLICATE ANALYSIS**

#### Volatile

One set of duplicate analysis was performed for each matrix. Target compounds were not detected at levels above the CRQLs in these samples with the exception of acetone in soil field duplicate analysis (SS-62/DUP). The results for acetone have been qualified "UJ" and considered as non-detected values.

#### PAH & PCB

Duplicate analysis was performed on samples (SS-62/DUP). Target compounds were not detected at levels above the CRQLs in these samples.

#### SAMPLE RESULTS

#### Volatile

All samples were analyzed at one-fold dilutions. The Tentatively Identified Compound (TICs) were not detected in the samples with the exception of one TICs in sample GW-5S and both soil samples.

#### PAH

Sample for PAH was also analyzed at 1-fold dilution. The target compounds were not detected at levels above CRQLs. The TICs were not searched for this fraction.

#### PCB

The result for arocolor-1260 was qualified estimated since the %D for the results between two column was above 25%.

Stearns & Wheler Case No.: 7099-0012A/ SDG No.: A0012

#### **SUMMARY**

The cooler temperature was not listed on the chain-of-custody. This information must be provided by the laboratory. The sample results below the CRQLs were qualified estimated, due to the uncertainty near the detection limits in the both fractions.

Overall, major analysis problems were not encountered during the sample analyses. The minor issues have been discussed. The reported data were summarized on the data summary with the applied qualifier codes.

1. Appendix A- Glossary of Data Qualifier

2. Appendix B- Data Summary Forms

3. Appendix C- Laboratory Results (Form I)

4. Appendix D - Support Documentation /Resubmission (if applicable)

Appendix A Glossary of Data Qualifier

o

#### **GLOSSARY OF DATA QUALIFIERS**

#### **CODES RELATING TO IDENTIFICATION**

(confidence concerning presence or absence of compounds):

- W = NOT DETECTED SUBSTANTIALLY ABOVE THE LEVEL REPORTED IN LABORATORY OR FIELD BLANKS.
   [Substantially is equivalent to a result less than 10 times the blank level for common contaminants (methylene chloride, acetone and 2- butanone in the VOA analyses, and common phthalates in the BNA analyses, along with tentatively identified compounds) or less than 5 times the blank level for other target compounds.]
- **R** = UNUSABLE RESULT. THE PRESENCE OR ABSENCE OF THIS ANALYTE CANNOT BE VERIFIED. SUPPORTING DATA NECESSARY TO CONFIRM RESULT.

= NEGATED COMPOUND. THERE IS PRESUMPTIVE EVIDENCE TO MAKE A TENTATIVE IDENTIFICCATION.

#### **CODES RELATING TO QUATITATION**

(can be used for both positive results and sample quantitation limits):

- J = ANALYTE WAS POSITIVELY IDENTIFIED. REPORTED VALUE MAY NOT BE ACCURATE OR PRECISE.
- **UJ** = ANALYTE WAS NOT DETECTED. THE REPORTED QUATITATION LIMIT IS QUALIFIED ESTIMATED.

#### **OTHER CODES**

Ν

 $\mathbf{Q}$  = NO ANALYTICAL RESULT.

Appendix B Data Summary Forms

•

0

o

## ANALYTICAL ASSURANCE ASSOCIATES (A3) VOLATILE WATER ANALYSIS ug/L

.

CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-0012A SDG NO .: A0012

CLIENT SAMPLE ID: LAB SAMPLE ID: DILUTION FACTOR:		TB 990012A-01 1.0	GW-13 990012A-02 1.0	GW-5S 990012A-03 1.0	GW-17S 990012A-04 1.0	DUP-3 990012A-05 1.0		
TARGET COMPOUNDS:								
	CRQL							
Chloromethane Bromomethane	10							
Vinyl Chloride	10 10							
Chloroethane	10							
Methylene Chloride	10				•			
Acetone	10							
Carbon Disulfide	10							
1,1-Dichloroethene	10					1 J		
1,1-Dichloroethane	10							
1,2-Dichloroethene (total)	10							
Chioroform	10							
1,2-Dichloroethane	10							
2-Butanone	10					•		
1,1,1-Trichloroethane	10							
Carbon Tetrachloride	10							
Bromodichloromethane	10							
1,2-Dichloropropane	10		•					
cis-1,3-Dichloropropene	10							
Trichloroethene	10							
Dibromochloromethane	10						I	
1,1,2-Trichloroethane	10							
Benzene	10							
Trans-1,3-Dichloropropene	10							
Bromoform	10							
4-Methyl-2-pentanone	10			,				
2-Hexanone	10							
Tetrachloroethene	10							
1,1,2,2-Tetrachloroethane	10							
Toluene	10						•	
Chlorobenzene	10							
Ethylbenzene	10							
Styrene	10	-						
Xylene (total)	10							

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) VOLATILE SOIL ANALYSIS ug/Kg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-0012A SDG NO.: A0012

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:		SS-62 990012A-06 15 1.0	DUP 990012A-07 17 1.0	
TARGET COMPOUNDS:				
	CRQL			
Chloromethane	10			
Bromomethane	10			
Vinyl Chloride	10			
Chloroethane	10			
Methylene Chloride	10	1 U	2 U	
Acetone	10	31 U	24 U	
Carbon Disulfide 1,1-Dichloroethene	10	,		
	10			
1,1-Dichloroethane 1,2-Dichloroethene (total)	10 10			
Chloroform	10			
1,2-Dichloroethane	10			
2-Butanone	10	4 U	3 U	· · ·
1,1,1-Trichloroethane	10	40	30	
Carbon Tetrachloride	10			
Bromodichloromethane	10			
1,2-Dichloropropane	10			
cis-1,3-Dichloropropene	10			
Trichloroethene	10			
Dibromochloromethane	10			
1,1,2-Trichloroethane	10			
Benzene	10			
Trans-1,3-Dichloropropene	10			•
Bromoform	10			
4-Methyl-2-pentanone	10			
2-Hexanone	10	UJ	UJ	
Tetrachloroethene	10			
1,1,2,2-Tetrachloroethane	10			
Toluene	10			
Chlorobenzene	10			
Ethylbenzene	10			
Styrene	10			
Xylene (total)	10			

