

PERIODIC REVIEW REPORT JANUARY 2010 – AUGUST 2023

Independent Leather Tannery

321-333 South Main Street City of Gloversville, Fulton County, NY NYSDEC Site Code: B00158

Prepared For:

Mayor Vincent DeSantis City of Gloversville 3 Frontage Road Gloversville, NY 12078

Prepared By:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065

HRP #: GLO8016.GW

Issued On: March 5, 2024

TABLE OF CONTENTS

1.0	EXECUTIVE SUMMARY1									
	1.1 1.2 1.3 1.4	Site Summary Compliance Effectiveness of Remedial Program Recommendations	1 1 2 2							
2.0	SITE	OVERVIEW	3							
3.0	INSTITUTIONAL AND ENGINEERING CONTROL PLAN									
	3.1 3.2 3.3 3.4 3.5	Institutional Controls (ICs) Engineering Controls (ECs) Compliance Corrective Action Conclusions & Recommendations	4 4 5 5							
4.0	MON	ITORING PLAN COMPLIANCE	6							
	4.1 4.2 4.3	Groundwater Monitoring 4.1.1 Monitoring Plan as Outlined in the SMP 4.1.2 Monitoring Completed 4.1.3 Monitoring Deficiencies 4.1.4 Conclusions and Recommendations Site Cover Inspections 4.2.1 Monitoring Plan as Outlined in the SMP 4.2.2 Monitoring Completed Monitoring Deficiencies	666778889							
	4.4	Conclusions and Recommendations	9							
5.0	EVAL 10	UATION OF REMEDY PERFORMANCE, EFFECTIVENESS & PROTECTIVENESS								
6.0	CONC	CLUSIONS AND RECOMMENDATIONS1	2							
	6.1 6.2	Conclusions	2 3							
<u>FIGU</u>	<u>RES</u>									
Figure Figure Figure	1 2 3	Site Location Map Site Plan and Sampling Locations (2008-2012) Groundwater Sample Exceedances (2020)								
<u>Apper</u>	ndices									
Appen Appen	dix A dix B	IC/EC Certification Form Tables and Graphs of Groundwater Results								

General Information

Project/Site Information:

Independent Leather Tannery (Site ID# B00158) 321-333 South Main Street, Gloversville City of Gloversville, Fulton County, NY

Consultant Information:

HRP Associates, Inc. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 Phone: 518-877-7101 Fax: 518-877-8561 E-mail: Patrick.montuori@hrpassociates.com Project Number: GLO8016.GW

Client Information:

Mayor Vincent DeSantis City of Gloversville 3 Frontage Road Gloversville, NY 12078

Report Date: 3/5/2024

Minth Jackson

Report Author:

Elliott Jackson **Project Consultant**

Project Manager:

Patrick Montuori, P.G.

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is prepared for reporting period January 1, 2010 – August 1, 2023 for the Independent Leather Tannery (herein after referred to as the "Site") under the New York State (NYS), Environmental Restoration Program (ERP) administered by the New York State Department of Environmental Conservation (NYSDEC). This report is intended to meet the requirements of the Site Management Plan (SMP) for the Site, that specified that a PRR will be submitted to the NYSDEC annually. Between January 2010 and August 2023, Site inspections and groundwater monitoring were completed by C.T. Male Associates, P.C. (C.T. Male).

1.1 Site Summary

The Site is located at 321-333 South Main Street in the City of Gloversville, Fulton County, New York (**Figure 1**). The Site is an approximately 3.7-acre area bisected by Cayadutta Creek which flows north to south and is channelized by a concrete and stone retaining wall. The Site is a vacant, undeveloped property. The Site was previously developed with multiple buildings and utilized as a tannery. A Site Plan is provided as **Figure 2**.

Previous investigations performed at the Site found that petroleum related volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), arsenic, and chromium contamination (identified as contaminants of concern [COCs] for the Site) were present in surface soil, subsurface soil, and groundwater at concentrations exceeding NYSDEC regulatory values. A cover system was installed on the portion of the Site west of Cayadutta Creek by United States Environmental Protection Agency (EPA) as part of an Emergency Removal Action completed in 2002, and on the portion of the Site east of Cayadutta Creek (and an area in the extreme southwest corner of the Site) by the City in 2005 under the ERP.

The Site cover system functions as the sole EC for the Site. Site institutional controls (ICs) include a prohibition on use of the Site for residential purposes, a prohibition on groundwater use, and requirement to comply with the SMP which is enforced by an Environmental Easement on the Site. The SMP requires annual inspections of the Site cover system, biannual groundwater sampling and annual PRR submission to certify the efficacy of Site ECs and ICs.

1.2 Compliance

Two areas of non-compliance were identified with regard to the SMP, detailed below. No other areas of non-compliance were identified.

- 1. Site monitoring was not completed on the schedule required by the SMP. Specifically, biannual groundwater monitoring was not completed in 2018 and 2022 and annual Site cover inspections were not completed for the years 2015, 2017, 2019, 2021, 2022, and 2023 as required by the SMP.
- 2. Two sections of creek retaining wall were collapsed and were not repaired by the end of the monitoring period (August 1, 2023) and sufficient photo documentation of the cover system was not available. The collapsed sections of the wall are depicted in **Figure 2**. As a result, the Site cover system EC cannot be certified as in compliance with the SMP.

1.3 Effectiveness of Remedial Program

Taking into account the exceptions described in **Section 1.3** above, the Site ICs and ECs are generally achieving the Site Remedial Action Objectives (RAOs) of eliminating or reducing receptor exposure to Site COCs and eliminating or reducing further release of COCs to groundwater and Cayadutta Creek.

1.4 Recommendations

In November 2023, following this reporting period, creek wall repairs were completed and are documented in a Corrective Action Plan (CAP) dated March 5, 2024, submitted to the NYSDEC under separate cover. Site inspections were completed in November and December 2023 which identified deficiencies with the Site cover system which will be addressed in Spring 2024 in accordance with the CAP. The next Site inspection will be performed in 2024 following completion of corrective actions, to return to the annual inspection schedule required by the SMP. No changes to the Site inspection schedule are recommended at this time.

Groundwater sampling was completed in December 2023 and will be documented in the August 2023 – August 2024 PRR. The next groundwater sampling event will be performed in 2025 to return to the biannual sampling schedule required by the SMP, with subsequent revisions approved by the NYSDEC. No changes to the groundwater monitoring plan are recommended at this time.

2.0 SITE OVERVIEW

This document is required as an element of the remedial program at the Independent Leather Tannery (herein after referred to as the "Site") under the New York State Department of Environmental Conservation (NYSDEC) Environmental Restoration Program (ERP). The Site was investigated and remediated in accordance with the ERP, as NYSDEC Site No. B00158. The Site remediation was completed in conformance with pertinent NYS regulations in effect contemporary with remedial actions, succeeded by *DER-10: Technical Guidance for Site Investigation and Remediation* (NYSDEC, May 2010). This report is intended to meet the requirements of the Site Management Plan (SMP) for the Site, that specified that a Periodic Review Report (PRR) will be submitted to the NYSDEC annually. This report is intended to meet the periodic reporting requirements for the period of January 2010 to August 2023. During this period, Site inspections and groundwater monitoring were primarily completed by C.T. Male Associates, P.C. (C.T. Male).

The Site is located at 321-333 South Main Street in the City of Gloversville, Fulton County, New York and is identified as Section 149.13, Block 2, Lot 9 on the City of Gloversville Tax Map. The Site location is depicted on **Figure 1**. The Site is an approximately 3.7-acre area bisected by Cayadutta Creek which flows north to south. The Site is an undeveloped area vegetated mostly with grass, weeds and some trees and shrubs. A driveway paved with crushed stone enters the Site from Hill Street to the south and extends northeast to a wooden bridge crossing Cayadutta Creek. The creek is channelized by retaining walls constructed of laid up stone, concrete block and poured concrete. The Site is bounded by a car wash to the north, the FJ&G Rail Trail to the east, commercial properties to the south and southeast, and an auto repair garage to the west. The Site was previously developed with multiple buildings and utilized as a tannery. A Site Plan is provided as **Figure 2**.

Previous investigations performed at the Site found that petroleum related volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), arsenic, and chromium contamination were present in surface soil, subsurface soil, and groundwater at concentrations exceeding NYSDEC regulatory values. These contaminant groups were identified as contaminants of concern (COCs) for the Site. From 2001-2002 the United States Environmental Protection Agency (EPA) completed an Emergency Removal Action at the Site which consisted of characterization and disposal of hundreds of containers of chemicals, removal of animal wastes and cleaning of interior building surfaces, closure of storage tanks, demolition of Site buildings and off-site disposal of building materials, and placement of a soil backfill cover on the western side of the Site. In 2005 remedial activities were completed by the City under the NYSDEC ERP. This included excavation and off-site disposal of Site soils on the eastern side of the creek (which included on-site treatment of groundwater during excavation dewatering) and installation of a soil cover system on the eastern side of the creek, and an area in the extreme southwest corner of the Site.

