CRA

SITE EVALUATION REPORT

Former Buffalo Forge Plant No. 1 Howden Buffalo, Inc.

Prepared By:

Conestoga-Rovers & Associates 2055 Niagara Falls Boulevard Niagara Falls, New York 14304

APRIL 2000 Ref. no. 14791 (1)

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1
2.0	BACKO	GROUND INFORMATION	2
3.0	SUMM	ARY OF FIELD ACTIVITIES	4
	3.1	SAMPLE COLLECTION AND ANALYSES	4
	3.1.1	SOIL	4
	3.1.2	WATER	5
4.0	OBSER	VATIONS AND FINDINGS	6
	4.1	GENERAL	6
	4.2	UNDERGROUND STORAGE TANKS	7
	4.2.1	20,000 GALLON UST	7
	4.2.2	9,000 GALLON UST	8
	4.3	ABOVEGROUND GASOLINE STORAGE TANK	8
	4.4	MACHINE PITS	8
	4.5	ASSEMBLY AREA AND MACHINE SHOP FLOOR	9
	4.6	PAINT STORAGE ROOM	10
	4.7	LUBRICANT STORAGE AREA	10
	4.8	PRESS PIT	
	4.9	PAINT BOOTH GRATE	11
	4.10	HAZARDOUS WASTE STORAGE AREA	11
	4.11	CAPACITOR ROOM	12
	4.12	BASEMENT	12
	4.13	INTERIOR MANHOLES	12
	4.14	MORTIMER STREET PARKING LOTS	13
5.0	SUMM	ARY AND CONCLUSIONS	14

<u>Page</u>

<u>LIST OF FIGURES</u> (Following Report)

FIGURE 1 SITE PLAN

LIST OF TABLES

TABLE 3.1	SUMMARY OF SOIL SAMPLE COLLECTION AND ANALYSES
TABLE 3.2	SUMMARY OF WATER SAMPLE COLLECTION AND ANALYSES
TABLE 4.1	COMPOUNDS DETECTED IN SOIL
TABLE 4.2	COMPOUNDS DETECTED IN WATER

LIST OF APPENDICES

APPENDIX A	AERIAL PHOTOGRAPHS
APPENDIX B	SANBORN FIRE INSURANCE MAPS
APPENDIX C	STRATIGRAPHIC AND INSTRUMENTATION LOGS
APPENDIX D	DATA VALIDATION REPORT

1.0 INTRODUCTION

Conestoga-Rovers & Associates (CRA) has completed a preliminary environmental evaluation of the Howden Buffalo, Inc. (former Buffalo Forge) facility located at 490 Broadway in Buffalo, New York ("Site"). The evaluation was performed at the request of Mr. Jerrold Brown of Hodgson, Russ, Andrews, Woods & Goodyear.

Prior to beginning the field activities associated with the evaluation, a Scope of Work was developed in cooperation with Mr. Dennis Sutton of the City of Buffalo Department of Community Development. Mr. Sutton also observed the performance of select field activities.

This report presents summaries of the Site background data obtained for this evaluation, field activities performed, field observations, analytical results, and comparisons of the analytical results to New York standards. The report is organized as follows:

- <u>Section 1 Introduction</u>: The introduction presents an overview of the development of the project;
- <u>Section 2 Background Information</u>: The background information collected and used in the planning of the project is presented in Section 2:
- <u>Section 3 Summary of Field Activities</u>: A summary of the field activities performed is presented in Section 3;
- Section 4 Observations and Findings: The observations and analytical data collected from this investigation are presented in Section 4; and
- <u>Section 5 Summary and Conclusions</u>: A summary of the evaluation is presented in Section 5.

2.0 BACKGROUND INFORMATION

The background information collected prior to the commencement of the field activities consisted primarily of Site maps and interviews with former Howden Fan employees to gain knowledge of the locations of Site features and historic activities. This information was used in the planning of sample locations and analytical parameters.

Aerial photographs of the area in which the Site is located dated 1959, 1966, 1978, 1983, and 1995 were obtained and reviewed to determine the locations and development sequence of the on-Site structures. Copies of these photographs are presented in Appendix A.

Sanborn fire insurance maps for the period of 1889 through 1986 were also obtained and reviewed. The Sanborn fire map dated 1986 was used as the base for the preparation of the Site plan shown on Figure 2.1. Reduced copies of the Sanborn maps are contained in Appendix B.

The Scope of Work included an inquiry into records of the New York Stated Department of Environmental Conservation (NYSDEC) to determine the locations and status of underground storage tanks at the Site. However, previous work performed by others indicated that records for this Site were not available. During a Site walk-through with an employee of Howden Buffalo who had also worked at Buffalo Forge, the locations of three of the four reported underground tanks were identified.

Based on the above, the following areas of potential environmental concern were identified and selected for further investigation:

- i) Underground Storage Tanks (UST);
- ii) Aboveground Storage Tanks (AST);
- iii) Machine Pits;
- iv) Assembly Area and Machine Shop Floor;
- v) Lubricant Storage Area;
- vi) Paint Storage Area;
- vii) Press Pit;
- viii) Paint Booth Grate(s);
- ix) Hazardous Waste Storage Area;
- x) Capacitor Room; and

xi) Interior Manholes.

The City requested that analyses of samples of water from the basement of the manufacturing building and of soil in the Mortimer Street Parking Lots also be performed.

3.0 SUMMARY OF FIELD ACTIVITIES

The field activities were performed between February 7 and 10, 2000.

3.1 SAMPLE COLLECTION AND ANALYSES

Both soil and water samples were collected and analyzed to obtain data for use in the Site evaluation. The Scope of Work also called for the collection of sediment samples from the basement of the manufacturing building. The basement is currently filled with water; therefore, access for sediment sampling was not available. It was agreed with Mr. Sutton of the City that this activity would be delayed until after the analytical data from the basement water samples were received and reviewed.

The following subsections present brief overviews of the soil and water sample collection procedures and sample analyses.

3.1.1 SOIL

Soil borings were advanced using a stainless steel sampling spoon, 2 inches in diameter and 42 inches long. The sampling spoon was lined with acetate and was driven using a hydraulic hammer. Upon completion, each boring was backfilled with the soil cuttings and bentonite clay. Where needed, concrete or asphalt was patched at the surface.

Following collection, the acetate liner containing the soil sample was opened and the soil within was logged and screened for organic vapors using a photoionization detector (PID). Thirty-six (36) soil borings were advanced in the areas of potential environmental concern and analytical soil samples were collected from 15 of these borings for subsequent analyses. The locations of all boreholes and sample locations are presented on Figure 1.

Samples were selected for analyses based upon physical observations (i.e., color, odor, etc.) and organic vapor readings. Stratigraphic logs for the boreholes are contained in Appendix C. The soil descriptions and organic vapor readings are shown on the stratigraphic logs. A summary of the samples collected and analyses performed is presented in Table 3.1.

samples selected for laboratory analyses were placed into laboratory-supplied glass jars and immediately placed on ice in a cooler. Samples were

4

14791 (1)

shipped to the analytical laboratory via overnight courier using proper Chain of Custody procedures.

Field conditions necessitated the modification of the following sample collection locations:

- i) it was not possible to penetrate the bottoms of the machine pits or Paint Booth Grate. Therefore, boreholes at these locations were advanced immediately adjacent to the pit or grate; and
- ii) the area of the UST in the basement along the Spring Street side of the facility could not be accessed. Consideration was given to installing boreholes outside the building along Spring Street but, because the exact location of the tank was unknown, such borings could not be properly located.

3.1.2 **WATER**

The basement of the manufacturing building is currently filled with water of unknown origin. During the Site walk-through, CRA was informed that the basement was divided into three separate areas; therefore, samples of water were collected from each of these areas.

The water samples were collected from open stairwells in each section of the basement using disposable bailers. Water from the bailer was transferred directly to labeled laboratory-supplied sample containers and immediately placed on ice in a cooler. Samples were shipped to the analytical laboratory via overnight courier using appropriate Chain of Custody procedures.

A sample collection and analysis summary for the water samples is presented in Table 3.2.

4.0 OBSERVATIONS AND FINDINGS

The following subsections discuss the results of the field and analytical activities for each of the areas which were identified as potential environmental concerns. Tables 4.1 through 4.3 present summaries of the compounds detected in soil and water samples. The concentrations of compounds detected in the soil samples are compared to New York State (NYS) standards in Tables 4.1 and 4.2. The standards used for soils under the manufacturing building and in the parking lots are the "Recommended Soil Cleanup Objectives" and "Eastern USA Background" presented in the Technical and Administrative Guidance Memorandum, "Determination of Soil Cleanup Objectives and Cleanup Levels" dated April 1995 (TAGM 4046). The TAGM standards for some metals in soil are the Site background concentrations. The scope of this project did not include a determination of Site-specific background concentrations of metals in soil; therefore, the review of the concentrations of the metals is relative to both the Recommended Cleanup Objective and Eastern USA Background Concentrations presented in TAGM 4046.

For soils associated with the aboveground gasoline storage tank, the standards are the "Guidance Values for Gasoline Contaminated Soil" of the NYSDEC Spill Technology and Remediation Series (STARS) Memo #1. Since there was only one sample analyzed and only one analyte detected in that sample, neither the data or standards are tabulated separately. The results are described in subsection 4.3 and are included in the analytical data validation report contained in Appendix D.

4.1 GENERAL

Volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), Aroclor 1254, and metals were detected in various soil samples submitted for analyses; however, exceedances of the standards occurred for only SVOC compounds and metals. The SVOC compounds which were detected at concentrations which exceeded their respective standards (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) are all polynuclear aromatic hydrocarbons (PAHs). Due to the historic use of the property and presence of mixed fill, the presence of PAHs in soils was expected.

The concentrations of zinc detected in all but two of the analytical samples (surface soil adjacent to the Press Pit and soil adjacent to the Paint Booth Grate) exceeded both the TAGM Recommended Cleanup Objective and range of typical background concentrations. The concentrations of zinc detected in seven of the samples which

exhibited exceedances were less than 100 milligrams per kilogram (mg/kg) (versus the typical background concentration ranging from 9 to 50 mg/kg). It is believed that these concentrations are representative of Site background. Therefore, zinc in these samples will not be discussed in detail in the descriptions of the conditions in the individual areas of potential concern presented below.

Calcium and magnesium were also detected at concentrations which exceeded both the TAGM Recommended Cleanup Objective and range of typical background concentrations in the majority of samples. Calcium and magnesium are innocuous compounds with no associated risk and, therefore, will not be discussed further. The other metals which were detected at concentrations which exceeded both the standards were mercury, arsenic, and nickel. The exceedances for these metals are discussed below.

4.2 <u>UNDERGROUND STORAGE TANKS</u>

Earlier Site-related reports identified four USTs; however, the location of only one tank, a 20,000 gallon tank in the Broadway Yard, was shown in those reports. During the Site walk-through, the locations of two other USTs were identified: a second UST in the Broadway Yard (9,000 gallon capacity) and a UST in the basement along the Spring Street side of the facility.

4.2.1 20,000 GALLON UST

Number 2 fuel oil was stored in a 20,000 gallon UST located along the north side of the Broadway Yard. Four borings, SB-15 through SB-18, were installed around the area of this tank. Discrete samples from borings SB-15 and SB-18 located on the north and south sides of the tank area, respectively, were selected for laboratory analyses.

The compounds detected in the samples from the area of the 20,000 gallon UST were limited to SVOCs and metals. The concentrations of four of the SVOCs detected, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene, exceed the NYSDEC soil cleanup objectives. No metals other than calcium, magnesium, and zinc were detected at concentrations which exceeded both the TAGM Recommended Cleanup Objective and range of typical background concentrations in the samples analyzed from the area of the 20,000 gallon UST.

4.2.2 9,000 GALLON UST

Number 2 fuel oil was stored in a 9,000 gallon UST located in the northeast corner of the Broadway Yard. Three borings, SB-19 through SB-21, were installed around the area of this tank. There was no visual or olfactory evidence of chemical presence in any of the soil samples nor were organic vapors detected. Therefore, no analytical samples were submitted from the area of the 9,000 gallon UST.

4.3 ABOVEGROUND GASOLINE STORAGE TANK

An AST was formerly located in the northeast corner of the Sycamore Yard. The AST was used for the storage of gasoline; therefore, samples from this area were analyzed for the compounds listed in Table 1 ("Guidance Values for Gasoline Contaminated Soil") of the STARS Memo.

Three borings, SB-22 through SB-24, were installed in the area of the AST located in the northeast corner of the Sycamore Yard. Stained soils were encountered at approximately 4.7 feet below ground surface (BGS) in each of the borings. A discrete sample of the stained soils from boring SB-22, located on the west side of the AST, was selected for laboratory analysis.

The only compound detected in the sample from the area of the AST was toluene at an estimated concentration of 1 micrograms per kilogram ($\mu g/kg$). This concentration is well below the STARS human health guidance value of 20,000,000 $\mu g/kg$.

4.4 MACHINE PITS

Machine pits are located throughout the Pipe Shop, Fan Shop, Sheet Metal Area, and Machine Shop/Assembly Area. Three borings, SB-11 through SB-13, were advanced immediately adjacent to three separate machine pits. Borings SB-11 and SB-12 were advanced in Department 271 and SB-13 was advanced in Department 220. (The Department locations are shown on Figure 1.) There was no visual or olfactory evidence of chemical presence in the soil samples from SB-11 or SB-12 nor were organic vapors detected. Therefore, no analytical samples were submitted from these borings. At SB-13 an organic vapor reading of 3 to 4 parts per million (ppm) was reported in the sample collected from a depth of approximately 6 feet BGS; therefore, a discrete sample from this depth of boring SB-13 was selected for laboratory analysis.

The compounds detected in the sample from the machine pit included xylenes, fluoranthene, phenanthrene, pyrene, and Aroclor 1254. None of the concentrations detected exceeded the TAGM standards.

No metals other than calcium, magnesium, and zinc were detected at concentrations which exceeded both the TAGM Recommended Cleanup Objective and range of typical background concentrations in the sample from SB-13.

4.5 ASSEMBLY AREA AND MACHINE SHOP FLOOR

The Machine Shop and Assembly Area of the facility encompasses an area of approximately 40,000 square feet. The floor of the Assembly Area and Machine Shop is constructed primarily of wood blocks underlain by sand and clay.

Three borings (SB-3 through SB-5) were installed in the Assembly Area/Machine Shop to evaluate the soils beneath the wood block floor. The borings were installed where the wooden blocks had heaved. There was olfactory evidence of chemical presence and organic vapors were detected at SB-4; therefore, a sample from this location was submitted for analysis. Samples from SB-3 and SB-5 were submitted to confirm that no chemical compounds were present since no visual, olfactory, or PID evidence of chemical presence was noted in either of these borings.

The compounds detected in the samples from beneath the Assembly Area and Machine Shop floor were ethylbenzene, toluene, xylenes, several SVOC compounds, and Aroclor 1254. Exceedances of the TAGM standards were limited to benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and dibenzofuran in SB-3.

In addition to zinc and magnesium which were detected at concentrations which exceeded the TAGM Recommended Cleanup Objective and range of typical background concentrations in all three analytical samples from beneath the Assembly Area and Machine Shop floor and calcium which was detected at a concentration which exceeded these standards in one of the samples, nickel was detected in one sample at a concentration (27 mg/kg) which is generally consistent with the upper limit of typical background concentration (25 mg/kg).

4.6 PAINT STORAGE ROOM

A Paint Storage Room was located along the east wall of the facility approximately midway along the north-south wall. A floor drain reportedly connected to the City sewer is located in the center of the room. One boring, SB-2, was installed next to the floor drain to determine whether spills which may have occurred in the room had impacted the underlying materials.

No organic chemical compounds were detected in the sample from beneath the Paint Storage Room. In addition to calcium, magnesium, and zinc, mercury was detected in the analytical sample from beneath the Paint Storage Room at a concentration (0.24 mg/kg) which is generally consistent with the upper limit of typical background concentration (0.2 mg/kg).

4.7 LUBRICANT STORAGE AREA

The Lubricant Storage Area was located along the east wall of the facility in the former steel storage area. The area has a wood block floor underlain by concrete. One boring, SB-10, was advanced in the Lubricant Storage Area. There was no visual or olfactory evidence of chemical presence in the soil samples nor were organic vapors detected at boring SB-10. Therefore, no analytical samples were submitted from the Lubricant Storage Area.

4.8 PRESS PIT

A Press Pit approximately 5 feet deep is located in the foundry area of the facility. The pit is constructed of poured concrete and is currently filled with debris and liquid. Four borings, SB-6 through SB-9, were installed on the north and south sides of the Press Pit. The bottom of the Press Pit is believed to be at or slightly below the top of the native clay. The borings advanced adjacent to the Press Pit extended past the estimated elevation of the bottom of the pit and no evidence of chemical presence was observed at that depth in any boring. The sample collected for analysis consisted of stained soil present at 0.5 to 1.5 feet BGS in SB-9. These soils may have been impacted by materials which were spilled in the area rather than by liquids leaking from the Press Pit.

The compounds detected in the soil sample from the Press Pit area included carbon disulfide and several SVOCs. The concentrations of benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene,

dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene in this sample exceeded their respective TAGM standards.

No metals were detected at concentrations which exceeded both the TAGM Recommended Cleanup Objective and range of Background Concentrations in the analytical sample collected near the Press Pit.

