February 2006

South Troy Industrial Park

Environmental Restoration Project Clean Water/Clean Air Bond Act of 1996

> East Industrial Park Road City of Troy Rensselaer County, New York


Prepared for:

RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY 1600 7TH Avenue P.O. Box 5105 Troy, New York 12180

Prepared by:

C.T. MALE ASSOCIATES, P.C. 50 Century Hill Drive P.O. Box 727 Latham, New York 12110 518.786.7400 FAX 518.786.7299 C.T. Male Project No.: 04.9138 © Copyright 2006 C.T. MALE ASSOCIATES, P.C.

Unauthorized alteration or addition to this Document is a violation of Section 7209 Subdivision 2 of the New York State Education Law.

TABLE OF CONTENTS (CONTINUED)

Page

	1.1	Purpo	se	9
	1.2	Site Ba	ackground	9
		1.2.1	Site Description	
		1.2.2	Site History	
		1.2.3	Previous Investigations	
		1.2.4	Contaminants of Concern	
	1.3		t Organization	
2.0	STUD	Y ARE	A INVESTIGATION	19
	2.1	Site Cl	haracterization	19
	~~~	2.1.1	Summary of Investigative Tasks	
		2.1.2	Site Survey	
		2.1.3	Ground Penetrating Radar (GPR) Survey	
		2.1.4	Surface Soil Sampling	
		2.1.5	Test Trenching/Test Pitting	
		2.1.6	Test Borings and Monitoring Well Installations	
		2.1.7	Groundwater Sampling	
		2.1.8	Slag Sampling	
		2.1.9	Effect of Tidal Influences on Groundwater Levels	
		2.1.10	Survey of Private and Public Wells	
			Community Dust Monitoring	
			Fish and Wildlife Impact Analysis (FWIA)	
			Review of Additional Investigations of the Site by	
			Others	32
		2.1.14	Data Usability Summary Report	
			Interim Remedial Measure	
			Supplemental Investigations	
3.0	PHYS	ICAL C	CHARACTERISTICS OF THE STUDY AREA	41
	3.1	Result	s of Study Area Investigation	41
	0.1		Surface Features	
		3.1.2	Surface Water Bodies	
		3.1.3	Surface Drainage Patterns	
		3.1.4	Regional Geology	
		3.1.5	Site Soils	
		3.1.6	Groundwater Characteristics	
		3.1.7	Effect of Tidal Influences on Groundwater Levels	

#### **TABLE OF CONTENTS (CONTINUED)**

Page

4.0	NAT	URE AND EXTENT OF CONTAMINATION	48
	4.1	Sources	
	4.2	Determination of Project Standards, Criteria and Guidance	
		(SCGs)	48
	4.3	Background Soils	49
	4.4	Surface Soils	
		4.4.1 General	
		4.4.2 Semi-Volatile Organic Compounds in Surface Soil/Fill	49
		4.4.3 Metals in Surface Soils	51
	4.5	Subsurface Soils - Test Trenches and Test Pits	53
		4.5.1 General	53
		4.5.2 Volatile Organic Compounds in Subsurface Soils (Test	
		Trenches & Pits)	54
		4.5.3 Semi-Volatile Organic Compounds in Subsurface Soils	<b>F</b> 4
		(Test Trenches & Pits)	
		<ul><li>4.5.4 Metals in Subsurface Soils (Test Trenches &amp; Pits)</li><li>4.5.5 Subjective Observations and Analyses</li></ul>	
	4.0		
	4.6	Subsurface Soils (Soil Borings) 4.6.1 General	
		4.6.2 Volatile Organic Compounds in Subsurface Soils (Soil	
		Borings)	
		4.6.3 Semi-volatile Organic Compounds in Subsurface Soils	
		(Soil Borings)	65
		4.6.4 Metals in Subsurface Soils (Soil Borings)	
		4.6.5 Subjective Observations and Analyses	67
	4.7	Groundwater	68
		4.7.1 General	
		4.7.2 Volatile Organic Compounds in Groundwater	
		4.7.3 Semi-volatile Organic Compounds in Groundwater	
