Washington Station 333 West Washington Street, Suite 300 Syracuse, NY 13202 Telephone: 315-431-4610 www.eaest.com

1 November 2024

TECHNICAL MEMORANDUM

TO: Michael Belveg, NYSDEC Project Manager

FROM: Emily Cummings, EA Project Manager

SUBJECT: Supplemental Pre-Design Investigation Results

Contract/Work Assignment No. D009806-32 Zip Zip Mini Market, Syracuse, New York

Site No. B00075

EA Project No. 1602532

1. INTRODUCTION

EA Engineering, P.C. and its affiliate EA Science and Technology (EA) was tasked by the New York State Department of Environmental Conservation (NYSDEC), under Work Assignment Number (No.) D009806-32 to conduct a Pre-Design Investigation (PDI), Pilot Study, and Remedial Design at the Zip Zip Mini Market Site (No. B00075) (site) in the city of Syracuse, Onondaga County, New York (**Figure 1**). This memorandum provides details for field activities that were conducted between July 2024 and September 2024 as part of a Supplemental PDI at the site.

The first phase of the PDI was conducted in Fall 2023. The results from which suggested that the volatile organic compounds (VOCs) groundwater plume was not fully delineated to the east and was in proximity to an occupied building, which represents a possible vapor intrusion risk. Therefore, supplemental investigative work was proposed as outlined in the PDI Letter Work Plan Addendum (EA 2024a). Work was performed to further delineate impacts in groundwater and determine soil vapor concentration within the vadose zone of the site where impacted groundwater exists. Further evaluation of the indoor air of the adjacent building was not performed as part of this recent field effort and will be performed in the November to December 2024 time frame to coincide with the heating season in compliance with New York State Department of Health Guidance for Evaluating Soil Vapor Intrusion in the State of New York.

Field activities were completed in accordance with the Pre-Design Investigation Letter Work Plan Addendum (EA 2024a), EA's Generic Field Activities Plan (EA 2023a), EA's Site-Specific Health and Safety Plan (EA 2023b), EA's Generic Health and Safety Plan (EA 2024b), and EA's Generic Quality Assurance Project Plan (EA 2020). These plans have been submitted to the Division of Environmental Remediation and are available upon request. Additional specific tasks and any deviations are described in the following sections.

2. SUPPLEMENTAL PRE-DESIGN INVESTIGATION ACTIVITIES

2.1 GROUND-PENETRATING RADAR SURVEY AND UTILITY CLEARANCE

A ground-penetrating radar survey, as well as utility clearance activities, was completed during the original PDI field activities in September 2023, and the results of this survey were used to clear drilling locations of utilities for this phase of the work. Prior to the start of drilling activities, the drilling subcontractor, Parratt-Wolff, Inc. (PWI) contacted UDig New York to locate and mark any underground public utilities. PWI was provided with copies of the ground-penetrating radar survey report to assist in the subsurface utility clearance.

2.2 SOIL BORINGS

PWI hand-cleared two soil boring locations (SB-EA-9 and SB-EA-10) to 5 feet below ground surface (bgs) and confirmed that no utility interferences existed at either location. After the boreholes were hand-cleared, SB-9 was advanced to 18.5 ft bgs, while SB-10 was advanced to 22.7 ft bgs using a truck-mounted drilling rig. Boreholes were completed via hollow stem augers and continuous split-spoon sampling techniques following American Society for Testing and Materials International D1586. No soil samples were collected for chemical analysis as no gross contamination was observed. Soil boring logs are included as **Attachment A**.

2.3 MONITORING WELL INSTALLATION

The two soil boring locations were converted to permanent, 2-inch diameter monitoring wells (MW-EA-9 and MW-EA-10) on 11–12 July 2024. MW-EA-9 was constructed of eight feet of 2-inch internal diameter Schedule 40 polyvinyl chloride casing with a 10-foot long, #10-slot Schedule 40 polyvinyl chloride screen. MW-EA-10 was constructed of seven feet of 2-inch internal diameter Schedule 40 polyvinyl chloride casing with a 15-foot long, #10-slot Schedule 40 polyvinyl chloride screen. The annulus around the outside of the screen was backfilled with sand (#0 US Silica or equivalent) extending 2 feet above the screen. A 3-foot bentonite seal was installed above the sand pack at all wells. The remaining borehole annulus was tremie grouted with a bentonite/cement grout mixture to grade. Each well was completed with a 2-foot by 2-foot concrete pad and curb box with a minimum diameter of 6-inches. Well construction diagrams are included in **Attachment A** and well locations are provided on **Figure 2**.

2.4 MONITORING WELL DEVELOPMENT AND REDEVELOPMENT

Well development has been conducted at MW-EA-9 in accordance with the Field Activities Plan and PDI Investigation Letter Work Plan but could not be performed at MW-EA-10. MW-EA-10 was gauged on several occasions between 16 July 2024 and 21 August 2024 but has not produced sufficient groundwater for development.

Well development of MW-EA-9 began on 17 July 2024 and concluded on 7 August 2024 using surge and pump techniques. On 17 July 2024, MW-EA-9 was purged with a submersible pump, which went dry after approximately one well volume. EA returned to the site on 7 August 2024 to continue development of MW-EA-9 after it had recharged. Development was continued using

surge and pump techniques, purging with a bailer. Four well volumes were successfully removed on 7 August 2024 before the well went dry. Water depths, flow rates, and water quality parameters (pH, specific conductance, temperature, oxidation-reduction potential, dissolved oxygen, total dissolved solids, and turbidity) were monitored throughout the development process and are documented on the well development logs provided in **Attachment A**. The recharge rate of the well was slow and could not keep up with the rate of purging; therefore, stabilization of field parameters could not be achieved.

Development water was containerized, handled, and disposed of as detailed in Section 3.2.13 of the Generic Health and Safety Plan (EA 2024b).

2.5 GROUNDWATER SAMPLING

On 21 August 2024, groundwater samples were collected from one of the newly installed wells (MW-EA-9) and MW-EA-1R, MW-EA-4R, and MW-EA-6 (four wells total) using low-flow sampling techniques. MW-EA-10 was again dry and did not have adequate volume to conduct sampling during the August 2024 sampling event. Static water levels and well depths were gauged in all site wells before purging and are provided in **Table 1**. Gauging logs as well as purge forms with all water quality parameters and sampling information for each well are included in **Attachment A**. Samples were collected in laboratory-provided sample containers for analysis of VOCs by U.S. Environmental Protection Agency Method 8260D. A field duplicate as well as a matrix spike and matrix spike duplicate were collected for each analyte. Groundwater samples were analyzed by NYSDEC Call-out Laboratory, Con-Test.

2.6 SOIL VAPOR POINT SAMPLING

On 21–22 August 2024, soil vapor point (SVP) sampling was performed. Both SVP-1 and SVP-2 (**Figure 2**) were found to have perched water within the sampling screen. EA purged water from these two points on 21 August 2022. Several attempts were made for several hours on 21–22 August 2024 to purge the water from SVP-2; however, these attempts were unsuccessful and no sample was collected from this location.

On 22 August 2024, a SVP sample was collected from SVP-1 using a laboratory-supplied 6-liter Summa® canister regulated for a 2-hour collection period. One canister set to collect a sample over a 2-hour period was connected to SVP-1 and the initial canister vacuum pressure was recorded as -28 inches of mercury. After 2 hours had elapsed, EA observed that the canister vacuum had not decreased from the initial reading. It was suspected that the regulator and/or components of the sampling train were not operating properly. While troubleshooting the Summa® canister sampling train, EA noted that droplets of water were present in both the intake tubing and regulator fittings. In response, EA attempted to purge SVP-1 further with both a peristaltic pump and hand pump; however, no additional water was extracted.

EA made a second attempt to collect a sample from SVP-1 using a new canister and regulator. A moisture filter was added to the sample train to collect excess moisture that was present in the sample tubing to prevent damage to the sampling system. Sample collection with the second canister was successful, and the sample was analyzed for VOCs via U.S. Environmental

Protection Agency Method TO-15 by NYSDEC Cal-Out Laboratory, Con-Test. It should be noted that no duplicate was collected. Field forms associated with the soil vapor sampling log are provided in **Attachment A**.

2.7 DECONTAMINATION PROCEDURES AND INVESTIGATION-DERIVED WASTE

Non-dedicated drilling equipment and tools were decontaminated prior to field activities and between drilling locations.

Investigation-derived waste, including personal protective equipment, solids, and liquids generated during the well drilling, well development, and well sampling activities, was stored, handled, and disposed of in accordance with the supplemental PDI Work Plan (EA 2024a). Solid and liquid investigation-derived waste will be transported and disposed of off-site as non-hazardous waste by EA's subcontractor, Island Pump and Tank.

2.8 SURVEY

Top of casing elevation and coordinates of the newly installed monitoring well locations were collected by an EA field geologist on 19 September 2024. The survey results are provided in **Attachment B**.

2.9 COMMUNITY AIR MONITORING PROGRAM

An EA field geologist was responsible for establishing and operating a Community Air Monitoring Program during all drilling and monitoring well installation activities in accordance with Section 8.3 of the Generic Health and Safety Plan (EA 2024b). The program included monitoring for VOCs and particulate concentrations upwind and downwind of the work zone. The monitoring stations were mobile and were relocated as the work progressed, or if the wind direction changed. The monitoring equipment calculated 15-minute running average concentrations, and all data were downloaded and stored at the conclusion of the field effort. Data collected during implementation of the Community Air Monitoring Program are available upon request. Neither particulates nor VOCs were documented above action levels.

2.10 DEVIATIONS FROM THE WORK PLAN

Deviations from the work plan occurred as follows:

- SVP-2 was not sampled due to the presence of perched water.
- MW-EA-10 was not developed or sampled due to insufficient volume of groundwater in the well.
- Stabilization of water quality parameters during development was unable to be achieved in monitoring well MW-EA-9, and turbidity did not stabilize below 50 nephelometric turbidity units because of the slow recharge rate of groundwater in the well.

- A moisture filter was added to the sampling train for SVP-1 to capture residual moisture in the SVP.
- Groundwater elevation at well MW-EA-10 was not used to generate the groundwater contour map (**Figure 4**) because the depth to water measured was so much deeper than the rest of the site wells, resulting in a shallower groundwater elevation that did not correspond to other site wells. MW-EA-10 groundwater recharge was observed to be much slower than the other site wells due to the soil formation (clay/silt mixture) present at the well.

3. RESULTS SUMMARY

3.1 OVERBURDEN GROUNDWATER SAMPLING RESULTS

Four groundwater samples, excluding quality assurance samples, were collected during the supplemental PDI field activities. Non-aqueous phase liquids were not observed during sampling. Analytical results were compared to NYSDEC Ambient Water Quality Standards (AWQS) and are summarized in **Table 2**. Methyl tertiary butyl ether (MTBE) was detected in MW-EA-9 with a concentration of 0.52 estimated (J) micrograms per liter (µg/L), which is below AWQS. All other site constituents of concern (COC) were non-detect in MW-EA-9. Parameters exceeding the NYSDEC AWQS criteria are as follows and graphically depicted on **Figure 3**.

- 1,2,4-Trimethylbenzene exceeded the AWQS of 5 μ g/L in MW-EA-1R and MW-EA-6R with concentrations of 160 μ g/L and 5.3 μ g/L, respectively.
- 1,3,5-Trimethylbenzene exceeded the AWQS of 5 μ g/L in MW-EA-1R with a concentrations of 53 μ g/L.
- Benzene exceeded the AWQS of 1 μ g/L in MW-EA-1R and MW-EA-4R with concentrations of 50 μ g/L and 1.6 μ g/L, respectively.
- Ethylbenzene, isopropylbenzene, naphthalene, n-butylbenzene, n-propylbenzene, and o-xylene exceeded their respective AWQS concentrations in MW-EA-1R.
- Total xylenes exceeded AWQS of 5 μ g/L in wells MW-EA-1R and MW-EA-6 with concentrations of 110 J μ g/L and 5.4 μ g/L, respectively
- The concentration of MTBE in MW-EA-4R was 18 μg/L, exceeding the AWQS of 10 μg/L.

Static groundwater elevations were collected on 21 August 2024. Depth to water ranged from 6.14 feet bgs (MW-EA-4R) to 21.65 feet bgs (MW-EA-10). Groundwater flow direction is to the north-northwest under an approximate average hydraulic gradient of 0.015 feet per foot. Groundwater elevations are provided in **Table 1** and are depicted on **Figure 4**.

3.2 SOIL VAPOR SAMPLING RESULTS

One soil vapor sample was collected during the supplemental PDI field activities from SVP-1. The following parameters were detected above the method detection limit:

- 2,2,4-Trimethylpentane
- Cyclohexane
- Dichlorodifluoromethane
- Ethylbenzene
- M-P-Xylene
- N-Heptane
- N-Hexane
- O-Xylene

While no standards or guidance values exist for soil vapor, analytical results screened against U.S. Environmental Protection Agency Risk Screening Levels and New York State Department of Health Soil Vapor Intrusion guidance values are summarized in **Table 3**.

3.3 DATA USABILITY SUMMARY

All samples collected during the supplemental PDI were validated by EA's subcontractor Environmental Data Services, Inc. of Palm Beach Gardens, Florida. Six parameters were detected in the trip blank (acetone, 2-butanone, tert-butyl alcohol, tert-butyl ethyl ether, ethanol, and toluene). As a result of the detections in the trip blank, sample results were qualified or adjusted as follows:

- Toluene detection in MW-EA-6 was below the reporting limit and qualified as non-detect
- Acetone detections in MW-EA-9, MW-EA-4R, and MW-EA-6 were qualified as nondetects
- 2-butanone detections in MW-EA-1R and the field duplicate FD-01 were qualified as non-detects
- Tert-butyl alcohol detected in MW-EA-4R was qualified as non-detect.

Additionally, several analytes in the parent sample and duplicate were outside the acceptable precision. Therefore, affected results were qualified as estimated (J). Overall, the data reviewed and validated were acceptable for their intended purposes. The Data Usability Summary Report is provided as **Attachment C**.

4. CONCLUSIONS

This Supplemental PDI was conducted to further delineate the groundwater plume and determine soil vapor concentration within the vadose zone of the site where impacted groundwater exists. Sampling result from this investigation closed data gaps regarding the nature and extent of

groundwater contamination. MTBE was detected in MW-EA-9 below AWQS and all other site COCs were non-detect in MW-EA-9. COC impacts in groundwater are bound to the east.

During the supplemental PDI activities, changes in site COC concentrations and groundwater quality parameters were observed when compared to results collected in Fall 2023. The following is a summary of the observations:

- Concentrations of benzene, ethylbenzene, isopropylbenzene, naphthalene, toluene, and xylenes decreased substantially in MW-EA-6.
- MTBE concentrations decreased at wells MW-EA-1R, MW-EA-4R, and MW-EA-6.
- Isopropylbenzene, n-butylbenzene, and naphthalene concentrations increased at MW-EA-1R.
- Benzene, toluene, and xylene concentrations decreased in MW-EA-1R.
- Oxidation reduction potential and dissolved oxygen measurements at MW-EA-4R have decreased from an oxidative to reductive environment.
- Groundwater elevations increased between October 2023 and August 2024.

In general, COC concentrations in site monitoring wells have decreased between 2023 and 2024. Due to limited data, conclusions regarding trends in groundwater concentrations cannot be made at this time. Given the results of this investigation, it is recommended that the upcoming pilot study evaluate implementation methodology and effectives at MW-EA-1R, where concentrations of multiple contaminants have been documented across the RI and PDI sampling events.