4.9 PAINT BOOTH GRATE

Paint booths were located in the Fan Shop approximately in the center of the facility. Lined pits covered with grates ("Paint Booth Grates"), were associated with these booths. One boring, SB-14, was advanced immediately adjacent to the Paint Booth Grate. There was no visual or olfactory evidence of chemical presence in the soil nor were organic vapors detected at boring SB-14. A discrete sample from boring SB-14 was selected for laboratory analysis to confirm the absence of chemicals at this location.

No organic chemical compounds were detected in the soil sample collected adjacent to the Paint Booth Grate. Calcium and magnesium were the only metals detected at concentrations which exceeded both the TAGM Recommended Cleanup Objective and range of Background Concentrations in the analytical sample collected near the Paint Booth Grate.

4.10 HAZARDOUS WASTE STORAGE AREA

A Hazardous Waste Storage Area was reportedly located at the south end of the Sycamore Yard. The storage area consisted of a curbed concrete pad with a covered, three-sided shed. Three borings, SB-25 through SB-27, were advanced in the vicinity of the Hazardous Waste Storage Area located in the Sycamore Yard. There was no visual or olfactory evidence of chemical presence in the soil nor were organic vapors detected in these borings. A discrete sample from boring SB-27 was selected for laboratory analysis to confirm the absence of chemical presence in this area.

The compounds detected in the sample from the Hazardous Waste Storage Area were limited to SVOCs. Exceedances of the TAGM standards were detected for only three compounds, benzo(a)anthracene, benzo(a)pyrene, and benzo(b)fluoranthene. The concentrations of benzo(a)anthracene, 250 μ g/kg, and benzo(b)fluoranthene, 230 μ g/kg, were estimated and were generally consistent with the TAGM standard of 224 μ g/kg for each compound.

In addition to calcium, magnesium, and zinc, mercury, was detected in the sample from the Hazardous Waste Storage Area at a concentration (1.3 mg/kg) which exceeded both the TAGM Recommended Cleanup Objective and range of typical background concentrations.

4.11 CAPACITOR ROOM

A polychlorinated biphenyls (PCB) capacitor was located in a room in the southeast corner of the facility. The capacitor has been removed from the facility; however, oil staining is visible on the floor of the room. One boring, SB-1, was installed within a stained area in the Capacitor Room. There was no visual or olfactory evidence of chemical presence in the soil nor were organic vapors detected at boring SB-1. A discrete sample from boring SB-1 was submitted for laboratory analysis to determine whether PCBs were present.

The soil sample collected from the Capacitor Room was analyzed for PCBs only. No PCBs were detected in this sample.

4.12 BASEMENT

As stated in the Scope of Work, analytical data were collected from the basement water for use in future disposal. The compounds detected in the basement water and their concentrations are presented in Table 4.2. These data are not considered to be representative of in situ groundwater quality since they may have been influenced by residues in the basement.

The Buffalo Sewer Authority was contacted and an inquiry was made as to pretreatment standards for discharge of water to the combined sewer. CRA was informed by the representative of the Buffalo Sewer Authority that they do not have pretreatment standards and that acceptance of water is made on a case-by-case basis.

4.13 INTERIOR MANHOLES

Three manholes were located along the craneway in the center of the manufacturing building. Each of these manholes was inspected to determine whether there was evidence of chemical presence such as a sheen on standing water. All manholes were found to be in good condition and no evidence of chemical presence was observed.

4.14 MORTIMER STREET PARKING LOTS

Employee parking lots were located across the street from the facility along Mortimer Street. Nine borings, SB-28 through SB-36, were installed in these parking lots. The locations of the borings were selected with the concurrence of Mr. Sutton of the City. Soil samples were submitted for analysis from two of the parking lot borings: SB-29 where 2 ppm organic vapors were detected; and SB-30 where stained soils were observed.

The compounds detected in the soil samples from the parking lots included chlorobenzene, toluene, and SVOCs. The only exceedances of the TAGM standards were for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, and dibenz(a,h)anthracene in SB-30.

In addition to zinc which was detected at concentrations which exceeded the TAGM Recommended Cleanup Objective and range of Background Concentrations in both of the analytical samples collected from the Mortimer Street Parking Lots and magnesium which was detected at a concentration which exceeded these standards in one of the samples, mercury and arsenic were detected at concentrations (0.22 mg/kg and 18.0 mg/kg, respectively) which slightly exceeded the upper ranges of background, 0.2 mg/kg for mercury and 12 mg/kg for arsenic.

5.0 SUMMARY AND CONCLUSIONS

The areas of potential concern for environmental impact from historic Site operations included:

- i) Underground Storage Tanks;
- ii) Aboveground Storage Tanks;
- iii) Machine Pits;
- iv) Assembly Area and Machine Shop Floor;
- v) Lubricant Storage Area;
- vi) Paint Storage Area;
- vii) Press Pit;
- viii) Paint Booth Grate(s);
- ix) Hazardous Waste Storage Area;
- x) Capacitor Room; and
- xi) Interior Manholes.

In addition, at the request of the City, analyses of samples of water from the basement of the manufacturing building and of soil in the Mortimer Street Parking Lots were performed.

Due to the nature of the materials historically handled at the Site (i.e., oils and greases, gasoline, paint, etc.), any releases of such materials to the subsurface would be easily identified by visual or olfactory evidence or elevated organic vapor readings. Although some limited soil staining was observed and low level organic vapor readings were obtained, no evidence of gross chemical presence in soils underlying the facility was observed. In fact, in 8 of the 11 areas of potential concern investigated, no evidence of organic chemical presence was observed or no organic chemical compounds were detected. Those areas were the:

- 9,000 gallon UST;
- ii) AST;
- iii) Machine Pits;
- iv) Lubricant Storage Area;
- v) Paint Storage Area
- vi) Paint Booth Grate;

- vii) Capacitor Room; and
- viii) Interior Manholes.

In the remaining areas (the 20,000 gallon UST, Assembly Area/Machine Shop Floor, Press Pit, and Hazardous Waste Storage Area) PAH compounds were present at concentrations which exceed the NYS standards. The compounds and concentrations detected in the soil samples are consistent with what would be expected in an historic manufacturing/foundry facility.

Exceedances of the NYSDEC standards for metals in soil occurred in all but one of the analytical samples. While some slightly elevated concentrations may be present, it is believed that the concentrations detected are generally indicative of Site background.

TABLE 3.1

SUMMARY OF SOIL SAMPLE COLLECTION AND ANALYSES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC.

Comments	Confirmatory sample Confirmatory sample Confirmatory sample	Motor oil odor	No evidence for sample	Collection No evidence for sample collection	No evidence for sample	Stained fill soil	No evidence for sample collection	No evidence for sample collection	No evidence for sample collection	3 to 4 ppm organic vapor	Confirmatory sample	Confirmatory sample	No evidence for sample collection	No evidence for sample collection	1.2 ppm organic vapor and chemical odor	No evidence for sample collection
Sample Analyses	PCBs ©	€ 6			ı	:	•			€	E :	©		•	(3)	
Sample Number	S-14791-DRS-001 S-14791-DRS-003 S-14791-DRS-004	S-14791-DRS-005		: I	•	S-14791-DRS-007		•		S-14791-DRS-008	S-14791-DRS-009	S-14791-DRS-010	•	•	S-14791-DRS-011	•
Sampled Interval (Feet)	0.5 to 1.0 4.0 to 4.5 4.0 to 5.0	4.0 to 5.0	4.0 to 5.0			0.5 to 1.5	ı			3.0 to 4.0	8.0 to 9.0	7.0 to 8.0			6.0 to 6.5	
Location	Capacitor Room Paint Storage Room Dept. 230 Assembly	Area/Machine Shop Floor Dept. 220 Assembly Area/Machine Shop Floor	Dept. 212 Assembly Area/Machine Shop Floor North Side of Press Pit	North Side of Press Pit	South Side of Press Pit	South Side of Press Pit	Lubricant Storage Area	West Machine Pit in Dept. 271	East Machine Pit in Dept. 271	Machine Pit Dept. 220	Paint Spray Booth	20,000 Gallon UST	20,000 Gallon UST	20,000 Gallon UST	20,000 Gallon UST	9,000 Gallon UST
Depth (Ft. BGS)	2.0 4.5 5.0	0.0	9.0	9.0	9.0	9.0	 	8.0	8.0	4.0	0.6	11.5	8.0	11.5	8.0	8.0
Borehole Number	SB-1 SB-2 SB-3	SB-4	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11	SB-12	SB-13	SB-14	SB-15	SB-16	SB-17	SB-18	SB-19

TABLE 3.1

SUMMARY OF SOIL SAMPLE COLLECTION AND ANALYSES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC.

Comments	No evidence for sample collection	No evidence for sample	Stained soil	No evidence for sample	collection	No evidence for sample	No evidence for sample	collection	No evidence for sample	collection	. Slightly stained soils	No evidence for sample	collection	2 ppm organic vapors	Clinhelmotrained	Sugarity statited soils	No evidence for sample	collection	No evidence for sample	collection	No evidence for sample	collection	No evidence for sample	collection	No evidence for sample	collection
Sample Analyses	•	ı	STARS Gasoline	•		•	•		•	1	(E)	•		Ξ	8	2	•				•		•			
Sample Number	•	•	S-14791DRS-012	•		•					S-14791-DRS-013	•		S-14791-DRS-014	G 14701 DBC 01E MC /MCD	USIN /SIN CTO-DV3-16741-C	•		•				•			
Sampled Interval (Feet)	•		4.5 to 5.0	ı					•		4.5 to 5.0			0 to 1.0	0 2 1-1 0	0.5 to 1.0	•						,			
Location	9,000 Gallon UST	9,000 Gallon UST	AGST	AGST		AGST	Hazardous Waste Storage Area)	Hazardous Waste Storage Area		Hazardous Waste Storage Area	Parking Area Between	Broadway and Rey St.	Parking Area Between Broadway and Rey St	Darking Area Returner Den Ct	and George St.	Parking Area Between Rey St.	and George St.	Parking Area Between Rey St.	and George St.	Parking Area Between George	St. and Mathews St.	Parking Area Between George	St. and Mathews St.	Northernmost Parking Area	East of Mortimer Str.
Depth (Ft. BGS)	8.0	8.0	5.0	5.0		5.0	5.0		5.0		5.0	8.0		5.0	٥	0.0	8.0		8.0		6.0		5.0		1.5	
Borehole Number	SB-20	SB-21	SB-22	SB-23		SB-24	SB-25		SB-26		SB-27	SB-28		SB-29	CB 30	00-00	SB-31		SB-32		SB-33		SB-34		SB-35	

TABLE 3.1

SUMMARY OF SOIL SAMPLE COLLECTION AND ANALYSES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC.

Comments	No evidence for sample collection
Sample Analyses	•
Sample Number	•
Sampled Interval (Feet)	•
Location	Northernmost Parking Area East of Mortimer St.
Depth (Ft. BGS)	1.5
Borehole Number	SB-36

Notes:

Not applicable.

No sample S-14791-DRS-002.

Samples analyzed for TCL VOCs, SVOCs, TAL metals, PCBs, and cyanide.

Aboveground Storage Tank. AGST

Below Ground Surface. BGS

Matrix Spike. MS

Matrix Spike Duplicate. MSD

Polychlorinated Biphenyls. PCBs

Parts Per Million. mdd

Semi-Volatile Organic Compounds. SVOC

Target Analyte List. TAL

Target Compound List. TCL

Underground Storage Tank. UST

Volatile Organic Compounds.

TABLE 3.2

SUMMARY OF WATER SAMPLE COLLECTION AND ANALYSES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC.

Sample Location Number	Description	Analyses
DRS-001	Water Sample #1 - Department 370	(1)
DRS-002	Water Sample #2 - Mortimer Street Entrance	(1)
DRS-003	Water Sample #3 - Department 100	(2)

Note:

(1) Samples analyzed for TCL VOCs, SVOCs, TAL metals, PCBs, and cyanide.

PCBs Polychlorinated Biphenyls.

SVOCs Semi-Volatile Organic Compounds.

TAL Target Analyte List.

TCL Target Compound List.

VOCs Volatile Organic Compounds.

Date Printed: March 30, 2000 Time Printed: 10:20 am

Page 1 (a)

ORGANIC COMPOUNDS DETECTED IN SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

SB-5 Assembly Area Machine Shop Floor 02/07/2000	67 U 67 U 35 J 25 J 18 18	256 28 J 200 J 200 J 440 U 440 U 440 U 190 J 190 J	74.6 0.67 U
SB-4 Assembly Area Machine Shop Floor 02/07/2000	62 U 62 W 62 U 62 U 62 U 50 J 35 U	220 J 410 U 410 U	81.2 0.62 U
SB-3 Assembly Area Machine Shop Floor 02/07/2000	6.0 U 6.0 U 6.0 U 6.0 U 6.0 U	610 1100 1900 1500 1	83.4 0.60.U
SB-2 Paint Storage 02/07/2000	6.3 U 6.3 U 6.3 U 6.3 U 6.3 U 25 U	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	79.5 0.63 U
SB-1 Capacitor Room 02/07/2000	1 1 1 1 1 1 1		86.1
Rec. Clean, 1	2700 1700 5500 1500 1200	ug/kg 50000 ug/kg 41000 ug/kg 50000 ug/kg 224 ug/kg 224 ug/kg 50000 ug/kg 400 ug/kg 400 ug/kg 50000 ug/kg 50000 ug/kg 50000 ug/kg 3200 ug/kg 36000 ug/kg 50000 ug/kg 50000 ug/kg 50000 ug/kg 50000 ug/kg 50000	
Units	ug/kg ug/kg ug/kg ug/kg	US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS US/KS	% mg/kg
Boring Location: Area: Sample Date: Sample Outers Volatile Oreanics	Carbon disulfide Chlorobenzene Ettry benzene Toluene Xylenes (total) Acetone Semi-volatile Organics	Accraphthene ug/kg 50000 Accraphthene ug/kg 41000 Anthracene ug/kg 50000 Benzo(a)pyrene ug/kg 224 Benzo(b)fluoranthene ug/kg 224 Benzo(b)fluoranthene ug/kg 224 Benzo(b)fluoranthene ug/kg 224 Benzo(b)fluoranthene ug/kg 2000 Carbazole ug/kg 400 Carbazole ug/kg 400 Chrysche ug/kg 5000 Dibenzofuran ug/kg 5000 Fluoranthene ug/kg 5000 Indoorene ug/kg 5000 Dibenzofuran ug/kg 5000 Eluorene ug/kg 5000 Indoor ug/kg 5000 Prene Ug/kg 50000 Prene Ug/kg 50000 Prene Ug/kg 50000 Brena Ug/kg 50000 Ug/kg 50000 Ug	Percent solids Cyanide: Joial

	2000	
	30,	am
	March	10:20
2 (a)	Printed:	Printed:
Page	Date P	Time 1

ORGANIC COMPOUNDS DETECTED IN SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

SB-18 20,000 Gal. UST 		74 U 74 U 74 U 74 U 74 U		11 007	490 U 190 J	180 J 870 J	1 000	770 J	270 J	490 U	490 U	490 U	70007 490 U	350 J	490 U	580 1	1200 J		49 U		67.1 0.74 U
SB-15 20,000 Gal. UST		5.8 U 5.8 U 5.8 U 5.8 U 23 U		1 020	270 J 820 U	580 J 1100] J	760 J	850 J	820 U	290 J	820 U	300 1	420 1	820 U	310 J	2800 J	1500 J		0 14		85.5 0.62 U
SB-14 Paint Booth Grate 02/08/2000		5.8.U 5.8.U 5.8.U 5.8.U 2.8.U		11 000	380 U	380 U 380 U	380 O	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U	380 U		38 Ú		86.8 0.58 U
SB-13 Machine Pit		6.0 U 6.0 U 6.0 U 6.0 U 2.4 U		11 0000	3900 U 3900 U	3900 U 3900 U	3900 U	3900 U	3900 U	3900 U	3900 U	3900 U	2100 J	3900 U	3900 U	3000 J	I 800 J		400		83.8 0.60 U
SB-9 Press Pit		2.7.0 5.7.0 5.7.0 5.7.0 5.7.0		11 5050	3700 U 3700 U	4.0	7500	7700	9300	3700 U	2700 J	J 3700 U	14000 3700 U	7900	3700 U	1 200 1			37.0		88.3 0.57 U
'	Rec. Clean. 1	ug/kg 2700 ug/kg 1700 ug/kg 5500 ug/kg 1500 ug/kg 1200 ug/kg 200		0000	50000 41000	50000 224	1 0	224	20000	ug/kg	14	1.00	ug/kg 50000		ug/kg 36400	2000	20000		10000		
	Units	ug/kg ug/kg ug/kg ug/kg ug/kg			ug/kg ug/kg	ug/kg ug/kg			ug/kg	ug/kg ng/kg	ug/kg	ug/kg				ug/kg	ug/kg		ng/kg		% mg/kg
	ଅ	Carbon disulfide ug/kg 2700 Chlorobenzene ug/kg 1700 Ethylbenzene ug/kg 5500 Toluene ug/kg 1500 Xylenes (total) ug/kg 1200 Acetone ug/kg 200	rganics		Acenaphthene Acenaphthylene	Anthracene ug/kg Benzoka)anthracene ug/kg		Benzotb)tworanthene ug/kg.	Benzo(g,h.i)perylene ug/kg		er help in various some de demonstration de la masser de la hracene hracene	Dibenzofuran		d)pyrene	2-Methylnaphthalene	Naprunatene Ug/kg Phenanthrene			Arocior 1254	ISITY	Percent solids Cyanide, lotal
Boring Location: Area: , Sample Date:	Parameters Volatile Organics	Carbon disulfide Chlorobenzene Ethylbenzene Toluene Xylenes (total) Acetone	Semi-volatile Organics		Acenaphthene Acenaphthylen	Anthracene Benzo(a)anthra	Benzo(a)pyrene	Benzo(k)fluoranthene	Benzo(g,h,i)pc	Carbazole	Dibenz(a,h)anthracene	Dibenzofuran	Fluorene	Indeno(1,2,3-cd)pyrene	2-Methylnaphi	Phenanthrene	Pyrene	<u>PCBs</u>	Aroclor 1254	General Chemistry	Percent solids Cyanide, total