		4.7.4 Metals in Groundwater	
	4.8	Supplemental Investigations of the IRM	
		4.8.1 General	
		<ul><li>4.8.2 Subsurface Soils</li><li>4.8.3 Groundwater</li></ul>	
		4.8.5 Groundwater	
	4.9	Supplemental Investigation of Parcel 2	
	4.3	Suppremental investigation of 1 arcer &	1 6

## TABLE OF CONTENTS (CONTINUED)

72

Page

		4.9.1 General	72
		4.9.2 Subsurface Soils	72
		4.9.3 Groundwater	
		4.9.4 Subjective Observations and Analyses	73
	4.10	Ground Penetrating Radar (GPR) Survey	74
	4.11	Fish and Wildlife Impact Analysis (FWIA)	75
	4.12	Summary of Extent of Contamination	
		4.12.1 General Overview	
		4.12.2 IRM	
		4.12.3 Background Surface Soils	
		4.12.4 Surface Soils	
		4.12.5 Subsurface Soils (Test Trenches and Test Pits)	
		4.12.6 Subsurface Soils (Soil Borings)	
		4.12.7 Groundwater	78
5.0	CON	TAMINANT FATE AND TRANSPORT	81
	5.1	General Overview	81
	5.2	Definition of Relevant Properties	81
	5.3	Contaminant Persistence	83
	5.4	Contaminant Migration	85
		5.4.1 Groundwater Migration	85
		5.4.2 Atmospheric Migration	86
6.0	EXPO	OSURE ASSESSMENT	87
	6.1	Qualitative Exposure Assessment	87
7.0	STIM	MARY AND CONCLUSIONS	
7.0			
	7.1	Summary	
		7.1.1 Site Background	
		7.1.2 Physical Characteristics of the Project Site	
		7.1.3 Survey of Public and Private Wells	
		7.1.4 Ground Penetrating Radar (GPR) Survey	
		<ul><li>7.1.5 Slag Sampling</li><li>7.1.6 Fish and Wildlife Impact Analysis (FWIA)</li></ul>	
		7.1.7 Investigations of Lands Adjoining the Project Site	
		7.1.8 Interim Remedial Measure	
		7.1.9 Supplemental Investigation of Parcel 2	JL Q2
		1.1.0 Supplemental myesugation of 1 alter k	36

#### **TABLE OF CONTENTS (CONTINUED)**

Page

	7.1.10 Nature and Extent of Contamination	92
	7.1.11 Fate and Transport	94
7.2	Conclusions	95
	7.2.1 Data Limitations and Disclaimer	96

#### **FIGURES**

Figure 1:	Site Location Map
Figure 2:	Site Boundary Survey and Sampling Locations Map
Figure 3:	RI Site Sampling Locations Map
Figure 4:	Background Surface Soil Sampling Locations Map
Figure 5:	IRM Supplemental Investigation Sampling Locations Map
Figure 6:	Parcel 2 Supplemental Investigations Sampling Locations Map
Figure 7:	Site Wide Thickness of Fill Contour Map
Figure 8:	Site Wide Groundwater Contour Map (November 14, 2005)
Figure 9:	Parcel 2 Shallow Groundwater Contour Map (November 14, 2005)
Figure 10:	Parcel 2 Deep Groundwater Contour Map (November 14, 2005)
Figure 11:	Parcel 2 Shallow Groundwater Contour Map (November 21, 2005)
Figure 12:	Shallow Groundwater Contour Map in Vicinity of IRM on Parcel 1 (November 21, 2005)

#### **TABLES**

Table 2.1.1-1:	Investigative Tasks Summary
Table 2.1.5-1:	Test Pit and Test Trench Sampling Locations Summary
Table 2.1.6-1:	RI Soil Boring and Monitoring Well Summary

#### **TABLE OF CONTENTS**

- Table 2.1.16-1:Soil Boring and Monitoring Well Summary (IRM & Parcel 2)
- Table 3.1.6:Summary of Field Observations
- Table 4.3-1:
   Background Surface Soil Analytical Summary Results
- Table 4.4:
   Surface Soil Analytical Results Above SCGs
- Table 4.4-1:Surface Soil Analytical Summary Results
