

PRECISION ENVIRONMENTAL SERVICES, INC.

2144 SARATOGA AVENUE BALLSTON SPA, NY 12020 TEL: 518.885.4399 FAX: 518.885.4416

SITE INVESTIGATION/ REMEDIAL ALTERNATIVE REPORT

Richard L. Hanson, Jr. - Fire Training Center NYS Route 5, Village of Yosts, Montgomery County, New York

Completion Date - November 7, 2002

Prepared For:

Mr. Paul Clayburn, Commissioner

Commissioner of Public Works MONTGOMERY COUNTY Park Street, P.O. Box 1500 Fonda, New York 12068

Submitted By:

Eric S. Lewis, Senior Geologist

PRECISION ENVIRONMENTAL SERVICES, INC. 2144 Saratoga Avenue Ballston Spa, New York 12020

Table of Contents

1.0 INTRODUCTION	1
1.1 Purpose of Report	
1.2.1 Site Background	
1.2.2 Site History and Previous Investigations	
2.0 STUDY AREA INVESTIGATION	
2.1 Site Investigation	2
2.1.1 Supplemental Limited Subsurface Investigation	
2.1.2 Soil Boring Installation	
2.1.3 Micro-Monitoring Well Installation/Construction	3
2.1.4 Soil Sampling	
2.1.5 Groundwater Monitoring/Sampling	
2.1.6 Site Surveying	
2.1.7 Geophysical Survey	
2.1.8 UST Closure Event	
3.0 PHYSICAL CHARACTERISTICS OF THE SITE	
3.1 Surface Features	
3.2 Geology.	
3.2.1 Unconsolidated Deposits	
3.2.2 Consolidated (Bedrock) Deposits	
3.3 Hydrology	
3.4 Hydrogeology	
3.5 Water Supply Wells/Aquifer Classification.	
3.6 Surface Water	
3.7 Current and Future Land Use	
4.0 NATURE AND EXTENT OF CONTAMINATION	11
4.1 Sources	11
4.1 Sources4.2 Contaminant Types	11 11
4.1 Sources	11 11 11
4.1 Sources	11 11 11 11
4.1 Sources	11 11 11 11
4.1 Sources	111111111112
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase	111111111212
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments	111111121212
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air	11111112121212
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data	1111111212121212
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments. 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data	11111212121213
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments. 4.6 Contaminant Occurrence - Air. 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data	
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT	1111121212121313
4.1 Sources. 4.2 Contaminant Types. 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones). 4.3.1 Vapor Phase. 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone). 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments. 4.6 Contaminant Occurrence - Air. 4.7 Analytical Data. 4.7.1 Soil Analytical Data. 4.7.2 Groundwater Analytical Data. 5.0 CONTAMINANT FATE AND TRANSPORT. 5.1 Contaminant Migration and Persistence.	1111121212131313
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection	11111212121213131313
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection 5.1.2 Dispersion	
4.1 Sources. 4.2 Contaminant Types. 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones). 4.3.1 Vapor Phase. 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone). 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments. 4.6 Contaminant Occurrence - Air. 4.7 Analytical Data. 4.7.1 Soil Analytical Data. 4.7.2 Groundwater Analytical Data. 5.0 CONTAMINANT FATE AND TRANSPORT. 5.1 Contaminant Migration and Persistence. 5.1.1 Advection. 5.1.2 Dispersion. 5.1.3 Adsorption.	1111121212131313131414
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection 5.1.2 Dispersion 5.1.3 Adsorption 5.1.4 Biodegradation	
4.1 Sources 4.2 Contaminant Types. 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones). 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone). 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments. 4.6 Contaminant Occurrence - Air. 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data. 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence. 5.1.1 Advection 5.1.2 Dispersion 5.1.3 Adsorption 5.1.4 Biodegradation 5.2 Contaminant Properties - Chemical Factors.	
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase. 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase. 4.5 Contaminant Occurrence - Surface Water & Sediments. 4.6 Contaminant Occurrence - Air. 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data. 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection 5.1.2 Dispersion 5.1.3 Adsorption 5.1.4 Biodegradation 5.2 Contaminant Properties - Chemical Factors 5.2.1 Gasoline	
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection 5.1.2 Dispersion 5.1.3 Adsorption 5.1.4 Biodegradation 5.2 Contaminant Properties - Chemical Factors 5.2.1 Gasoline 5.2.2 Kerosene	
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection 5.1.2 Dispersion 5.1.3 Adsorption 5.1.4 Biodegradation. 5.2 Contaminant Properties - Chemical Factors 5.2.1 Gasoline 5.2.2 Kerosene 5.2.3 Diesel Fuel & Light Fuel Oil	
4.1 Sources 4.2 Contaminant Types 4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones) 4.3.1 Vapor Phase 4.3.2 Adsorbed Phase 4.4 Contaminant Occurrence - Groundwater (Phreatic Zone) 4.4.1 Dissolved Phase 4.5 Contaminant Occurrence - Surface Water & Sediments 4.6 Contaminant Occurrence - Air 4.7 Analytical Data 4.7.1 Soil Analytical Data 4.7.2 Groundwater Analytical Data 5.0 CONTAMINANT FATE AND TRANSPORT 5.1 Contaminant Migration and Persistence 5.1.1 Advection 5.1.2 Dispersion 5.1.3 Adsorption 5.1.4 Biodegradation 5.2 Contaminant Properties - Chemical Factors 5.2.1 Gasoline 5.2.2 Kerosene	

5.4 Potential Routes of Migration	16
5.4.1 Vadose Zone	16
5.4.2 Phreatic Zone	
5.4.3 Capillary Fringe	
6.0 BASELINE RISK ASSESSMENT	
6.1 Public Health Evaluation	
6.1.1 Exposure Assessment	
6.1.2 Toxicity Assessment	
6.1.3 Risk Assessment	
6.2 Environmental Assessment	
6.2.1 Fish and Wildlife Impact Analysis	
7.0 SUMMARY AND CONCLUSIONS	
7.1 Summary	
7.1.1 Nature and Extent of Contamination	18
7.1.2 Fate and Transport	
7.1.3 Risk Assessment	
7.2 Conclusion.	
7.2.1 Data Limitations	
7.2.2 Recommendations for Future Work	
8.0 REMEDIAL ALTERNATIVES	
8.1 Remedial Action Objectives.	
8.2 General Response Actions	
8.3 Development of Alternatives	
8.3.1 Methodology for Alternative Analysis	
8.4 Analysis of Alternatives	
8.4.1 Alternative 1 High Vacuum/Total Fluid Extraction coupled with Air Sparging	
8.4.1.1 HV/TFE/AS Description	
8.4.1.2 HV/TFE/AS Assessment	
8.4.2 Alternative 2 Bioremediation.	
8.4.2.1 Bioremediation Description	
8.4.2.2 Bioremediation Assessment.	
8.4.3 Alternative 3 Soil Excavation/Simultaneous Dewatering /Treatment	
8.4.3.1 Soil Excavation/Simultaneous Dewatering /Treatment Description	
8.4.3.2 Soil Excavation/Simultaneous Dewatering /Treatment Assessment	
8.4.4 Alternative 4 No Action with Institutional Controls	
8.4.4.1 No Action with Institutional Controls Description	
8.4.4.2 No Action with Institutional Controls Assessment.	
9.0 REMEDIAL ALTERNATIVES COMPARISON	
9.1 HV/TFE/AS Alternative	
9.2 Bioremediation Alternative	
9.3 Soil Excavation/Simultaneous Dewatering/Treatment Alternative	
9.4 No Action with Institutional Controls Alternative	
10.0 REMEDIAL ALTERNATIVES COSTS	

FIGURES

Figure 1 - Site Location Map

Figure 2 - Site Map

Figure 3 - Groundwater Gradient Map

Figure 4 - Groundwater Quality Map - VOCs 12/3/01

Figure 5 - Groundwater Quality Map - SVOCs 12/3/01

Figure 6 - Groundwater Quality Map - PCBs 12/3/01

Figure 7 - Soil Quality Map - VOCs 11/20/01

Figure 8 - Soil Quality Map - SVOCs 11/20/01

Figure 9 - Soil Quality Map - PCBs 11/20/01

TABLES

Table 1 - Summary Analytical Results - VOCs in Soil

Table 2 - Summary Analytical Results - SVOCs in Soil

Table 3 - Summary Analytical Results - PCBs in Soil

Table 4 - Summary of Groundwater Gauging Data - 12/3/01

Table 5 - Summary Analytical Results - VOCs in Groundwater

Table 6 - Summary Analytical Results - SVOCs in Groundwater

Table 7 - Summary Analytical Results - PCBs in Groundwater

ATTACHMENTS

Attachment 1 - Photographic Documentation

Attachment 2 - Geologic Well Logs

Attachment 3 - Waste Manifest - UST Fluids

Attachment 4 - Physical Soil Testing

Attachment 5 - Data Validation

Attachment 6 - Community Air Monitoring

Additional Attachments

Geophysical Survey

Fish and Wildlife Impact Analysis for Inactive Hazardous Waste Sites - Step I

1.0 INTRODUCTION:

1.1 Purpose of Report:

Precision Environmental Services, Inc. (PES) was contracted under the New York State Department of Environmental Conservation's (NYS DEC) Environmental Restoration Projects (Brownfields) by Montgomery County (MC) to perform a *limited* supplementary site investigation (SI) at the Richard L. Hanson, Jr. - Fire Training Center (Site). Subsequent sections of this report will address results of the SI and provide remedial alternatives based on the SI data.

1.2 Site Background:

1.2.1 Site Description:

The Site comprises a 12.7 acre parcel of which 3.12 acres were eligible for this Brownfields grant investigation. The Site is located on New York State Route 5, in the Town of Mohawk (Hamlet of Yosts), Montgomery County, New York (approximately 6 miles southwest of the Village of Fonda) (See Figure 1, Site Location Map). The area of investigation includes the Site and a one (1) acre parcel (Montgomery Co. tax map parcel number 65-2-18) located immediately southeast of the Site and NYS Route 5. A pond situated along the northern portion of the site, occupies an area of approximately 2.4 acres.

The Site is situated in a rural/residential setting with private homes existing to the north, west and east. A vacant wooded hillside exists to the north. Topography at the Site slopes gently from NYS Route 5 to a small pond located along the properties northern border (south to north). Regional topography slopes from the Site towards the Mohawk River (north to south). The Site is currently utilized as a training facility for fire fighting personnel. Structures existing on-site at the time of this investigation included a single story masonry block classroom building and a multi-story concrete block fire-training tower (see Figure 2 - Site Map). The facility is serviced with an on-site six-inch (6") steel cased, water well (reportedly 120 (+) feet in depth) and a conventional subsurface sewage disposal system. Electrical needs are met by overhead and underground services. No natural gas service exists at the Site.

1.2.2 Site History and Previous Investigations:

According to information contained in J. Kenneth Fraser & Associate's (F&A) Environmental Site Assessment (ESA) prepared on behalf of Montgomery County in October of 1996, a number of petroleum bulk storage (PBS) tanks historically existed at the subject Site. Information indicated underground storage tanks (USTs) existed in association with the former maintenance garage (500 gallon heating oil- Spill No 96-06805) and 300 linear feet northeast of the fire tower (probable 12,000 gallon UST - solvent based liquid - Spill No. 96-08496). In addition, fuel oil based contamination was detected in association with excavation work performed to construct the fire-training tower. A review of historic topographic maps (provided by the County) indicated the past existence of two (2) above ground bulk petroleum storage tanks. Currently, a single (1) 275 gallon heating oil aboveground storage tank is known to exist at the Site (southeast corner - classroom structure), which services the classroom building's heating needs. Specifics regarding the spatial occurrence of petroleum storage/distribution equipment associated with the possible historic fueling operations conducted by the railroad and/or Gulf Oil Corporation/Peters Truck Stop were not available in information supplied by the County. However, a document reviewed by PES entitled Preliminary Report on the Proposed Site for a Volunteer Fireman Training Center (authored by Montgomery County) indicated: the existence of several steel fuel tanks on the subject property including two (2) 20,000 gallon and one (1) 12,000

gallon above ground tanks, 2 or 3 underground tanks and several small fuel oil tanks. Information related to the proper decommissioning of <u>all</u> tanks listed in this inventory was not addressed in the historic documents provided to PES. It should be noted that apparent historic product dispensing piping (see Figure 2) was located and removed during the subsurface investigation by county personnel (June 1998). This work was performed under the observation of a PES geologist and direction of a county engineer. The piping was traced/removed in a north and south direction. No evidence of an associated underground storage tank was noted. Significant soil contamination was detected along the piping trace. The piping suggests the possible historic occurrence of a product-dispensing island adjacent to NYS Route 5.

According to information conveyed in the October, 1996 F&A report and verbal communication with County personnel, remediation of: ① the fuel oil tank grave associated with the former maintenance garage, ② fuel oil contamination discovered during construction of the fire tower, and ③ contamination existing in association with the (probable 12,000 gallon) solvent waste tank - has been completed to the satisfaction of the NYS DEC. For specifics regarding the assessment and subsequent historic remediation, please refer to documents prepared for the County by others.

Information provided in a report prepared for Montgomery County by J Kenneth Framer & Associates (F&A) (Rensselaer, New York) indicated the following historic property usage:

- Original Usage suspected to be agricultural (Schuyler Family),
- ② Purchased in 1891 from the Schuyler Family by the New York Central & Hudson Railroad usage: mining of sand & gravel for railroad construction. Reputedly, a railroad fueling operation existed on the site in association with the construction work.
- © A partial transfer of property was performed in July of 1933 (railroad to the county) to facilitate widening of NYS Route 5 & Prame Road.
- The subject property was sold by the railroad to Arthur & Agnes Peters in 1940. The Peters leased the property to Gulf Oil Corporation (GOC) from 1948-1958. GOC utilized the property as a truck stop/retail truck/automotive fueling facility. In addition to the fueling operations, an automotive/truck maintenance garage and diner existed at the site.
- ⑤ The county took ownership of the subject property in 1970. The diner and maintenance garage were razed subsequent to the transfer to the county.

2.0 STUDY AREA INVESTIGATION:

2.1 Site Investigation Activities:

The implemented workscope was in keeping with specifics outlined in the PES's Site Investigation/Remedial Alternatives Report (SI/RAR) Proposal with the exception of modifications made by the NYS DEC or MC representatives where the site work was conducted. In all cases, modifications to the original workscope were discussed with county/NYS DEC officials prior to implementation (verbal authorization).

2.1.1 Supplemental Limited Subsurface Investigation:

During the time frame spanning November 13-16, 2001, PES installed a network of soil borings (SBs) and 1" diameter groundwater micro-monitoring wells (MWs) under the supervision of PES hydrogeologist John Johnson and/or geologist Eric Lewis. Figure 2 details the SB/MW locations.

Placement of the SB/MW was in accordance with locations provided in PES's SI/RAR Proposal.

2.1.2 Soil Boring Installation:

SBs were installed at various on- and off-site locations to investigate reported soil contamination using PES's Hurricane Dual Sampling System (Geoprobe). A 2.25" diameter by 48" long stainless steel macro-core soil sampler was advanced using direct push hydraulic and/or percussion impact (hammer) methods to obtain relatively undisturbed soil samples on a continuous basis (all borings). During the installation of the SBs, the geologic composition of the overburden was documented by a PES hydrogeologist/geologist (see Attachment 2). Drilling tool/soil sampler decontamination procedures (alconox soap wash, rinse and air dry) were implemented before/between/after each soil boring. Soil samples were collected for geologic description and field screening (PID) for volatile organic compounds (VOCs). Details regarding encountered geology and associated PID readings are included on the geologic logs - Attachment 2.

The local geologic profile and associated lithologic changes were delineated from historic and newly generated data obtained during drilling. In general, the on-site overburden is composed predominantly of alternating and interbedded fine to coarse-grained sand with subordinate occurrences of silt and clay. The percentage of silt and clay can be substantial within individual stratigraphic intervals. A clay lithologic unit was encountered at a number of SB locations at depths in excess of (approximately) 10 feet below the existing site grade (B.G.). The maximum depth of investigation was approximately 14 feet B.G.

2.1.3 Micro-Monitoring Well Installation/Construction:

A series of micro-monitoring wells (MW) were installed at the subject site by PES under the observation/supervision of a PES hydrogeologist/geologist. The placement of the MW network was based on historic data as well as newly acquired information resulting from the SB program. All MWs were constructed of 1.25" outside diameter (O.D.) schedule 40 PVC well screen and casing with flush threaded joints. An appropriately sized silica sand pack was placed in the annular space between the borehole and the well screen. The sand pack was installed from the bottom (open hole) of the boring to approximately one foot above the screened interval. The screened interval for all resulting MWs was constructed such that it intercepted the encountered groundwater table. Attempts were made to screen each well approximately five (5) feet above and below the encountered water table. However, due to the relatively shallow occurrence of groundwater during the installation process, this procedure could not be strictly adhered to. Refer to Attachment 2 for individual well completion details. A bentonite seal was placed between grade and the top of the well screen to prevent the infiltration of surface water. All MWs were finished with a limited access, flush mount, and watertight, steel road box. All wells were developed by repetitive hand bailing in order to remove any fine sediment from within the well screen and/or sand pack.

2.1.4 Soil Sampling:

Soil samples were collected during the installation of each MW/SB on a continuous basis. The soil samples were monitored (*field screened*) for volatile organics utilizing a photo-ionization detector (PID) and headspace methods.

The PID was calibrated with an isobutylene standard gas to provide a benzene response factor before it was brought to the site. Collected soil was placed in clean plastic bags, sealed, and allowed to equilibrate for a minimum of five (5) minutes. The tip of the PID was then inserted through the side of

the bag to allow for sampling of the headspace gas (above the soil). The PID response was logged for each sample.

Volatile organics compounds (VOCs) were detected in soil collected from a number of SBs and/or MWs. The maximum concentration of VOCs and horizon producing the response for specific locations were as follows:

Soil Sample ID	Max. PID Response	Depth B.G.
(MW/SB)	(ppm)	(feet)
MW-14	ND	0-12
MW-15	ND	0-12
MW-16	ND	0-12
MW-17	ND	0-13.5
MW-18	ND	0-13.5
MW-19	4-12	4-7
MW-20	ND	0-13.5
MW-21	ND	0-12
MW-22	ND	0-12
MW-23	ND	0-12
MW-24	ND	0-12
MW-25	ND	0-12
MW-26	ND	0-12
SB-1	60	6-8
SB-2	2-3	6-8
SB-3	50-160	4-8
SB-4	150	7-10
SB-5	1-6	6-8
SB-6	ND	0-10
SB-7	60	4-6
SB-8	157-275	3-6
SB-9	2-7	2-7
SB-10	13-21	2-6
SB-11	150-300	2-6
SB-12	90-220	2-9
SB-13	150, 20	5-7, 7-8
SB-14	150-200, 65	6-7, 7-9
SB-15	60-80, 45	3-8, 8-10
SB-16	240,30	5-8, 8-9.5
SB-17	150-220	4-9
SB-18	275, 55	4-5, 5-6

^{*} Refer to Figure 2 for MW/SB locations.

ND = Not Detected

Soil samples were collected from all MW/SB locations. Soil samples were collected from the first occurrence of groundwater or from the stratigraphic interval yielding the maximum PID response. All samples were placed immediately into iced storage then transported under Chain Of Custody (COC) to Adirondack Environmental Services, Inc. located in Albany, NY. The soil samples were analyzed for Volatile Organic Compounds (VOCs) according to EPA Methods 8260, Semi-Volatile Organic Compounds (SVOCs) by EPA Method 8270 and Poly-Chlorinated Biphenyls (PCBs) by EPA Method

8082. The results of the soil analysis will be discussed in subsequent sections.

At the request of Mr. Ralph Keating, of the NYS DEC, soil samples were also collected from the base (effluent) of the drainage pipes (Outfall 1 & 2) that convey waters away from the foundations associated with the Hanson Fire Training Center and Fire Tower and to the ponds located at the north end of the Site.

Sidewall and bottom soil samples were collected, as per Mr. Keating, from an Underground Storage Tank (UST) discovered during a Geophysical survey of the site. Results of the UST closure and soil analysis will be discussed in subsequent sections.

2.1.5 Groundwater Monitoring/Sampling:

On December 3, 2001, (prior to sampling) depth to water and the presence and/or thickness of phase-separated product was determined for each MW using a Water Level Indicator (WLI). The WLI utilized is capable of distinguishing the air/water interface to an accuracy of 0.01 feet. Depth to groundwater within the MW network ranged from 1.48 (MW-18) to 7.86 (MW-16) feet B.G. on December 3, 2001. Groundwater elevations ranged from 86.85 (MW-16) to 96.90 (MW-13) feet below a relative benchmark arbitrarily set at 100 feet. Depth to groundwater data (Table 4) was coupled with the acquired survey data (Table 4) to produce the groundwater gradient map included as Figure 3.

Subsequent to gauging depth to water, groundwater samples were secured from all historic and newly installed MWs. The MWs were sampled using dedicated disposal bailers. Prior to sampling, each MW was developed by repetitive bailing. A minimum of three well volumes were removed from each well during development. This procedure promotes the collection of a representative groundwater sample. Sampling proceeded, based on historical and newly collected information (drilling), from the least to the most contaminated well to help minimize the potential for cross-contamination. Petroleum odors and/or sheens were observed in a number of the sample collection points.

All groundwater samples were placed immediately into iced storage then transported under Chain Of Custody (COC) to Adirondack Environmental Services, Inc. located in Albany, NY. The groundwater samples were analyzed for VOCs according to EPA Methods 8260, SVOCs by EPA Method 8270 and PCBs by EPA Method 8082.

Please note: all soil and groundwater samples were analyzed according to NYS DEC ASP-95-1 category B deliverables protocol.

Analytical results confirmed the existence of VOCs in a number of the MWs and two of the three adjacent domestic wells. SVOCs and PCBs also were identified in a subset of MWs. Tables 5-7 summarize the detected concentrations of constituents of concern indigenous to the implemented analytical methods. The distribution of dissolved constituents of concern, as identified in the resulting analytical data are illustrated in Figures 4-6.

The New York State Department of Health (NYS DOH) collected domestic drinking water samples from three (3) properties immediately adjacent to the Site on July 12 and 20 and August 2, 2001. Information regarding the three (3) sampled drinking water wells is summarized below:

Residence Location from the Site Laboratory Results

Montgomery Co. Tax Map Parcel 17 Northeast MTBE @ 33 ppb on 7/12/01.
4576 NYS Route 5 MTBE @ 38 ppb on 8/2/01.

Fonda, NY 12068.

Montgomery Co. Tax Map Parcel 21 Southwest MTBE @ 0.5 ppb on 8/2/01.

4622 NYS Route 5 Fonda, NY 12068

Montgomery Co. Tax Map Parcel 20 West No VOCs detected above the 113-14 Fourteenth Ave. laboratories detection limits on

College Point, NY 11356 7/20/01.

Minor concentrations of Methyl Tertiary Butyl Ether (MTBE) were historically documented at the Site during PES's initial subsurface investigation. Based on current groundwater flow direction, analytical data and the remote location of the sampled domestic wells with respect to the Site, PES is of the opinion that MTBE documented in the two (2) domestic wells is likely not related to petroleum contamination documented in the Sites overburden regime. Figure 4 - Groundwater Quality Map – VOCs indicates no VOCs were detected in perimeter MWs. Information regarding the construction of the domestic wells in question was not available to PES. In addition, bedrock monitoring wells and/or investigation was not part of the original workscope.

PES recommends sampling a subset of the perimeter MWs for MTBE analysis to provide additional data with respect to MTBE migration/presence within the sites overburden. The domestic well servicing the site should also be sampled to ascertain the presence/absence of constituents of concern including but not limited to MTBE. Consideration should be given to the installation of intercept bedrock wells in the event that to on-site domestic well produces results indicating a potential impact to the bedrock regime. Regular sampling of all potentially impacted domestic supply wells should be performed.

2.1.6 Site Surveying:

In January of 2002, the location of the newly installed and historic MWs, with respect to existing on-site structures/features, was established by MC personnel, under the supervision of a MC engineer. Collected information was utilized to construct a scaled site map (Figure 2). In addition to establishing locations, the top of casing elevations were determined for all existing and newly installed MWs. Groundwater elevations ranged from 86.85 (MW-16) to 96.90 (MW-13) feet below a relative benchmark arbitrarily set at 100 feet. Depth to groundwater data was coupled with the acquired survey data (Table 4) to produce the groundwater gradient map included as Figure 3.

2.1.7 Geophysical Survey:

On November 13 and 14, 2001, Hager-Richter Geosciences, Inc. (HR) performed a geophysical survey utilizing time domain electromagnetic induction (EM61) and ground penetrating radar (GPR) methods. The purpose of the geophysical survey was to detect and locate possible USTs and associated piping. Results of the survey revealed one (1) 1,000 gallon UST located southeast of the fire-training center and several utilities that may be petroleum piping. See HR's Geophysical Survey Report for a detailed description of the methodologies and the results.

2.1.8 UST Closure Event - Summary of Procedures/Assessment Results:

On November 13 and 14, 2001, HR performed a geophysical survey to detect and locate possible USTs and associated piping. During the survey one (1) 1,000 gallon UST was located southeast of the fire-training center. Subsequently, on November 20, 2001, PES performed UST closure supervision and documentation. The general location of the UST is illustrated on the Site Map (Figure 2). PES's workscope included:

- notification of the New York State Department of Environmental Conservation (NYS DEC),
- collection/field screening of soil samples from the general UST area,
- examination of the UST for signs of leakage/degree of corrosion,
- visual evaluation of soil in the tank excavation.
- screening and segregation of excavated soil using a photoionization device (PID),
- photo documentation of site activities and
- · collection/submission of end point soil samples.

UST excavation, removal and disposal was performed by MC representatives. Empire Environmental Services (EES) of Selkirk, New York provided the tank cleaning services. UST fluids and tank bottom sludge were removed by EES via vacuum truck and subsequently transported to Paradise Oil located in Ossining, New York for disposal. PES geologist Eric Lewis was present to document and observe the closure process and environmental condition of the tank grave.

Residual product/tank bottoms were measured/recorded in the UST prior to commencement of the closure process. According to EES approximately 762 gallons of residual heating oil and/or water were evacuated from the UST. The top of the subject UST was exposed, prior to PES mobilizing to the site. Copper product distribution plumbing was observed attached to the UST during the closure process. Based on the piping configuration, the subject UST was assumed to have been utilized as a heating oil storage tank for a historic structure. It should be noted that the fill port and ventilation piping were historically removed prior to discovering the UST and that the resulting piping attachment points were unsecured.

Subsequent to the fluid removal process, soil was excavated from adjacent to the UST for the purpose of installing an access manway to facilitate internal cleaning. Prior to installing the required manway, the UST's internal atmosphere was monitored for LEL and O² levels. Initial internal tank atmospheric monitoring indicated the UST was inert. The access manway and UST entry was made only after safe internal atmospheric levels, for hydrocarbon vapor and oxygen, were confirmed.

The interior surfaces of the UST were scrapped/squeegeed clean then wiped using adsorbent material. All tank fluids and sludge (approximately 762 gallons) were removed by EES. PES personnel did not observe any release of product to the environment during the UST closure process.

During the closure process MC utilized a rubber-tired grade-all type excavator to remove soil and/or fill material from the tank pit area. In general, native soils exposed in the tank excavation consisted of brown to black petroleum-stained, fine to medium grained sand with lesser occurrences of coarse sand, fine to coarse gravel, silt and clay. The silt and clay content increases with depth and is typically interbedded into discreet layers with the sands. In general, depths of the excavation during the tank removal phase did not exceed eight (8) feet B.G. Minor groundwater was observed seeping into the tank excavation from the base of the sidewalls during the closure process.

PES's representative examined the outer surfaces of the removed UST for signs of product leakage,

holes, pitting, or areas of weakness. During visual examination of the tank, particular attention was paid to seams and points directly below the fill-port, vent lines, and product transfer access points. Results of the UST inspection indicated several small holes (< 1 mm) were observed in the decommissioned UST as well as the previously mentioned unsecured piping access points. Petroleum staining and olfactory evidences of fugitive hydrocarbons were observed on/in soil occurring immediately adjacent to the decommissioned UST.

Significantly elevated PID responses (150-180 ppm) were obtained for soil collected from adjacent to the UST at depths of 3-6 feet B.G. Visual (stained) and olfactory (odor) evidences of fugitive hydrocarbon impact were observed in excavated/screened soil from the tank grave. Minor amounts of groundwater were encountered/observed in association with the excavation.

Approximately 25-30 cubic yards of petroleum-contaminated soils were excavated from the tank grave and remain poly-encapsulated on-site. The UST excavation was advanced down to a dense clay unit where PID responses dropped to 3-5 ppm @ 8' B.G. Only limited excavation was performed in the lateral directions due to the known and widespread soil contamination. Sidewall excavation limits were determined by the on-site NYS DEC representative, Mr. Ralph Keating, P.E. Upon completion of the excavation process, random grab samples were collected, from the tank pit, for field screening. In general, samples were collected at multiple locations along the tank excavation sidewalls and bottom. For safety reasons the excavation equipment was utilized to collect many of the samples.

Under the direction of Mr. Ralph Keating of the NYS DEC, the four (4) sidewall soil samples were composited into two (2) samples SW-1&2 and SW-3&4 and the two (2) bottom samples were composited into one (1) sample B-1. The reader is advised that the SW designation pertains to UST grave sidewall samples and should not be confused with a surface water sample designation. The soil samples were placed in clean glass jars supplied by the analytical facility. Sample containers were labeled, sealed, and placed immediately in iced storage for transport to the analytical laboratory. The soil samples were submitted with the balance of the soil samples from the SI for the same analysis.

Constituents of concern were detected above the NYS DEC's TAGM 4046 recommended soil cleanup objectives for both the sidewall soil samples. Although constituents of concern were detected above the laboratories Practical Quantitation Limits (PQLs) for the bottom sample, none were above the TAGM 4046 objectives.

3.0 PHYSICAL CHARACTERISTICS OF THE SITE:

3.1 Surface Features:

Surface features such as soil and vegetation types and surface hydrology are described in North Country Ecological Services (NCES) Fish and Wildlife Impact Analysis (FWIA) for Inactive Hazardous Waste Sites – Step I Report.

3.2 Geology:

3.2.1 Unconsolidated Deposits:

According to the Surficial Geologic Map of New York – Hudson-Mohawk Sheet, the overburden geology beneath the Site consists of Recent Alluvial Deposits, Fluvial Gravels and/or Undifferentiated Drift Complex. Several depositional environment boundaries and a fault near the Site indicate multiple stratigraphic sequences (both overburden and bedrock regimes) may exist at the Site. In addition, according to NCES's report, the Site's soil type(s) consist of cut and fill soils.

Recent Alluvial Deposits consist generally of oxidized, non-calcareous, fine sand to gravel confined to floodplains within a valley. In larger valleys, sand and gravel may be overlain by silt, typically 1-10 meters thick.

Fluvial Gravel consists of well rounded, stratified, fine to coarse gravel with sand. The gravels are deposited in a proglacial fluvial environment, with finer textures away from the ice border. Deposits range in thickness from 2-20 meters.

Undifferentiated Drift Complex typically contains complex stratigraphic relations due to multiple glacial events.

Unconsolidated geologic material encountered during installation of SB/MWs indicated the local geology consists of fine to medium grained sand with lesser occurrences of coarse sand, fine to coarse gravel, silt and clay. The silt and clay content increases with depth and is typically interbedded into discreet layers with the sands.

Soil samples were collected during the drilling procedures associated with the installation of MWs 18, 23 and 25 for physical soil testing. The soil samples were analyzed by Atlantic Testing Laboratories, Limited (ATL) for particle size by ASTM D 422 (with hydrometer) and for organic content by ASTM D 2974.

Soil samples for the particle size analysis were collected from the upper sandy lithologic unit and the lower clayey unit at each location. Soil descriptions based on particle size analysis performed by ATL are as follows:

Monitor Well	Depth B.G.	% medium sand	% fine sand	% silt	%clay
MW-18	3-9'	0	64	11	25
MW-18	9-11'	0	16	37	47
MW-23	4-11'	2	59	15	24
MW-23	11.5-12'	2	18	4	76
MW-25	4-11'	1	55	13	31
MW-25	11.5-12'	7	22	24	47

Total Organic Content (TOC) was analyzed for soil samples collected from MWs 18, 23 and 25 at depths of 3-9', 4-11' and 4-11', respectively. The TOC for the three samples were all below the laboratories detection limit of 1,100 mg/kg. Please note: TAGM 4046 utilizes 1% soil organic content and therefore based on the analytical results PES will assume a soil organic content of ≤ 1%.

3.2.2 Consolidated (Bedrock) Deposits:

According to the Geologic Map of New York – Hudson-Mohawk Sheet, the bedrock below the Site consists of Beekmantown Group and/or the Theresa Formation. The Beekmantown Group, in the Mohawk valley, consists of Limestone, Dolostone and Chert. The Theresa Formation consists of Dolostone, limestone, sandstone and shale.

Bedrock was not encountered during the subsurface investigation. However, investigation of the rocky cliffs immediately north of the Site revealed bedrock outcrops consisting of interbedded limestone and sandstone of varying composition.

3.3 Hydrology:

A detailed description of the local hydrology, is presented in NCES's FWIA. In general, precipitation and surface water runoff supplies hydrologic input to the on-site ponds. Groundwater in the ponds seep south through the geologic media to the Mohawk River.