Date Printed: March 30, 2000 Time Printed: 10:20 am

Page 3 (a)

ORGANIC COMPOUNDS DETECTED IN SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

SB-30 Parking Loss 02/10/2000		5.9 U 2.8.1 5.9 U 5.9 U 5.9 U 24 U	780 U 290 J 1000 870 870 870 1100 780 U 780 U	39 U 85.1 0.59 U
SB-29 Parking Lots		5.7 U 5.9 1 5.7 U 5.7 U 23 U	380 C C C C C C C C C C C C C C C C C C C	98. U 87.0 0.57
SB-27 Haz. Waste Storage 02/09/2000		2700 6.4 U 1700 6.4 U 5500 6.4 U 1500 6.4 U 1200 6.4 U	50000 41000 420	43 U 77.7
	Rec. Clean.	2700 1700 5500 1500 1200	50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000	00001
	Units		78/88	ug/kg % mg/kg
		Volatile Organics Carbon disulfide Chlorobenzene Edty Ibenzene Tolucie Xylenes (total) Acetone ug/kg Acetone ug/kg Acetone	Acenaphthene ug/kg 50000 Acenaphthlene ug/kg 41000 Anthracene ug/kg 50000 Benzo(a)anthracene ug/kg 224 Benzo(b)fluoranthene ug/kg 224 Benzo(b)fluoranthene ug/kg 224 Benzo(b)fluoranthene ug/kg 5000 Carbazole ug/kg 400 Chrysene ug/kg 400 Chrysene ug/kg 5000 Dibenzo(trian ug/kg 5000 Universaltene ug/kg 5000 Universaltene ug/kg 36400 Universaltene ug/kg 50000	PCBs Aroclor 1254 General Chemistry Percent solids Cyanide total """ """ """ """ """ """ """ """ """
Boring Location: Area: Sample Date:	Parameters	Volatile Organics Carbon disulfide Chlorobenzene Ethylbenzene Toluene Xylenes (total) Acetone Semi-volatile Organics	Acenaphthene Acenaphthylene Anthracene Berzo(a)anthracene Berzo(a)pyrene Berzo(b)fluoranthene Berzo(b)fluoranthene Berzo(b, h, jperylene Carbazole Chrysene Diberz(a, h, anthracene Diberz(a, h, anthracene) Phenanthracene Phenanthracene Phenanthracene Phenanthracene	Aroclor 1254 General Chemistry Percent solids Cyanide, total

TABLE 4.1

Page 4 (a)
Date Printed: March 30, 2000
Time Printed: 10:20 am

ORGANIC COMPOUNDS DETECTED IN SOIL FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC.

Not detected at or above the associated value.

D

Estimated.

: -

Not applicable. New York State Dept. of Environmental Conservation, "Determination of Soil Cleanup Objectives and Cleanup Levels" (TAGM 4046), April 1995.

TABLE 4.2

INORGANIC COMPOUNDS DETECTED IN SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

			Boring Location:	SB-2	SB-3	SB-4	SB-5 Ascembly Area	SB-9 Proce Pit	SB-13 Machine Pit
Metals	Units	Rec.Clean. ⁽¹⁾	Background ⁽¹⁾	380016 11110 1	nasculorii urea	many from section	many frances		
Mercury	mg/kg	0.1	0.001-0.2	0.24	0.18 J	0.025 J	0.036 J	0.038 J	0.019 J
Antimony	mg/kg	ŀ	;	2.9 J	2.5 J	0.32 J	0.31 J	0.72 J	7.2 UJ
Silver	mg/kg	1	;	1.3 U	1.2 U	1.2 U	1.3 U	1.1 U	1.2 U
Aluminum	mg/kg	1	33000	7200	10100	11300	13300	9770	77770
Arsenic	mg/kg	7.5	3-12	8.1	9.9	5.3	4.9	5.6	S
Barium	mg/kg	300	15-600	125	78.5	87	83.7	27.4	67.7
Beryllium	mg/kg	0.16	0-1.75	0.47	0.58	0.57	69.0	0.4	0.42
Calcium	mg/kg	1	130-35000	48200 J	56400 J	89400 J	23300 J	13500 J	78800 J
Cadmium	mg/kg	1	0.1-1	0.36	8.0	0.51	0.16	0.14	0.31
Zinc	mg/kg	20	9-20	6.96	85.6	69.5	73.2	35.9	55.7
Cobalt	mg/kg	30	2.5-60	8.2	14.2	10	10.9	5.6	7.2
Chromium	mg/kg	10	1.5-40	16.5	23	16.4	18.2	11.3	13.5
Copper	mg/kg	;	;	39.7 J	57 J	17.5 J	24 J	15.5 J	15.5 J
Iron	mg/kg	2000	2000-550000	22700	30400	21200	22600	21200	15200
Potassium	mg/kg	ŀ	8500-43000	1130	1270	2420	2390	831	1660
Magnesium	mg/kg	ì	100-5000	14600 J	16600 J	29100 J	15800 J	2640 J	26200 J
Manganese	mg/kg	1	20-2000	313 J	594]	839 J	372 J	219 J	330 J
Sodium	mg/kg	;	0008-0009	142 U	172 U	238	190 U	199 U	226
Nickel	mg/kg	13	0.5-25	13.6	27	16.4	19.9	11.4	15.1
Lead	mg/kg	ì	200-504	284	92.6	20.9	15.7	42.8	10.2
Selenium	mg/kg	2	0.1-3.7	0.63 U	1.2 U	1.2 U	O.67 U	0.24	1.2 U
Thallium	mg/kg	ł	ì	0.49	1.2 U	1.2 U	1.3 U	0.55	1.2 U
Vanadium	mg/kg	150	1-300	21.7	23.8	24.4	29.6	17.7	20

TABLE 4.2

INORGANIC COMPOUNDS DETECTED IN SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

			ıtion: Area:	SB-14 Paint Booth	SB-15 20,000 Gal. UST	SB-18 20,000 Gal. UST	SB-27 Haz. Waste	SB-29 Parking Lots	SB-30 Parking Lots
Metals	Units	Rec.Clean. 1	Background 1						
Mercury	mg/kg	0.1	0.001-0.2	0.12 U	0.12 U	0.35	1.3	0.014 J	0.22 J
Antimony	mg/kg	ł		6.9 UJ	0.34	1.3	0.83	0.41 J	29.5 J
Silver	mg/kg	;		1.2 U	1.2 U	1.5 U	0.22	1.1 U	0.1
Aluminum	mg/kg	ŀ		4800	4450	2950	8820	19400	3580
Arsenic	mg/kg	7.5		86.0	4.4	8.6	9.5	9	18
Barium	mg/kg	300		35.5	33.3	115	569	199	114
Beryllium	mg/kg	0.16		0.26	0.42	0.46	0.53	1.3	0.54
Calcium	mg/kg	;		113000 J	60100	12000	43100	21700 J	11700 J
Cadmium	mg/kg	1		0.24	0.5	0.37	0.65	0.52	0.54
Zinc	mg/kg	20		38.8	55.8	199	246	95	194
Cobalt	mg/kg	30		4	4.4	4.7	8.5	49.7	7.9
Chromium	mg/kg	10		8.3	20.6	6.4	16.4	22.2	11.6
Copper	mg/kg	1		9.2 J	28.8 J	41.7 J	49.4 J	20.3 J	255 J
Iron	mg/kg	2000		0866	11500	11100	17700	37500	25800
Potassium	mg/kg	;		1040	649	594	2830	1640	466
Magnesium	mg/kg	ŀ	100-5000	38400]	1 0268	2480 J	10600 J	5540]	2610 J
Manganese	mg/kg	1		239 J	702 J	112 J	[229	1680 J	159 J
Sodium	mg/kg	:		168 U	121 U	296	406	914	150 U
Nickel	mg/kg	13		7.1	14	8.4	16.4	17	16.5
Lead	mg/kg	;		5.8	19.6	301	419	93.1	764
Selenium	mg/kg	2		0.58 U	0.62 U	1.5	0.65 U	0.45	1.2
Thallium	mg/kg	;		1.2 U	0.59	0.82	0.52	0.43	1.2 U
Vanadium	mg/kg	150	1-300	13.4	13.1	14	21.1	32.9	12.7

Notes:

"Determination of Soil Cleanup Objectives and Cleanup Levels", NYSDEC Technical and Administrative Guidance Memorandum 4046, April 1995.
Associated value is estimated.

Non-detect at associated value. Underground Storage Tank.

Hazardous. Haz.

UST

Rec. Clean. Recommended Soil Cleanup Objective.

| Sample concentration exceeding recommended cleanup objective and background concentrations.

Date Printed: March 31, 2000 Time Printed: 9:23 am

Page 1 (a)

FORMER BUFFALO FORGE PLANT NO.1 COMPOUNDS DETECTED IN WATER HOWDEN BUFFALO, INC.

DRS-002 DRS-003	W-14791-DRS-002 W-14791-DRS-003	02/09/2000 02/09/2000
DRS-001	W-14791-DRS-001	02/09/2000
Location:	Sample ID;	Sample Date:

		5.0 U	
		7.0	
Units		ug/L	
<u>Parameters</u>	Volatile Organics	Trichloroethene	

Trichloroethene ug/L 7.0 5.0 U 5.0 U Semi-volatile Organics Semi-volatile Organics 5.0 U 5.0 U Berzo(θ)fluoranthene ug/L 10 U 10 U 0.96 J Chrysene ug/L 10 U 1.1 J 1.0 U 1.0 U Di-n-butyl phniatate ug/L 10 U 2.0 J 1.0 U 0.95 J Pluoranthene ug/L 1.0 U 0.95 J 1.0 U 0.95 J Pluoranthene ug/L 1.0 U 0.95 J 1.0 U 0.95 J
5.0 U 5.0 U 10 U 0.96 J 1.1 J 10 U 0.95 J
5.0 U 0.96.1 1.1 J 1.0 U 0.95.1
1,991 49,11 99

										0.00				
					#85 33 33 33 33 33									
	n.													. D
0.96		0.0		2.' 7.	0.70	326	10800		- 8	105000	39700	10500	1320	10.0
														1335 1355 1355 1355 1355 1355 1355 1355
U 01	2.0 J	0 0 0		0.21 5.4	10.0 U	3.3 97.5	77.0 0000 77.0	10.2 1230 , <u> </u>	6./ 13.1 U	8460 8460	22300	33000	198 0.04 198 0.05	5.3 3.7
							Ĭ					3		
n 0)) ()			2.0	∩ 	: 0 7 0	> 0 (7 O Č	ז'ח	n & (200	:	o • .	n 0
				0.7	95	32	5040	- 268 - 268	<u>.</u> • • •	, 8696	2800	8170 8170	32,	3.2 10.0 3.7
ug/L		7.7		77	્ નુસ્	.u	: 1€:		. E. F	₽¥.	् ्र	કાર. કાર	₹₩.	ug/L ug/L ug/L
(i)	3 5	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		30 37	3 3	3 3 3	37 37	3 3	3 3	n n	3	37 .53 		3 3 3
ithene	alate													
(b)fluorar	outyl phth	Fluoranthene Pyrene	w)	ury ony	u nu	≗ e .		S	uniu uinu	5	sıum esium	anese m		ilium Lium
Benzo	Ding.	Fluora	Metals	Merc. Antim	Silver	Arsen	Calciu	Zinc	Chron	00 TI	Potass Magn	Sodiu	Nicke Lead	Selenium Thalfium Vanadium

0.21 5.4 10.0 U 883	. y o	000 12 12 1000	9 21 19	2007 223	3330 40	_ 7.0.0
D	٥		5		ם	
0.70 3.2 10.0 U	7.0 322 0.19	50400 6.2 2680	9.7. 54.5	20100	280 81700 40.0	3.2
و بے بے بے	ريد	درر	۔ ہے ہے د	ر رور د	ر د د د	۔ د د د
ug/L ug/L ug/L) Sin Sin	S n S n	8 8	an an an	Sin Sin) 3 3 3 3 3 3 3
					(A)	
Mercury Antimony Silver Aluminum	Jijum /	mir .	alt omium iper	ssium gnesiun	ium ium kel	Illum .

Notes

APPENDIX A AERIAL PHOTOGRAPHS

APPENDIX B

SANBORN FIRE INSURANCE MAPS

"Linking Technology with Tradition"

Sanborn™ Map Report

Ship to: John Monell

Order Date: 1/10/2000

Completion Date: 01/11/2000

CRA Services

Inquiry #: 450757.2S

2055 Niagara Falls Blvd.

P.O. #: 14791

Niagara Falls, NY 14304

Site Name: Buffalo Forge

Address: 490 Broadway

City/State: Buffalo, NY 14204

1093659AAK

716-297-6150

Cross Streets: Sycamore

Based on client-supplied information, fire insurance maps for the following years were identified

1889 - 1 - map

1899 - 1 - map

1926 - 1 - map

1950 - 1 - map

1986 - 1 - map

Total Maps: 5

Limited Permission to Photocopy

CRA Services (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

All maps provided pursuant to a Sanborn™ Map Report are currently reproducible of fire insurance maps owned or licensed by Environmental Data Resources, Inc. NO WARRANTY, EXPRESSED OR IMPLIED IS MADE WHATSOEVER. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, WARRANTIES AS TO ACCURACY, VALIDITY, COMPLETENESS, SUITABILITY, CONDITION, QUALITY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR USE OR PURPOSE WITH RESPECT TO THE REPORT, THE MAPS, THE INFORMATION CONTAINED THEREIN, OR THE RESULTS OF A SEARCH OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. By acceptance of this Sanborn Map Report, you acknowledge that the listed maps are available for your property. A review of these maps could provide you with very important information regarding past uses and environmental conditions. Failure to review such maps may result in non-compliance with prevailing environmental site assessment standards such as ASTM E 1527-97. Environmental Data Resources, Inc. assumes no liability to any party for any loss or damage whether arising out of errors or omissions, negligence, accident or any other cause. In no event shall Environmental Data Resources, Inc., its affiliates or agents, be liable to anyone for special, incidental, consequential or exemplary damages.

Copyright 2000, Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format of any map of Environmental Data Resources, Inc. (whether obtained as a result of a Search or otherwise) may be prohibited without prior written permission from Environmental Data Resources, Inc. Sanborn and Sanborn Map are trademarks of EDR Sanborn, Inc.

Electronic Sanborn Map Images USER'S GUIDE

Thank you for your interest in electronic Sanborn Map images. The following are guidelines for accessing the images and for transferring them to your system. If you have any questions about the use of electronic Sanborn Map images, contact your EDR Account Executive at 1-800-352-0050.

Organization of Electronic Sanborn Image File

First Page Sanborn Map Report, listing years of coverage
 Second Page Electronic Sanborn Map Images USER'S GUIDE

Third Page Oldest Sanborn Map Image
 Last Page Most recent Sanborn Map Image

Navigating the Electronic Sanborn Image File

- Open file on screen.
- Identify TP (Target Property) on the most recent map.
- Find TP on older printed images.
- To view the image more clearly, zoom to 250%.
 - 200-250% is the approximate equivalent scale of hardcopy Sanborn Maps.
 - Viewing above 400% will tend to pixelate the display.
- Zooming in on an image:
 - Click on the % in the lower left hand corner and type in ____%.
 - Use the magnifying tool and drag a box around the TP area.

Printing a Sanborn Map from the Electronic File

- EDR recommends printing all images at 300 dpi (300 dpi prints faster than 600 dpi).
- To print only the TP area, cut and paste the area from Adobe Acrobat to Microsoft Word, or other word processor
 - · Go to the Menu Bar.
 - Highlight 'Tools'.
 - Highlight 'Select Graphics'.
 - Draw a box around the area of interest.
 - · Go to the Menu Bar.
 - Highlight 'Edit'.
 - Highlight 'Copy'.
 - You can paste directly into a report, if necessary. Go to a word processor such as Microsoft Word and paste. Print from the word processor.

Important Information about Email Delivery of Electronic Sanborn Map Images

- Images are grouped into one file, up to 2MB.
- In cases where in excess of 6-7 map years are available, the file size typically exceeds 2MB. In these cases, you will receive multiple files, labeled as 1 of 3, 2 of 3, etc. including all available map years.
- Due to file size limitations, certain ISPs, including AOL, may occasionally delay or decline to deliver files. Please contact your ISP to identify their specific file size limitations.

The Sanborn Library, LLC
This Sanborn Map** is a certified copy produced by
Environmental Data Resources. In: selder atrangement with
The Sanborn Library LCL information on this Sanborn Map**
is derived from Sanborn field surveys conducted in.