- Table 4.5:Trench and Test Pit Analytical Results Above SCGs
- Table 4.5-1:Trench and Test Pit Analytical Summary Results
- Table 4.5-2:Trench and Test Pit Parameters Above SCGs
- Table 4.6:Soil Boring Analytical Results Above SCGs
- Table 4.6-1:Soil Boring Analytical Summary Results
- Table 4.6-2:Soil Boring Sampling Depths, Media Sampled and<br/>Parameters Above SCGs
- Table 4.7:
   Groundwater Analytical Results Above SCGs
- Table 4.7-1:Groundwater Analytical Summary Results
- Table 4.8.2:Soil Boring Analytical Summary Results (IRM)
- Table 4.8.3:Groundwater Analytical Results Above SCGs (IRM)
- Table 4.8.3-1:Groundwater Analytical Summary Results (IRM)
- Table 4.9.2:Soil Boring Analytical Results Summary (Parcel 2)
- Table 4.9.3:Groundwater Analytical Results Above SCGs (Parcel 2)
- Table 4.9.3-1:Groundwater Analytical Summary Results (Parcel 2)
- Table 5.1-1:Contaminants of Concern
- Table 5.2:Physical and Chemical Properties of Site Contaminants

#### **APPENDICES**

Appendix A:	Metes & Bounds Description
Appendix B:	Test Pit and Test Trench Logs

#### **TABLE OF CONTENTS**

Appendix C: Test Pit and Test Trench Organic Vapor Headspace Analysis Logs Subsurface Exploration Logs with PID Readings Appendix D: Appendix E: Monitoring Well Construction Logs (CTM-1 to CTM-13) Appendix F: Organic Vapor Headspace Analysis Logs (IRM) Appendix G: Subsurface Exploration Logs (IRM) Appendix H: Monitoring Well Construction Logs (IRM) Appendix I: Organic Vapor Headspace Analysis Logs (Parcel 2) Appendix J: Subsurface Exploration Logs (Parcel 2) Appendix K: Monitoring Well Construction Logs (Parcel 2)

#### **EXHIBITS**

Exhibit 1:	NYSDEC Work Plan Approval Letter
Exhibit 2:	Ground Penetrating Radar Survey Report
Exhibit 3:	Transducer Data Charts
Exhibit 4:	Fish and Wildlife Impact Analysis Report
Exhibit 5:	Environmental Investigations of Adjoining Lands by Others
Exhibit 6:	Data Usability Summary Reports
Exhibit 7:	Summary of IRM Activities Report
Exhibit 8:	Analytical Results for Samples Collected of Slag Mountain

## **1.0 INTRODUCTION**

The Rensselaer County Industrial Development Agency (RCIDA) submitted an application to the New York State Department of Environmental Conservation (DEC) for participation in the NYS Environmental Restoration Program (ERP) for lands owned by the RCIDA within the South Troy Industrial Park (STIP) located in the vicinity of Main Street and East Industrial Parkway in the City of Troy, Rensselaer County, New York (herein "the Site"). A Site Location Map is presented as Figure 1. NYSDEC subsequently notified the RCIDA of its eligibility to participate in the ERP and the RCIDA executed a State Assistance Contract (SAC) which required the submission, review, approval and implementation of investigative work plans under the ERP. The Draft Site Investigation Work Plan was submitted to NYSDEC and NYSDOH for review and comment in June 2004. Regulatory comments to the Work Plan were satisfactorily addressed and the Work Plan was approved in August 2004. See Exhibit 1 for NYSDEC Comment and Approval letters.