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 Institutional Controls (ICs)

The Site has a series of ICs in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. Site restrictions that apply to the Site are:

- The Site may only be used for commercial/industrial use provided that the long-term engineering controls (ECs) and ICs included in the SMP are employed.
- The Site may not be used for a higher level of use, such as restricted or unrestricted residential use without additional remediation and/or amendment of the Environmental Easement, as approved by the NYSDEC.
- All ECs must be operated and maintained as specified in the SMP.
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- All future activities on the Site that will cause a disturbance beneath the Site cover must be conducted in accordance with the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Fulton County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the NYSDEC.
- Monitoring and maintenance of on-site groundwater monitoring wells as set forth in Section 3.3 of the SMP (as subject to subsequent revisions made by the NYSDEC), as necessary, and as required by the NYSDEC.

3.2 Engineering Controls (ECs)

The EC system for this Site includes the following:

• Exposure to remaining impacts in subsurface soil at the Site is prevented by a cover system in place over the Site. The cover system consists of vegetated imported soil and a crushed stone driveway, each of which are designed to be a minimum of 12 inches thick. An orange geotextile demarcation barrier was installed between Site soils and cover material in the areas of Site cover installed by the City. It is unknown whether a demarcation layer exists under the areas of Site cover installed by the EPA.

3.3 Compliance

As of the end of the January 2010 – August 2023 reporting period the Site remained in compliance with ICs with the exception of completing EC inspections and groundwater monitoring at the frequency specified in the PRR. Biannual groundwater sampling was not completed in 2018 or 2022. Annual Site inspections were not completed in 2015, 2017, 2019, 2021, 2022, or 2023. HRP made

visits to the Site in 2023 related to the repair of two collapsed sections of the eastern creek retaining wall. Although a formal inspection was not completed during these visits, the Site cover was observed to generally be in-tact with the exception of the collapsed sections of wall (i.e. no major excavation or Site redevelopment projects occurred). The collapsed sections of creek wall are depicted on **Figure 2**.

3.4 Corrective Action

Repairs to the creek wall were completed in November 2023. Site inspections were completed in November and December 2023 which identified additional deficiencies of the Site cover system. The next Site cover inspection will be completed in 2024 to return to the annual inspection schedule. Groundwater sampling was completed in December 2023. The next sampling event will be completed in 2025 to return to the biannual sampling schedule.

The completed creek wall repairs are documented in a Corrective Action Plan (CAP) dated March 5, 2024, submitted to the NYSDEC under separate cover. The CAP includes a schedule of actions necessary to address Site cover deficiencies. Corrective actions are to be implemented in Spring 2024.

3.5 Conclusions & Recommendations

Site ICs and ECs are in place with the following exceptions:

- Biannual groundwater sampling was not completed in 2018 or 2022.
- Annual Site inspections were not completed 2015, 2017, 2019, 2021, 2022, or 2023.
- Two sections of the eastern creek retaining wall collapsed and were eroding into the creek (**Figure 2**).

Due to these exceptions Site ICs and ECs cannot be certified as being in compliance with the SMP. A completed certification form stating a CAP will be submitted is included as **Appendix A**.

In November 2023, following this reporting period, creek wall repairs were completed and are documented in a CAP dated March 2, 2024, submitted to the NYSDEC under separate cover. Site inspections were completed in November and December 2023 which identified deficiencies with the Site cover system which will be addressed in Spring 2024 by the CAP. The next Site cover inspection will be performed in 2024 following completion of corrective actions. Groundwater sampling was completed in December 2023 and will be documented in the August 2023 – August 2024 PRR. The next groundwater sampling event will be performed in 2025 to return to the biannual sampling schedule.

4.0 MONITORING PLAN COMPLIANCE

4.1 Groundwater Monitoring

4.1.1 Monitoring Plan as Outlined in the SMP

The groundwater monitoring plan is outlined in Section 3.3 of the SMP. Revisions to the monitoring plan were made with the approval of the NYSDEC following the 2008 and 2016 groundwater monitoring events. From 2006 to 2008 groundwater sampling was completed annually. Following the 2008 event, the NYSDEC approved the reduction of sampling to a biannual schedule. Following the 2016 event, the NYSDEC approved the removal of select monitoring wells and parameters from the biannual sampling schedule.

Summary of Long Term Groundwater Monitoring Program (2007-2020)									
Well ID	TCL VOCs	TCL SVOCs	Select Metals ¹	TCL Pesticides					
B-2R			Х						
B-3			Х						
MW-5			Х						
MW-6 <i>2</i>			χ2	χ2					
MW-7	Х	χ2	Х	χ2					
MW-8			Х						
MW-9 <i>2</i>			χ2						
MW-10	Х	Х	Х	χ2					
MW-11			Х						
MW-12			Х						
MW-14 <i>2</i>			χ2						
OFF35	Х	Х	Х						
OFF33	Х	Х	χ2						
(1) "Select Metals" in	nclude arsenic, chromi	um, iron, magnesium	, manganese, and sodi	ium					
(²) Denotes paramet	er/well removed from	sampling plan after 2	2016 sampling event						

The groundwater monitoring plan and revisions are summarized in the table below.

4.1.2 Monitoring Completed

Groundwater monitoring events were completed by C.T. Male in accordance with the schedule described in Section 4.1 above in July 2010, September 2012, August 2014, September 2016, and April 2020. Biannual groundwater monitoring events were not completed in 2018 or 2022. Monitoring well locations are depicted in **Figure 2**. Summary tables and graphs of COC concentrations for sampling events completed during the reporting period and historic sampling events, dating back to 2002, are included in **Appendix B**. A summary of the results and trends for the monitoring of events conducted during this reporting period is presented below. Letter reports were prepared by C.T. Male for each event and were submitted to NYSDEC under separate cover.

Groundwater Flow

Depth to water is 5-10 feet below grade across the Site. Groundwater flows inwards towards Cayadutta Creek. A groundwater flow map from the 2020 monitoring event is included as **Figure 3**.

VOC Impacts

VOCs were not detected at concentrations exceeding NYSDEC Class GA criteria in monitoring wells MW-7 and OFF35 with the exception of one detection of 1,2,4-trimethylbenzene in MW-7 in August 2014. The VOCs, including xylenes, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene were detected at concentrations exceeding NYSDEC Class GA criteria in monitoring well MW-10. Tables of historic VOC results from all wells sampled during the monitoring period, and graphs of VOC trends from MW-10 are included in **Appendix B**.

SVOC Impacts

SVOCs were not detected at concentrations exceeding NYSDEC Class GA criteria in monitoring wells MW-7 or OFF35. The SVOCs benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were detected at concentrations exceeding NYSDEC Class GA criteria in monitoring well OFF33. The SVOC naphthalene was detected at concentrations exceeding NYSDEC Class GA criteria in MW-10. Tables of historic SVOC results from all wells sampled during the monitoring period, and graphs of SVOC trends from OFF33 and naphthalene trends from MW-10 are included in **Appendix B**.

Metals Impacts

One or more of the metals analyzed during the monitoring period (arsenic, chromium, iron, magnesium, manganese, and sodium) were detected at concentrations exceeding NYSDEC Class GA criteria in each of the 13 monitoring wells sampled. Tables of historic metal results from all wells are included in **Appendix B**.

Arsenic was not detected at concentrations exceeding NYSDEC Class GA criteria in any of the monitoring wells with the exception of B-2R, B-3, MW-5, MW-7, MW-9, MW-10, MW-11, MW-12, and OFF33. An increasing trend in arsenic concentrations was observed in MW-8. Graphs of arsenic trends from all wells are included in **Appendix B**.

Chromium was not detected at concentrations exceeding NYSDEC Class GA criteria in any of the monitoring wells with the exception of B-3, MW-10, and OFF35. Graphs of chromium trends from all wells are included in **Appendix B**.

4.1.3 Monitoring Deficiencies

Groundwater monitoring was not performed in 2018 or 2022 as required by the biannual schedule in the SMP.

4.1.4 Conclusions and Recommendations

The monitoring of groundwater at the Site was completed in compliance with the monitoring plan outlined in the SMP, with the exception of years 2018 and 2022 in which no groundwater monitoring was completed.

COC concentrations generally remained consistent throughout the monitoring period and were generally consistent with concentrations prior to the monitoring period, with the exception of arsenic concentrations in MW-8 where an increasing trend in arsenic concentrations has been observed and in MW-10 where an increasing trend in xylenes, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene,

and naphthalene were observed. Monitoring of several COCs was discontinued with the approval of the NYSDEC during the monitoring event based observed concentrations consistently below NYSDEC Class GA criteria.

The RAOs for groundwater are being met in that the prevention of ingestion of groundwater containing COCs at concentrations exceeding drinking water standards continue to be employed at the Site. The Site cover system and restrictions on disturbance of the subsurface prevent the further release of COCs into groundwater.

A groundwater monitoring event was completed following the conclusion of this monitoring period in December 2023. The results will be documented in the August 2023 – August 2024 PRR. Groundwater monitoring will return to a biannual schedule with the next event, planned for 2025. No changes to the monitoring plan are recommended at this time.

4.2 Site Cover Inspections

4.2.1 Monitoring Plan as Outlined in the SMP

Annual inspections of the Site cover system are required by Section 6.10 of the SMP. The SMP requires the cover system be evaluated for sloughing, cracks, settlement, erosion, distressed vegetation, and that the Site be evaluated for any changes that may impact the effectiveness of the remedy. The Site owner is to be notified of any necessary repairs or deficiencies needed based on the inspection.