Copyright = 1986

The Sanborn Library LLC

APPENDIX C

STRATIGRAPHIC AND INSTRUMENTATION LOGS

(WL-01) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-1

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
t. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm
-2.5	CONCRETE FLOOR SLAB CL-SILTY CLAY (NATIVE), trace fine sand, red brown, dry, no odor, some concrete debris @ 0.5ft BGS (on top of clay) END OF HOLE @ 2.0ft BGS	5	CONCRETE BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE	(O)			0
5.0							
7.5							
-10.0] 			
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

(WL-02) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-2

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

EPTH . BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	-	S,	AMPLE	
. 865	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PII (pp
	CONCRETE FLOOR SLAB	4	CONCRETE	+=		ج.	
2.5	CL-GRAVELLY SILTY CLAY (NATIVE), red/brown, dry to moist - wet, shaley partings, refusal (@ 4.5ft BGS) END OF HOLE @ 4.5ft BGS	-4.5	CONCRETE BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE	003			0
7.5	END OF HOLE & 4.511 BOS						
0.0					 -		
2.5							
5.0							
7.5							
0.0							
22.5							
25.0							
27.5							
0.0							
32.5							
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE						

(WL-03) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-3

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

EPTH t. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft. AMSL	MONITOR		5/	MPLE	
1. 865	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppr
2.5	CL-SILTY CLAY (NATIVE), some fine gray and white sands, red/brown, dry, no odor - refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE	004			0
7.5							
10.0							
12.5							
15.0							
17.5							
20.0							
22.5							
25.0							
27.5							
30.0							
32.5							
		E; REFER TO CU					

(WL-04) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-4

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION		S	AMPLE	
п. воз	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm
-2.5	CL-SILTY CLAY (NATIVE), some to trace fine gravel, brown/olive, moist, no odor		BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
-5.0	- motor oil odor (4.5 to 5.0ft BGS) - refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0	2" Ø BOREHOLE	005	\times		0
7.5							
10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5	·						
	OTES: MEASURING POINT ELEVATIONS MAY CHANG						

(WL-05) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-5

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION		SA	MPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	CL-SILTY CLAY (NATIVE), with some to trace fine gravel, olive/brown, moist to wet, no odor		BENTONITE AND SOIL CUTTINGS			-	
-2.5			2" 0				
-5.0	- refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0	2" Ø BOREHOLE	(006)	\times		0
-7.5							
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

(WL-06) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-6

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	CONCRETE FLOOR SLAB FILL-SAND, trace silt, fine grained sand, brown CL-SILTY CLAY (NATIVE), red/brown, dry to	5	CONCRETE BENTONITE				0
-5.0	moist, no odor		AND SOIL CUTTINGS				
-7.5			2" Ø BOREHOLE				0
-10.0	END OF HOLE @ 9.0ft BGS	-9.0	122				
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
NC	DTES: MEASURING POINT ELEVATIONS MAY CHANGE WATER FOUND ♀ STATIC WATER LEVEL CHEMICAL ANALYSIS ◯		URRENT ELEVATION TABLE				

(WL-07) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-7

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

EPTH t. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION	_	S.	AMPLE	
1. 503	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	N' VALUE	PI[(ppi
$\overline{}$	CONCRETE FLOOR SLAB	5	CONCRETE				
_	FILL-SAND, trace silt, fine grained sand, brown						
2.5	CL-SILTY CLAY (NATIVE), red/brown, dry to moist, no odor	-2.5	BENTONITE				
	moist, no odor		AND SOIL CUTTINGS				
5.0							
_			BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
7.5			2" Ø BOREHOLE				
	END OF HOLE @ 9.0ft BGS	-9.0					
0.0							
12.5		1 1					
15.0						 	
13.0							
17.5							
''.5							
20.0		1					
-0.0							
22.5							
25.0							
27.5							
30.0							
32.5							
	TES: MEASURING POINT ELEVATIONS MAY CHANGE	PEEED TO O	UDDENT ELEVATION TABLE				

(WL-08) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-8

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

CRA SUPERVISOR: D. STEINER

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm)
				ž	S	ż	(PP7
	CONCRETE FLOOR SLAB	4	CONCRETE				0
	FILL-SAND and SILT, fine grained sand, dark stained	1	BENTONITE AND SOIL CUTTINGS				
-2.5			BENTONITE				
	SM-SILTY SAND, with some red/brown clay	-3.3 -3.3	AND SOIL CUTTINGS			1	
-5.0	CL-SILTY CLAY (NATIVE), red/brown, dry to					ļ	0
-3.0	moist, no odor						
			₹ 2" Ø BOREHOLE				
-7.5			BOREHOLE	·			
40.0	END OF HOLE @ 9.0ft BGS	-9.0)	
-10.0		1 1				}	
-12.5		1					
-15.0						}	
-17.5							
						[
-20.0							
						Į .	
-22.5		1 1					
22.0							
		1 1					
-25.0		1					
) [
-27.5							
27.0							
-30.0							
		\ \				1	
-32.5							
-32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE:						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♀ STATIC WATER LEVEL ▼

CHEMICAL ANALYSIS

(WL-09) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-9

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm)
-2.5	FILL-SAND and SILT, fine grained sand, dark stained	4	CONCRETE	007		·z	0
-5.0	SM-SILTY SAND, with some red/brown clay CL-SILTY CLAY (NATIVE), red/brown, dry to moist, no odor	3.3 -3.3	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE	007			Ü
-7.5		-9.0	2" Ø BOREHOLE				
-10.0	END OF HOLE @ 9.0ft BGS						
-12.5							
-15.0							
-17.5 -20.0							
-22.5							
-25.0	·						
-27.5							
-30.0							
-32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; F WATER FOUND CHEMICAL ANALYSIS CHEMICAL ANALYSIS	REFER TO (CURRENT ELEVATION TABLE				

(WL-10) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-10

DATE COMPLETED: FEBRUARY 7, 2000

DRILLING METHOD: DIRECT PUSH

GROUND SURFACE 0.0 INSTACTATION PI (pp	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
## WOOD BLOCKS ## CONCRETE FLOOR SLAB ## CONCRETE FLOOR SLAB ## CONCRETE FLOOR SLAB ## AND SOIL ## CUTTINGS ## BORREHOLE ## BENTONITE ## AND SOIL ## CUTTINGS ## BORREHOLE ## BENTONITE ## AND SOIL ## CUTTINGS ## BORREHOLE	ft. BGS		ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
-5.0 -7.5 -10.0 -12.5 -15.0 -17.5 -20.0 -22.5 -25.0 -27.5 -30.0	-2.5	CONCRETE FLOOR SLAB FILL-SAND, SILT and CLAY, brown, dry to moist, no odor - refusal (@ 1.5ft BGS)	6	AND SOIL CUTTINGS 2" Ø			•	0
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	5.0	END OF HOLE @ 1.5ft BGS						
12.5 15.0 17.5 20.0 22.5 25.0 27.5	-7.5							
-15.0 -17.5 -20.0 -22.5 -25.0 -27.5	-10.0							
-17.5 -20.0 -22.5 -25.0 -27.5 -30.0	-12.5							
-20.0 -22.5 -25.0 -27.5 -30.0	-15.0							
-22.5 -25.0 -27.5 -30.0	-17.5							
-25.0 -27.5 -30.0	-20.0							
-27.5	-22.5							
30.0	-25.0							
	-27.5							
-32.5	-30.0							
	-32.5							

(WL-11) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-11

DATE COMPLETED: FEBRUARY 8, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	CONCRETE FLOOR SLAB CL-SILTY CLAY (NATIVE), with some to trace fine gravel, red/brown, dry to moist, no odor	4	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				0
-5.0			2" Ø				0
-7.5	END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
<u>N</u>	OTES: MEASURING POINT ELEVATIONS MAY CHANGE WATER FOUND \$\Pi\$ STATIC WATER LEVEL		CURRENT ELEVATION TABLE				

(WL-12) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-12

DATE COMPLETED: FEBRUARY 8, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION		S	AMPLE	
11. 863	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	CONCRETE FLOOR SLAB CL-SILTY CLAY (NATIVE), with some to trace fine gravel, red/brown, dry to moist, no odor	4	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				0
-5.0			2" Ø				0
-7.5	END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5 -25.0							
-27.5							
-30.0							
-32.5							
N01	TES: MEASURING POINT ELEVATIONS MAY CHANGE	; REFER TO C	CURRENT ELEVATION TABLE				

(WL-13) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-13

DATE COMPLETED: FEBRUARY 8, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR	ļ	S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL 0.0	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm)
	ROCKS IN MACHINE PIT	-				-	
-2.5	CL-SILTY CLAY (NATIVE), with trace fine gravel, olive, brown, moist	-1.0	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
-2.5	- chemical odor (3.0 to 4.0ft BGS)	\ · \	2" Ø BOREHOLE	00B	$\overline{}$		3-4
	- refusal (@ 4.0ft BGS)	-4.0					
-5.0	END OF HOLE @ 4.0ft BGS	}					
-7.5							
-10.0							
-12.5				 			
-15.0							
-17.5] 			
-20.0] [
-22.5							
-25.0					 		
-27.5							
-30.0							
-32.5							
1	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE: WATER FOUND ♀ STATIC WATER LEVEL ↓		CURRENT ELEVATION TABLE				

(WL-14) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-14

DATE COMPLETED: FEBRUARY 8, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		- 5/	MPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
	FILL-SANDY GRAVEL, medium to fine grained, wet CL-SILTY CLAY (TILL), with silt seams, with	-1.4	PENTONITE			<u>-</u>	
5.0	some medium to fine gravel, hard, no odor		BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
7.5			2" Ø BOREHOLE	009	X		
10.0	- refusal (@ 9.0ft BGS) END OF HOLE @ 9.0ft BGS	-9.0	1 22				
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

(WL-15) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-15

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
2.5	FILL-SANDY GRAVEL, SAND-GRAVEL MIXTURES, with some silt, trace clay, concrete debris, medium to fine grained, no odor		BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE			-	
5.0							
7.5	- wet (@ 8.0ft BGS)		2" Ø BOREHOLE	010	\times		o
0.0							
2.5	END OF HOLE @ 11.5ft BGS	-11.5	22		 - 		
5.0					 		
7.5							
0.0							
2.5							
25.0							
27.5							
80.0							
32.5							

(WL-16) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

WATER FOUND ¥

CHEMICAL ANALYSIS

STATIC WATER LEVEL \$

HOLE DESIGNATION: SB-16

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

EPTH t. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR		S	AMPLE	
. 505	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	FILL-SANDY GRAVEL MIXTURE, some clay, medium to fine grained, brown, no odor						0
2.5	~ wet (@ 3.5ft BGS)		BENTONITE AND SOIL CUTTINGS				
5.0	CL-SILTY CLAY (NATIVE), trace fine sand and gravel, red/brown, wet, no odor	-4.0	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				0
7.5	END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				
0.0						 	
12.5							
15.0							
17.5							
20.0							
22.5							
25.0							
27.5							
30.0							
32.5							

(WL-17) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-17

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION		S	AMPLE	I
500	GROUND SURFACE	0.0	140 I ALLA I 1014	NUMBER	STATE	'N' VALUE	PID (ppm
-2.5	FILL-SANDY GRAVEL, SAND-GRAVEL MIXTURES, with some silt, trace clay, concrete debris, medium to fine grained, no odor		BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				0
-5.0							
-7.5	– wet (@ 8.0ft BGS)		2" Ø BOREHOLE				
-10.0		-11.5					0
-12.5	END OF HOLE @ 11.5ft BGS	-11.5	_				
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
27.5							
30.0							
32.5							

(WL-18) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

WATER FOUND \$\foats

CHEMICAL ANALYSIS

STATIC WATER LEVEL \$\Bar{\Pi}\$

HOLE DESIGNATION: SB-18

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION		S	AMPLE	
11. 863	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm)
-2.5	FILL-SANDY SILT, GRAVEL, BRICK, CINDERS, and wood fragments		BENTONITE AND SOIL CUTTINGS				
5.0							
7.5	- chemical odor (@ 6.0ft BGS) CL-SILTY CLAY (NATIVE), with trace fine sand and gravel, moist to wet END OF HOLE @ 8.0ft BGS	-6.5 -8.0	2" Ø BOREHOLE	011	X		1.2
10.0							
12.5							
15.0							
17.5							
20.0							
22.5							
25.0							
27.5							
30.0							
32.5							

(WL-19) *Page 1 of 1*

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-19

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm
				Ž	05	ż	
	FILL-SAND-GRAVEL MIXTURES, with some silt and clay, tan, brown	1					0
-2.5			BENTONITE				
-2.5	CL-SILTY CLAY (NATIVE), with trace fine	-3.0	AND SOIL CUTTINGS				
	sand, red/brown, moist, no odor						
-5.0		1	2" 0				0
			BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE		Ì		
-7.5	END OF HOLE @ 8.0ft BGS	-8.0					
	END OF HOLE & O.OIT BOS					}	
-10.0							
		}			ļ		
-12.5							
-15.0							ĺ
-17.5							
							1
-20.0							
}		1					
-22.5							
		1					
-25.0						1	
							{
-27.5							1
27.0							
-30.0							
-30.0							
20.5							
-32.5							
NI NI	OTES: MEASURING POINT ELEVATIONS MAY CHANGE	E; REFER TO CU	RRENT ELEVATION TABLE		-	-	

(WL-20) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-20

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

CRA SUPERVISOR: D. STEINER

DEPTH t. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft. AMSL	MONITOR INSTALLATION		S	AMPLE	
1. 503	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	FILL-CONCRETE DEBRIS, and medium fine brown sand and gravel		PENTONITE				0
2.5	CL-SILTY CLAY (NATIVE), with trace fine sand, red/brown, moist, no odor	-2.5	BENTONITE AND SOIL CUTTINGS				
-5.0			2" Ø				
-7.5	END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				0
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

WATER FOUND \$\Preceq\$ STATIC WATER LEVEL \$\Preceq\$

CHEMICAL ANALYSIS

(WL-21) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-21

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH CRA SUPERVISOR: D. STEINER

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION		S	AMPLE	
11. 803	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	FILL-CONCRETE DEBRIS, and medium fine brown sand and gravel		RENTON TE				0
-2.5	CL-SILTY CLAY (NATIVE), with trace fine sand, red/brown, moist, no odor	-2.5	BENTONITE AND SOIL CUTTINGS				
-5.0			2" Ø BOREHOLE				o
7.5	END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
	OTES MEASURING POINT ELEVATIONS MAY CHANGE						

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE WATER FOUND ♀ STATIC WATER LEVEL ▼

CHEMICAL ANALYSIS

(WL-22) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

WATER FOUND ♀

CHEMICAL ANALYSIS

STATIC WATER LEVEL \$

HOLE DESIGNATION: SB-22

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S/	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	FILL-GRAVEL and SAND, concrete debris, brown, gray CL-SILTY CLAY (NATIVE), with trace fine sand, hard, dry to moist, no odor	-2.5	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
-5.0	- stained layer (@ 4.7ft BGS) - refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0		012	\times		0
-7.5				 			
-10.0							
-12.5							
-15.0							
-17.5				 			
-20.0							
-22.5				 			
-25.0							
-27.5							
-30.0							
-32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE						

(WL-23) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-23

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
t. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
	FILL-GRAVEL and SAND, concrete debris, brown, gray		BENTONITE AND SOIL CUTTINGS			.2	
2.5	CL-SILTY CLAY (NATIVE), with trace fine sand, hard, dry to moist, no odor	-2.5	BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
5.0	- refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0					0
7.5							
10.0							
12.5							
15.0							
17.5							
20.0							
22.5							
25.0							
27.5							
30.0							
32.5							

(WL-24) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

CHEMICAL ANALYSIS

HOLE DESIGNATION: SB-24

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm
	FILL-GRAVEL and SAND, concrete debris, brown, gray		BENTONITE AND SOIL			-	
2.5	CL-SILTY CLAY (NATIVE), with trace fine sand, hard, dry to moist, no odor	-2.5	CUTTINGS 2" Ø BOREHOLE				
-5.0	- refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0					0
-7.5							1
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

(WL-25) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-25

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH CRA SUPERVISOR: D. STEINER

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
t. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
	ACCULAT	3	ASPHALT	z	٠,	ż	
	ASPHALT GM-SANDY GRAVEL (NATIVE), with silt		PATCH BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				0
		-2.0	BENTONITE				
2.5	CL-SILTY CLAY, with trace fine sand, dense, red/brown, dry to moist, no odor		AND SOIL CUTTINGS		·		
			2" Ø				
5.0		-5.0	BOREHOLE				
5.0	END OF HOLE @ 5.0ft BGS	7-5.6					
7.5							
		l l					
10.0							
12.5		-					
15.0							
17.5							
20.0				 			
22.5		1 1					
22.5							
25.0							
27.5							
27.5							
		1					
30.0							
32.5							

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

WATER FOUND \$\Pi\$ STATIC WATER LEVEL \$\P\$\$ CHEMICAL ANALYSIS

(WL-26) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

CHEMICAL ANALYSIS

HOLE DESIGNATION: SB-26

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
t. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
	ASPHALT	3	ASPHALT	<u> </u>		-	_
	GM-SANDY GRAVEL (NATIVE), with silt		PATCH				0
ر ا	CL-SILTY CLAY, with trace fine sand, dense,	-2.0	BENTONITE				
2.5	red/brown, dry to moist, no odor	1 1	AND SOIL CUTTINGS	l			
			PATCH BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
5.0	END OF HOLE @ 5.0ft BGS	-5.0	BOREHOLE				
	END OF HOLE & 5.011 B65]		
7.5							
7.5							
10.0							
		1					
12.5							
12.5				1			
15.0							
					ļ		
17.5		}					
				ļ			
20.0							
22.5		1					
25.0							
25.0							
27.5							
30.0							
32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE						