3.4 Hydrogeology:

A groundwater gradient map was developed from the December 3, 2001 gauging data and is included as Figure 3. Figure 3 indicates the occurrence of a hydraulic divide in the center portion of the Site. The occurrence of the divide, results in a local groundwater gradient to the south-southeast and to the north. The predominant groundwater flow direction within the established contaminant plume was to the south-southeast. This predominant flow direction is supported by the established contaminant plume dispersion pattern (across NYS Route 5). The average hydraulic gradient in the primary direction of transport on December 3, 2001, was approximately 0.043 ft./ft.. PES's groundwater investigation was limited to the first occurrence of free water in the shallow overburden at the subject Site. Within the shallow overburden, groundwater exists under unconfined conditions. Many of the SBs installed during the two separate Subsurface Investigation events were terminated in a low hydraulic conductivity – aquitard lithologic unit composed of a predominance of clay with subordinate interbedded silt. Geologic exploration to horizons beneath the apparent aquitard clay unit was not a part of the requested/authorized work scope.

3.5 Water Supply Wells/Aquifer Classification:

According to the information collected during Site reconnaissance and verbal communication with County personnel, the subject Site and adjacent properties have private water supply wells. Information available regarding well construction revealed the following:

Subject Site - drilled/cased well - approximate depth 120(+) feet,

Private Residence to the south (across NYS Route 5) - shallow hand dug well 15-20 feet,

Private Residence to the east - well construction unknown and

Private Residence to the west – drilled/cased well – approximate depth 100(+) feet.

The aquifer developed beneath the site is classified as a "GA Aquifer". The best usage of "Class GA Aquifers" is as a source of potable water supply. "Class GA" water is fresh groundwater occurring in the saturated zone of unconsolidated rock or bedrock. Aquifer classification rationale is outlined in the NYS DEC Division of Water Technical and Operational Guidance Series (2.1.3), PRIMARY AND PRINCIPAL AQUIFER DETERMINATIONS.

3.6 Surface Water:

The nearest occurrences of surface waters to the Site are three unnamed ponds located within the Site's northern sector. The Mohawk River occurs approximately 1,350 feet south of the Site and flows from west to east.

3.7 Current and Future Land Use:

Currently, the Site is utilized (periodically) by MC as a fire training facility. Based on verbal communication with MC personal, the site is intended to be utilized in the future for continued fire training purposes. Construction activities associated with the development of the subject Site for its intended use are anticipated.

Site Investigation/Remedial Alternatives Report

4.0 NATURE AND EXTENT OF CONTAMINATION:

4.1. Sources:

As mentioned in the Site History (Section 1.2.2), the Site was utilized as a petroleum bulk storage/distribution facility for several years. Recent observations made during PES's initial and subsequent subsurface investigations, with respect to potential contaminant source(s), indicate the potential for multiple contaminant sources to exist. These sources include but are not limited to 1) historic above and underground petroleum/solvent waste storage tanks, 2) associated petroleum distribution piping, 3) historic Site activities (i.e. vehicle/equipment maintenance/storage) and 4) surface releases resulting from historic fueling operations. In addition, results for soil samples collected from the effluent end of two (2) drainage structures trending from the fire-training center and fire tower towards the ponds to the north, indicates these outfalls to be minor sources of petroleum contamination. Additional sources (USTs and/or product piping) may still exist at the Site and should be properly removed as part of the remedy for this site. The existence of multiple sources is confirmed by historic petroleum identification testing which indicated the presence of gasoline, kerosene as well as fuel oil contaminants.

4.2 Contaminant Types:

During PES's initial SI, groundwater samples were collected from MWs 2, 7 and 9 for Petroleum Identification via EPA Method 310.13. The analytical test results indicated gasoline was present at MW-2, gasoline, #2 fuel oil and kerosene were present at MW-7 and gasoline and #2 fuel oil were present at MW-9. Waste oil type contamination was suspected in association with the original Limited Subsurface Investigation based on visual examination of collected soil samples. Analytical data generated from the area of suspected waste oil during performance of the initial SI indicated the presence of non-petroleum based metal contamination specifically, barium and/or chromium. In addition to the petroleum-based contamination, low-level PCBs were detected. The concentrations of the PCBs documented at the Site are well below regulatory levels and therefore are not considered to be factor in the risk assessment process.

4.3 Contaminant Occurrence - Soils (Vadose/Phreatic Zones):

Based on field observations and analytical data, a significant source of the documented contamination exists as petroleum saturated soils located between the main Site structures and NYS Route 5.
 Precipitation that infiltrates petroleum-impacted soils may leach contaminants from the soil into the groundwater regime where they become mobile and may impact sensitive receptors such as domestic wells and/or surface waters.

4.3.1 Vapor Phase:

Current known sources of documented contamination include but are not limited to hydrocarbon vapor occurring within the pore spaces of the geologic media comprising the vadose (unsaturated zone) occurring in the shallow overburden developed beneath the subject Site. Vacuum extraction testing and/or soil gas surveys were not an aspect of the subsurface investigation workscope, therefore concentrations of pore space volatile organic compounds is undefined. Headspace analysis of soil samples retrieved for field screening during the drilling phase of the work indicate exposed subsurface soils to generate a maximum headspace concentration of 300 ppm.

Indoor air/vapor monitoring was performed at the Fire Training Center by PES geologist Enc Lewis on

Site Investigation/Remedial Alternatives Report

September 24, 2002. The indoor air monitoring consisted of PID screening the classroom building and the first floor of the Fire Training Tower. The indoor air monitoring was focused in areas of typical concern like cracks in walls and floors and along the base of all the walls. Results of the field screening indicated only background PID responses (<1 ppm) were observed.

4.3.2 Adsorbed Phase:

The most significant (currently known) source (mass occurrence) of hydrocarbon-based contamination exists as adsorbed phase soil contamination occurring within the vadose and/or phreatic regimes developed within the shallow overburden at the Site. In general the documented adsorbed phase contamination exists between two (2) and ten (10) feet B.G. For quantitative values regarding contaminant loading of subsurface soils, the reader is referred to Tables 1-3. The occurrence of adsorbed phase contaminant within the phreatic (saturated) zone indicates "smearing" resulting from seasonal groundwater table fluctuations. In general, the smear zone was observed to range from six (6) to eight (8) feet in thickness on the Site proper. Smear zone thickness at off-site locations averaged two (2) to four (4) feet. From a mobility stand-point, the adsorbed contaminant mass represents minimal risk, however it does represent the means to allow for equilibrium mass transfer of contaminant to groundwater migrating with the adversely affected geologic media.

4.4 Contaminant Occurrence - Groundwater (Phreatic Zone):

4.1.1 Dissolved Phase:

Analytical data and field observations indicate that the groundwater beneath the Site and across NYS Route 5 is contaminated above NYS DEC Groundwater Standards.

Dissolved phase contamination was documented at on- and off-site locations. With respect to mobility, this source of contamination represents the greatest risk to continued plume expansion and proliferation of contaminant mass. Groundwater transport of contamination represents an expanding negative impact to the shallow aquifer. Propagation of the plume into areas previously unaffected, results in additional damage (volumetrically speaking) to the groundwater resource as well as expansion of the adsorbed phase contaminant area. The rate of migration is dependent on factors previously discussed. To date phase-separated contamination of measurable thickness has not been observed in the data collection points.

4.5 Contaminant Occurrence - Surface Water & Sediments:

As stated previously, results for soil samples collected from the effluent end of two (2) drainage structures trending from the fire-training center and fire tower towards the ponds to the north, indicates these outfalls to be minor sources of petroleum contamination. This outfall is having a negative effect (though thought to be minimal) on surface water occurrences and sediment associated with the lacustrine deposition.

4.6 Contaminant Occurrence - Air:

Review of the geologic information compiled during the subsurface investigation efforts indicates the existence (in general) of 2-3 feet of unaffected top cover geologic material. In general, migration potential associated with subsurface fluid transport for unconsolidated materials is magnitudes greater in a horizontal direction than vertical. The potential for air transport for contamination occurring in the subsurface is thought to be minimal at this study site. This is supported by the ambient air monitoring performed during the second drilling event that resulted in non-detect responses for air-borne

Site Investigation/Remedial Alternatives Report

contamination. Exposure potential exists as well as air borne migration during Site activities that significantly disturb/expose subsurface soils.

4.7 Analytical Data:

4.7.1 Soil Analytical Data:

As mentioned previously, soil samples were collected during the installation of thirteen (13) MWs and eighteen (18) SBs during the recent SI performed by PES. Soil samples were also collected in association with closure procedures implemented for the discovered UST and from the two outfalls associated with drainage structures for the fire training center and fire tower. The purpose of collecting these soil samples was to investigate contaminant loading with respect to the soil guidance values published in the NYS DEC – Technical and Administrative Guidance Memorandum (TAGM) 4046.

Soil samples were analyzed for VOCs by to EPA Methods 8260, SVOCs by EPA Method 8270 and PCBs by EPA Method 8082.

Table 1 shows that for 6 of 30 subsurface soil samples, VOC levels were greater than TAGM 4046 - Recommended Soil Cleanup Objectives. Table 2 indicates that for SVOCs, 5 of 30 subsurface soil samples had levels greater than the TAGM soil cleanup levels. Table 3 shows that for PCBs, none of the subsurface soil samples exceeded the TAGM soil cleanup levels. The corresponding maps that show the spatial summary of the concentrations on Tables 1, 2 and 3 can be found in Figures 7, 8 and 9, respectively. Figures 7 and 8 show similar areas where VOC and SVOC contamination occurred.

4.7.2 Groundwater Analytical Data:

The 13 existing and 13 newly installed MWs were sampled on December 3, 2001. The 26 groundwater samples were analyzed for VOCs by to EPA Methods 8260, SVOCs by EPA Method 8270 and PCBs by EPA Method 8082.

Table 5 shows that for 7 of 26 groundwater samples, VOC levels were above the NYS DEC groundwater standards. Table 6 indicates that for SVOCs, 6 of 26 groundwater samples had levels above the NYS DEC groundwater standards. According to Table 7, 1 of 26 water samples analyzed for PCBs exceeded the groundwater standard. The corresponding map that show the groundwater concentration contours that correspond to Table 5, 6 and 7 can be found in Figures 4, 5 and 6, respectively. Similar to the areas of the highest soil concentrations, the VOC and SVOC groundwater concentrations were highest in overlapping areas as well as the PCB concentrations.

5.0 CONTAMINANT FATE AND TRANSPORT:

5.1 Contaminant Migration and Persistence:

In order to predict the behavior of dissolved-phase hydrocarbons, in the subsurface, the factors controlling migration must be understood. The maximum extent of plume migration is determined when the geologic materials, groundwater and dissolved-phase contaminates reach an equilibrium. Controlling factors can be attributable to both the physical characteristics of the geologic/hydrogeologic regime(s) as well as the chemical characteristics of the contaminant constituents of concern. The predominant factors which control fate and transport and the ultimate equilibrium conditions are described below.

Site Investigation/Remedial Alternatives Report

5.1.1 Advection:

Advection is the main factor responsible for plume migration in the subsurface. Mass (hydrocarbons) is transported because groundwater in which it is dissolves is moving. Groundwater generally moves from high water table elevation to lower water table elevations. The hydraulic gradient is the term used to describe the magnitude of the differences in the water table elevations across the Site. The permeability or hydraulic conductivity, another controlling factor, is the ease at which groundwater moves through the subsurface geologic media.

5.1.2 Dispersion:

Dissolved hydrocarbons spread with the groundwater as they move through the subsurface. Mechanical mixing or dispersion results from variations in groundwater velocity and geology. The variation in velocities are caused by heterogeneities or differences in the subsurface materials. Dispersion during transport will result in a dilution of contaminant pulses and attenuation of contamination peaks.

5.1.3 Adsorption:

Dissolved VOCs will interact with the subsurface media encountered along the flow path through adsorption and other "surface chemical reactions". These interactions result in contaminants' velocity being retarded with respect to the groundwater velocity. Adsorption does not permanently remove from the system, it merely stores them. In a typical groundwater flow system, solid organic matter, naturally occurring, is the primary source onto which the VOCs will attach.

<u>5.1.4 Biodegradation:</u>

Microorganisms that naturally exist in the subsurface biologically transform many organic compounds they come in contact with. The transformation rates are dependent on site-specific conditions, which may include: soil matrix, and the amount of available oxygen. The degree and/or rate of biodegradation that will occur at a Site will depend on the groundwater and contaminant velocities.

Simulation of subsurface aquifer contaminant transport requires utilization of a set of mathematical equations that quantify the previously outlined controlling factors. Correct utilization of fate and transport models requires incorporation of good quality site-specific data. Additionally the chosen model simulations must be calibrated to actual observed concentration trends to ensure accurate model predictions. With respect to the subject Site, data collected to date that can be utilized during fate and transport modeling include: 1) total organic carbon content, grain size distribution, Site hydraulic gradient, hydraulic conductivity (based on Site specific slug testing) and contaminant distribution. The database with respect to contaminant trends (water quality through time) is limited to the two (2) sampling events performed to date. Two points of data do not establish a trend and therefore additional sampling events are required to establish contaminant trends and allow for calibration of any applied fate and transport model.

5.2 Contaminant Properties – Chemical Factors:

Based on the analytical data generated to date for the subject site, it appears that the vast majority of the contamination that is adversely affecting the Sites environmental status is petroleum based. Petroleum identification testing has indicated at a minimum the occurrence of gasoline, kerosene and fuel oil/diesel products.

Site Investigation/Remedial Alternatives Report

Petroleum products originate from crude oil and constitute a mixture of hundreds of thousands of chemicals. However, practical limitations allow us to focus only on a limited subset of key components when assessing the impact of petroleum fuel releases to the environment. In general, the classification/description of petroleum products is based on boiling point ranges as well as ranges in the number of carbon atoms per molecule. For example, when one transitions from the "lighter" end to "heavy" end (i.e. gasoline to bunker (No. 6) oil) there is a corresponding increase in the carbon number/boiling point range and a decrease in volatility.

5.2.1 Gasoline:

Gasoline is composed of hydrocarbons and additives utilized for fuel improvement with respect to emissions and engine longevity. The hydrocarbons fall primarily in the C4 to C12 range. Due to high volatility, the C4 and C5 aliphatic hydrocarbons rapidly evaporate from spilled gasoline. The C6 and heavier hydrocarbons also evaporate but at a reduced rates. The aromatic hydrocarbons in gasoline are primarily benzene (C6H6), toluene (C7H8), ethylbenzene (C8H10) and xylene (C8H10) — collectively termed BTEX. Some "heavier" aromatics including polyaromatics (PAHs) are present in gasoline formulations. Aromatics typically comprise 10-40% of gasoline. Oxygenated compounds including alcohols and ethers are utilized in post 1980 gasoline formulations as octane boosters and a catalyst to reduce carbon monoxide emissions. Historic leaded gasoline utilized lead agents such as Tetraethyl lead for octane boosting purposes. To reduce lead emissions lead scavenging compounds including ethylene dibromide and ethylene dichloride were utilized in lead formulated gasoline products.

5.2.2 Kerosene:

The hydrocarbons in kerosene commonly fall into the C11 to C13 range and distill at 150° to 250° C. Both aliphatic and aromatic hydrocarbons are present, including multi-ring compounds.

5.2.3 Diesel Fuel & Light Fuel Oil:

Light fuel oils including No 1 & 2 boil in the range of 160 to 400° C. Hydrocarbons in light fuel oil range from C10 to C20. Because of the increased molecular weight, heavier petroleum products tend to be less volatile, less water-soluble and less mobile than lighter petroleum fractions. About 25 to 35% of the chemical composition of light fuel oil is alkylated benzenes and naphthalenes. The BTEX concentrations are generally low.

5.2.4 Waste Oil

Waste oil compositions are more difficult to ascertain. Depending on how they are managed, waste oils may contain fractions of "light" as well as "heavy" oils. Used automotive crank case oils often contain wear metals (such as chromium) from internal combustion engine parts. Degreasing solvents including but not limited to gasoline, naphtha or light chlorinated solvents may be present in some waste.

5.3 Influence of Chemical Composition with Respect to the Environment:

With the above outlined contaminant characteristic information in mind, generalizations can be made with respect to differing fuels environmental response(s). In general, increases in the number of carbon atoms (molecular weight) results in the following responses, 1) higher boiling point, 2) lower vapor density (volatility), 3) greater density, 4) lower water solubility and 5) stronger adhesion to subsurface soil (decreased mobility).

Site Investigation/Remedial Alternatives Report

In summary, the light aromatics (BTEX) have relatively high water solubility and adsorb poorly to soils. Thus, they have high environmental mobility, moving readily through the subsurface. When released to surface water bodies, these materials exhibit moderate to high acute toxicity to aquatic organisms. Although environmental media are rarely impacted to the extent that acute human toxicity is an issue, Benzene is listed as a Group A carcinogen and therefore even trace levels should be considered significant.

Polycyclic aromatics fall into two (2) categories including naphthalenes and methylnapthalenes. Both categories have moderate water solubility and soil adsorption potential thus resulting in reduced movement in the subsurface when compared to mono-aromatics. When released to surface water bodies the toxicity to aquatic organisms is moderate to high. The PAHs with three (3) or more condensed rings have low solubility and tend to adsorb strongly to soils (low mobility). It should be noted that several members in the three (3) to six (6) ring PAH group are known and/or suspected carcinogens and therefore exposure through consumption of drinking water or ingestion of soil may be significant. In addition, four (4) to six (6) ring PAHs are poorly biodegradable and tend to bio-accumulate in tissues of aquatic organisms.

5.4 Potential Routes of Migration:

5.4.1 Vadose Zone:

Contaminant migration in the vadose zone is limited to petroleum vapor. Migration of petroleum vapors within the geologic media is very limited unless the subsurface is disturbed during soil excavation. In general, two-three (2-3) feet of unaffected geologic material (top cover) exists between the surface grade and the first occurrence of substantial adsorbed phase contaminant. The Hanson Fire Training Center Classroom Building is spatially situated over an area with documented subsurface impacts to both the vadose and phreatic zones. According to MC personnel, to date no detection of nuisance petroleum odors due to subsurface vapor migrations have been noted. In addition indoor air sampling was performed at the Fire Training Center and Tower by PES on September 24, 2002. Results of the field screening indicated only background PID responses (<1 ppm) were observed throughout the two buildings.

5.4.2 Phreatic Zone:

Contaminant migration in the phreatic zone is controlled by hydraulic gradient and flow direction of the local groundwater regime. The contaminated groundwater plume beneath the Site has migrated across NYS Route 5 and has impacted the adjacent property and several MWs located immediately southeast of the Site.

5.4.3 Capillary Fringe:

The capillary fringe is located between the vadose and phreatic zones. Precipitation may leach hydrocarbons down from the vadose zone and transport them into the saturated phreatic zone where groundwater transport can assist in further contaminant transport.

6.0 BASELINE RISK ASSESSMENT:

Risk-Based Corrective Action (RBCA) is a consistent decision-making process in which exposure and risk assessment practices are integrated with traditional components of the corrective action process to insure that appropriate and cost-effective remedies are selected, and that limited resources are

Site Investigation/Remedial Alternatives Report

properly allocated. The basic goal of RBCA is to protect human health and environmental resources.

6.1 Public Health Evaluation:

6.1.1 Exposure Assessment:

- Only a complete exposure pathway is quantified in the exposure assessment process. A complete exposure pathway requires: 1) a source and mechanism for a chemical release into the environment, 2) a transport medium (i.e. soil, groundwater, air) for the chemical to move from the source to the receptor, 3) a point of potential contact of the receptor with the medium (i.e. points of exposure) and 4) an uptake route or means for taking the chemical into the body (i.e. ingestion, inhalation, dermal contact).
- Currently, the only complete exposure pathways are via groundwater transport to domestic water supply wells and vapor migration to on and/or off-site dwellings. If soil excavation or drilling is performed at the Site, then other exposure pathways (dermal contact) become potential issues.

6.1.2 Toxicity Assessment:

- The toxicity of an individual chemical compound is typically established based on dose-response studies that estimate the relationship between different dose levels and the magnitude of their adverse effects or toxicity. A complex mixture of chemicals can be approached the same way. As the chemical(s) released to the environment change through natural processes such as volatilization, leaching, and/or biodegradation, toxicity of the remaining portion may also change.
- Hazard identification determines if exposure is directly related to a particular health effect (carcinogenic or non-carcinogenic). Based on human epidemiological studies, benzene (documented at the Site) has been determined to be a Group A carcinogen, known human carcinogen by the USEPA. In addition as previously stated, several members in the three (3) to six (6) ring PAH group are known and/or suspected carcinogens.

<u>6.1.3 Risk Characterization:</u>

Risk characterization, the adverse health effects/health risk, depends on exposure and toxicity.

Documented hydrocarbons in both the Site's and the adjacent properties drinking water supplies indicates an existing health risk. This health risk is expected to continue and potentially increase with additional contaminant concentration impact if control and/or corrective actions with respect to the documented source areas are not implemented.

6.2 Environmental Assessment:

6.2.1 Fish and Wildlife Impact Analysis:

See the attached FWIA, performed by NCES at the Site, for more details.

Site Investigation/Remedial Alternatives Report

7.0 SUMMARY AND CONCLUSIONS:

7.1 Summary:

7.1.1 Nature and Extent of Contamination:

- During PES's initial SI, groundwater samples were collected from MWs 2, 7 and 9 for Petroleum Identification via EPA Method 310.13. The analytical test results indicated gasoline was present at MW-2, gasoline, #2 fuel oil and kerosene were present at MW-7 and gasoline and #2 fuel oil were present at MW-9. During the initial SI, waste oil contamination was suspected and analytical data produced from samples secured from the area of concern documented the presence of RCRA metals contamination including barium and more importantly chromium.
- As Tables 1-3 indicate, a large subset of the soil samples contained VOCs, SVOCs and/or PCBs. In many cases, the constituents of concern were at levels above the NYS DEC's TAGM 4046 Recommended Soil Cleanup Objectives. In many instances, concentrations were well above the State's Cleanup Objectives.
- As Tables 5-7 indicate, a subset of the groundwater samples contained VOCs, SVOCs and/or PCBs. In many cases, the constituents of concern were at levels above the New York State Division of Water Resources, Classes and Quality Standards for Groundwater, Chapter 10 of Title 6, Article 2, Part 703.5.
 - See Figures 4-9 for the lateral extent of soil and groundwater contamination and see the attached well logs and the tables within the report text for the vertical extent of soil contamination.

7.1.2 Fate and Transport:

- Migration of dissolved-phase hydrocarbons through the subsurface is controlled by several physical factors including but not limited to: advection, dispersion, adsorption and biodegradation. Chemical factors indigenous to the contaminant of concern also play a role in the ultimate propagation/longevity of contaminants in the environment. Potential routes of contaminant migration include: 1) migration in the vadose zone which is limited to petroleum vapors. Migration of petroleum vapors within the geologic media is very limited unless the subsurface is disturbed during soil excavation. Migration in the phreatic zone is controlled by a number of factors including: hydraulic gradient and flow direction of the local groundwater regime. The contaminated groundwater plume beneath the Site has migrated across NYS Route 5 and has impacted the adjacent property and shallow dug well located immediately southeast of the Site. Precipitation may leach hydrocarbons down from the vadose zone and transport them into the saturated phreatic zone where groundwater transport will facilitate further contaminant transport.
 - 7.1.3 Risk Assessment:
- Risk-Based Corrective Action (RBCA) is a consistent decision-making process in which exposure and risk assessment practices are integrated with traditional components of the corrective action process to insure that appropriate and cost-effective remedies are selected, and that limited resources are properly allocated. The basic goal of RBCA is to protect human health and environmental resources.
 - Risk characterization, the adverse health effects/health risk, depends on exposure and toxicity.
- Documented hydrocarbons in a subset of the off-site MWs indicates a potential for further contaminant

Site Investigation/Remedial Alternatives Report

plume migration to third party domestic supply wells.

7.2 Conclusions:

7.2.1 Data Limitations:

The collected data is limited by the number and location of data collection points and the analytical methodologies list of constituents. Generalization made regarding subsurface geologic/environmental conditions may vary away from the data collection points. The coverage with respect to data acquisition points is thought to be sufficient to reasonably characterize conditions at the subject Site.

7.2.2 Recommendations for Future Work:

Although complete definition of the vertical and lateral extent of the soil and groundwater contamination at the Site has not been satisfied, PES is of the opinion that additional subsurface investigation is not warranted. However, based on the concentration and extent of contamination at the Site, PES recommends implementation of remedial measures. Immediate consideration should also be given to abatement of contaminants documented in the adjacent potable water supplies. Carbon filtration should provide for adequate removal of documented contaminant levels. In addition, all local potable water supplies should be placed on a frequent monitoring program to ensure the water supply is safe for consumption.

8.0 REMEDIAL ALTERNATIVES:

8.1 Remedial Action Objectives:

PES recommends implementation of remedial measures to protect existing drinking water supply wells from impact by VOC contaminants. The source of contamination has been identified as petroleum contaminated soils and groundwater beneath the Site. The Remedial Action Plan will be developed by PES for review/approval by the NYS DEC and MC.

- Contaminants of interest consist of VOCs and SVOCs associated with gasoline, #2 fuel oil, kerosene and possibly waste oil.
- The remediation goals will be based on NYS DEC's TAGM 4046 for soils and NYS Division of Water Resources, <u>Classes and Quality Standards for Groundwater</u>, Chapter 10 of Title 6, Article 2, Part 703.5 for groundwater.

8.2 General Response Actions:

- It is PES's opinion that remedial measures will be required to attain the remedial action objective (RAO) of protecting existing drinking water supply wells from impact. The RAO can be accomplished by containing, reducing and/or removing the contaminants from the Site.
 - Based on the remediation goals for the Site, the estimated area to which treatment, containment and/or reduction technologies may be applied are as follows:
 - 1) The lateral extent of remediation should occur between SB-1 to SB-7 (approx. 300') in the east-west direction.
 - 2) In the north-south direction, remediation should occur between SB-9 to MW-1

Site Investigation/Remedial Alternatives Report

(approx. 200').

- 3) The average vertical extent of remediation should occur from 3-8' B.G. (approx. 5').
- 4) The total estimated volume of soil requiring remediation is $300^{\circ} \times 200^{\circ} \times 5^{\circ} = 300,000$ cubic feet = 11,111 cubic yards.

8.3 Development of Alternatives:

A number of factors and site conditions were considered in developing the remedial alternative for the Site. An evaluation of historic and current analytical data, headspace analysis via PID and visual/olfactory identification of contamination documented during the Site investigation has been conducted during the development of remedial alternatives. All remedial alternatives were developed in accordance with NYS DEC Standards, Criteria and Guidance.

8.3.1 Methodology for Alternative Analysis:

Remedial Alternative evaluation was based on the evaluation criteria set forth by the NYS DEC. The evaluation criteria are listed below:

- 1) Overall protection of human health and the environment.
- 2) Compliance with Standards, Criteria, and Guidance (SCG).
- 3) Short-term effectiveness.
- 4) Long-tern effectiveness.
- 5) Reduction of toxicity, mobility, and volume.
- 6) Feasibility.
- 7) Community acceptance.
- The remedial alternatives have been evaluated against the first six criteria and the other remedial alternatives. The NYS DEC will evaluate the alternatives against the seventh criteria after completion of the public comment period. Remedial alternatives for the Site are:
 - 1) High Vacuum/Total Fluid Extraction coupled with Air Sparging,
 - 2) Bioremediation,
 - 3) Soil Excavation/Simultaneous Dewatering/Treatment.

8.4 Analysis of Alternatives:

8.4.1 Alternative 1 High Vacuum/Total Fluid Extraction (HV/TFE) coupled with Air Sparging (AS):

8.4.1.1 HV/TFE/AS Description:

In order for High Vacuum/Total Fluid Extraction (HV/TFE) to effectively process the observed dissolved and adsorbed phase contamination, the lithologic nature of the formations must be conducive to dewatering, i.e. low hydraulic conductivity. Effective dewatering is required to allow the vacuum system to overcome the water extraction rate to allow transition to the high vacuum vapor extraction mode. In addition, dewatering/water table depression is required to expose "trapped or submerged" adsorbed contamination to evaporation. Based on the local geology encountered during the SI, HV/TFE may be an effective remedy at this site. However, as with any in-situ remedial methodology, upfront pilot testing is recommended to determine the Site-specific response(s) that may in turn effect the design of the final remedial system.

Site Investigation/Remedial Alternatives Report

HV/TFE will be induced on the contaminated geologic strata by placing 4" or 6" well screens to correspond to the contaminated intervals, typically 3-8' B.G. Contaminated fluids/vapors will be removed under vacuum through horizontal subsurface lines to the treatment compound, where a pressure tank will allow for separation and subsequent treatment of fluids and vapors. Treatment of collected contaminants/groundwater is most often accomplished using air stripping and/or activated carbon methods. The size and nature of the groundwater treatment equipment is dependent upon the type and magnitude of the contaminants as well as such things as the volume of fluids requiring treatment and discharging standards imposed at the Site. Treatment of the hydrocarbon vapors, if required, is also accomplished using activated carbon and/or catalytic incineration.

Air Sparge (AS) Description:

Volatilization of VOC contaminants can be accomplished in the phreatic (saturated) zone by sparging air through soils below the water table. This process removes volatiles from both the adsorbed (soil) and dissolved (groundwater) phases, thereby treating both soils and groundwater in the saturated zone. Not only do aeration systems remove VOCs directly, they enhance degradation of VOCs as well. Because vacuum extraction and air sparging increases air flow through contaminated areas, oxygen availability is enhanced and natural bioremediation is stimulated, further increasing the remediation rate.

Air sparging essentially creates a crude air stripper in the subsurface, with the saturated soil column acting as the high surface area packing material. Injected air flows through the water column over the soil media, and air bubbles contacting dissolved/adsorbed contaminants cause the VOCs to volatilize. The entrained organics are then carried by the air bubbles into the vadose (unsaturated) zone where they can be captured by vacuum induced by the HV/TFE system.

Air sparging application will be implemented via a series of two (2) inch diameter vertical and/or horizontally installed sparge wells. The sparging effort will be initiated subsequent to significant reductions in observed contaminant mass via the HV/TFE efforts. Alternating and/or pulsed air sparge operation will occur to limit channeling of air/vapors through the geologic media.

The following table summarizes the factors that were considered in the evaluation of HV/TFE/AS has a remedial option.

Factors For Consideration	Most Desirable Condition
Site Size	HV/TFE/AS can be applied to any size site.
Soil Type	Semi-permeable soils are more conducive to HV/TFE & have potential for successful AS application.
Groundwater Use	Groundwater is non-potable during remediation. Shallow water table is ideal for HV/TFE.
Contaminant Characteristics	VOCs are easily volatilized and/or collected by the HV/TFE system. SVOCs require more time to remediate.
Treatment Options	Treatment of collected vapors may be required and treatment of groundwater will be required.

Site Investigation/Remedial Alternatives Report

8.4.1.2 HV/TFE/AS Assessment:

Overall Protection of Human Health and the Environment

HV/TFE/AS is an appropriate remedy for this site. The removal of hydrocarbons from the soil/groundwater via HV/TFE/AS is expected to result in substantial contaminant mass reductions within three to four years. During the remedial action, minor concentrations (within SCGs) of hydrocarbon vapors may be release to the atmosphere and low-level dissolved contaminants associated with effluent discharge water may be released to the surface soils. The remedial action will occur in-situ, protecting workers and the public from exposure. Subsequent to the remedial effort and assuming the impacted domestic wells return to within NYS Groundwater Standards, exposure to human health and the environment should be minimal or non-existent.

Compliance with Standards, Criteria, and Guidance

SCGs for the HV/TFE/AS option are the NYS Groundwater Standards, TAGM 4046 and STARS for soils, and NYS DAR-1 air quality standards. Please note: HV/TFE/AS will not address the aboveground soil stockpile.

Short-term Effectiveness

Workers will be exposed to contaminated soils during the drilling/trenching phases of the HV/TFE/AS system installation processes. Personal protective equipment will be utilized to mitigate exposure. The effluent air discharge from the HV/TFE/AS system will be controlled by system operation or treatment of the air stream thereby preventing community exposure.

The remedial installation is *expected* to be complete in one construction season. During the remedial system installation, exposure of VOCs may create an odor hazard for workers and/or residents of adjacent properties. Soil excavation may also create ingestion and/or dermal exposure pathways for on-site worker. All on-site personnel will have proper 40 hour OSHA training and the appropriate level of personal protective equipment. In addition, appropriate Site controls, i.e. air monitoring via PID, safety fence, etc., will be maintained during the remedial action to limit public exposure to the Site. If ambient air monitoring indicates unacceptable VOC levels, drilling and/or excavation will be discontinued until the ambient air return to acceptable levels.

Long-term Effectiveness and Permanence

Remediation of the Site is *expected* to reach completion in three to five years. Please note: the presented time frame is purely speculative and more accurate time frames can be estimated subsequent to pilot testing.

HV/TFE/AS is expected to remove VOCs to within TAGM 4046 soil cleanup objectives. However, SVOCs may not be as effectively removed from the soil and groundwater. Residual SVOCs may represent a residual risk subsequent to the remedial effort. Groundwater monitoring, subsequent to the remedial action, will provide data to monitor the effectiveness of the in-situ remedial alternative.