4.2.2 Monitoring Completed

Inspections of the Site cover system were completed annually in accordance with the SMP during the 2010-2023 monitoring period, with the exception of the years 2015, 2017, 2019, 2021, 2022, and 2023. Detailed results of the completed Site inspections, including photographic logs were submitted to NYSDEC under separate cover.

During the monitoring, period, no changes to the Site use, major breaches of the Site cover, or major excavation projects were completed, with the exception of repairs to the creek retaining wall. Collapse of the creek retaining walls were observed in five separate locations during the monitoring period. In 2010 an approximately 40-ft long section of the western retaining wall was observed to be collapsed. The section was repaired in 2012 only to collapse again in 2013. By 2016 the section of wall was repaired and remains in-tact as of the completion of the monitoring period. During the 2018 Site cover inspection, two separate sections of the creek wall, on the northeast and northwestern sides of the creek and approximately 20 ft in length each, were observed to have collapsed. Repairs to the two sections were completed in 2019 and are documented in a Creek Wall Close-Out Report prepared by C.T. Male and dated March 2022. Locations of the repaired sections of the creek retaining wall are depicted in **Figure 2**.

In 2023, two additional collapses were identified along the eastern creek wall, approximately 20-30 ft in length. One of the sections was adjacent to wall repairs completed in 2019. HRP was retained by the City of Gloversville to provide engineering designs for the wall repairs which were completed in November 2023 and are documented in the CAP dated March 5, 2023 and submitted to the

NYSDEC under separate cover. The sections of creek wall which remained in disrepair by the end of the PRR monitoring period are depicted on **Figure 2**.

In addition to failures of the creek retaining walls, damage to the Site cover related to animal burrows have consistently been observed throughout the monitoring period. The animal burrows did not fully penetrate the Site cover into subsurface soil below the demarcation layer and the burrows were often not addressed with repairs. Holes in the Site cover, which may be attributed to burrowing animals, were again observed in the Site inspections completed by HRP following the completion of the monitoring period.

The CAP dated March 5, 2024 and submitted to the NYSDEC under separate cover, includes photos from Site cover inspections completed by HRP in November and December 2023 and a schedule for corrective actions to address Site cover deficiencies identified during those inspections.

4.3 Monitoring Deficiencies

Annual inspections were not completed for the years 2015, 2017, 2019, 2021, 2022, and 2023.

4.4 Conclusions and Recommendations

In November 2023, following this reporting period, creek wall repairs were completed and are documented in a CAP dated March 5, 2024, submitted to the NYSDEC under separate cover. Site inspections were completed in November and December 2023 which identified deficiencies with the Site cover system which will be addressed in Spring 2024 in accordance with the CAP. The next Site inspection will be performed in 2024 following completion of corrective actions, to return to the annual inspection schedule required by the SMP. No changes to the Site inspection schedule are recommended at this time.

5.0 EVALUATION OF REMEDY PERFORMANCE, EFFECTIVENESS & PROTECTIVENESS

The RAOs for this Site, as identified in Section 6 of the 2004 Record of Decision (ROD), are as follows:

- Eliminate or reduce to the extent practicable, exposures of persons at or around the Site to VOCs, SVOCs, and numerous metals (especially chromium and arsenic) in surface soils, subsurface soils, and groundwater at the Site.
- Eliminate or reduce to the extent practicable, the further release and migration of petroleum contaminants (VOCs and SVOCs) from soil into groundwater that may create exceedances of groundwater quality standards.
- Eliminate or reduce to the extent practicable, the release of VOCs, SVOCs, and metal contaminants (especially chromium and arsenic) from surface soil and subsurface soils into the groundwater and the Cayadutta Creek through storm water erosion, infiltration, and/or wind borne dust.

Below is a summary of the effectiveness of the remedy in the achieving the above RAOs:

- Eliminate or reduce to the extent practicable, exposures of persons at or around the Site to VOCs, SVOCs, and numerous metals (especially chromium and arsenic) in surface soils, subsurface soils, and groundwater at the Site.
 - Surface and Subsurface Soils: Implementation and maintenance of a Site cover has prevented exposure of persons at or around the Site to COCs. Additional ICs such as restrictions on Site use have reduced potential exposure of persons at or around the Site to soil contact. As of the end of the monitoring period the creek wall had collapsed in two locations and other minor deficiencies related to the Site cover were present allowing for potential exposure to subsurface soils. This is addressed in the CAP dated March 5, 2024, submitted under separate cover to the NYSDEC.
 - Groundwater: Implementation of the groundwater use restriction IC has prevented exposure to contaminated groundwater to persons at or around the Site.
- Eliminate or reduce to the extent practicable, the further release and migration of petroleum contaminants (VOCs and SVOCs) from soil into groundwater that may create exceedances of groundwater quality standards.
 - Surface and Subsurface Soils: Excavation and off-site disposal of petroleum-impacted soils during remedial activities has addressed potential release and migration of petroleum contaminants from soil to groundwater. Implementation and maintenance of a Site cover system, and implementation of ICs have limited disturbance of surface and subsurface soils to the extent practicable.
 - Groundwater: Continued monitoring has indicated that further release and migration of COCs has not occurred.

- Eliminate or reduce to the extent practicable, the release of VOCs, SVOCs, and metal contaminants (especially chromium and arsenic) from surface soil and subsurface soils into the groundwater and the Cayadutta Creek through storm water erosion, infiltration, and/or wind borne dust.
 - Surface and Subsurface Soils: Excavation and off-site disposal of impacted soils during remedial activities has addressed potential release and migration of contaminants from surface and subsurface soil to groundwater and Cayadutta Creek to the extent practicable. Implementation and maintenance of a Site cover system, and implementation of ICs have prevented disturbance of surface and subsurface soils to the extent practicable. As of the end of the monitoring period the creek wall had collapsed in two locations allowing for potential release of subsurface contamination to Cayadutta Creek. This is addressed in the CAP dated March 5, 2024, submitted under separate cover to the NYSDEC.
 - $\circ~$ Groundwater: Continued monitoring has indicated that further release and migration of COCs has not occurred.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The periodic review process is used for determining if a remedy continues to be properly managed, and if the remedy continues to be protective of human health and the environment.

6.1 Conclusions

The following conclusions discuss the effectiveness of the applicable Site remedial goals derived from the SMP and ROD for the Site and DER-10.

Compliance with the SMP:

- 1. Site monitoring was not completed on the schedule required by the SMP. Specifically, biannual groundwater monitoring was not completed in 2018 and 2022 and annual Site cover inspections were not completed for the years 2015, 2017, 2019, 2021, 2022, and 2023 as required by the SMP. As a result, ICs cannot be certified as in compliance with the SMP. All other ICs are being enforced in accordance with the SMP and Environmental Easement.
- 2. Two sections of creek retaining wall were collapsed and were not repaired by the end of the monitoring period (August 1, 2023) and sufficient photo documentation of the cover system was not available. The collapsed sections of the wall are depicted on **Figure 2**. As a result, the Site cover system EC cannot be certified as in compliance with the SMP.

A completed certification form stating a CAP must be submitted is included as **Appendix A**.

Performance and Effectiveness of the Remedy:

Surface and Subsurface Soils:

Implementation and maintenance of a Site cover has prevented exposure of persons at or around the Site to COCs. Additional ICs such as restrictions on Site use have reduced potential exposure of persons at or around the Site to soil contact. Excavation and off-site disposal of impacted soils during remedial activities has addressed potential release and migration of contaminants from surface and subsurface soil to groundwater and Cayadutta Creek to the extent practicable. Implementation and maintenance of a Site cover system, and implementation of ICs have prevented disturbance of surface and subsurface soils to the extent practicable.

As of the end of the monitoring period the creek wall had collapsed in two locations and other minor deficiencies related to the Site cover were present allowing for potential exposure to subsurface soils and potential erosion of soils into Cayadutta Creek. This is addressed in the CAP dated March 5, 2024, submitted under separate cover to the NYSDEC.

Groundwater:

Implementation of the groundwater use restriction IC has prevented exposure to contaminated groundwater to persons at or around the Site. Continued monitoring has indicated that further release and migration of COCs has not occurred.

6.2 Recommendations

In November 2023, following this reporting period, creek wall repairs were completed and are documented in a CAP dated March 5, 2024, submitted to the NYSDEC under separate cover. Site inspections were completed in November and December 2023 which identified deficiencies with the Site cover system which will be addressed in Spring 2024 in accordance with the CAP. The next Site inspection will be performed in 2024 following completion of corrective actions, to return to the annual inspection schedule required by the SMP. No changes to the Site inspection schedule are recommended at this time.

Groundwater sampling was completed in December 2023 and will be documented in the August 2023 – August 2024 PRR. The next groundwater sampling event will be performed in 2025 to return to the biannual sampling schedule required by the SMP, with subsequent revisions approved by the NYSDEC. No changes to the groundwater monitoring plan are recommended at this time.