(WL-27) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-27

DATE COMPLETED: FEBRUARY 9, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
	A C DI I A I T	3	ASPHALT	2		.2	
	ASPHALT GM-SANDY GRAVEL (NATIVE), with silt		PATCH				
		-2.0	BENTONITE	1		}	
-2.5	CL-SILTY CLAY, with trace fine sand, dense, red/brown, dry to moist, no odor		PATCH PATCH BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
-5.0	- slightly dark stained soils, no odor (@ 4.5ft BGS)	-5.0	2" Ø BOREHOLE	013			0
	END OF HOLE @ 5.0ft BGS						
-7.5							
10.0							
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5		}					
		1					
-25.0		1 1					
-27.5							
-30.0							
-32.5							
	OTES: MEASURING POINT ELEVATIONS MAY CHANGE	PEEED TO OU	DDENT ELEVATION TABLE				

(WL-28) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-28

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ft. BGS	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	ASPHALT FILL-CLAY and BRICK DEBRIS, wet, no odor CL-SILTY CLAY (NATIVE), with trace fine sand, dense, red/brown, dry, no odor	3 -1.5	ASPHALT PATCH BENTONITE				0
-5.0			AND SOIL CUTTINGS				0
-7.5	END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5					 		
-25.0					 		
-27.5							
-30.0							
-32.5							
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE WATER FOUND ♀ STATIC WATER LEVEL		JRRENT ELEVATION TABLE				

(WL-29) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

CHEMICAL ANALYSIS

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-29

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH CRA SUPERVISOR: D. STEINER

EPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		SA	MPLE	
. BGS	GROUND SURFACE	ft. AMSL	INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppr
	ASPHALT	4	ASPHALT			<u>.</u> z	
	FILL-SAND and GRAVEL, with brick debris,	-1.0	PATCH	014			2
.5	CL-SILTY CLAY (NATIVE), with trace fine sand, dense, red/brown, dry, no odor		PATCH BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				
	SM/CL-SANDY CLAY, some silt, brown, dry	-4.0	2" Ø BOREHOLE				
.0	- refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS	-5.0					
.5							
0.0							
2.5							
5.0							
7.5							
0.0							
2.5							
25.0							
27.5							
۰،۰۰							
0.0							
2.5							

(WL-30) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-30

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH

(WL-31) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-31

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV. ft. AMSL	MONITOR INSTALLATION		S/	AMPLE	
11. 865	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	ASPHALT FILL-CINDERS and GRAVEL, gray/black SM-SANDY SILT (NATIVE), with some clay and gravel	3 -1.5	ASPHALT PATCH BENTONITE				0
-5.0	CL-SILTY CLAY, with some fine sand, trace gravel, red/brown and gray	-4.0	AND SOIL CUTTINGS				0
-7.5	- more gravel, dense, moist, no odor (@ 7.0ft BGS) END OF HOLE @ 8.0ft BGS	-8.0	BOREHOLE				
-10.0							
-12.5							
-15.0							
-17.5 -20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							
NO	DTES: MEASURING POINT ELEVATIONS MAY CHANGE WATER FOUND ♀ STATIC WATER LEVEL CHEMICAL ANALYSIS ○		JRRENT ELEVATION TABLE				

(WL-32) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

CHEMICAL ANALYSIS

HOLE DESIGNATION: SB-32

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH

DEPTH t. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR INSTALLATION		S.	AMPLE	
1. 803	GROUND SURFACE	0.0	INSTALLATION	NUMBER	STATE	N' VALUE	PIC (ppi
	ASPHALT	3	ASPHALT PATCH			-	
	FILL-GRAVELLY SAND and CINDER	-1.0	TATON				0
2.5	CL-SILTY CLAY (NATIVE), with trace gravel and sand		BENTONITE				
\	– red/brown	1 1	AND SOIL CUTTINGS				
5.0	SP-GRAVELLY SAND, brown, moist	-5.0					٥
	- 4" shale layer and clay (@ 6.5ft BGS)		2" Ø BOREHOLE		 		
7.5	- dry, no odor (@ 7.0ft BGS)	-8.0					
	END OF HOLE @ 8.0ft BGS	0.0					
10.0							
					ļ		
12.5							
15.0							
1				ļ			
17.5							
		1 1					
20.0		1					
		1 1					
22.5		1 1					
22.5							
25.0							
20.0							
27.5		1 1					
27.5		1					
30.0							
30.0							
20.5							
32.5							

(WL-33) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

-32.5

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-33

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH CRA SUPERVISOR: D. STEINER

SAMPLE DEPTH ELEV. MONITOR STRATIGRAPHIC DESCRIPTION & REMARKS ft. BGS ft. AMSL INSTALLATION VALUE PID STAT (ppm) 0.0 GROUND SURFACE ASPHALT ASPHALT -.3 PATCH -1.0 0 FILL-CINDERS, SLAG, GRAVEL and SAND, hard, black -2.5 CL-SILTY CLAY (NATIVE), with trace fine BENTONITE gravel, red/brown AND SOIL -4.0CUTTINGS 0 SM-SILTY SAND, with clay, brown, dry, no odor -5.0 2" Ø BOREHOLE - refusal (@ 6.0ft BGS) -6.0 END OF HOLE @ 6.0ft BGS -7.5-10.0 -12.5 -15.0-17.5 -20.0 -22.5 -25.0 -27.5 -30.0

NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE
WATER FOUND ♀ STATIC WATER LEVEL ▼
CHEMICAL ANALYSIS ○

(WL-34) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-34

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH CRA SUPERVISOR: D. STEINER

GROUND SURFACE O.0 GROUND SURFACE O.0 ASPHALT FILL-CINDERS, SLAG, GRAVEL and SAND, hard, black CL-SILTY CLAY (NATIVE), with trace fine gravel, red/brown SM-SILTY SAND, with clay, brown, dry, no odor - refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS 7.5 15.0 27.5 28.0 27.5 29.0 27.5 30.0	DEPTH	STRATIGRAPHIC DESCRIPTION & REMARKS	ELEV.	MONITOR		S	AMPLE	
ASPHALT FILL-CINDERS, SLAG, GRAVEL and SAND, hard, black CL-SILTY CLAY (NATIVE), with trace fine gravel, red/brown SM-SILTY SAND, with clay, brown, dry, no odor - refusal (@ 5.0ft BGS) END OF HOLE @ 5.0ft BGS 7.5 10.0 22.5 22.6 22.5 23.0 24.0 -5.0 27.6 30.0	t. BGS			INSTALLATION	NUMBER	STATE	N' VALUE	PID (ppm
10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0	2.5	FILL-CINDERS, SLAG, GRAVEL and SAND, hard, black CL-SILTY CLAY (NATIVE), with trace fine gravel, red/brown SM-SILTY SAND, with clay, brown, dry, no odor - refusal (@ 5.0ft BGS)	-4.0	PATCH BENTONITE AND SOIL CUTTINGS				0
15.0 17.5 20.0 22.5 25.0 27.5 30.0	10.0							
20.0 22.5 25.0 27.5 30.0	15.0							
25.0 27.5 30.0								
30.0								
	27.5							
32.3 I I I I I I I I I	30.0 32.5							

IES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE
WATER FOUND ♀ STATIC WATER LEVEL ▼

CHEMICAL ANALYSIS

(WL-35) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

CHEMICAL ANALYSIS

HOLE DESIGNATION: SB-35

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH CRA SUPERVISOR: D. STEINER

SAMPLE DEPTH ELEV. MONITOR STRATIGRAPHIC DESCRIPTION & REMARKS ft. AMSL ft. BGS INSTALLATION STATE PID (ppm) GROUND SURFACE 0.0 z ASPHALT -.*3* **ASPHALT** PATCH 0 -.7 FILL-GRAVELLY SAND, brick debris -1.5 BENTONITE CL-SILTY CLAY (NATIVE), with rock fragments, AND SOIL -2.5 dense, brown, dry, no odor 2" Ø - refusal (@ 1.5ft BGS) BOREHOLE END OF HOLE @ 1.5ft BGS -5.0 -7.5 -10.0 -12.5 -15.0 -17.5-20.0 -22.5 -25.0 -27.5 -30.0-32.5 MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE NOTES: STATIC WATER LEVEL Y WATER FOUND ♥

(WL-36) Page 1 of 1

PROJECT NAME: BUFFALO HOWDEN INC.

PROJECT NUMBER: 14791

CLIENT: HODGSON, RUSS, ANDREWS, WOODS & GOODYEAR

LOCATION: 490 BROADWAY, BUFFALO, NEW YORK

HOLE DESIGNATION: SB-36

DATE COMPLETED: FEBRUARY 10, 2000

DRILLING METHOD: DIRECT PUSH

ft. BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	ft. AMSL	INSTALLATION	EB	ш	5	
	GROUND SURFACE	0.0		NUMBER	STATE	'N' VALUE	PID (ppm)
-2.5	ASPHALT FILL-GRAVELLY SAND, brick debris CL-SILTY CLAY (NATIVE), with rock fragments, dense, brown, dry, no odor - refusal (@ 1.5ft BGS) END OF HOLE @ 1.5ft BGS	3 7 -1.5	ASPHALT PATCH BENTONITE AND SOIL CUTTINGS 2" Ø BOREHOLE				0
-7.5							
-10.0							
-12.5							
-15.0							
-17.5							
-20.0							
-22.5							
-25.0							
-27.5							
-30.0							
-32.5							

APPENDIX D

DATA VALIDATION REPORT

TELEPHONE: (716) 297-6150 FAX:

(716) 297-2265

MEMORANDUM

To:

Carol Dunnigan

REF. No.:

Matte dalamet

14791

FROM:

Susan Scrocchi/tlp/js/1^{SCS}

DATE:

March 21, 2000

RE:

Analytical Data Assessment and Validation

Former Buffalo Forge Plant No. 1

Howden Buffalo, Inc. **Buffalo**, New York

1.0 **OVERVIEW**

The following details the assessment and validation of analytical results reported by Severn Trent Laboratories (STL) (formerly Quanterra, Inc.) for 14 soil samples and 3 water samples collected in February 2000 at Howden Buffalo, Inc., (former Buffalo Forge Plant No. 1) Site located in Buffalo, NY. The samples were analyzed for the following:

Parameters	Metnoaology ¹
Target Compound List (TCL) Volatile Organic Compounds (VOCs)	SW-846 8260
TCL Semi-Volatile Organic Compounds (SVOCs)	SW-846 8270
Polychlorinated Biphenyls (PCBs)	SW-846 8082
Target Analyte List (TAL) Metals	SW-846 6010/7470/7471
Cyanide	SW-846 9012
Site-Specific (SS) VOCs	SW-846 8260

A sample collection and analysis summary if presented in Table 1. The analytical results are summarized in Table 2A-2C. A review of the final sample results and supporting Quality Assurance/Quality Control (QA/QC) results was performed based on information obtained from the Chain of Custody forms, finished report forms, blank data, and recovery data for matrix, blank, and surrogate spikes.

The QA/QC criteria used to assess these data are outlined in the methods and the following:

i) "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review", February 1994, EPA 540/R-94/012; and

¹ Referenced from "Test Methods for Evaluating Solid Waste Physical/Chemical Methods", USEPA SW-846, 3rd Edit, 1994 (w/rev.).

ii) "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review", February 1994, EPA 540/R-94-013.

2.0 SAMPLE HOLDING TIMES

The sample holding time criteria for this program were as follows:

Parameter	Hold	ing Time
	Water	Soil
TCL VOCs/SS VOCs	14 days from collection to analysis	14 days from collection to analysis
TCL SVOCs	7 days from collection to extraction 40 days from extraction to analysis	14 days from collection to extraction 40 days from extraction to analysis
TCL PCBs	7 days from collection to extraction 40 days from extraction to analysis	14 days from collection to extraction 40 days from extraction to analysis
TAL Metal (except Mercury)	180 days from collection to analysis	180 days from collection to analysis
Mercury	28 days from collection to analysis	28 days from collection to analysis
Cyanide	14 days from collection to analysis	14 days from collection to analysis

All samples were extracted and/or analyzed within the above holding times with the exception of some parameters which were requested past the recommended holding times. The following exceedances were observed:

- Three soil samples were extracted for SVOCs on the 16th day. All associated positive results were qualified as estimated (see Table 3) and all non-detect results were judged to be acceptable based on the minor extent of the exceedance;
- ii) Three soil samples were extracted or PCBs on the 16th day. All associated results were non-detect and judged to be acceptable based on the minor extent of the exceedance; and
- iii) Three cyanide analyses were performed on the 19th day after collection. All associated positive results were qualified as estimated (see Table 3) and all non-detect results were judged to be acceptable based on the minor extent of the exceedance.

3.0 SURROGATE SPIKE RECOVERY - VOCs, SVOCs, PCBs

Surrogate compounds were added to all samples prior to preparative extraction and/or analysis to assess the effects of individual sample matrices on analytical efficiency.

The appropriate surrogate compounds were added to all samples and all recoveries were acceptable indicating adequate analytical efficiency with the exception of sample S-14791-DRS-015 exhibiting a high PCB surrogate result. The results for this sample were non-detect and would not have been impacted by the implied high bias.

4.0 BLANK SPIKE (BS) ANALYSES

BSs are prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

BSs were prepared and analyzed for all analyses. All recoveries were acceptable indicating adequate analyte accuracy.

5.0 MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) ANALYSES

MS/MSD samples were prepared and analyzed for all parameters to assess analytical accuracy and precision. All spike recoveries and Relative Percent Difference (RPD) values were acceptable, indicating adequate analytical precision and accuracy with the exception of several outlying metal recoveries and RPD values. All associated positive metals data were qualified as estimated (see Table 4). Non-detect results with associated low recoveries were qualified as estimated to reflect the implied low bias (see Table 4) and non-detect results with associated high recoveries would not have been impacted by the implied high bias.

6.0 <u>LABORATORY BLANK ANALYSES</u>

Contamination introduced by the laboratory is characterized by the analysis of laboratory blanks. These blanks are prepared from deionized water and are extracted and/or analyzed with each batch of samples.

Laboratory blanks were prepared and analyzed at the required frequency for all parameters. The blank results were generally non-detect for the compounds of interest with the exception of low concentrations of various metals. All associated sample results with concentrations comparable to the concentrations present in the blanks were qualified as non-detect (see Table 5).

7.0 FIELD QA/QC

A rinse blank and a trip blank were submitted to evaluate the possibility of cross-contamination during sample shipment and storage. All results were non-detect for the analytes of interest with the following exceptions:

- i) low levels of acetone and 2-butanone were present in the rinse blank and the trip blank. All
 associated sample results with similar concentrations were qualified as non-detect (see
 Table 6); and
- ii) low levels of various metals were present in the rinse blank. All associated sample results with similar concentrations were qualified as non-detect (see Table 6).

8.0 <u>CONCLUSION</u>

The data produced by STL are acceptable with the qualifications noted.

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC. BUFFALO, NEW YORK FEBRUARY 2000

Sample I.D.	Soil Boring Number	Location	Sample Date	Analyses
S-14791-DRS-001	SB-1	Transformer Room	05/02/00	PCBs
S-14791-DRS-003	SB-2	Paint Storage Room	02/02/00	TCL VOCs, TCL SVOCs, PCBs, TAL Metals, Cyanide
S-14791-DRS-004	SB-3	Machine Shop Floor Assembly Area	02/02/00	TCL VOCs, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-005	SB-4	Machine Shop Floor Assembly Area	02/02/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-006	SB-5	Machine Shop Floor Assembly Area	02/02/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-007	SB-9	Press Pit	02/02/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-008	SB-13	Machine Pit in Sept. 220	02/08/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-009	SB-14	Paint Grate	02/08/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-010	SB-15	20,000 UST in Broadway Yard	02/09/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-011	SB-18	20,000 UST in Broadway Yard	02/09/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-012	SB-22	AST in Sycamore Yard	02/09/00	STARS-gasoline
S-14791-DRS-013	SB-27	Hazardous Waste Storage Area in Sycamore Yard	02/09/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-014	SB-29	Parking Area Between Broadway and Rey St.	02/10/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
S-14791-DRS-015	SB-30	Parking Area Between Rey and George St.	02/10/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
W-14791-DRS-001	•	Water Sample #1 - Department 370	02/09/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
W-14791-DRS-002		Water Sample #2 - Mortimer Street Entrance	02/09/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
W-14791-DRS-003		Water Sample #3 - Department 100	02/09/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
RB-14791-DRS-001	•		02/10/00	TCL VOCS, TCL SVOCs, PCBs, TAL METAls, Cyanide
Trip Blank		•	02/09/00	TCL VOCs

Notes:

AST Aboveground Storage Unit.

PCBs Polychlorinated Biphenyls.

STARS Spill Technology and Remediation Systems.

SVOCs Semi-Volatile Organic Compounds.

TAL Target Analyte List.

TCL Target Compound List.

UST Underground Storage Unit.

VOCs Volatile Organic Compounds.