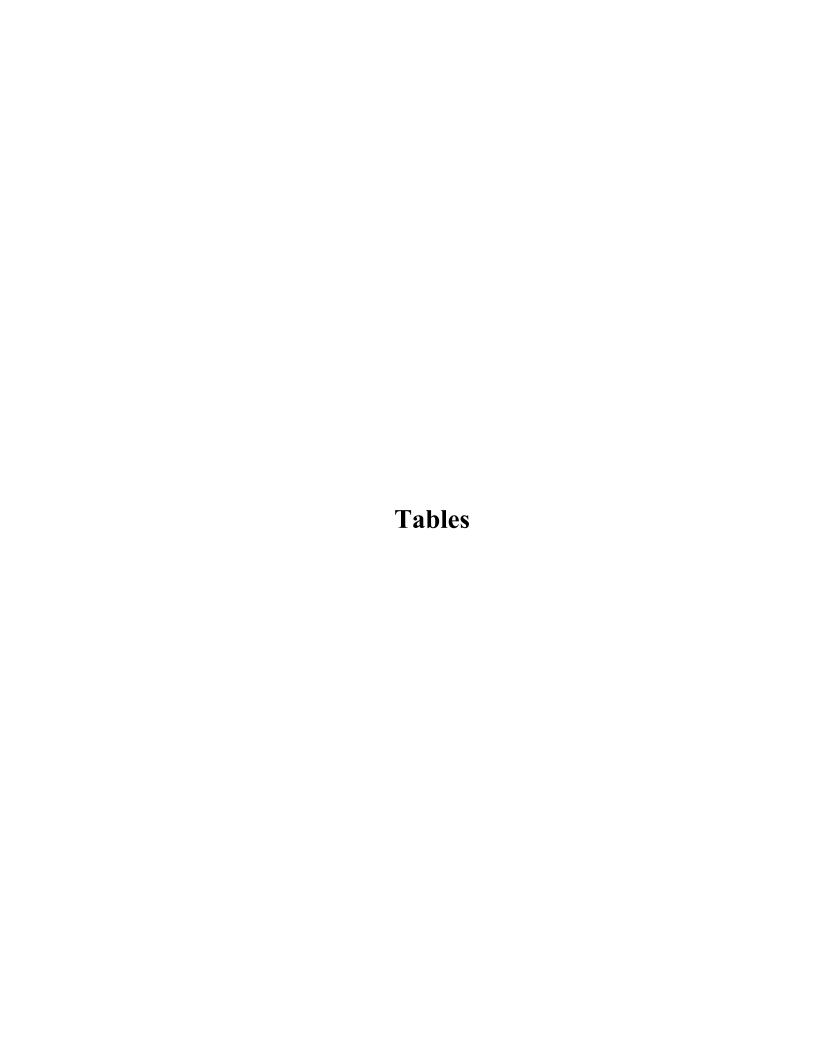
Due to detections of several VOCs in the soil vapor sample collected from SVP-1, a vapor intrusion evaluation should be conducted if buildings are constructed on-site under a future property development effort. EA will continue with the vapor intrusion sampling planned at the DBR Plumbing property in the 2024-2025 heating season.

5. REFERENCES

EA Engineering and Its Affiliate EA Science and Technology. 2020. Generic Quality Assuranc Project Plan for Work Assignments. April.
——. 2024b. Generic Health and Safety Plan for Work Assignments: NYSDEC Standby Contract No. D009806. August.

Page 8 November 2024

Tables


- 1 **Groundwater Elevations**
- Groundwater Sampling Results Summary (August 2024) 2
- 3 Soil Vapor Sampling Results Summary

Figures

- 1 Site Location
- Monitoring Well and Soil Vapor Point Locations 2
- 3 Groundwater Sample VOC Exceedances August 2024
- 4 Groundwater Contours; August 21, 2024

Attachments

- A Field Documentation
- В Survey Data
- \mathbf{C} Date Usability Summary Report (Environmental Data Services, Inc.)

Table 1. Groundwater Elevations

Monitoring Well	PVC Elevation (ft-NAVD88)	September 2023 Depth to Water (feet bgs)	September 2023 Groundwater Elevation (feet-NAVD88)	October 2023 Depth to Water (feet bgs)	October 2023 Groundwater Elevation (feet-NAVD88)	August 2024 Depth to Water (feet bgs)	August 2024 Groundwater Elevation (feet-NAVD88)
MW-EA-1R	425.01	12.96	412.05	11.90	413.11	7.16	417.85
TW-2	426.15	6.57	419.58	10.76	415.39	NM	NM
MW-EA-3R	425.13	12.41	412.72	8.71	416.42	6.91	418.22
MW-EA-4R	424.17	6.68	417.49	7.81	416.36	6.14	418.03
MW-EA-5	423.42	10.28	413.14	10.69	412.73	8.12	415.30
MW-EA-6	425.55	8.80	416.75	8.63	416.92	6.36	419.19
MW-EA-7	423.45	Dry	Dry	12.55	410.90	8.18	415.27
MW-EA-8	425.80	15.65	410.15	10.66	415.14	9.71	416.09
MW-EA-9*	426.08			-		9.26	416.82
MW-EA-10*	426.40					21.65	404.75

Notes:

NAVD 88 = Vertical datum

bgs = Below ground surface

NM = Not measured

PVC = Polyvinyl chloride

^{*} Monitoring wells MW-EA-9 and MW-EA-10 were installeed in July 2024.

Table 2. Groundwater Sampling Results Summary (August 2024)

Table 2. Groundwater Sampling Results Summary (August 2024)											
	Lo	cation ID	MW-EA-1R	MW-EA-1R	MW-EA-4R	MW-EA-6	MW-EA-9				
	Sam	ple Name	B00075-MW-EA-1R-082124	B00075-MW-FD-01-082124	B00075-MW-EA-4R-082124	B00075-MW-EA-6-082224	B00075-MW-EA-9-082124				
	Parent S	Sample ID		B00075-MW-EA-1R-20240821							
	Sai	mple Date	8/21/2024	8/21/2024	8/21/2024	8/22/2024	8/21/2024				
Analyte											
VOCs (SW8260D)	NYSDEC AWQS1	Unit	Result	Result	Result	Result	Result				
1,2,4-Trimethylbenzene	5	μg/L	160	200	< 1 U	5.3	< 1 U				
1,3,5-Trimethylbenzene (Mesitylene)	5	μg/L	53	68	< 1 U	3.8	< 1 U				
2-Methyl-2-Butanol	NSL	µg/L	9.3 J	12 J	10 J	< 5 UJ	< 5 UJ				
Benzene	1	μg/L	50	54	1.6	0.25 J	< 1 U				
Cyclohexane	NSL	μg/L	6.2	8.3	< 5 U	< 5 U	< 5 U				
Cymene	5	µg/L	2	2.7	< 1 U	0.17 J	< 1 U				
Ethylbenzene	5	μg/L	41 J	57 J	< 1 U	1.2	< 1 U				
Isopropylbenzene (Cumene)	5	µg/L	6.5	8.8	< 1 U	0.27 J	< 1 U				
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	NSL	µg/L	< 10 U	< 10 U	< 10 U	2.3 J	< 10 U				
Methylcyclohexane	NSL	μg/L	7.6	9.7	< 1 U	1.6	< 1 U				
M-P-Xylene	5	μg/L	100 J	140 J	< 2 U	3.9	< 2 U				
Naphthalene	10	µg/L	12	16	< 2 U	1.0 J	< 2 U				
N-Butylbenzene	5	μg/L	4.2	5.6	< 1 U	0.39 J	< 1 U				
N-Propylbenzene	5	μg/L	18	24	< 1 U	0.57 J	< 1 U				
O-Xylene (1,2-Dimethylbenzene)	5	μg/L	7.4	9	< 1 U	1.5	< 1 U				
Sec-Butylbenzene	5	μg/L	2.2	2.8	< 1 U	< 1 U	< 1 U				
Tert-Butyl Methyl Ether	10	μg/L	0.29 J	0.31 J	18	< 1 U	0.52 J				
Toluene	5	μg/L	2.7	< 1 U	< 1 U	< 1 U	< 1 U				
Xylenes	5	μg/L	110 J	150 J	< 1 U	5.4	< 1 U				

Notes:

Concentrations exceeding the screening level are bolded.

⁽¹⁾ New York State Department of Environmental Conservation Ambient Water Quality Standard Class GA (Standard/guidance values) (Technical and Operational Guidance Series [TOGS] 1.1.1)

 $[\]mu g/L = Mircogram(s)$ per liter

J = Concentration is estimated

NSL = No screening level available

U = Analyte not detected

VOC = Volatile organic compound

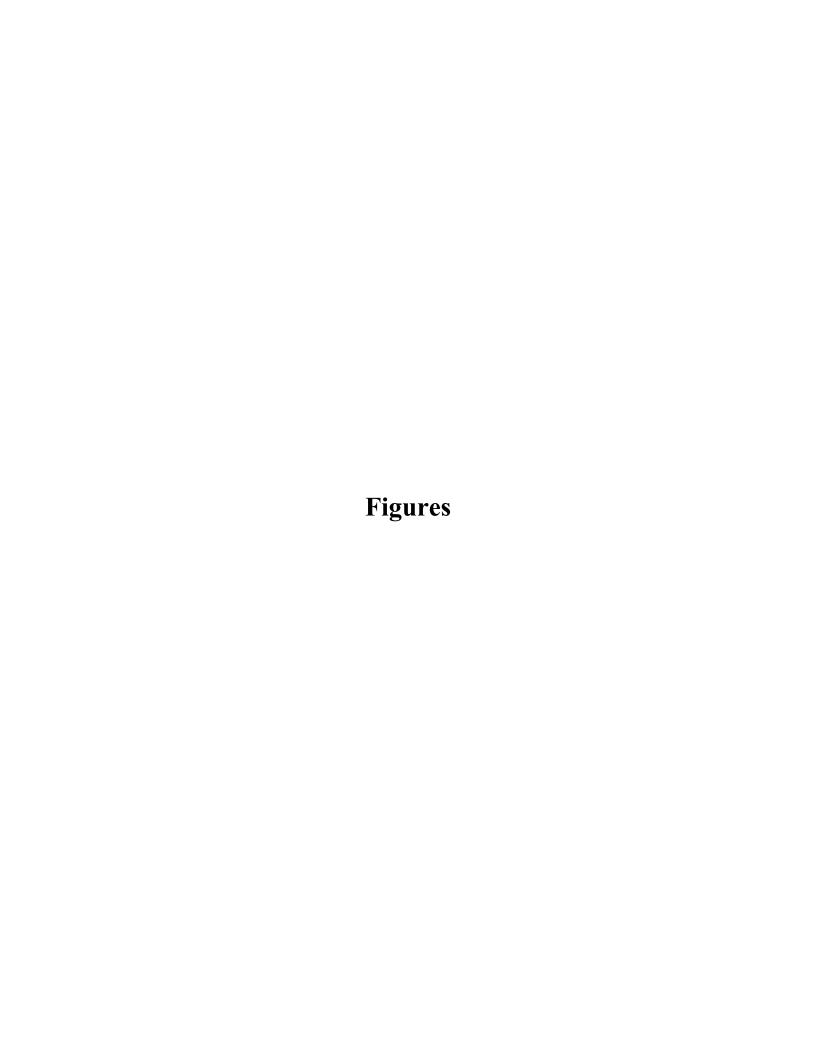
Table 3. Soil Vapor Sampling Results Summary

	SVP-01									
	B00075-SVP-1-082224									
	Parent Sample ID									
				Sample Date	8/22/2024					
		EPA Industrial Sub-	NYSDOH Sub-Slab							
Analyte (VOCs via TO-15)	EPA Industrial Air ¹	Slab Soil Gas RSL ²	Vapor ²	Unit	Results					
2,2,4-Trimethylpentane	NSL	NSL	60	$\mu g/m^3$	32000					
Cyclohexane	26000	86667	60	$\mu g/m^3$	160					
Dichlorodifluoromethane	440	1467	NSL	$\mu g/m^3$	2.4 J					
Ethylbenzene	4.9	16	60	$\mu g/m^3$	2.1 J					
M-P-Xylene	NSL	NSL	NSL	$\mu g/m^3$	4.0 J					
N-Heptane	1800	60000	200	$\mu g/m^3$	160					
N-Hexane	3100	103333	200	$\mu g/m^3$	570					
O-Xylene (1,2-Dimethylbenzene)	440	14667	60	$\mu g/m^3$	2.0 J					

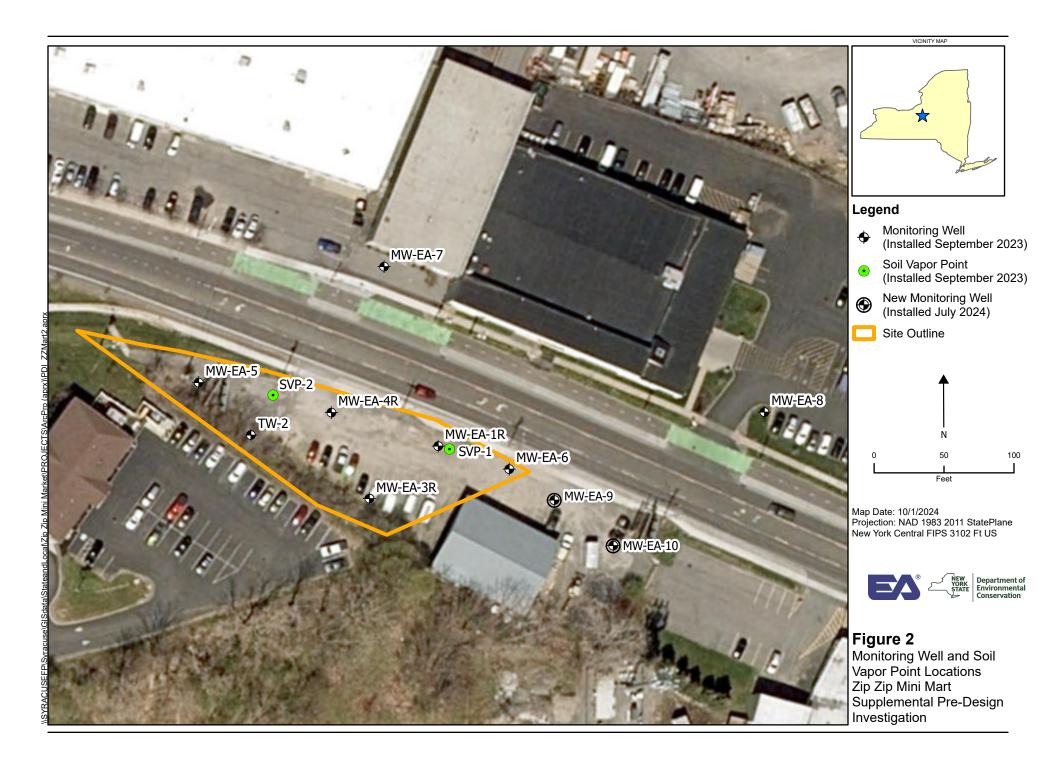
Notes:

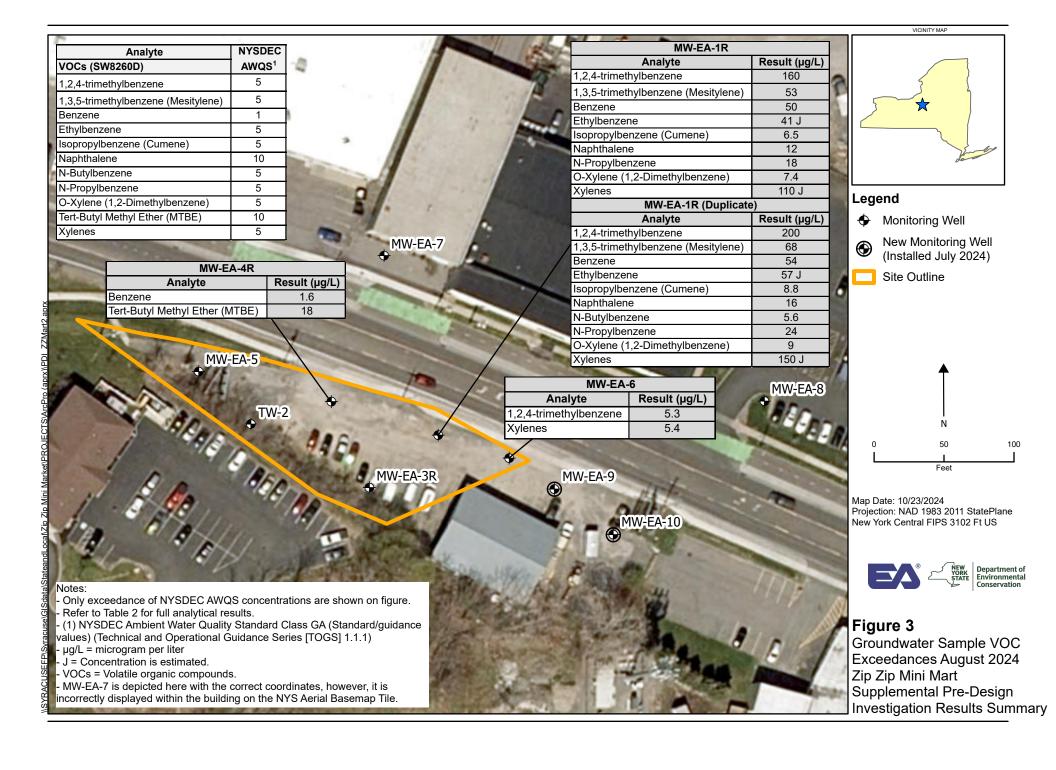
- (1) EPA Industrial Air RSLs for Target Cancer Risk (TR) = 1E-06 and Target Hazard Quotient (THQ) = 0.1 (EPA 2023, November).
- (2) Values calculated based on EPA Industrial Air Regional Screening Levels (EPA 2023, November), respectively, modified using the methodology specified in the EPA OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air, June 2015 by dividing by an attenuation factor of 0.03.
- (3) NYSDOH Screening level is lowest value for Sub-Slab Vapor Concentration in New York State Department of Health Soil Vapor Intrusion $\mu g/m^3 = Microgram(s)$ per meter-cubed

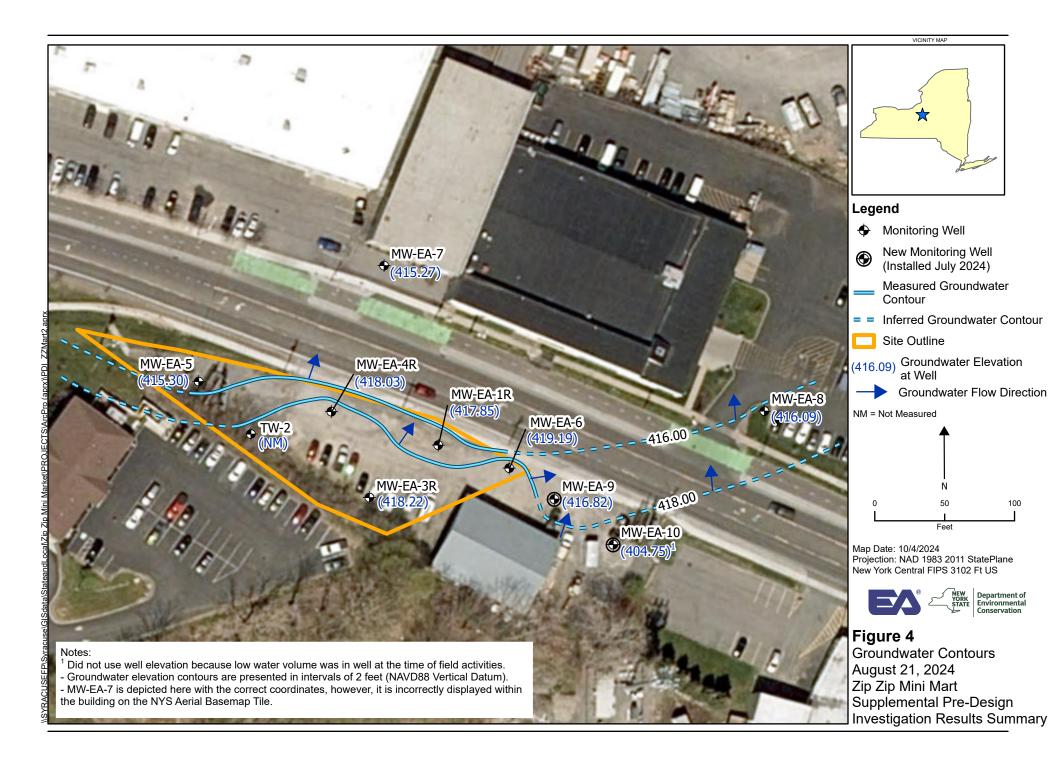
EPA = U.S. Environmental Protection Agency


ID = Identification

J = Concentration is estimated


NSL = No screening level available


NYSDOH = New York State Department of Health

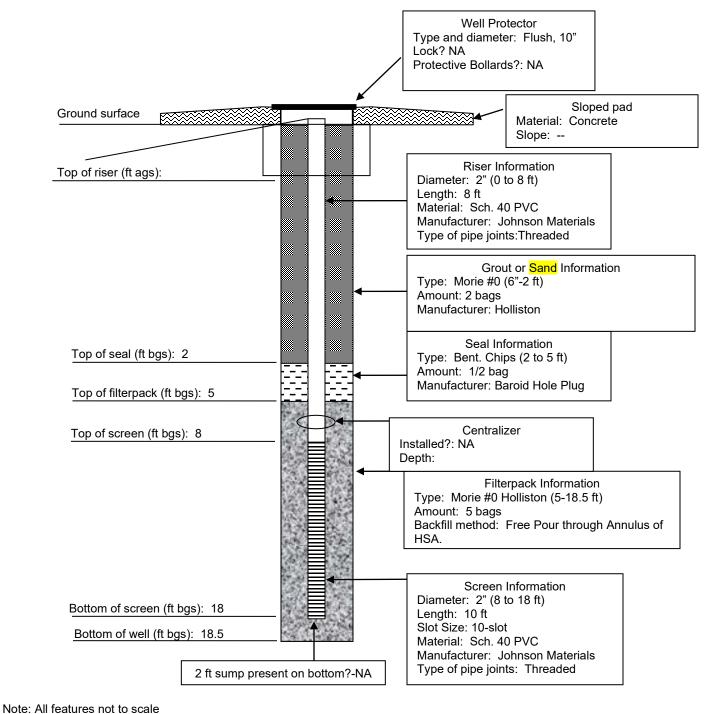

VOC = Volatile organic compound

Attachment A Field Documentation

	R					Job. No.	Client:	NYSDEC Zip Zip Mini	Market PDI	Additional	Loca	ation:
		EA Enginee	ering, P.	.C. and Its A	Affiliate		Project:	Wells	warket i Di,	Additional	MW	-EA-9
		EA Science				Drilling Method	: Hollow Stem	a Augers, CMI	E-50 Drill Rig	5		ng Number:
		SOIL BORING LO	G			Sampling Metho	nd: Split Spoot	n (SPT)			S	B-9
Coordinates:	No	orthing 1111560.286	Easting:	94	2500.23	Samping Weens	ж. эригэроог	. (011)			Sheet	1 of 1
Surface Elevati	on:		NM			1					Dri	lling
Casing Below 9	Surface:		NM		-	Water Level:	9.26 ft TOC				Start	Finish
Reference Elev	ation:		426.08 ft		- -	Time:					7/11/2024	7/11/2024
Reference Desc	cription:		TOC		_	Date:	8/21/2024				0822	1240
Blow Counts	Ft. Driven/	Boring	PID	Depth		Surf	ace Conditions:		Part	_	ken up fill material	
(140-lb)	Ft. Record	Diagram	(ppm)	in Feet	USCS Log		Weather: Temperature:			Clou 70's		
NA	NA			0	Fill		Temperature.	•		70:		
	1111	NA	NA	Ü	1.111	(0-5 ft bgs): Silt, fine s	sand, fine to mediur	n gravel, hard cla	y. (Fill) Soft Dig	gged to 5 ft.		
				1								
				2	1	+						
				3		4						
				4	1	+						
3/3	1/1		0.0	5	SM				5%), some silt (1	0%), trace clay (3	%), trace fine to mediu	m gravel (subangular to
3/3/4/6	4/2	NA	\vdash	6	SM/SC	subrounded) (2%), m				1: 1/ 1	1.1. 1. 1	\/20/\
3/3/4/0	1/2	NA	0.0	0	SW/ SC	(6-8 ft bgs.): 10YR 3/3 (2%), medium plastic				dium gravel (sub	prounded to subangula	r) (3%), trace fine sand
				7								
2/1/2/3	4/3			8	CL/ML	(0.40.6.1) 400.00.0	/a					
2/1/2/3	4/3	NA	0.0	0	CL/ IVIL	(8-10 ft bgs.): 10YR 3/ (5%), moist, no odor o), medium plastic	ity, some silt (10	%), trace fine to	medium gravel (subro	inded to subangular)
				9			-					
2/2/3/3	4/3			10	CL	(10.10.01) 100.00	N/A 11 11/2 C	77 437 (OFFICE) 11	1	11. (4.00/)		
2/2/3/3	4/3	NA	0.0	10	CL	(10-12 ft bgs.): 10YR 3 (5%), saturated, no oc		LAY (85%), medi	um plasticity, so	me slit (10%),tra	ce fine gravel (subangu	ılar to subrounded)
				11								
3/3/5/5	4/3			12	CI /MI	<u> </u>						
3/3/3/3	4/3	NA	0.0	12	CL/ML	(12-14 ft bgs.): 10YR 4 subrounded) (5%), m			um to high plast	icity, some silt (1	10%), trace fine gravel (subangular to
				13								
10 /14 /10 /17	4/2			14	CI							
12/14/18/17	4/3	NA	0.0	14	CL	_ (14-16 ft bgs.): 10YR 3 saturated, no staining		Y (90%), some silt	(7%), low plastic	city, trace fine gr	avel (subrounded to su	ıbangular) (3%),
				15			, , , , ,					
10 (01 (00 (50))	4./2				G.							
18/24/28/50/.4	4/3	NA	0.0	16	CL	(16-17.9 ft bgs.): 10YR (3%), saturated, no st				ım plasticity, tra	ce fine gravel (subroun	ded to subangular)
				17		(***)	8	,				
				10		HSA to 18.5 ft bgs. Re	efusal.					
			1 1	18		†						
				19								
			\vdash	20		+						
			1 1	20								
				21								
		1	\vdash	22	 	+						
				_								
		1		23	<u> </u>							
	1	1	$\vdash \vdash$	24	 	+						
		1				1						
			1 T	25	-	-			·	_		
		1	\vdash	26	 	+						
]	1				1						
				27		4						
		1	\vdash	28	 	1						
		1]						
		1		29	-	-						
	<u> </u>	Monito	ring Well	Construction	Information	1		1	Soil Var	or Point Insta	allation Informatio	n
	Monito	oring Well Diameter:		in						l Vapor Point:		ft
		of Monitoring Well:		ft bgs						om of Tubing:		ft
	Stick	: Up or Flush Mount: Screen Interval:		ısh Mount To	18	ft bgs				of Sand Pack: Bentonite Seal:		ft ft
		Riser Interval:	0	То	8	ft bgs						
		Sand Pack Interval:		То	18.5	ft bgs						
		Bentonite Seal: Grout Interval:		То То	0.5	_ft bgs ft bgs						
						_ 0		<u> </u>				
		Logged by:	Thor	mas Robinson	(EA)				Date:	07-11-24		

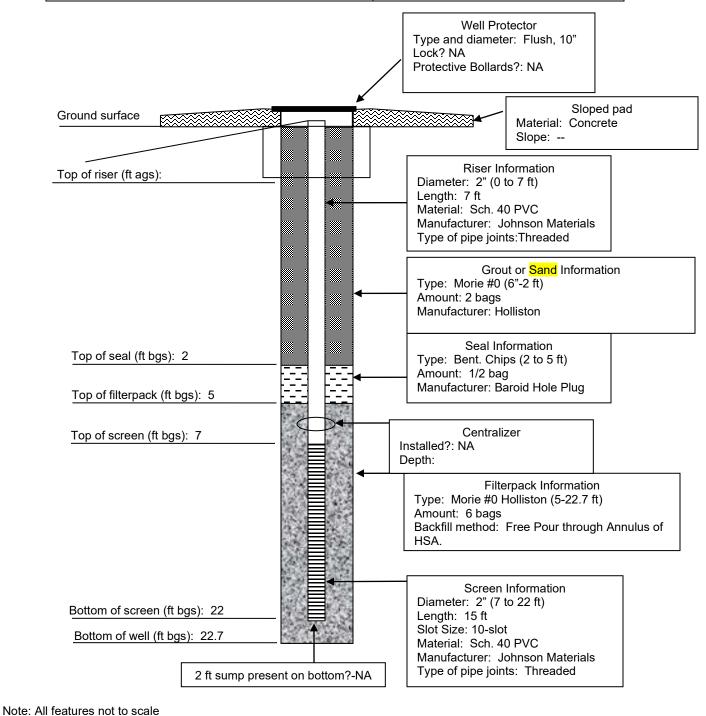
Driller:

Mark Eaves


Drilling Contractor:

Parratt-Wolff, Inc.

	Y	EA Enginee	ering P(C and Its A	ffiliate	Project:	Zip Zip Mini Wells	Market PDI, Additional	MW	-EA-10
		EA Science	_		arrinate	Drilling Method: Hollow Ster		E-50 Drill Rig	Soil Borin	ng Number:
		SOIL BORING LO)G			Sampling Method: Split Spoo	on (SPT)			B-10
Coordinates:		orthing 1111527.669		942	2542.362					1 of 1
Surface Elevati Casing Below S			NM NM		=	Water Level: 21.65			Start	illing Finish
Reference Elev			426.40 ft a	ımsl	-	Time:			7/11/2024	7/12/2024
Reference Desc	cription:		TOC		-	Date: 8/21/2024			1250	1050
Blow Counts	Ft. Driven/	Boring	PID	Depth		Surface Conditions		Part asphalt and bro		
(140-1b)	Ft. Record	Diagram	(ppm)	in Feet	USCS Log	Weather Temperature		Partly C		_
NA	NA		NA	0	Fill		*			
		NA		1		(0-5 ft bgs): Silt, fine sand, fine to mediu	ım gravel, hard cla	ay. (Fill) Soft Digged to 5 ft.		
]									
			⊦	2		_				
]			3						
				4						
						_				
3/6	4/1	NA	0.0	5	SM	(5-6 ft bgs): 10YR 4/3, loose, FINE TO M subrounded) (5%), moist, no odor or sta		35%), some silt (10%), trace fine	to medium gravel (su	bangular to
5/5/6/8	4/3	1471	0.0	6	SM/SC	(6-8 ft bgs.): 10YR 3/3, stiff, SILT (85%),	, some clay (10%),	trace fine to medium gravel (su	ibrounded to subangu	lar) (5%), low plasticity,
		NA		7		damp, medium stiff, no odor or staining	g.			
]									
4/5/5/4	4/1	NA	0.0	8	GW	(8-10 ft bgs.): Limited Recovery, 10YR 6 odor or stains.	/1, FINE TO MED	DIUM GRAVEL (90%) (subangu	ılar), trace fine to medi	um sand (5%), dry, no
]	1471		9		odor or stairs.				
30/22/10/10	4/1			10	GW	(10.12.6.1) 10VD ((1.1	O MEDITAL OR A	VET (00%) (1 1 1 1 1 1	1.0 6	1/1000 1 1
00/ 22/ 10/ 10	1/1	NA	0.0		G,,	(10-12 ft bgs.): 10YR 6/1, dense, FINE T or stains.	O MEDIUM GRA	VEL (90%) (subangular to subr	ounded), some fine sai	nd (10%), dry, no odor
			-	11						
17/8/8/10	4/0		0.0	12	NA					
		NA		13		(12-14 ft bgs.): No sample recovery.				
]									
4/5/4/5	4/3	NA	0.0	14	CL	(14-16 ft bgs.): 10YR 4/3, medium stiff, (subrounded to subangular) (5%), mois			silt (25%),trace fine to	medium gravel
]	1111		15		(Subtourided to Suburiguiar) (S 18)) moto	y no standing or or			
4/5/4/5	4/1			16	CL	(16.19 ft bas): 10VP 2 /2 modium stiff	CI AV (90%) love	planticity same fine to medium	a graval (subrounded t	to subangular) (10%)
1/0/1/0	1/1	NA	0.0		CD	(16-18 ft bgs.): 10YR 3/3, medium stiff, moist, no odors or staining.	CLA1 (90%), 10W	plasticity, some fine to mediun	i gravei (subrounded t	o subangular) (10%),
				17						
5/5/4/4	4/2		0.0	18	CL	(18-20 ft bgs.): 10YR 3/3, medium stiff,		plasticity, trace silt (5%), trace	fine to medium gravel	(subrounded to
		NA	 	19		subangular) (5%), moist, no odors or sta	aining.			
	4./2									
2/3/8/3	4/2	NA	0.0	20	CL	(20-22 ft bgs.): 10YR 3/3, stiff, CLAY (9) (5%), moist, no odors or staining.	0%), low plasticity	, trace silt (5%), trace fine to me	edium gravel (subroun	ded to subangular)
			-	21						
-/-/7/50/.3	4/1		0.0	22	CL	(20-22.7 ft bgs.): 10YR 3/4, hard, CLAY	(95%), low to med	lium plasticity, trace fine to me	dium gravel (subroun	ded to subangular)
		NA	0.0	22		(5%), moist, no odors or staining.		* * *		
	1			23		HSA to 22.7 ft bgs. Refusal.				
				24		4				
				25						
				26						
				- 20						
				27						·
				28						
			\vdash	29						
	Monito	Monitor oring Well Diameter:		Construction in	Information			Soil Vapor Point Inst Depth of Soil Vapor Point:		on ft
	Bottom	of Monitoring Well:	22.7	ft bgs				Bottom of Tubing:	NA	ft
	Stick	Up or Flush Mount: Screen Interval:		sh Mount To		ft bgs		Top of Sand Pack: Top of Bentonite Seal:		ft ft
		Riser Interval:	: 0	To	7	ft bgs		Top of Demonite Seal.	. 111	. *
		Sand Pack Interval: Bentonite Seal:		To To	<u>22.7</u> 5	ft bgs ft bgs				
		Grout Interval:		То	0.5	ft bgs				
		Logged by:	Thon	nas Robinson	(EA)		_	Date: 07-12-24		
		Drilling Contractor:	_	rratt-Wolff, Ir			_	Driller: Mark Eaves		