Periodic Review Report (2010-2023) Independent Leather Tannery, 321-333 South Main Street, Gloversville, NY

FIGURES

Path: S/Data/G/GLOVR - THE CITY OF GLOVERSVILLE/321-333 SOUTH MAIN ST., GLOVERSVILLE, NY/GLO8016GW - Independent GW Monitoring/GIS/independent leather.aprx

	_					_
	MG OS C (Ľ H	INE FA UITE 11 LIFTON 518) 87 RPASS	R ENVIR IRCHIL IO N PARK 77-7101 SOCIA	ONMENT D SQU C, NY 12 TES.CC	Forwar ARE 065 DM	D
RESULTS: ETECT ESULTS: ETECT	*	-	-	Nor	th	
	0 L		35		70 Fee	et
ABADORE	Revisions	No. Date				
AS: NOT SAMPLEDL AS: NOT SAMPLEDL CR: NOT SAMPLEDL CR: NOT SAMPLEDL CR: AS: CR: 7 UG/L CR: 7 UG/L CR: 62 UG/L CR: 6.2 UG/L CR: 5. UG/L	Designed By:	EWJ	Drawn By:	EWJ	Reviewed By:	
R: NON-DETECT CR: 1 UG/L CODE_LAB_RESULTS: 2008_LAB_RESULTS: S: NON-DETECT CR: 6 UG/L R: NON-DETECT CR: 6 UG/L R: NON-DETECT CR: 6 UG/L S: NON-DETECT CR: 1 UG/L PED IRON ROD FOUND CR: 16 UG/L S: NON-DETECT CR: 16 UG/L N: RDB FOUND CR: 16 UG/L N: RDB FOUND CR: 35 UG/L UTARY WANDLE CR: 35 UG/L	Issue Date:	3/1/2024	Project No:	GLO8016.GW	Sheet Size:	11×11
KURN MULUE P OF CURB ELEVATION TELEVATION WTOR WELL LOCATION & NUMBER "OF PYC ELEVATION IN FEET STINE MONITOR WELL (PRE-1988) OF PYC ELEVATION IN FEET	Groundwater Results	Arsenic and Chromium		Former Independent Leather Tannery	321-333 South Main Street	
IS MAP ARE APPROXIMATE AND DO NOT REPRESENT AN SOUTH MAIN STREET, CITY OF GLOVERSVILLE, COUNTY NO. 06-0631, PREPARED BY C.T. MALE ASSOCIATES, P.C. T PLAN GROUNDWATER SAMPLING RESULTS, FORMER 58), CITY OF GLOVERSVILLE, FULTON COUNTY, C.T. MALE		Fi	gure	• No	•	

Periodic Review Report (2010-2023) Independent Leather Tannery, 321-333 South Main Street, Gloversville, NY

APPENDIX A IC/EC Certifications

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

				Site	Details		Box 1		
Sit	e No.	B0015	8						
Sit	e Name I	ndepende	nt Leather T	annery					
Sit Cit Co Sit	e Address y/Town: (ounty: Fulto e Acreage	: 321-333 Gloversville on : 3.725	South Main S e (C)	Street	Zip Code: 12078-				
Re	porting Pe	eriod: Janu	ary 14, 2010	to August (01, 2023				
							YES	NO	
1	Is the inf	ormation a	bove correct?	>					
	If NO, inc	clude hand	written above	or on a se	parate sheet.				
2.	Has som tax map	e or all of t amendmer	he site prope It during this	rty been so Reporting F	old, subdivided, mer Period?	rged, or undergone	a 🗌	e	
3.	Has there (see 6NY	e been any (CRR 375-	change of us 1.11(d))?	se at the sil	te during this Repor	rting Period			
4.	Have any for or at t	y federal, s the propert	tate, and/or lo y during this l	ocal permits Reporting F	s (e.g., building, dis Period?	charge) been issue	ed	P	
	lf you an that doc	iswered Y umentatio	ES to question n has been p	ons 2 thru previously	4, include docume submitted with th	entation or evider is certification fo	nce rm.		
5.	Is the site	e currently	undergoing d	evelopmen	ıt?			B	
							Box 2		
							YES	NO	
6.	Is the cur Commerc	rrent site us cial and Inc	se consistent lustrial	with the us	e(s) listed below?		P		
7.	Are all IC	s in place	and functionin	ng as desig	ned?				
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.									
AC	orrective	Measures	Work Plan m	ust be sub	mitted along with t	his form to addres	s these iss	ues.	
Sig	pature of C	Dwner, Rem	Montron edial Party or	<u>–––</u> Designated	Representative	<u>3/2/2</u> Date	024		

SITE NO. B00158	b	Box 3
Description of	of Institutional Controls	
Parcel 149.13.2.9	<u>Owner</u> City of Gloversville	Institutional Control
		Ground Water Use Restriction Soil Management Plan
		Landuse Restriction Monitoring Plan Site Management Plan
Imit the use and de proundwater as a s letermined by the f annual certification.	evelopment of the property to commercial o ource of potable or process water without i NYSDOH; and require the property owner to A long term monitoring program will evalu	or industrial uses only; restrict the use of necessary water quality treatment as o complete and submit to the NYSDEC an ate residual contamination left on site.
Limit the use and do groundwater as a s determined by the f annual certification.	evelopment of the property to commercial o ource of potable or process water without i NYSDOH; and require the property owner to A long term monitoring program will evalu	or industrial uses only; restrict the use of necessary water quality treatment as complete and submit to the NYSDEC an ate residual contamination left on site.
Limit the use and de groundwater as a s determined by the f annual certification. Description c	evelopment of the property to commercial c ource of potable or process water without i NYSDOH; and require the property owner to A long term monitoring program will evalu	or industrial uses only; restrict the use of necessary water quality treatment as o complete and submit to the NYSDEC an ate residual contamination left on site. Box 4
Limit the use and di groundwater as a s determined by the I annual certification. Description c <u>Parcel</u>	evelopment of the property to commercial c ource of potable or process water without i NYSDOH; and require the property owner to A long term monitoring program will evalu of Engineering Controls Engineering Control	or industrial uses only; restrict the use of necessary water quality treatment as o complete and submit to the NYSDEC an ate residual contamination left on site. Box 4
Limit the use and de groundwater as a s determined by the N annual certification. Description of Parcel 149.13.2.9	evelopment of the property to commercial c ource of potable or process water without in NYSDOH; and require the property owner to A long term monitoring program will evalue of Engineering Controls Engineering Control Cover System	or industrial uses only; restrict the use of necessary water quality treatment as o complete and submit to the NYSDEC an ate residual contamination left on site. Box 4
Limit the use and de groundwater as a s determined by the I annual certification. Description c <u>Parcel</u> 149.13.2.9	evelopment of the property to commercial cource of potable or process water without in NYSDOH; and require the property owner to A long term monitoring program will evalue of Engineering Controls Engineering Controls Cover System	or industrial uses only; restrict the use of necessary water quality treatment as to complete and submit to the NYSDEC an ate residual contamination left on site. Box 4

,

.

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the Engineering Control certification; 	ction of,	and
	b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene engineering practices; and the information presented is accurate and compote	in this co rally acc	ertification epted
	engineering practices, and the information presented is accurate and compete.	YES	NO
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the De	partmen	t;
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control;	e the	
	(d) nothing has occurred that would constitute a violation or failure to comply wi Site Management Plan for this Control; and	th the	
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the second	r the site	e, the m ent .
		YES	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
,	A Corrective Measures Work Plan must be submitted along with this form to address t	hese iss	ues.
ę	Signature of Owner, Remedial Party or Designated Representative Date		

Г

	SITE NO. B00158	Box 6
SITE OWNE I certify that all information an statement made herein is pu Penal Law.	R OR DESIGNATED REPRESENTATIVE S nd statements in Boxes 1,2, and 3 are true. nishable as a Class "A" misdemeanor, pursu	SIGNATURE I understand that a false uant to Section 210.45 of the
I print name	atprint business addre	, 2SS
am certifying as		(Owner or Remedial Party
for the Site named in the Site	Details Section of this form.	
Signature of Owner, Remedia	al Party, or Designated Representative	Date

	SATION2	
Professional Eng	gineer Signature	Box 7
ertify that all information in Boxes 4 and 5 are true. hishable as a Class "A" misdemeanor, pursuant to	I understand that a false si Section 210.45 of the Pena	tatement made hereiı Il Law.
at		
print name	print business address	
certifying as a Professional Engineer for the		
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)
certifying as a Professional Engineer for the	(Owner or Rem	edial Party)

APPENDIX B ables and Graphs of Groundwater Results

Tables and Graphs of Groundwater Results

Table 1
Groundwater Analytical Results (Detections Only)
VOCs, SVOCs, Pesticides, and Metals
Former Independent Leather Site
Site #B00158
321-333 South Main Street, Gloversville, NY