TABLE 3

QUALIFIED SAMPLE DATA DUE TO HOLDING TIME EXCEEDANCES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC. BUFFALO, NEW YORK

FEBRUARY 2000

	Units Qualifier	, wg/Kg *	μg/Kg *	g/Kg J	g/Kg *	g/Kg J	g/Kg J	g/Kg *	g/Kg J	g/Kg *	g/Kg J	g/Kg *	μg/Kg *	μg/Kg J	нg/Kg J	т * * * * * * * * * * * * * * * * * * *	н <u>в</u> /Кв *	μg/Kg J	g/Kg J	μg/Kg J	g/Kg J	g/Kg *	μg/Kg J	μg/Kg J	g/Kg *	μg/Kg J	нв/Кв ј
		Ŧ.	ĩ	ĭ	ĭ	Ξ.	Ξ.	ĭ	i	Ξ.	Ξ.	ĭ	a .	a	Ħ	Ŧ.	ī	ĭ	i	ĩ	ĩ	ĩ	ĭ	ĩ	ĭ	ĩ	Ħ
Sample	Result	270 J	580 J	1100	760 J	840	820	290 J	1200	300 J	2500	420 J	310 J	2800	1500	190 J	180 J	820	066	1000	770	270 J	006	2000	350 J	280	1200
	Analyte	Acenaphthene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Carbazole	Chrysene	Dibenzofuran	Fluoranthene	Fluorene	2-Methylnaphthalene	Phenanthrene	Pyrene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,1)perylene	Chrysene	Fluoranthene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene
Holding Time	Criteria (Days)	14														14										14	
	Holding Time (Days)	16														16										16	
,	Sample ID	S-14791-DRS-010														S-14791-DRS-011										S-14791-DRS-011	
	Parameter	SVOCs														SVOCs											

Page 1 (a)

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

Location:	SB-1	SB-2	SB-3	SB-4	SB-5	SB-9	SB-13	
Sample ID: Sample Date:	S-14791-DRS-001 02/07/2000	S-14791-DRS-003 02/07/2000	S-14791-DRS-004 02/07/2000	S-14791-DRS-005 02/07/2000	S-14791-DRS-006 02/07/2000	S-14791-DRS-007 02/07/2000	S-14791-DRS-008 02/08/2000	
<u>Parameters</u> <u>Units</u>								
Volatile Organics								
ay/au	1		12 U	12 U	13 U	U II	12 U	
2-Buttanone			24 U 6 0 U	25 U 6.2 U	27 U 6.7 U	23 U 7.2	24 U 6.0 U	
Carbon tetrachioride		63.0	0.0 O	, C C C	6.7 0	i ŽŽ	ີ . ອີຈິ	
Chlorobenzene		19801A-6	0.9 0.0 0	0.2 0	6.7 U		ं FI 0 0	. (2000)
Dibromochloromethane Ug/Kg			9.0 C	0.2.0	2 5	n II	12 11	
Chloroform ug/kg			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6.2 Ŭ	0 L 9	5.7 U	0.9 °	
Chloromethane ug/kg		13 U	12 U	12 U	13 U	N 11	12 U	
L. L. Dichloroethane			0.9	6.2 U	0.7 U	5.7 U	0.09	
1,2-Dichloroethane		0.000	0.9 0.0	6.2 U	6.7 U	5.7 U	0.09	. A
1, 1-Dichloroethene			O 0.9	0.7.0 	0	0 / 6 	0.00	
1,2-Dichloropropane			0.00	0.7.0 0.4.0	0 / 0	11	0.09) } } }
CISTA 23 DICHIOTOPIONE TO THE TRANSPORT OF THE TRANSPORT			0.00 0.00	6.2 U	6.7 U	5.7 U	0.9 0.9	V 65 8 8 8 8
Ehylbenzene	(2) (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		0.9	6.2 U	35 J	5.7 U	Д 09	
2-Hexanone ug/kg			24 U	25 U	- 0	23 U	24 U	
Methylene chloride			6.0 U	6.2 U	0.7.9 0.7.0	5.7 U	0.9 C	
4-Methyl-2-pentanone			24 U	0.52	0 /7	0 52 U 23 U	6.0 11	000 400 600 600
Styrens 1 2 2. Tetrachloroethane			0.0.9 O 0.9	6.2 U	6.7 U	5.7 U	6.0 U	5 5
Tetrachloroethene			0.9 O	6.2 U	6.7 U	5.7 U	D 0.9	
Toluene		6.3 U	0.9 0.9	6.2 U		5.7 U	0.0 U	77.75
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,			0.0 0.0	6.2 U	0 7 9 0 7 9	5.7 U	0 0.9 0 0.9	
Trichlorochene Trichl			0.9	6.2.0	6.7 0	5.7 U	0.9 0.9	
Vinyl chloride				12 U	13 U	Ω 11	12 U	
Xylenes (total)		6.3 U	0.0 U	5.0 J	18	5.7 U	9,4	
cis-1,2-Dichloroethene			0.9 0.9 0.00	6.2 U	6.7 U	5.7 U 5.7 U	0.00 0.00 0.00	
Actione ug/kg		25 U	24 U	35 U	27 U	23 U	24 U	
			O 0.9	6.2 U	0.7 U	5.7 U	0.0 O	
Bromodichloromethane	***************************************	\$11.00 100 100 100 100 100 100 100 100 10	0.9 F 0.H	6.2 U	6.7 U	5.7 U	6.0 U	14.00000
Bromotorina State		O C.O	n ntn	A 450	X			¥ (4)

TABLE 2A

Page 1 (b)

Date Printed: March 27, 2000
Time Printed: 2:13 pm

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

Locator		SB-1	SB-2	SB-3	SB-4	SB-5	SB-9	SB-13	
Sample ID: Sample Date:		S-14791-DRS-001 02/07/2000	S-14791-DRS-003 02/07/2000	S-14791-DRS-004 02/07/2000	S-14791-DRS-005 02/07/2000	S-14791-DRS-006 02/07/2000	S-14791-DRS-007 02/07/2000	S-14791-DRS-008 02/08/2000	
Parameters	Units								
Semi-volatile Organics									
Acenaphthene	ug/kg		410 U	019	220 J	560	3700 U	3900 U	; ŝ
Antiracene	ug/kg	ug/kg		0001	D 014	250 J	3700 U		į 5
Benzo(a)authracene	ug/kg ug/kg		410 U	1500	410 U	440 U	7500	3900 U	:
Benzo(b)fluoranthene	ug/kg	ug/kg		1300	4100 U	440 U	15000	3900 U	
Berzo(k)fluoranthene	ug/kg	ug/kg		1200	4100 U	440 U	9300	3900 U	.00
bis(2-Chloroethoxy)methane	ug/kg ug/kg		410 U	400 U	410 U	440 U	3700 U	3900 U	e 1.
bis(2-Chloroethyl)ether	ug/kg			400 U	410 U	440 U	3700 U	3900 U	
bis(2-Ethylhexy))phthalate	ug/kg		410 U	400 U	4100 U	440 U	3700 U	3900 U	5.43 - 13
4-bromopnenyl pnenyl ciner	ug/kg no/kg			54 1	4100	1 0 4 4	3700 U	3900 U	Q. 30.
Carbazole ug/kg	ug/kg ug/kg		410 U	260	410 U	440 U		3900 Ú	10.0
iline	ug/kg			D 604	U 014	440 U		3900 U	: ·
4-Chloro-3-methylphenol	ug/kg		410 U	7 00 t	410 C	0.044 0.044 0.054		3900 U	, e } .
z-Chioronaphthalene 2-Chiorophenol	ug/kg ug/kg			D 04	0 014 0 0 0	440 U		3900 U	. 1 S. 11 S
phenyl ether	ug/kg			400 U	410 U	440 U		3900 U	
	ug/kg	T	410 U	0061	4100 U	<u>-</u>		3900 U	
Dibenz(a,h)anthracene	ug/kg	: 1	410 U	280 J	4100 U	440 U	1 00/7	3900 U	4
1.2-Dichlorobenzene	us/kg	**************************************		400 U	410 U	440 U		3900 U	u Q
	ug/kg			400 U	410 U	440 U	3700 U	3900 U	16.87 1.353
1,4-Dichlorobenzene	ug/kg	**************************************	410 U	400 U	410 U	440 U		3900 U	14 1.
	ug/kg			2	20000 1001	740 U		3000 11	
2,4-Dichiorophichol Diethyl ohthalate	ug/kg			700 C	410 0	440 Ū	3700 U	3900 U	. 17 . 40
2,4-Dimethylphenol	ug/kg	98		400 U	410 U		3700 U	3900 U	
	ug/kg			400 U	410 U	440 U	3700 U	3900 U	ens.
Di-n-butyl phthalate	ug/kg	ug/kg		\$ 8	410 U	440 U	3700 U	3900 U	41.7 41.5
	ug/kg				0.000	7200 TT	18000	19000	 90
4 k-Dinitro-2-merivinhengi	ug/kg ug/kg		2000		2000	2200 U	U 00081	10000 1	-15
2,4-Dinitrololuene	ug/kg	ug/kg			410 U	440 U	3700 U	3900 U	
	100	ug/kg	410 U	400 U	410 U	440 U	3700 U	3900 U	\$7.8 15.8
Fluoranthene		;	410 U	3300	410 U	820	14000	2100 J	

Page 1 (c)

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

						í	;
Location.' Sample 10:	SB-1 S-14791-DRS-001	SB-2 S-14791-DRS-003	SB-3 S-14791-DRS-004	SB-4 S-14791-DRS-005	SB-5 S-14791-DRS-006	SB-9 S-14791-DRS-007	SB-13 S-14791-DRS-008
Sample Date:	02/07/2000	02/01/2000	02/01/2000	02/01/2000	02/01/2000	02/01/2000	02/08/2000
<u>Parameters</u>							
Semi-volatile Organics (Cont'd)							
Fluorene	ug/kg ÷	410 U	670		370 J	3700 U	3900 U
		410 U	400 U		440 U	3700 U	3900 U
Hexachlorobutadiene ug/kg		410 U	400 U		440 U	3700 U	3900 U
iene ug/kg	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 U	N 0061	100000000000000000000000000000000000000	2200 U	N 00081	19000 U
ue/ke		#10 U	400 U		440 U	3700 U	3900 U
indenot 1,2,3-cojpyrene Isophorone ug/kg		410 U	400 U	410 0	440 U	3700 U	3900 U
		410 U	290 J		34 J	3700 U	3900 U
2-Methylphenol		410 U	₩ 400		440 U	3700 U	3900 U
		= 017	1 28		11 077	11 0075	11 0002

		(/ () () ()	: 11 30 30 30 30 30 30 30 30 30 30 30 30 30										7.36%													:
3900 U 3900 U																						39 Ŭ				
		-																					:			
3700 U 3700 U		18000 U 3700 U																				37 Ŭ				
																			等人们是这个人写真				100000000000000000000000000000000000000			
370 J 440 U	440 U	2200 U 440 U	440 U	34	440 440 U	440 U	2200 U 2200 U	2200 U	440 U	2200 U	440 U	440 U	440 U	0.077	440 U	470	440 U	440 U	2			. 4 . U				
													400 May 2000													
340 J 410 U	410 U	2000 410 U	4100 U	130 J	410 U 410 U	93	2000 U	2000 U	410 U	2000 U	410 U	410 U	410 U	3 5	410 U	4100 U	410 U	410 U	2		11 18	81 U	∩ 8	⊃: ≅:	1300	N 18
- S		n					J.		4.				1								_	Ţ	_			1
		198 198 1																			40 1	. 0 €	용	5	_ - - - - - - -	40 (
a =	Ŭ	 ⊃:2	D I))	D =	Č	n.	ם	- :	- - -	D	-	D.) 	.	Þ	D.	: :: •::•			=	Ď	-		٥	n
		2000 410																				; T				
																		** *** ***			=	n n	Þ	n :	n .	n -
					* •			6 • 1 8 - 1 8 - 1					100								22		₩.	E .	7 K	
ug/kg uo/ko	ug/kg	ug/kg ug/kg	ug/kg	ug/kg ug/kg	ug/kg ug/kg	ug/kg	ug/kg ne/ke	ug/kg	ng/kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	Ug/Kg	ug/kg ug/kg	ug/kg	ug/kg	ug/kg	. uS/n5		10//60	ug/kg	ug/kg	ug/kg	ug/kg ug/kg	ug/kg
	2	ntadiene	-ce	_							ylamine	amine	ropropane)		信息表现		zene	- - - -	2							
Fluorene	Hexachlorobutadiene	Hexachlorocyclopentad Hexachloroethane	ndeno(1,2,3-cd)pyren	Sopilorone 2-Methylnaphthalene	2-Methylphenol	Naphthalene	aniline	aniline	Nitrobenzene	phenol	N-nitroso-di-n-propylamine	N-nitroso-di-phenylamine	2,2'-Oxybis(1-chloropropane)	lorophenol	Phenol Phenol		1,2,4-Trichlorobenzene	2,4,5-Trichlorophenol	ando obira		7101	r 1221	г 1232	r 1242	r 1248 F 1254	г 1260
Fluorene	Hexach	Hexach	Indeno(1,2,	2-Meth	2-Meth	Naphth	2-Nitroaniline	4-Nitroaniline	Nitrobe	2-Nitrophenol	N-nitro	N-nitro	2.20	Pentaci	Phenol	Pyrene	1,2,4-1	2,4,5-1	, t, t	PCBs	Atology 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1260

03/27/2000

3U:\DBASEGRP\CHEM\14000\14791\1a) Anal- Soil Sampler

Page 1 (d)

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

Means Units 0.24 J 0.18 J 0.025 J 0.006 J 0.008 J Mercury Mercury mykg - 0.24 J 0.18 J 0.025 J 0.006 J 0.008 J Alatimory mykg - 0.24 J 0.18 J 0.025 J 0.03 J 0.71 J 0.72 J <	Location! Sample (D: Sample Date:	S-14791-DRS-001 02/07/2000	SB-2 S-14791-DRS-003 02/07/2000	SB-3 S-14791-DRS-004 02/07/2000	SB-4 S-14791-DRS-005 02/07/2000	SB-5 S-14791-DRS-006 02/07/2000	SB-9 S-14791-DRS-007 02/07/2000	SB-13 S-14791-DRS-008 02/08/2000
mg/kg — 0.24 J 0.18 J 0.025 J 0.036 J mg/kg — 1.3 U 1.2 U 1.2 U 0.3 J 0.3 J mg/kg — 7200 1010 1.300 1.330 1.330 mg/kg — 4.2 0.47 6.6 5.3 4.9 4.9 mg/kg — 4.0 4.7 0.38 8.0 0.57 8.1 mg/kg — 4.0 0.47 0.38 8.0 0.57 8.3 mg/kg — 4.0 0.47 0.38 8.0 0.51 0.69 mg/kg — 0.47 0.38 8.50 0.51 0.10 mg/kg — 1.0 0.51 1.0 0.10 0.10 mg/kg — 1.7 1.7 1.7 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	Units							
mg/kg - 13 U 112 U 112 U 113 U mg/kg - 720 10100 113 U 113 U mg/kg - 847 847 847 mg/kg - 0.47 0.58 0.57 0.69 mg/kg - 0.47 0.58 0.57 0.69 mg/kg - 0.47 0.89 0.51 0.16 mg/kg - 0.47 0.89 0.51 0.16 mg/kg - 0.45 0.89 0.51 0.16 mg/kg - 0.47 0.49 0.51 0.16 mg/kg - 0.49 0.40 0.51 0.16 mg/kg - 0.49 1.20 2.40 1.20 mg/kg - 1.20 2.20 1.50 1.50 mg/kg - 1.20 2.20 0.50 1.20 mg/kg - 1.20 1.20 1.20 <t< td=""><td></td><td></td><td></td><td>0.18 J</td><td>0.025 J</td><td>0.036 J 0.31 J</td><td>0.038 1</td><td>0.019 J. 7.2 UJ</td></t<>				0.18 J	0.025 J	0.036 J 0.31 J	0.038 1	0.019 J. 7.2 UJ
mg/kg - 8.1 6.6 5.3 4.9 mg/kg - 1.25 7.8.5 87.0 83.7 mg/kg - 0.20.7 56400 J 89400 J 2300 J mg/kg - 0.36 0.80 0.51 J 0.16 0.15 mg/kg - 0.36 0.80 0.51 J 0.16 0.16 mg/kg - 16.3 1.42 J 1.72 J 1.0.9 mg/kg - 2.2700 3.040 2.1200 2.200 mg/kg - 2.2700 1.75 J 2.4.0 J mg/kg - 1.200 2.200 2.200 mg/kg - 1.200 2.000 J 1.57 J mg/kg - 1.200 2.000 J 1.57 J mg/kg - 2.400 J 1.200 J 1.57 J mg/kg - 2.24 J 2.20 J 1.57 J mg/kg - 2.24 J 2.20 J 1.20 J 1.				1.2 U	1.2 U	1.3 U	1.1 U 9770	12.0 7770
mg/kg - 0.47 0.58 0.57 0.69 mg/kg - 48200 56400 1 89400 J 23300 J mg/kg - 48200 56400 856 6.53 0.69 3.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17 0.16 0.17	E S			6.6	5.3	83.7	5.6	5.0
mg/kg 48200 5 5400 5 8400 5 2300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 5 300 7 3.2 8 3.2 1 3.0 9 3.2 <th< td=""><td>\$: 60 H</td><td></td><td></td><td>0.58</td><td>0.57</td><td>0.69</td><td>0,40</td><td>0.42</td></th<>	\$: 60 H			0.58	0.57	0.69	0,40	0.42
mg/kg - 96.9 85.6 69.5 73.2 mg/kg - 16.5 23.0 16.4 18.9 mg/kg - 16.5 23.0 16.4 18.2 mg/kg - 22700 30400 21200 23.90 mg/kg - 14.0 1770 2420 23.90 mg/kg - 14.0 17.2 23.8 190 mg/kg - 28.6 27.0 16.4 19.9 mg/kg - 28.6 20.9 15.7 mg/kg - 0.65 JU 1.2 U 1.2 U 1.2 U mg/kg - 0.49 1.2 U 1.2 U 1.3 U mg/kg - 21.7 23.8 24.4 29.6	30 U 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			56400 J 0.80	89400 J	23300 J 0.16	0.14	f 0.31
mg/kg - 16.5 23.0 16.4 18.2 mg/kg - 39.7 J 57.0 J 17.5 J 24.0 J mg/kg - 22700 30400 21200 22600 mg/kg - 14600 J 1270 2420 2390 mg/kg - 14600 J 1594 J 839 J 137 J mg/kg - 142 U 172 U 238 190 U mg/kg - 284 95.6 20.9 15.7 mg/kg - 0.63 U 1.2 U 1.2 U 0.67 U mg/kg - 0.49 1.2 U 1.2 U 1.3 U mg/kg - 24.4 29.6				85.6	69.5	73.2	35.9	55.7
mg/kg 29.7.1 39.7.1 17.2 24.0 25.00 mg/kg 13.0 12.0 24.0 25.00 mg/kg 146.0 1 29.10 1 15800 3 mg/kg 14.0 17.2 0 29100 1 15800 1 mg/kg 13.5 27.0 16.4 190 0 mg/kg 23.4 95.6 20.9 15.7 mg/kg 0.63 1.2 1.2 0 67.1 mg/kg 21.7 23.8 24.4 29.6				23.0	16.4	18.2	11.3	13.5
mg/kg — 1130 1270 2420 2390 mg/kg — 14600 J 6600 J 29100 J 15800 J mg/kg — 142 U 172 U 238 J 372 J mg/kg — 13.6 27.0 16.4 199 U mg/kg — 284 95.6 20.9 15.7 mg/kg — 0.63 U 1.2 U 1.2 U mg/kg — 0.49 1.2 U 1.2 U 1.3 U mg/kg — 21.7 23.8 24.4 29.6				57.0 J 30400	17.5 J 21200	24.0 J 22600	15.5 J 21200	15.5 1
mg/kg 14600 J 16600 J 29100 J 15800 J mg/kg 142 U 173 J 238 190 U mg/kg 13.6 27.0 16.4 19.9 U mg/kg 284 95.6 20.9 15.7 mg/kg 0.65 U 1.2 U 1.2 U 1.3 U 1.3 U mg/kg 21.7 23.8 24.4 29.6				1270	2420	2390	831	1660
mg/kg 142 U 172 U 238 190 U mg/kg 13.6 27.0 16.4 19.9 mg/kg 284 95.6 20.9 15.7 mg/kg 0.63 U 1.2 U 1.2 U 1.3 U mg/kg 21.7 23.8 24.4 29.6	mg/kg	181		16600 J	29100 J	15800 J	2640]	26200 J
ng/kg 13.6 27.0 16.4 19.9 ng/kg 284 95.6 20.9 15.7 ng/kg 0.63.U 1.2 U 1.2 U 1.3 U ng/kg 21.7 23.8 24.4 29.6	ng/kg			172 U	238	n 061	199 U	226
ng/kg 284 95.6 20.9 15.7 ng/kg 0.49 1.2 U 1.2 U 1.3 U ng/kg 21.7 23.8 24.4 29.6	mg/kg	1		27.0	16.4	19.9	114	15.1
mg/kg 0.49 1.2 U 1.2 U 1.3 U 1.3 U 1.3 U 2.4.4 29.6	mg/kg	100000000000000000000000000000000000000		95.6	20.9	15.7	42.8	10.2
23.8 24.4 29.6	AND THE TRANSPORT OF THE PROPERTY OF THE PROPE			1.2 U 1.2 U	1.2 U 1.2 U	0.87 U	0.55	1.2 U
mistry				23.8	24.4	29.6	:	20.0
	mistry							
Percent solids 88.1 79.5 83.4 81.2 74.6 88.3		86.1	3	83.4	81.2	74.6	88.3	83.8