RECORD OF MONITORING WELL CONSTRUCTION (FLUSH MOUNT)

EA Engineering, Science, and Technology, Inc.	Monitoring Well/Soil Boring ID No.: MW-EA-9 Permit No.: NA
Project Name/ Project No.: Zip Zip Mini Market PDI/1602532	Date Installed: 7-11-24 Time Finished: 7-11-24
Location: MW-EA-9	Depth to Water: 9.26 ft
Site Geologist: T. Robinson	Drilling Method: HSA/SPT
Borehole Diameter: 4 1/4"	Outer Casing?: NA

RECORD OF MONITORING WELL CONSTRUCTION (FLUSH MOUNT)

EA Engineering, Science, and Technology, Inc.	Monitoring Well/Soil Boring ID No.: MW-EA-10 Permit No.: NA
Project Name/ Project No.: Zip Zip Mini Market PDI/1602532	Date Installed: 7-11-24 Time Finished: 7-12-24
Location: MW-EA-10	Depth to Water: 21.65 ft
Site Geologist: T. Robinson	Drilling Method: HSA/SPT
Borehole Diameter: 4 1/4"	Outer Casing?: NA

EA Engineering, P.C. and Its Affiliate EA Science and Technology

**************************************			MONITORI	NG WELL	DEVELOPME	NT LOG				
Well I.D.:	MW-EA	- 9	EA Personne	1110 1 0	und;	Client: NYSDEC				
	in fat of 06		Well Condit	ion: Exce	llent		of party	Cloudx		
Sounding M	ethod:		Gauge Date:	7-16-	24	Measuremer	nt Ref:		X-Z-Cillanta-co-	
	erel neter		Gauge Time	: 0735						
Stick Up/Do	wn (ft):			ace Reading:	ng: Well Diameter (in):					
	W. W	SCHOOL MANUFACTURES STATES AND CO.		3.1	TO SHARE THE PARTY OF THE PARTY	L				
Purge Date:	7-16-1	24	ente constitución de la constitu		Purge Time:	78230		1025		
Purge Metho	od: @ Sil	Gressble p	in		Field Technici		6.hsm			
				*** ***						
A TAZ 11 TO	(1. (6))		D W. 11 W 1	Well V	AND COLORS IN CONTRACTOR	Danil /II.	at of Town of Di	VC.		
A. Well Dep	th (ft): 18		D. Well Vol	ume (11): 0-163	SMIFF		nt of Top of P			
B. Depth to	Water (ft):	3.1	E. Well Volu	me (gal) C*I)):	Pump Type:	nonsoon		318	
C. Liquid D	epth (ft) (A-B):	4.9	F. Three We	Il Volumes (8	gal) (E3):	Pump Intake Depth:				
				_	y Parameters				T	
Time	pH	Conductivity	Turbidity	DO	Temperature (°C)	ORP	DTW (ft btos)	(L nm)	Volume	
(hrs)	(pH units)	(mS/cm)	(ntu)	(mg/L)		(mV)	(ft btoc)	(Lpm)	(liters)	
1030	6.73	3.58	310	5,914	23.31	7423193				
1035	6,91	3.63		5.07	21,38	175	17.0			
1040	6.93		114	9.18	22.07	177	17-1		-	
1045	6.93	3.81	110	8.78	22-12	181	17.2			
1050	7.03		144	6.28	24.05	167	DRY			
W55	7.08	3.83	132	6.15	24.01	153	DIG			
1105	7.18	3,93	218	8.43	26.03	151	DRY			
1110	7.10	3/1/	~(0	0 13	20.00		JK/			
1115									†	
1120	7.43	3.95	372	3.51	28.55	123	DRY			
									-	
									ļ	
		L	<u> </u>	<u> </u>						
Total Quant	ity of Water Re	emoved (gal):	~ 3		-	Personnel:	T.Rubasur	, C. S.com	illi	
COMMENT	S AND OBSE	RVATIONS:								

Novetr

Wish

R

FA Engineering PC and Its Affiliate

		EA Science			iate				
EA Science and Technology									
			MONITOR	ING WELL	DEVELOPME	ENT LOG			
Well I.D.:	111 500	09	EA Personne			Client:			
MN-EA-09 ECICZIHB						NYSDEC			
Location:	ZaNIV	i Market	Well Condit			Weather:	5. 10		
Sounding M		1119(01100)				70 F1			
Sounding M	on WLA	A	Gauge Date: Gauge Time		L	Measureme	nt Ker:		
Stick Up/Do	own (ft):	1		: 0815 ace Reading:		Well Diame	ter (in):		
olick Oppoo	wn ~ 4'	1	TID Headsp	ace Reading.			11		
CiO	VVV				SECA - DE LINGUESTAN COMPANSANTO ESCA		<u> </u>	and Shakeling to the state of the	
Purge Date:	0121				Purge Time:	4000			
	8772	24		***************************************		0830			
Purge Metho	od: SWGL-	+ bail			Field Technici	an: Fol	CZ/HB		
	201 dx) Dell'(CCI	C6/110		•
				Well V	aluma				
A. Well Dep	th (ft):		D. Well Volu			Denth/Heig	ht of Top of P	VC.	
A. Well Dep	17	.99	D. Well von	4 inte (11).	4 0.163	Depthyrieig	in or rop or r	VC.	
B. Depth to	Water (ft):	2	E. Well Volu	me (gal) C*D	D): 1	Pump Type	:		
	9	,25			1.4		bailer		
C. Liquid De	epth (ft) (A-B):	0211	F. Three Wel	ll Volumes (g	gal) (E3):	Pump Intak	e Depth:		
		8177		416	<u> </u>				
			TA	T-1 O 1''	D				
mi	-17	C-1 1: 11			y Parameters	I OPP	DITA	D /	
Time	pH	Conductivity	Turbidity	DO (mag)	Temperature (°C)	ORP	DTW	Rate	Volume
(hrs)	(pH units)	(mS/cm)	(ntu)	(mg/L)	18.19	(mV)	(ft btoc)	(Lpm)	(liters)
0877	10.25	4.21	>1000	0.43	10.11	124	包11.06	INCI	when
0600	6.14	3.95	71000	2.95	18.34	132	10 ==	Znell	volume
10000	8.00	3.92	>100)	0.93	11.90	134	13.55	~ Z.5 ~	rell wolu
0400	7.85	3.85	433	1.00	11.65	139	16.19	Buell	volumes
0911	7.70	3.83	415	2.11	16.75	145	17.00	4 well	Johnes
_		dru af	Her ~1	119W H	MIUNNE!	9 —			
	_)							
							<u> </u>		
							 		
						<u> </u>	 		
		,							
Total Quant	ity of Water Ro	emoved (gal):	~69	orls		Personnel:			
			0		. 1		- 1	i	(1
COMMENT	S AND OBSE	RVATIONS:		purge	water ce	ntainer	17cd in	anno	onsite
				1 0					

FIELD SOIL VAPOR SAMPLING FORM

		EA Engineering, P.C. and Its Affilia Technology	te EA Science and	ience and Project #: 1602532				
		rectutology		Project Name: Zip Zip mini ma Location: Syrzcuse, NY Project Manager: Emily Cummin				
				Location: Sy	zcuse, NY			
Comple I		SOIL VAPOR SAMPLING LOG		Project Manager:	Emily Cummings			
Sample Location			T					
Site ID Number:	00075			Sampler(s):	LBL			
PID Meter Used (Mode	el, Serial #) :			Soil Vapor I.D. No.:	SVP-1			
SUMMA Caniste		on non-it						
	SOIL VAP			DUPLICATE SAMP	LE (IF COLLECTED)			
Flow Regulator No.:	BC 45	49	Flow Regulator No.:					
Canister Serial No.:	BC 💆	<u>\$ 2189</u>	Canister Serial No.:					
Start Date/Time:	8/22/24	11:30	Start Date/Time:					
Start Pressure: (inches Hg)	8 28		Start Pressure: (inches Hg)					
Stop Date/Time:	8/22/24	12:35	Stop Date/Time:					
Stop Pressure: (inches Hg)	6		Stop Pressure: (inches Hg)					
		-SVP-1-082224	Sample ID:					
Other Sampling	Information: hieved in enclosure for		Depth to sample point					
Tracer Gas Test:	nieved in enclosure for		Deput to sample point					
Tracer Gas test result (% of Helium):	-	Nearest Groundwater Elevation:					
Noticeable Odor?		N/A	Additional info:					
Purge Volume PID Rea	ading (ppb)	NA	1					
Duplicate Sample?		N/A	1					
Outdoor Ambient Ten	nperature:		1					
Wind Direction:		70°F West	1					
Comments:								
	None.							
	1002							
	1							
		12 D V						
Sampler Signatur	e: \	- 10H/1-						
	\bigcup	\cup ℓ						

EA Engineering, P.C. EA Science and Technology

		Zir ociciice	and recan	01069			-	Conserv	vation
			GROUNDW	ATER SAMPI	LING PURC	GE FORM			
Well I.D.:	IW-EA-		EA Personne			particular transfer of the second	NYSD	EC	
Location:	ot		Well Condit			Weather:	1045D 61° F, 10 at Ref: T	ight r	zin
Sounding M	ethod:	T	Gauge Date:	8/21/2	4	Measuremer	it Ref:	010	
Stick Up/Do	wn (ft):	nev (Gauge Time			Well Diamet			
	- O. (Ü	09:23	>		Ċ	2	
Purge Date:	8/21/2	4			Purge Time:	10:28	 3		
Purge Metho	od: low flo	w-per	i DUM	.0	Field Techn	ician: L	31		
				X47 11 X7 1					
A. Well Den	th (ft):		D. Well Vols	well Vol	ume	Denth/Heigl	nt of Top of P	VC:	
n. wen bep	18.0	03	D. Well Vol.	0.16	3 5% Ft	Deputyricigi		6	
B. Depth to	th (ft): 18.0 Water (ft):	26	E. Well Volu	me (gal) C*D):	1.43	Pump Type:	perista Depth: 15	Hic	
C. Liquid De	epth (ft) (A-B):	3.77	F. Three We	ll Volumes (gal)	(E3): 14,29	Pump Intake	Depth: 15	,.03	
			V	Vater Quality I	arameters				
Time	Temperature	pН	ORP	Conductivity	Turbidity	DO	DTW	Rate	Volume
(hrs)	(oC)	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)
10:31	19.79	6.62	-35	4.19	28.0	0.81	9.64	0.3	0.9
10:36	19.29	7.24	~ 150	4.22	38.4	0.34	1/2000 PAG 2/4025	0.3	2,4
10:46	18.82	7.22	-155	4.28	30.1	0.19	10.48	0.3	5.4
10:51	18.80	7.19	- 146	4.28	15.3	0,18	11.33	0.3	6.9
10:56	18.70	7.18	-140	4.28	16.1	0.16	11.78	0.3	8.4
11:01	18.76	7.18	-138	4.28	15.7	0.15	12.12	0.3	9.9
									-
									-
	ity of Water Re		1.1	991		Sampling Ti		11:0	-
Samplers: Sampling Da	ate:	LY.	8/21/24	-		Split Sample Sample Type		MS	
Jamping D			0/21/24			cample Typ		- Grz	_10
COMMENT	S AND OBSER	VATIONS:							
		3.2							

EA Engineering, P.C.

		EA Science	and Techn	ology		2	STATE OF OPPORTUNITY	Enviror Conser	ımental vation
			GROUNDW	VATER SAMP	LING PURG	GE FORM			
Well I.D.:	MW-EA	-6	EA Personne	el: LBI	_	Client:	NYSD	E(
Location:	lot		Well Condit	ion: New	S	Weather:	61°F,0	loud-	
Sounding M	lethod: Levon Dip	sper-T	Gauge Date:	8/21/24		Measuremei	of Doc.		
Stick Up/Do	wn (ft):	3	Gauge Time	69:33		Well Diame	ter (in):	TOIL 24	
Purge Date:	8/21	24			Purge Time	11 23	5		
Purge Metho	od: low flo	ow - p	eri pi	ump	Field Techn	ician: UR)L		
			,	Well Vol	ume				
A. Well Dep	th (ft):	58	D. Well Vol		3 9 ² /4	Depth/Heigh	ht of Top of P	VC:	3
B. Depth to	TAT . (C.)	. 36	E. Well Volu	ıme (gal) C*D):	0.69	Pump Type:	peris	raltic	
C. Liquid Do		4.22	F. Three We	ll Volumes (gal)	(E3): _,O7	Pump Intak		,58	
				8					
Time	Т	TT		Vater Quality I		l po	DITAL	ъ.	
(hrs)	Temperature (oC)	pH (pH units)	ORP (mV)	Conductivity (S/m)	Turbidity (ntu)	DO (mg/L)	DTW (ft btoc)	Rate (Lpm)	Volume (liters)
11:27	20.22	8,17	-76	2.22	110	1.08	6.74	0.3	0.6
11:32	20.82	8,33	-130	0.834	75.0	0.21	7.22	0.3	2.1
11:37	20.86	8.23	-134	0.20	10.8	0.23	7.80	0.3	3.6
11:42	20.76	8.34	-197	2.01	20.3	0.18	8,38	0.3	5.1
11:47	20.58	8.40	-240	2.36	35.6	0.16	8.90	0.3	6.6
11:52	19.92	8.40	-279	2,91	44.4	0.10	9.36	0.3	8.8
11:57	20.03	8.39	-303	2,99	36.8	0.04	9.92	0.3	9.6
12:02				Well	Dry-				
12.					-	//			
									-
	1-1-					<u> </u>			L ,
Fotal Quant Samplers:	ity of Water Re	moved (gal):			ř.	Sampling Ti		08	
Samplers: Sampling Da	ate:	40	5/21/24			Split Sample Sample Typ		1/4	
		į	4414		ii.	Jumpie Typ		QV	26
	S AND OBSER								

EA Engineering, P.C.