Sample ID	NYSDEC	B-2				B-	2R				1				B-3				
Date Sampled	Class GA Criteria	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Sep-16	Apr-20	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Sep-16	Apr-20
							VOC by E	PA Metho	d 8260, (ug/L)									
Acetone	50	6 J B	ND	ND	NS	NS	NS	NS	NS	NS	8 J M	ND	ND	NS	NS	NS	NS	NS	NS
Benzene	1.0	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Z-Butanone (MEK) Carbon disulfide	50 60	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Chlorobenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Ethylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Methylene chloride	5	0.7 J	ND	ND	NS	NS	NS	NS	NS	NS	0.8 J	ND	ND	NS	NS	NS	NS	NS	NS
Trichloroethene	5			ND ND		NS NS	NS NS	NS NS	NS NS	NS NS				NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Vinyl chloride	2	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Xylenes (total)	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
tert-Butylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
n-Propylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
1 2 4-Trimethylbenzene	5				NS NS		NS NS	NS NS	NS NS					INS NS		NS NS	NS NS	NS NS	NS NS
1.3.5-Trimethylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
1,4-Diethylbenzene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
4-Ethyltoluene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
1,2,4,5-Tetramethylbenzene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
p-Isopropyltoluene	5	ND	ND	ND	NS	NS	NS SVOC hv	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Aconomhthoma	20	ND	ND	ND	NC	NC	SVUC BY	EPA Meth			ND	ND	ND	NC	NC	NC	NC	NC	NC
Anthracene	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(a)anthracene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(a)pyrene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(b)fluoranthene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(g,h,i)perylene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(K)fluoranthene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS NC	ND	ND	ND	NS	NS	NS	NS	NS	NS
Carbazole	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Chrysene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Dibenzo(a,h)anthracene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Diethyl phthalate	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Di-n-butyl phthalate	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Fluoranthene	50	ND	ND	ND	NS NS	NS	NS	NS NC	NS NC	NS NC	0.6 J	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Naphthalene	10	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Pentachlorophenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Phenanthrene	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	0.4 J	ND	ND	NS	NS	NS	NS	NS	NS
Phenol	1.0	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
2 4 5-Trichlorophenol	50 NP	ND ND	ND	ND ND	NS NS	NS NS	NS	NS NS	NS NS	NS NS	ND	ND	ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2.4.6-Trichlorophenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
2,4-Dichlorophenol	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
2-Methylnaphthalene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
4-Chloro-3-methylphenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
4-Methylphenol	1	ND	ND	ND	NS	NS	NS	NS KEDA Ma	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
Aldrin	ND	ND	ND	NC	NS	NC	NC			L, (UG/L)	ND	ND	NC	NC	NC	NC	NC	NC	NC
alpha-BHC	0.01	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
beta-BHC	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
gamma-BHC (Lindane)	0.05	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
delta-BHC	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
gamma-Chlordane	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4,4-DDE Endosulfan I	0.2 ND			NS NS	NS		NS NS	NS NS	NS NS				INS NS	INS NS	NS NS		NS NS		NS NS
Endrin aldehvde	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Endrin	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Heptachlor	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Heptachlor epoxide	0.03	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Augusta	25	100	620	470		Metal	s by EPA I	405 Methods 6	010 and 9	9012, (ug	/L)	262	100	200	226	000	1 400	202	77.00
Arsenic	25	30P	030 ND	4/U	550	822 ND	451	405	740 ND	239.6	494 2.6 P	263 3.6 P	401	280	230	933	1,460	382	1 10
Iron	300	2,430	727	960	1,190	1.700	1,410	1,500	1.800	475	1.090	4,480	4,000	4,900	2.640	13.300	29,000	5,200	341
Magnesium	35,000	7,740	19,300	19,200	13,600	14,200	10,200	13,000	14,000	10,000	8,780	15,200	14,300	15,300	14,100	10,400	14,000	14,000	10,000
Manganese	300	44.7	167	NS	184	200	149.7	109	160	38.21	160	258	NS	66	93	102	80.8	94	22.79
Sodium	20,000	6,600	50,600	36,900	18,600	27,500	15,500	11,000	14,000	3,440	98,000	11,100	8,300	7,500	8,390	10,200	7,400	9,900	3,780

Legend							
<1 Parameter not detcted above the laboratory reporting limit							
1 Parameter reported above the laboratory reporting limit but below the applicable regulatory standard/criterion							
Parameter reported at a concentration greater than NYSDEC Class GA Criteria							
Notes: ug/I = micrograms per liter; NYS NA = Not Applicable; NS = Not J = estimated concentration; N H = alternate peak selection up B = value obtained from a readi	SDEC = New York State Department of Environmental Conservation; NP = Not Promulgated Sampled; ND = Not Detected = spiked sample recovery outside of control limits; DL = laboratory dilution applied on analytical review; M = manually integrated compound ng less than Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit						

Table 1	
Groundwater Analytical Results (Detections C)nly)
VOCs, SVOCs, Pesticides, and Metals	
Former Independent Leather Site	
Site #B00158	

321-333	South	Main	Street.	Gloversville	NY
321 333	Journ	rium	Succy	dioversvine,	

Sample ID	NYSDEC					MW-5					MW-6								
Date Sampled	Class GA Criteria	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Aug-16	May-20	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Aug-16	Apr-20
							VOC by E	PA Metho	d 8260, (ug/L)								1	
Acetone	50	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzene	1.0	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2-Butanone (MEK)	50	ND	ND	NS NC	NS NC	NS NC	INS NC	NS NC	NS NC	NS NC	ND	ND	NS NC	INS NC	NS NC	NS NC	NS NC	INS NC	INS NC
Carbon disulfide	60 E	ND		NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	ND	NS NC	INS NC	NS NC	NS NC	NS NC	NS NC	NS NC
chiorobenzene	5			INS NC	INS NC	INS NC	INS NC	INS NC	INS NC	INS NC			INS NC	INS NC	INS NC	INS NC	INS NC	INS NC	INS NC
CIS-1,2-DICHIOFOELNENE	5			INS NC	INS NC	INS NC	INS NC	INS NC	INS NC	INS NC			INS NC	INS NC	INS NC	INS NC	INS NC	INS NC	INS NC
Mothylono chlorido	5			NC NC		NC	NC NC	NC NC	NS NC	NC			NC NC	NC NC	NC NC	NC NC		NC NC	NC NC
Toluene	5			NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Trichloroethene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Vinyl chloride	2	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Xylenes (total)	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
tert-Butylbenzene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
n-Propylbenzene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Isopropylbenzene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,4-Diethylbenzene	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Ethyltoluene	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,2,4,5-Tetramethylbenzene	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
p-Isopropyltoluene	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
							SVOC by	EPA Meth	od 8270, ((ug/L)									
Acenaphthene	20	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Anthracene	50	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(a)anthracene	0.002	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(a)pyrene	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(b)fluoranthene	0.002	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(g,h,i)perylene	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(k)fluoranthene	0.002	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Bis(2-ethylnexyl)phthalate	5	ND	4 J	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Carbazole	0.002	ND		NS NC	NS NC	NS NC	NS NC	INS NC	NS NC	INS NC	ND		NS NC	INS NC	NS NC	NS NC	INS NC	INS NC	INS NC
Dibonzo(a b)anthracono	0.002			NS NC		INS NC	INS NC	INS NC	NS NC	INS NC			INS NC	INS NC	INS NC	NS NC		INS NC	INS NC
Dipenzo(d,1)difuliacene	50			NC NC		NC	NC NC	NC NC	NS NC	NC			NC NC	NC NC	NC NC	NC NC		NC NC	NC NC
Di-n-butyl phthalate	50			NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Eluoranthene	50	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Fluorene	50	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Naphthalene	10	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Pentachlorophenol	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Phenanthrene	50	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Phenol	1.0	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Pyrene	50	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4,5-Trichlorophenol	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4,6-Trichlorophenol	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4-Dichlorophenol	5	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2-Methylnaphthalene	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Chloro-3-methylphenol	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Methylphenol	1	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
						Pe	sticides b	y EPA Me	thod 8081	l, (ug/L)					1		1	r	r
Aldrin	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	0.016 J	ND	ND	ND	ND	ND	ND	NS
alpha-BHC	0.01	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	ND	ND	ND	ND	ND	ND	NS
beta-BHC	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	01	ND	ND	ND	ND	ND	ND	NS
gamma-BHC (Lindane)	0.05	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND		ND	ND	ND	ND	ND	ND	NS NC
delta-BHC	0.04	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NG	INS NG	NS NC	ND	0.0023 J	ND	ND	ND	ND	ND	ND	NS NC
	NP 0.2	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	0.023 J	ND	ND	ND	ND	ND	ND	NS NC
4,4 -DDE	0.2			INS NC	INS NC	INS NC	INS NC	INS NC	NS NC	INS NC			ND					ND	INS NC
Endosulian I Endrin aldobydo	NP E			INS NC	NS NC	INS NC	INS NC	INS NC	INS NC	INS NC		0.0009 J							INS NC
Endrin	J ND			INS NIC		NIC NIC	IND NC	IND NIC	NC	IND NIC									IND NC
Hentachlor	0.04			INS NIC		NIC NIC	IND NC	IND NIC	NC	IND NIC									IND NC
Hentachlor enovide	0.04			NS NC		NC	NC	NC	NS	NC									NC
	0.05	שא	ND	CII	Cri	Motal	by EDA M	IND Aethode 6	Ollo and G	012 (117		טא ן	שא	ND	טא	שא	ND	ND	UN2
Arsenic	25	19 P	ND	171	40	49.2	22.2	46.0	20 20	11 10		26 1 P	ND	ND	401	6	7 0	ND	NC
Chromium	25 50	10 B		2.2.1	301	2 1 1	32.2	40.9	50	1 2	300	20.1 B	UVI 271	עאו דרב	-+.9J	10	7.Z		INS NC
Iron	300	1 210	1 160	3 300	3 800	2 720	3 060	5 500	3 300	2 450	3.2 D 806	2.7 D	3,000	4 000	1 1 20	8 800	1 400	2 300	
Magnesium	35,000	8 170	12 400	14 700	15 300	15 400	10 400	22 000	12 000	12 100	4170	10 300	10 800	13 700	13 800	9 860	14 000	13 000	NC
Manganese	300	343	80.0	NC	510	410	381	561	315	290 1	33.8	522	NC	180	215	229.9	154	230	NC
Sodium	20,000	76.200	38.600	76.500	72 400	106.000	139.000	140.000	150.000	247.000	52.000	97.800	28.000	63.300	75.200	90.300	96.000	84.000	NS
Soaium	20,000	10/200	33,000	10,000	1 21700	100,000	139,000	1-10,000	100,000	2-77,000	52,000	57,000	20,000	00,000	13,200	33,300	55,000	0-7/000	NJ