Prior to the development of the Remedial Investigation/Alternatives Analysis Work Plan for the Site, a review of available data and information pertaining to the Site's history and environmental quality was completed by C.T. Male Associates, P.C. (C.T. Male) and summarized in the document entitled Historical Overview dated April 29, 2004, which is available for review within the document repositories.

The ERP investigation generally involved the collection and analysis of surface soil samples; conducting exploratory test trenches, test pits and soil borings; collection and analysis of subsurface samples from the test trenches, pits and borings; installation of groundwater monitoring wells; collection and analysis of groundwater samples from the newly installed monitoring wells and select existing monitoring wells; and completion of a Fish and Wildlife Impact Analysis. Additional tasks undertaken during the investigation included an Interim Remedial Measure (IRM) to remediate buried drums and a storage tank on the northeastern portion of Parcel 1; and the additional advancement of soil borings and subsequent installation of monitoring wells to further investigate the IRM area and to aid in the determination of a source area for petroleum impacted soils and groundwater discovered on Parcel 2 during the course of the ERP investigation.

## 1.1 Purpose

The purpose of the Remedial Investigation/Alternatives Analysis Report (RI/AAR) is to describe the investigations conducted at the site for defining the nature and extent of contamination in surface soil, subsurface soil and groundwater. From this data decisions regarding the need for remedial actions are made and remedial options are evaluated based in part on the intended use of the Site. The investigation defines the site characteristics in terms of its history use, geology, hydrogeology, known or suspected contaminants and contemplated future use. The target goals of this ERP investigation were to identify contaminants of concern, define the horizontal and vertical extent of such contamination, and to produce data of sufficient quantity and quality to support the development and analyses of remedial alternatives to aid in the development of an acceptable Remedial Action Work Plan (RAWP).

## 1.2 Site Background

The following sections provide an overview of the Site and include a Site description, Site history and a summary of previous environmental investigations conducted on the Site by C.T. Male and others.

# **1.2.1 Site Description**

The Site, which is the subject of this ERP investigation, is located within the South Troy Industrial Park (Figure 1). The Site consists of three separate parcels of previously developed land located within an approximate 800-foot radius of one another. The parcels are accessed from East Industrial Parkway and Main Street. The Site is currently owned by the RCIDA.

The Site consists of three separate parcels of land denoted as Parcels 1 through 3 on the attached Site Boundary Survey and Sampling Locations Map included as Figure 2. Parcel 1 is approximately 16.955 acres in size and is located along East Industrial Boulevard. The Parcel is currently undeveloped and littered at its surface by disposed mounds of concrete, asphalt and slag materials. Much of the slag materials on the northern portion of Parcel 1 (north of New Penn) originated from past excavation of a retention pond at the New Penn trucking facility. The northwest corner of the Parcel consists of "Slag Mountain", portions of which have been mined over the years for use

in part as a sub base material for roads and sidewalks throughout the City of Troy. Approximately half of Slag Mountain extends onto the adjoining property to the north. Land usage adjoining Parcel 1 includes the New Penn trucking facility, the Rensselaer County Jail; Capital Launderers, Troy Slag Products, City of Troy Public School #12, residential dwellings, the New York Central Railroad tracks, and the Hudson River.

Parcel 2 is approximately 3.326 acres in size and is located along the south side of Main Street. An extension of East Industrial Parkway bisects the Parcel from north to south. The Parcel is currently undeveloped. Land usage adjoining Parcel-2 includes the Rensselaer County Jail, Callanan Industries, King Service (the "Alamo") which is currently being utilized in part as a transfer station, and the City of Troy Department of Public Works.

Parcel-3 is approximately 0.199 acres in size and consists of a narrow strip of land accessed along the north side of Main Street. Land usage surrounding Parcel-3 includes the historic Burden Iron Works office building, the City of Troy Department of Public Works, a transfer station formerly owned by King Service (the Alamo), and residential housing.