Reduction of Toxicity, Mobility, and Volume

HV/TFE/AS addresses petroleum-contamination by several processes: volatilization of hydrocarbons, treatment of contaminated groundwater and biodegradation. All of which will reduce the volume of contaminant at the Site. The focus of the HV/TFE/AS system will be an area approximately 300' x 200'

Site Investigation/Remedial Alternatives Report

- immediately southeast of the fire training center. Volatilization will remove the VOCs from the subsurface via the high vacuum of the remedial system for discharge to the ambient air (below the NYS air quality guidelines) or to a treatment unit. Hydrocarbon biodegradation will be enhanced by increasing the available oxygen in the vadose zone. Biodegradation also leads to complete destruction of hydrocarbons. The Total Fluid Extraction part of the remedial system will collect contaminated groundwater and depress the local groundwater table thus controlling/mitigating hydrocarbons in the phreatic zone. There is a possibility that some contaminants may migrate beyond the controls of the HV/TFE/AS system and impact sensitive receptors.
- Areas of contamination outside of the focus area, i.e. roadways, right of ways and/or off-site properties, will naturally attenuate over time once the majority of the source is remediated. However, due to the close (down gradient) proximity of a residence and dug well (Tax Map Parcel 18) to residual contamination beneath NYS Route 5 active remedial measures may be needed to return this off-site property to pre-release conditions.

Feasibility

Based on the Site's geology and shallow groundwater table, HV/TFE/AS is a suitable remedy. The Site is relatively flat and open and has very little traffic, making installation of the in-situ remedial system and future operation and maintenance very implementable. The installation cost for this remedial action is lower than soil excavation and treatment. However, ongoing system operation and maintenance could make the overall cost for HV/TFE/As option similar to and/or greater than the soil excavation and treatment option.

8.4.2 Alternative 2 Bioremediation:

8.4.2.1 Bioremediation Description:

In-situ bioremediation is a remedial methodology that utilizes a variety of technologies designed to enhance the subsurface environment by providing the necessary oxygen, water and nutrients for microbial population growth. The increased microbial population will in turn metabolize the hydrocarbons documented in the source area located southeast of the fire-training center. An Oxygen Releasing Compound (ORC) in the form of an ORC/water slurry mixture would be injected into the source area via Geoprobe soil borings. The oxygen source becomes available to the microbe population immediately upon installation and typically provides oxygen for up to six months. The amount of ORC required to remediate the Site is based on the mass of contaminant in a three to one oxygen to hydrocarbon ration. Multiple applications over time may be required to effectively mitigate the hydrocarbons.

The following table summarizes the factors that were considered in the evaluation of bioremediation as a remedial alternative.

Factors For Consideration	Most Desirable Condition
Site Size	Bioremediation can be applied to any size site.
Soil Type	Sand and gravels are ideal. Less porous soil may require additional ORC and injection points.
Groundwater Use	Groundwater is non-potable during remediation.
Contaminant Characteristics	VOCs are easily destroyed by ORC. SVOCs require more time to degrade.
Disposal Options	No disposal necessary.

Site Investigation/Remedial Alternatives Report

- Periodic groundwater monitoring will be required to track the progress of the remedial measures.

 Confirmatory soil samples will be required prior to Site closure.
- **8.4.2.2 Bioremediation Assessment:**

Overall Protection of Human Health and the Environment

Because this remedial alternative takes place in-situ, exposure to human health is very limited. Upon completion the remedial process is expected to leave only water and carbon dioxide, thus eliminating most residual public health and environmental risks.

Compliance with Standards, Criteria, and Guidance

Bioremediation of hydrocarbons at the Site will be performed until TAGM 4046 and/or STARS Guidance Values for soils and NYS Groundwater Standards are achieved. Hydrocarbon vapor and groundwater discharges are not expected as part of this remedy.

Short-term Effectiveness

- Under optimal Site conditions bioremediation can reach the cleanup objectives in a relatively short duration (typically 3-5 years). Because hydraulic control of the groundwater is not part of this remedy, the potential for contaminant migration to sensitive receptors does exist. Contaminant migration can
- be controlled or eliminated with the installation of a down gradient ORC barrier. During the ORC injection process, appropriate site controls, i.e. air monitoring via PID, will be maintained to limit public exposure to the Site. If ambient air monitoring indicates unacceptable VOC levels, Geoprobing will be disceptioned until the ambient air rotum to acceptable levels. Subsequent to the installation process.
- discontinued until the ambient air return to acceptable levels. Subsequent to the installation process, exposure to the public is not expected.
- Long-term Effectiveness and Permanence
- ORC injection is expected to reduce hydrocarbon contamination associated with the source to below the TAGM 4046 cleanup objectives thus eliminating the source of long-term contaminant migration to adjacent domestic water supply wells. Once TAGM 4046 cleanup objectives are met, no residual risks are expected. No on-site remedial enclosure is needed to control this remedial alternative.
- Reduction of Toxicity, Mobility, and Volume
- In-situ bioremediation is expected to metabolize the hydrocarbon contaminants within the source below TAGM 4046 cleanup objectives. Bioremediation degrades or completely destroys hydrocarbon contaminants. This remedy will significantly reduce the volumes, mobility, and toxicity of the source contamination.
 - In addition, ORC injection along the south side of NYS Route 5 would expedite off-site contaminant mitigation.

Feasibility

Unfavorable site conditions such as heterogeneity of the soils and high concentrations of SVOCs indicates bioremediation via ORC injection may not be the most feasible remedial alternative.

Site Investigation/Remedial Alternatives Report

8.4.3 Alternative 3 Soil Excavation/Simultaneous Dewatering/Treatment:

8.4.3.1 Soil Excavation/Simultaneous Dewatering/Treatment Description:

Excavation of contaminated soils is one of the most common and short-termed remedial alternatives. Soil excavation removes contaminated soils from the subsurface thus preventing continued impact to the groundwater regime. Excavated geologic media would be hauled off-site for thermal desorption or utilized as top cover at a local landfill.

Factors that were considered in the evaluation of soil excavation/treatment are summarizes below.

Factors For Consideration	Most Desirable Condition
Site Size	Small sites are most easily and cost effectively excavated.
Soil Type	All soil types can be excavated, excavation may be the only option for clay contaminated soils.
Groundwater Use	Groundwater table may be encountered during excavation and should be pumped & treated.
Contaminant Characteristics	SVOCs, due to their heavy molecular weight are most easily remediated from the Site by excavation.
Disposal Options	Top cover at landfills and thermal desorption are a feasible option for excavated soils.
Treatment Options	Excavated soils are most easily bioremediated in an ex-situ scenario, however, the size of the Site and volume of soil requiring treatment should be considered.

Shallow groundwater table creates a challenge for the implementation of the excavation remedy. Several options are available to reduce saturation in the excavated soils. Sheet piling installed around the excavation would reduce the influence of the groundwater hydraulic gradient. However, installing sheet piling is a costly option. Dewatering the excavation and treating contaminated groundwater is a viable option. PES owns and operates a portable dewatering trailer suited for this purpose. Saturated soils could be excavated and dewatered on a bermed liner adjacent to the excavation. Contaminated groundwater would be drained back into the excavation allowing the soils to be hauled off-site to a treatment facility or landfill.

Contaminated soil excavation would occur east of the fire-training center and south of the fire-training tower. The area of concern exists between SB-1, SB-7, (300') SB-9 and MW-1 (200'). Field screening and analytical testing of soils obtained during the soil boring installation process indicated that hydrocarbon contamination typically exists from 3-8' B.G. The estimated volume of soil requiring remediation is 11,111 cubic yards. Subsequently, the remedial excavation will be backfilled with clean overburden material from the Site and clean backfill hauled to the Site.

The excavated soils will be hauled to a permitted thermal desorption facility or a local landfill for disposal. Waste characterization samples are required at permit specified intervals for both facility types.

8.4.3.2 Soil Excavation/Simultaneous Dewatering/Treatment Assessment:

Overall Protection of Human Health and the Environment

Remedial excavation of hydrocarbon-contaminated soils from the Site will greatly improve the local groundwater quality. Subsequent to soil excavation process only minor contaminant levels, below

Site Investigation/Remedial Alternatives Report

- TAGM 4046, are expected to exist in the subsurface soils. The use of an approved, permitted treatment/disposal facility will ensure proper treatment/disposal of the contaminated soils. As the remedial action occurs, the Site will be made secure to prevent access to the open excavation thus protecting the human health of the public during the remedial action. Exposure to human health and the environment after remediation will be limited by clean backfill or clean native soils that will cover any residual contaminated soils. Residual public health and environmental risks, in the form of residual contaminated groundwater, may exist after the remedial action. However, source removal coupled with natural attenuation should significantly reduce or remove any public health and environmental risks associated with the local groundwater quality.
 - Compliance with Standards, Criteria, and Guidance
- Contaminated soil excavation and treatment/disposal should bring the site into compliance with the applicable SCGs identified for the Site soils. Groundwater pump and treatment (P&T) during the soil excavation process will aid in advancing the Site toward compliance. P&T will remove contaminated groundwater that would re-contaminate the clean backfill. Additionally, treating the groundwater will also aid in achieving the ultimate goal of protecting the local groundwater quality and the surrounding domestic water supply wells.
- Short-term Effectiveness
- This remedial action could be implemented in one construction season. During the remedial excavation, exposure of VOCs may create an odor hazard for workers and/or residents of adjacent properties. Soil excavation may also create ingestion and/or dermal exposure pathways for on-site worker. All on-site personnel will have proper 40 hour OSHA training and the appropriate level of personal protective equipment. In addition, appropriate site controls, i.e. air monitoring via PID, safety fence, etc., will be maintained during the remedial action to limit public exposure to the Site. If ambient air monitoring indicates unacceptable VOC levels, excavation will be discontinued until the ambient air return to acceptable levels.
 - Long-term Effectiveness and Permanence
 - Removal of contaminated soils is expected to have the best long-term effect because the source is physically removed from the Site. Some residual contamination, below TAGM 4046, is expected, however, natural attenuation should provide for further degradation of residual soils and groundwater. Groundwater monitoring, subsequent to the remedial action, will provide data to monitor the effectiveness of the contaminated soil excavation process.
- Reduction of Toxicity, Mobility, and Volume
- Excavation of contaminated soils will significantly reduce the volume of the source material by 11,111 cubic yards. With the majority of the source soils removed, residual contamination is expected to naturally degrade in the environment. In addition, with the source removed, groundwater contaminant leaching will be reduced, thus decreasing the mobility of the contaminant plume beneath the Site. If P&T is implemented during the excavation process, then groundwater contaminant mobility would also be reduced during the remedial action process. Soil excavation and treatment/disposal is a permanent and irreversible remedial technology.
 - ORC injection along the southern border of NYS Route 5 and/or installing ORC socks in the off-site MWs subsequent to the excavation process would reduce off-site contaminants and minimize contaminant migration thus expediting the off-site remedial effort. PES anticipates that on-site

Site Investigation/Remedial Alternatives Report

- contaminated soil excavation coupled with limited off-site ORC application(s) would advance the off-site areas to pre-release conditions in the timeliest manner.
- Feasibility
- Remedial soil excavation is a suitable technology for this Site. Excavation is an immediate remedy of contaminated soils at the Site. Several treatment/disposal facilities are located within reasonable trucking distance from the Site. PES has services and materials to implement this remedial action.
 - 8.4.4 Alternative 4 No Action with Institutional Controls:

8.4.4.1 No Action with Institutional Controls Description:

The no action alternative is the baseline for remedial alternative selection. No action is best suited to sites that have low-level contamination and do not pose a significant threat to human health and the environment. Institutional controls are commonly implemented to provide an additional measure of protection at the Site. Institutional controls can be defined as mechanisms used to limit human activities at a contaminated site to ensure protection of human health. Well restrictions, land use restrictions, access controls, declaration of environmental restrictions, deed notices, site posting requirements and notification in public registries are some examples of institutional controls. Institutional controls for the Site are developed for current and future land use. The repositories for the institutional controls are selected to ensure they will be made known to respective parties associated with a property transfer or a change in property use.

8.4.4.2 No Action with Institutional Controls Assessment:

Overall Protection of Human Health and the Environment

No action with institutional controls is not considered a viable remedial alternative because existing hydrocarbon-contamination has impacted an adjacent domestic supply well. In addition due to the shallow depth of the contaminant smear zone, future construction and excavation could expose contaminated soils creating potential risks for exposure.

Compliance with Standards, Criteria, and Guidance

- No action will not advance the Site towards compliance with SCGs without further impacting adjacent properties and their potable water supplies.
- Short-term Effectiveness
- No action will have no short-term effects to assess. High concentrations of VOCs and SVOCs in the soil and groundwater dictate that the Site is not suitable for this remedial alternative.
- Long-term Effectiveness and Permanence
 - Natural attenuation of contaminants migrating off-site has been documented as an ineffective remedy for the Site based on the existing off-site contaminant plume. No action with institutional controls would allow for continued off-site contaminant mitigation, which could lead to further third party impacts.

Site Investigation/Remedial Alternatives Report

- Reduction of Toxicity, Mobility, and Volume
- Over an extended period of time, natural attenuation may reduce the contaminant's toxicity, mobility and volume to within acceptable SCGs. Further third party impacts are likely if no action is taken to remedy the Site.
- Feasibility

Based on the Site's high contaminant levels and sensitive off-site receptors, no action is not a feasible remedy.

9.0 REMEDIAL ALTERNATIVES COMPARISON:

9.1 HV/TFE/AS Alternative:

HV/TFE/AS, because of its in-situ nature, is protective of human health and the environment. In addition, this remedial alternative will significantly reduce the toxicity, mobility and volume of contamination. Because of the Site's heterogeneous geology and significant volume of SVOCs associated with the source, HV/TFE/AS technologies need to be pilot tested prior to implementation of a full-scale design. Pilot testing would provide Site-specific data regarding recovery well construction and spacing, vacuum levels, airflow rates, etc. PES can provide a more accurate cost estimate for HV/TFE/AS subsequent to Site-specific pilot testing.

9.2 Bioremediation Alternative:

The nature of the contaminants (significant SVOCs) and the relatively low hydraulic conductivity at the Site indicates ORC injection may only have limited effects and therefore a significant volume of ORC will be required for this remedy. In addition, a second application may be required if post treatment groundwater/soil samples fail applicable SCGs.

9.3 Soil Excavation/Simultaneous Dewatering/Treatment Alternative:

The nature of the contaminants (significant SVOCs) and the relatively low hydraulic conductivity at the Site indicates that this remedial option will have more significant and permanent effects. Costs are provided based on the existing number of data collection points.

9.4 No Action with Institution Controls:

Significantly elevated contaminant levels and sensitive off-site receptors indicates, no action is not an option for this site.

Site Investigation/Remedial Alternatives Report

10.0 REMEDIAL ALTERNATIVE COSTS:

Remedial Alternative	HV/TFE/AS	Bioremediation	Excavation/ Dewatering	No Action
Capital Costs (materials, labor and equipment to install remedy	\$605,000 to 735,000	\$1,679,000	\$925,000	\$0
Engineering Design	\$57,100 to 70,100	\$45,000	\$27,000	\$0
Permitting	\$7,000	\$0	\$0	\$0
Contingency	\$75,000 to 105,000	\$167,900	\$45,000	\$0
O&M (over remedial action lifetime)	\$677,000 727,000 Duration 4 years	Reapplication may be required.	\$ O	\$ O
Total	\$1,421,100 to 1,644,100	\$1,891,900	\$997,000	\$0

Any statement or opinion contained in this Report prepared by Precision Environmental Services, Inc. (PES) shall not be construed to create any warranty or representation that the real or personal property on which the investigation was conducted is free of pollution or complies with any or all applicable regulatory or statutory requirements, or that the property is fit for any particular purpose. Unless otherwise indicated in this Report, PES did not independently determine the compliance of present or past owners of the site with federal, state or local laws and regulations. The conclusions presented in this Report were based upon the services described, within the time and budgetary constraints imposed by the client, and not on scientific tasks or procedures beyond the scope of those described services. PES shall not be responsible for conditions or consequences arising from any facts that were concealed, withheld or not fully disclosed by any person at the time evaluation was performed.

Any person or entity considering the acquisition, use or other involvement or activity concerning the property that is the subject of this Report shall be solely responsible for determining the adequacy of the property for any and all such purposes. The person or entity should enter into any such acquisition or use relying solely on its own judgment and personal investigation of the property, and not upon reliance of any representation by PES regarding the property or the character, quality or value thereof.

The contents and conclusions of this Report and the information gathered in order to prepare the Report will remain confidential except to the parties or their representatives.

PES greatly appreciates the opportunity to provide continuing environmental services to Montgomery County. Please call if you have questions regarding the contents of this report.

SINCERELY,
PRECISION ENVIRONMENTAL SERVICES, INC.

Eric S. Lewis Senior Geologist

Ein S. Klins

John J. Johnson

Hydrogeologist/Geotechnical Manager

FIGURES

TABLES

Summary of Analytical Results VOCs in Soil via EPA Method 8260 Hanson Fire Training Center Yosts, New York November 20, 2001 TABLE 1

									Same	Sample Identification	affor								NVS DEC
										THE PARTY OF THE P									TACM ADAR
		SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11	SB-12	SB-14	SB-15	SB-16	SB-17	SB-18	Recommended
	:	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Soll Cleanup
Parameter	Method																		Objectives (ppb)
Chloromethane	EPA 8260	<12	<12	~1 5	<12	<12	<12	×13	<1,300	۲Į,	<12	<6,100	×1,200	<6,000	<12	<6,000	<12	<120	10,000
bromometrane	EPA 8260	<12	<12	<12	<12	×12	7	× 13	×1,300	×11	×12	<6,100	, 200 1,200	000 ^{'9} >	<12	<6,000 46,000	×12	×120	10,000
Vinyl Chloride	EPA 8260	<12	<12	<12	<12	<12	۲ <u>۲</u>	<13	<1,300	<11	<12	<6,100	×1,200	<6,000	<12	<6,000	<12	×120	10,000
Chloroethane	EPA 8260	<12	<12	<12	<12	<12	<12	<13	<1,300	~11	<12	<6,100	<1,200	<6,000	<12	<6,000	<12	<120	10,000
Methylene Chloride	EPA 8260	ģ	8	9	8	9	9	9	<630	9	9	<3,000	009×	<3,000	9	<3,000	99	×60	10,000
Acetone	EPA 8260	<12	<12	<12	<12	<12	42	×13	41,300	, 1,	412	<6,100	×1.200	<6,000	<12	<6,000	<12	4120	10,000
Carbon Disuifide	EPA 8280	9	8	8	9	9	å	8	<630	8	98	<3.000	809	<3.000	89	<3.000	99	09×	10,000
1,1-Dichloroethene	EPA 8260	9	8	8	8	8	8	9	<630	9	9	<3,000	009	<3.000	9	×3,000	80	09>	10,000
1,1-Dichloroethane	EPA 8260	8	8	8	9	8	8	99	<630	8	9	<3.000	· 009×	<3.000	89	3,000	9	09×	10,000
1,2-Dichloroethene-trans	EPA 8260	9>	\$	8	8	9>	8	80	\$600	8	ê	<3,000	999	3,000	8	3,000	8	×60	10,000
Chloroform	EPA 8260	8	8	9	80	8	9	9	<630	8	9	<3.000	× 600	<3.000	80	3,000	89	ve0	10,000
1,2-Dichloroethane	EPA 8260	9>	8	9	9	8	8	9>	<630	8	9>	<3.000	008×	<3.000	9	<3,000	99	09>	10,000
2-Butanone	EPA 8260	<12	<12	<12	<12	<12	<12	×13	<1.300	411	45	×6.100	×1,200	×6.000	<12	×8,000	<12	<120	10,000
1,1,1-Trichloroethane	EPA 8280	9>	9	9	9	9	9	8	· \$20	9	99	<3.000	009>	<3 000	8	<3.000	98	v 90	10,000
Carbon Tetrachloride	EPA 8280	<9>	8	86	9	8	Ŷ	8	<830	9	9>	<3,000	009	3,000	80	3000	. 66	×80	10,000
Bromodichloromethane	EPA 8280	9>	8	ဇွ	å	9>	8	8	<830	99	9>	<3,000	009>	<3.000	9	<3.000	8	×60	10,000
1,2-Dichloropropane	EPA 8260	9>	8	9	9	99	9	9	<630	9	9	<3,000	009	<3,000	φ	3,000	8	×60	10,000
cls-1,3-Trichloroethane	EPA 8260	9>	ê	8	9>	9>	9	99	<630	8	9	<3,000	009×	<3,000	8	<3,000	9	· 60	10,000
Trichloroethene	EPA 8260	9>	8	8	9>	9>	8	99	<630	99	9	<3,000	×600	<3,000	8	<3,000	6	<60	10,000
Dibromochloromethane	EPA 8260	90	8	8	\$	9	\$	\$	88	9	99	<3,000	999	<3,000	89	×3,000	9	· 60	10,000
1,1,2-Trichloroethane	EPA 8260	89	9	۷6 م	99	8	8	9>	<630	. 9	9	<3,000	009>	<3,000	9	<3,000	9>	×80	10,000
Senzene	EPA 8260	99		œ	8	9	\$	99		22	=	2,600	1 100	3,800	9>	15,000	12	×60	09
trans-1,3-Dichloropropene	EPA 8260	9	9	\$	%	8	9	8	6 830	80	8	<3,000	8	\$,000 \$	8	<3,000	90	×80	10,000
Bromoform	EPA 8260	9 >	ş	80	9	9	ဗို	9>	<630	9	9>	<3,000	009×	<3,000	9	<3,000	9>	×60	10,000
4-Methyl-2-Pentanone	EPA 8260	<12	<12	~12	<12	<12	<12	<13	×1,300	11	<12	6,100	<1,200	<6,000 <	<12	×6,000	<12	×120	10,000
2-Hexanone	EPA 8260	<u>~</u>	<12 4	~12	<12	<12	×12	×13	<1,300	<u>^</u>	4 5	6,100	41,200	000'9×	×12	×6,000	×12	× 25	10,000
l eu achioroemene	EPA 8260	\$ 3	99	80	8	9>	စ္မ	æ,	¢830	9	ç	3,000	Т	3,000	8	3,000	စ္	90	10,000
Tolingon	EDA 8280	Ş 4	P 4	₽,	8	÷ 4	₽ 9	90 Q		ψ		<3,000		<3,000	φ (3,000	9		10,000
Chlorobenzena	EPA 8260	÷ \$, %	۳ ۷	9 %	, «	, «	0000	4	9	23.000	200	C3 000	9 %	Ş	8	8	10.000
Ethylbenzene	EPA 8260	æ	Г		62	မွ	9	8	5,100		19	34.000	12.000	77.000	-	T	Γ	006	5,500
Styrene	EPA 8260	\$		ő		99	φ	8	<630	: ©		<3.000	×600	<3,000	9		8	8	10,000
1,2-Dichloroethene-cis	EPA 8260	9>	9	\$	9>	9>	8	99	<630	9	9>	<3,000	009>	<3,000	80	<3,000	89	8	10,000
m,p-Xylenes	EPA 8260	8	8>	8	110	9>	8	9	00		440	150,000	49,000		8		84	1,400	1,200
o-Xylene	EPA 8260	ê,		89		9>	ô								8	8 300	1	99	800
Total TICs Concentration	EPA 8260 (TICs)	920			_	689	2	6						773,000		269,600		24,590	
# of TICs	EPA 8260 (TICs)	= [2	12		우	2	ლ :	9	2	12	12	12		∞ .	12	12	12	
Total Compounds	EPA 8200 + 1105 370	2/0	*	1,889	960	688	0		ı	ï	ļ	- 8		920,500		872,700	H	26,993	STREET, ST. STREET, ST. ST.
Comments: All values are reported in ug/kg - parts per billion (ppb)	sorted in ug/kg - par	ts per billion	(ddd)	:														ND=None Detected	etected
Analytical raciity	Analytical Facility. Adirondack Environmental Services, Inc., Albany, NY.	nmental Ser	vices, Inc.,	Albany, NY.	Part Soul City	Dennis Ohion	the new James											NA=Not Available	ilabie

Comments: All values are reported in uglitg - parts per billion (ppb).
Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY.
Values in — Equals and/or Exceeds

TABLE 1
Summary of Analytical Results
VOCs in Soil via EPA Method 8260
Hanson Fire Training Center
Yosts, New York
November 20, 2001

									Sample	Sample Identification	tion									NYS DEC
																				TAGM 4046
		MW-14	MW-15	MW-16	MW-17		MW-19 N	MW-20 N	MW-21 N	MW-22 M	MW-23 M	MW-24 M	MW-25 M	MW-26 0	OF-1 0		B-1 S	SW-18.2	SW-384	Recommended
		Grab	Grab Grab Grab Grab	Grab	Grab		Grab	Grab			Grab	Grab	Grab			Grab G	Grab	Grab	Grab	Soil Cleanup
Parameter	Method																			Objectives (ppb)
Chloromethane	EPA 8260	<12	<12	<12	<12	<12	<12	<12	<12	H	<u> </u>	L	L	⊢	H	┝	c13	<1200	<620	10,000
Bromomethane	EPA 8260	4 12	~1 2	~12	~12	<12	<12	<12	<12				_	_		_	-13	<1200	<620	10,000
Vinyl Chloride	EPA 8260	~12	×12	<12	<12	<12	<12	<12	412	_						<12	c13	<1200	<620	10,000
Chloroethane	EPA 8260	412	<12	<12	42	<12	<12	<12	c12	H	-	L	⊢	⊢		L	د13	<1200	<620	10,000
Methylene Chloride	EPA 8260	ę	9	8	φ	Ŷ	φ	φ	9		_		_				9	<620	<310	10,000
Acetone	EPA 8260	412	412	×12	<12	×12	<12	<12	<12	_	_				_	<12	<13	<1200	<620	10,000
Carbon Disulfide	EPA 8260	ô	ę,	ş	9	ç,	ő	9	ê	H	\vdash	H	H	<u> </u>		H	9>	<620	<310	10,000
1,1-Dichloroethene	EPA 8260	9	8	9	9	9	ő	9	9	_	_			_	_		9	<620	<310	10,000
1,1-Dichloroethane	EPA 8260	9	9	9	9	9	ô	9	9		_	_	_	4			9>	<620	<310	10,000
1,2-Dichloroethene-trans	EPA 8260	9	9>	9	8	99	မွ	9	မွ	_	H	_	H	H	_		9,	<620	310	10,000
Chloroform	EPA 8260	φ	Ŷ	9	99	80	9	99	9	-					_		9	<620	<310	10,000
1,2-Dichloroethane	EPA 8260	9	Ŷ	9	8	ę,	မှ	9	8		-		_			\dashv	9×	<620	<310	10,000
2-Butanone	EPA 8260	<12	<12	<12	<12	<12	<12	<12	<12	H	H	H	H	H	_	_	<13	<1200	<620	10,000
1,1,1-Trichloroethane	EPA 8260	9	ô	9	9	8	9	9	9		_			_	_		9	<620	310	10,000
Carbon Tetrachloride	EPA 8260	9	9	8	9	9	ş	9	9	_		4	_	-	4	\dashv	9	<620	<310	10,000
Bromodichloromethane	EPA 8260	ô	ç	9	ę	å	â	99	8	H	H	H	_	-			9	<620	<310	10,000
1,2-Dichloropropane	EPA 8260	ô	φ	ဗွ	ő	8	ç	9	9	_		_		_	_		9>	<620	310	10,000
cis-1,3-Trichloroethane	EPA 8260	ê	9	ç	9	8	ê	9	စ္	-	\dashv	\dashv	4	\dashv	\dashv	\dashv	9	<620	<310	10,000
Trichloroethene	EPA 8260	ê	9	မွ	9	မှ	ê	9	9						_		9	<620	<310	10,000
Dibromochloromethane	EPA 8260	ŵ	9	\$	9	8	ψ	9	8					_			9	<620	<310	10,000
1,1,2-Trichloroethane	EPA 8260	စ္	9	9	و	\$	ô	9	ő	\dashv	4	\dashv	\dashv	\dashv	\dashv	\dashv	92	<620	<310	10,000
Вепzеле	EPA 8260	8	9	9>	9	9	ô	-46 -66	9		_	_			_	_	9	<620	310	00
trans-1,3-Dichloropropene	EPA 8260	9	9	8	စ္	9	ő	9	å	_			•				9	<620	<310	10,000
Bromoform	EPA 8260	ô	ê	ဖွ	ő	ê	ê	9	ê	\dashv	\dashv	\dashv	\dashv		-	\dashv	ç Ç	<620	<310	10,000
4-Methyl-2-Pentanone	EPA 8260	×12	412	۸12	<12	< 12	~1 2	<12	~ 12								- 13	×1200	<620	10,000
2-Hexanone	EPA 8260	4	4	412	×12	412	×12	412	×12	_			_		_		راع	×1200	6 20	10,000
Tetrachloroethene	EPA 8260	တ္	ç,	8	မွ	ဗ	မွ	မွ	မ္	+	+	+	+	+	+	+	ę i	0292	0150	10,000
1,1,2,2-Tetrachloroethane	EPA 8260	φ (ő	φ <i>q</i>	တ္ ဗု	φ «	φ «	တ္ ဗ	\$	φ «	9 4	φ φ	æ 4	٠ پ پ	° °	\$ 4	۰ «	0292	23.50	1 200
Chlomberrene	EPA 8250	, «	9 %	, «	9 4	9 4	, «	9 %	9 4			_					, ç	×620	<310	10,000
Ethylbenzene	EPA 8260	9	,	စ်	9	စ္	ő	9	φ	╀	╀	╁╌	╀	╁	┝	┝		5,100	7.500	5,500
Styrene	EPA 8260	8	9	Ŷ	9	â	Ŷ	9	9		_				_	-	9	< 620	<310	10,000
1,2-Dichloroethene-cis	EPA 8260	9	9	9×	9>	9>	9	9	9	_	_		_	\dashv	\dashv	\dashv	د 6	<620	<310	10,000
m,p-Xylenes	EPA 8260		20	9>	9>	9>	-6 6	9>	9>	_	_					_		7.000	20,000	1,200
o-Xylene	EPA 8260		2	å	ô	_	ê,	9	8	\dashv	\dashv		4	ဖွ	တ	\dashv	- 1	1	1.600	900
Total TICs Concentration	EPA 8260 (TICs)	Q Q	137	2	9	N ON	9	ð	Q Z	_	_	_			_				26,900	
# of TICs	EPA 8260 (TICs)		7	2	9	_	ဖ	2	2				S .	æ				12	12	
Total Compounds	EPA 8260 + TICs	0	166	0	0	0	9	0	0	┨	\dashv	╣	- 11		-	4	- 11	Ш	86,000	
Comments: All values are reported in ug/kg - parts per billion (ppb)	eported in ug/kg - par	ts per bill	ion (ppb).																ND≖None Detected	Detected
Analytical Facili	Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY.	nmental \$	Services,	Inc., Albi	any, NY.														NA=Not Available	ailable

All Values are reponed in uging - parts per billion (ppb).
Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY.
Values in the Equals and/or Exceeds