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) SEMIVOLATILE SOIL ANALYSIS ug/Kg

CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-0012A SDG NO.: A0012

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:		SS-62 990012A-06 23 1.0	DUP 990012A-07 23 1.0	
ARGET COMPOUNDS:				
loopthologo	CRQL			
Naphthalene Mathulaanhthalaan	330			
2-Methylnaphthalene	330			
	330		5 J	
Acenaphthene Fluorene	·330			
Phenanthrene	330	40		
Anthracene	330 330	16 J	22 J	
Fluoranthene	330		4 J	
^o yrene	330	34 J	53 J	
Benzo(a)anthracene	330	28 J 12 J	42 J	
Chrysene	330	12 J 20 J	23 J	
Benzo(b)fluoranthene	330	20 J 17 J	32 J	
Benzo(k)fluoranthene	330	19 J	· 26 J 29 J	
Benzo(a)pyrene	330	19 J 14 J	29 J 24 J	
ndeno(1,2,3-cd)pyrene	330	14 J 12 J	24 J 15 J	
Dibenzo(a,h)anthracene	330	12 J	6 J	
Benzo(g,h,i)perylene	330	11 J	19 J	,

#### ANALYTICAL ASSURANCE ASSOCIATES (A3) PESTICIDE SOIL ANALYSIS ug/Kg

#### CLIENT: STEARNS & WHELER LABORATORY NAME: STL/CT STL ID: 7099-0012A SDG NO.: A0012

CLIENT SAMPLE ID: LAB SAMPLE ID: % MOISTURE: DILUTION FACTOR:	SS-62 990012A-06 21 1.0	DUP 990012A-07 24 1.0		·			
TARGET COMPOUNDS:			 	·	 		
	CRQL						
Aroclor-1016	33					•	
Aroclor-1221	67						
Aroclor-1232	33		•				
Aroclor-1242	33						
Aroclor-1248	33						
Aroclor-1254	33						

Aroclor-1260 33 13 J 8.5 J

# Appendix C Laboratory Reported Results

0

NYSDEC SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract	: [	TB
Lab Code: IEACT Case	No.: 0012A SAS No.	: SDG No	D.: A0012
Matrix: (soil/water)WATER	<u>:</u>	Lab Sample ID:	990012A-01
Sample wt/vol: 5	(g/mL)ML	Lab File ID:	>L2545
Level: (low/med) LOW		Date Received:	01/06/99
% Moisture: not dec	_	Date Analyzed:	01/08/99
GC Column: 007-624 ID:	0.53 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	olume:(uL)

CAS NO. COMPOUND

# CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Q

74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	Ū
75-01-4	Vinyl Chloride	10	Ū
75-00-3	Chloroethane	10	<u>Ū</u>
75-09-2	Methylene Chloride	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	10	Ū
75-35-4	1,1-Dichloroethene	10	Ū
75-34-3	1,1-Dichloroethane	10	Ū
540-59-0	1,2-Dichloroethene (total)	10	Ū
67-66-3	Chloroform	10	<u>_</u>
107-06-2	1,2-Dichloroethane	10	<u>Ū</u>
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
75-27-4	Bromodichloromethane	10	Ū
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
79-01-6	Trichloroethene	10	U
124-48-1	Dibromochloromethane	10	U
79-00-5	1,1,2-Trichloroethane	10	U
71-43-2	Benzene	10	U
10061-02-6	trans-1,3-Dichloropropene	10	<u> </u>
75-25-2	Bromoform	10	U
108-10-1	4-Methyl-2-Pentanone	10	U
591-78-6	2-Hexanone	10	U
127-18-4	Tetrachloroethene	10	Ū
<u>79-34-5</u>	1,1,2,2-Tetrachloroethane	10	U
108-88-3	Toluene	10	Ū
108-90-7	Chlorobenzene	10	
100-41-4	Ethylbenzene	10	Ū
100-42-5	Styrene	10	Ū
1330-20-7	Xylene (total)	10	<u>Ū</u>

NYSDEC SAMPLE NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

.

Lab Name: STL/CT	GW-13
Lab Code: IEACT Case No.: 0012A	SAS No.: SDG No.: A0012
Matrix: (soil/water)WATER	Lab Sample ID: 990012A-02
Sample wt/vol: 5 (g/mL)ML	Lab File ID: >L2546
Level: (low/med) LOW	Date Received: 01/06/99
% Moisture: not dec	Date Analyzed: 01/08/99
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

Q

		×
		Ŭ
		Ū
		U
		U
Methylene Chloride		U
Acetone	10	UU
	10	Ŭ
	10	U
	10	U
1,2-Dichloroethene (total)	10	U
Chloroform	1.0	Ŭ
1,2-Dichloroethane	10	Ū
2-Butanone	10	U
1,1,1-Trichloroethane	10	U
Carbon Tetrachloride	10	Ū
Bromodichloromethane	10	U
1,2-Dichloropropane	10	U
cis-1,3-Dichloropropene	10	U
Trichloroethene	10	U
Dibromochloromethane	10	U
1,1,2-Trichloroethane	10	Ū
Benzene	10	U
trans-1,3-Dichloropropene	10	Ū
Bromoform	10	Ū
4-Methyl-2-Pentanone	10	U
2-Hexanone	10	U
Tetrachloroethene	10	U
1,1,2,2-Tetrachloroethane	10	U
Toluene	10	U
Chlorobenzene	10	U
Ethylbenzene	10	Ū
	10	Ū
Xylene (total)	10	Ū
	Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene trans-1,3-Dichloropropene Bromoform 4-Methyl-2-Pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene	Chloromethane10Bromomethane10Vinyl Chloride10Chloroethane10Methylene Chloride10Acetone10Carbon Disulfide101,1-Dichloroethene101,2-Dichloroethene (total)10Chloroform101,2-Dichloroethane101,2-Dichloroethane101,2-Dichloroethane101,1,1-Trichloroethane101,1,1-Trichloroethane101,2-Dichloropropane101,2-Dichloropropane101,2-Dichloropropane101,2-Dichloropropene101,2-Dichloropropene101,2-Dichloropropene101,2-Dichloropropene101,2-Dichloropropene101,2-Trichloroethane101,2-Trichloroethane101,1,2-Trichloropropene101,1,2-Trichloropropene1010102-Hexanone10101,1,2,2-Tetrachloroethane101,1,2,2-Tetrachloroethane1010101,1,2,2-Tetrachloroethane10101011,1,2,2-Tetrachloroethane10101011,1,2,2-Tetrachloroethane10101011,1,2,2-Tetrachloroethane10101011,1,2,2-Tetrachloroethane10101011,1,2,2-Tetrachloroethane1011,1,2,2-Tetrachloroethane1011,1,2,2-Tet