# 1.2.2 Site History

This section provides an overview of the Site's history. A more detailed narrative of the Site's history and environmental quality was completed by C.T. Male and summarized in the "Historical Overview" dated April 29, 2004, which is available for review in the document repositories and is also incorporated as an Exhibit to the Site Investigation Work Plan, prepared by C.T. Male and dated August 31, 2004.

The Site was reportedly utilized as farmland until 1862, with western portions of the property lying at low elevations, thus constituting a flood plain to the Hudson River. In 1862, the tract of land was purchased by Henry Burden and over the following few decades converted into what was referred to as the Lower Works of the Burden Iron Works. Main manufacturing activities of the Iron Works took place within structures located south of the subject site. The Site was used in part for the disposal of manufacturing by-products such as slag, cinder and ash. Additionally, building rubble from structure fires and demolition activities were historically disposed of on the Site by the City of Troy. These materials were disposed in low lying areas of the Site to

raise the Site's elevation above the Hudson. Fill material on the Site ranges in depth from approximately six (6) to 32-feet, with Slag Mountain occupying northwest portions of the Site.

Burden Iron Works manufactured horseshoes, rivets, nails and other iron products up until about 1925, when, due to a decline in the steel industry, the company redirected its efforts to the manufacture of coke, gas and pig iron. This operation was unsuccessful, and Burden Iron Works was liquidated in 1940. During conversion of manufacturing activities in 1925, the Republic Steel Corporation began operation of the Burden Iron Works blast furnaces. The Republic Steel Company eventually acquired the entirety of the Burden Iron Works upon its liquidation in 1940, and maintained a steel manufacturing facility up until 1972. Since 1972, the remaining building structures associated with Republic Steel's operation of the site were demolished, and the Site has remained vacant.

## **1.2.3 Previous Investigations**

The Site has been extensively investigated for environmental concerns by C.T. Male and others since 1986. A detailed narrative of the investigations is presented in C.T. Male's "Historical Overview" document and the Site Investigation Work Plan.

The following summarizes, in chronological order, environmental investigations that have been conducted on the Site.

• In 1986, Empire Soils Investigations, Inc. (ESI) conducted a Hydrogeologic Evaluation of the Site and its surrounding properties. The investigation involved the advancement of 17 test borings for environmental characterization and geotechnical (foundation support) purposes. A total of five monitoring wells and three soil borings were advanced on portions of Parcel 1 and two monitoring wells and two soil borings were advanced on Parcel 2 of the site. Borings and monitoring wells were not advanced on Parcel-3. ESI collected groundwater samples from all monitoring wells for laboratory analysis of volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), Pesticides/PCBs, and Heavy Metals (total concentrations). Analytical results did not show VOCs, pesticides and PCBs to exceed NYSDEC groundwater values from all wells sampled. One SVOC (which may have been a laboratory derived

contaminant) and several metals were at concentrations exceeding NYSDEC water quality standards values from wells sampled on Parcel 1 and 2.

- In 1990, ESI conducted an Environmental Site Assessment of the Proposed South Troy Commerce Park to furnish additional information to that collected as part of its 1986 investigation. The work included the advancement of test borings and subsequent installation and sampling of permanent monitoring wells; the excavation and subsequent sampling and analysis of select test pits; and the sampling and analysis of surficial foundry slag material. Additionally, ESI conducted sampling and analysis of groundwater from monitoring wells installed as part of its 1986 investigation. Several monitoring wells were sampled and groundwater was analyzed for VOCs, SVOCs, heavy metals and petroleum products. Results of the investigation showed VOCs and SVOCs at concentrations slightly exceeding Maximum Contaminant Levels (MCL's). Priority Pollutant (Dissolved) Heavy Metals and petroleum products in water were either not detected or were detected at concentrations below the MCL. Analytical results of representative samples of slag did not exceed TCLP values that would characterize them as hazardous waste.