Separation Sep	Columbia							G)	Summis WOCs in Hanso	IND OF Analytical I Soil via EPA Mei Soil via EPA Mei Soil via Training C Yosts, New York Iovember 20, 200	Summary of Analytical Results SVOCs in Soli via EPA Method 8270 Hanson Fire Training Center Yosts, New York November 20, 2001	esuits rod 8270 inter									
Color Colo	Color Colo			SB-1 Grab	S-B-2 Grab	SB-3 Grab	SB-4 Grab	SB-5 Grab	SB-6 Grab	SB-7 Grab	S.B.S.	90	SB-10 Grab	SB-11 Grab	SB-12 Grab	SB-14 Gab	\$B-15 Gab	SB-16 Grab	SB-17 Gab	SB-18 Grab	TASM 4046 Tecommende Sol! Cleanur
Color Colo	Color Colo	Parameter Phenol	Method EPA 8270	<420	<410		330	c410	<410	<420	<13,000	-	<410	12,000	<400	<12,000	<410	<12,000	<400	<400	Objectives (pp
Color Colo	Color Colo	2-Chlorophenol	EPA 8270	<420 <420	4 410 6 10		88	<410	410 410	<420	<13,000 <13,000	380 380	\$ \$10 0 04 0 04	12,000	4400 400 600	<12,000 <12,000	<410 <410	<12,000	4.00 400 600	44.00 64.00	50,000
Carlo Carl	Application	1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	EPA 8270 EPA 8270	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 4 5 6 6 5 6 6		8 8 8 8 8 8	4 4 10 0 14 10	4 4 10 4 4 10 6 10 6 10	420 420 6420	413,000 413,000	888	4410	12,000	\$ 4 4 8 6 6 8 6 8 6 8 6	<12,000 <12,000	4410 4410	<12,000 <12,000	044 000 000 000 000	4400 4400	50,000
Color Colo	## 15 25 25 25 25 25 25 25	2-Methylphenol bis(2-chlordisopropyl)ether	EPA 8270	420	4410		088	410 410	410 410	<420 <420 <420	413,000 13,000	2888 2888 2888 2888 2888 2888 2888 288	4 10	12,000	000	<12,000 <12,000	410 410	<12,000 <12,000	0000	864	50,000
Color Colo	410	n-Nitroso-di-n-propylamine Hexachioroethans	EPA 8270	24.2	410		3000	4 4 10	410	\$ 50 50 50 50 50 50 50 50 50 50 50 50 50 5	000	380 08	410	12,000	000	412,000 412,000 412,000	014 4	412,000 412,000	000	0000	90,000
Act	410	Isophorone 2-Nitrophenol 2,4-Dimethylphenol	EPA 8270 EPA 8270 EPA 8270	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 0 0 0 0		8888	2 4 4 4	0144	2 4 4 4 2 5 5 5	000 000 000 000 000 000 000 000 000 00	38 88 8	00000	12,000	9999	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	00144	00000000000000000000000000000000000000	8688	\$ \$ \$ \$ \$ \$ \$ \$	50,000
April 1989 4410	2500 2500	bis(2.Chloroethoxy)methane 2,4-Dichlorophenol 1,2,4-Trichlorobenzene	EPA 8270 EPA 8270	4420 4420	0142		888	4 4 10 0 0 0 0	4410	420 6420 6420 6420 6420	413,000 413,000	380	014	12,000	0000	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4 4 4 0 0 0	12,000 12	888	004	90,000
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	Naphthalene 4-Chloroanline Hazarhiomhitadiane	EPA 8270	4420 4420	44.0	240	200 4390	410	4410	1.100	×13,000	3300	000	12,000	000	<12,000	560	×12,000	05 v	64 64 64 64 64 64 64 64 64 64 64 64 64 6	50,000
4410 4390 4410 4410 4410 4410 4420 13300 4380 4410 412000 4410 14200 14200	4410	4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene	EPA 8270 EPA 8270 EPA 8270	44.00 0.00 0.00 0.00	444	970	310	0144	1	5,400	40,000 2,	800 5,	0100	12,000	00000	3,000	0144	412,000	2000	960	00000
2,000 2,000 <th< td=""><td>## 1500 ## 150</td><td>2,4,6-Trichlorophenol 2,4,5-Trichlorophenol</td><td>EPA 8270</td><td>4420 4420</td><td>224</td><td>24.000</td><td>330</td><td>410</td><td>4 410</td><td>25 4 25 25 25</td><td>×13,000 ×13,000</td><td>888</td><td>410</td><td>12,000</td><td>89</td><td>412,000 412,000</td><td>014</td><td><12,000 <12,000</td><td>869</td><td>888</td><td>20,000</td></th<>	## 1500 ## 150	2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	EPA 8270	4420 4420	224	24.000	330	410	4 410	25 4 25 25 25	×13,000 ×13,000	888	410	12,000	89	412,000 412,000	014	<12,000 <12,000	869	888	20,000
4100 C300 C410 C410 <th< td=""><td> All</td><td>-Nitroaniline Dimethylphthalate Acenaphthylene</td><td>EPA 8270 EPA 8270</td><td>2,100 4,20 4,20 4,20</td><td>2,100 1,100 1,100 1,000</td><td>410 410</td><td>86.8</td><td>2,000 4,10</td><td>4,100 4,100 6,100</td><td>420 420 623 623</td><td>463,000</td><td>41,900 4380 4380</td><td>22.100</td><td>12,000</td><td>00,45</td><td>7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>2,100</td><td>412,000 412,000 412,000</td><td>86.00 80 80.00 80.00 80.00 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8</td><td>8 8 8 8 8 8 8 8</td><td>20000</td></th<>	All	-Nitroaniline Dimethylphthalate Acenaphthylene	EPA 8270 EPA 8270	2,100 4,20 4,20 4,20	2,100 1,100 1,100 1,000	410 410	86.8	2,000 4,10	4,100 4,100 6,100	420 420 623 623	463,000	41,900 4380 4380	22.100	12,000	00,45	7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2,100	412,000 412,000 412,000	86.00 80 80.00 80.00 80.00 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8	8 8 8 8 8 8 8 8	20000
C. 2000 C. 2000 <t< td=""><td>C_0000 C_0000 C_0000<</td><td>2,6-Dinitrotoluene 3-Nitoraniline Acenaphthene</td><td>EPA 8270 EPA 8270 EPA 8270</td><td>420 420 420 420</td><td>2,100 4,100 6,100</td><td><410 <2,000 <410</td><td>2,000 390</td><td>2,000 2,000</td><td></td><td>420 420 42,100</td><td>×63,000</td><td>_ v</td><td>25 100 100 100</td><td>12,000</td><td>22,000</td><td>412,000 460,000</td><td>2.100 100 100 100 100</td><td><12,000 <60,000</td><td>0000</td><td>\$ 4 6 86 86 86 86 86 86 86 86 86 86 86 86 86</td><td>90,000</td></t<>	C_0000 C_0000<	2,6-Dinitrotoluene 3-Nitoraniline Acenaphthene	EPA 8270 EPA 8270 EPA 8270	420 420 420 420	2,100 4,100 6,100	<410 <2,000 <410	2,000 390	2,000 2,000		420 420 42,100	×63,000	_ v	25 100 100 100	12,000	22,000	412,000 460,000	2.100 100 100 100 100	<12,000 <60,000	0000	\$ 4 6 86 86 86 86 86 86 86 86 86 86 86 86 86	90,000
410 4390 4410 4410 4410 4420 413000 4380 4410 412,000 4400 412,000 4410 4410 4420	410 4390 4410 4410 4420 413000 4380 4410 412,000 4400 412,000 4410 412,000 4410 422 423 423 423 424 425 423 425	2,4-Dinitrophenol - Nitrophenol Jibenzofuran	EPA 8270 EPA 8270 EPA 8270	2,2,2,8 2,100 2,100 2,100 2,100	2.2.2.2 8.2.3.3	2,000 2,000 1,000	42,000 390 390 390	2,000 4,000 4,10	8,2,4 81,30 100 100 100 100 100 100 100 100 100 1	22,100 02,100	<63,000 <63,000 <13,000	41,900 41,900 50,900	2,2,8 00,10 00,10	461,000 461,000	2,500 2,000 2,000 2,000	460,000 460,000	25.100 20.100 100 100 100 100 100 100 100 100 10	<60,000 <60,000	2,000	448 88	90,000
4410 4360 4410 410 410 410 420 780 16,000 43,000 45,0	430 430 4410 430 420 480 <td>2, 4. Dinitrotol uene Diethylphthalate F. Chlorophenyl phenylether</td> <td>EPA 8270 EPA 8270 EPA 8270</td> <td>6420 6420 6420</td> <td>0144</td> <td>4410 4410 6410</td> <td>066</td> <td>4410 01410</td> <td></td> <td>420 420 420</td> <td>413,000 13,000</td> <td>2380 2380 2380 2380</td> <td>410</td> <td>12,000</td> <td>0000</td> <td>412,000 412,000</td> <td>0144</td> <td>412,000 412,000</td> <td>0044</td> <td>8 4 4 8 6 6 8 6 6</td> <td>50,000</td>	2, 4. Dinitrotol uene Diethylphthalate F. Chlorophenyl phenylether	EPA 8270 EPA 8270 EPA 8270	6420 6420 6420	0144	4410 4410 6410	066	4410 01410		420 420 420	413,000 13,000	2380 2380 2380 2380	410	12,000	0000	412,000 412,000	0144	412,000 412,000	0044	8 4 4 8 6 6 8 6 6	50,000
410 4390 4410 4420 44300 44300 4430 4420	410	·luorene • Nitroaniline • 6. Dipitro: 2:methylphenol	EPA 8270 EPA 8270 EPA 8270	25.100 201.20	\$2,100 2,100 100 100	2,000 2,000	2,000	2,000 2,000	2,100 2,100 100 100	310 <2,100 <2,100	1,600 <63,000 <63,000	20 <1,900 <1,900	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5,000 :61,000 :61,000	65.50 000,52 000,000	460,000	330 42,100 42,100	×60,000 ×60,000	2,000 2,000 2,000	2.00 200 200 200 200 200 200 200 200 200	50,000
42,000 42,000<	C2,000 C410 C2,000 C410 C2,000 C410 C410 C420 C410	n-Nitrosodiphenylamine t-Bromophenyl-phenylether Texachlorobenzene	EPA 8270 EPA 8270 EPA 8270	420 420 620 620	4 4 4 0 0 0 0	4 4 4 0 0 0 0	888	4410 410 6110	<410 <410 <410	420 420 420	<13,000 <13,000 <13,000	88 88 88 88 88 88 88 88 88 88	<410 <410 <410	12,000	0044	<12,000 <12,000	4410 410 6410	<12,000 <12,000	0440 0400 0043	0044 0004 0004	50,000
410 4390 4410 4410 4420 413000 4380 4410 412000 4410 412000 4410 412000 4400 412000 4410 412000 4400 441	Columbra	Pentachlorophenoi Phenanthrene Anthracene	EPA 8270 EPA 8270 EPA 8270	<2,100 <420 <420	2,100 410 410	2,000 120 <410	<2,000 <390 <390	42,000 410 410	2,100 4,100 4,10	420 420	<63,000 <13,000 <13,000	<1,900 00 380	<2,100 600 3,	2,000	500 9	<60,000 ,800 <12,000	740 1	5,000	190	2,200 210,400	30,000 30,000
4410 4390 4410 4410 4420 4300 80 53 412 000 4400 4200 4400	4410 4390 4410 4420 4420 4300 BO 53 412,000 4400 422,000 4410 420 420 421,000 4410 420 421,000 4410 420 421,000 4410 420 421,000 4410 420 421,000 4410 420 421,000 4410 420 421,000 4410 420 421,000 4410 420 421,000 4410	Carbazole Di-n-butyphthalate ?[uoranthane	EPA 8270 EPA 8270 EPA 8270	<420 <420 <420	4410 4410 4410		6390 6390 6390	<410 <410 <410	4 4 4 0 14 0 14 0 10	420 420 420	413,000 413,000 413,000	888 888 888 888 888 888 888 888 888 88	0410 0410	12,000	644 664 666 664	412,000 412,000 412,000	6410 0142 0100	412,000 412,000 412,000	004	0044 0004 0000	50,000
410 4390 4410 4420 4	410 4390 4410 4410 4420 413000 57 4410 412,000 4400 412,000 4410 4410	Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine	EPA 8270 EPA 8270 EPA 8270	4420 6420 0420	4410 4410 4410		88988	<410 <410 <410	4410 4410 4410	420 420 625 620 620	<13,000 Bi	2380 6770	3 <410 <410	12,000 12,000 24,000	004 %	<12,000 <12,000	×410	412,000 412,000	0400 0470 0770	004	50,000
410 4390 4410 4410 4420 43300 4380 4410 122,000 4400 122,000 4410 122,000 4400 122,000 4410 122,000 1	Color Colo	Senzo(a)anthracene Chrysene ois(2-Ethylhexyl)phthalate	EPA 8270 EPA 8270 EPA 8270	<420 <420 47	<410 44	4	2390	4410 4410 410		420 420 75	<13,000 <13,000 13,000 13,000 13,000 4 4,000 4 4,000 4 4,000 4 4,000 4 4 4 6 4 6 6 6 6 6 6 6 6 6	0,00	\$410 \$410	12,000	0400	412,000 412,000	<410 <410 38	412,000 412,000	\$ \$ \$ \$ \$ \$ \$ \$	4400 4400	400
410 <390 <4410 <410 <410 <422 <13,000 <13,000 <10 <10 <10 <10 <10 <10 <10 <10 <10	410 < 4390 < 4410 < 4410 < 4420 < 413000 4380 < 4410 < 4420 < 413000 4380 < 4410 < 4420 < 413000 4380 < 4410 < 4420 < 41300 4380 < 4410 < 4420 < 41300 4380 < 4410 < 41300 4380 < 4410 < 41300 4380 < 4410 < 41300	Di-n-octylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene	EPA 8270 EPA 8270 EPA 8270	<420 <420 <420	<410 <410 <410		888 888 888 888 888 888 888 888 888 88	4410 4410 4410		420 420 420 420	<13,000 <13,000 <13,000 5,13,000	4 380	4410 410 410	12,000	044 0400 0400 004	<12,000 <12,000 <12,000	4410 4410 4410	412,000 412,000 412,000	000 000 000 000 000	244 064 064 064	50,000 61 610
11,900 9,600 42,700 5,400 33,800 799,000 64,000 24,800 1,270,000 102,000 970,000 38,000 1,186,000 28, 20 12 17 20 14 20 20 16 19 18 19 20 20 15 10 110,110 42,700 40,100 85,600 70,400 8	11.900 9,600 42.700 5,400 33.800 790,000 64,000 24,800 1.270,000 102,000 970,000 38,000 11.80,000 13.80,00	Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(a,h,[)perylene	EPA 8270 EPA 8270 EPA 8270 EPA 8270	428 428 428 428 428	2444 3555		8888	6410 6410 6410 6410	0144 01410 01410	4420 4420 4420 4420	413,000 413,000 413,000	8888	0144 01410 01410	12,000 12,000 12,000 12,000	4 4 4 4 6 6 6 8 8 8 8	412,000 412,000 412,000	01444	412,000 412,000 412,000 412,000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4444 8888 8888	3,200
	Albany NY	fotal TICs Concentration t of TICs fotal Compounds	EPA 8270 (TICs) EPA 8270 (TICs) EPA 8270 + TICs	6,100 11 6,147	4,200 11 4,244	-0-	9,600 17 10,110	700	400		8 8	900	4,800 1, 9 11, 5,318 1,	270,000 1 3 529,300 1	02,000 5 9 15,250 1	70,000	38,000		28,500 20 30,530	123,000 20 128,058	

TABLE 2
Summary of Analytical Results
SVOCs in Soil via EPA Method 8270
Hanson Fire Training Center
Yosts, New York
November 20, 2001

		-								o manual of order	delibertitat									
							1		0	acidina loc	IIIII Campi	1	П	П				П	T	TAGM 4046
Parameter	Method	Grab	Grab	Grab Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	MW-26 Grab	Grab	OF-2 Grab (Grab S	Grab	Grab Grab	Soil Cleanup Objectives (pob)
Phenol bis(2-Chloroethyl)ether	EPA 8270 EPA 8270	4410 4410	<420	<410 <410	400 400	24 004 004 004	<410 <410	<410 <410	4 00 4 00 4 00	<410 <410	4410 4410	<380 <380	<420 <420	<410 <410			430 ×	12,000	<12,000 <12,000	50,000
2-Chlorophenol	EPA 8270	<410	<420	9	400	8	×410	×410	849	410	c410	×380	c420	410	Т	1	×430	12,000	<12,000 12,000	20,000
1.3 Dichlorobenzene 1.4 Dichlorobenzene 1.2 Dichlorobenzene	EPA 8270	410	420	44.0	844	344	4410	4410	3 4 4	4410	4 4 10 6	388	4420 4420	2642			430	12,000	12,000	20,000
2-Methylphenol bis(2-chlorolsopropyl)ether	EPA 8270 EPA 8270	<410 <410	<420 <420	410 410	400	64 66 66 66	c410 c410	410 410	4400 400 604 604 604 604 604 604 604 604	¢410 ¢410	c410 c410	888	c420 c420	<410 <410	\Box		c430 c430	12,000	<12,000	50,000
4-Methylphenol	EPA 8270	<410	<420	<410	<400	<400	<410	<410	<400	<410	<410	<380	c420	<410	\neg	<390	<430	12,000	<12,000	50,000
n·Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene	EPA 8270 EPA 8270 EPA 8270	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4420 4420 52420 520	4410 410 6410	\$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ 6 8	4410 4410 6410	4 4 10 4 10 6 4 10	844 869 869 869	4410 410 410	0144	888	420 420 420	4410 4410	\$610 \$610 \$610	988	4430 4430 4430	12,000	412,000 412,000	30,000
Isophorone 2-Nitrophenol	EPA 8270 EPA 8270	c410	<420 <420	<410 <410	×400 ×400	004. 004.	c410 c410	<410 <410	4400 6400	<410 <410	<410 <410	<380 <380	c420 c420	<410 <410		330	c430 c430	12,000	<12,000	50,000
bis(2-Chloroethoxy)methane	EPA 8270	<410	<420	<410	×400	×400	c410	410	400	<410	<410	<380 <380	c420	c410		2360	c430	12,000	<12,000	900000
2,4-Dichlorophenoi 1,2,4-Trichlorobenzene	EPA 8270 EPA 8270	<410 <410	<420 <420	<410 <410	400 0040	×400 400	<410 <410	<410	4400 0400	<410 <410	<410 <410	88	<420 <420	<410 <410		<390	c430 c430	12,000	<12,000	90,000
Naphthalene 4-Chloroaniline Hexachlorobutadians	EPA 8270 EPA 8270	0144		4410 4410	4400 4400 6400	0044	c410 c410	<410 <410	6400	<410 <410	4410 4410	988	c420 c420	<410 <410			c430 c430	12,000	<12,000	50,000
4-Chloro-3-methylphenol 2-Methylnaphthalene	EPA 8270 EPA 8270	c410 c410		442	800	9400	4410	0 0 0 0	4400	4410	410	380	420	4410 4410		_	c430 c	12,000	<12,000	50,000
2,4,6-Trichlorophenol	EPA 8270	<410	+	410	×400	\$400 \$400	410	4410	×400	c410	410	×380	420	410	<610	<390	c430	12,000	<12,000	90,000
2.Chloronaphthalene	EPA 8270	c410		<410 4410	×400 4400	\$ \$ 00.00	<410 <410	4410 4410	4400 4400	<410 <410	<410 <410	380	<420 <420	<410 <410	<610 .	<390	c430 c430	12,000	<12,000 <12,000	30,000
2-Nitroanline Dimethylphthalate	EPA 8270	2004		410	90,00	2,000	2,000 <410	<2,100	<2,000 <400	<2,100 <410	410	<1,900 4380	420 420	410	<3,000	390	2,200 <430	12,000	<62,000	50,000
2,6-Dinitrotoluene	EPA 8270	<410	+	410 6410	\$ \$ \$ \$ \$ \$	×400 ×400	<410 <410	<410	\$400 \$400	410 410	410 410	4380	c420	c410	<610	230	c430 c430	12,000	<12,000	50,000
3-Nitoraniline Acenaphthene	EPA 8270	<2,000		410	2,000 4,000 4,000	<2,000 <400	4,000	<2,100	66 86 86 86 86 86 86 86 86 86 86 86 86 8	2,100 100 100 100 100 100 100 100 100 100	4,100	<1,900	2,100	<2,000 <410	3,000	<390	2,200	900 9	<62,000	90,000
2,4-Dintrophenol	EPA 8270 EPA 8270	2,000 2,000 000,000		2,2 8,8 8,8	2 2 8 8 8 8	2,000	2,000	2,100	6,000 000,000	8,100 001,5	861.9	1,900	2,100	2,000	3,000	2,000	2,200	62,000	<62,000 <62,000	90,000
Dibenzofuran 2 4.Dinitmtoluana	EPA 8270	<410	-	6410	400	900	c410	4410	4400	<410 7410	410	<380 2380	c420	c410	<610	390	<430	12,000	4,600	20,000
Diethylphthalate 4-Chlorophenyl-phenylether	EPA 8270 EPA 8270	4400		4 4	\$ 4 4 8 8 8	\$ \$ \$	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	44 10	388	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	554 505	888	c420 c420	4400	\$610 \$610	388	430	12,000	<12,000	50,000
Fluorene 4-Nitroaniline	EPA 8270 EPA 8270	4 4 6 00 6 00 6 00 6	_	8 % 6 000,6	866	989	6,000 0,000 0,000	0142	\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	\$ 87 585	5,26	2,900	c420 c2,100	410 2,000 2,000	\$ 610 \$ 000 \$ 000 \$ 000	4380 45,000 5,000 5,000	2,200 6,	5200 1	6,000 <62,000	30,000
n.Nitrosodiphenylamine	EPA 8270	c410	-	c410 c410	4400	400	<410 <410	c410 c410	0040	410	4 10	<380 <380 <380	<420	410	4610	2300	c430 c430	12,000	<12,000	50,000
Hexachlorobenzene	EPA 8270	<410	-	<410	400	<400	<410	<410	400	<410	<410	<380	<420	<410	<610	<390	<430	12,000	<12,000	50.000
Phenanthrene Phenanthrene Anthracene	EPA 8270 EPA 8270	410	c420 c420	<410 <410	400	4400 4400	4410 4410	<410 <410	969	410	2 6 4 5 5 10 5 -	<380 <380 <380	420	<410 <410	<610 <610 <610		c430 7,	700 2	7,000	90,000
Carbazole Di-n-butyphthalate Fluoranthana	EPA 8270 EPA 8270 FPA 8270	410 6410	4420 4420	4410 4410	0044 0000	004.40 004.00	4410 4410	4410 4410	04 4 4 0 0 0 0	4410 4410	4 4 5 0 0 5 0 0 5	< 380 < 380 < 380	0420	410 410	<610 <610 71		c430 c430	12,000	<12,000 <12,000	50,000
Pyrene Butylbenzylphthalate 3.3'-Dichlerobenzidine	EPA 8270 EPA 8270 EPA 8270	4410 6410 0183	<420 <420 <830	4410 4410 810	4400 800 800 800 800 800	450 450 790 790	4410 4410 6810	¢410 ¢410	0 440 0 0 0 0	<410 <410 <820	4410 4410 6820	<380 <380 <760	420 420 830	<410 <410 <810	<610 <610 5120 5120	63 <390 <780	<430 <430 <870	12,000	<12,000 <12,000	50,000
Benzo(a)anthracene Chrysene	EPA 8270 EPA 8270	410 410	420 420	4410 4410	\$ \$4 8 8	\$ \$ \$ \$	410 410	<4 10	4500	\$410 \$410	¢410	<380 380 380 380	<420 <420	<410 <410	<610 4610 44 610 56	$\overline{}$	<430 <430	12,000	<12,000 <12,000	224
Dis(2-Ethylhexyl)phthalate	EPA 8270 EPA 8270	4 4 5 5 5 5	\$420 \$420	¢410	4400	4 6 6 6 6 6 7	<410	<410 <410	4400 4400	410 410	<410 <410	×380 ×380	<420 <420 4	<410	<610 <610		<430	12,000	<12,000 <12,000	50,000
Benzo(b)fluoranthene Benzo(k)fluoranthene	EPA 8270 EPA 8270	<410 <410	<420	410 410	665 605 605 605 605 605 605 605 605 605	4400 4400	4410 4410	<410	4400 4500	<410 <410	<410 <410	<380 <380	<420 <420	<410	<610 <610 46	O. I.C	6430 630	12,000	<12,000 <12,000	610
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	EPA 8270 EPA 8270	<410 <410	<420 <420	<410 <410	l	4400 400	¢410 ¢410	<410 <410	640 640	¢410 ¢410	<410 <410	<380 <380	<420 <420	<410	<610 4:	<390	430	12,000	<12,000 <12,000	3,200
	EPA 8270 EPA 8270	<410	<420 <420	410 410	4400 4400	400 400	<410 <410	<410	88	00	00	00	<420 <420	<410	<610 <610	<390 <390	<430 <430	12,000	<12,000	50,000
Total TICs Concentration # of TICs Total Compounds	EPA 8270 (TICs) EPA 8270 (TICs) EPA 8270 + TICs	1,200	4,200 1,3 4,200	3,300 11 3,300	1,200	4,000 112 1,000	1,900 1,7 1,010	300	500	2,200 3 8 1 2,200 3	3,900	100	5,000 11 5,000	146	1,500 5, 5 1,500 6,	900 6, 0 14 263 6.2	100 1, 245 2,	190,000 9 2 325.800 1	330,000	• • • • • • • • • • • • • • • • • • •
Comments: All values are reported in ug/kg - parts per billion (ppb). Analytica facility, Adionodack Environmental Services, Inc., Albany, NY. Values in RED Equals and Yor Exceeds	rted in ug/kg · par Adirondack Enviro als and/or Exceed	ts per billion nmental Se. s vvs occ	n (ppb). rvices, Inc.,	Albany, NY	JioS papua	Cleanup Ob	Hectives (D)	(90)	1										VD=None D VA=Not Ava	etected

TABLE 3
Summary of Analytical Results
PCBs in Soil via EPA Method 8082
Hanson Fire Training Center
Yosts, New York
November 20, 2001

									Samp	Sample Identification	ation		:					
		SB-1	SB-2	SB-3	SB-4	SB-5	SB-6	SB-7	SB-8	SB-9	SB-10	SB-11	SB-12	SB-14	SB-15	SB-16	SB-17	SB-18
		Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Parameter	Method																	
Arochlor-1016	EPA 8082	<42	c41	142	95 39	<41	c41	<42	<42	88	<41	4	\$ 6	440	c41	40	<u>د40</u>	×40
Arochlor-1221	EPA 8082	4 2	4	¢41	98 2 3	44	44	4 2	<42	8	44	44	4	4	44	۸ 5	4	4
Arochlor-1232	EPA 8082	<42	<41	44	88	44	<41	<4 2	×42	88	44	142	4	\$	641	۸ 4 0	\$	×40
Arochlor-1242	EPA 8082	<42	<41	4	8	44	۲ 4 2	\$	<42	8	4	44	\$	\$	44	\$	6 4√	<40
Arochlor-1248	EPA 8082	<42	×41	د4 1	8	441	c41	<42	<42	88,	441	441	\$	۸. 40	<41	440	045	0 4>
Arochlor-1254	EPA 8082	4 2	4	4	800	44	4	×42	<42	8	<41	44	\$	4	44	۸ 4	\$	4
Arochlor-1260	EPA 8082	<42	<41	<41	<39	24	<41	5.1	<42	11	<41	<41	21	<40	<41	12	8.3	<40
Comments: All values are reported in ug/kg - parts per billion (ppb).	s are reported in t	ug/kg - part	s per billio	. (ddd) r												ND=None Detected	Detected	
Analytica	Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY.	lack Enviro	nmental Se	irvices, Inc	., Albany,	×.										NA=Not Available	vailable	
NYS DE	NYS DEC TAGM 4046 Recommended Soll Cleanup Objective is	ecommend	ed Soil Cle	anup Obje	ctive is 10	1 dag 000 (oob for total PCBs	Bs										

TABLE 3
Summary of Analytical Results
PCBs in Soil via EPA Method 8082
Hanson Fire Training Center
Yosts, New York
November 20, 2001

									Sampl	Sample Identification	ation								
		MW-14	MW-14 MW-15	MW-16 MW-17	MW-17	MW-18	WW-19	MW-20	MW-21	MW-22	MW-23	MW-24	MW-25	MW-26	OF-1	0F-2	B-1	SW-1&2	SW-3&4
		Grab	Grab		Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Parameter	Method																		
Arochlor-1016	EPA 8082	<41	<42	c41	<40	40	<41	<41	<40	c43	c41	<38	<42	c41	61	85	<43	<42	<41
Arochlor-1221	EPA 8082	44	<42	^	۷40	۷40	×41	۸ 14	۸40	×43	441	×38	<42	۲41	61	& %	۸43	<42	<41
Arochlor-1232	EPA 8082	44	<42	<41	40	<40	44	441	×40	<43	<41	<38	<42	<41	<61	<39	<43	<42	<41
Arochlor-1242	EPA 8082	c41	<42	c41	<40	×40	×41	c41	<40	c43	<41	×38	<42	<41	<61	<39	<43	<42	<41
Arochior-1248	EPA 8082	44	<42	<41	<40	440	c41	^	<40	<43	^41	88	<42	<41	61	6E>	<43	<42	<41
Arochlor-1254	EPA 8082	44	<42	c41	<40	440	16	×41	×40	c43	c41	×38	<42	<41	<61	<39	<43	<42	<41
Arochlor-1260	EPA 8082	<41	<42	<41	<40	<40	<41	<41	<40	<43	<41	×38	<42	<41	18	40	<43	99	29
Comments: All values are reported in ug/kg - parts per billion (ppb)	s are reported in	ug/kg - par	ts per billic	n (ppb).													ND=None	ND=None Detected	
Analytica	Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY.	dack Envir	onmental	Services, Ir	ic., Albany	N.											NA=Not Available	\vailable	
NYS DE	C TAGM 4048 F	ecommen(ded Soll C	eanup Obje	active is 10	ddd 000'(for total PC	PCBs.						٠.					

Summary Of Groundwater Gauging Data Hanson Fire Training Center Yosts, New York December 3, 2001 **TABLE 4**

Project: Ha	Project: Hanson Fire Training Center	ing Center		Location: Yosts, NY	ts, NY.	
Date: Dece	Date: December 3, 2001			Project #: B00138-4	0138-4	
Well	Top of Casing	Top of Screen	Bottom of Well	Product	Depth to	Groundwater
I.D.	Elevation	Elevation	Elevation	Thickness	Groundwater	Elevation
MW-1	97.00	96.00	86.00	0.00	3.30	93.70
MW-2	97.78	96.78	86.78	0.00	2.96	94.82
MW-3	99.66	98.66	88.66	0.00	3.73	95.93
MW-4	99.48	98.48	88.48	0.00	3.38	96.10
MW-5	99.72	98.72	88.72	0.00	3.63	60'96
MW-6	99.28	98.28	88.28	0.00	2.82	96.46
MW-7	97.68	96.68	86.68	0.00	1.63	96.05
MW-8	99.13	98.13	88.13	0.00	2.92	96.21
WW-9	99.64	98.64	88.64	0.00	3,18	96.46
MW-10	99.15	98.15	88.15	0.00	3.13	96.02
MW-11	98.79	97.79	87.79	0.00	2.46	96.33
MW-12	99.94	98.94	88.94	0.00	4.51	95.43
MW-13	98.88	97.88	87.88	0.00	1.98	96.90
MW-14	96.96	96'36	85.96	0.00	2.28	94.68
MW-15	94.10	93.10	83.10	0.00	1.80	92.30
MW-16	94.71	93.71	83.71	0.00	7.86	86.85
MW-17	96.27	95.27	85.27	0.00	2.55	93.72
MW-18	95.45	94.45	84,45	0.00	1.48	93.97
MW-19	97.36	96.36	86.36	0.00	2.40	94.96
MW-20	98.34	97.34	87.34	0.00	3.50	94.84
MW-21	98.47	97.47	87.47	0.00	2.99	95.48
MW-22	99.30	98.30	88.30	0.00	4.75	94.55
MW-23	101.74	100.74	90.74	0.00	6.62	95.12
MW-24	100.68	89.66	89.68	0.00	5.64	95.04
MW-25	98.57	97.57	87.57	0.00	3.09	95.48
MW-26	96.79	95.79	85.79	0.00	4.04	92.75
Comments:	All values are r	values are reported in feet.				
NA = Not Available	vailable.					