Page 2 (a)

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

	SB-14	SB-15	SB-18	SB-22	SB-27	SB-29	SB-30	
	S-14791-DRS-009 02/08/2000	S-14791-DRS-010 02/09/2000	S-14791-DRS-011 02/09/2000	S-14791-DRS-012 02/09/2000	S-14791-DRS-013 02/09/2000	S-14791-DRS-014 02/10/2000	S-14791-DRS-015 02/10/2000	
Units								
Volatile Organics								
JA/Su	12 U	12 U	15 U	12 U	13 U	U 11	12 U	
2 Butanone ug/kg	23 U	23 U	30 U	74 U	26 U	23 U	24 U	
ug/kg	5.8 U		7.4 0	0.0 O	6.4 U	5.7 0	5.9 U 5.9 U	
emotivation of the contract of	5.8 U	5.8 U	7.4 U	O O O	6.4 U	3.9 J	2.8 J	\(\frac{1}{2}\)
romethane	5.8 0		7.4 U	0.9	0.4 U	5.7 U	5.9 U	36 36 36
ng/kg	ug/kg 12 U	100 21001111111111111111111111111111111	15 U	12 U	13 U	D 11	12 U	
Chloroform ug/kg	5.8 U	5.8 U	7.4 U	0.9	6.4 U	5.7 U	5.9 U	
ne ug/kg	12 U		15 U	12 U	13 U	D II	12 U	
ethane.	5.8 U		7.4 U	0.0 O	6.4 U	5.7 U	5.9 U	
ug/kg	5.8 U	5.8 U	7.4 U	0.0 U	6.4 U	5.7 U	5.9 U	2000
ethene: ug/kg.			7.4 U	0.0 O	6.4 U	5.7 U		
1,2-Dichloropropane 5.8 U	0 8 S		0 4.7	0.0 O	6.4 U	0.7.0 	5.9 U	10 mag
OLOPHOPOLIC CONTRACTOR			1 7 L		1 7 9	7.7	105	
Ethylbenzene 5.8 U	5.8 0	5.8 U	7.4 U	6.0 U	6.4 Ü	5.7 Ü	5.9 U	
ug/kg	23 U			24 U	26 U	23 U	24 U	
loride	5.8 U		7.4 U	0.9	6.4 U	5.7 U	5.9 U	- 93
entanone ug/kg	23 U	23	30 O	24 U	26 U	23 U	24 U	
The second of th	5.8 U	5.8	7.4 U	0.09	6.4 U	5.7 U	S.9 U	
chloroethane ug/kg	5.8 U	- 1	7.4 U	O 0.9	6.4 U	5.7 U	5.9 U	3
nene ng/kg	5.8 U	5.8	7.4 U	D 0.9	6.4 U	5.7 U	2.9 U	
ng/kg	5.8 C		7.4 U	1.9.	0.4 O	3.6 J	0.63	12 15 15 15 15 15 15 15 15 15 15 15 15 15
roethane.) : ;	۰ ۲	7.4 U	O.0.) ;	n / c)	
roethane ug/kg	5.8 O	90	7.4 U	O 0.9	- 33	5.7 U	2.9 U	1 1 1 1 1 1
	∩ «	×.	O *:	∩ o.e.		∩ ;:). V. V. V	
	0.71	71		0.71	0 17	0 II	0.71	0.0000
) (၁၈)	0 0) = 0 0 0) : V))	
uging trans. 7. Dichloroethene		0.8.5	0 4.7	0.09	0.4 O	1.7.5	3.9 U	* G85
				2.5		2.5		
Accione Renzene	0 57 8 5	0.57	0 2 2 4 11	0.9	0 07	0 67	0 47	# 13%
Bromodichloromethane us/kg) 8.2 18.2	7.4 U	0 0 9 11 0 9	6.4 U	5.7 U	2 0 CS	\{\{\}\}
			The second secon	Control of the contro	A Comment of the Comment			3

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

SB-30	S-14791-DRS-015	02/10/2000
SB-29	S-14791-DRS-014	02/10/2000
SB-27	S-14791-DRS-013	02/09/2000
SB-22	S-14791-DRS-012	02/09/2000
SB-18	S-14791-DRS-011	02/09/2000
SB-15	S-14791-DRS-010	02/09/2000
SB-14	S-14791-DRS-009	02/08/2000
Location:	Sample ID:	Sample Date:

Parameters	Units							
Semi-volatile Organics								
Acenaphthene	ug/kg	n	270 J	490 U	1	430 U	380 U	780 U
Acenaphthylene	ug/kg		820 U	1 061		430 U	380 U	780 U
Anthracene Demonstrates	ug/kg a/re	380 U	580 J	180 J		430 U	380 O	7 000 F
	ue/ke	Victoria de la compansión de la compansi	760 J	990 J		230 J	380 U	870
Benzo(b)fluoranthene	ug/kg		840 j	1,000		230 1	380 U	830
		380 U	850 J	770 J		200 J	380 U	710 J
	ug/kg	380 U	820 U	270 J		430 U	380 U	330 J
hane	ug/kg	ם	820 U	490 U	:	430 U	380 U	780 U
bis(2-Chloroethyt)ether	ug/kg	380 U	820 U	7 0 M		430 U	380 U	780 U
	ug/kg	D	820 U	490 U		430 U	380 U	780 U
4-Bromopheny! pheny! ether		Þ	820 U	490 U		430 U	380 U	780 U
	ug/kg	D	820 U	490 U		430 U	380 U	780 U
	ug/kg	n	290 1	490 U	1	430 U	380 U	780 U
	ug/kg	D	820 U	490 U	000000000000000000000000000000000000000	430 U	380 U	780 U
enol	ug/kg	380 U	820 U	490 U		430 U	380 U	780 U
2-Chloronaphthalene	ug/kg	D.	820 U	490 U		430 U	380 U	780 U
2-Chlorophenol	ug/kg	Ð	820 U	480 U		430 U	380 U	780 U
henyl phenyl ether	ıg/kg	380 U	820 U	490 U	818 S 28 S 28 S 28 S 3	430 U	380 U	780 U
Chrysene	ug/kg	380 U	1200 J	1 006		760 J	380 U	1100
hracene	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	380 U	820 U	490 U	A TOWN TOTAL TO A MORAL MAN A	430 U	380 U	780 U
	ug/kg	380 U	300 1	490 U		430 U	380 U	780 U
1,2-Dichlorobenzene	ug/kg) 	820 U	490 U		430 U	380 U	780 U
÷.,	ug/kg	380 U	820 U	. D . C		430 U	380 U	<u> 7</u> 80 U
1,4-Dichlorobenzene		n D	820 U	490 U	200000000000000000000000000000000000000	430 U	380 U	780 U
<u>=</u>	ug/kg	D	4000 C	2400 U		D 001	1800 U	3800 U
		380 U	820 U	490 U	: Company of the second of the	430 U	380 U	780 U
	ug/kg	380 U	820 U	490 U		430 U	380 U	780 U
		D	820 U	490 U	25.	430 U	380 U	780 U
Dimethyl phthalate	151	D	820 U	490 U		430 U	380 U	780 U
-	ug/kg	D	820 U	490 U		430 U	380 U	780 U
	ug/kg	Þ	820 U	490 U		430 U	380 C	780 U
2,4-Dinitrophenol	ug/kg	n	4000 U	2400 U		n 001	1800 U	3800 U
4,6-Dinitro-2-methylphenol		n	4000 U	2400 U		100 U	1800 U	3800 U
1	ug/kg	D	820 U	490 U	**************************************	430 U	380 U	780 U
2,6-Dinitrotoluene	ug/kg	n:	820 U	. 490 U		430 U	380 U	780 U
Fluoranthene	ug/kg	380 U	2500 J	2000 J		650 J	380 O	2000

03/27/2000

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

Location: ' Sample ID: Sample Date:	SB-14 S-14791-DRS-009 02/08/2000		SB-15 S-14791-DRS-010 02/09/2000	SB-18 S-14791-DRS-011 02/09/2000	SB-22 S-14791-DRS-012 02/09/2000	SB-27 S-14791-DRS-013 02/09/2000	SB-29 S-14791-DRS-014 02/10/2000	SB-30 S-14791-DRS-015 02/10/2000	
<u>Parameters</u>	Units								
Semi-volatile Organics (Cont'd)									
Flugicine (35 % % % % % % % % % % % % % % % % % % %	ug/kg 380 U	380 U		490 U		430 U	380 U	780 U	
	ug/kg ug/kg		820 U 820 U	450 U		430 U	380 U	D 08/	
Hexachlorocyclopentadiene Hexachloroethane	ug/kg ug/kg	1800 U 380 U	. 4000 U 820 U	2400 U 490 U		2100 U 430 U	1800 U 380 U	3800 U 780 U	
Indeno(1,2,3-cd)pyrene sonboxine	g/kg 9/kg	380 U	820 U 820 U	350 J		430 U 430 U	380 U	360 J 780 H	
2. Methylmaphthalene	g/kg	380 U	310 J	490 U		430 U	380 U	500 J	
2-Methylphenot 3&4-Methylphenol	ug/kg ug/kg 380 U	380 U	820 U 820 U	490 U		430 U	380 U	780 U 780 U	
Ug/kg	2 XX	n 086	820 U	490 U		430 U	380 U	340 J	
J.Nitroaniline 1800 U 3.Nitroaniline 1800 U 1800 U	g/Kg g/Kg	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4000 U	2400 U 2400 U	14	2100 U 2100 U	1800 U	3800 U	200 200 200 200 200
4-Nitroaniline	(K)	1800 U	4000 U	2400 U		2100 U	O 081	3800 U	Proposition Propos
2-Nitrophenol u	ug/kg ug/kg	380 U	820 U 820 U	244 1044 1044		430 U	380 U	780 U	
4-Nitrophenol	g/kg	1800 1	4000 U	2400 U		2100 U	1800 U	3800 U	
N-nitroso-di-n-propylamine 380 U N-nitroso-di-phenylamine 380 U	g/kg g/kg	380 U	820 U 820 U	490 U 190 U 190 U	101	430 U	380 U	780 U	
2,2Oxybis(1-chloropropane)	g/kg	380 U	820 U	490 U		430 U	380 U	780 U	
Penachlorophenol Control of Control of Phenanthrene u	ug/kg ug/kg 380 U	- 200 380 €	4000 U 2800 J	2400 U 580 J		2100 U 360 I	1800 U 380 U	3800 U	
Phenol (1)	ug/kg 380 U	380 U	820 U	490 U		430 U	380 U	780 U	
Pyrene 1,2,4-Tricklorobenzene ug/kg	ug/kg ug/kg	380 C 380 C	1500 J 820 U	1200 J 490 U	1 T	360 J 430 U	380 U 380 U	1400 780 U	
2.4.5-Trichlorophenol 380 U 2.4.6-Trichlorophenol 380 U	g/kg g/kg	380 U 380 U	820 U 820 U	490 U 490 U	14	430 U 430 U	380 U	780 U 780 U	
PCBs									
	g/kg	38 U	41 U	49 U		43 U	38 U	39 U	
		38 U	0 14 U 14	49 U		43 U	38 U	39 U	34 35 37
Aroclor 1242 Aroclor 1248	ug/kg no/ko	⊃ = % %	41 U	49 U		43 U	D 28	39 U	
	6/kg	38 0 88	41 0	49 0		43.0	38 C	0 66 39 U	
Aroclor 1260	ug/kg	38 U	41 U	49 U		43 U	38 U	39 U	-

TABLE 2A

Date Printed: March 27, 2000 Time Printed: 2:13 pm

Page 2 (d)

ANALYTICAL RESULTS SUMMARY - SOIL FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

							500 500 500 500 500 500 500 500 500 500									7.7 78. 78. 78.0 78.0 78.0 78.0 78.0 78.
SB-30 S-14791-DRS-015 02/10/2000		0.22 J 29.5 J	0.10	18.0	0.54	0.54	194 7.9	11.6 255 J	25800 466	2610 J	159 J	16.5	764	1.2 U 12.7		85.1 0.59 U
SB-29 S-14791-DRS-014 02/10/2000		0.014 J	1.1 U	0.9	1.3	0.52	95.0 49.7	22.2 20.3 J	37500	5540 J	1680 J	17.0	93.1 0.45	0.43 32.9		87.0 0.57 U
SB-27 S-14791-DRS-013 02/09/2000		0.83	0.22 8820	9.5	0.53	9.65	246 8.5	16.4	17700	1 00901	677 J	16.4	419 0.65 U	0.52		77.7
SB-22 S-14791-DRS-012 02/09/2000								100								83.2
SB-18 S-14791-DRS-011 02/09/2000		0.35	1.5 U 2950	9.6	0.46	0.37	199	6.4 41.7.J	11100	2480 J	112 J	8.4	301	0.82 14.0		67.1 0.74 U
SB-15 S-14791-DRS-010 02/09/2000														0.59		85.5 0.62 U
SE-14 S-14791-DRS-009 02/08/2000		0.12 U 6.9 UJ	1.2 U 4800	0.98	0.26	0.24	38.8 4.0	8.3	9980	38400 J	239 1		5.8 0.58 U			8.6.8 0.58 U
Units			mg/kg manufic mg/kg manufic mg/kg manufic mg/kg manufic mg/kg manufic mg/kg manufic mg/kg	100 (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg) (Kg)		8y/8ú					b mg/kg		mg/kg		mistry	is al in the control of
Location.' Sample ID: Sample Date: Parameters	Metals	Mercury	Silver	Arsenic	Beryllium	Cadmium	Zinc Cobalt	Copper	Iron	Magnesium	Manganese	Nickel	Lead	Thallium Vanadium	General Chemistry	Percent solids Cyanide, total

Notes

U Not detected at or above the associated value.

- Estimated.

- Not applicable.