	1A				
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET	<u> </u>

Lab Name: STL/CT	Contract: GW-5S
Lab Code: IEACT Case No.: 0012A	SAS No.: SDG No.: A0012
Matrix: (soil/water)WATER	Lab Sample ID: 990012A-03
Sample wt/vol: 5 (g/mL)ML	Lab File ID: >L2547
Level: (low/med) LOW	Date Received: 01/06/99
% Moisture: not dec	Date Analyzed: 01/08/99
GC Column: 007-624 ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)

.

### CAS NO. COMPOUND

.

### CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

$74-87-3$ Chloromethane10U $74-83-9$ Bromomethane10U $75-01-4$ Vinyl Chloride10U $75-00-3$ Chloroethane10U $75-09-2$ Methylene Chloride10U $67-64-1$ Acetone10U $75-39-2$ Methylene Chloride10U $75-37-3$ 1,1-Dichloroethene10U $75-34-3$ 1,1-Dichloroethene10U $75-34-3$ 1,1-Dichloroethane10U $57-6-3$ Chloroform10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroethane10U $10^7-6-2$ 1,2-Dichloroptopane10U $10^7-6-2$ 1,2-Dichloroptopene10U $1061-01-5$ cis-1,3-Dichloroptopene10U $1061-01-5$ cis-1,3-Dichloroptopene10U $1061-01-5$ trans-1,3-Dichloroptopene10U $1061-01-5$ trans-1,3-Dichloroptopene10U $1061-01-5$ trans-1,3-Dichloroptopene10U $1061-01-6$ trans-1,3-Dichloroptopene10U<				~
74-83-9       Bromomethane       10       U         75-01-4       Vinyl Chloride       10       U         75-00-3       Chloroethane       10       U         75-09-2       Methylene Chloride       10       U         67-64-1       Acetone       10       U         75-31-3       1,1-Dichloroethene       10       U         75-34-3       1,1-Dichloroethene       10       U         75-34-3       1,1-Dichloroethane       10       U         540-59-0       1,2-Dichloroethane       10       U         540-59-0       1,2-Dichloroethane       10       U         67-66-3       Chloroform       10       U         107-06-2       1,2-Dichloroethane       10       U         107-06-2       1,2-Dichloroethane       10       U         107-55-6       1,1,1-Trichloroethane       10       U         78-87-5       1,2-Dichloropropane       10       U         1061-01-5       Cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethane       10       U         12-48-1       Dibromochloromethane       10       U         12-48-1       Dibromochlorom	74-87-3	Chloromethane	10	гт
75-01-4       Vinyl Chloride       10       U         75-00-3       Chloroethane       10       U         75-09-2       Methylene Chloride       10       U         75-15-0       Carbon Disulfide       10       U         75-35-4       1,1-Dichloroethane       10       U         75-34-3       1,1-Dichloroethane       10       U         540-59-0       1,2-Dichloroethane       10       U         67-66-3       Chloroform       10       U         107-06-2       1,2-Dichloroethane       10       U         75-37-4       Bromodichloroethane       10       U         75-27-4       Bromodichloromethane       10       U         76-67-5       1,2-Dichloropropane       10       U         10061-01-5       Cis-1,3-Dichloropropane       10       U         10061-01-5       Cis-1,3-Dichloropropene       10       U         104-48-1       Dibromochloromethane       10       U         104-48-1 <td></td> <td></td> <td></td> <td></td>				
75-00-3Chloroethane10U75-09-2Methylene Chloride10U67-64-1Acetone10U75-15-0Carbon Disulfide10U75-35-41,1-Dichloroethene10U75-34-31,1-Dichloroethene10U75-61,2-Dichloroethene (total)10U67-66-3Chloroform10U107-06-21,2-Dichloroethane10U75-561,1,1-Trichloroethane10U75-74Bromodichloromethane10U78-87-51,2-Dichloropropane10U1061-01-5cis-1,3-Dichloropropene10U10061-01-5cis-1,3-Dichloropropene10U10448-1Dibromochloromethane10U105-22-2Bromodichloropropene10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U108-10-14-Methyl-2-Pentanone10U100-42-5Toluene10U100-42-5Styrene10U				-
75-09-2       Methylene Chloride       10       U         67-64-1       Acetone       10       U         75-15-0       Carbon Disulfide       10       U         75-34-3       1,1-Dichloroethene       10       U         75-34-3       1,1-Dichloroethane       10       U         75-34-3       1,1-Dichloroethane       10       U         75-34-3       1,1-Dichloroethane       10       U         76-63       Chloroform       10       U         77-74       Bronotchloroethane       10       U         75-27-4       Bromodichloromethane       10       U         75-27-4       Bromodichloromethane       10       U         79-01-6       Trichloropropane       10       U         79-01-6       Trichloroethane       10       U         79-02-5       1,1,2-Trichloropropene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         100-101-5       1,1,2-Trichloroethane       10       U         100-101-5       1,1,2-Trichloroptopene       10       U         100-101-				
67-64-1Acetone10U $75-15-0$ Carbon Disulfide10U $75-35-4$ 1,1-Dichloroethene10U $75-34-3$ 1,1-Dichloroethane10U $540-59-0$ 1,2-Dichloroethene (total)10U $67-66-3$ Chloroform10U $107-06-2$ 1,2-Dichloroethane10U $107-06-2$ 1,2-Dichloroethane10U $78-93-3$ 2-Butanone10U $75-27-4$ Bromodichloromethane10U $75-27-4$ Bromodichloropropane10U $1061-01-5$ Cis-1,3-Dichloropropane10U $10061-01-5$ Cis-1,3-Dichloropropene10U $10061-01-5$ Cis-1,3-Dichloropropene10U $10061-02-6$ Trichloroethane10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $108-10-1$ 4-Methyl-2-Pentanone10U $108-10-1$ 4-Methyl-2-Pentanone10U $108-88-3$ Toluene10U $100-42-5$ Styrene10U $100-42-5$ Styrene10U				
$75-15-0$ Carbon Disulfide10U $75-35-4$ 1,1-Dichloroethene10U $75-34-3$ 1,1-Dichloroethane10U $75-34-3$ 1,1-Dichloroethane10U $75-34-3$ 1,2-Dichloroethane10U $90-6-2$ 1,2-Dichloroethane10U $10^{-0}6-2$ 1,2-Dichloroethane10U $10^{-0}6-2$ 1,2-Dichloroethane10U $75-35-6$ 1,1,1-Trichloroethane10U $75-27-4$ Bromodichloromethane10U $75-27-4$ Bromodichloromethane10U $75-27-4$ Bromodichloromethane10U $79-01-6$ Trichloroethene10U $10061-01-5$ cis-1,3-Dichloropropene10U $10061-02-6$ Trichloroethane10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $100-12-6$ trans-1,3-Dichloropropene10U $100-12-6$ trans-1,3-Dichloropropene10U $100-12-6$ trans-1,3-Dichloropropene10U $100-12-6$ trans-1,3-Dichloropropene10U $100-14-7-7-8$ Tetrachloroethene10U $100-14-7-5$ tetrachloroethene10U $100-42-5$ tetrachloroethene10U </td <td></td> <td></td> <td></td> <td></td>				
75-35-41,1-Dichloroethene10U $75-34-3$ 1,1-Dichloroethane10U $540-59-0$ 1,2-Dichloroethene (total)10U $67-66-3$ Chloroform10U $107-06-2$ 1,2-Dichloroethane10U $75-35-6$ 1,1.1-Trichloroethane10U $75-27-4$ Bromodichloromethane10U $75-27-4$ Bromodichloromethane10U $75-27-4$ Bromodichloropropane10U $1061-01-5$ cis-1,3-Dichloropropane10U $10061-01-5$ cis-1,3-Dichloropropene10U $10061-01-5$ cis-1,3-Dichloropropene10U $10061-02-6$ Trichloroethane10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $10061-02-6$ trans-1,3-Dichloropropene10U $100-14$ 4-Methyl-2-Pentanone10U $107-18$ Tetrachloroethene10U $108-80-7$ Chlorobenzene10U $100-42-5$ Styrene10U $100-42-5$ Styrene10U				