		EA Science	and Techn	ology		2	STATE OF OPPORTUNITY	Environ Conserv	
			GROUNDW	VATER SAMP	LING PURC	GE FORM			
Well I.D.:	NW-EA.	-4R	EA Personne	el: LBL		Client:	NYSDE	(
Location:	lot		Well Condit	ion: New)	Weather:	Gl°F.	cloudi)
Sounding M	ethod: Heron I	pipper t	Gauge Date:	8/21/2	4	Measuremer	nt Ref:)] (.	
Stick Up/Do	wn (ft):	3	Gauge Time	09:44		Well Diame	ter (in):	Z'm	
Purge Date:		21/24			Purge Time:	THE	12:14	+	
Purge Metho	od: low	flow -	peri p	Jump	Field Techn	ician:	LB)	_	
			1	Well Vol					
A. Well Dep	th (ft):	2 0	D. Well Volu	700.7		Denth/Heigl	nt of Top of P	VC:	
B. Depth to	10.0	,		me (gal) C*D):	03 92/ft			0.3	
100		.14			17	Pump Type:	Peris	stalti	_
C. Liquid De	epth (ft) (A-B):	7,16	F. Three Wel	ll Volumes (gal)	(E3): . 5 \	Pump Intake	e Depth:	3.00	
			V	Vater Quality I	Parameters		(/	
Time	Temperature	pН	ORP	Conductivity		DO	DTW	Rate	Volume
(hrs)	(oC)	(pH units)	(mV)	(S/m)	(ntu)	(mg/L)	(ft btoc)	(Lpm)	(liters)
19217	20.73	7.71	-181	3. 09	48.2	4.51	6.58	0.3	0.9
12:22	20.79	7.59	- 203	3,08	116	0.22	6.96	0.3	2,4
12:27	20.93	7.54	-234	3.08	22.4	0.10	7.44	0.3	3.9
12:32	20.96	7.55	-227	3.08	19.1	0.09	7.89	0.3	5.4
12:37	20.98	7.55	-219	3.07	6.41	0.06	8.39	0.3	6-9
12:42	20.75	7.50	-183	3.08	14.3	0.01	88.8	6.3	8.4
12:47	20.45	7,45	-188	3.08	12.8	0.02	9.36	0.3	9.9
12:52	20.10	7.41	-171	3.07	18.9	0.02	9.61	0.3	1),4
12:57	19.12	7.35	-142	3.07	20.5	0.01	9.97	0.3	12.9
13:02	18.83	7.39	-238	3.05	39.4	0.01	10.18	0.3	14.4
13:07	18.76	7.33	-213	3.07	27.1	0.01	10.39	0.3	15.9
13:17	18.92	7.27	-212	3.09	8.7	0.01	10.89	0.3	17.4
13:22	10.90	7.25	-218	3.10	8.3	0.01	11.41	0.3	18.9
15.00								0.3	2014
								*	
	ty of Water Re	moved (gal):	0.1	20.46	(i	Sampling Ti		13:22	
Samplers: Sampling Da	ite:	(D)	21/24			Split Sample		NIA	
omiping De		<u>p</u>	4/01			Sample Type	e.	Corz	W
COMMENTS	S AND OBSER	VATIONS:							

EA Engineering, P.C.

Department of Environmental

EA Science and Technology Conservation GROUNDWATER SAMPLING PURGE FORM Well I.D.: EA Personnel: Client: NYSDEC BI MW-EA-IR Location: Well Condition: Weather: New cloudy Sounding Method: Gauge Date: Measurement Ref: Stick Up/Down (ft): Gauge Time: Well Diameter (in): Purge Date: Purge Time: 8/21/24 Purge Method: Field Technician: How peri pump Well Volume A. Well Depth (ft): D. Well Volume (ft): Depth/Height of Top of PVC: 163 92/4 B. Depth to Water (ft): E. Well Volume (gal) C*D): Pump Type: C. Liquid Depth (ft) (A-B): F. Three Well Volumes (gal) (E3): Pump Intake Depth: 58 4.68 Water Quality Parameters Time Temperature pН ORP Conductivity Turbidity DO DTW Rate Volume (pH units) (hrs) (oC) (mV) (S/m) (ntu) (mg/L) (ft btoc) (Lpm) (liters) 18.94 7.47 -13 7,58 0.3 1343 85 1,40 21.6 0.6 18.86 1348 1.83 0.59 -22 16.8 8.05 18.91 7.33 11.2 0.61 2 0.3 31 3.6 -16 6.55 19.02 1.84 10.3 7.33 7 1.10 0.3 5.1 19.(1 7.37 7 83 79 1403 1.62 3 8.0 6.60 1408 15 7,31 85 2.10 05 15 2 15 84 19.25 7,31 2,27 32 3 4.6 9.6 0 83 19.4 30 - 35 3.7 2.44 9 71 3 11,1 3.6 2.20 19.45 7,30 -90 83 9.94 0.3 1428 19.49 1.82 2,03 3 7.79 -1360 31 3.2 14.1 19.53 7.28 - 156 1.82 3.2 10.60 3 15.6 1.07 9.59 7.27 -178 1.82 73 0.3 3.3 0.47 17.1 7.24 -190 3.2 0.(5 98 0.3 1.85 18.6 1.87 -196 0.09 7,24 4 0.3 27 20.1 -199 1.88 1453 23 0.3 19,78 0,09 3.6 56 21.6 - 202 7.23 1.88 1458 19.82 40.07 24 23.1 Total Quantity of Water Removed (gal): 1458 23.1 L Sampling Time: Samplers: Split Sample With: FD-01 Sampling Date: Sample Type: Grab COMMENTS AND OBSERVATIONS:

Attachment B

Survey Data

Survey Report

Job name	Zip Zip
Creation date	13 Sep 2024
Version	Trimble Access 24.00
Distance Units	US survey feet
Angle units	Degrees
Pressure Units	inHg
Temperature Units	Fahrenheit

Coordinate system (Job)

System	United States/NAD83
Zone	New York Central 3102
Datum	NAD83(2011)

Projection

Projection	Transverse Mercator
Origin lat	40°00'00.00000"N
Origin long	76°35'00.00000"W
False northing	0.000
False easting	820208.333
Scale	0.99993750
South azimuth (grid)	No
Grid coords	Increase North-East
Ellipsoid	Semi-major axis: 20925604.474 Flattening: 298.25722210

Local site

Type Grid	
-----------	--

Datum transformation

Туре	Three parameter
Semi-major axis	20925604.474
Flattening	298.257223
Translation X	0.000
Translation Y	0.000
Translation Z	0.000

Vertical adjustment

Geoid file	GEOID18 (Conus) Fixed
------------	-----------------------

Collected Field Data (ECEF deltas: APC to APC)

Corrections

OULCCHOLD	
South azimuth (grid)	No
Grid coords	Increase North-East
Magnetic declination	0°00'00"
Distances	Ground

Neighborhood adjustment	Off
Projection	
Projection	Scale factor only
Scale	1.00000000
Local site	
Туре	Grid
Datum transformation	
Туре	None
Corrections	
South azimuth (grid)	No
Grid coords	Increase North-East
Magnetic declination	0°00'00"
Distances	Ground
Neighborhood adjustment	Off
Projection	
Projection	Transverse Mercator
Origin lat	40°00'00.00000"N
Origin long	76°35'00.00000"W
False northing	0.000
False easting Scale	820208.333 0.99993750
Ellipsoid	Semi-major axis: 20925604.474 Flattening: 298.25722210
Empoora	ociminajoi ano. 2032000 i. iii i i naterinig. 230.20722210
Local site	
Туре	Grid
Type	Three parameter
Semi-major axis	20925604.474
Flattening	298.257223
Translation X	0.000
Translation Y	0.000
Translation Z	0.000
Vertical adjustment	
Geoid file	GEOID18 (Conus) Fixed
Coordinate system	Unit and Object - ANA DOO
System Zone	United States/NAD83 New York Central 3102
Datum	NAD83(2011)
Dutum	[IMD00(2011)
Rover options	
	PDOP 6
mask	mask

Rover options

Elevation	10 PDOP	6			
mask	mask				

Rover options

Elevation	10 PDOP	6		
mask	mask			

Survey event

Survey event	Rover started
--------------	---------------

Point	PRS93985617 Latitude	43°07'07.74867"N Longitude	76°08'29.77295" Height	323.464 Code	
(Global)	3729		w		

GNSS receiver

	SHOOT COCKYCI						
Receiver type	Unknown						
Serial number							
Firmware version	0						
Antenna type	AdV Null Antenna						
Measurement method	Antenna Phase Center						
Tape adjustment	0.000						
Horizontal offset	0.000						
Vertical offset	0.000						

Base point

- 1	add point							
	Point	PRS93985617	Antenna	0.000	Туре	Corrected		
		3729	height					

eBubble calibration status

Event Start survey Calibration expires in 33d 21h Calibration age limit 41d 16h IMU sensor status Tilt calibrated OK
--

Initialization event: RTK initialized

GPS week	2332 Seconds	401111 Initializati	On the fly Survey	Real-time	
		on type	type		

GNSS receiver

Receiver type	R12i
Serial number	6243F00516
Firmware version	6.26
Antenna type	R12i Internal

Measurement method	Bottom of quick release
Tape adjustment	0.000
Horizontal offset	0.000
Vertical offset	0.588

Point	MW-EA-10	ΔΧ	8261.185	ΔΥ	-15682.433	ΔΖ	-18395.639	Code	
		Method	Network RTK	Туре	Rapid point	Search class	Normal		
Antenna height	6.562	Туре	Uncorrected	Tilt distance	0.008	Hz Prec (DRMS)	0.021	Vt Prec (1 sigma)	0.026
QC 1		PDOP	1.2	GDOP	1.8	HDOP	0.7	VDOP	1.0
		Base data age	2	Satellites	20	Positions used	1		
Point	MW-EA-09	ΔΧ	8215.019	ΔΥ	-15670.492	ΔΖ	-18371.858	Code	
		Method	Network RTK	Туре	Rapid point	Search class	Normal		
Antenna height	6.562	Туре	Uncorrected	Tilt distance	0.018	Hz Prec (DRMS)	0.018	Vt Prec (1 sigma)	0.024
QC 1		PDOP	1.1	GDOP	1.7	HDOP	0.7	VDOP	0.9
				Satellites		Positions			

Survey event

Survey event	End survey
--------------	------------

Rover options

Elevation	10 PDOP	6			
mask	mask				

Point	G 110 N	North	1019053.460	East	948469.530	Elevation	1238.280	Code	Benchmark
Rover options	3								
Elevation	10 P	PDOP	6						
mask	l In	nask							

Rover options

Elevation	10 PDOP	6			
mask	mask				

Survey event

Survey event	Rover started
--------------	---------------

Point	PRS39453829 Latitude	42°35'03.70726"N Longitude	76°12'40.79269" Height	1085.585 Code	
(Global)	3274		W		

GNSS receiver

Receiver type	Unknown
Serial number	
Firmware version	0
Antenna type	AdV Null Antenna

Measurement method	Antenna Phase Center
Tape adjustment	0.000
Horizontal offset	0.000
Vertical offset	0.000

Base point

Point	PRS39453829 Antenna	0.000 Type	Corrected		
	3274 height				

eBubble calibration status

Event	Start survey	Calibration expires in	33d 17h	Calibration age limit	41d 16h	IMU sensor status	Tilt calibrated OK
-------	--------------	------------------------	---------	-----------------------	---------	-------------------	--------------------

Initialization event: RTK initialized

GPS week	2332	Seconds	415581	Initializati	On the fly	Survey	Real-time	
				on type		type		

GNSS receiver

GN33 IECEIVEI	
Receiver type	R12i
Serial number	6243F00516
Firmware version	6.26
Antenna type	R12i Internal
Measurement method	Bottom of quick release
Tape adjustment	0.000
Horizontal offset	0.000
Vertical offset	0.588

Point	Benchmark 1 G 110		15147.494	ΔΥ	57531.212	ΔZ	56705.624	Code	G 110
		Method	Network RTK	Туре	Rapid point	Search class	As-staked		
Antenna height	6.562	Туре	Uncorrected	Tilt distance	0.021	Hz Prec (DRMS)		Vt Prec (1 sigma)	0.040
QC 1		PDOP	1.0	GDOP	1.4	HDOP	0.5	VDOP	0.8
		Base data age	2	Satellites		Positions used	1		
Stake out po	oint (Benchmark	Design poir	t: G 110Code: Ben	chmark					
Method		To the point	t						
Stakeout	Deltas: Grid	Δ North	-0.045	Δ East	-0.026	ΔElev	-0.237		

Note	G 110 Benchmark for Zip Zip						
Survey event							
Survey event	End survey						

Note	Exported file: /storage/emulated/0/Trimble Data/Projects/Syracuse/Zip Zip.csv
Note	Exported file: /storage/emulated/0/Trimble Data/Projects/Syracuse/Zip Zip.csv

Reduced points

Point	PRS93985617 3729		1136690.620	East	938145.646	Elevation	433.869	Code	
Point	MW-EA-10	North	1111527.669	East	942542.362	Elevation	426.408	Code	
Point	MW-EA-09	North	1111560.286	East	942500.230	Elevation	426.083	Code	
Point	G 110	North	1019053.460	East	948469.530	Elevation	1238.280	Code	Benchmark
Point	PRS39453829 3274		941820.417	East	920389.136	Elevation	1192.993	Code	
Point	Benchmark 1 G 110		1019053.505	East	948469.556	Elevation	1238.517	Code	G 110

Attachment C

Data Usability Summary Report (Environmental Data Services, Inc.)

DATA USABILITY SUMMARY REPORT ZIP ZIP MINI MARKET, SYRACUSE, NEW YORK

Client:

EA Engineering, Science and Technology, Marlboro, New York

SDG:

24H3437

Laboratory:

Pace Analytical, East Longmeadow, Massachusetts

Site:

Zip Zip Mini Market, Syracuse, New York

Date:

September 27, 2024

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
. 1	B00075-MW-EA-9-082124	24H3437-01	Water
1MS	B00075-MW-EA-9-082124MS	24H3437-01MS	Water
1MSD	B00075-MW-EA-9-082124MSD	24H3437-01MSD	Water
2	B00075-MW-EA-1R-082124	24H3437-02	Water
3	B00075-MW-EA-4R-082124	24H3437-03	Water
4	B00075-MW-EA-6-082124	24H3437-04	Water
5	B00075-MW-FD-01-082124	24H3437-05	Water
6	B00075-TB-01-082224	24H3437-06	Water

A Data Usability Summary Review was performed on the analytical data for five water samples and one aqueous trip blank sample collected on August 21-22, 2024 by EA Engineering at the Zip Zip Mini Market site in Syracuse, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions".

Specific method references are as follows:

<u>Analysis</u>

Method References

VOC

USEPA SW-846 Method 8260D

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods and the USEPA Region II Data Review Standard Operating Procedures (SOPs) as follows:

- SOP Number QA-HWSS-A-004, March 2022, Standard Operating Procedure for Validation of Volatile Data;
- and the reviewer's professional judgment.

The following items/criteria were reviewed for this report:

Organics

- Data Completeness
- Holding times and sample preservation
- Surrogate Spike recoveries

- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample (LCS) recoveries
- Method blank and field blank contamination
- Gas Chromatography (GC)/Mass Spectroscopy (MS) tuning
- Initial and continuing calibration summaries
- Compound Quantitation
- Internal standard area and retention time summary forms
- Tentatively Identified Compounds (TICs)
- Field Duplicate sample precision

Data Usability Assessment

There were no rejections of data.