Logond										
Legend										
<1	Parameter not detcted above the laboratory reporting limit									
1 Parameter reported above the laboratory reporting limit but below the appilicable regulatory standard/criterion										
1	Parameter reported at a concentration greater than NYSDEC Class GA Criteria									
Notes: ug/I = micrograms per liter; NYSI NA = Not Applicable; NS = Not S J = estimated concentration; N = H = alternate peak selection upo B = value obtained from a readin	DEC = New York State Department of Environmental Conservation; NP = Not Promulgated Sampled; ND = Not Detected • spiked sample recovery outside of control limits; DL = laboratory dilution applied • analytical review; M = manually integrated compound • gless than Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit									

Table 1 Groundwater Analytical Results (Detections Only) VOCs, SVOCs, Pesticides, and Metals Former Independent Leather Site Site #B00158

321-333 South Main Street, Gloversville, N	Y
--	---

Sample ID	NYSDEC		MW-7							MW-8								MW-9										
Date Sampled	Class GA	May-02	Mar-06	May-07	1ul-08	Jul-10	Sep-12	Αυσ-14	Aug-16	May-20	May-02	Mar-06	May-07	1ul-08	Jul-10	Sep-12	Aug-14	Aug-16	May-20	May-02	Mar-06	May-07	1ul-08	Jul-10	Sep-12	Aug-14	Aug-16	Apr-20
	Criteria	110, 02	Tidi 00	Thay of	501 00	501 10	50p 12	/ldg 11	7 tug 10	1109 20	VOC		Anthod 97	501 00))	50p 12	/ldg 11	/lug 10	1149 20	1149 02	That 00	ridy 07	501 00	541 10	56p 12	Aug 11	nug 10	7401 20
Acetone	50	40 H	ND	ND	1.3.1	ND	1.6.1	ND	ND	ND	81	1.7.1	NS NS	NS) NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzene	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2-Butanone (MEK)	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Carbon disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	1 J	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	5	ND 31		ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS NS	NS NS	NS	NS	NS NS	ND	ND	NS	NS NS	NS NS	NS	NS NS	NS NS	NS
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Xylenes (total)	5	9	7	15	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	5	ND	ND	ND	ND		0.63 J	21	ND 101	101	ND	ND	NS NS	NS NS	NS NC	NS NS	NS NS	NS NS	NS NC	ND	ND	NS NS	NS NS	NS NS	NS NS	NS NS	INS NS	NS NC
n-Propylbenzene	5	ND	ND	ND	ND	ND	ND	0.77 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	0.8 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene	5	ND	ND	ND	ND	ND	2.6	9.8	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	3.3	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,4-Diethylbenzene	NP	ND	ND	ND	ND	ND	1.2 J	2.1	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Ethylloluene	NP	ND	ND	ND	ND	ND	48	2.3	ND	141	ND	ND	NS	NS	NS NS	NS NS	NS	NS	NS NS	ND	ND	NS	NS NS	NS NS	NS	NS NS	NS NS	NS
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	4.2	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
											SVO	C by EPA	Method 8	270, (ug/	L)													
Acenaphthene	20	0.5 J M	ND	ND	ND	ND	ND	ND	0.04 J	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Anthracene	50	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS NC	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND ND	ND	ND	ND	ND	NS NS	ND	ND ND	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	ND	ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
Benzo(g,h,i)pervlene	NP	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(k)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Carbazole	NP	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Dibenzo(a b)anthracene	0.002 NP	ND	ND	ND	ND ND	ND	ND		ND	NS NS	ND ND	ND ND	NS	NS	NS NS	NS NS	NS	NS NS	NS NS	ND ND	ND ND	NS	NS NS	NS NS	NS NS	NS	NS NS	
Diethyl phthalate	50	22	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Di-n-butyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Fluoranthene	50	ND	ND	ND	ND	ND	ND	0.05 J	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Fluorene	50	0.5 J H	ND	ND	ND	ND	ND	0.08 J	0.05 J	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Indeno(1,2,3-cd)pyrene	0.002	ND 1E	ND 41	ND	ND	ND	ND	ND 0.66	ND 0.82	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Pentachlorophenol	NP	31	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Phenanthrene	50	ND	ND	0.57 J	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Phenol	1.0	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4,5-Trichlorophenol	NP	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4,0-Trichlorophenol	5		ND	ND	ND	ND	ND	ND	ND	NS NS	ND	ND	NS	NS	NS NS	NS NS	NS	NS	NS NS	ND	ND	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
2-Methylnaphthalene	NP	3 J	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Chloro-3-methylphenol	NP	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Methylphenol	1	4 J	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
											Pesticio	des by EP	A Method	8081, (ug	g/L)													
Alarin alaba-BHC	NP 0.01	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS NC	NS NC	NS	NS	NS NC	ND	ND	NS NC	NS NC	NS	NS NC	NS	NS	NS
beta-BHC	0.01	ND	ND	0.038 N J	0.02]	0.033 J P	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
gamma-BHC (Lindane)	0.05	ND	0.0091 J	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
delta-BHC	0.04	ND	0.0046 J	0.034 N J	0.0071 J	0.0076 J P	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
gamma-Chlordane	NP	ND	0.015 J	0.016 N J	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4,4'-DDE	0.2	0.071 J	0.015 J	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Endosulidii I Endrin aldebyde	5	ND	ND	ND	ND	ND	ND	ND	ND	NS NS	ND	ND	NS	NS	NS NS	NS NS	NS	NS	NS NS	ND	ND	NS	NS NS	NS NS	NS	NS NS	NS NS	NS
Endrin	NP	ND	ND	ND	ND	ND	0.014 J	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Heptachlor	0.04	ND	ND	0.012 N J	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Heptachlor epoxide	0.03	ND	0.0071	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
	-	×	46.5						4	Μ	letals by E	EPA Meth	ods 6010	and 9012	, (ug/L)						•/-							
Arsenic	25	ND 21.9 P	48.2	63	89 ND	101	99	57.2	158	25.29	4,780	958	5,100	1,100	309	663.3	935	2,200	4,251	ND	ND	ND	ND 33	ND	0.7	5.3	ND	NS
Iron	300	7.420	26,200	18,500	17.000	20,400	16.400	11,000	23.000	6,980	1.340	1./B	3,200	2,100	2,600	5.560	5.000	4,000	1.050	58	T0'A	25 ND	23 67 1	9.2 50.3 1	146 1	93	2 J 48 1	NC NC
Magnesium	35,000	ND	14,400	11,500	12,800	9,220	7,220	11,000	8,700	10,600	4,970	9,020	9,100	8,800	9,950	10,700	11,000	11,000	6,010	14,400	18,800	14,500	13,500	12,300	9,760	11,000	10,000	NS
Manganese	300	ND	2,420	NS	1,500	1,330	1,210	473	1,080	230	197	723	NS	550	997	995.7	942	1,030	166.4	28.8	ND	NS	ND	2.4 J	6.8 J	6	23	NS
Sodium	20,000	3,910,000	122,000	114,000	94,300	91,000	12,600	24,000	120,000	23,400	345,000	117,000	83,400	79,900	95,500	95,500	91,000	92,000	29,400	21,300	15,000	14,200	29,400	24,800	29,000	39,000	31,000	NS
											1	Notori																
Legend												ua/l = mic	rograms of	er liter [.] NYS	SDEC = Ne	w York St	ate Denartr	ment of Env	/ironmental	Conservat	tion: NP =	Not Promu	Inated					

gend	
<1	Parameter not detcted above the laboratory reporting limit
1	Parameter reported above the laboratory reporting limit but below the appilicable regulatory standard/criterion
1	Parameter reported at a concentration greater than NYSDEC Class GA Criteria

Indes. ug/I = micrograms per liter; NYSDEC = New York State Department of Environmental Conservation; NP = Not Promulgated NA = Not Applicable; NS = Not Sampled; ND = Not Detected J = estimated concentration; N = spiked sample recovery outside of control limits; DL = laboratory dilution applied H = alternate peak selection upon analytical review; M = manually integrated compound B = value obtained from a reading less than Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit

Table 1
Groundwater Analytical Results (Detections Only)
VOCs, SVOCs, Pesticides, and Metals
Former Independent Leather Site
Site #B00158
321-333 South Main Street, Gloversville, NY