75-34-3       1,1-Dichloroethane       10       U         540-59-0       1,2-Dichloroethene (total)       10       U         67-66-3       Chloroform       10       U         107-06-2       1,2-Dichloroethane       10       U         107-06-2       1,2-Dichloroethane       10       U         107-06-2       1,2-Dichloroethane       10       U         78-93-3       2-Butanone       10       U         71-55-6       1,1,1-Trichloroethane       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         1061-01-5       cis-1,3-Dichloropropene       10       U         1061-01-5       cis-1,3-Dichloropropene       10       U         104-48-1       Dibromochloromethane       10       U         104-48-1       Dibromochloromethane       10       U         104-48-1       Dibromochloropropene       10       U         104-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U				
540-59-01,2-Dichloroethene (total)10U $67-66-3$ Chloroform10U $107-06-2$ 1,2-Dichloroethane10U $78-93-3$ 2-Butanone10U $71-55-6$ 1,1.1-Trichloroethane10U $56-23-5$ Carbon Tetrachloride10U $75-27-4$ Bromodichloromethane10U $75-27-4$ Bromodichloropropane10U $1061-01-5$ cis-1,3-Dichloropropene10U $1061-01-5$ cis-1,3-Dichloropropene10U $1061-01-5$ cis-1,3-Dichloropropene10U $107-00-5$ 1,1,2-Trichloroethane10U $1061-02-6$ trans-1,3-Dichloropropene10U $1061-02-6$ trans-1,3-Dichloropropene10U $1061-02-6$ trans-1,3-Dichloropropene10U $1061-02-6$ trans-1,3-Dichloropropene10U $1061-02-6$ trans-1,3-Dichloropropene10U $1061-02-6$ trans-1,3-Dichloropropene10U $107-18-6$ 2-Hexanone10U $107-18-4$ Tetrachloroethene10U $108-90-7$ Chlorobenzene10U $108-90-7$ Chlorobenzene10U $100-42-5$ Styrene10U				-
67-66-3       Chloroform       10       U         107-06-2       1,2-Dichloroethane       10       U         78-93-3       2-Butanone       10       U         71-55-6       1,1,1-Trichloroethane       10       U         56-23-5       Carbon Tetrachloride       10       U         56-23-5       Carbon Tetrachloroethane       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         124-48-1       Dibromochloromethane       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         104-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         127-18       Tetrachloroethane       10       U				
107-06-2       1,2-Dichloroethane       10       U         78-93-3       2-Butanone       10       U         71-55-6       1,1,1-Trichloroethane       10       U         56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-93-3       1,2-Dichloropropane       10       U         105-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         1061-01-5       cis-1,3-Dichloropropene       10       U         1061-01-5       cis-1,3-Dichloropropene       10       U         1079-01-6       Trichloroethene       10       U         1144-48-1       Dibromochloromethane       10       U         1144-48-1       Dibromochloromethane       10       U         1144-48-1       Dibromochloropropene       10       U         11041-12-8       Benzene       10       U         1105-10-10-10       trans-1,3-Dichloropropene       10       U         1105-10-2-6       trans-1,3-Dichloropropene       10       U         1108-10-1       4-Methyl-2-Pentanone       10       U<				
78-93-3       2-Butanone       10       U         71-55-6       1,1,1-Trichloroethane       10       U         56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         10124-48-1       Dibromochloromethane       10       U         1024-48-1       Dibromochloromethane       10       U         104-43-2       Benzene       10       U         104-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         105-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         107-18       4       Tetrachloroethene       10       U         108-88-3       Toluene       10       U       U         108-89-7       Chlorobenzene       10       U				
71-55-6       1,1,1-Trichloroethane       10       U         56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         124-48-1       Dibromochloromethane       10       U         104-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         127-18.4       Tetrachloroethane       10       U </td <td></td> <td></td> <td></td> <td></td>				
56-23-5       Carbon Tetrachloride       10       U         75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         107-34-5       1,1,2,2-Tetrachloroethane       10       U         107-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         1				
75-27-4       Bromodichloromethane       10       U         78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         127-18       Tetrachloroethene       10       U         127-18       Tetrachloroethene       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
78-87-5       1,2-Dichloropropane       10       U         10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         127-18       Tetrachloroethene       10       U         127-18       Tetrachloroethene       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
10061-01-5       cis-1,3-Dichloropropene       10       U         79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         127-18       Tetrachloroethene       10       U         107-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
79-01-6       Trichloroethene       10       U         124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         1061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         109-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U		cis-1.3-Dichloropropene		
124-48-1       Dibromochloromethane       10       U         79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         107-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U				
79-00-5       1,1,2-Trichloroethane       10       U         71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         1075-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
71-43-2       Benzene       10       U         10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
10061-02-6       trans-1,3-Dichloropropene       10       U         75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
75-25-2       Bromoform       10       U         108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
108-10-1       4-Methyl-2-Pentanone       10       U         591-78-6       2-Hexanone       10       U         127-18       4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
591-78-6       2-Hexanone       10       U         127-18       4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
127-18 4       Tetrachloroethene       10       U         79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				-
79-34-5       1,1,2,2-Tetrachloroethane       10       U         108-88-3       Toluene       10       U         108-90-7       Chlorobenzene       10       U         100-41-4       Ethylbenzene       10       U         100-42-5       Styrene       10       U				
108-88-3         Toluene         10         U           108-90-7         Chlorobenzene         10         U           100-41-4         Ethylbenzene         10         U           100-42-5         Styrene         10         U				
108-90-7         Chlorobenzene         10         U           100-41-4         Ethylbenzene         10         U           100-42-5         Styrene         10         U				
100-41-4         Ethylbenzene         10         U           100-42-5         Styrene         10         U				
100-42-5 Styrene 10 U				-
				-
	1330-20-7	Xylene (total)	10	<u> </u>