8U:\DBASEGRP\CHEM\14000\14791\1a) Anal- Soil Samples

03/27/2000

Page 1 (a)

ANALYTICAL RESULTS SUMMARY - WATER

		HOWDEN BU	HOWDEN BUFFALO, INC. FEBRUARY 2000
Location:	Water Sample #1	Water Sample #2	Water Sample #3
Sample ID:	W-14791-DRS-001	W-14791-DRS-002	W-14791-DRS-003
Sample Date:	02/09/2000	02/09/2000	02/09/2000

Units

Volatile Organics

Parameters

	: ::	:		
ug/L 2-Butanone				
Carbon disulfide Carbon tetrachloride	7. 7. 5.0 U	n C	5.0 U 5.0 U	
		D	50 U	
Dibromochloromethane ug		D =	2.40.40 10.10	
		Ď	5.0 Ū	
		D	10 U	
1.1.Dickloroethane			(4)0 U 20 C C C C C C C C C C C C C C C C C C	
	5.0 0			
		D	0.03 n	
		n		
) 	5.0 U	
			20 U	
		,	5.0 Ü	
1-2-pentanone		n	20 U	
	vi. vii	A	50 U	
	1	0	5.0 U	
oroethene	/L	5	So U	
::			5.0 U	2000 A ALEXANDER CONTRACTOR
Late Trichloroethane	ir Š			
ug				
Incinorocurance				
			\$00n	
	100 100 100 100 100 100 100 100 100 100	Ω	5.0~ m U	
	/L 5:0 U	0	D. 0.0	
		n	20 U	And the second of the second o
Benzene	7. 5.0 U	n		
nethane	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	D.	n 0'S	S. Control of the State of the
Bromoform	ug/L	5.0 U	20 U	

TABLE 2B

ANALYTICAL RESULTS SUMMARY - WATER FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

Page 1 (b)

Date Printed: March 27, 2000

Time Printed: 2:12 pm

W-14791-DRS-003 Water Sample #3 02/09/2000 FEBRUARY 2000 W-14791-DRS-002 Water Sample #2 02/09/2000 W-14791-DRS-001 Water Sample #1 02/09/2000 Sample Date: Sample ID: Location!

Initial

|--|

Samples
Water
Anal-
 N14791NB)
 2U:\DBASEGRP\CHEM
2V:\DBA

Page 1 (c)

ANALYTICAL RESULTS SUMMARY - WATER FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

Location:		Water Sample #1	Water Sample #2	Water Sample #3	
Sample 10: Sample Date:	≱ '	W-14791-DRS-001 02/09/2000	W-14791-DRS-002 02/09/2000	W-14791-DRS-003 02/09/2000	
Parameters	Units				
Semi-volatile Organics (Cont'd)					
Fluorene 10 U	Section 18/Person 1985	10 U	10 U	10 n	
Hexachlorobenzene	J/gn	D 01	D 01		
rexactiorobutatione. By Land Hexachlorocyclopentatione with the horachlorocyclopentatione	्राष्ट्रीय T/gu	0 OS	10 U 50 U		
Hégachloroethane	J/gn	n 01	n 01	10.0	
ingenol 1, 2, 3-ca/pyrene Isophorone	J/gu	0 01 10 01	7 OI		
2-Methylnaphthalene	ng/L	0	10 U		
2-Methylphegod Commence of the	7/ 8 n	D : 0	D :		
3cc4-Meinylphenol Naphthalene	OB/L	2 0	0 0I		
2-Nitroaniline	- S- ug/L	0			
3-Nitroaniline		50 U	50 U		
4-Nitrobenzene	J/m	≍ ≃		10.0	
2-Nitrophenol	ug/L	n 0			
4. Nitrophenol		⊃ : 0	n 05	AND	
N-nitroso-di-n-propylamine N-nitroso-di-phenylamine	ug/L ug/L	0 01	10 U	D 01	
2,2'-Oxybis(1-chloropropane)	ug/L	10 U	D 01		
Penachiorophenol model of the control of the contro	ug/L) = 0 0 0 1	D 06	STANDARD FOR THE STANDARD OF THE STANDARD STANDAR	
	ug/L	10 Ŭ	10 0		
Pyrene 1.2.4-Trichlorobenzene	ug/L ug/L	10 U	10 U	0.75 J	
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	7/8n 7/8n	10 U 10 U		n 01	
PCBs					
Aroclor 1016 Aroclor 1221	T/gu	0.1 0.1 0.1		The second of th	
Arocior 1232 Arocior 1242	ug/L ug/L	1.0 U	0.1 1.0 U		
Aroclor 1248 Aroclor 1254	ug/L ug/L	0.0 1.0 0.0		1.0 U	
Aroclor 1260	ug/L	1.0 U			

TABLE 2B

ANALYTICAL RESULTS SUMMARY - WATER FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC.

Date Printed: March 27, 2000 Time Printed: 2:12 pm Page 1 (d)

FEBRUARY 2000

Location: Sample ID: Sample Date:	Water Sample #1 W-14791-DRS-001 02/09/2000	Water Sample #2 W-14791-DRS-002 02/09/2000	Water Sample #3 W-14791-DRS-003 02/09/2000
Parameters Units			
Metals			
· · · · · · · · · · · · · · · · · · ·		0.21	
ug/L Silver	3.2 10.0 U	5.4 10.0 U	7.4 0.76
		883	
		5.3 97.5	
		0.22 U	
		100000	
		1230	
		13.1 U	
		61.8	
		8460	
		22300	
		111	
		333000 40.0 U	-
		861	
		2.5 1	
		5.5 7.8	10.0 U 63.4
General Chemistry			
Cyanide, total ug/L	10.0 U	10.0 U	10.0 U

Notes

- Not detected at or above the associated value.
- Estimated.
- Not applicable.

TABLE 2C

SOIL ANALYTICAL RESULTS SUMMARY FORMER BUFFALO FORGE PLANT NO.1 HOWDEN BUFFALO, INC. FEBRUARY 2000

Page 1 (a)

Date Printed: March 27, 2000

Time Printed: 2:12 pm

 Location!
 SB-22

 Sample ID:
 S-14791-DRS-012

 Sample Date:
 02/09/2000

Parameters

Units

STARS-Gasoline

- 199	178		W. (1)		
00	1.9 J 6.0 U	4 4 .	, d .	4.	4 4
9 9	- •° °	4 C1 C	7 77 6	٠, ٢,	1 77 71
- A				.X.	W
) in the second			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Ž.	- 1	-
				34	40
- 33					
D0 00		NO 60. (nn nn 1		
18/k	18/kg	90 90 X	80 /80 /8	8/k	ug/kg ug/kg
- 13 - 13	ug/kg ug/kg	•			
- 33	-32.5	944			%
34	1846 2640		846 394	\$3	
			Ŋ.		
		1.50			
		1,334 2,337			
98% NS.		500 500 500	<u> </u>		25 15
				233	띪
- 300 200			NE		ETHER
	₩.		ZZ		ت ہے
33	(BEI	3	Ě
Ä	COLUENE KYLENES (TOTAL)	PROPYLBENZENE	<u> </u>	A-BUTYLBENZENE	NAPHTHALENE METHYL TERT BUTYL ETHER
IZE		SEN SE	166	EN	
BEN E	B 당 6	. ∃ 8	5 ₹ ₹	7.EB	HAT
SENZENE STHYLBEI	CEN	2 0 6		5	H Y
BENZENE ETHYLBENZENE	XYLENES XYLENES	N-PROPYLBENZENE	1,2,4-TRIMETHYLBENZENE	N B	A E
		,=	- ,	0	, — —

Notes

ediation Systems.
Ren
and
Tecnology
Spill
'
STARS

- Not detected at or above the associated value.
- Estimated.

TABLE 3

QUALIFIED SAMPLE DATA DUE TO HOLDING TIME EXCEEDANCES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC. BUFFALO, NEW YORK FEBRUARY 2000

Sample results were previously qualified as estimated by the laboratory. Estimated value. Semi-Volatile Organic Compounds.

SVOCs

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES TABLE 4

FORMER BUFFALO FORGE PLANT NO. 1

HOWDEN BUFFALO, INC. BUFFALO, NEW YORK FEBRUARY 2000

Qualifier			
Units	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
Sample Result	0.24 0.18 0.025 0.036 0.038 0.019 0.014	2.9 2.5 0.32 0.31 0.72 7.2 U 6.9 U 0.41	48200 56400 89400 23300 13500 78800 113000 21700
Associated Sample ID	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-005 S-14791-DRS-006 S-14791-DRS-008 S-14791-DRS-014 S-14791-DRS-015	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-005 S-14791-DRS-007 S-14791-DRS-009 S-14791-DRS-014 S-14791-DRS-014	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-005 S-14791-DRS-007 S-14791-DRS-009 S-14791-DRS-014 S-14791-DRS-014
RPD Control Limits (Percent)	90		50
Control Limits (Percent)	75-125	75-125	75-125
RPD (1)	200	•	58
MSD Recovery (Percent)	177		292
MS Recovery (Percent)	0		118
Analyte	Mercury	Antimony	Calcium
Spike ID	S-14791-DRS-015	S-14791-DRS-015	S-14791-DRS-015
Parameter	Metals	Metals	Metals

TABLE 4

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES FORMER BUFFALO FORGE PLANT NO. 1

HOWDEN BUFFALO, INC. BUFFALO, NEW YORK FEBRUARY 2000

Qualifier				
Units	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	mg/Kg mg/Kg mg/Kg
Sample Result	39.7 57.0 17.5 24.0 15.5 15.5 9.2 20.3	14600 16600 29100 15800 2640 26200 38400 5540 2610	313 594 839 372 219 330 239 1680	28.8 41.7 49.4
Associated Sample ID	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-005 S-14791-DRS-006 S-14791-DRS-008 S-14791-DRS-009 S-14791-DRS-014 S-14791-DRS-014	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-005 S-14791-DRS-006 S-14791-DRS-008 S-14791-DRS-009 S-14791-DRS-014 S-14791-DRS-014	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-005 S-14791-DRS-007 S-14791-DRS-008 S-14791-DRS-009 S-14791-DRS-014 S-14791-DRS-014	S-14791-DRS-010 S-14791-DRS-011 S-14791-DRS-013
RPD Control Limits (Percent)	50	20	20	20
Control Limits (Percent)	75-125	75-125	75-125	75-125
RPD ⁽¹⁾	7	4 2	90	4
MSD Recovery (Percent)	129	508	128	20
MS Recovery (Percent)	153	101	270	65
Analyte	Copper	Magnesium	Manganese	Copper
Spike ID	S-14791-DRS-015	S-14791-DRS-015	S-14791-DRS-015	S-14791-DRS-010
, Parameter	Metals	Metals	Metals	Metals

TABLE 4

QUALIFIED SAMPLE RESULTS DUE TO OUTLYING MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERIES FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC.

BUFFALO, NEW YORK

FEBRUARY 2000

Qualifier]		1	1
Units	mg/Kg mg/Kg mg/Kg	mg/Kg mg/Kg mg/Kg	μg/L μg/L	μg/L
Sample Result	8970 2480 10600	0.12 U 0.35 1.3	3.2	4.4
Associated Sample ID	S-14791-DRS-010 S-14791-DRS-011 S-14791-DRS-013	S-14791-DRS-010 S-14791-DRS-011 S-14791-DRS-013	W-14791-DRS-001 W-14791-DRS-002	W-14791-DRS-003
RPD Control Limits (Percent)	50	20	70	
Control Limits (Percent)	75-125	75-125	75-125	
RPD (1)	16	g	80	
MSD Recovery (Percent)	142	77	75	
MS Recovery (Percent)	101	92	69	
Analyte	Magnesium	Mercury	Selenium	
Spike ID	S-14791-DRS-010	S-14791-DRS-010	W-14791-DRS-001	
, Parameter	Metals	Metals	Metals	

RPD values were calculated based on concentration rather than percent recovery. Estimated value. Notes:

MS MSD RPD U

Matrix Spike.

Matrix Spike Duplicate.
Relative Percent Difference.
Non-detect at associated value.

TABLE 5

QUALIFIED SAMPLE RESULTS DUE TO ANALYTE CONCENTRATIONS IN THE METHOD BLANKS FORMER BUFFALO FORGE PLANT NO. 1

HOWDEN BUFFALO, INC. BUFFALO, NEW YORK FEBRUARY 2000

Units	ng/L ng/L
Qualified Sample Result	0.19 U 0.22 U
Sample Result	0.19
Sample ID	W-14791-DRS-001 W-14791-DRS-002
Blank Result	0.85
Analyte	Beryllium
Blank ID/Date	02/21/00
Parameter	Metals

Non-detect at associated value. Notes: U

TABLE 6

QUALIFIED SAMPLE RESULTS DUE TO ANALYTE CONCENTRATIONS IN THE RINSE BLANKS FORMER BUFFALO FORGE PLANT NO. 1 HOWDEN BUFFALO, INC. BUFFALO, NEW YORK FEBRUARY 2000

Parameter	Rinse Blank Date	Analyte	Blank Result	Sample ID	Sample Result	Qualified Sample Result	Units
VOCs	02/10/00	Acetone	3.8]	W-14791-DRS-001 S-14791-DRS-005 S-14791-DRS-006	4.5J · 35 21J	20 U 35 U 27 U	HB/L HB/KB HB/KB
VOCs	02/10/00	2-Butanone	12]	W-14791-DRS-001	1.9J	20 U	T/8n
Metals	02/10/00	Beryllium	0.12	W-14791-DRS-001 W-14791-DRS-002	0.19	0.19 U 0.22 U	7/8н 7/8н
Metals	02/10/00	Sodium .	52 50 55 47 48 48	S-14791-DRS-003 S-14791-DRS-004 S-14791-DRS-006 S-14791-DRS-009 S-14791-DRS-010 S-14791-DRS-015	142 172 190 168 121 150	142 U 172 U 190 U 199 U 168 U 121 U	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
Metals	02/10/00	Chromium	8.4	W-14791-DRS-001 W-14791-DRS-002	9.7	9.7 U 13.1 U	Л/8н П/8н

Notes:

Estimated value.

Non-detect at associated value.

1001 (D) OCT 31/94(NF) REV.1 (F-05) NF-2063 18-52-Cac. REMARKS Former Butt 1: Forge DATE: TIME: TIME: DATE: DATE: TIME 22200 aller for NON 옂 REFERENCE NUMBER: RECEIVED FOR LABORATORY BY 2034 HAZARDS 1641 1598 TIME: × × CHEMICAL WAY BILL NO. 4569 × CHAIN OF CUSTODY RECORD PARAMETERS HEALTH, DATE: RECEIVED BY: RECEIVED BY: RECEIVED BY: SHIPPED TO (Laboratory Name): No. OF X h N Just lens, IN 0 SAMPLE Waki 3 B, DATE: 2 Hel 2000 Stens NAME: DUSTIN Steven 011/ Parking 10t Reyt Brow Dung C) S Mr Sprice Dungth 53cott · OT HAT, work story area amtstroje Perm LOCA DOCKS Prachine Goog 012 Sycamore Yang AST Parsther Born Street Street Paint grate TIME: - 14741 - DKS-COS Machin Pit DATE: DATE: TIME: 5 - 14741 - DKY - C10 SOMORIUST TIME: PPSS P.Y - 011 SGOODBINT SAMPLE No. Suite Three (716)297-6150 5-147-128-00 · DKS·003 - 1791 DZ 5-009 XX-85 18-370 · - 14741- DRS-03 NUMBER OF 20 - SXI - 1 M/HI - M 103.90 -Receiving Laboratory Copy 100-57/1 19/41 - 14 0080 Dell/2 5-14741-DKS-001 CONESTOGA-ROVERS & ASSOCIATES 26 -Fully Executed Copy -142/1--186h1 - 14141 - 5 14141 16/11 S. 14%1. TOTAL 14×11 -Sampler Copy 14211-5 141741 -Shipper Copy 2055 Niagara Falls Blvd. Niagara Fatls, NY 14304 METHOD OF SHIPMENT: 3 RELINQUISHED BY: RELINQUISHED BY: RELINOGISHED. BY Sec. 0900 WILLY 0211 1,30 0830 1200 C4#1 0936 215/may 12:0 1430 1.5 TIME 14/5 633/ 3 Ø 2 Hol 200 SIGNATURE: SAMPLER'S DATE Goldenrod CRA Yellow White SEQ.

1001 (D) OCT 31/94(NF) REV.1 (F-05) Nº NF-3949 REMARKS CHAIN OF CUSTODY RECORD
SHIPPED TO (Laboratory Name):

(A) LITA! | CITY! | CITY!

(A) LITA! | CITY! | CITY! DATE: TIME: TIME: DATE: TIME: RECEIVED FOR LABORATORY BY: HEALTH/CHEMICAL HAZARDS TIME: DSAM SAMPLE 2 3 PARAMETERS WAY BILL No. DATE: RECEIVED BY: RECEIVED BY: DATE: 21/4200 RECEIVED BY: N 11/24 TOTAL NUMBER OF CONTAINERS DATE; TIME: DATE: TIME: SAMPLE PRINTED NAME: SAMPLE No. RB. 14791-1285-05, Suite Three 716)297-6150 -Fully Executed Copy -Receiving Laboratory Copy -Shipper Copy -Sampler Copy CONESTOGA-ROVERS & ASSOCIATES 2055 Niagara Falls Blvd. Suite Th Niagara Falls, MY 14304 (716)297-SHIPMENT: RELINQUISHED BY: RELINGUISHED BY RELINQUISHED BY: 0521 char/9/2 TIME METHOD OF SAMPLER'S SIGNATURE: DATE Yellow Pink Goldenrod SEQ.