Sample ID	NYSDEC	Γ				MW-10					1				MW-11				
Date Sampled	Class GA Criteria	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Aug-16	May-20	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Aug-16	Apr-20
							VOC by E	PA Metho	d 8260, (ug/L)									
Acetone	50	8J	ND	ND	11	11 B	19 B	22 J	16 J	ND	11	ND	ND	NS	NS	NS	NS	NS	NS
Benzene 2-Butanone (MEK)	1.0		1.3 J	1 J ND	0.78 J	1J 351	0.36 J	ND 201	ND ND	ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS	NS	NS	NS NS
Carbon disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Chlorobenzene	5	5	3.1 J H	2.1 J	2.7 J	4.6 J	1.7 J	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	5	0.4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Ethylbenzene	5	10	2.7 J	1.8 J	ND	1.6 J	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Methylene chloride	5			ND 0 26 1	ND	ND	ND	ND	ND	ND	0.8 J	ND	ND	NS	NS	NS	NS	NS	NS
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.8 J	ND	ND	NS	NS	NS	NS	NS	NS
Xylenes (total)	5	75	4 J	3 J	ND	16	2 J	23 J	22 J	37	ND	ND	ND	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	5	ND	ND	ND	ND	ND	1 J	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
tert-Butylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
n-Propyidenzene	5			ND ND			2J 11	ND ND		8.7 J			ND ND	NS NS	NS NS	NS NS	NS	NS NS	NS NS
1.2.4-Trimethylbenzene	5	ND	ND	ND	ND	ND	15	89	93	110	ND	ND	ND	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	2 J	22 J	26	32	ND	ND	ND	NS	NS	NS	NS	NS	NS
1,4-Diethylbenzene	NP	ND	ND	ND	ND	ND	2 J	13 J	10 J	13	ND	ND	ND	NS	NS	NS	NS	NS	NS
4-Ethyltoluene	NP	ND	ND	ND	ND	ND	3	17 J	16 J	22 J	ND	ND	ND	NS	NS	NS	NS	NS	NS
1,2,4,5-Tetramethylbenzene	NP F	ND	ND	ND	ND	ND	3	73	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
p-isopropyitoluene	5	ND	ND	ND	ND	ND	SVOC by	ND FPA Meth	od 8270.		ND	ND	ND	N5	NS	IN5	INS	N5	115
Acenaphthene	20	ND	ND	ND	ND	ND	ND	0.09 J	0.2	0.37	ND	ND	ND	NS	NS	NS	NS	NS	NS
Anthracene	50	ND	ND	ND	ND	ND	ND	ND	0.5 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(a)anthracene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(a)pyrene	NP	ND	ND	ND	ND	ND	ND	ND	ND	0.06 J	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(b)fluoranthene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Benzo(g,n,i)perylene Benzo(k)fluoranthene	0.002		ND ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	0.95 J	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Carbazole	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Chrysene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Dibenzo(a,h)anthracene	NP F0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Dietnyi phthalate	50			ND		ND	ND							NS NS	NS NS	NS NS	NS	NS NS	NS NS
Fluoranthene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Fluorene	50	ND	ND	ND	ND	ND	ND	ND	0.08 J	0.13	ND	ND	ND	NS	NS	NS	NS	NS	NS
Indeno(1,2,3-cd)pyrene	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Naphthalene	10	1,000	690	450 J	160	360	190	310	680	850	1J	ND	ND	NS	NS	NS	NS	NS	NS
Pentachiorophenol	NP 50	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	NS NS	NS NS	NS	NS	NS	NS NS
Phenol	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
Pyrene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
2,4,5-Trichlorophenol	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
2,4,6-Trichlorophenol	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS
2,4-Dichlorophenol	5	ND	ND	ND	ND	ND	ND	ND	ND 16	ND 0.6F	ND	ND	ND	NS	NS	NS	NS	NS	NS
2-Methyinaphthalene 4-Chloro-3-methylphenol	NP	ND				ND			ND	ND				NS	NS	NS NS	NS	NS	NS NS
4-Methylphenol	1	ND	ND	ND	ND	ND	ND	ND	NS	NS	ND	ND	ND	NS	NS	NS	NS	NS	NS
			•	•		Pe	sticides b	y EPA Me	thod 808	1, (ug/L)		•	•		•				
Aldrin	NP	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS						
alpha-BHC	0.01	ND	0.13	0.043 NJ	ND	ND	ND	ND	ND	NS	ND	ND	NS						
Deta-BHC	0.04	ND	0.024 J	ND	ND	0.017 J	ND	ND	ND	NS NC	ND	ND	NS NC	NS	NS NC	NS	NS	NS	NS NC
delta-BHC	0.03	ND	0.0028 J	0.0094 NJ	0.013 J	ND	ND	ND	ND	NS	ND	ND	NS						
gamma-Chlordane	NP	ND	ND	0.3 NJ	ND	ND	ND	ND	ND	NS	ND	ND	NS						
4,4'-DDE	0.2	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS						
Endosulfan I	NP	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS						
Endrin aldehyde	5	0.069 J	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS						
Endrin Hentachlor	NP 0.04			ND ND		ND	ND ND	ND ND		NS NS			NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
Heptachlor epoxide	0.04	ND	ND	ND	ND	ND	ND	ND	ND	NS	ND	ND	NS						
						Metals	s by EPA N	Methods 6	010 and	9012, (ug	/L)								
Arsenic	25	8 B	38.8 B	91	61	69	32.2	38.4	41	20.7	401	178	250	690	219	320.3	436	554	180.7
Chromium	50	148	49.5	40	46	31.2	28.6	54	60	48.52	15.2	ND	ND	6.8 J	0.67 J	4	7.6 J	10	0.34 J
Iron	300	3,040	12,200	6,200	4,700	4,890	16,800	7,400	18,000	11,000	3,510	7,820	10,100	21,300	7,650	9,660	15,000	14,000	7,930
Manganese	35,000	327	286	NC	41,100	40,700	163.2	35,000	230,000	25,000	8,740 345	274	000,000	1,000	532	360	9,600	284	9,350
Sodium	20,000	253.000	98,800	62,100	40,500	42,000	30,800	29,000	29,000	17,100	14,400	8,880	10,600	14,200	10,500	15,000	9,700	11,000	9,890
	20,000		23,000	02/200	.3,300	12,000	33,000	~2,000			T/ TOU	3,000		- 1/200		1 10,000	3,700		2,030

Legend										
<1	Parameter not detcted above the laboratory reporting limit									
1	Parameter reported above the laboratory reporting limit but below the appilicable regulatory standard/criterion									
Parameter reported at a concentration greater than NYSDEC Class GA Criteria										
Notes: ug/l = micrograms per liter; NYS NA = Not Applicable; NS = Not J = estimated concentration; N = H = alternate peak selection upo B = value obtained from a readi	SDEC = New York State Department of Environmental Conservation; NP = Not Promulgated Sampled; ND = Not Detected = spiked sample recovery outside of control limits; DL = laboratory dilution applied on analytical review; M = manually integrated compound ng less than Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit									

Table 1
Groundwater Analytical Results (Detections Only)
VOCs, SVOCs, Pesticides, and Metals
Former Independent Leather Site
Site #B00158

Site #B00158 321-333 South Main Street, Gloversville, NY

Sample ID	NYSDEC		1	1	[MW-12	1	I	1	1		T			MW-14	1	1		
Date Sampled	Class GA Criteria	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Sep-16	Apr-20	May-02	Mar-06	May-07	Jul-08	Jul-10	Sep-12	Aug-14	Sep-16	Apr-20
			r	-		r	VOC by E	PA Metho	od 8260, (ug/L)						r	1		
Acetone	50	7]	ND	ND	NS	NS	NS	NS	NS	NS	5 J	ND	NS	NS	NS	NS	NS	NS	NS
Benzene	1.0	ND	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	ND	INS NC	NS NC	NS NC	NS NC	NS NC	NS NC	INS NC
2-Butdhone (MEK) Carbon disulfide	50				NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	NS
Chlorobenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
cis-1.2-Dichloroethene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Ethylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Methylene chloride	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	0.5 J	ND	NS	NS	NS	NS	NS	NS	NS
Toluene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Trichloroethene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Vinyl chloride	2	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Xylenes (total)	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	5	ND	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	ND	INS NC	NS NC	NS NC	NS NC	NS NC	NS NC	INS NC
n-Propylbenzene	5				NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	NS
Isopropylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1.2.4-Trimethylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,4-Diethylbenzene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Ethyltoluene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
1,2,4,5-Tetramethylbenzene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
p-Isopropyltoluene	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
							SVOC by	EPA Meth	od 8270,	(ug/L)									
Acenaphthene	20	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Anthracene	50	ND	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	ND	INS NC	NS NC	NS NC	NS NC	NS NC	NS NC	INS NC
Benzo(a)pyrene	0.002 NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(h)fluoranthene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(g,h,i)pervlene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Benzo(k)fluoranthene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Carbazole	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Chrysene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Dibenzo(a,h)anthracene	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Diethyl phthalate	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
DI-n-Dutyl phthalate	50	ND	ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	ND	NS NC	INS NC	INS NC	NS NC	NS NC	NS NC	INS NC
Fluorene	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Indeno(1.2.3-cd)pyrene	0.002	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Naphthalene	10	11	4 J	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Pentachlorophenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Phenanthrene	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Phenol	1.0	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Pyrene	50	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4,5-Trichlorophenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4,6-1richlorophenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
2,4-Dicniorophenoi	5 ND		ND	ND	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	ND	ND	NS NC	INS NC	INS NC	NS NC	NS NC	NS NC	INS NC
4-Chloro-3-methylphenol	NP	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4-Methylphenol	1	ND	ND	ND	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
	-					Pe	sticides b	v EPA Me	thod 808:	L, (ug/L)									
Aldrin	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
alpha-BHC	0.01	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
beta-BHC	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
gamma-BHC (Lindane)	0.05	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
delta-BHC	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
gamma-Chlordane	NP	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
4,4'-DDE	0.2	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
Endosultan 1 Endrin aldobydo	NP F	ND	ND	NS NC	NS	NS NC	NS NC	NS NC	NS	NS NC		ND	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS NC
Endrin aldenyde	J ND			INS NC	NS NC	INS NC	INS NC	INS NC		INS NC				NS NC	NS NC			NS NC	INS NC
Hentachlor	0.04	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND		NS	NS	NS	NS	NS	NS	NS
Heptachlor epoxide	0.03	ND	ND	NS	NS	NS	NS	NS	NS	NS	ND	ND	NS	NS	NS	NS	NS	NS	NS
						Metals	s by EPA N	1ethods 6	010 and 9	9012, (ua	/L)								
Arsenic	25	437	139	220	680	340	700	363	367	300.6	ND	ND	25	ND	ND	0.4 J	5	ND	NS
Chromium	50	9.2 B	8.2 B	5.8 J	5 J	0.66 J	1.6	2.2 J	ND	ND	2.5 B	ND	3.3 J	2.8 J	ND	0.3 J	ND	ND	NS
Iron	300	9,500	994	1,600	4,900	468	2,990	1,700	960	3,200	332	193 B	930	340	33.5	30 J	ND	350	NS
Magnesium	35,000	14,400	33,800	16,000	19,600	24,300	15,500	18,000	24,000	21,600	9,450	8,210	8,000	7,000	8,140	7,490	8,900	9,000	NS
Manganese Sodium	20,000	504	365	NS 79 600	47 000	27 300	192.6	25 000	20,000	13 800	205	36/	NS 8 600	1,200	9.420	439.2	235	20 000	NS