0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract	GW-17S
Lab Code: IEACT Case No	.: 0012A SAS No.	: SDG No.: A0012
Matrix: (soil/water)WATER		Lab Sample ID: 990012A-04
Sample wt/vol: 5	(g/mL)ML	Lab File ID: >L2548
Level: (low/med) LOW		Date Received: 01/06/99
% Moisture: not dec.		Date Analyzed: 01/08/99
GC Column: 007-624 ID: 0.	53 (mm)	Dilution Factor: 1.0
Soil Extract Volume:	_(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

### CONCENTRATION UNITS: (uq/L or uq/Kq)UG/L

74-87-3 Chloromethane 10 U 74-83-9 Bromomethane 10 IJ 75-01-4 Vinyl Chloride 10 ĪΪ 75-00-3 Chloroethane 10 U 75-09-2 Methylene Chloride 10 IJ 67-64-1 Acetone 10 Ū Carbon Disulfide 75-15-0 10 Ū 75-35-4 1,1-Dichloroethene 10 Ū 75-34-3 1,1-Dichloroethane 10 Ū 540-59-0 1,2-Dichloroethene (total) 10 U 67-66-3 Chloroform Ū 10 107-06-2 1,2-Dichloroethane 10 Ū 78-93-3 2-Butanone 10 Ū 71-55-6 1;1,1-Trichloroethane 10 U Carbon Tetrachloride Bromodichloromethane 56-23-5 10 U 75-27-4 10 Ū 78-87-5 1,2-Dichloropropane 10 Ū 10061-01-5 cis-1,3-Dichloropropene 10 Ū 79-01-6 Trichloroethene 10 U 124-48-1 Dibromochlorometha e 10 U 1,1,2-Trichloroethane 79-00-5 10 Ū 71-43-2 Benzene U 10 10061-02-6 trans-1,3-Dichloropropene Ū 10 75-25-2 U Bromoform 10 108-10-1 4-Methyl-2-Pentanone Ū 10 591-78-6 2-Hexanone 10 Ū 127-18-4 Tetrachloroethene 10 Ū 79-34-5 1,1,2,2-Tetrachloroethane 10 Ū 108-88-3 Toluene 10 U 108-90-7 Chlorobenzene 10 U 100 - 41 - 4Ethylbenzene 10 IJ 100 - 42 - 5Styrene 10 Ū Xylene (total) 1330-20-7 10 U

1A				N	YSDEC	S
VOLATILE	ORGANICS	ANALYSIS	DATA	SHEET .		
			•			

Lab Name: STL/CT		Contract:
Lab Code: IEACT	Case No.: 0012A	SAS No.: SDG No.: A0012
Matrix: (soil/water)	WATER	Lab Sample ID: 990012A-05
Sample wt/vol:	5 (g/mL)ML	Lab File ID: >L2549
Level: (low/med)	LOW	Date Received: 01/06/99
% Moisture: not dec	•	Date Analyzed: 01/08/99
GC Column: 007-624	ID: 0.53 (mm)	Dilution Factor: 1.0
Soil Extract Volume	:(uL)	Soil Aliquot Volume:(uL)