The data are acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Data Completeness

 The data is a complete Category B data package as defined under the requirements for the NYS Department of Environmental Conservation Analytical Services Protocol.

Volatile Organic Compounds (VOC)

Holding Times

All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

The following table presents compounds that exceeded percent difference (%D) criteria and/or RRF values <0.05 in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
08/27/24 (0806)	tert-Amyl Alcohol	-36.5%	J/UJ	All Samples
2, 2, 2, 2, 2, 1, 1, 2	tert-Butyl Alcohol	-37.5%	J/UJ	1000
	4-Methyl-2-pentanone	23.6%	J	4

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples	
B00075-TB-01-082224	Acetone	83	U	1, 3, 4	
	2-Butanone	10	U	2, 5	
	tert-Butyl Alcohol	110	U		
	tert-Butyl Ethyl Ether	0.62	None	Samples ND	
	Ethanol	27	None		
	Toluene	0.24	U	4, 5	

Surrogate Spike Recoveries

The samples exhibited acceptable surrogate percent recoveries (%R).

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

Sample ID	Compound	MS %R/MSD %R/RPD	Qualifier	
1	tert-Butyl Alcohol	69.1%/OK/OK	None - See CCAL	
	Bromoform	OK/134%/OK	None - Sample ND	
	Carbon Disulfide	131%/137%/OK		
	Chloromethane	135%/140%/OK		
	Diisopropyl Ether	OK/131%/OK		
	2-Hexanone	OK/131%/OK		
	4-Methyl-2-pentanone	OK/138%/OK		

Laboratory Control Sample / Laboratory Control Sample Duplicate (LCS/LCSD)

• The following table presents LCS/LCSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). Results are valid and usable, however possibly biased.

LCS/LCSD Sample	Compound	LCS %R/LCSD %R/RPD	Qualifier	Affected Samples
B384097-BS1	Tert-Amyl Alcohol	62.0%/62.5%/OK	None	See CCAL
5:12:07 PMC	Methyl Acetate	132%/136%/OK	None	Samples ND

Internal Standard (IS) Area Performance

All internal standards met response and retention time (RT) criteria.

Compound Quantitation

All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not reported.

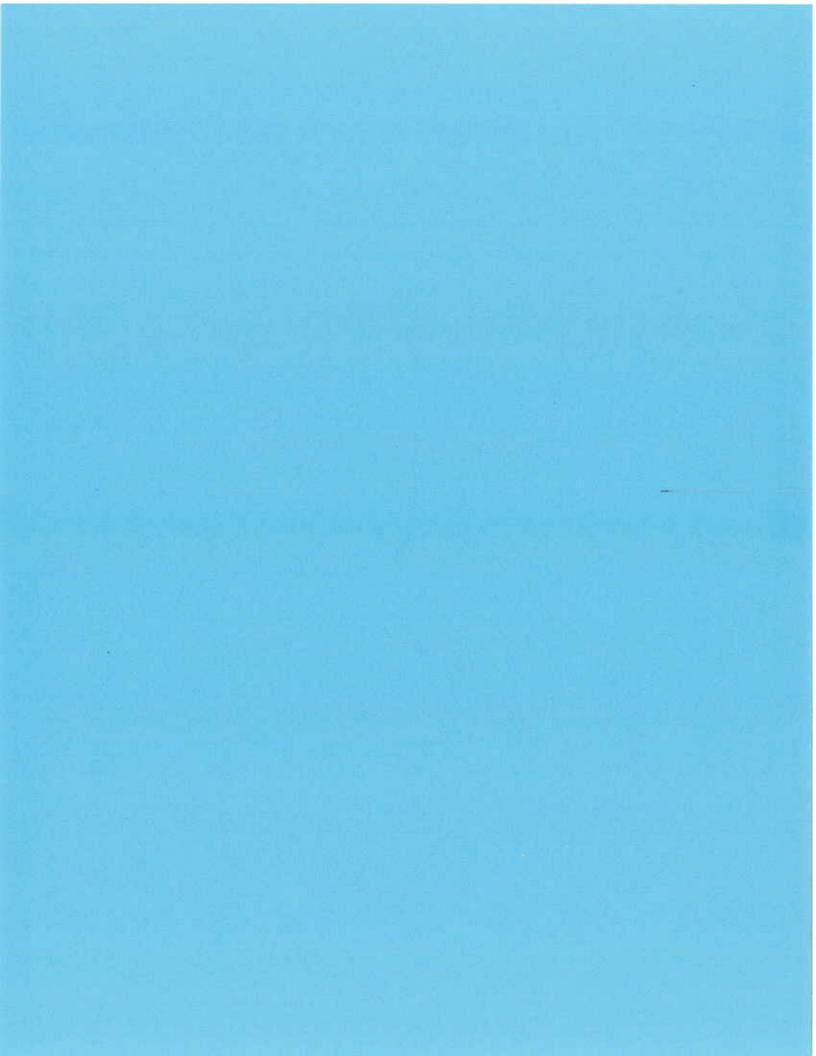
Field Duplicate Sample Precision

• Field duplicate samples are summarized below. The precision was unacceptable for several compounds in the field duplicate pair. These results were qualified estimated (J).

Compound	B00075-MW-EA-1R- 082124 ug/L	B00075-MW-FD-01- 082124 ug/L	RPD	Qualifier
tert-Amyl Alcohol	9.3	12	25%	None
Benzene	50	54	8%	
n-Butylbenzene	4.2	5.6	29%	

Compound	B00075-MW-EA-1R- 082124 ug/L	B00075-MW-FD-01- 082124 ug/L	RPD	Qualifier
sec-Butylbenzene	2.2	2.8	24%	None
Cyclohexane	6.2	8.3	29%	
Ethylbenzene	41	57	33%	J
Isopropylbenzene	6.5	8.8	30%	None
p-Isopropyltoluene	2.0	2.7	30%	
Methyl tert-Butyl Ether	0.29	0.31	7%	
Methyl Cyclohexane	7.6	9.7	24%	
Naphthalene	12	16	29%	
n-Propylbenzene	18	24	29%	
Toluene	2.7	3.8U	NC	
1,2,4-Trimethylbenzene	160	200	22%	
1,3,5-Trimethylbenzene	53	68	25%	
m&p-Xylene	100	140	33%	J
o-Xylene	7.4	9.0	20%	None
Xylenes, total	110	150	31%	J

Please contact the undersigned at (561) 475-2000 if you have any questions or need further information.


Signed:

Nancy Weaver Dated: 10/1/24

Senior Chemist

Data Qualifier	Definition				
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.				
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.				
J+	The result is an estimated quantity, but the result may be biased high.				
J-	The result is an estimated quantity, but the result may be biased low.				
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.				
UJ	The analyte was analyzed for but was not detected. The reported quantitation limits is approximate and may be inaccurate or imprecise.				
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.				

Reason Code	Definition
HT	Holding Time
MB	Method Blank
SURR	Surrogate
LCS	Laboratory Control Sample
MS/MSD	Matrix Spike/Matrix Spike Duplicate
RPD	Relative Percent Difference
CB/CCB	Calibration Blank or Continuing Calibration Blank
ICV	Initial Calibration Verification
CCV	Calibration Verification
SD	ICP Serial Dilution
TB	Trip Blank
EB	Equipment Blank
FB	Field Blank
FD	Field Duplicate
CQ	Compound Quantitation
IS	Internal Standard

B00075-MW-EA-9-082124

Laboratory:

Pace New England

NYDEC_EA Engineering, Science &

Work Order:

24H3437

Project:

Zip Zip Mini Market Site - CO 152101

1

Client: Matrix:

Ground Water

Laboratory ID:

24H3437-01 File ID: E24V24009.D

Sampled:

Initial/Final:

08/21/24 11:01

Prepared:

Preparation:

08/26/24 12:29

SW-846 5030B

Analyzed:

Dilution:

08/27/24 11:05

Solids:

5 mL / 5 mL

0100500

Calibration

2400103

GCMSVOA5

Batch:	B384097	Sequence:	S109580	Calibration:	2	2400193	Instru	iment:	GCMSVOA5
	CAS NO.	COMPOUND		COI	Ν C. (μ	ıg/L)	MDL	RL	Q
	67-64-1	Acetone			3.2	4	2.0	50	& TB
	75-85-4	tert-Amyl Alcohol (TAA	\)			us	1.3	5.0	V=05, L=04 CC
	919-94-8	tert-Amyl Ethyl Ether (*	TAEE)				0.16	0.50	
	994-05-8	tert-Amyl Methyl Ether	(TAME)				0.15	0.50	
	71-43-2	Benzene					0.14	1.0	
	74-97-5	Bromochloromethane					0.32	1.0	
	75-27-4	Bromodichloromethan	е				0.19	0.50	
	75-25-2	Bromoform					0.30	1.0	
	74-83-9	Bromomethane					1.5	2.0	
	78-93-3	2-Butanone (MEK)					1.4	20	
	75-65-0	tert-Butyl Alcohol (TBA	4)			uJ	3.4	20	X-05 CCV
	104-51-8	n-Butylbenzene					0.16	1.0	
	135-98-8	sec-Butylbenzene					0.16	1.0	
	98-06-6	tert-Butylbenzene					0.17	1.0	
	637-92-3	tert-Butyl Ethyl Ether (TBEE)				0.16	0.50	
	75-15-0	Carbon Disulfide					1.5	5.0	
	56-23-5	Carbon Tetrachloride					0.19	5.0	
	108-90-7	Chlorobenzene					0.18	1.0	
	124-48-1	Chlorodibromomethan	e				0.13	0.50	
	75-00-3	Chloroethane					0.46	2.0	
	67-66-3	Chloroform					0.19	2.0	
	74-87-3	Chloromethane					0.50	2.0	
	110-82-7	Cyclohexane					1.8	5.0	
	96-12-8	1,2-Dibromo-3-chlorop	oropane (DBCP)				0.63	5.0	
	106-93-4	1,2-Dibromoethane (E	DB)				0.13	0.50	
	95-50-1	1,2-Dichlorobenzene					0.17	1.0	
	541-73-1	1,3-Dichlorobenzene					0.15	1.0	
	106-46-7	1,4-Dichlorobenzene					0.17	1.0	
W	75-71-8	Dichlorodifluorometha	ne (Freon 12)				0.20	2.0	
W 127/24	75-34-3	1,1-Dichloroethane					0.15	1.0	

B00075-MW-EA-9-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID: 24H3437-01

File ID:

E24V24009.D

Sampled:

Initial/Final:

08/21/24 11:01

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 11:05

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

tch:	B384097	Sequence: S109580	Calibration:	2400193	Instr	ument:	GCMSVOA5
	CAS NO.	COMPOUND	CON	IC. (µg/L)	MDL	RL	Q
	107-06-2	1,2-Dichloroethane			0.13	1.0	
	75-35-4	1,1-Dichloroethylene			0.18	1.0	
	156-59-2	cis-1,2-Dichloroethylene			0.20	1.0	
	156-60-5	trans-1,2-Dichloroethylene			0.16	1.0	
	78-87-5	1,2-Dichloropropane			0.17	1.0	
	10061-01-5	cis-1,3-Dichloropropene			0.13	0.50	
	10061-02-6	trans-1,3-Dichloropropene			0.14	0.50	
	108-20-3	Diisopropyl Ether (DIPE)			0.17	0.50	
	64-17-5	Ethanol			20	50	
	100-41-4	Ethylbenzene			0.14	1.0	
	591-78-6	2-Hexanone (MBK)			1.3	10	
	98-82-8	Isopropylbenzene (Cumene)			0.16	1.0	
	99-87-6	p-Isopropyltoluene (p-Cymene)			0.16	1.0	
	79-20-9	Methyl Acetate			0.48	1.0	
	1634-04-4	Methyl tert-Butyl Ether (MTBE)		0.52	0.17	1.0	J
	108-87-2	Methyl Cyclohexane			0.13	1.0	
	75-09-2	Methylene Chloride			0.19	5.0	
	108-10-1	4-Methyl-2-pentanone (MIBK)			1.4	10	
	91-20-3	Naphthalene			0.25	2.0	
	103-65-1	n-Propylbenzene			0.11	1.0	
	100-42-5	Styrene			0.13	1.0	
	79-34-5	1,1,2,2-Tetrachloroethane			0.10	0.50	
	127-18-4	Tetrachloroethylene			0.17	1.0	
	108-88-3	Toluene			0.11	1.0	
	87-61-6	1,2,3-Trichlorobenzene			0.22	5.0	
	120-82-1	1,2,4-Trichlorobenzene			0.19	1.0	
	71-55-6	1,1,1-Trichloroethane			0.14	1.0	
,	79-00-5	1,1,2-Trichloroethane			0.18	1.0	
الداد	79-01-6	Trichloroethylene			0.17	1.0	
V 7100	75-69-4	Trichlorofluoromethane (Freon 11)			0.14	2.0	

B00075-MW-EA-9-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

Project:

Zip Zip Mini Market Site - CO 152101

Matrix:

Ground Water

NYDEC_EA Engineering, Science &

File ID:

E24V24009.D

Sampled:

08/21/24 11:01

Laboratory ID: Prepared:

08/26/24 12:29

Analyzed:

08/27/24 11:05

Solids:

Initial/Final:

 $5 \, \text{mL} / 5 \, \text{mL}$

Preparation:

SW-846 5030B

24H3437-01

Dilution:

Batch:	B384097	Sequence:	\$109580	Calibration:	2400193	Instru	ıment:	GCMSVOA5
C.	AS NO.	COMPOUND		C	ONC. (µg/L)	MDL	RL	Q
9	6-18-4	1,2,3-Trichloroprop	oane			0.27	2.0	
7	6-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.16	1.0	
9	5-63-6	1,2,4-Trimethylben	zene			0.16	1.0	
1	08-67-8	1,3,5-Trimethylben	zene			0.17	1.0	
7	5-01-4	Vinyl Chloride				0.19	2.0	
1	79601-23-1	m+p Xylene				0.25	2.0	
9	5-47-6	o-Xylene				0.16	1.0	
1	330-20-7	Xylenes (total)				1.0	1.0	

2

1 - FORM I ANALYSIS DATA SHEET

B00075-MW-EA-1R-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID:

24H3437-02 File ID:

E24V24010.D

Sampled:

08/21/24 14:58

Prepared:
Preparation:

08/26/24 12:29

Analyzed:

08/27/24 11:30

Solids:

5 ml / 5 ml

SW-846 5030B

Initial/Fin Batch:	al: 5 mL / 5 m B384097		ration:	2	400193	Instrument:		GCMSVOA5
	CAS NO.	COMPOUND	COI	V С. (µ	g/L)	MDL	RL	Q
	67-64-1	Acetone				2.0	50	
	75-85-4	tert-Amyl Alcohol (TAA)		9.3	J	1.3	5.0	1-04 V-05 CC
	919-94-8	tert-Amyl Ethyl Ether (TAEE)				0.16	0.50	
	994-05-8	tert-Amyl Methyl Ether (TAME)				0.15	0.50	
	71-43-2	Benzene		50		0.14	1.0	
	74-97-5	Bromochloromethane				0.32	1.0	
	75-27-4	Bromodichloromethane				0.19	0.50	
	75-25-2	Bromoform				0.30	1.0	
	74-83-9	Bromomethane				1.5	2.0	
	78-93-3	2-Butanone (MEK)		4.7	u	1.4	20	& TB
	75-65-0	tert-Butyl Alcohol (TBA)			LJ	3.4	20	Y-05 CCV
	104-51-8	n-Butylbenzene		4.2		0.16	1.0	
	135-98-8	sec-Butylbenzene		2.2		0.16	1.0	
	98-06-6	tert-Butylbenzene				0.17	1.0	
	637-92-3	tert-Butyl Ethyl Ether (TBEE)				0.16	0.50	
	75-15-0	Carbon Disulfide				1.5	5.0	
	56-23-5	Carbon Tetrachloride				0.19	5.0	
	108-90-7	Chlorobenzene				0.18	1.0	
	124-48-1	Chlorodibromomethane				0.13	0.50	
	75-00-3	Chloroethane				0.46	2.0	
	67-66-3	Chloroform				0.19	2.0	
	74-87-3	Chloromethane				0.50	2.0	
	110-82-7	Cyclohexane		6.2		1.8	5.0	
	96-12-8	1,2-Dibromo-3-chloropropane (DBCP)				0.63	5.0	
	106-93-4	1,2-Dibromoethane (EDB)				0.13	0.50	
	95-50-1	1,2-Dichlorobenzene				0.17	1.0	
	541-73-1	1,3-Dichlorobenzene				0.15	1.0	
	106-46-7	1,4-Dichlorobenzene				0.17	1.0	
7	75-71-8	Dichlorodifluoromethane (Freon 12)				0.20	2.0	
27124	75-34-3	1,1-Dichloroethane				0.15	1.0	