Brownfields I.D. #: B00138-4

NYS Spill #: 9606805 NYS Spill #: 9608496

VOCs in Groundwater via EPA Method 8260 Summary of Analytical Results Hanson Fire Training Center Yosts, New York December 3, 2001 TABLE 5

							Samp	Sample Identification	ation						
		MW-1	MW.2	MW.3	MW-A	MW-5	MW-6	MW-7	WW-8	WW-9	MW-10	MW-11	MW-12	MW-13	NYS DEC
		Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Standards
Parameter	Method														(qdd)
Chloromethane	EPA 8260	~ 20	د 10	×10	<10	<100	×10	<20	۷10	<10	<10	410	۲۱٥	۰ 10	N)
Bromomethane	EPA 8260	တို့ (v 10	۲9 ا	٠ 1	۲۰ 9	ک ا	250	0 5	۰۲0 د د د	운 :	Q .	٠ و و	운 :	ומו
Vinyl Chloride	EPA 8260	\$ 50	× 10	210	\$	v 100	د اه	² 50	410	410	×19	v 10	¢10	29	2
Chloroethane		\$20	٠ ا	۲۰ د	×10	×100	40	×50	v 10	۲ <u>۰</u>	49	ر	410	٠ 9	20
Methylene Chloride		27	φ ş	2	ç,	45	9	9	Ç	מו	ზ ;	ზ ჭ	က် ရှိ	0)	in f
Acetone	EPA 8260	\$ \$20	×10	210	×10	v 199	~ 10	250	×10	۷ <u>.</u> 10	×10	~ 10	√10 V	210	20
Carbon Disulfide	EPA 8260	< 52	ψ	Ϋ́	Ϋ́	\$	Ϋ́	۲ <u>۰</u>	ა ზ	ςŷ	Ϋ́	လို	Ϋ́	ψ	20
1,1-Dichloroethene	EPA 8260	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ις L	ις, ι	ις, i	တို့	ις, i	5	ις L	ເ ເບິ່ງ	ψ, i	ψ, i	ເນີ ເນີ	ψ	uo u
1,1-Dichloroethane	EPA 8250	65	ç '	€ .	ç	2	₽,	210	Ç,	ç '	Ş,	₽,	ر	€	n
1,2-Dichloroethene-trans	EPA 8260	~	ç	٧	Ş	<u>ئ</u>	Ϋ́	ا	Ϋ́	Ą	ς,	Ϋ́	Ϋ́	٠	an .
Chloroform	EPA 8260	4 25	φ, i	က် က	ις, i	လ လ	ψ, i	ک ج	ίζ,	ις, r	ψ, i	ς, i	ιδ i	က	- 1
1,z-Dichloroethane	EPA 8260	675	ç	ç	ç	OC.	ဂ	OL>	ç	ç	ç	ç	ç	ç	n
2-Butanone	EPA 8260	×20	٠ ک	× 10	×10	× 100	v 10	200	410	v 10	۲ ۰	۰ ۱	v 10	٠10	20
1,1,1-Trichloroethane	EPA 8260	<25	ۍ ا	Ş	\$	°20	က်	٠ 10	ψ	လူ	လူ	လူ	လို	ςς '	ומו
Carbon Tetrachloride	EPA 8260	<25	ψ,	\$	Ş	×20	ψ	×10	ŝ	Ş	ŝ	\$	Ş	လို	S
Bromodichloromethane	EPA 8260	< 25	Ş	ψ	ςŷ	\$ \$	ŝ	40	ç	\$	ψ	ŝ	ψ	\$	r)
1,2-Dichloropropane	EPA 8260	<25	\$	ςŞ	Ş	, 20	ŝ	410	ŝ	ŝ	ŝ	ŝ	ŝ	\$	ın
cis-1,3-Trichloroethane	EPA 8260	<25	ŝ	Ş	<5	<50	လို	<10	~	Ŝ	Ş	\$	\$	<5	20
Trichloroethene	EPA 8260	<25	ςŞ	Ŝ.	\$	<50	လ	<10	Ŝ	\$	\$	ςς.	\$	<5	22
Dibromochloromethane	EPA 8260	<25	ç,	Ş	Ş	\$ 20	\$	×10	សូ	Ϋ́	ŝ	ស្ត	ŝ	\$	50
1,1,2-Trichloroethane	EPA 8260	<25	\$	\$	~	<50	\$	<10	~	<5	ŝ	ŝ	\$	<5	10
Benzene	EPA 8260	200	\$	\$	~	026	11	×10	<5	190	Š.	<5	\$	22	0.7
trans-1,3-Dichloropropene	EPA 8260	<25	Ą	Ş	ŝ	<50	\$	۲10	\$	\$	δ	\$	\$	\$	ID.
Bromoform	EPA 8260	<25	ς,	\$	\$	<50	<5	<10	₹2	\$	Ŝ.	~	\$	\$	9
4-Methyl-2-Pentanone	EPA 8260	<50	<10	<10	<10	<100	<10	<20	<10	<10	<10	<10	<10	<10	20
2-Hexanone	EPA 8260	<50	۲9	۷10	<10	<100	۲ <u>۰</u>	۲50 م	410	×10	۸10	410	۷10	<10	10
Tetrachloroethene	EPA 8260	<25	\$	Ş	\$	<50	\$	×10	\$	\$	Ϋ́	\$	ς,	Ϋ́	n)
1,1,2,2-Tetrachloroethane		<25	ς,	Ş	\$	<50	\$	×10	ς,	\$	Ŝ	\$	\$	ŝ	ID.
Toluene		25	ςς	ς	ຽ	100	17	37	ŝ	18	۸ ئ	ŝ	ςς.	_	ın.
Chlorobenzene	EPA 8260	<25	ç	ŝ	\$5	<50	<5	×10	~ 2	Ş	ŵ	လို	\$	S.	10
Ethylbenzene	EPA 8260	530	ç,	ç	\$	150	120	110	\$	82	လို	, N	Ş	40	10
Styrene	EPA 8260	< 25	ŝ	çς	ŝ	2 20	ςς	40	ς	ψ.	ψ	ကို	ŝ	လို	10
1,2-Dichloroethene-cis	EPA 8260	<25	Ŝ	ş	ŝ	<50	\$	<10	۸ ئ	\$	Ą	\$	\$	ŝ	2
m,p-Xylenes	EPA 8260	190	\$	ψ	ŝ	300	120	330	\$	100	လို	ŝ	\$	79	in
o-Xylene	EPA 8260	34	ŝ	\$	\$	320		91		14	\$	ŝ	ς2	10	22
Total TICs Concentration		1,760	204	0		1,740	183	270	!	701	0	0	947	1,096	
# of TICs		7	=	0		11		11		7	0	0	=	12	
Total Compounds	EPA 8260 + TICs	2,766	204	5	166	3,625		1,338	0	1,110	0	0	947	1,258	
Comments: All values are reported in ug/L - parts per billion (pp	sported in ug/L - parts	s per billior	J (bpb).											ND≃None Detected	Detected
Analytical Facilit	Analytical Facility: Adirondack Environmental Servic	nmental S	ervices, In	es, Inc., Albany, NY	N ج									NA=Not Available	ailable
Values in red Eq	Values in red Equals and/or Exceeds NYS DEC Gr	NYS DEC	Grounds C	water Stand	ards (ppb)	1									

Brownfields I.D. #: B00138-4 NYS Spill #: 9606805 NYS Spill #: 9608496

TABLE 5
Summary of Analytical Results
VOCs in Groundwater via EPA Method 8260
Hanson Fire Training Center
Yosts, New York
December 3, 2001

							Sample	Sample Identification	ation				111111111111111111111111111111111111111		
		MW-14	MW-15	MW.16	MW-17	MW-18	MW-19	MW-20	MW-21	MW-22	WW-23	MW-24	MW.25	MW-26	NYS DEC
		1	1110	1	1	1		4		1		1	1-0	1	Section of the sectio
Parameter	Method	Grap	Grab	Grab	Grab	Grab	Grab	Grab	Gran	Grab	Grap	Grab	Grab	gezo	(ppp)
Chloromethane	EPA 8260	410	6 5	×10	410	55	40	د 10	95	410	40	410	410	×10	tO.
Bromomethane	EPA 8260	5	۲ <u>۰</u>	40	٠ و	40	410	×10	40	410	410	410	410	410	10
Vinyl Chloride	EPA 8260	<10	<10	<10	×10	×10	<10	×10	<10	×10	410	×10	<10	×10	2
Chloroethane	EPA 8260	×10	×10	×10	410	40	410	410	×10	×10	410	٠10	×10	<10	20
Methylene Chloride	EPA 8260	\$	Ş	\$	ŝ	សូ	ς	Ş	ςŞ	လို	ŝ	ŝ	ç	, S	10
Acetone	EPA 8260	<10	×10	410	~10	40	×10	410	410	۷10	×10	۲۰	410	410	50
Carbon Disulfide	EPA 8260	ŵ	δ.	Ŝ	\$	\$	ς,	လို	សូ	\$	ŝ	ŝ	ιŷ	Ş	20
1,1-Dichloroethene	EPA 8260	Ą	Ą	\$	ςς	ς,	ιζ	22	ស្	\$	ស	ŝ	Ϋ́	ŝ	2
1,1-Dichloroethane	EPA 8260	δ	ŝ	ŝ	\$	٨	ς	Ŝ	\$	Ϋ́	ŝ	ιζ	ູດ	ŝ	1O
1,2-Dichloroethene-trans	EPA 8260	ş	\$	\$	\$	ŝ	જ	\$	ιŞ	S	Ş	\$	ψ.	Ą	(C)
Chloroform	EPA 8260	ιδ	ŝ	Ŝ	\$	Ϋ́	ıئ	\$	Λ	ς	ιΩ	Ŝ	Ϋ́	Ϋ́	7
1,2-Dichloroethane	EPA 8260	Ą	\$	ŝ	Ş	ູດ	٠Ĉ	ν Ω	γ	ψ	N N	ŝ	ν Ω	Ą	22
2-Butanone	EPA 8260	<10	×10	×10	×10	410	410	c10	×10	×10	×10	×.	×10	<10	50
1,1,1-Trichloroethane	EPA 8260	Ą	٠	\$	\$	Ϋ́	٨,	\$	\$	ς	ů	ŝ	şç	Ϋ́	LO.
Carbon Tetrachloride	EPA 8260	δ	ŝ	\$	\$	Ş	Ϋ́	Š	, O	γ.	ς	\$	ů	ς,	10
Bromodichloromethane	EPA 8260	\$	\$	\$	Ş	ιδ	ξ,	٨	ŝ	ς,	\$	ŝ	\$	\$	10
1,2-Dichloropropane	EPA 8260	Ą	ψ	Ą,	ςŷ	ŝ	ñ	ŝ	ş	ŝ	رې ک	ŝ	ស្	Ą	ın
cis-1,3-Trichloroethane	EPA 8260	\$	\$	\$	\$	ς,	ې ئ	\$	۸ ئ	\$	\$	\$	\$	\$	IO.
Trichloroethene	EPA 8260	Ŝ.	လိ	Ş	\$	\$	\$	<5	\$	\$	<5	\$	\$	\$	ເດ
Dibromochloromethane	EPA 8260	Ϋ́	Ŝ	ې ئ	ŝ	۸ ئ	Ŝ,	٨	Ϋ́	ئ ئ	٨	\$	ې ئې	ŝ	20
1,1,2-Trichloroethane	EPA 8260	ŝ	Ą	\$	\$	\$	~	\$	\$	\$	\$	<5	~	\$	10
Benzene	EPA 8260	ις	ې ئې	Ŝ	\$	Ŝ	Ŝ.	\$	\$	\$	\$	\$	<5 2	î,	0.7
trans-1,3-Dichloropropene	EPA 8260	٨	ç	ۍ ک	ŝ	ŝ	٠ ئ	\$	Š,	ςς	۸.	ŝ	ស្ត	ς,	10
Bromoform	EPA 8260	\$	\$	\$	~	ς2	Ş	<u>د</u>	<5	~	ې ئ	\$	\$	\$	20
4-Methyl-2-Pentanone	EPA 8260	۲10	<10	<10	<10	×10	<10	<10	<10	<10	<10	×10	×10	×10	20
2-Hexanone	EPA 8260	۲9	\$	٠ 1	× 10	۷10	۷,	×10	۷۲٥	٠,	۲٥	~10 ~	۲ <u>۰</u>	×10	MD:
Tetrachloroethene	EPA 8260	Ą	ξ,	\$	ŝ	Ŝ	\$	လို	δ	ψ	ς,	\$	\$	ŝ	ı,
1,1,2,2-Tetrachloroethane	EPA 8260	٨	ŵ	ψ	ŝ	ស	٠,	ŝ	ر ک	Ϋ́	Ϋ́	ŝ	Ϋ́	ŝ	4D
Toluene	EPA 8260	٨	۸,	ψ	Ŷ	Ϋ́	ψ	Λ	Ą	ψ	ť	ç	Ą	Ϋ́	ທ
Chlorobenzene	EPA 8260	\$	Ϋ́	ů	φ.	ŝ	ŝ	ιζ	Ŝ	ς,	Ŝ	\$	ŝ	\$	ın
Ethylbenzene	EPA 8260	Ą	Ą	Ą	Ą	ŝ	Ą	ŝ	ις	ç	Ą	ŝ	Λ	Ş	tO.
Styrene	EPA 8260	Ą	۸,	Α.	Ϋ́	ς,	Ą.	Ϋ́	ς,	Ϋ́	ίΩ	ů	δ	ŝ	IO.
1,2-Dichloroethene-cis	EPA 8260	ςŞ	\$	ιζ	Ą	ŝ	ις	လို	د ک	ŝ	\$	Ϋ́	ŝ	۸ 5	10
m,p-Xylenes	EPA 8260	<u>ئ</u>	\$	\$	Ş	\$	\$	ις	~	Ŝ	Ŝ	សូ	\$	\$	IO.
o-Xylene	EPA 8260	ιζ	\$	\$	Ą		ري ک	ې ئې	ŝ	ŝ	ς,	ŝ	ŝ	~	22
Total TICs Concentration	EPA 8260 (TICs)	0	43	0	0		13	0	0	0	0	0	0	0	
# of TICs	EPA 8260 (TICs)	0	က	0	0	0	7	0	0	0	0	0	0	0	
Total Compounds	EPA 8260 + TICs	0	43	0	0	J	13	0	0	0	0	0	0	0	
Comments: All values are reported in ug/L - parts per billion (ppb)	ported in ug/L - parts	per billo	n (ppb).											ND=None Detected	Detected

Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY.
Values in red Equals and/or Exceeds WS DEC Groundwater Standards (ppb).

Brownfields I.D. #: B00138-4 NYS Spill #: 9606805 NYS Spill #: 9608496

NA=Not Available

Parameter		**	** ** ** ** ** ** ** ** ** ** ** ** **	**************************************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ 0.00000000000000000000000000000000000	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Gab 510 610 610 610 610 610 610 610 610 610 6	(M.13 (S.5) (10 (10 (10 (10 (10) (10) (10) (10) (1	Groundwater Stendards (cop)
Name	99999999999999999999999999999999999999	99999999999999999 999	ଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେଟ୍ରେ	999999999999999999999999999	ଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରକ୍ଟ୍ରକ୍ଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ର	9999999999999999	9999999999999	222222	9999	8 - 2 S
EN 8270 EN	99999999999999999999999999	99999999999999999999999999999999999999	ଚ୍ଚିତ୍ର କ୍ରିକ୍ କ୍ରେକ୍ କ୍ରିକ୍ କ୍ରିକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ୍ରକ	9999999999999999999999999	ଟ୍ର ବିଷ୍ଟ ବ	9999999999999 99	99999999999	00000	01v	06
EN 8270 EN	233333333333333333333333333333333333333	99999999999999999999999999999999999999	ଟ୍ଟେମ୍ଟ୍ରଟ୍ଟେମ୍ବ୍ରଟ୍ଟେମ୍ଟ୍ରଟ୍ଟେମ୍ବର୍ଗ୍ଟେମ୍ବର୍ଗ୍ଟେମ୍ବର୍ଗ୍ଟେମ୍ବର୍ଗ୍ଟେମ୍ବର୍ଗ୍ଟର୍ଗ୍ଟେମ୍ବର୍ଗ୍ଟର୍ଗ୍ରମ୍ବର୍ଗ୍ରମ୍ବର୍ଗ୍ରମ	3999999999999999999999999	୨୫ଟେ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ ବର୍ଷ	99999999999 99	333333333333	3355		47
FR 8270 FR	2322323232323232323232323232323	9999999999999 999	ଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ୍ରଟ	222222222222222222222222222222222222222	68888888888888888888888888888888888888	999999999 99	999999999	610	388	2 2 4
EN 8270 EN	36546546546 5	9999999999999999999	\$65 965 66566	223223232333333333333333333333333333333	88888 8888₈888 ₂ 8888	999999999	222223	101	410 410	600
FR 8270 FR	2999999999 999999999999999	33333333333333333333333333333333333333	6 9 9 8 9 9 8 9 9 ₃ 9 9 8 ₆ 9 8 9 8 9 9	233233333333333333333333	3888 8888888 888	399999999	200000	V10	017	250
EN 8270 EN	222222222222222222222222222222222222222	000000000000000000000000000000000000000	8888888 ₈ 8888	233233333333333333	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	99999	2000	200	399	Sam
EN 8270 2 10 10 10 10 10 10 10 10 10 10 10 10 10	3333 335 3333833838	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5655 ₃ 566 ₂ 565555555	200000000000000000000000000000000000000	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	222	,	0 0	077	30
EN 8270 EN	333 336 3333833838	337 337 337 337	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	333333333333333	666 696 696	300	2	×10	010	101
EPA 8270 EPA 82	300 00000000000000000000000000000000000	338 3333833	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	222222222	898 88888	010	225	200	399	n → 10
EN 8270 6.10 1.10 1.10 1.10 1.10 1.10 1.10 1.1	300000000000000000000000000000000000000	300000000000000000000000000000000000000	66 66 66 66 66	200000000000000000000000000000000000000	66	00 00 00 00 00 00 00 00 00 00 00 00 00	SS:	410 410	×10	De S
EAR 8270	99999999999	200000000	8888888	2222222	8888	2015		010	010	305
EPA 8270 EPA 82	66666666666	888888	F F F F F F F F F F F F F F F F F F F	999899	888	~ 10	0 7 7	×10	<10	C In
EN 8270 EN	970000000000000000000000000000000000000	8888	888	\$ 5 5 £	4	<10 <10 <10	<10 <10 <10	015 015 015	~ 010 010 010	0 7 0
EPA 8270 EPA	26.66	012	2		650 550 550 550 550 550 550 550 550 550	80 C	\$ 5 5	8 4 4 8 0 0 0	% % %	2 S 0
EPA 8270	<50	5 50	25°	2 5 0 10 0 0 10 0 0	<50 <250 12	450 450 450 450	565	410 450 10 10 10 10 10 10 10 10 10 10 10 10 10	410 410 11 450	S or or
EPA 8270	\$ 50	\$ \$\$ \$ \$\$	5555 5555 5555 5555 5555 5555 5555 5555 5555	£ 55 €	250 250 4250	650 500 100 100 100 100 100 100 100 100 1	450 450 100 100 100 100 100 100 100 100 100 1	450 450 10	85.55 25.55	នា រក រក
EPA 8270	888	998	S 50 50	555	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	200 200 200 200 200 200 200 200 200 200	7 7 V	4 10 0 10 0 0 10 0 0	\$ \$ \$	e & e
ine EPA 8270 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	ت گئي گئي	% & 	2550 2550 2550 2550	5 55 50 5 50 50 5 50 5 50 50 50 50 50 50 50 50 50 50 50 50	31 <250 <250	450 550 550	450 450 550	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	*1 65 55 55	O so so
EPA 8270 <50 <50 <50 EPA 8270 <10 <10 EPA 8270 <10 EPA 8270 EPA 8270 <10 EPA 8270 EPA 8	25.4	999	888	200	888	25.5	255	000	200	O 25 00
EPA 8270 <10 <10 EPA 8270 <10 <10 EPA 8270 <10 <10	5 <50 <10	11 c50 20 04 20 04	2250 31 450	65 5 5 6 5 5 5 6 5 5 5	<250 450 <50	8000 8000 8000	500 500 500 500 500 500 500 500 500 500	\$ 50 ° 50	29 410	- 000
	\$ \$ \$ \$	700	888	000		4 <10 <10	255	252	410 410 10 410	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
e EPA 8270 <10 <10 on the EPA 8270 <10 <10 on the EPA 8270 <20 <20	\$ \$ \$ \$	998 898	85 85 85 85 85 85	\$ \$ \$	4.50 4.50 4.50	\$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 <10 <20	000
EPA 8270 <10 <10 EPA 8270 <10 <10 EPA 8270 <10 <10	\$ 0 0 V	999	888	0000	\$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20 \$20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	0100	000	0 002
EPA 8270 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	0 0 V	999	6, 6, 6, 6, 6, 6,	000	450 50 50 50 50 50	2000	000 000 000	0000	200	0 005
1 W W W W	0000	2668	8 8 8 8	2000	450 00 00 00 00 00 00 00 00 00 00 00 00 0	2555	77000	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	01000	00000
Total 105 Concentration EPA 8270 (TICs) 509 293 25 179 EPA et 1105 20 3 20 3 20 3 20 3 24 24 25 25 176 EPA 8270 + TICs	1.180 18 1.298	1,850	1.8 1.8 1.8	102	8.800 20 9.158	52 7 36	33.52	328 19 328	940 18	

Summery of Analytical Results
SVOCs In Groundwater via EPA Method 8270
Hanson Fire Training Center
Yosts, New York
December 3, 2001

The control of the co				MW-16 Grab	6/45 6/45 010	MW-18 Grab	Grab	MW-20 Grab	MW-21 Grab	MW-22 Grab	MW-23 Grab	MW-24 Grab	MW-25 Grab	MW-26 Grad	NYS DEC Groundwater Standards (ppb)
			2222	<10	077										
				97	??				255	200	200		200	0000	~ § §
		38388888888888		255	######################################		2000 1000 1000 1000 1000 1000 1000 1000		200	200	2000 2000 2000 2000		200	2000 1000 1000 1000 1000 1000 1000 1000	gen.
									325		200	200	2000		020
2.7.7.			2888	2000	2000	2665		2005	3688		3888		2000	2000	S S S S S
Column C			999	7000		7000			2000		2000		2000	7000	Sine
######################################			222	255	2000	2000	200		7999	2000	200		2000	200	00-16
No. 10.0000000000000000000000000000000000		200	999	255	01000		2000	2000	999	999	222	2555	2000	299	0 0 0 0 0
Francisco Control Cont	1	999	999	0 0 0	0 V V V	0 0 0	200	000	200	999	200	2000	200		0 Q 0
Fig. 8270	-		-	0 0 0 0 0 0	2000	2000	999	000	200	200	255	2000	255	255	in O
Fig. 8270 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.				845	2000	2 4 5 2 4 5 2 5 5 5	855	0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000	855	855	5000	800 C	888	n 2 0
FM 8270 450 450 450 450 450 450 450 450 450 45				985	0 0 0 C	200	255	2 % £	388	2555	285	25.5	788 788	288	o in C
## 8270		<u> </u>	-	885	\$ \$ \$ \$	\$ \$ \$ \$	2 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	888	885	888	888	888	\$ \$ \$ \$	888	O IO IO
FEM 8270	nylether	<u> </u>		255	200	2000	255	200	999	255	255		200	999	e S e
FF 8270				288	5 8 5	0.00	288	2 8 8	, C. C.	200	200	265	588	588	0 e e
EPARRYO 450 450 450 450 450 450 450 450 450 450			-	250	200	200	0 7 7 0 7 7	255	888	255	255	255	999	888	O 00 00
EPAREZZO <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	phenol			85 5 5 5 5 5 5 5 5 5 5 5	450 610 610 610		\$ 7 V	855	835	855	844	855	855	844	250
EMARZYO <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	halate			999	0 0 0 0 0 0		2000	000	555	200	200	0100	999	200	6 00 00 00 00
EPA 8270 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1				998	0 0 0 0 0 0 0 0		2000	410 410 420 410	200	250	250	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	998	\$ \$ \$	90 S
EPA 8270 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	at a			225	0000		255	0000	200	888	999		999	999	0.002
EPA 8270 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1				200	0000		225	999	225	200	200	2000	999	2000	0 0 000
48 8270 (Tics) 23 12 21 12 9 248 9 16 18 24 23 14 13 4 13 8 8 8 2 2 17 2 3 3 3 3 3 2 2 2 17 8 8 8 9 16 18 8 24 23 14 13 9 248 9 16 18 8 24 23 14 13			-		2555	0000	2999		2222		9999	2000	9999	20000	2000
	PA 8270 PA 8270 PA 8270	23 23 23 23	12 2 12											13 2 13	

Summary of Analytical Results
SVOCs in Groundwater via EPA Method 8270
Hanson Fire Training Center
Yosts, New York
December 3, 2001

Summary of Analytical Results PCBs in Groundwater via EPA Method 8082 Hanson Fire Training Center Yosts, New York December 3, 2001 **TABLE 7**

						San	Sample Identific	cation						
		MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	WW.7	MW-8	WW.9	MW-10	MW-11	MW-12	MW-13
		Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Parameter	Method													
Arochlor-1016	EPA 8082	>0.066	<0.066	<0.068	<0.067	<0.066	>0.066	<0.066	<0.066	<0.068	<0.066	<0.072	<0.066	<0.067
Arochlor-1221	EPA 8082	<0.066	<0.066	<0.068	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.066	<0.072	<0.066	<0.067
Arochlor-1232	EPA 8082	>0.066	<0.066	<0.068	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.066	<0.072	<0.066	<0.067
Arochlor-1242	EPA 8082	<0.066	<0.066	<0.068	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.066	<0.072	<0.066	<0.067
Arochlor-1248	EPA 8082	>0.066	<0.066	<0.068	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.066	<0.072	<0.066	<0.067
Arochlor-1254	EPA 8082	<0.066	<0.066	<0.068	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.066	<0.072	<0.066	<0.067
Arochlor-1260	EPA 8082	<0.066	>0.066	<0.068	<0.067	0.076	<0.066	<0.066	<0.066	0.068	<0.066	<0.072	<0.066	0.12
Comments: All values are reported in ug/kg - parts per billion (ppb) Analytical Facility: Adirondack Environmental Services	All values are reported in ug/kg - parts per billion (ppb). Analytical Facility: Adirondack Environmental Services, Inc., Albany, NY	ack Environme	er billion (ppb) ental Services). s, Inc., Alban)	arde (0.00 park) for individual DCRe	dividual DCR	0				ND=None Detected NA=Not Available	etected ilable	
Agides II		and change	API POIO	arai seaming	-	in ion (odd oo	o increase	o l						

TABLE 7
Summary of Analytical Results
PCBs in Groundwater via EPA Method 8082
Hanson Fire Training Center
Yosts, New York
December 3, 2001

						Sas	Sample Identification	cation						
		MW-14	MW-15	MW-16	MW-17	WW-18	WW-19	MW-20	MW-21	MW-22	MW-23	MW-24	MW-25	MW-26
		Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab	Grab
Parameter	Method									-				
Arochlor-1016	EPA 8082	<0.067	<0.067	<0.067	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Arochlor-1221	EPA 8082	<0.067	<0.067	<0.067	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Arochlor-1232	EPA 8082	<0.067	<0.067	<0.067	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Arochlor-1242	EPA 8082	<0.067	<0.067	<0.067	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Arochlor-1248	EPA 8082	<0.067	290'0>	<0.067	<0.067	<0.066	>0.066	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Arochlor-1254	EPA 8082	<0.067	<0.067	<0.067	<0.067	<0.066	0.041	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Arochlor-1260	EPA 8082	<0.067	<0.067	<0.067	<0.067	<0.066	<0.066	<0.066	<0.066	<0.068	<0.072	<0.066	<0.071	<0.068
Comments: All values are reported in ug/kg - parts per billion (ppb)	s are reported in	ug/kg - parts p	er billion (ppt	, ·								ND=None Detected	stected	
Analytical	Analytical Facility: Adirondack Environmental Services, Inc., Albany,	lack Environm	ental Service	s, Inc., Alban	y, ΝΥ.							NA=Not Available	lable	
Values in	Values in red Equals or Exceeds	ceeds NYS L	DEC Groundw	reter Quality 5	Standards (0.	09 ppb) for it	for individual PCB	9						

ATTACHMENT 1
Photographic Documentation

General Site Photo

Note: red shovel handle at UST location and fire training center in the background.

General Site Photo

Note: Ground Penetrating Radar equipment and fire training tower in the background.

Hager-Richter Geosciences, Inc. geophysicist James Coffman surveying with an EM61 time domain electromagnetic induction metal detector.

Hager-Richter's Smart Cart Noggin Plus digital subsurface imaging radar system (ground penetrating radar) downloading data to a laptop computer.

PES Hydrogeologist John Johnson advancing a macro-core soil sample at the location of monitoring well MW-18.

Installation of monitoring well MW-19 located along NYS Route 5.

1,000 gallon heating oil UST

Note: contaminated soil excavated from the tank pit and stockpiled on plastic.

Subsurface conditions after excavation of contaminated soil. Note: residual contamination and stained soil in the sidewalls of the tank excavation.

Outfall-1
Note: Outfall-1 conveys drainage from the Hanson Fire Training Center north towards a large pond.

Outfall-2
Note: Outfall-2 conveys drainage from the Hanson FireTraining Tower to the same pond.

ATTACHMENT - 2
Geologic Well Logs

	PRI	ECI	SI	0 N	2144 Saratoga Ave. Ballston Spa, NY 12020		Page 1 of 1
PĚ	Enviro	nmental S	Services,	Inc.	TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG	
	anson Fire Training	Center (Olient: Mont	gomery Co	ounty	Well/ Borin	g No. <u>MW-14</u>
Project No	.:B00138-4	L	ocation: N	YS Rte. 5,	Yosts, New York	Sketch Map:	
Driller:	John Johnson	Lc	ogged by:	Dave Max	am		
Drilling Co	ntractor: PES	Dr	rilling Method:	Geopre	obe	_	
	d: November 15, 2						
					c:NA	See F	Figure 2 - Site Map
					25"		
·	ia.:1"						
	ia.: 1*	_			PVC		
					flush mount ve Casing: roadbox		
Depth	Well	Notes	Sample	PID	T	- 111 (0.110)	
(ft.)	Construction	(recovery/ penetrated)	Type/#	(ppm)		Description/ Soil Cla	ssification
- 0 -	<u> </u>	roadbox					
	The same of the sa	bentonite	Geoprobe		Grass and black, moist k	army topsoil (0-6*).	
- 2 -		water table		ND	Black, moist, fine-coarse	SAND and GRAVEL ((\$'-A')
		2'/4'	CO16-1				·
4			Overseba		Brown, saturated, fine SA	(ND (4-4.5').	
6 -		4'/4'	Geoprobe Macro- core-2	ND	Brown/gray, saturated, m	nottled, CLAY (4.5-7').	
8 -					Brown, saturated, fine SA	ND (7-8').	
			Geoprobe		Brown, saturated, fine SA	AND (8-9.5').	
10-	X	4'/4'	Macro- core-3	ND	Gray, saturated, fine SAI	ND (9.5-11.5').	
12					Gray, saturated, mottled,	CLAY (11.5-12').	
	\						
- 14-	well screen filter media (sand)						
- 16 -							
- 18 <i>-</i>							
- 20-				i			
_ 22 _							
24							
26							
28							
- 30-	1						

Note: ND = No VOCs Detected by PID analysis.

PE	Enviro	onmental S	ervices,	Inc.	7144 Sallidga Ave. 38alliston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: H	anson Fire Training	Center C	lient: Mont	gomery Co	unty	Well/ Boring No. MW-15
Project No	.:B00138-4	Lo	cation: NY	/S Rte. <u>5, \</u>	Yosts, New York	Sketch Map:
Drifler:	John Johnson	Lo	gged by:	Dave Maxa	<u>am</u>	-
Drilling Co	ntractor: PES	Dri	lling Method:	Geopro	be	-
Date Drille	ed: November 13,	2001 Date	e Developed:	Decen	nber 3, 2001	-
M.P. Elev.	: N A	W.L. Initial:_	2-3'	W.L. Statio	: NA	See Figure 2 - Site Map
Total Dept	h of Hole: 12'		Diame	ter: <u>2.2</u>	25"	
Screen: D)ia.:	Length: 10'		_ Slot·Size	2 0.010"	-
Casing: D	ia.:1"	Length: 1'		_ Type:	PVC flush mount	_
Sand Pack	c: 0.5-12'	Bentonite Seal	0.25-0.5'	_ Protectiv	ve Casing: roadbox	
Depth (ft.)	Well Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
- 0 -	Hal(1).74)	roadbox cement bentonite			Grass and black, moist	oamy topsoil, ash, cinders and slag (0-6*).
- 2 - 		riser water table 1'/4'	Geoprobe Macro- core-1	ND	No recovery (6"-4").	
- 4 - 6 - 		3.5'/4'	Geoprobe Macro- core-2	ND	Brown, saturated, fine-m	nedium SAND, some silt and interbedded clay (4-8)
- 8 - - 10 - 	A	4'/4'	Geoprobe Macro- core-3	ND		edium SAND, some silt and interbedded clay (8-10
- 12- - 14-	well screen filter media (sand)					
- 16-						
- 18 <i>-</i> 						
- 20 <i>-</i>						
- 22						
24						
26						
28						
- 30 -					Note: ND - No VC	OCs Detected by PID analysis.

·,			_		= 111 0 Aug	
PES		E C I nmental S			2144 Saratoga Ave. Baliston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson F	ire Training	Center (Client: Mont	gomery Co	ounty	Well/ Boring No. MW-16
Project No.: B00	138-4	Lo	ocation: N	/S Rte. 5, \	Yosts, New York	Sketch Map:
Driller: John Joh	nson	Lo	gged by:	Dave Maxa	am	
Drilling Contractor:	PES	Dr	illing Metho d:	Geopro	obe	
Date Drilled: Nov	vember 13, 2	2001 Date	e Developed:	Decen	nber 3, 2001	
M.P. Elev.: NA		_ W.L. Initial:	8-9'	W.L. Static	: NA	See Figure 2 - Site Map
Total Depth of Hole	e: <u>12'</u>		Diame	ter: <u>2.2</u>	25 °	
Screen: Dia.: 1*		Length: 10'		_ Slot Size	:0.010 *	-
Casing: Dia.: 1"		Length: 1'		_ Type:	PVC flush mount	
Sand Pack: 0.5	-12'	Bentonite Seal	0.25-0.5	_ Protectiv	ve Casing: roadbox	
	Vell struction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
0	- K	roadbox				
2		cement bentonite riser water table	Geoprobe Macro- core-1	ND	Grass and black, moist lo	parny topsoil,some fine-coarse sand and gravel (0-6")
- 4 - - 6 -		3'/4'	Geoprobe Macro-	ND	Brown, moist, fine-coarse	≎ SAND (4-6').
			core-2		Gray, wet, fine-medium S	SAND (7-8').
10-		4'/4'	Geoprobe Macro- core-3	ND	Gray, saturated, fine-med	
- 14 - filter med	well screen					
- 20 - - 22 -						
26						
- 28-						
- 30-					Note: ND = No VO	Cs Detected by PID analysis.

	E C I S I	O No	2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center Client: Mo	ntgomery Co	ounty	Well/ Boring No. MW-17
Project No.: B00138-4	Location:	NYS Rte. 5,	Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Dave Max	am	
Drilling Contractor: PES	Drilling Metho	od:Geopre	obe	
Date Drilled: November 13, 2	2001 Date Develope	ed: Decer	mber 3, 2001	
M.P. Elev.: NA	_ W.L. Initial: 2-3'	_ W.L. Stati	c:NA	See Figure 2 - Site Map
Total Depth of Hole: 13.5'	Dian	neter:2.2	25"	
Screen; Dia.: 1"	Length: 10'	Slot Size	9: 0.010 °	-
Casing: Dia.: 1"	Length: 2'	Type:	PVC flush mount	
Sand Pack: 0.5-13.5'	Bentonite Seal: 0.25-0.5	Protecti	ive Casing: roadbox	
Depth Well Construction	Notes (recovery/ penetrated) Sample Type/#			Description/ Soil Classification
2	roadbox cement bentonite riser water table 3'/4' Geoprob Macro- core-1	e ND	Brown, moist, SILT and f	edium SAND (3-3.7').
- 6 -	Geoprob 4'/4' Macro- core-2	e ND	Gray, saturated, fine-med	nd SILT (3.7-4'). Jium SAND, traces of silt and pyrite grains (4-7'). Jium SAND, little clay and silt (7-8').
10	4'/3' Geoprob Macro- core-3	ND		ne-medium SAND, some interbedded clay (8-11').
12 \	4'/2.5' Geoprob Macro- core-4	ND	Brown, saturated, fine-m	edium SAND (11-12.5'). some fine sand (12.5-13.5').
14 - well screen			Citay, Saturated, OLAT, S	ono mie sana (12.5 16.5).
- 20 - - 22 -				
 24 				
26 _ 28 _ 				
_ 30 _			Note: ND = No VO	Cs Detected by PID analysis.