Legend										
<1	Parameter not detcted above the laboratory reporting limit									
1	1 Parameter reported above the laboratory reporting limit but below the appilicable regulatory standard/criterion 1 Parameter reported at a concentration greater than NYSDEC Class GA Criteria									
1										
Notes: ug/l = micrograms per liter; NYSI NA = Not Applicable; NS = Not S J = estimated concentration; N = H = alternate peak selection upo B = value obtained from a readir	DEC = New York State Department of Environmental Conservation; NP = Not Promulgated Sampled; ND = Not Detected - spiked sample recovery outside of control limits; DL = laboratory dilution applied on analytical review; M = manually integrated compound ng less than Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit									

Table 1 Groundwater Analytical Results (Detections Only) VOCs, SVOCs, Pesticides, and Metals Former Independent Leather Site Site #B00158

321-333 South Main	Street, Gloversville, N	Y
--------------------	-------------------------	---

Sample ID	NYSDEC	OFF33								OFF35							
Date Sampled	Class GA	Mar-06	Apr-07	1.1-08	Jul-10	Sen-12	Δυσ-14	Aug-16	May-20	Mar-06	Apr-07	1.1-08	Jul-10	Sen-12	Δυα-14	Δυσ-16	May-20
	Criteria	That 00	Api 07	501 00	501 10	300 12	Aug II	Aug 10	1109 20	That 00	Api 07	501 00	501 10	30p 12	Aug II	Aug 10	Huy 20
A setere s	50	ND	ND	4 5 3	153	VOC by E	PA Metho	d 8260, (ug/L)	ND	ND			ND	ND	ND	47
Acetone	50	ND		T'2 1	T'2 1	7.5 ND							T'T T				
2-Butanone (MEK)	50	ND	ND	ND		171	ND	191		ND	ND		ND	ND		ND	
Carbon disulfide	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	4.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Vinyl chloride	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (total)	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5																
n-Pronylbenzene	5																
Isopropylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Diethylbenzene	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Ethyltoluene	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4,5-Tetramethylbenzene	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SVOC by EPA Method 8270, (ug/L)																	
Acenaphthene	20	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	NS
Anthracene	50	ND	0.05 J			0.07 J			0.02 J		ND			ND	ND	ND	NS NC
Benzo(a)pyrene	0.002 NP		1.9 J			0.24	0.1 J	0.06 1	0.06 1								NS
Benzo(b)fluoranthene	0.002	ND	2.3	ND	ND	0.27	0.13]	0.12]	0.08 1	ND	ND	ND	ND	ND	ND	ND	NS
Benzo(g,h,i)pervlene	NP	ND	0.85 J	ND	ND	0.19 J	ND	0.07 J	0.05 J	ND	ND	ND	ND	ND	ND	ND	NS
Benzo(k)fluoranthene	0.002	ND	0.96 J	ND	ND	0.22	ND	0.05 J	0.03 J	ND	ND	ND	ND	ND	ND	ND	NS
Bis(2-ethylhexyl)phthalate	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Carbazole	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Chrysene	0.002	ND	ND	ND	ND	0.19 J	0.09 J	0.07 J	0.05 J	ND	ND	ND	ND	ND	ND	ND	NS
Dibenzo(a,h)anthracene	NP	ND	ND	ND	ND	0.14 J	0.1 J	ND	0.08 J	ND	ND	ND	ND	ND	ND	ND	NS
Diethyl phthalate	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
DI-n-Dulyi phinalale	50		351			1 J	0 10 1	0141	01	ND							INS NC
Fluorene	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Indeno(1.2.3-cd)pyrene	0.002	ND	ND	ND	ND	0.22	0.18 J	0.06 J	0.06 J	ND	ND	ND	ND	ND	ND	ND	NS
Naphthalene	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.08 J	NS
Pentachlorophenol	NP	ND	ND	ND	ND	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	NS
Phenanthrene	50	ND	2.4 J	ND	ND	0.17 J	0.08 J	0.07 J	0.06 J	ND	ND	ND	ND	ND	ND	ND	NS
Phenol	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Pyrene	50	ND	3.2 J	ND	ND	0.38	0.17 J	0.12 J	0.09 J	ND	ND	ND	ND	ND	ND	ND	NS
2,4,5-Irichlorophenol	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
2,4,0-Irichlorophenol	NP 5																
2-Methylnaphthalene	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07 1	NS
4-Chloro-3-methylphenol	NP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
4-Methylphenol	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS
Pesticides by EPA Method 8081, (ug/L)																	
Aldrin	NP	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
alpha-BHC	0.01	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
beta-BHC	0.04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
gamma-BHC (Lindane)	0.05	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
delta-BHC	0.04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	NP 0.2	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS NC	NS NC	NS	NS NC						
ד,ד-UUE Endosulfan I	0.2																
Endosunan 1 Endrin aldehvde	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Endrin	NP	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Heptachlor	0.04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Heptachlor epoxide	0.03	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Metals by EPA Methods 6010 and 9012, (ug/L)																	
Arsenic	25	ND	ND	5 J	ND	6.1	6.2	7	NS	ND	ND	14 J	24.6	12	15.5	11	5.59
Chromium	50	35	16	6 J	1 J	5	6.2 J	40	NS	11.5	82	60	9	78.4	18	240	200.4
Iron	300	1,360	ND	2,500	2,340	5,460	1,300	11,000	NS	6,780	8,100	5,500	5,800	6,030	4,300	6,200	1,900

Magnesium	35,000	5,900	11,900	6,900	6,000	7,550	3,100	7,800	NS	21,700	28,900	18,000	18,300	12,000	16,000	16,000	11,900
Manganese	300	263	9.8 J	64	60.2 J	80.1 J	35.2	123	NS	359	1,100	270	223	210.9	197	185	53.8
Sodium	20,000	16,200	40,500	26,600	9,380	27,500	66,000	42,000	NS	19,700	20,500	18,200	19,100	14,700	19,000	22,000	5,900

Legend	
<1	Parameter not detcted above the laboratory reporting limit
1	Parameter reported above the laboratory reporting limit but below the appilicable regulatory standard/criterion
1	Parameter reported at a concentration greater than NYSDEC Class GA Criteria
Notes:	

Notes: ug/I = micrograms per liter; NYSDEC = New York State Department of Environmental Conservation; NP = Not Promulgated NA = Not Applicable; NS = Not Sampled; ND = Not Detected J = estimated concentration; N = spiked sample recovery outside of control limits; DL = laboratory dilution applied H = alternate peak selection upon analytical review; M = manually integrated compound B = value obtained from a reading less than Contract Required Detection Limit, but greater than or equal to the Instrument Detection Limit

Former Independent Leather Tannery (Site No. B00158) Groundwater Results 2002-2020 VOCs and SVOCs - MW-10

ND = Non-Detect

HRP Associates, Inc.

ND = Non-Detect

HRP Associates, Inc.

HRP Associates, Inc.

Former Independent Leather Tannery (Site No. B00158) Groundwater Results 2002-2020

Former Independent Leather Tannery Site No. B00158 Groundwater Results 2002-2020 Chromium

Former Independent Leather Tannery Site No. B00158 Groundwater Results 2002-2020 Chromium