- In 1999, Clough, Harbour & Associates LLP (CHA) conducted a Phase I Environmental Site Assessment (ESA) of the proposed New Penn Truck facility. The report stated that the New Penn site had most recently been used as a dumping area for various wastes and piles of soils, concrete, and cement located on east portions of the site were noted as being discolored and having a noticeable petroleum and/or chemical odor. Also, as part of the ESA, select monitoring wells on the proposed New Penn property were sampled and analyzed for VOCs, SVOCs, PCBs and Metals. Results of the sampling showed that groundwater was not impacted by VOCs, SVOCs or PCBs. Laboratory results for Metals in groundwater were still pending and were therefore not incorporated in the report. In its conclusions, CHA recommended that soil borings be advanced in areas of the New Penn site that contained piles of discolored materials having a petroleum/chemical odor, and within the footprint of the proposed New Penn building. CHA also recommended that piles of discarded materials scattered throughout the site be removed and properly disposed of, and that one or two representative soil samples of

materials exhibiting petroleum and/or chemical odors be collected and analyzed for waste characterization.

- In late October 1999, CHA conducted additional investigation of the New Penn site to address recommendations made as part of its previous ESA. The investigation consisted of the advancement of six soil borings and the collection of one sample each from two soil piles having a noticeable petroleum and/or chemical odor. Eight representative samples from the installed soil borings, and one sample each of the soil piles, were collected for analysis for VOCs, SVOCs, PCBs and the 8 RCRA Metals by both TCLP and Total Metals. During advancement of the soil borings, a tar material with a creosote odor was discovered in one of the bore holes at a depth of approximately six feet below grade. Results of the sampling indicated that the two piles of soil located on northeast portions of the site were impregnated with petroleum above the NYSDEC Contaminated Soil Guidance Policy; and that benzene and SVOC concentrations exceeded soil cleanup standards in the soil boring having the tar layer within it. Laboratory results for Metals in groundwater completed as part of the original ESA showed concentrations of arsenic at concentrations slightly above groundwater standards in one of the New Penn monitoring wells.
- In early 2000, C.D. Perry & Sons, Inc. (CD Perry) was retained by the RCIDA to address areas of concern identified in the 1999 CHA report of the New Penn Truck facility. Areas of concern included piles of petroleum impregnated soils; piles of virgin asphalt; and the detection of benzene and SVOCs in a soil boring advanced in the proposed New Penn building footprint. CD Perry recommended that the piles of asphalt be disposed of at a permitted facility and that the petroleum impregnated soil piles be excavated to uncontaminated soil and removed. To address contamination within the proposed building footprint soil boring, CD Perry excavated an approximate ten foot deep test pit in this area. Results of the test pitting showed a layer of tar-like material at a depth of six feet. The tar material was sampled and analyzed for VOCs and SVOCs. Results of the sampling showed elevated concentrations of SVOCS. Based on the analytical results, trenches were excavated to delineate the extent of the tar material. According to the report, the tar material was confined to an area of 35

feet by 35 feet with varying thicknesses of 0-12 inches and varying depths of six to 12 feet below grade.

• In 2000 and 2001, C.T. Male collected samples of surface soils, and of soils from within test pits and trenches which were advanced at the proposed New Penn facility. Moreover, C.T. Male excavated the tar-like material identified in the CD Perry report. The surface soil samples were collected from the site and analyzed for SVOCs, PCBs, and for the eight RCRA Metals on a totals basis. Analytical results showed concentrations of SVOCs exceeding NYSDEC TAGM values at several sampling locations while metals exceeded TAGM values at all sampling locations; though the metal detections were qualified due to laboratory quality control issues. The work completed on the New Penn site by C.T. Male was in accordance with the Voluntary Cleanup Program executed between the NYSDEC and the Rensselaer County Industrial Development Agency. The tasks performed by C.T. Male were pre-approved and completed to the satisfaction of the NYSDEC.

Two test pits were excavated to characterize underlying fill material and to collect representative samples for laboratory analysis. The samples were each analyzed for VOCs, SVOCs, PCBs, and the 8 RCRA Metals. Results of the sampling event showed SVOC concentrations exceeding TAGM values in both test pits. Analytical results for arsenic and mercury metals were qualified due to laboratory quality control issues.