	ECISI		2144 Saratoga Ave. Ballston Spa, NY 12020	Page 1 of 1
	nmental Services		TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center Client: Mon	itgomery Co	unty	Well/ Boring No. MW-18
Project No.: B00138-4	Location:N	IYS Rte. 5, Y	osts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Dave Maxa	am	-
Drilling Contractor: PES	Drilling Method	d: Geopro	bbe	-
Date Drilled: November 13, 2	2001 Date Developed	: Decen	nber 3, 2001	-
M.P. Elev.: NA	W.L. Initial: <u>2-3'</u>	W.L. Statio	: NA	See Figure 2 - Site Map
Total Depth of Hole: 13.5'	Diamo	eter: <u>2.2</u>	25"	
Screen: Dia.: 1"	Length: 10'	_ Slot Size	. 0.010"	_
Casing: Dia.: 1"	Length: 1'	Type:	PVC flush mount	_
Sand Pack: 0.5-13.5'	Bentonite Seal: 0.25-0.5'	Protectiv		
Depth Well (ft.) Construction	Notes (recovery/ penetrated) Sample Type/#	PID (ppm)		Description/ Soil Classification
0	roadbox cement			
	bentonite riser Geoprobe	ND	Grass and black, moist I	oarny topsoli (0-6*).
2 -	water table Macro- 2'/4' core-1	ND	Brown, saturated, fine-m	nedium SAND (6"-3').
4	2/4 00:01		⊣	AND and SILT, some clay (3-4').
4	Geoprobe		Brown, saturated, fine S	AND and SILT, some clay (4-5').
6 -	4'/4' Macro- core-2	ND	Gray, saturated, CLAY, s	some silt (5-7').
8 -			Gray, saturated, fine SA	ND (7-8').
	Geoprobe 3'/3' Macro-		Gray, saturated, fine-me	edium SAND (8-9').
10-	3'/3' Macro- core-3	ND	Gray, saturated, SIL:T a	nd CLAY (9-10.5').
12	4'/1.5' Geoprobe Macro- core-4	ND ND	Gray, saturated, fine SA	AND (10.5-13.5').
- 14 - well screen				
filter media (sand)				
- 16				
- 18-				
_ 20 _				
- 22 -				
⁻ 24 ⁻				
26				
26				
28-				
- 30 -			Note: ND = No VC	DCs Detected by PID analysis.

				<u> </u>	
	E C I			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center (Client: Mont	gomery Co	punty	Well/ Boring No. MW-19
Project No.: B00138-4	Lo	ocation: N	/S Rte. 5, `	Yosts, New York	Sketch Map:
Driller: John Johnson	Lo	ogged by:	Dave Maxa	am	
Drilling Contractor: PES	Dr	illing Method:	Geopro	obe	
Date Drilled: November 13, 2	2001 Dat	e Developed:	Decer	mber 3, 2001	
M.P. Elev.: NA	_ W.L. Initial:	2-3'	W.L. Statio	c:NA	See Figure 2 - Site Map
Total Depth of Hole: 13.5		Diame	ter: <u>2.2</u>	25*	
Screen: Dia.: 1"	Length:10'		_ Slot Size	e: 0.010°	
Casing: Dia.: 1°	Length: 2'		_ Type:	PVC flush mount	
Sand Pack: 0.5-13.5'	Bentonite Seal	:_0.25-0.5	_ Protectiv		
Depth Well (ft.) Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
- 0	roadbox				
2 -	bentonite riser water table	Geoprobe Macro- core-1	ND	Black, moist sandy topso No recovery (1-4').	il, some medium-coarse gravel (0-1').
- 4	47/41	Geoprobe Macro-	12		edium SAND, little silt and interbedded clay (4-6').
		core-2	1	Gray, saturated, CLAY (6 Gray, saturated, fine-med	
8 -	4'/3'	Geoprobe Macro-	1		ne-medium SAND (8-10.5').
10		core-3	1	Gray, saturated, CLAY (1	0.5-11').
12-	4'/2.5'	Geoprobe Macro- core-4	2	Brown/gray, saturated, fi	ne-medium SAND (11-13.5').
well screen fifter media (sand)					
- 16-					
-					
20-					
- 22					
 -					
24				·	
26					
- 28					
- 30 -					
				Note: ND = No VO	Cs Detected by PID analysis.

PES P R Enviro	E C I			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	g Center C	lient: Mont	tgomery Co	ounty	Well/ Boring No. MW-20
Project No.: B00138-4	Lo	ocation: N	YS Rte. 5, \	Yosts, New York	Sketch Map:
Driller: John Johnson	Lo	gged by:	Dave Maxa	am	
Drilling Contractor: PES	Dri	illing Method	Geopro	obe	
Date Drilled: November 13, 2	2001 Date	e Developed:	Decer	nber 3, 2001	
M.P. Elev.: NA	W.L. Initial:_	3-4'	W.L. Static	e:NA	See Figure 2 - Site Map
Total Depth of Hole: 13.5'		Diame	ter: 2.2	25*	
Screen: Dia.: 1"	Length: 10'		_ Slot Size	0.010"	
Casing: Dia.: 1"	Length: 2'		_ Type:	PVC flush mount	
Sand Pack: 0.5-13.5'	Bentonite Seal	0.25-0.5	_ Protectiv		
Depth Well (ft.) Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
- 0 - 2 - 4 - 6 - 8	roadbox -cerrent -cer	Geoprobe Macro- core-1 Geoprobe Macro- core-2	ND ND	fine-medium gravel (0-1.5 No recovery (1.5-4').	arse SAND, some fine-medium gravel (4-6').
10	0'/3'	Geoprobe Macro- core-3	ND	No recovery (8-11').	
12-	1.571.5'	Geoprobe Macro- core-4	ND	Brown, saturated, fine SA	ND (11-13.5').
- 14 well screen filter media (sand) 16					
				Note: ND = No VO	Cs Detected by PID analysis.

Enviro	E C I			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG Page 1 of 1
Project: Hanson Fire Training					Well/ Boring No. MW-21
Project No.:B00138-4	Loc	cation: NY	'S Rte. 5, Y	osts, New York	Sketch Map:
Driller: John Johnson					
Drilling Contractor: PES					
Date Drilled: November 15,					
M.P. Elev.: NA					See Figure 2 - Site Map
Total Depth of Hole: 12'					
Screen: Dia.: 1"					
Casing: Dia.: 1"				PVC	
Sand Pack: 0.5-12'				flush mount	
Depth Well	Notes	Sample	PID		Description/ Coll Classification
(ft.) Construction	(recovery/ penetrated)	Type/#	(ppm)		Description/ Soil Classification
0	roadbox		1		
	bentonite	Geoprobe		Grass and black, dry, loa	imy topsoli (0-6 0.
2 -	water table	Macro- core-1	ND	Brown, dry, fine-medium	SAND and fine-medium GRAVEL (6"-4').
	1/4				
		Geoprobe		Brown, saturated, fine SA	AND (4-6').
- 6 -	2.5'/4'	Macro- core-2	ND		-
		COIE-2		Gray/brown, saturated, m	ottled, CLAY, trace of silt (6-9').
8		Occurate			
10-	3.574	Geoprobe Macro-	ND	Brown, saturated, fine SA	AND (9-11.5').
		core-3		Crov soturated CLAY (1	1.5.10%
12				Gray, saturated, CLAY (1	1.512).
well screen					
filter media (sand)					
- 16-					
 - 18 <i>-</i>					
- 20-					
_ 22 _					
- 24-					
- 26 -					
- 28 - 					
- 30 -				Note: ND = No VO	Cs Detected by PID analysis.

	E C I S			2144 Saratoga Ave. allston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG Page 1 of 1
Project:_Hanson Fire Training	Center Client	t: Montgom	nery Cou	inty	Well/ Boring No. MW-22
Project No.: B00138-4	Locati	Sketch Map:			
Driller: John Johnson	Logge	d by: Dav	e Maxar	<u>m</u>	
Dritting Contractor: PES	Drilling	Method:	Geoprot	<u></u>	
Date Drilled: November 13, 2	001 Date De	veloped:	Decem	ber 3, 2001	
M.P. Elev.: NA	_ W.L. Initial: <u>3-4</u>	t ' W.L	Static:	NA	See Figure 2 - Site Map
Total Depth of Hole: 12'		_ Diameter:_	2.25	5•	
Screen: Dia.: 1"	Length: 10'	SI	lot Size:	0.010"	
Casing; Dia.: 1*	Length: 2'	Ty	ype: <u> </u>	PVC flush mount	
Sand Pack: 0.5-12'	Bentonite Seal: 0.5	25-0.5' P	rotective	e Casing: roadbox	
Depth Well (ft.) Construction		Sample Type/#	PID (ppm)		Description/ Soil Classification
2	water table N	eoprobe facro- core-1	N D	Brown, dry/moist, mediun and fine-medium gravel (n-coarse SAND, some silt 6*-4').
- 6 and an analysis of the second of the	3.5'/4' N	eoprobe Macro- core-2	ND	Brown, saturated, fine-metrace of fine-coarse grave Brown, saturated, CLAY (el (4-6') <u>. </u>
10-	4'/4' N	eoprobe Macro- core-3	ND	Brown, saturated, fine SA Gray, saturated, CLAY, s	
12 well screen 14 filter media (sand) 16 - 18 20 22 24 26 26					
28 - - 30 -				Note: ND = No VO	Cs Detected by PID analysis.

			2144 Saratoga Ave.
Enviro	E C I S I onmental Services		Ballston Spa, NY 12020 Page 1 of 1 TEL: 518 885-4399 DRILLING LOG
Project: Hanson Fire Training			FAX: 518 885-4416
Project No.: B00138-4	Location:N	IYS Rte. 5, `	Yosts, New York Sketch Map:
Driller: John Johnson			
Drilling Contractor: PES			
Date Drilled: November 15,	_		
M.P. Elev.: NA			
Total Depth of Hole: 12'			
Screen: Dia.: 1"			
Casing: Dia.: 1*	_		
Sand Pack: 0.5-12'			flush mount
	Notes		ve Casing: Tolabox
Depth Well (ft.) Construction	(recovery/ penetrated) Sample Type/#	PiD (ppm)	Description/ Soil Classification
	roadbox		,
O strings of the stri	cement bentonite		Grass and brown sandy topsoil (0-6").
2 -	riser Geoprobe Macro-	ND	
	2'/4' core-1		No recovery (6'-4').
4 -			_
6 -	Geoprobe 3.5'/4' Macro-	ND	Brown/gray, wet, fine SAND, trace of silt, with a 2" clay layer @6'. (4-11.7').
	core-2	"	
- 8 -			_
	Geoprobe 4'/4' Macro-	ND	
10	core-3	145	
12			Brown, saturated, CLAY (11.7-12').
well screen			
filter media (sand)			
16			
18-			
20			
- 22-			
-			
24			
26-			
28			
- 30 -			
			Note: ND = No VOCs Detected by PID analysis.

	E C I S I		2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project:_Hanson Fire Training	Center Client: Mo	ntgomery Co	ounty	Well/ Boring No. MW-24
Project No.:B00138-4	Location:	NYS Rte. 5,	Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:_	Dave Max	am	
Drilling Contractor: PES	Drilling Metho	od:Geopre	obe	-
Date Drilled: November 15, 2	2001 Date Develope	ed: Decer	mber 3, 2001	-
M.P. Elev.: NA				
Total Depth of Hole: 12'				
Screen: Dia.: 1"				-
Casing: Dia.: 1*			flush mount	-
Sand Pack: 0.5-12'	Bentonite Seal: 0.25-0.5	-	ive Casing: roadbox	
Depth Well (ft.) Construction	(recovery/ penetrated) Sample Type/#			Description/ Soil Classification
2 -	roadbox cernent bentonite riser water table 2'/4' Geoprob Macro- core-1	e ND	Brown, dry, medium-coa	arse SAND and fine-medium gravel (0-2').
6 -	Geoprob 4'/4' Macro- core-2	e ND	Brown, wet/saturated, fir	ne-coarse SAND, little silt (4-6'). CLAY (6-8').
10	Geoprob 4'/4' Macro- core-3	e ND	Brown/gray, saturated, fi	ne SAND (8-11.5').
12			Gray, saturated, CLAY (11.5-12').
well screen				
filter media (sand)				
<u> </u>				
 - 18-				
- -				
20				
22				
-				
24				
26				
- 25-				
28				
30-			Note: ND = No VC	OCs Detected by PID analysis.

Project No. B00138-4 Location: NYS Fits 5, Yosts, New York Drilling Contractor: PES Drilling Method: Geoprobe M.P. Elev: NA W.L. Initial: 3-4 W.L. Static: NA See Figure 2 - Site Map See Figure 3 - Site Map See Figure 2 - Site Map See Figure 3 - Site Map See Figure 3 - Site Map See Figure 3 - Site Map See Figure 4 - Site Map See Figure 5 - Site Map See Figure 5 - Site Map See Figure 6 - Site Map See Figure		E C I S			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Diller:	Project: Hanson Fire Training	Center Cli	Well/ Boring No. MW-25			
Drilling Contractor PES Drilling Method: Geoprobe Date Drilled November 15, 2001 Date Developed: December 3, 2001 M.P. Elev: NA W.L. Initiat: 3-4* W.L. Static: NA See Figure 2 - Site Map Total Depth of Hole: 12* Diameter 2.25* Screen: Dia: 1* Length: 10* Siot Size: 0.010* Cassing: Dia: 1* Length: 2* Typo: PVC Sand Pack: 0.5-12* Bentonite Seal: 0.25-0.5* Protective Casing: reachox Depth (N) (R) (R) (R) (R) (R) (R) (R) (R) (R) (R	Project No.:B00138-4	Loc	ation: NY	S Rte. 5, Y	osts, New York	Sketch Map:
Depth Well Construction Notes and Pack: 0.5-12 Bentonite Seat. 0.25-0.5: Protective Casing, reactions (%-d). Some silt (6'-4). Depth Well Construction O	Driller: John Johnson	Log	ged by:[Dave Maxa	ım	
M.P., Elev. NA W.L. Initial: 3-4 W.L. Static: NA See Figure 2 - Site Map Total Depth of Hole: 12 Diameter. 225 Diameter. 225 Diameter. 225 Diameter. 256 Dia: 11 Length: 10' Slot Size: 0.010" Casing: Dia: 11 Length: 10' Slot Size: 0.010" Sand Pack: 0.5-12' Bentonite Seel: 0.25-0.5' Protective Casing: readbox Depth (t.) Construction Perietrate of Type / 8 PID (ppm) Description/ Soil Classification Perietrate of Macro-core-1 ND Brown, moist, fine-coarse SAND and fine-coarse gravel, some silt (6'-4). 3/4' Geoprobe Macro-core-2 ND Brown, saturated, fine SAND, trace of silt (4-9). Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, CLAY, some interbedded silt (11.5-12). Gray, saturated, CLAY, some interbedded silt (11.5-12).	Drilling Contractor: PES	Drilli	ng Method:	Geopro	be	-
M.P., Elev. NA W.L. Initial: 3-4 W.L. Static: NA See Figure 2 - Site Map Total Depth of Hole: 12 Diameter. 225 Diameter. 225 Diameter. 225 Diameter. 256 Dia: 11 Length: 10' Slot Size: 0.010" Casing: Dia: 11 Length: 10' Slot Size: 0.010" Sand Pack: 0.5-12' Bentonite Seel: 0.25-0.5' Protective Casing: readbox Depth (t.) Construction Perietrate of Type / 8 PID (ppm) Description/ Soil Classification Perietrate of Macro-core-1 ND Brown, moist, fine-coarse SAND and fine-coarse gravel, some silt (6'-4). 3/4' Geoprobe Macro-core-2 ND Brown, saturated, fine SAND, trace of silt (4-9). Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, CLAY, some interbedded silt (11.5-12). Gray, saturated, CLAY, some interbedded silt (11.5-12).	Date Drilled: November 15, 2	2001 Date	Developed:	Decen	nber 3, 2001	
Screen; Dia. 1* Length: 10* Slot Size: 0.010* Type: PVC Bentonite Seat: 0.5-12* Bentonite Seat: 0.5-16* Bentonite Seat: 0.5-1						See Figure 2 - Site Map
Screen; Dia. 1* Length: 10* Slot Size: 0.010* Type: PVC Bentonite Seat: 0.5-12* Bentonite Seat: 0.5-16* Bentonite Seat: 0.5-1	Total Depth of Hole: 12'		Diamet	er: <u>2.2</u>	5"	
Casing Dia: 1* Length: 2 Type: PVC Sand Pack: 0.5-12* Bentonite Seat: 0.25-0.5* Protective Casing: readbox Depth (it.) Construction penetrated						_
Sand Pack: 0.5-12 Bentonite Seat: 0.25-0.5' Protective Casing: readbox Depth (ft.) Construction (sociovery) Sample (ft.) Construction (sociovery) Pententated (ft.) Construction (sociovery) Sample (ft.) Construction (socio					PVC	_
Depth (ft.) Construction penetrated (recovery penetrated) 0					iiusn mount	
Construction Cons						
Toedbox Coment Demonds		(recovery/				Description/ Soil Classification
Lettorite is serious serious intercoarse gravel, some sit (6'-4'). Brown, moist, fine-coarse SAND and fine-coarse gravel, some sit (6'-4'). Brown, moist, fine-coarse SAND and fine-coarse gravel, some sit (6'-4'). Brown, moist, fine-coarse SAND and fine-coarse gravel, some sit (6'-4'). Brown, saturated, fine SAND, trace of sit (4-9'). Gray, saturated, fine SAND, trace of sit (9-11.5'). Gray, saturated, fine SAND, trace of sit (11.5-12'). Gray, saturated, CLAY, some interbedded sit (11.5-12'). 12 14 16 18 20 22 24 26		roadbox				
well screen 10 12 14 16 18 20 21 22 24 26 26 27 28 28 28 28 28 28 28 28 28	Trouber	bentonite				
3/4 Core-1	_ 2 _ ' '			ND		e SAND and fine-coarse gravel,
4/4' Geoprobe Macrocore-2 10 10 12 14 16 18 20 22 24 26		3'/4'	core-1		Some one (o 1).	
4'/4' Macro-core-2 ND Brown, saturated, fine SAND, trace of silt (4-9'). Geoprobe Macro-core-3 ND Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, CLAY, some interbedded silt (11.5-12').	4		_			
Core-2 ND Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, CLAY, some interbedded silt (11.5-12'). Gray, saturated, CLAY, some interbedded silt (11.5-12').		1	•	ND	Brown, saturated, fine S	AND, trace of silt (4-9').
Geoprobe Macrocore-3 12 14/4' Mel Screen Macrocore-3 ND Gray, saturated, fine SAND, trace of silt (9-11.5'). Gray, saturated, CLAY, some interbedded silt (11.5-12'). 14 16 18 20 22 24 24 26		4/4		NO		
12 Macro-core-3 ND Gray, saturated, CLAY, some interbedded silt (11.5-12). Gray, saturated, CLAY, some interbedded silt (11.5-12). 14 16 18 18 19 19 19 19 19 19	8 -				-	
Core-3 Gray, saturated, CLAY, some interbedded silt (11.5-12'). Gray, saturated, CLAY, some interbedded silt (11.5-12'). Gray, saturated, CLAY, some interbedded silt (11.5-12').		1			Gray, saturated, fine SA	ND, trace of silt (9-11.5').
12 — 14 — well screen filter media (sand) — 16 — 18 — — 20 — — 22 — — 24 — — 26 — — — — — — — — — — — — — — — —	10	474		שא		
weil screen filter media (sand) 16 - 18 20 22 24 26	12 1				Gray, saturated, CLAY,	some interbedded silt (11.5-12').
- 14 - filter media (sand) - 16	-					
- 18- - 20- - 22- - 24- - 26- 						
- 18- - 20- - 22- - 24- - 26- 	16					
- 20						
- 22	<u> </u>					
- 22	-					
	20-					
	22					
 - 26 - 						
 - 26 - 	24					
28	26					
	20					
Note: ND = No VOCs Detected by PID analysis.	- 30-				Note: ND = No VC	DCs Detected by PID analysis.

PR	<u> </u>	S 1 (O N.	2144 Saratoga Ave. Ballston Spa, NY 12020	
Envir	onmental S			Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Trainin					Well/ Boring No. MW-26
Project No.: B00138-4	Lo	Sketch Map:			
Driller: John Johnson	Lo	gged by:	Dave Maxa	vm	_
Drilling Contractor: PES	Dr	illing Method:	Geopro	be	_
Date Drilled: November 15,	2001 Date	e D ev eloped:	Decen	nber 3, 2001	_
M.P. Elev.: NA	W.L. Initial:	3-4'	W.L. Statio	: NA	See Figure 2 - Site Map
Total Depth of Hole: 12'		Diame	ter:2.2	5*	_
Screen: Dia.: 1"	Length: 10'		_ Slot Size	. 0.010"	
Casing: Dia.: 1"	_ Length:2t		Type:	PVC	_
Sand Pack: 0.5-12'	Bentonite Seal	0.25-0.5	_ Protectiv	flush mount re Casing: roadbox	
Depth Well	Notes	Sample	PID		D 1 1 10 10 1 15 1
(ft.) Construction	(recovery/ penetrated)	Type/#	(ppm)		Description/ Soil Classification
0	roadbox cement				
	bentonite	Geoprobe	NA NA	No recovery (0-4').	
2 -	water table 0'/4'	Macro- core-1	INA		
		Geoprobe		Brown, saturated, fine S	
6	4'/4'	Macro- core-2	ND	Gray, saturated, fine SA Gray, saturated, CLAY (ND (5-6'). 6-6.5').
		COIC Z		Gray, saturated, fine SA	ND (6.5-8').
8 -		Geoprobe		Cay caturated mettled	, CLAY, some interbedded silt (8-10').
10-	4'/4'	Macro- core-3	ND	Gray, Sawrated, mowed	, olar, some interbedued six (6-10).
		core-5		Gray, saturated, CLAY,	some interbedded silt (10-12').
12					
well screen	n				
- 16 <i>-</i>					•
- 18-					
<u> </u>					
- 22					
- 22 - 					
24					
26					
- 28-					
<u> </u>					
30				Note: ND = No VC	OCs Detected by PID analysis.

		2144 Saratoga	α Δνα
	E C I S I onmental Services	Ballston Spa, N	Y 12020 -4399 -4416 DRILLING LOG
Project: Hanson Fire Training	Center Client: Mor	tgomery County	Well/ Boring NoSB-1
Project No.: B00138-4	Location: N	YS Rte. 5, Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis	
Drilling Contractor: PES	Drilling Method	:Geoprobe	
Date Drilled: November 15,	2001 Date Developed	. NA	
M.P. Elev.: NA	W.L. Initial: 5-6'	W.L. Static: NA	See Figure 2 - Site Map
Total Depth of Hole: 10'	Diame	ter: 2"	
Screen: Dia.: NA	Length: NA	_ Slot Size:NA	
Casing: Dia.: NA	Length: NA	_ Type:NA	
Sand Pack: 0-2'/4-10'	Bentonite Seal: 2-4'	Protective Casing: NA	A
Depth Well	Notes (recovery/ Sample	PID	Description/ Soil Classification
(ft.) Construction	penetrated) Type/#	(ppm)	
	bentonite water table 3'/4' Geoprobe Macro- core-1	ND	ry, medium-coarse gravel (roadbase) (0-1'). fine SAND, little silt (1-6').
- 6 - \(\times \)	Geoprobe Macro-core-2	ND Gray, saturated	d, fine SAND (6-9').
8 -	Geoprobe	2-3	
10 /	2'/2' Macro- core-3	ND Gray, saturate	d, CLAY (9-10').
native sand			
12 filter media (sand)			
- 14-			
– 16 –			•
<u> </u>			
20-			
- 22-			
- 24 ⁻			
26			
- 28-			
30 -		Note: ND =	No VOCs Detected by PID analysis.

D D I		<u>S I (</u>) N	2144 Saratoga Ave.	Dogo 1 of 1
	nmental S			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG Page 1 of 1
Project: Hanson Fire Training	Center CI	ient: Mont	gomery Co		Well/ Boring No. SB-2
Project No.: B00138-4					Sketch Map:
Driller: John Johnson					_
Drilling Contractor: PES				obe	_
Date Drilled: November 15, 2					_
M.P. Elev.: NA				;_NA	See Figure 2 - Site Map
Total Depth of Hole: 10'					
Screen: Dia.: NA	Length: NA	\	Slot Size	:NA	_ }
Casing: Dia.: NA	Length: NA	١	Type:	NA	_
Sand Pack: 0-2'/4-10'	Bentonite Seal:	2-4'	_ Protectiv	ve Casing: NA	
Depth Well (ft.) Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
2 -	bentonite water table 3'/4'	Geoprobe Macro- core-1	ND	Grass and topsoil, some	
- 4 - - 6 - 	4'/4'	Geoprobe Macro- core-2	ND 2-3	Gray, saturated, fine SA	ND, some interbedded clay (5-9.5').
10	2'12'	Geoprobe Macro- core-3	ND	Gray, saturated, CLAY ((9.5-10').
- 16 - - 18 - 					
- 20 - - 22 - 					
24 26					
28					
- 30-				Note: ND = No VC	DCs Detected by PID analysis.

PES Environment Per	Center C	lient: Mon	tgomery Co	ounty	Well/ Boring No. SB-3	
roject No.: B00138-4	Lo	cation: N	/S Rte. 5, \	Yosts, New York	Sketch Map:	
riller: John Johnson	Lo	gged by:	Eric Lewis		_	
rilling Contractor: PES	Dri	lling Method:	Geopre	obe	_	
ate Drilled: November 15, 2		_				
.P. Elev.;_NA				: NA	See Figure 2 - Site Map	
otal Depth of Hole: 10'					-	
creen: Dia.: NA		Dains			-	
asing: Dia.: NA	-	4			_	
and Pack: 0-2'/4-10'					_	
	Notes	-		To Gasing.		
Depth Well (ft.) Construction	(recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification	
2 -	bentonite water table 3'/4'	Geoprobe Macro- core-1	ND	Grass and topsoil (0-6*) Black/brown, moist, fine	coarse SAND, some ash and cinders (6*-4').	
6 -	3'/4'	Geoprobe Macro- core-2	50 160	Brown, moist, fine SAN		
10	2'12'	Geoprobe Macro- core-3	12	Gray, saturated, CLAY,	some silt (8-10').	
native sand						
-						
14 —						
16-						
18-						
20-						
22						
_						
24						
26						
28						

	E C I			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG		
Project: Hanson Fire Training	Center (Client: Mon	tgomery Co	ounty	Well/ Boring No. SB-4		
Project No.: B00138-4 Driller: John Johnson					Sketch Map:		
Drilling Contractor: PES	Dr	illing Method:	Geopre	obe	.]		
Date Drilled: November 15, 2	2001 Dat	e Developed:	NA				
M.P. Elev.: NA	_ W.L. Initial:	4-5'	W.L. Statio	:NA	See Figure 2 - Site Map		
Total Depth of Hole: 12'		Diame	ter:2"				
Screen: Dia.: NA	Length: N	Α	_ Slot Size	:NA	_		
Casing: Dia.:NA	Length: N	Α	_ Type:	NA			
Sand Pack: 0-2'/4-12'	Bentonite Seal	:_2-4'	_ Protectiv	ve Casing:NA			
Depth Well (fL) Construction	Notes (recovery/ penetrated)	Sample Type/#	PiD (ppm)		Description/ Soil Classification		
2 - 4 -	bentonite water table 0'/4'	Geoprobe Macro- core-1	NA	No recovery (0-4').			
- 6 - X	0'/4'	Geoprobe Macro- core-2	NA	No recovery (4-8').			
- 8 - - 10 - . 4	4'/4'	Geoprobe Macro- core-3	150	Gray, saturated, fine SAN	ND, some sift (8-10').		
12			5	Gray, saturated, CLAY, some silt (10-12').			
native sand filter media (sand)							
14-							
- 16-							
<u> </u>							
- 20-							
- 22 - 							
24							
_ 26 _							
28							
- 30 -				Note: ND = No VO	Cs Detected by PID analysis.		

\searrow	Enviro	E C I			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399	DRILLING LOG	Page1of1_
PES					FAX: 518 885-4416 L		No. SB-5
. —	: B00138-4					Sketch Map:	
-						<u></u>	
						•	
-					obe	-	
						- See F	gure 2 - Site Map
					e: NA		
					: NA	-	
_	ia.:NA	_	A			-	
Sand Pack	:0-2'/4-10'		: 2-4'	_ Protectiv	ve Casing: NA		
Depth (ft.)	Well Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Cla	ssification
- 0 - - 2 - 		bentonite water table 4'/4'	Geoprobe Macro- core-1	ND	Grass and black, loamy, Brown, moist, fine SANI		um sand and gravel (0-6*)
- 4 - - 6 - 	\(\sigma^4\)	3'/4'	Geoprobe Macro- core-2	ND 4-6 1-2	Brown, wet, CLAY, little Brown, saturated, fine S Brown, saturated, CLAY	AND (6-6.5').	
- 8 -	1 1	2'/2'	Geoprobe Macro- core-3	ND	Gray, saturated, CLAY,	trace silt (8-10').	
- 10	native sand filter media (sand)						
- 28 - 30 -					Note: ND = No VC	OCs Detected by F	PID analysis.

	E C I S I nmental Services		2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center Client: Mor	ntgomery C	ounty	Well/ Boring No. SB-6
Project No.: B00138-4	Location:N	YS Rte. 5, `	Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis		.
Drilling Contractor: PES	Drilling Method	: Geopre	obe	-
Date Drilled: November 16, 2	2001 Date Developed	NA		-
M.P. Elev.: NA	W.L. Initial:5-6'	W.L. Static	c:NA	See Figure 2 - Site Map
Total Depth of Hole: 10'	Diame	eter:2"		
Screen: Dia.: NA	Length: NA	_ Slot Size	e:NA	-
Casing: Dia.: NA	Length: NA	_ Type:	NA	
Sand Pack: 0-2'/4-10'	Bentonite Seal: 2-4'	_ Protecti	ve Casing: NA	
Depth Well (ft.) Construction	Notes (recovery/ penetrated) Sample Type/#	PID (ppm)		Description/ Soil Classification
2 -	bentonite water table Water table Wacro- core-1	ND	Grass and black, loamy, some silt (0-6*). Brown, moist, fine SAND	topsoil, some fine-medium sand and gravel, trace silt (6*-7').
- 6	2.5'/4' Geoprobe Macro- core-2	ND	Gray, saturated, CLAY (7	7-7.3').
8 -	Geoprobe		Gray, saturated, fine SAN	
10	2'/2' Macro- core-3	ND	Gray, saturated, CLAY (9 Gray, saturated, fine SAN	⊦9.3'). ND (9.3-10').
native sand 12 — filter media (sand) - 14 — — — 16 — — — 18 — — — — — — — — — — — — — — —				
- 26- - 28- 			Note: ND = No VO	Cs Detected by PID analysis.

PES Project: Hanson Fire Training	g Center C	lient: Mon	tgomery Co	ounty	Well/ Boring No. SB-7	
Project No.:B00138-4	Lo	cation: NY	/S Rte. 5, \	osts, New York	Sketch Map:	
Oriller: John Johnson	Lo	gged by:l	Eric Lewis			
Orilling Contractor: PES	Dri	lling Method:	Geopro	bbe	.	
Date Drilled: November 16,	2001 Date	Developed:	NA		.	
M.P. Elev.: NA	W.L. Initial:_	5-6'	W.L. Static	:_ NA	See Figure 2 - Site Map	
Total Depth of Hole:11'		Diame	ter: 2"			
Screen: Dia.: NA	Length: N/	Α	_ Slot Size	NA	-	
Casing: Dia.: NA	Length: N	A	_ Type:	NA		
Sand Pack: 0-2'/4-11'						
Depth Well	Notes	Sample	PID		Description/ Soil Classification	
(ft.) Construction	(recovery/ penetrated)	Type/#	(ppm)		Description Soil Classification	
0 - 2 -	bentonite water table	Geoprobe Macro- core-1	ND	Brown, moist, fine-coarse	e SAND and GRAVEL (0-1').	
	2.5'/4'	COIG	ND	Brown, moist/wet, fine-me	edium SAND (1-5').	
- 6 -	1.5'/4'	Geoprobe Macro- core-2	60 5	Brown, saturated, fine-m Brown, saturated, fine SA	edium SAND, some silt and clay (5-6'). AND (6-7').	
8 -			ND	Brown, saturated, CLAY	(7-8').	
	2.5'/3'	Geoprobe Macro-	ND	Gray, saturated, CLAY (8-9'). Gray, saturated, fine SAND (9-10').		
10-		core-3		Gray, saturated, CLAY (1 Gray, saturated, fine SAN		
native sand filter media (sand)						
 - 16-						
- 18-						
- 20						
22-						
24						
26						
20						
28						

	E C I			2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	g Center (Client: Mon	tgomery Co	ounty	Well/ Boring No. SB-8
Project No.: B00138-4	Lo	ocation: N	YS Rte. 5, \	Yosts, New York	Sketch Map:
Driller: John Johnson	Lo	ogged by:	Eric Lewis		
Drilling Contractor: PES	Dr	illing Method	: Geopro	obe	
Date Drilled: November 16,	2001 Dat	e Developed	. NA		
M.P. Elev.: NA	W.L. Initial:	2-3'	W.L. Statio	:NA	See Figure 2 - Site Map
Total Depth of Hole: 11'					
Screen: Dia.: NA		Α			-
Casing: Dia.: NA		<u> </u>			
Sand Pack: 0-2'/4-11'	_	:_2-4'	_ Protectiv	ve Casing: NA	
Depth Well (ft.) Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
2 -	bentonite water table	Geoprobe Macro- core-1	ND ND 275	some silt (0-2'). Green, saturated, fine SA	
4 -			168	Gray, saturated, CLAY (3 Gray, saturated, fine SAI	
	3'/4'	Geoprobe Macro-	157	Brown, saturated, CLAY	(5-6').
		core-2	45 9	Gray, saturated, fine SAN	
8 -		Geoprobe			ID, some coarse sand (7.5-9').
10 1	3'/3'	Macro- core-3	ND	Gray, saturated, CLAY (9	-10').
	-	<u> </u>		Gray, saturated, fine SAN	ID, some interbedded clay (10-11').
12 / native sand filter media (sand)					
14					
<u> </u>					
16					
<u> </u>				,	
20-					
- 22-					
24					
26					
28					
- 30 -					
				Note: ND = No VO	Cs Detected by PID analysis.