CAS NO. COMPOUND

## CONCENTRATION UNITS: (ug/L or ug/Kg)UG/L

		1	
74-87-3	Chloromethane	10	U
74-83-9	Bromomethane	10	U
75-01-4	Vinyl Chloride	10	U
75-00-3	Chloroethane	10	Ū
75-09-2	Methylene Chloride	10	Ū
67-64-1	Acetone	10	Ū
75-15-0	Carbon Disulfide	1	J
75-35-4	1,1-Dichloroethene	10	Ū
75-34-3	1,1-Dich_oroethane	10	U
540-59-0	1,2-Dichloroethene (total)	10	U
67-66-3	Chloroform	10	Ū
107-06-2	1,2-Dichloroethane	10	U
78-93-3	2-Butanone	10	Ū
71-55-6	1,1,1-Trichloroethane	10	Ū
56-23-5	Carbon Tetrachloride	10	Ū
75-27-4	Bromodichloromethane	10	. U
78-87-5	1,2-Dichloropropane	10	Ū
10061-01-5	cis-1,3-Dichloropropene	10	Ū
79-01-6	Trichloroethene	10	Ū
124-48-1	Dibromochloromethane	10	Ū
79-00-5	1,1,2-Trichloroethane	10	Ū
71-43-2	Benzene	10	Ū
10061-02-6	trans-1,3-Dichloropropene	10	Ū
75-25-2	Bromoform	10	<u> </u>
108-10-1	4-Methyl-2-Pentanone	10	Ū
591-78-6	2-Hexanone	10	Ū
127-18-4	Tetrachloroethene	10	Ū
79-34-5	1,1,2,2-Tetrachloroethane	10	Ū
108-88-3	Toluene	10	<u> </u>
108-90-7	Chlorobenzene	10	Ū
100-41-4	Ethylbenzene	10	Ū
100-42-5	Styrene	10	<u>U</u>
1330-20-7	Xylene (total)	10	<u> </u>

1A VOLATILE ORGANICS ANALYSIS DATA SHEET Г

Lab Name: STL/CT		Contract:	SS-62
Lab Code: IEACT	Case No.: 0012A	SAS No.: SDG No	o.: A0012
Matrix: (soil/water)S	SOIL	Lab Sample ID	: 990012A-06
Sample wt/vol: 5	6 (g/mL)G	Lab File ID:	>K2316
Level: (low/med) L	WOL	Date Received	: 01/06/99
% Moisture: not dec.	15	Date Analyzed	: 01/12/99
GC Column: 007-624	ID: 0.53 (mm)	Dilution Facto	or: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot V	Volume:(uL)

CAS NO. COMPOUND

## CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

	·····		· · · · · · · · · · · · · · · · · · ·
74-87-3	Chloromethane	12	U
74-83-9	Bromomethane	12	Ū
75-01-4	Vinyl Chloride	12	<u> </u>
75-00-3	Chloroethane	12	<u> </u>
75-09-2	Methylene Chloride	1	JB
67-64-1	Acetone		B
75-15-0	Carbon Disulfide	12	Ū
75-35-4	1,1-Dichloroethene	12	Ŭ
75-34-3	1,1-Dichloroethane	12	<u> </u>
540-59-0	1,2-Dichloroethene (total)	12	<del>u</del> u
67-66-3	Chloroform	12	<u>0</u>
107-06-2	1,2-Dichloroethane	12	Ū
78-93-3	2-Butanone	4	JB
71-55-6	1,1,1-Trichloroethane	12	<u><u> </u></u>
56-23-5	Carbon Tetrachloride	12	<u> </u>
75-27-4	Bromodichloromethane	12	<u> </u>
78-87-5	1,2-Dichloropropane	12	<u> </u>
10061-01-5	cis-1,3-Dichloropropene	. 12	<u> </u>
79-01-6	Trichloroethene	12	Ū
124-48-1	Dibromochloromethane	12	<del>- ŭ</del>
79-00-5	1,1,2-Trichloroethane	12	Ū
71-43-2	Benzene	12	Ū
10061-02-6	trans-1,3-Dichloropropene	12	Ū
75-25-2	Bromoform	12	<u> </u>
108-10-1	4-Methyl-2-Pentanone	12	Ū
591-78-6	2-Hexanone	12	Ū
127-18-4	Tetrachloroethene	12	Ū
79-34-5	1,1,2,2-Tetrachloroethane	12	Ŭ
108-88-3	Toluene	12	Ū
108-90-7	Chlorobenzene	12	Ū
100-41-4	Ethylbenzene	12	Ŭ
100-42-5	Styrene	12	<del>- ŭ</del> -
1330-20-7	Xylene (total)	12	<del>- ŭ</del>
2000 20 1			<u> </u>

### 1A NY VOLATILE ORGANICS ANALYSIS DATA SHEET NYSDEC SAMPLE NO.

Lab Name: STL/CT			Contract:	DUP
Lab Code: IEACT	Case	No.: 00127	A SAS No.: SDG No	o.: A0012
Matrix: (soil/water)	SOIL		Lab Sample ID	: 990012A-07
Sample wt/vol:	5	(g/mL)G	Lab File ID:	>K2317
Level: (low/med)	LOW		Date Received	: 01/06/99
% Moisture: not dec.	17		Date Analyzed	: 01/12/99
GC Column: 007-624	ID:	0.53 (mm	) Dilution Facto	or: 1.0
Soil Extract Volume:		(uL)	Soil Aliquot	Volume:(uL)

CAS NO. COMPOUND

.

## CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

74-87-3	Chloromethane	12	U
74-83-9	Bromomethane	12	Ū
75-01-4	Vinyl Chloride	12	Ū
75-00-3	Chloroethane	12	U U
75-09-2	Methylene Chloride	2	JB
67-64-1	Acetone	24	B
75-15-0	Carbon Disulfide	12	Ū
75-35-4	1,1-Dichloroethene	12	Ū
75-34-3	1,1-Dichloroethane	12	Ū
540-59-0	1,2-Dichloroethene (total)	12	Ū
67-66-3	Chloroform	12	Ū
107-06-2	1,2-Dichloroethane	12	U
78-93-3	2-Butanone	3	JB
71-55-6	1,1,1-Trichloroethane	12	U
56-23-5	Carbon Tetrachloride	12	U
75-27-4	Bromodichloromethane	12	U
78-87-5	1,2-Dichloropropane	12	U
10061-01-5	cis-1,3-Dichloropropene	12	U
79-01-6	Trichloroethene	12	U
124-48-1	Dibromochloromethane	12	U
79-00-5	1,1,2-Trichloroethane	12	U
71-43-2	Benzene	12	U
10061-02-6	trans-1,3-Dichloropropene	12	<u> </u>
75-25-2	Bromoform	12	<u> </u>
108-10-1	4-Methyl-2-Pentanone	12	U
591-78-6	2-Hexanone	12	U
127-18-4	Tetrachloroethene	12	U
79-34-5	1,1,2,2-Tetrachloroethane	12	U
108-88-3	Toluene	12	U
108-90-7	Chlorobenzene	12	U
100-41-4	Ethylbenzene	12	U
100-42-5	Styrene	12	U
1330-20-7	Xylene (total)	12	<u> </u>

EPA SAMPLE NO.

1

- 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract	:	SS-62
		•	
Lab Code: IEACT Case	No.: 0012A SAS No.	: SDG No	D.: A0012
Matrix: (soil/water)SOIL		Lab Sample ID	: 990012A-06
Sample wt/vol: 30	(g/mL)G	Lab File ID:	>R1884
Level: (low/med) LOW		Date Received	: 01/06/99
% Moisture: 23 deca	anted: (Y/N)N	Date Extracted	d:01/15/99
Concentrated Extract Volu	ıme: 500 (uL)	Date Analyzed	: 01/25/99
Injection Volume: 2.0	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)Y	pH:7.4		

CAS	NO	COMPOUN

ND

## CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

91-20-3	Naphthalene	430	U
91-57-6	2-Methylnaphthalene	430	<u> </u>
208-96-8	Acenaphthylene	430	U
83-32-9	Acenaphthene	430	U
86-73-7	Fluorene	430	Ŭ
85-01-8	Phenanthrene	16	Ĵ
120-12-7	Anthracene	430	U
206-44-0	Fluoranthene	34	J
129-00-0	Pyrene	28	J
56-55-3	Benzo(a)anthracene	12	J
218-01-9	Chrysene	20	J
205-99-2	Benzo(b)fluoranthene	17	٠J
207-08-9.	Benzo(k)fluoranthene	19	J
50-32-8	Benzo(a)pyrene	14	J
193-39-5	Indeno(1,2,3-cd)pyrene	12	J
53-70-3	Dibenzo(a,h)anthracene	430	Ŭ
191-24-2	Benzo(g,h,i)perylene	11	J

EPA SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: STL/CT	Contract:
Lab Code: IEACT Case No.: 0012	A SAS No.: SDG No.: A0012
Matrix: (soil/water)SOIL	Lab Sample ID: 990012A-07
Sample wt/vol: 30 (g/mL)G	Lab File ID: >R1888
Level: (low/med) LOW	Date Received: 01/06/99
% Moisture: 23 decanted: (Y/	N)N Date Extracted:01/15/99
Concentrated Extract Volume: 500	(uL) Date Analyzed: 01/25/99
Injection Volume: 2.0 (uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)Y pH:7	.6

CAS NO.

COMPOUND

### CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Q

			•
91-20-3	Naphthalene	430	U
91-57-6	2-Methylnaphthalene	430	U
208-96-8	Acenaphthylene	5	J
83-32-9	Acenaphthene	430	U
86-73-7	Fluorene	430	U
85-01-8	Phenanthrene	22	J
120-12-7	Anthracene	4	J
206-44-0	Fluoranthene	53	J
129-00-0	Pyrene	42	J
56-55-3	Benzo(a)anthracene	23	J
218-01-9	Chrysene	32	J
205-99-2	Benzo(b)fluoranthene	26	J
207-08-9.	Benzo(k)fluoranthene	29	J
50-32-8	Benzo(a)pyrene	24	J
193-39-5	Indeno(1,2,3-cd)pyrene	15	J
53-70-3	Dibenzo(a,h) hracene	6	J
191-24-2	Benzo(q,h,i); ylene	19	J

.

PESTICIDE ORGANICS ANALYSIS DATA SHEET

1D

EPA SAMPLE NO.

Lab Name: <u>STL-CT</u> Contra	act:
Lab Code: <u>IEACT</u> Case No.: <u>0012A</u> SAS No.:	SDG No.: <u>A0012</u>
Matrix: (soil/water): <u>SOIL</u>	Lab Sample ID: <u>990012A-06</u>
Sample wt/vol: <u>30 (</u> g/ml) <u>G</u>	Lab File ID: <u>C1013CLP390</u>
% Moisture: <u>21    </u> decanted: (Y/N) <u>N  </u>	Date Received: <u>01/06/99</u>
Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: <u>01/06/99</u>
Concentrated Extract Volume: <u>5000</u> (uL)	Date Analyzed: <u>01/25/99</u>
Injection Volume: <u>1.0</u> (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N)Y pH: <u>7.8</u>	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO. COMPOUND

.

CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

12674-11-2 Aroclor-1016	42.	U
11104-28-2 Aroclor-1221	85.	U
11141-16-5 Aroclor-1232	42.	Ū
53469-21-9 Aroclor-1242	42.	<u> </u>
12672-29-6 Aroclor-1248	42.	<u> </u>
11097-69-1 Aroclor-1254	42.	U
11096-82-5 Aroclor-1260	13.	JP

OLM03.C

EPA SAMPLE NO.