B00075-MW-EA-1R-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science €

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID: 24H3437-02

File ID:

E24V24010.D

Sampled:

Initial/Final:

08/21/24 14:58

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 11:30

Solids:

 $5 \, \text{mL} / 5 \, \text{mL}$

Preparation:

SW-846 5030B

Dilution:

atch	B384097		Calibration:	2400193	01.0490	ument:	GCMSVOA5
	CAS NO.	COMPOUND	COI	NC. (µg/L)	MDL	RL	Q
	107-06-2	1,2-Dichloroethane			0.13	1.0	
	75-35-4	1,1-Dichloroethylene			0.18	1.0	
	156-59-2	cis-1,2-Dichloroethylene			0.20	1.0	
	156-60-5	trans-1,2-Dichloroethylene			0.16	1.0	
	78-87-5	1,2-Dichloropropane			0.17	1.0	
	10061-01-5	cis-1,3-Dichloropropene			0.13	0.50	
	10061-02-6	trans-1,3-Dichloropropene			0.14	0.50	
	108-20-3	Diisopropyl Ether (DIPE)			0.17	0.50	
	64-17-5	Ethanol			20	50	
	100-41-4	Ethylbenzene		41 J	0.14	1.0	FO
	591-78-6	2-Hexanone (MBK)			1.3	10	
	98-82-8	Isopropylbenzene (Cumene)		6.5	0.16	1.0	
	99-87-6	p-Isopropyltoluene (p-Cymene)		2.0	0.16	1.0	
	79-20-9	Methyl Acetate			0.48	1.0	
	1634-04-4	Methyl tert-Butyl Ether (MTBE)		0.29	0.17	1.0	J
	108-87-2	Methyl Cyclohexane		7.6	0.13	1.0	
	75-09-2	Methylene Chloride			0.19	5.0	
	108-10-1	4-Methyl-2-pentanone (MIBK)			1.4	10	
	91-20-3	Naphthalene		12	0.25	2.0	
	103-65-1	n-Propylbenzene		18	0.11	1.0	
	100-42-5	Styrene			0.13	1.0	
	79-34-5	1,1,2,2-Tetrachloroethane			0.10	0.50	
	127-18-4	Tetrachloroethylene			0.17	1.0	
	108-88-3	Toluene		2.7	0.11	1.0	
	87-61-6	1,2,3-Trichlorobenzene			0.22	5.0	
	120-82-1	1,2,4-Trichlorobenzene			0.19	1.0	
	71-55-6	1,1,1-Trichloroethane			0.14	1.0	
V.	79-00-5	1,1,2-Trichloroethane			0.18	1.0	
1	79-01-6	Trichloroethylene			0.17	1.0	
27/24	75-69-4	Trichlorofluoromethane (Freon 11)			0.14	2.0	

B00075-MW-EA-1R-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client;

race rion England

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

Matrix:

Ground Water

Laboratory ID;

24H3437-02

File ID:

E24V24010.D

Sampled:

08/21/24 14:58

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 11:30

Solids:

Initial/Final:

5 mL / 5 mL

Preparation:

SW-846 5030B

Dilution:

1

2011011015

Batch:	B384097	Sequence:	S109580	Calibration	: 2	400193	Instru	iment:	GCMSVOA5
	CAS NO.	COMPOUND			CONC. (μ	g/L)	MDL	RL	Q
	96-18-4	1,2,3-Trichloroprop	ane				0.27	2.0	
	76-13-1	1,1,2-Trichloro-1,2	2-trifluoroethane	(Freon 1			0.16	1.0	
	95-63-6	1,2,4-Trimethylben	zene		160		0.16	1.0	
	108-67-8	1,3,5-Trimethylben	zene		53		0.17	1.0	
	75-01-4	Vinyl Chloride					0.19	2.0	
	179601-23-1	m+p Xylene			100	J	0.25	2.0	FO
	95-47-6	o-Xylene			7.4		0.16	1.0	
	1330-20-7	Xylenes (total)			110	J	1.0	1.0	FO

W 9127124

B00075-MW-EA-4R-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID:

24H3437-03

File ID:

E24V24011.D

Sampled

08/21/24 13:22

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 11:56

Solids:

Preparation:

SW-846 5030B

ial/Final: tch:	5 mL / 5 m B384097	Sequence:	S109580	Calibration:	240019	93 Ins	strument:	GCMSVOA	. 5
CAS	S NO.	COMPOUND		CC	ONC. (μg/L)	MDL	RL	Q	
67-6	64-1	Acetone			2.7 L	2.0	50	8	TB
75-8	85-4	tert-Amyl Alcohol (TA	AA)		10 J	1.3	5.0	L -04, V-	05-CC
919	1-94-8	tert-Amyl Ethyl Ether	(TAEE)			0.16	0.50		
994	-05-8	tert-Amyl Methyl Ethe	er (TAME)			0.15	0.50		
71-4	43-2	Benzene			1.6	0.14	1.0		
74-9	97-5	Bromochloromethane	Э			0.32	1.0		
75-2	27-4	Bromodichlorometha	ne			0.19	0.50		
75-2	25-2	Bromoform				0.30	1.0		
74-8	83-9	Bromomethane				1.5	2.0		
78-9	93-3	2-Butanone (MEK)				1.4	20		,
75-6	65-0	tert-Butyl Alcohol (TE	BA)		48 NJ	3.4	20	<u>V-05</u>	78
104	-51-8	n-Butyibenzene				0.16	1.0		
135	-98-8	sec-Butylbenzene				0.16	1.0		
98-0	06-6	tert-Butylbenzene				0.17	1.0		
637	-92-3	tert-Butyl Ethyl Ether	(TBEE)			0.16	0.50		
75-1	15-0	Carbon Disulfide				1.5	5.0		
56-2	23-5	Carbon Tetrachloride	•			0.19	5.0		
108	-90-7	Chiorobenzene				0.18	1.0		
124	-48-1	Chlorodibromometha	ne			0.13	0.50		
75-0	00-3	Chloroethane				0.46	2.0		
67-6	66-3	Chloroform				0.19	2.0		
74-8	87-3	Chloromethane				0.50	2.0		
110	-82-7	Cyclohexane				1.8	5.0		
96-1	12-8	1,2-Dibromo-3-chloro	propane (DBCP)			0.63	5.0		
106	-93-4	1,2-Dibromoethane (EDB)			0.13	0.50		
95-5	50-1	1,2-Dichlorobenzene				0.17	1.0		
541	-73-1	1,3-Dichlorobenzene				0.15	1.0		
106	-46-7	1,4-Dichlorobenzene				0.17	1.0		
75-7	71-8	Dichlorodifluorometha	ane (Freon 12)			0.20	2.0		
7174 75-3	34-3	1,1-Dichloroethane				0.15	1.0		

B00075-MW-EA-4R-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID: 24H3437-03

File ID:

E24V24011.D

Sampled:

Initial/Final:

08/21/24 13:22

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 11:56

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

Batch:	B384097	Sequence: S109580	Calibration:	2400193	Instru	ıment:	GCMSVOA5
	CAS NO.	COMPOUND	CON	IC. (μg/L)	MDL	RL	Q
	107-06-2	1,2-Dichloroethane			0.13	1.0	
	75-35-4	1,1-Dichloroethylene			0.18	1.0	
	156-59-2	cis-1,2-Dichloroethylene			0.20	1.0	
	156-60-5	trans-1,2-Dichloroethylene			0.16	1.0	
	78-87-5	1,2-Dichloropropane			0.17	1.0	
	10061-01-5	cis-1,3-Dichloropropene			0.13	0.50	
	10061-02-6	trans-1,3-Dichloropropene			0.14	0.50	
	108-20-3	Diisopropyl Ether (DIPE)			0.17	0.50	
	64-17-5	Ethanol			20	50	
	100-41-4	Ethylbenzene			0.14	1.0	
	591-78-6	2-Hexanone (MBK)			1.3	10	
	98-82-8	Isopropylbenzene (Cumene)			0.16	1.0	
	99-87-6	p-Isopropyltoluene (p-Cymene)			0.16	1.0	
	79-20-9	Methyl Acetate			0.48	1.0	
	1634-04-4	Methyl tert-Butyl Ether (MTBE)		18	0.17	1.0	
	108-87-2	Methyl Cyclohexane			0.13	1.0	
	75-09-2	Methylene Chloride			0.19	5.0	
	108-10-1	4-Methyl-2-pentanone (MIBK)			1.4	10	
	91-20-3	Naphthalene			0.25	2.0	
	103-65-1	n-Propylbenzene			0.11	1.0	
	100-42-5	Styrene			0.13	1.0	
	79-34-5	1,1,2,2-Tetrachloroethane			0.10	0.50	
	127-18-4	Tetrachloroethylene			0.17	1.0	
	108-88-3	Toluene			0.11	1.0	
	87-61-6	1,2,3-Trichlorobenzene			0.22	5.0	
	120-82-1	1,2,4-Trichlorobenzene			0.19	1.0	
	71-55-6	1,1,1-Trichloroethane			0.14	1.0	
	79-00-5	1,1,2-Trichloroethane			0.18	1.0	
1	79-01-6	Trichloroethylene			0.17	1.0	
N 27124	75-69-4	Trichlorofluoromethane (Freon 11)			0.14	2.0	

B00075-MW-EA-4R-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

Matrix:

Ground Water

E24V24011.D File ID:

Sampled:

Laboratory ID: Prepared:

24H3437-03 08/26/24 12:29

Analyzed:

08/27/24 11:56

Solids:

08/21/24 13:22

Preparation:

SW-846 5030B

Dilution:

1

Initial/Final: $5 \, \text{mL} / 5 \, \text{mL}$

B384097

2400193

Batch:	B384097	Sequence:	S109580	Calibration:	2400193	Instru	ıment:	GCMSVOA5
CA	S NO.	COMPOUND		C	CONC. (µg/L)	MDL	RL	Q
96-	-18-4	1,2,3-Trichloroprop	ane			0.27	2.0	
76-	13-1	1,1,2-Trichloro-1,2	2-trifluoroethane	(Freon 1		0.16	1.0	
95-	-63-6	1,2,4-Trimethylben	zene			0.16	1.0	
108	3-67-8	1,3,5-Trimethylben	zene			0.17	1.0	
75-	01-4	Vinyl Chloride				0.19	2.0	
179	9601-23-1	m+p Xylene				0.25	2.0	
95-	47-6	o-Xylene				0.16	1.0	
133	30-20-7	Xylenes (total)				1.0	1.0	

B00075-MW-EA-6-082224

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

Matrix:

Ground Water

Laboratory ID: Prepared:

24H3437-04 08/26/24 12:29

Analyzed:

E24V24012.D 08/27/24 12:21

Sampled: Solids:

Initial/Final:

08/22/24 08:40

5 mL / 5 mL

Preparation:

SW-846 5030B

Dilution:

1

Batch:	B384097	Sequence: \$109580	Calibration: 2400193	Instrument:		GCMSVOA5
	CAS NO.	COMPOUND	CONC. (µg/L)	MDL	RL	Q
-	67-64-1	Acetone	20 U	2.0	50	+ TB
	75-85-4	tert-Amyl Alcohoi (TAA)	LJ	1.3	5.0	L-04, V-05 CM
	919-94-8	tert-Amyl Ethyl Ether (TAEE)		0.16	0.50	
	994-05-8	tert-Amyl Methyl Ether (TAME)		0.15	0.50	
	71-43-2	Benzene	0.25	0.14	1.0	J
	74-97-5	Bromochloromethane		0.32	1.0	
	75-27-4	Bromodichloromethane		0.19	0.50	
	75-25-2	Bromoform		0.30	1.0	
	74-83-9	Bromomethane		1.5	2.0	
	78-93-3	2-Butanone (MEK)		1.4	20	
	75-65-0	tert-Butyl Alcohol (TBA)	UJ	3.4	20	405 CCV
	104-51-8	n-Butylbenzene	0.39	0.16	1.0	J
	135-98-8	sec-Butylbenzene		0.16	1.0	
	98-06-6	tert-Butylbenzene		0.17	1.0	
	637-92-3	tert-Butyl Ethyl Ether (TBEE)		0.16	0.50	
	75-15-0	Carbon Disulfide		1.5	5.0	
	56-23-5	Carbon Tetrachloride		0.19	5.0	
	108-90-7	Chlorobenzene		0.18	1.0	
	124-48-1	Chlorodibromomethane		0.13	0.50	
	75-00-3	Chloroethane		0.46	2.0	
	67-66-3	Chloroform		0.19	2.0	
	74-87-3	Chloromethane		0.50	2.0	
	110-82-7	Cyclohexane		1.8	5.0	
	96-12-8	1,2-Dibromo-3-chloropropane (DBCP)		0.63	5.0	
	106-93-4	1,2-Dibromoethane (EDB)		0.13	0.50	
	95-50-1	1,2-Dichlorobenzene		0.17	1.0	
	541-73-1	1,3-Dichlorobenzene		0.15	1.0	
	106-46-7	1,4-Dichlorobenzene		0.17	1.0	
w 1123124	75-71-8	Dichlorodifluoromethane (Freon 12)		0.20	2.0	
9123124	75-34-3	1,1-Dichloroethane		0.15	1.0	

B00075-MW-EA-6-082224

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project;

Zip Zip Mini Market Site - CO 152101

Matrix:

Solids:

Ground Water

Laboratory ID: 24H3437-04

File ID:

E24V24012.D

Sampled:

08/22/24 08:40

Prepared:

Preparation:

08/26/24 12:29 SW-846 5030B Analyzed: Dilution:

08/27/24 12:21 1

Initial/Final Batch:	5 mL / 5 m B384097	L Sequence; S109580	Calibration;	2400193	instr	ument:	GCMSVOA5
C	AS NO.	COMPOUND	Co	DNC. (μg/L)	MDL	RL	Q
1	07-06-2	1,2-Dichloroethane			0.13	1.0	
7	5-35-4	1,1-Dichloroethylene			0.18	1.0	
1	56-59-2	cis-1,2-Dichloroethylene			0.20	1.0	
1	56-60-5	trans-1,2-Dichloroethylene			0.16	1.0	
7	8-87-5	1,2-Dichloropropane			0.17	1.0	
1	0061-01-5	cis-1,3-Dichloropropene			0.13	0.50	
1	0061-02-6	trans-1,3-Dichloropropene			0.14	0.50	
1	08-20-3	Diisopropyl Ether (DIPE)			0.17	0.50	
6	4-17-5	Ethanol			20	50	
1	00-41-4	Ethylbenzene		1.2	0.14	1.0	
5	91-78-6	2-Hexanone (MBK)			1.3	10	
9	8-82-8	Isopropylbenzene (Cumene)		0.27	0.16	1.0	J
9	9-87-6	p-Isopropyltoluene (p-Cymene)		0.17	0.16	1.0	J
7	9-20-9	Methyl Acetate			0.48	1.0	
1	634-04-4	Methyl tert-Butyl Ether (MTBE)			0.17	1.0	
1	08-87-2	Methyl Cyclohexane		1.6	0.13	1.0	
7	5-09-2	Methylene Chloride			0.19	5.0	
1	08-10-1	4-Methyl-2-pentanone (MIBK)		2.3 J	1.4	10	V-06, J Ca
9	1-20-3	Naphthalene		1.0	0.25	2.0	J
1	03-65-1	n-Propylbenzene		0.57	0.11	1.0	J
1	00-42-5	Styrene			0.13	1.0	
7	9-34-5	1,1,2,2-Tetrachloroethane			0.10	0.50	
1:	27-18-4	Tetrachloroethylene			0.17	1.0	
1	08-88-3	Toluene		0.40 U	0.11	1.0	1 TB
8	7-61-6	1,2,3-Trichlorobenzene			0.22	5.0	
1:	20-82-1	1,2,4-Trichlorobenzene			0.19	1.0	
7	1-55-6	1,1,1-Trichloroethane			0.14	1.0	
7:	9-00-5	1,1,2-Trichloroethane			0.18	1.0	
1 27/24 7	9-01-6	Trichloroethylene			0.17	1.0	
27124 7	5-69-4	Trichlorofluoromethane (Freon 11)			0.14	2.0	