		_		
	ECISI onmental Services		2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	g Center Client: Mo	ntgomery C	county	Well/ Boring No. SB-9
Project No.: B00138-4	Location:N	IYS Rte. 5,	Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis		-
Drilling Contractor: PES	Drilling Method	d: Geopre	obe	_
Date Drilled: November 16,	2001 Date Developed	d:NA		_
M.P. Elev.: NA	W.L. Initial:5-6'	W.L. Station	c:NA	See Figure 2 - Site Map
Total Depth of Hole: 11'	Diamo	eter: <u>2</u> *		
Screen: Dia.: NA	Length: NA	_ Slot Size	e:NA	_
Casing: Dia.: NA	Length: NA	_ Type:	NA	-
Sand Pack: 0-2'/4-11'	Beritonite Seal: 2-4'	Protecti	ve Casing: NA	
Depth Well (ft.) Construction	Notes (recovery/ penetrated) Sample Type/#	PID (ppm)		Description/ Soil Classification
0	bentonite Geoprobe	ND	Brown, dry, fine-coarse some silt (0-2').	SAND and GRAVEL,
2 -	water table Macro- core-1	5-7	Black, moist, medium-co	parse SAND and fine GRAVEL, some ash (2-4').
	Geoprobe	2-3	Brown, moist, CLAY (4-5	5').
- 6 - ×.	3'/4' Macro- core-2	2-3 2-3	Brown, saturated, fine S	
	00.0 2	ND	Gray, saturated, fine SA Brown, saturated, CLAY	
8 -	Geoprobe Macro-	1	Brown, saturated, fine SA	
10 /	3'/3' Macro- core-3	ND	Gray, saturated, CLAY (8	3.5-11').
12				
Tilder media (sand)				
-				
<u> </u> 16-				
- 18-				
20				
 - 22 -				
24				
26				
28				
30				
- 30-			Note: ND = No VO	Cs Detected by PID analysis.

	E C I S I onmental Services		2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center Client: Mo	ntgomery C	ounty	Well/ Boring No. SB-10
Project No.: B00138-4	Location:	NYS Rte. 5,	Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis		
Drilling Contractor: PES_	Drilling Metho			
Date Drilled: November 16,	2001 Date Develope	d: NA		
M.P. Elev.; NA	W.L. Initial:5-6'	_ W.L. Statio	c:NA	See Figure 2 - Site Map
Total Depth of Hole: 11'	Diam	eter: 2"		
Screen: Dia.: NA	Length:NA	Slot Size	e:NA	
Casing: Dia.: NA	Length:NA	Type:	NA	
Sand Pack: 0-2'/4-11'	Bentonite Seal: 2-4'	Protecti	ve Casing: NA	
Depth Well (ft.) Construction	Notes (recovery/ penetrated) Sample Type/#	PID (ppm)		Description/ Soil Classification
- 2 -	bentonite Geoprobe water table Macro- core-1	ND	Brown, dry, fine-coarse S some silt (0-2').	SAND and GRAVEL,
4	3'/4'	21	Brown/green, wet, fine-m	edium SAND (2-5.5').
	3'/4' Geoprobe Macro- core-2	13	Brown, saturated, CLAY	(5.5-6').
	Cole-2	2-3	Gray/green, saturated, fir	ne SAND (6-8').
8 -	Geoprobe		Brown, saturated, CLAY	(8-9').
10- 1	3/3' Macro- core-3	ND	Gray, saturated, fine SAN	ID (9-11').
- 12 / native sand				
<u> </u>				
<u> </u> 18				
20-				
- 22				
24				
26				
<u> </u>				
28				
- 30 -			Note: ND = No VO	Cs Detected by PID analysis.

Project:_Ha	anson Fire Training	Center C	lient: Mon	tgomery Co	ounty	Well/ Boring No. SB-11
Project No.	:B00138-4	Lo	cation: N	/S Rte. 5, \	Yosts, New York	Sketch Map:
Driller: Jo	hn Johnson	Lo	gged by:	E <u>ric Lewis</u>		_
Orilling Con	tractor: PES	Dr	illing Method:	Geopro	obe	_
Date Drilled	: November 16,	2001 Date	e Developed:	NA		_
И.Р. Elev.: <u>.</u>	NA	W.L. Initial:	5-6'	W.L. Statio	:NA	See Figure 2 - Site Map
Total Depth	of Hole: 11'		Diame	ter: 2°		_
Screen: Di	a.: NA	Length:N	Α	_ Slot Size	NA	_
Casing: Dia	a.:NA	Length: N	Α	_ Type:	NA	_
Sand Pack:	0-2'/4-11'					
Depth (ft.)	Well Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
- 0 - - 2 -		bentonite water table 2.5'/4'	Geoprobe Macro- core-1	ND 300	Brown, dry, fine-coarse some silt (0-2'). Green, saturated, fine \$	
- 4 - 6 - 	\(\sigma^{\pm}\)	3'/4'	Geoprobe Macro- core-2	150 15		Y (5.5-6').
- 8 -			Geoprobe	ND	Brown, saturated, CLA	Y (R-Q')
10	1	2'/3'	Macro- core-3	ND	Gray, saturated, fine SA	· · · · · · · · · · · · · · · · · · ·
- 12	native sand					
28 -					Note: ND = No V	

Project: Hanson Fire Training	ng Center C	lient: Mon	tgomery C	ounty	Well/ Boring No. SB-12
Project No.: <u>B00138-4</u> Driller: John Johnson		-		Yosts, New York	Sketch Map:
		gged by:			-
Orilling Contractor: PES				oue	-
Date Drilled: November 16				-	See Figure 2 - Site Map
M.P. Elev.: NA					. Gee gare 2 - Gile Map
Total Depth of Hole: 11'					
Screen: Dia.: NA		Α			-
Casing: Dia.: NA	_ Length:N	<u> </u>	_ Type:	NA	-
Sand Pack: 0-2/4-11'	_ Bentonite Seal:	2-4'	_ Protecti	ve Casing: NA	
Depth (ft.) Well Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
- 0 2	bentonite water table 3'/4'	Geoprobe Macro- core-1	ND 220	Brown, dry, fine-coarse s	SAND and GRAVEL, trace silt (0-2'). um SAND (2-4').
- 4	3'/4'	Geoprobe Macro- core-2	90	Gray, saturated, fine SAI	ND (4-9').
- 8 -	0101	Geoprobe Macro-			
- 10- / <i>/</i> <i>/</i>	2'/3'	core-3	2-3 2-3	Gray, saturated, CLAY (Gray, saturated, fine SA	
12 — native sar fixer media (sand) 14 — 16 — — 18 — — 20 — — 22 — — 24 — — 26 — — — — — — — — — — — — — — — —	d .				
- 28 - - 30 -				Note: ND = No VC	

_ 				
	E C I S I onmental Services	U INB	2144 Saratoga Ave. allston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center Client:Mon	ntgomery Co	unty	Well/ Boring No. SB-13
Project No.: B00138-4	Location: N	YS Rte. 5, Y	osts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis		_
Drilling Contractor: PES	Drilling Method	:_ Geopro	be	_ .
Date Drilled: November 15, 2	2001 Date Developed	:NA		_
M.P. Elev.: NA	W.L. Initial:5-6'	W.L. Static:	NA	See Figure 2 - Site Map
Total Depth of Hole: 10'	Diame	eter: 2*		_
Screen: Dia.: NA	Length: NA	_ Slot Size:	NA	_
Casing: Dia.: NA	Length: NA	_ Туре:	NA .	_
Sand Pack: 0-2'/4-10'	Bentonite Seal: 2-4'	_ Protective	e Casing: NA	
Depth Well	Notes (recovery/ Sample	PID		Description/ Soil Classification
(ft.) Construction	penetrated) Type/#	(ppm)		
0	bentonite	ND	Grass and black loamy	topsoil (0-6*).
2	water table Geoprobe Macro-		_	. , ,
	2'/4' core-1	ND	Brown, moist, fine-coars	se SAND and GRAVEL (6"-5').
4 -				
	Geoprobe Macro-			
6 -	core-2		Gray, wet, fine SAND, t	
- 8 -	Geoprobe	20	Gray, saturated, CLAY	(7-8').
	2'/3' Macro- core-3	2-3	Gray, saturated, fine SA	AND (8-10').
10				
- 12 / native sand				
filter media (sand)				
- 14 -				
- 16 -				
-				
- 18-				
20				}
- 22-				
24				
26				
				·
28				
- 30 -			Note: ND = No VC	DCs Detected by PID analysis.

	E C I S I	O N 2144 Saratoga Ave. Ballston Spa, NY 1202 TEL: 518 885-4399	DRILLING LOG
125		1700.0000 77.10	
,		tgomery County	Well/ Boring No. SB-14
Project No.: <u>B00138-4</u>	Location: N	YS Rte. 5, Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis	
Drilling Contractor: PES	Drilling Method	Geoprobe	
Date Drilled: November 15,	2001 Date Developed	NA NA	
M.P. Elev.: NA	W.L. Initial:5-6'	W.L. Static: NA	See Figure 2 - Site Map
Total Depth of Hole: 10'	Diame	eter:2*	_
Screen: Dia.: NA	Length: NA	_ Slot Size:NA	
Casing: Dia.: NA	Length: NA	Type: NA	
Sand Pack: 0-2'/4-10'	Bentonite Seal: 2-4'	_ Protective Casing: NA	
Depth Well Construction	(recovery/ Sample Type/ #	PID (ppm)	Description/ Soil Classification
2 -	bentonite water table 3.5'/4' Geoprobe Macro- core-1	Brown, moist, fine-co- some silt, ash and cir ND Brown, saturated, fine	
- 4	3'/4' Geoprobe Macro- core-2	ND 200 Gray, saturated, fine s Gray, saturated, CLA	
10	Geoprobe 2.5'/3' Macro- core-3	Gray, saturated, fine Gray, saturated, CLA	
12 - 14 - 16 - 18 - 18 - 18 - 18 - 18 - 18 - 18			
20-			
- 22 -			
24 -			
26			
28			
- 30 -		Note: ND = No \	OCs Detected by PID analysis.

		_		
	E C I S I Inmental Services		2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG
Project: Hanson Fire Training	Center Client: Mo	ntgomery Co	ounty	Well/ Boring No. SB-15
Project No.:_ B00138-4	Location: N	IYS Rte. 5, \	Yosts, New York	Sketch Map:
Driller: John Johnson	Logged by:	Eric Lewis		-
Drilling Contractor: PES	Drilling Method	d: Geopro	obe	_
Date Drilled: November 16, 2	2001 Date Developed	t: NA		_
M.P. Elev.: NA	W.L. Initial:4-5'	W.L. Static	c:NA	See Figure 2 - Site Map
Total Depth of Hole: 11'	Diam	eter: 2"		
Screen: Dia.: NA	Length: NA	_ Slot Size	:NA	_
Casing; Dia.: NA	Length: NA	Type:	NA	-
Sand Pack: 0-2'/4-11'	Bentonite Seal:_2-4'	Protectiv	ve Casing: NA	
Depth Well (ft.) Construction	Notes (recovery/ penetrated) Sample Type/#	PID (ppm)		Description/ Soil Classification
	bentonite Geoprobe water table Macro-		Brown, moist, fine-coars some silt (1-2').	e SAND and GRAVEL (0-1') e SAND and GRAVEL,
	3'/4' core-1	ND 80	Gray, wet, CLAY (2-3').	
4 -	Geoprobe Macro-	80	Gray, saturated, fine SA	ND (3-6').
	3'/4' Macro- core-2	60	Convention of the CAN	ND serve silv (C 10)
- 8 - - 10 - A	3'/3' Geoprobe Macro- core-3	45	-Gray, saturated, fine SAI	
10 /		1-2 ND	Gray, saturated, CLAY (Gray, saturated, fine SA	10-10.5'). ND, little silt (10.5-11').
native sand filter media (sand)				
- 16- 				
- 18 <i>-</i> -				
_ 20 _				
- 22 				
24				
26				
- 28-				
- 30 -			Note: ND = No VC	Cs Detected by PID analysis.

	ronmental Ser	vices, lı	nc.	2144 Saratoga Ave. allston Spa, NY 12020 TEL: 518 885-4399 FAX: 518 885-4416	DRILLING LOG Page 1 of 1 Well/ Boring No. SB-16
,					Sketch Map:
Project No.: B00138-4					Sketch map.
Driller: John Johnson		-			
Drilling Contractor: PES					-
Date Drilled: November 16	6, 2001 Date De	eveloped:	NA _		Constitution Constitution
M.P. Elev.: NA	W.L. Initial: <u>4</u> -	<u>5' </u>	.L. Static	. NA	See Figure 2 - Site Map
Total Depth of Hole: 11'		_ Diameter	r:2*		
Screen: Dia.: NA	Length:NA	;	Slot Size:	NA	-
Casing: Dia.:NA	Length:NA		Type:	NA	
Sand Pack: 0-2'/4-11'	_ Bentonite Seal:_2	-4'	Protectiv	e Casing: NA	
Depth Well (ft.) Construction		Sample Type/#	PID (ppm)		Description/ Soil Classification
- o -				Prown moist fine-coarse	e SAND and GRAVEL, trace silt (0-1')
	water table	eoprobe Macro- core-1	N D	Brown, moist, fine-coarse	e SAND, some fine gravel and silt (1-3').
- 4 -	4/7			Brown, wet, fine-medium	SAND, some silt (1-3').
		eoprobe	ND		
- 6 -	3.3/4	Macro- core-2	240	Green, saturated, fine SA	AND (5-7.5').
8 -	3'/3'	eoprobe Macro- core-3	30	Gray, saturated, CLAY (7	7.5-11').
10 /			1-2	-	
native sar	nd				
- 14 					
- 16 -					
- 18-					
- 20-					
- 22					
_ 24 _ 					
26-					
28			,		
- 30-				Note: ND = No VC	Cs Detected by PID analysis.

Project: Hanson Fire Training	Center C	lient: Mon	tgomery C	ounty	Well/ Boring No. SB-17
Project No.: B00138-4	Lo	ocation: N	/S Rte. 5, `	Yosts, New York	Skelch Map:
Oriller: John Johnson	Lo	gged by:	Eric Lewis		_
Orilling Contractor: PES	Dri	illing Method:	Geopre	obe	_
Date Drilled: November 16,	2001 Date	e Developed:	NA		_
f.P. Elev.: NA	W.L. Initial:	4-5'	W.L. Statio	e: NA	See Figure 2 - Site Map
otal Depth of Hole: 11'		Diame	ter:2"		_
Screen: Dia.: NA	Length: N	A	_ Slot Size	:NA	_
Casing: Dia.: NA	Length: N	A	_ Type:	NA	_
Sand Pack:0-2'/4-11'	Bentonite Seal	2-4'	_ Protecti	ve Casing: NA	
Depth Well Construction	Notes (recovery/ penetrated)	Sample Type/#	PID (ppm)		Description/ Soil Classification
0 - 2	bentonite water table	Geoprobe Macro-	ND	Brown, moist, fine-coar	se SAND and GRAVEL, some silt (0-2').
	4'/4'	core-1		Gray, wet, CLAY, some	e fine-medium gravel (2-3.5').
4 -		Geoprobe	220	Gray, saturated, fine SA	AND, trace silt (3.5-6").
6 -	3.574	Macro- core-2	150		
8 —	3'/3'	Geoprobe Macro-	150	Gray, saturated, fine Sa	AND, some silt, trace of clay (6-10.5').
10-	0,0	core-3	20		
native sand			2	Gray, saturated, CLAY	(10.5-11').
12 / native sand filter media (sand)					
- 14 -					
- 16 <i>-</i> - -					
18-					
 - 20 -					
22 -					
24					
 - ₂₆ _					
- 28					

		S I S I (2144 Saratoga Ave. Ballston Spa, NY 12020 TEL: 518 885-4399	DRILLING LOG
				FAX: 518 885-4416 County	Well/ Boring No. SB-18
Project No.: B0013					Sketch Map:
Driller: John Johnson					
Drilling Contractor:					
Date Drilled: Nover		_			
M.P. Elev.: NA	W.L.	Initial: 4-5'	W.L. Stati	c:_ NA	See Figure 2 - Site Map
Screen: Dia.: NA	Length:	NA	_ Slot Size	e: NA	
Casing; Dia.: NA	Length:	NA	_ Type:	NA	_
Sand Pack: 0-2'/4	-11' Bentonit	e Seal: <u>2-4</u>	_ Protecti	ve Casing: NA	
Depth Well (ft.) Constru		very/ Sample	PID (ppm)		Description/ Soil Classification
2 -	bento wate. 2.5	Geoprobe Macro- core-1	ND	Brown, moist, fine-coarse	e SAND and GRAVEL, trace silt (0-2'). SAND, trace silt (2-4').
4 -	3'/4	Geoprobe Macro-	275 55	Gray, wet, fine-medium S Brown, wet, CLAY (5-6').	
8 -		core-2	15	Gray, saturated, fine SAN	ND, some silt (6-8.5').
10	2.5	Geoprobe Macro- core-3	ND	Brown/gray, saturated, C	LAY (8.5-11').
filter media (s	native sand				
- 14 - - 16					
18-					
20-					
- 22 -					
24					
26					
├					
28					
- 30 -				Note: ND = No VO	Cs Detected by PID analysis.

ATTACHMENT - 3 Waste Manifest – UST Fluids

EMPIRE ENVIRONMENTAL SERVICES.

PO. BOX 9 949 RIVER RD. SELKIRK, NY. 12158-0009 PHONE 518-767-3127 FAX 518-767-3193

NON-HAZARDOUS WASTE MANIFEST

Document No.

Generator Name	Montgomeny Co. B.) b b	Shipping Location Richard Hanson Is		
Address			Address	Fice Training Tenter	
			1275	Fice Training Tenter Mohort NY	
		· .			
Transporter Nam	e Cross Brothers Trans	portation, Inc.	Destination l	Facility Paradise Oil	
Address	949 River Rd.	•	Address	1 Quimby St.	
	Selkirk, NY. 1215	8		Ossining NY, 10562	
Phone No.	<u>518-767-3127</u>		Phone No.	914-945-0528	
		WASTE IN	FORMATION	Ī	
Waste Descriptio	n Containers	Total	Quantity / Ga	<u>ais</u>	
Tank Bottoms &	Water I Tar	ık Truck	762	Gals.	
I hereby certify the	nat the above waste desc ch render it hazardous a	ription is comple	le and accurate	, and that no component exists	
andy P. Al. Generator's Signa	W meath	And P. Pop Print Name	d most	1 and 372.	
Fransporter # 1 S	ignature	Print Name	BASCOUT JR.	/2001 Date	
Transporter # 2 Si	gnature	Print Name		/ <u>2001</u> Date	
SDF Signature		Print Name		/ 2001 Date	
Page I Transporte	er Conv	Page 2 TSDF			

ATTACHMENT - 4
Physical Soil Testing

al

Re:

ATLANTIC TESTING LABORATORIES, Limited

December 19, 2001

Albany 12 Arrowhead Lane Cohoes, New York 12047 (518) 783-9073 (T) (518) 783-6987 (F)

Precision Environmental 2144 Saratoga Avenue Ballston Spa, New York 12020 Canton

6431 U.S. Highway 11 P.O. Box 29 Canton, NY 13617 (315) 386-4578 (T) (315) 386-1012 (F)

Attn: Mr. Eric Lewis

Utica

Laboratory Test Results Hanson Fire Training Center Route 5, Yosts, New York

698 Stevens Street Utica, NY 13502 (315) 735-3309 (T) (315) 735-0742 (F)

ATL Project No. AT454S-01-11-01

Ladies/Gentlemen:

On November 30, 2001, your representative delivered six soil samples to our Cohoes, New York facility for testing. Particle Size Analysis in accordance with ASTM D 422 (with hydrometer) was performed on each of these samples. Organic Content in accordance with ASTM D 2974 was performed on three of these samples. The laboratory test results follow.

The Particle Size Analysis curves and Total Organic Content data sheets are attached.

Please contact our office should you have any questions or if we may be of further service.

Respectfully,

James J. Kuhn, P.E. Vice President

JJK/mma

Attachment

Particle Size Distribution Report

Project: Hanson Fire Training Center

Report No.: AT454S-01-11-01

Client: Route 5 Yosts, New York Percision Environmental Services, Inc.

Sample No: AT454S1 Location: MW-18 3'-9' Source of Sample: On-Site

Date: 12/19/01

Elev./Depth: NA

% COBBLES	% GR	RAVEL % SAND		% FINES	% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0	0	0	0	0	64	11	25

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #30 #40 #50 #60 #100 #140 #200	100 100 100 99 99 83 56 36		

	Soil Description					
fine SAND, som	e CLAY, little SILT					
	Atterberg Limits					
PL= NA	LL= NA	PI= NA				
	Coefficients					
$D_{85} = 0.155$	$D_{60} = 0.112$	D ₅₀ = 0.0975				
$D_{30} = 0.0140$	D ₁₅ =	D ₁₀ =				
C _u -	C _C -					
	<u>Classification</u>					
USCS= SM AASHTO=						
Remarks						
Delivered by Client on 11/30/01						
ASTM D 422 Pa	rticle Size Analysis (v	with hydrometer)				
ATL Sample No.	AT454S1					

* (no specification provided)

Reviewed by:

Particle Size Distribution Report

Project: Hanson Fire Training Center

Report No.: AT451S-01-11-01

Route 5 Yosts, New York Percision Environmental Services, Inc.

Sample No: AT454S2 Location: MW-18 9'-11' Source of Sample: On-Site

Date: 12/19/01

Elev./Depth: NA

% CORRLES	% GRAVEL			% SAND		% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY	
0	0	0	0	0	16	37	47	

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #30 #40 #50 #60 #100 #140 #200	100 100 100 99 99 94 87 84		

	Soil Description						
CLAY, and SILT	T, little fine SAND						
	Atterberg Limits						
PL= NA	LL= NA	PI= NA					
	Coefficients						
D ₈₅ = 0.0866	D ₆₀ = 0.0169	D ₅₀ = 0.0067					
D ₃₀ = 0.0020 C _u =	D ₁₅ = C _c =	D ₁₀ =					
-	Classification						
USCS= ML							
<u>Remarks</u>							
Delivered by Clie	Delivered by Client on 11/30/01						
	ASTM D 422 Particle Size Analysis (without hydrometer)						
ATL Sample No.	AT454S2						

(no specification provided) Reviewed by: _

Particle Size Distribution Report

Project: Hanson Fire Training Center

Report No.: AT454S-01-11-01

Route 5 Yosts, New York Percision Environmental Services, Inc.

Sample No: AT454S3 Location: MW-23 4'-11' Source of Sample: On-Site

Date: 12/19/01

Elev./Depth: NA

4/ COPPLEC	% GR	AVEL	% SAND		% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0	0	0	0	2	59	15	24

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #30 #40 #50 #60 #100 #140 #200	100 98 98 98 98 91 61 39		

	_						
Soil Description							
fine SAND, some	fine SAND, some CLAY, little SILT						
	Atterberg Limit	s					
PL= NA	LL= NA	PI= NA					
	Coefficients						
$D_{85} = 0.140$	$D_{60} = 0.105$	D ₅₀ = 0.0912 D ₁₀ =					
$D_{30}^{20} = 0.0221$ $C_{u}^{20} = 0.0221$	D ₁₅ = C _c =	D ₁₀ -					
	Classification						
USCS= SM							
Remarks							
Delivered by Client on 11/30/01							
	rticle Size Analysis	(with hydrometer)					
ATL Sample No.	AT454S3						

* (no specification provided) Reviewed by: _

Particle Size Distribution Report

Project: Hanson Fire Training Center

Report No.: AT454S-01-11-01

Route 5 Yosts, New York Percision Environmental Services, Inc.

Sample No: AT454S4 Source of Sample: On-Site Date: 12/19/01

W CORRIEG	OPPLES % GRAVEL			% SANI	ND % FINES			
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY	
0	0	0	0	2	18	4	76	

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #30 #40 #50 #60 #100 #140 #200	100 99 98 97 97 95 86 80	PERCENT	SPEC. (X)

	Soil Description						
CLAY, some fin	CLAY, some fine SAND, trace SILT						
	Au 1 1: 4						
PL= NA	Atterberg Limits LL= NA	PI= NA					
D ₈₅ = 0.101 D ₃₀ = C _u =	Coefficients D60= 0.0011 D15= Cc=	D ₅₀ = D ₁₀ =					
USCS= ML	USCS= ML Classification AASHTO=						
Remarks Delivered by Client on 11/30/01 ASTM D 422 Particle Size Analysis (with hydrometer) ATL Sample No. AT454S4							

(no specification provided) Reviewed by: _

Particle Size Distribution Report

Project: Hanson Fire Training Center

Report No.: AT454S-01-11-01

Route 5 Yosts, New York
Percision Environmental Services, Inc.

Sample No: AT454S5 Source of Sample: On-Site Date: 12/19/01 Location: MW-25 4'-11' Elev./Depth: NA

% COBBLES	% GR	AVEL		% SANI	כ	% FINES	
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0	0	0	0	1	55	13	31

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #30 #40 #50 #60 #100 #140 #200	100 99 99 99 99 89 61 44		

Soil Description fine SAND, some CLAY, little SILT								
PL= NA	Atterberg Limits	PI= NA						
D ₈₅ = 0.143 D ₃₀ = 0.0040 C _u =	<u>Coefficients</u> D ₆₀ = 0.104 D ₁₅ = C _c =	D ₅₀ = 0.0876 D ₁₀ =						
USCS= SM	USCS= SM Classification AASHTO=							
ASTM D 422 Pa	Remarks Delivered by Client on 11/30/01 ASTM D 422 Particle Size Analysis (with hydrometer) ATL Sample No. AT454S5							

* (no specification provided)

Reviewed by: _

Particle Size Distribution Report

Project: Hanson Fire Training Center

Report No.: AT454S-01-11-01

Route 5 Yosts, New York Percision Environmental Services, Inc.

Source of Sample: On-Site Date: 12/19/01 Sample No: AT454S6

Location: MW-25 11.5'-12'

Elev./Depth: NA

% CORRIES	% GR	AVEL	% SAND			% FINES		
% COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY	
0	0	0	0	7	22	24	47	

SIEVE	PERCENT	SPEC.*	OUT OF
SIZE	FINER	PERCENT	SPEC. (X)
#10 #30 #40 #50 #60 #100 #140 #200	100 95 93 92 92 89 78 71		
	#10 #30 #40 #50 #60 #100 #140	#10 100 #30 95 #40 93 #50 92 #60 92 #100 89 #140 78	SIZE FINER PERCENT #10 100 #30 95 #40 93 #50 92 #60 92 #100 89 #140 78

	Soil Description								
CLAY, some me	CLAY, some medium to fine SAND, some SILT								
	Atterberg Limits								
PL= NA	LL= NA	PI= NA							
	Coefficients								
$D_{85} = 0.133$	$D_{60} = 0.0221$	D ₅₀ = 0.0066							
D ₃₀ = C ₁₁ =	D ₁₅ = C-=	D ₁₀ =							
οu	O(15 11								
USCS= ML	Classification AASHT	·n=							
USCS- MIL		0-							
	<u>Remarks</u>								
•	Delivered by Client on 11/30/01								
	irticle Size Analysis (v	with hydrometer)							
ATL Sample No	. AT454S6								

* (no specification provided)

Reviewed by:

ONE RESEARCH CIRCLE TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:13-DEC-2001

Lab Sample ID: L80522-1

Atlantic Testing Laboratories

Greg Wichser

12 Arrowhead Lane Cohoes, NY 12047

Sample Source: AT454 PRECISION ENV.

Origin: MW-18 (3-9')

Description: COMPOSITE

Sampled On: 30-NOV-01 00:00 by CLIENT

Date Received: 05-DEC-01 10:30

P.O. No: AT454

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	78.7	%		06-DEC-01 00:00	CLP 3.0	01-136-97
тос	U	mg/kg	1200	06-DEC-01 00:00	SW846 9060	01-069-82

Results calculated on a dry weight basis.

Page 1 of 1 Approved by: NY 10252 NJ 73168 PA 68180 **EPA NY 00033** Lab Director ND or U ug/L = micrograms per liter (equivalent to parts per billion) KEY: = None Detected < = less than = milligrams per kilogram (equivalent to parts per million) = milligrams per liter (equivalent to parts per million) mg/kg mg/L В = analyte was detected in the method or trip blank J = result estimated below the quantitation limit

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

ONE RESEARCH CIRCLE TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:13-DEC-2001

Lab Sample ID: L80522-2

Atlantic Testing Laboratories

Greg Wichser

12 Arrowhead Lane Cohoes, NY 12047

Sample Source: AT454 PRECISION ENV.

Origin: MW-23 (4-11')

Description: COMPOSITE

Sampled On: 30-NOV-01 00:00 by CLIENT

Date Received: 05-DEC-01 10:30

P.O. No: AT454

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	76.3	%		06-DEC-01 00:00	CLP 3.0	01-136-97
■ TOC	U	mg/kg	1100	06-DEC-01 00:00	SW846 9060	01-069-82

Results calculated on a dry weight basis.

Page 1 of 1 NY 10252 NJ 73168 PA 68180 **EPA NY 00033** Approved by: Lab Director ug/L KEY: ND or U = None Detected < = less than = micrograms per liter (equivalent to parts per billion) = milligrams per liter (equivalent to parts per million) mg/kg = milligrams per kilogram (equivalent to parts per million) mg/L = result estimated below the quantitation limit = analyte was detected in the method or trip blank J В

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

ONE RESEARCH CIRCLE TELEPHONE (607) 565-3500

WAVERLY, NY 14892-1532 FAX (607) 565-4083

Date:13-DEC-2001

Lab Sample ID: L80522-3

Atlantic Testing Laboratories

Greq Wichser

12 Arrowhead Lane Cohoes, NY 12047 Sample Source: AT454 PRECISION ENV.

Origin: MW-25 (4-11')

Description: composite

Sampled On: 30-NOV-01 00:00 by CLIENT

Date Received: 05-DEC-01 10:30

P.O. No: AT454

Analysis Performed	Result	Units	Detection Limit	Date Analyzed	Method	Notebook Reference
Total Solids	85.3	%		06-DEC-01 00:00	CLP 3.0	01-136-97
тос	U	mg/kg	1100	06-DEC-01 00:00	SW846 9060	01-069-82

Results calculated on a dry weight basis.

Page 1 of 1 Approved by NY 10252 NJ 73168 PA 68180 **EPA NY 00033** ug/L = micrograms per liter (equivalent to parts per billion) ND or U = None Detected < = less than = milligrams per kilogram (equivalent to parts per million) = milligrams per liter (equivalent to parts per million) mg/kg mg/L = result estimated below the quantitation limit = analyte was detected in the method or trip blank J

The information in this report is accurate to the best of our knowledge and ability. In no event shall our liability exceed the cost of these services. Your samples will be discarded after 14 days unless we are advised otherwise.

ATTACHMENT - 5
Data Validation

LETTER OF TRANSMITTAL

	O
ENV	LPHA IRONMENTAL SULTANTS, INC.

ALPHA GEOSCIENCE

679 Plank Road Clifton Park NV 12065

ALPHA ENVIRONMENTAL	(518) 348 -6995 Phone (518) 343-6966 FAX
TO: Mr. Eric	FROM: O '
	os, Inc. DATE: Jan 28, 2002
	ratoga Ave. SUBJECT: Data Validation
Ballston	Spa, NY 12020 Hanson Fire Training Center
WE ARE TRANSMIT	<u> </u>
Originals Copie	Description of Materials
1	Adiron Jack Environmental Services, Inc. Data Pack, SDG aumber MW-2
These Mat	erials are Transmitted: For your use Approved as submitted
	For your approval Approved as submitted Approved as submitted Approved as submitted Approved as submitted
	For your review and comment Returned after loaned to us Returned for revision
Please:	Return original to us Retain for your files
	Submit after revision Other
REMARKS:	Returned upon completion of data validation
ADDITIONAL COPIE	
	Donald Anne

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Re:

Data Validation

Hanson Fire Training Center Project

Dear Mr. Lewis:

The data validation reviews for the Hanson Fire Training Center Project are attached to this letter. The data for Adirondack Environmental Services, Inc., SDG numbers MW-1 and MW-21, were acceptable with some issues that are identified and discussed in the validation summaries. There were no data that were rejected (R) in these data packs. A list of common data validation acronyms is attached to this letter to assist you interpreting the validation summaries.