PESTICIDE ORGANICS ANALYSIS DATA SHEET

1D

DUP

Lab Name: <u>STL-CT</u>	Contract:
Lab Code: <u>IEACT</u> Case No.: <u>0012A</u> S	SAS No.: SDG No.: <u>A0012</u>
Matrix: (soil/water): <u>SOIL</u>	Lab Sample ID: <u>990012A-07</u>
Sample wt/vol: <u>30 (g</u> /ml) <u>G</u>	Lab File ID: <u>C1013CLP393</u>
% Moisture: <u>24</u> decanted: (Y/N) <u>N</u>	Date Received: <u>01/06/99</u>
Extraction: (SepF/Cont/Sonc) <u>SONC</u>	Date Extracted: <u>01/06/99</u>
Concentrated Extract Volume: 5000 (	uL) Date Analyzed: <u>01/26/99</u>
Injection Volume: <u>1.0</u> (uL)	Dilution Factor: <u>1.0</u>
GPC Cleanup: (Y/N)Y pH:7.5	Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO. COMPOUND

CONCENTRATION UNITS: Q (ug/L or ug/Kg) <u>UG/KG</u>

12674-11-2 Aroclor-1016	43.	U
11104-28-2 Aroclor-1221	88.	Ū
11141-16-5 Aroclor-1232	43.	Ū
53469-21-9 Aroclor-1242	43.	U
12672-29-6 Aroclor-1248	43.	Ū
11097-69-1 Aroclor-1254	43.	<u> </u>
11096-82-5 Aroclor-1260	8.5	Ĵ

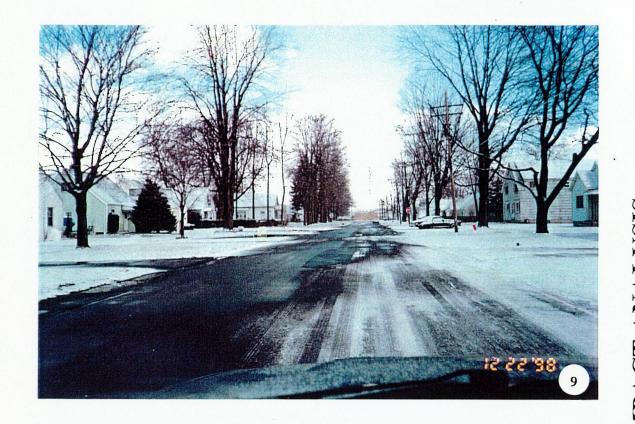
Appendix D Support Documentation/Resubmission

### **END OF DATA PACKAGE**

.

•

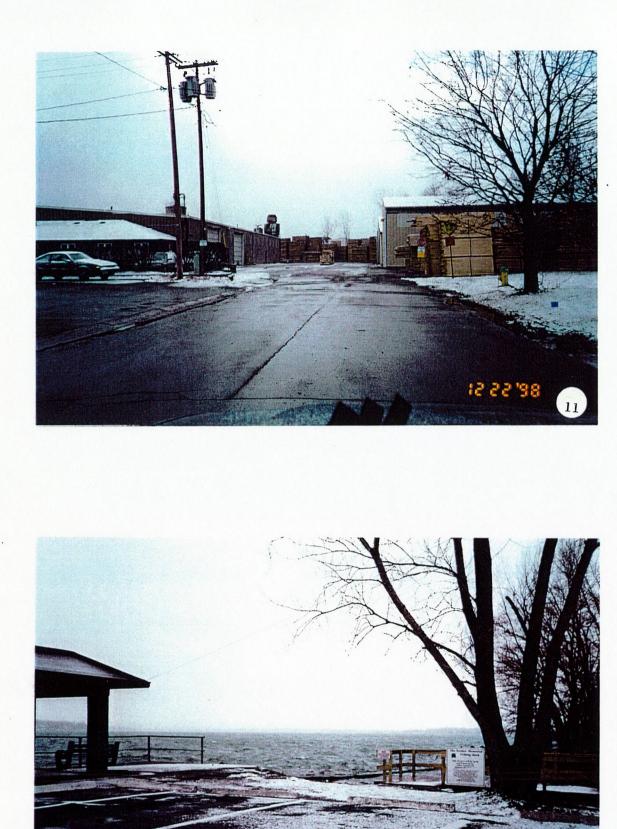
.

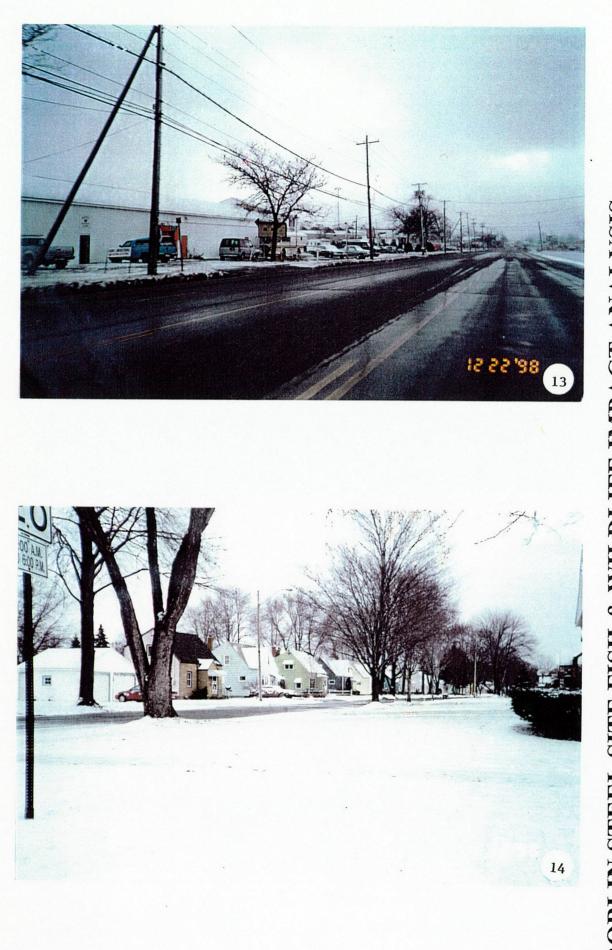

.

### APPENDIX E

### FISH AND WILDLIFE IMPACT FIGURES

80049FA1400






80049FA1400

12





80049FA1430