B00075-MW-EA-6-082224

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID:

24H3437-04

E24V24012.D

Sampled:

Initial/Final:

08/22/24 08:40

Prepared: Preparation: 08/26/24 12:29 SW-846 5030B Analyzed:

08/27/24 12:21

Solids:

 $5 \, \text{mL} / 5 \, \text{mL}$

\$109580

Calibration:

Dilution:

Batch:	B384097	12.00	Calibration:	2400193	Instru	ıment:	GCMSVOA5	
	CAS NO.	COMPOUND		С	CONC. (μg/L)	MDL	RL	Q
	96-18-4	1,2,3-Trichloroprop	ane			0.27	2.0	
	76-13-1	1,1,2-Trichloro-1,2,	,2-trifluoroethane	(Freon 1		0.16	1.0	
	95-63-6	1,2,4-Trimethylben	zene		5.3	0.16	1.0	
	108-67-8	1,3,5-Trimethylben	zene		3.8	0.17	1.0	
	75-01-4	Vinyl Chloride				0.19	2.0	
	179601-23-1	m+p Xylene			3.9	0.25	2.0	
	95-47-6	o-Xylene			1.5	0.16	1.0	
	1330-20-7	Xylenes (total)			5.4	1.0	1.0	

5

1 - FORM I ANALYSIS DATA SHEET

B00075-MW-FD-01-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

Matrix:

Ground Water

24H3437-05

File ID: E24V24013.D

Sampled:

08/21/24 00:00

Laboratory ID: Prepared:

08/26/24 12:29

Analyzed

08/27/24 12:46

Solids:

Preparation: SW-846 5030B

Dilution:

1

Batch:	B384097	Sequence: S109580 Calibra	ation:		2400193	Instru	ument:	GCMSVOA5
	CAS NO.	COMPOUND	CONC). (µ	ıg/L)	MDL	RL	Q
	67-64-1	Acetone				2.0	50	
	75-85-4	tert-Amyl Alcohol (TAA)	3	12	J	1.3	5.0	1-04, V-05 CC
	919-94-8	tert-Amyl Ethyl Ether (TAEE)				0.16	0.50	
	994-05-8	tert-Amyl Methyl Ether (TAME)				0.15	0.50	
	71-43-2	Benzene	5	54		0.14	1.0	
	74-97-5	Bromochloromethane				0.32	1.0	
	75-27-4	Bromodichloromethane				0.19	0.50	
	75-25-2	Bromoform				0.30	1.0	
	74-83-9	Bromomethane				1.5	2.0	
	78-93-3	2-Butanone (MEK)	4	.7	u	1.4	20	& TB
	75-65-0	tert-Butyl Alcohol (TBA)			uj	3.4	20	Y-05 CCV
	104-51-8	n-Butylbenzene	5	.6		0.16	1.0	
	135-98-8	sec-Butylbenzene	2	.8		0.16	1.0	
	98-06-6	tert-Butylbenzene				0.17	1.0	
	637-92-3	tert-Butyl Ethyl Ether (TBEE)				0.16	0.50	
	75-15-0	Carbon Disulfide				1.5	5.0	
	56-23-5	Carbon Tetrachloride				0.19	5.0	
	108-90-7	Chlorobenzene				0.18	1.0	
	124-48-1	Chlorodibromomethane				0.13	0.50	
	75-00-3	Chloroethane				0.46	2.0	
	67-66-3	Chloroform				0.19	2.0	
	74-87-3	Chloromethane				0.50	2.0	
	110-82-7	Cyclohexane	8	.3		1.8	5.0	
	96-12-8	1,2-Dibromo-3-chloropropane (DBCP)				0.63	5.0	
	106-93-4	1,2-Dibromoethane (EDB)				0.13	0.50	
	95-50-1	1,2-Dichlorobenzene				0.17	1.0	
	541-73-1	1,3-Dichlorobenzene				0.15	1.0	
	106-46-7	1,4-Dichlorobenzene				0.17	1.0	
M	75-71-8	Dichlorodifluoromethane (Freon 12)				0.20	2.0	
127/24	75-34-3	1,1-Dichloroethane				0.15	1.0	

B00075-MW-FD-01-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID: 24H3437-05 File ID:

E24V24013.D

Sampled:

Initial/Final:

08/21/24 00:00

08/26/24 12:29

Analyzed:

08/27/24 12:46

Solids:

 $5 \, \text{mL} / 5 \, \text{mL}$

Prepared: Preparation:

SW-846 5030B

atch:	B384097		Instr	ument:	GCMSVOA5			
	CAS NO.	COMPOUND		CON	C. (μg/L)	MDL	RL	Q
	107-06-2	1,2-Dichloroethane				0.13	1.0	
	75-35-4	1,1-Dichloroethylen	е			0.18	1.0	
	156-59-2	cis-1,2-Dichloroethy	iene			0.20	1.0	
	156-60-5	trans-1,2-Dichloroet	hylene			0.16	1.0	
	78-87-5	1,2-Dichloropropane	e			0.17	1.0	
	10061-01-5	cis-1,3-Dichloroprop	ene			0.13	0.50	
	10061-02-6	trans-1,3-Dichloropr	opene			0.14	0.50	
	108-20-3	Diisopropyl Ether (D	IPE)			0.17	0.50	
	64-17-5	Ethanol				20	50	
	100-41-4	Ethylbenzene			57 J	0.14	1.0	FO
	591-78-6	2-Hexanone (MBK)				1.3	10	
	98-82-8	Isopropylbenzene (0	Cumene)		8.8	0.16	1.0	
	99-87-6	p-Isopropyltoluene (p-Cymene)		2.7	0.16	1.0	
	79-20-9	Methyl Acetate				0.48	1.0	
	1634-04-4	Methyl tert-Butyl Eth	er (MTBE)		0.31	0.17	1.0	J
	108-87-2	Methyl Cyclohexane			9.7	0.13	1.0	
	75-09-2	Methylene Chloride				0.19	5.0	
	108-10-1	4-Methyl-2-pentanoi	ne (MIBK)			1.4	10	
	91-20-3	Naphthalene			16	0.25	2.0	
	103-65-1	n-Propylbenzene			24	0.11	1.0	
	100-42-5	Styrene				0.13	1.0	
	79-34-5	1,1,2,2-Tetrachloroe	ethane			0.10	0.50	
	127-18-4	Tetrachloroethylene				0.17	1.0	
	108-88-3	Toluene			3.8 U	0.11	1.0	TB
	87-61-6	1,2,3-Trichlorobenze	ene			0.22	5.0	
	120-82-1	1,2,4-Trichlorobenze	ene			0.19	1.0	
	71-55-6	1,1,1-Trichloroethan	e			0.14	1.0	
	79-00-5	1,1,2-Trichloroethan	e			0.18	1.0	
1	79-01-6	Trichloroethylene				0.17	1.0	
7/24	75-69-4	Trichlorofluorometha	ane (Freon 11)			0.14	2.0	

B00075-MW-FD-01-082124

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science ₹

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Ground Water

Laboratory ID:

24H3437-05

File ID:

E24V24013.D

Sampled:

Initial/Final:

08/21/24 00:00

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 12:46

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

Batch:	B384097	Sequence:	S109580	Calibration:	2	2400193	instru	ment:	GCMSVOA5
	CAS NO.	COMPOUND		C	ONC. (μ	g/L)	MDL	RL	Q
	96-18-4	1,2,3-Trichloroprop	ane				0.27	2.0	
	76-13-1	1,1,2-Trichloro-1,2,	2-trifluoroethane	(Freon 1			0.16	1.0	
	95-63-6	1,2,4-Trimethylben	zene		200		0.16	1.0	
	108-67-8	1,3,5-Trimethylbenz	zene		68		0.17	1.0	
	75-01-4	Vinyl Chloride					0.19	2.0	
	179601-23-1	m+p Xylene			140	J	0.25	2.0	FD
	95-47-6	o-Xylene			9.0		0.16	1.0	
	1330-20-7	Xylenes (total)			150	J	1.0	1.0	FO

B00075-TB-01-082224

Laboratory:

Pace New England

Work Order:

24H3437

Client:

, accition migratio

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Trip Blank Water

24H3437-06

File ID:

E24V24007.D

Sampled:

Initial/Final:

08/22/24 14:00

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 10:14

Solids:

5 mL / 5 mL

Preparation:

Laboratory ID:

SW-846 5030B

atch:	B38409	7 Sequence: S109580 Cal	libration:	2400193	Instr	ument:	GCMSVOA5
CA	AS NO.	COMPOUND	CON	IC. (μg/L)	MDL	RL	Q
67	7-64-1	Acetone		83	2.0	50	
75	5-85-4	tert-Amyl Alcohol (TAA)		WJ	1.3	5.0	L-04, V-05 Ce1
91	19-94-8	tert-Amyl Ethyl Ether (TAEE)		0.00	0.16	0.50	
99	94-05-8	tert-Amyl Methyl Ether (TAME)			0.15	0.50	
71	1-43-2	Benzene			0.14	1.0	
74	1-97-5	Bromochloromethane			0.32	1.0	
75	5-27-4	Bromodichloromethane			0.19	0.50	
75	5-25-2	Bromoform			0.30	1.0	
74	1-83-9	Bromomethane			1.5	2.0	
78	3-93-3	2-Butanone (MEK)		10	1.4	20	J
75	5-65-0	tert-Butyl Alcohol (TBA)		110 J	3.4	20	V-05 CCV
10	04-51-8	n-Butylbenzene			0.16	1.0	
13	35-98-8	sec-Butylbenzene			0.16	1.0	
98	3-06-6	tert-Butylbenzene			0.17	1.0	
63	37-92-3	tert-Butyl Ethyl Ether (TBEE)		0.62	0.16	0.50	
75	5-15-0	Carbon Disulfide			1.5	5.0	
56	6-23-5	Carbon Tetrachloride			0.19	5.0	
10	8-90-7	Chlorobenzene			0.18	1.0	
12	24-48-1	Chlorodibromomethane			0.13	0.50	
75	5-00-3	Chloroethane			0.46	2.0	
67	'-66-3	Chloroform			0.19	2.0	
74	-87-3	Chloromethane			0.50	2.0	
11	0-82-7	Cyclohexane			1.8	5.0	
96	5-12-8	1,2-Dibromo-3-chloropropane (DBCP)			0.63	5.0	
10	6-93-4	1,2-Dibromoethane (EDB)			0.13	0.50	
95	5-50-1	1,2-Dichlorobenzene			0.17	1.0	
54	1-73-1	1,3-Dichlorobenzene			0.15	1.0	
10	6-46-7	1,4-Dichlorobenzene			0.17	1.0	
75	-71-8	Dichlorodifluoromethane (Freon 12)			0.20	2.0	
75 75	5-34-3	1,1-Dichloroethane			0.15	1.0	

6

1 - FORM I ANALYSIS DATA SHEET

B00075-TB-01-082224

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

1

Matrix:

Trip Blank Water

Laboratory ID:

File ID:

E24V24007.D

Sampled:

Initial/Final:

08/22/24 14:00

Prepared:

08/26/24 12:29

24H3437-06

Analyzed:

08/27/24 10:14

Solids:

5 mL / 5 mL

Preparation:

SW-846 5030B

Batch:	B384097	Sequence: S	S109580 Calibration:	2400193	Instrument:		GCMSVOA5
	CAS NO.	COMPOUND	COI	NC. (μg/L)	MDL	RL	Q
	107-06-2	1,2-Dichloroethane			0.13	1.0	
	75-35-4	1,1-Dichloroethylene			0.18	1.0	
	156-59-2	cis-1,2-Dichloroethylene			0.20	1.0	
	156-60-5	trans-1,2-Dichloroethylene			0.16	1.0	
	78-87-5	1,2-Dichloropropane			0.17	1.0	
	10061-01-5	cis-1,3-Dichloropropene			0.13	0.50	
	10061-02-6	trans-1,3-Dichloropropene			0.14	0.50	
	108-20-3	Diisopropyl Ether (DIPE)			0.17	0.50	
	64-17-5	Ethanol		27	20	50	J
	100-41-4	Ethylbenzene			0.14	1.0	
	591-78-6	2-Hexanone (MBK)			1.3	10	
	98-82-8	Isopropylbenzene (Cumen	e)		0.16	1.0	
	99-87-6	p-Isopropyltoluene (p-Cym	ene)		0.16	1.0	
	79-20-9	Methyl Acetate			0.48	1.0	
	1634-04-4	Methyl tert-Butyl Ether (MT	BE)		0.17	1.0	
	108-87-2	Methyl Cyclohexane			0.13	1.0	
	75-09-2	Methylene Chloride			0.19	5.0	
	108-10-1	4-Methyl-2-pentanone (MIE	BK)		1.4	10	
	91-20-3	Naphthalene			0.25	2.0	
	103-65-1	n-Propylbenzene			0.11	1.0	
	100-42-5	Styrene			0.13	1.0	
	79-34-5	1,1,2,2-Tetrachloroethane			0.10	0.50	
	127-18-4	Tetrachloroethylene			0.17	1.0	
	108-88-3	Toluene		0.24	0.11	1.0	J
	87-61-6	1,2,3-Trichlorobenzene			0.22	5.0	
	120-82-1	1,2,4-Trichlorobenzene			0.19	1.0	
	71-55-6	1,1,1-Trichloroethane			0.14	1.0	
	79-00-5	1,1,2-Trichloroethane			0.18	1.0	
	79-01-6	Trichloroethylene			0.17	1.0	
4124	75-69-4	Trichlorofluoromethane (Fr	eon 11)		0.14	2.0	

B00075-TB-01-082224

Laboratory:

Pace New England

Work Order:

24H3437

Client:

NYDEC_EA Engineering, Science &

Project:

Zip Zip Mini Market Site - CO 152101

Matrix:

Trip Blank Water

Laboratory ID: 24H3437-06

File ID:

E24V24007.D

Sampled:

Initial/Final:

08/22/24 14:00

Prepared:

08/26/24 12:29

Analyzed:

08/27/24 10:14

Solids:

 $5\,\text{mL}/5\,\text{mL}$

Preparation:

SW-846 5030B

Dilution:

1

Batch:	B384097	Sequence: S109	S109580	Calibration:	2400193	Instrument:		GCMSVOA5
11	CAS NO.	COMPOUND		CC	NC. (μg/L)	MDL	RL	Q
	96-18-4	1,2,3-Trichloroprop	ane			0.27	2.0	
	76-13-1	1,1,2-Trichloro-1,2	,2-trifluoroethane	(Freon 1		0.16	1.0	
	95-63-6	1,2,4-Trimethylben	zene			0.16	1.0	
	108-67-8	1,3,5-Trimethylben	zene			0.17	1.0	
	75-01-4	Vinyl Chloride				0.19	2.0	
	179601-23-1	m+p Xylene				0.25	2.0	
	95-47-6	o-Xylene				0.16	1.0	
	1330-20-7	Xylenes (total)				1.0	1.0	