If you have any questions concerning the work performed, please contact me at our new Clifton Park office, (518) 348-6995. Thank you for the opportunity to assist Precision Environmental Services, Inc.

Sincerely,

January 28, 2002

Mr. Eric Lewis

2144 Saratoga Avenue

Ballston Spa, New York 12020

Precision Environmental Services, Inc.

Alpha Environmental Consultants, Inc.

Donald Anné Senior Chemist

DCA:dca attachments

\server\main station\alpha e\dataval\2002\02502-hanson ftc\lewis-2.ltr

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine

ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions

MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance
QC Quality control
RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene
%D Percent difference
%R Percent recovery

%RSD Percent relative standard deviation

QA/QC Review of Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0102, SDG: MW-1

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 28, 2002

Holding Times: Samples were analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All BFB tuning criteria were within control limits.

<u>Initial Calibration</u>: The %RSD for vinyl chloride (26.1%) was above the contractual maximum (20.5%). The RRFs for 1,1,2,2-tetrachloroethane (0.434, 0.491, and 0.474) were below the contractual minimum (0.500). No action is taken on two or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050) and %RSDs were below the allowable maximum (30%), as required.

Continuing Calibration: All compounds with contract requirements for RRF50s and %Ds met those criteria.

All RRF50s for target compounds were above the allowable minimum (0.050), as required. The %D for 2-hexanone (41.2%) was above the allowable maximum (25%) on 12-05-01 (CS245). The %Ds for chloromethane (31.8%) and acetone (49.2%) were above the allowable maximum (25%) on 12-06-01 (CS246). The %D for 2-butanone (26.2%) was above the allowable maximum (25%) on 12-07-01 (CS248). The %Ds for 2-butanone (25.3%) and 2-hexanone (44.0%) were above the allowable maximum (25%) on 12-10-01 (CS250). Results for these compounds should be considered estimates (J) in associated samples.

Blanks: Method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries for environmental samples were within control limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums, but 1 of 10 %Rs (percent recoveries) was outside control limits for aqueous MS/MSD sample MW-13. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for sample VMSB were within QC limits.

<u>Compound ID</u>: Checked compounds were within GC/MS quantitation limits. Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of Semi-Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0102, SDG No. MW-1

Prepared by: Donald Anné January 28, 2002

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Holding Times: Samples were extracted and analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All DFTPP tuning criteria were within control limits.

Initial Calibration: Compounds with requirements for RRFs met those criteria. The %RSDs for bis(2-chloroethyl)ether (20.8%) and benzo(k)fluoranthene (25.9%) were above the contractual maximum (20.5%) on 12-17-01. The %RSD for benzo(k)fluoranthene (23.1%) was above the contractual maximum (20.5%) on 01-04-02. No action is taken on four or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050), as required. The %RSDs for 4-chloroaniline (38.1%), 3-nitroaniline (55.1%), 4-nitroaniline (61.5%), and carbazole (40.6%) were above the allowable maximum (30%) on 12-17-01. The %RSDs for 3-nitroaniline (32.6%), 2,4-dinitrophenol (55.5%), 3-nitroaniline (69.0%), and carbazole (33.5%) were above the allowable maximum (30%) 01-04-02. Results for these compounds should be considered estimates (J).

Continuing Calibration: Compounds with requirements for RRF50s met those criteria. The %Ds for 4-chloro-3-methylphenol (32.2%), 2-methylnaphthalene (39.4%), and pentachlorophenol (39.7%) were above the contractual maximum (25%) on 12-21-01 (BS302). The %Ds for 4-chloro-3-methylphenol (29.3%), 2-methylnaphthalene (32.6%), and phenol-d5 (28.2%) were above the contractual maximum (25%) on 12-27-01 (BS306). The %Ds for 4-chloro-3-methylphenol (30.9%), 2-methylnaphthalene (35.8%), pyrene (28.1%), and phenol-d5 (27.1%) were above the contractual maximum (25%) on 12-28-01 (BS308). No action is taken on four or fewer compounds with %Ds and RRF50s outside contractual requirements, as long as %Ds are below 40% and RRF50s are above 0.010.

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-21-01 (BS302):

```
4-chloro-3-methylphenol (32.2%)
3-nitroaniline (39.8%)
2-methylnaphthalene (39.4%)
2,4-dinitrophenol (60.9%)
4-nitrophenol (70.5%)
4,6-dinitro-2-methylphenol (61.3%)
pentachlorophenol (39.7%)
```

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-27-01 (BS306):

```
4-chloro-3-methylphenol (29.3%)
2-methylnaphthalene (32.6%)
3-nitroaniline (67.8%)
2,4-dinitrophenol (52.1%)
4-nitrophenol (30.6%)
4,6-dinitro-2-methylphenol (55.6%)
bis(2-ethylhexyl)phthalate (29.8%)
4-nitrophenol (52.1%)
bis(2-ethylhexyl)phthalate (29.8%)
```

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-28-01 (BS308):

```
4-chloroaniline (33.1%)

2-methylnaphthalene (35.8%)

3-nitroaniline (58.0%)

4-chloro-3-methylphenol (30.9%)

hexachlorocyclopentadiene (27.0%)

2,4-dinitrophenol (71.6%)

4,6-dinitro-2-methylphenol (36.2%)

pyrene (28.1%)

di-n-octylphthalate (46.2%)
```

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 01-04-02 (BS013):

```
3-nitroaniline (67.2%) 2,4-dinitrophenol (35.2%) 4-nitrophenol (67.4%) 4,6-dinitro-2-methylphenol (51.0%)
```

Results for the above compounds should be considered estimates (J) in associated samples.

Blanks: The method blank reported target compounds as not detected.

Internal Standard Area Summary: All internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries for environmental samples were within control limits.

Matrix Spike/Matrix Spike Duplicate: Ten of eleven relative percent differences were above the allowable maximums and 13 of 22 %Rs (percent recoveries) were outside control limits for MS/MSD sample MW-13. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.

<u>Laboratory Control Sample</u>: The percent recoveries for sample WMSB were within QC limits.

Compound ID: Checked compounds were within GC/MS quantitation and qualitation limits. Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of PCB Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG No. MW-1

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 28, 2002

Holding Times: All samples were extracted and analyzed within SW-846 holding times.

Blanks: The method blank reported target aroclors as not detected.

Surrogate Recovery: The surrogate recoveries for samples were within advisory limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent difference was below the allowable maximum and the percent recoveries were within QC limits for MS/MSD sample MW-13.

<u>Laboratory Control Sample</u>: The percent recovery for sample PMSBP1 was within QC limits.

<u>Initial Calibration</u>: The %RSDs for target aroclors were below the allowable maximum (20%), as required.

Continuing Calibration: The %Ds for target aroclors were below the allowable maximum (15%), as required.

<u>PCB Evaluation of Retention Time Shift of DCB</u>: The retention times for DCB were within control limits.

<u>PCB Identification</u>: Checked aroclors were within GC quantitation limits. Detected aroclors were confirmed on a second, dissimilar column.

\server\main station\alpha e\dataval\2002\02502-hanson ftc\mw-1.pcb

QA/QC Review of Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0102, SDG: MW-21

Prepared by: Donald Anné January 28, 2002

Environmental Chemistry

Lきつ and Field Audits

Sampling Plans

<u>Holding Times</u>: Samples were analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All BFB tuning criteria were within control limits.

Initial Calibration: The %RSD for vinyl chloride (26.1%) was above the contractual maximum (20.5%). The RRFs for 1,1,2,2-tetrachloroethane (0.434, 0.491, and 0.474) were below the contractual minimum (0.500). No action is taken on two or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050) and %RSDs were below the allowable maximum (30%), as required.

<u>Continuing Calibration</u>: All compounds with contract requirements for RRF50s and %Ds met those criteria.

All RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for chloromethane (31.8%) and acetone (49.2%) were above the allowable maximum (25%) on 12-06-01 (CS246). The %D for 2-butanone (26.2%) was above the allowable maximum (25%) on 12-07-01 (CS248). Results for these compounds should be considered estimates (J) in associated samples.

<u>Blanks</u>: Method and trip blanks reported target compounds as not detected. The field blank contained traces of chloroform (3 ug/L) and bromodichloromethane (2 ug/L). Results for chloroform and bromodichloromethane that are less than five times the field blank level should be reported as "not detected" (U) in associated samples.

<u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries for environmental samples were within control limits.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums and percent recoveries were within control limits for aqueous MS/MSD sample MW-23.
- <u>Laboratory Control Sample</u>: The percent recoveries for sample VMSB were within QC limits.
- <u>Compound ID</u>: Checked compounds were within GC/MS quantitation limits. Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of Semi-Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0102, SDG No. MW-21

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 28, 2002

<u>Holding Times</u>: Samples were extracted and analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All DFTPP tuning criteria were within control limits.

Initial Calibration: Compounds with requirements for RRFs met those criteria. The %RSDs for bis(2-chloroethyl)ether (20.8%) and benzo(k)fluoranthene (25.9%) were above the contractual maximum (20.5%). No action is taken on four or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050), as required. The %RSDs for 4-chloroaniline (38.1%), 3-nitroaniline (55.1%), 4-nitroaniline (61.5%), and carbazole (40.6%) were above the allowable maximum (30%). Results for these compounds should be considered estimates (J).

Continuing Calibration: Compounds with requirements for RRF50s met those criteria. The %Ds for 4-chloro-3-methylphenol (29.3%), 2-methylnaphthalene (32.6%), and phenol-d5 (28.2%) were above the contractual maximum (25%) on 12-27-01 (BS306). The %Ds for 4-chloro-3-methylphenol (30.9%), 2-methylnaphthalene (35.8%), pyrene (28.1%), and phenol-d5 (27.1%) were above the contractual maximum (25%) on 12-28-01 (BS308). No action is taken on four or fewer compounds with %Ds and RRF50s outside contractual requirements, as long as %Ds are below 40% and RRF50s are above 0.010.

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-27-01 (BS306):

4-chloro-3-methylphenol (29.3%)

3-nitroaniline (67.8%)

4-nitrophenol (30.6%)

n-nitrosodiphenylamine (27.8%)

bis(2-ethylhexyl)phthalate (29.8%)

2-methylnaphthalene (32.6%)

2,4-dinitrophenol (52.1%)

4,6-dinitro-2-methylphenol (55.6%)

butylbenzylphthalate (26.2%)

di-n-octylphthalate (47.2%)

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-28-01 (BS308):

4-chloroaniline (33.1%)
2-methylnaphthalene (35.8%)
3-nitroaniline (58.0%)
4-nitrophenol (72.9%)
pyrene (28.1%)

4-chloro-3-methylphenol (30.9%) hexachlorocyclopentadiene (27.0%) 2,4-dinitrophenol (71.6%) 4,6-dinitro-2-methylphenol (36.2%) di-n-octylphthalate (46.2%)

Results for the above compounds should be considered estimates (J) in associated samples.

<u>Blanks</u>: Method and field blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.

<u>Surrogate Recovery</u>: The surrogate recoveries for environmental samples were within control limits.

Matrix Spike/Matrix Spike Duplicate: MS/MSD data was not provided in this SDG. The QA/QC review for PCB data, SDG No. MW-1 contains the MS/MSD data for these samples.

Laboratory Control Sample: The percent recoveries for sample WMSB were within QC limits.

<u>Compound ID</u>: Checked compounds were within GC/MS quantitation and qualitation limits. Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of PCB Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG No. MW-21

Prepared by: Donald Anné January 28, 2002

Environmental Chemistry

Lab and Field Audits

Sampling Plans

<u>Holding Times</u>: All samples were extracted and analyzed within SW-846 holding times.

Blanks: Method and field blanks reported target aroclors as not detected.

<u>Surrogate Recovery</u>: The surrogate recoveries for samples were within advisory limits.

Matrix Spike/Matrix Spike Duplicate: MS/MSD data was not provided in this SDG. The QA/QC review for PCB data, SDG No. MW-1 contains the MS/MSD data for these samples.

<u>Laboratory Control Sample</u>: The percent recovery for sample PMSBP2 was within QC limits.

<u>Initial Calibration</u>: The %RSDs for target aroclors were below the allowable maximum (20%), as required.

Continuing Calibration: The %Ds for target aroclors were below the allowable maximum (15%), as required.

<u>PCB Evaluation of Retention Time Shift of DCB</u>: The retention times for DCB were within control limits.

<u>PCB Identification</u>: There were no detectable concentrations of aroclors reported in any sample in this SDG.

\server\main station\alpha e\dataval\2002\02502-hanson ftc\mw-21.pcb

LETTER OF TRANSMITTAL

ALPHA ENVIRONMENTAL CONSULTANTS, INC.

679 Plank Road Clifton Park, New York 12065 (518) 348-6995 - Phone (518)348-6966 - FAX

CONTOCIO						
TO: Mr.	Eric 1	Lewis		on Anne'		-
Preci	sion Er	ovironmental Ser.	Inc. DATE: J	anuary 22, Z	200 Z	
214	9 Sara	toga Ave. Spa, NY 12020		Data Valida		ntor Project
WE ARE TE		_	Photograph Maps/Plans Report(s)		Letter(s)Disk(s)XOther_D	nata Packs
Originals	Copies		De	scription of Mate	rials	
	1	Adviondack En	u v,ronmental	Services, In		, SDG # B-1 , SDG # MAW-14
				· ·		
T	hese Materi	ials are Transmitted:				
		For your use For your approval For your review and cor	nment		ApprovedX_ Returned	d as submitted d as noted l after loaned to us l for revision
Please:		Return original to us Submit after revision			Retain fo	r your files
REMARKS:		Returned upo	n comple	tion of	data vali	dation
						_
ADDITIONA	L COPIES	TO:		SIGNATURE:	u A	, Mg
				1	~ / _	

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Re: Data Validation

Hanson Fire Training Center Project

Dear Mr. Lewis:

The data validation reviews for the Hanson Fire Training Center Project, are attached to this letter. The data for Adirondack Environmental Services, Inc., SDG numbers MW-14 and B-1 were acceptable with some issues that are identified and discussed in the validation summaries. There were no data that were rejected (R) in these data packs. A list of common data validation acronyms is attached to this letter to assist you interpreting the validation summaries.

If you have any questions concerning the work performed, please contact me at our new Clifton Park office, (518) 348-6995. Thank you for the opportunity to assist Precision Environmental Services, Inc.

Sincerely,

January 22, 2002

Mr. Eric Lewis

2144 Saratoga Avenue

Ballston Spa, New York 12020

Precision Environmental Services, Inc.

Alpha Environmental Consultants, Inc.

Donald Anné Senior Chemist

Donald S

DCA:dca attachments

\server\main station\alpha e\dataval\2002\02502-hanson ftc\lewis.ltr

Data Validation Acronyms

AA Atomic absorption, flame technique

BHC Hexachlorocyclohexane BFB Bromofluorobenzene

CCB Continuing calibration blank
CCC Calibration check compound
CCV Continuing calibration verification

CN Cyanide

CRDL Contract required detection limit
CRQL Contract required quantitation limit
CVAA Atomic adsorption, cold vapor technique

DCAA 2,4-Dichlophenylacetic acid

DCB Decachlorobiphenyl

DFTPP Decafluorotriphenyl phosphine ECD Electron capture detector

FAA Atomic absorption, furnace technique

FID Flame ionization detector FNP 1-Fluoronaphthalene GC Gas chromatography

GC/MS Gas chromatography/mass spectrometry

GPC Gel permeation chromatography

ICB Initial calibration blank

ICP Inductively coupled plasma-atomic emission spectrometer

ICV Initial calibration verification IDL Instrument detection limit

IS Internal standard

LCS Laboratory control sample

LCS/LCSD Laboratory control sample/laboratory control sample duplicate

MSA Method of standard additions

MS/MSD Matrix spike/matrix spike duplicate

PID Photo ionization detector
PCB Polychlorinated biphenyl
PCDD Polychlorinated dibenzodioxins
PCDF Polychlorinated dibenzofurans

QA Quality assurance
QC Quality control
RF Response factor

RPD Relative percent difference RRF Relative response factor

RRF(number) Relative response factor at concentration of the number following

RT Retention time

RRT Relative retention time SDG Sample delivery group

SPCC System performance check compound

TCX Tetrachloro-m-xylene %D Percent difference %R Percent recovery

%RSD Percent relative standard deviation

QA/QC Review of Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG: B-1

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 22, 2002

<u>Holding Times</u>: Samples were analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All BFB tuning criteria were within control limits.

Initial Calibration: All compounds with contract requirements for %RSDs met those criteria. The RRFs for 1,1,2,2-tetrachloroethane (0.499, 0.425, and 0.419) were below the contractual minimum (0.500). No action is taken on two or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050), as required. The %RSD for chloroethane (39.4%) was above the allowable maximum (30%). Results for chloroethane should be considered estimates (J).

Continuing Calibration: The %D for bromomethane (39.9%) was above the contractual maximum (25%) on 11-27-01 (DS240). The RRF50 for 1,1,2,2-tetrachloroethane (0.471) was below the contractual minimum (0.500) on 11-26-01 (DS239). The RRF50 for 1,1,2,2-tetrachloroethane (0.455) was below the contractual minimum (0.500) on 11-28-01 (DS241). No action is taken on two or fewer compounds with %Ds and RRF50s outside contractual requirements, as long as %Ds are below 40% and RRF50s are above 0.010.

All RRF50s for target compounds were above the allowable minimum (0.050), as required. The %D for 2-butanone (30.1%) was above the allowable maximum (25%) on 11-26-01 (DS239). The %Ds for bromomethane (39.9%) and chloroethane (32.1%) were above the allowable maximum (25%) on 11-27-01 (DS240). The %D for 2-butanone (27.8%) was above the allowable maximum (25%) on 11-28-01 (DS241). Results for these compounds should be considered estimates (J) in associated samples.

Blanks: Method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.

- Surrogate Recovery: The surrogate recoveries for environmental samples were within control limits.
 - Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums and percent recoveries were within control limits for soil MS/MSD samples OF-2 and SB-12.
 - <u>Laboratory Control Sample</u>: The percent recoveries for samples VMSB1 and VMSB2 were within OC limits.
 - <u>Compound ID</u>: Checked compounds were within GC/MS quantitation limits. Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of Semi-Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG No. B-1

Prepared by: Donald Anné January 22, 2002

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Holding Times: Samples were extracted and analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All DFTPP tuning criteria were within control limits.

Initial Calibration: Compounds with requirements for RRFs met those criteria. The %RSD for benzo(k)fluoranthene (21.2%) was above the contractual maximum (20.5%). No action is taken on four or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050), as required. The %RSD for 4,6-dinitro-2-methylphenol (39.5%) was above the allowable maximum (30%). Results for 4,6-dinitro-2-methylphenol should be considered estimates (J).

Continuing Calibration: Compounds with requirements for RRF50s met those criteria. The %Ds for 4-chloro-3-methylphenol (32.1%), 2-methylnaphthalene (25.6%), and indeno(1,2,3-cd)pyrene (27.5%) were above the contractual maximum (25%) on 12-11-01 (BS278). The %Ds for phenol (27.3%), 4-chloro-3-methylphenol (26.6%), and benzo(k)fluoranthene (26.6%) were above the contractual maximum (25%) on 12-12-01 (BS280). The %Ds for phenol (25.4%), 4-chloro-3-methylphenol (28.5%), 2-methylnaphthalene (27.2%), and benzo(g,h,i)perylene (31.5%) were above the contractual maximum (25%) on 12-13-01 (BS282). No action is taken on four or fewer compounds with %Ds and RRF50s outside contractual requirements, as long as %Ds are below 40% and RRF50s are above 0.010.

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-11-01 (BS278):

bis(2-chloroisopropyl)ether (28.6%)

2-methylnaphthalene (25.6%)

2,4-dinitrophenol (77.3%)

4,6-dinitro-2-methylphenol (67.4%) indeno(1,2,3-cd)pyrene (27.5%)

4-chloro-3-methylphenol (32.1%)

3-nitroaniline (67.6%)

4-nitroaniline (45.9%)

n-nitrosodiphenylaine (32.1%)

The %Ds for the following compounds were above the allowable maximum (25%) on 12-12-01 (BS280):

```
phenol (27.3%)

4-chloroaniline (54.2%)

3-nitroaniline (75.4%)

4-nitroaniline (47.2%)

n-nitrosodiphenylaine (41.8%)

bis(2-chloroisopropyl)ether (29.3%)

4-chloro-3-methylphenol (26.6%)

2,4-dinitro-2-methylphenol (51.8%)

benzo(k)fluoranthene (26.6%)
```

The %Ds for the following compounds were above the allowable maximum (25%) on 12-13-01 (BS282):

```
phenol (25.4%)
4-chloro-3-methylphenol (28.5%)
4-chlorocyclopentadiene (41.5%)
2,4-dinitrophenol (29.0%)
4,6-dinitro-2-methylphenol (37.7%)
3,3'-dichlorobenzidine (32.4%)
4-chloroaniline (26.9%)
2-methylnaphthalene (27.2%)
3-nitroaniline (75.1%)
4-nitroaniline (50.4%)
n-nitrosodiphenylaine (40.4%)
benzo(g,h,i)perylene (31.5%)
```

Results for the above compounds should be considered estimates (J) in associated samples.

Blanks: The method blanks reported target compounds as not detected.

<u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.

Surrogate Recovery: The surrogate recoveries for environmental samples were within control limits.

- Matrix Spike/Matrix Spike Duplicate: The relative percent differences (RPDs) were below the allowable maximums and percent recoveries (%Rs) were within control limits for MS/MSD sample SB-8. Five of 11 RPDs were above the allowable maximums and 7 of 22 %Rs were outside control limits for MS/MSD sample SB-12. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.
- <u>Laboratory Control Sample</u>: The percent recoveries for samples SMSB and MLMSB were within OC limits.
- Compound ID: Checked compounds were within GC/MS quantitation and qualitation limits.

 Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of PCB Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG No. B-1

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 22, 2002

<u>Holding Times</u>: All samples were extracted and analyzed within SW-846 holding times.

Blanks: The method blanks reported target aroclors as not detected.

Surrogate Recovery: The surrogate recoveries for samples were within advisory limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent difference was below the allowable maximum (50%) and percent recoveries were withn QC limits (50-150%) for MS/MSD sample SB-12.

Laboratory Control Sample: The percent recovery for sample PMSBP2 was within QC limits.

- <u>Initial Calibration</u>: The %RSDs for target aroclors were below the allowable maximum (20%), as required.
- Continuing Calibration: The %Ds for target aroclors were below the allowable maximum (15%), as required.
- <u>PCB Evaluation of Retention Time Shift of DCB</u>: The retention times for DCB were within control limits.
- <u>PCB Identification</u>: Checked results were within GC quantitation limits. Aroclor detections were confirmed on a second, dissimilar column.

\server\main station\alpha e\dataval\2002\02502-hanson ftc\b-1.pcb

QA/QC Review of Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG: MW-14

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 22, 2002

Holding Times: Samples were analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All BFB tuning criteria were within control limits.

Initial Calibration: All compounds with contract requirements for %RSDs met those criteria. The RRFs for 1,1,2,2-tetrachloroethane (0.499, 0.425, and 0.419) were below the contractual minimum (0.500). No action is taken on two or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050), as required. The %RSD for chloroethane (39.4%) was above the allowable maximum (30%). Results for chloroethane should be considered estimates (J).

Continuing Calibration: The %D for bromomethane (39.9%) was above the contractual maximum (25%) on 11-27-01 (DS240). The RRF50 for 1,1,2,2-tetrachloroethane (0.412) was below the contractual minimum (0.500) on 11-21-01 (DS238). The RRF50 for 1,1,2,2-tetrachloroethane (0.471) was below the contractual minimum (0.500) on 11-26-01 (DS239). The RRF50 for 1,1,2,2-tetrachloroethane (0.455) was below the contractual minimum (0.500) on 11-28-01 (DS241). No action is taken on two or fewer compounds with %Ds and RRF50s outside contractual requirements, as long as %Ds are below 40% and RRF50s are above 0.010.

All RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for 2-butanone (34.5%) and 2-hexanone (34.0%) were above the allowable maximum (25%) on 11-21-01 (DS238). The %D for 2-butanone (30.1%) was above the allowable maximum (25%) on 11-26-01 (DS239). The %Ds for bromomethane (39.9%) and chloroethane (32.1%) were above the allowable maximum (25%) on 11-27-01 (DS240). The %D for 2-butanone (27.8%) was above the allowable maximum (25%) on 11-28-01 (DS241). Results for these compounds should be considered estimates (J) in associated samples.

Blanks: Method blanks reported target compounds as not detected.

- <u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.
- Surrogate Recovery: The surrogate recoveries for environmental samples were within control limits.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums and percent recoveries were within control limits for soil MS/MSD sample MW-23.
- <u>Laboratory Control Sample</u>: The percent recoveries for sample VMSB were within QC limits.
- <u>Compound ID</u>: Checked compounds were within GC/MS quantitation limits. Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of Semi-Volatiles Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG No. MW-14

Prepared by: Donald Anné January 22, 2002

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

<u>Holding Times</u>: Samples were extracted and analyzed within SW-846 holding times.

GC/MS Tuning and Mass Calibration: All DFTPP tuning criteria were within control limits.

<u>Initial Calibration</u>: Compounds with requirements for RRFs met those criteria. The %RSD for benzo(k)fluoranthene (21.2%) was above the contractual maximum (20.5%). No action is taken on four or fewer compounds with %RSDs and RRFs outside contractual requirements, as long as %RSDs are below 40% and RRFs are above 0.010.

Average RRFs for target compounds were above the allowable minimum (0.050), as required. The %RSD for 4,6-dinitro-2-methylphenol (39.5%) was above the allowable maximum (30%). Results for 4,6-dinitro-2-methylphenol should be considered estimates (J).

Continuing Calibration: Compounds with requirements for RRF50s met those criteria. The %D for 4-chloro-3-methylphenol (37.4%) was above the contractual maximum (25%) on 12-06-01 (BS274). The %Ds for 4-chloro-3-methylphenol (29.2%), dibenzo(a,h)anthracene (30.2%), and benzo(g,h,i)perylene (30.5%) were above the contractual maximum (25%) on 12-10-01 (BS277). The %Ds for 4-chloro-3-methylphenol (32.1%), 2-methylnaphthalene (25.6%), and indeno(1,2,3-cd)pyrene (27.5%) were above the contractual maximum (25%) on 12-11-01 (BS278). No action is taken on four or fewer compounds with %Ds and RRF50s outside contractual requirements, as long as %Ds are below 40% and RRF50s are above 0.010.

The RRF50s for target compounds were above the allowable minimum (0.050), as required. The %Ds for the following compounds were above the allowable maximum (25%) on 12-06-01 (BS274):

4-chloro-3-methylphenol (37.4%)

(37.470)

2,4-dinitrophenol (60.2%)

4-nitroaniline (41.1%)

3-nitroaniline (45.3%)

4,6-dinitro-2-methylphenol (55.7%)

n-nitrosodiphenylaine (40.8%)

The %Ds for the following compounds were above the allowable maximum (25%) on 12-10-01 (BS277):

```
bis(2-chloroisopropyl)ether (29.7%)
4-chloro-3-methylphenol (29.2%)
3-nitroaniline (34.6%)
4-chloroaniline (72.7%)
4-nitroaniline (30.9%)
4,6-dinitro-2-methylphenol (42.5%)
4-nitroaniline (30.9%)
n-nitrosodiphenylaine (39.5%)
benzo(g,h,i)perylene (30.5%)
```

The %Ds for the following compounds were above the allowable maximum (25%) on 12-11-01 (BS278):

```
bis(2-chloroisopropyl)ether (28.6%)

2-methylnaphthalene (25.6%)

2,4-dinitrophenol (77.3%)

4,6-dinitro-2-methylphenol (67.4%)

indeno(1,2,3-cd)pyrene (27.5%)

4-chloro-3-methylphenol (32.1%)

3-nitroaniline (67.6%)

4-nitroaniline (45.9%)

n-nitrosodiphenylaine (32.1%)
```

Results for the above compounds should be considered estimates (J) in associated samples.

- Blanks: The method blank reported target compounds as not detected.
- <u>Internal Standard Area Summary</u>: All internal standard areas and retention times were within control limits.
- <u>Surrogate Recovery</u>: The surrogate recoveries for environmental samples were within control limits.
- Matrix Spike/Matrix Spike Duplicate: The relative percent differences were below the allowable maximums, but 1 of 22 %Rs (percent recoveries) was above control limits for MS/MSD sample MW-14. No action is taken on MS/MSD data alone to qualify or reject an entire set of samples.
- <u>Laboratory Control Sample</u>: The percent recoveries for sample SMSB were within QC limits.
- Compound ID: Checked compounds were within GC/MS quantitation and qualitation limits.

 Detected compounds contained the primary and secondary ions in the mass spectra, as outlined in the method.

QA/QC Review of PCB Data for Adirondack Environmental Services, Inc. Case No. PE0101, SDG No. MW-14

Data Validation

Environmental Chemistry

Lab and Field Audits

Sampling Plans

Prepared by: Donald Anné January 22, 2002

Holding Times: All samples were extracted and analyzed within SW-846 holding times.

Blanks: The method blank reported target aroclors as not detected.

Surrogate Recovery: The surrogate recoveries for samples were within advisory limits.

Matrix Spike/Matrix Spike Duplicate: The relative percent difference was below the allowable maximum (50%) and percent recoveries were withn QC limits (50-150%) for MS/MSD sample SB-1.

<u>Laboratory Control Sample</u>: The percent recovery for sample PMSBP1 was within QC limits.

<u>Initial Calibration</u>: The %RSDs for target aroclors were below the allowable maximum (20%), as required.

Continuing Calibration: The %Ds for target aroclors were below the allowable maximum (15%), as required.

<u>PCB Evaluation of Retention Time Shift of DCB</u>: The retention times for DCB were within control limits.

<u>PCB Identification</u>: Checked results were within GC quantitation limits. Aroclor detections were confirmed on a second, dissimilar column.

\server\main station\alpha e\dataval\2002\02502-hanson ftc\mw-14.pcb

ATTACHMENT - 6
Community Air Monitoring

Report Title:	Community Air Monitoring Henson Fire Center			
_				
Date of Investigation:	November 13/14/15, 2000			
_				
Date of Request:	December , 07, 2001			
Place:	Henson Fire Training Center Route 5 Yosts,NY			
	Phone: (518)-885-4399 Fax: (315) 885-4416			
— Industrial Hygienist:	Wade L. Sikora, CIH # 5033 Applied Envirometrics 7 Ashlor Drive Middlegrove, NY 12850 Phone: (518) 583-0507			
Equipment :	Calibrated air pumps an PM-10 monitors			
Related Standards:	OSHA CFR Title 29 Part 1910.120 OSHACT Section 5 (a)			

The Hartford - Industrial Hygiene Laboratory

Hartford Plaza Hartford, CT 06115 Toll Free Phone 1-800-986-3509 Phone - (860) 547-4557 Fax - (860) 547-6302

Account: APPLIED ENVIROMETRICS Laboratory # 17654

Address: MIDDLE GROVE, NY G. REDFORD, N. SHEKAR, C. Analyst:

GOSSELIN Submittor: W. SIKORA

Date Rec'd: 11/20/2001 Date Rpt'd: 11-28-01

Referenced Analytical Method:

PARTICULATE BY GRAVIMETRY, NIOSH 0500

ORGANIC SCANS BY GAS CHROMATOGRAPHY, OSHA 07

Sample	Volume	PARTIC	JLATE	TOT HYDROCA AS N-HE	ARBONS		
LOQ's (Mg)	(liters)	Mg 0.025	Mg/M³	Mg 0.007	Mg/M³	Down wind	Upwind
22-10(28826) 22-2(28698)	 608	<0.025 <0.025	 <0.05			Blank 11/13/01	Blank
22-3(28601) 22-4(28749)	608 608	<0.025 <0.025	<0.05 <0.05			11/13/01	11/13/01
22-5(28757) 22-6(28240)	608 608	<0.025 <0.025	<0.05 <0.05			11/14/01 11/14/01	
22-7(27692) 22-8(28765)	608 608	<0.025 <0.025	<0.05 <0.05			11/15/01	11/14/01
22-9(28222) 22-1(28716)	608 608	<0.025 0.159	<0.05 0.26			11/15/01	11/15/01
21-8	000	0.100	0.20	<0.007 *		Blank	Blank
21-1	79.2			<0.007 *	<0.09	11/13/01	Diarik
21-2 21-3	79.2 79.2			<0.007 * <0.007 *	<0.09 <0.09	11/13/01	11/13/01
21-4 21-5	79.2 79.2			<0.007 * <0.007 *	<0.09 <0.09	11/14/01 11/14/01	
21-6 21-7	79.2 79.2			<0.007 * <0.007 *	<0.09 <0.09	11/15/01	11/14/01
21-9 21-10	79.2 79.2			<0.007 * <0.007 *	<0.09 <0.09	11/15/01	11/15/01

^{*} No organic entities present at or above limit of quantitation (LOQ) levels.

Note:	The concentration values (e.g. mg/M³, ppm, fibers/cc, etc.) were calculated at the laboratory using data and information (times and/or flow rates) supplied to the laboratory by the submittor.
Note:	If applicable, organic sampling tube sections are analyzed separately. "<" means not detected at the limit of quantification (the amount of this material that can reliably be reported based upon analytical conditions.
Abbreviations:	Mg = Milligrams Mg/M³ = Milligrams per Cubic Meter of Air

Ann McClure, CIH Laboratory Manager Cynthia Gosselin, CIH Laboratory Supervisor