Three trenches were excavated on northeast portions of the New Penn site to address potential contamination in underlying soils from the former existence of piles of petroleum impregnated soils in this area. The soil piles, identified in the CD Perry report, had been removed from the site by unknown persons. The trenches were excavated to pre-existing grades. Based on subjective olfactory observations and PID readings, one soil sample was collected from one of the trenches and analyzed for VOCs and SVOCs. Results of the sampling did not show contaminants at concentrations above the laboratory method detection limit.

Excavation was conducted to remove underlying tar material identified in the CD Perry report. Upon completion of the excavation, an area approximately 100

feet long by 50-70 feet wide and 15-20 feet deep had been removed. The excavated tar material and soils were temporarily staged on the east side of Industrial Park Road (Parcel 1), where they were later sampled for waste characterization and ultimately disposed of at Environmental Soils Management of New York, LLC.

- In February/March 2001, C.T. Male conducted a Phase I ESA and Geotechnical Evaluation for a proposed warehouse facility to be located on eastern portions of Parcel 1. The investigation involved the advancement of test borings and test pits for geotechnical and environmental purposes, and review of historical environmental investigations conducted on the Parcel and its surrounding properties. Nine test pits and five soil borings advanced as part of the investigation showed the parcel to be underlain with fill material to depths of approximately eight (8) to 11 feet below grade. The fill consisted primarily of slag, ash, cinder, and sand and gravel, and did not reveal the subjective presence of contamination or existence of coal tar at any test location.
- In April 2001, C.T. Male was retained to observe for the possible presence of coal tar during construction of a retention pond on north portions of the New Penn Truck facility as per the requirements of the VCP. Evaluations for the presence of coal tar were made employing olfactory (sight and smell) observations. Coal tar was not observed. Fill material observed during construction activities consisted of slag, cinder, bricks, concrete, and granular soils. These materials were deposited in mounds atop north portions of Parcel 1.
- In 2002, Earth Tech, Inc. conducted a Phase I ESA on portions of Parcel 1 located between the New Penn Truck facility and the Rensselaer County Jail. The ESA made reference to previous investigations conducted by others and indicated that Parcel 1 appeared to have been used as a dumping area with piles of asphalt, soil, concrete and cement observed atop east portions of the Parcel. The ESA also indicated that the Republic Steel Corporation/Troy Works property, of which the Site is a part, was listed in governmental databases as a CERCLIS site with No Further Action Planned (NFRAP). Earth Tech recommended that the Parcel be further investigated by test pitting to address the potential existence of subsurface coal tar material.

In April 2002, 12 test pits were completed on portions of Parcel 1 located between the New Penn facility and the Rensselaer County Jail. The test pits were advanced by Earth Tech, Inc. to address recommendations set forth in its ESA of the Parcel. Soil samples were collected at regular intervals from each of the test pits and screened with a PID for VOCs. One representative soil/fill sample was analyzed for VOCs, SVOCs, RCRA 8 Metals, and Pesticides/PCBs. Analytical results showed arsenic to have exceeded NYSDEC cleanup guidelines.

In May 2002, Earth Tech conducted additional investigation of Parcel 1 to further characterize the thickness and character of fill material and to collect soil and groundwater samples for analysis of VOCs, SVOCs, PCBs and RCRA 8 Metals. The investigative methodology consisted of the excavation and sampling of soils from approximately 20 test pits, and sampling of groundwater from an existing monitoring well located along the down gradient portion of the site. A soil sample was collected from each test pit for VOC screening and possible subsequent laboratory analysis. Soil samples from one test pit location (TP-2) were collected and submitted to the laboratory for analysis. Analytical results showed select SVOCs and metals at concentrations exceeding cleanup guidelines for SVOCs and metals. It should be noted that analytical results for VOCs in soil and groundwater in the down gradient well were not made available to C.T. Male and are therefore not incorporated in this report.

• In 2003, Erdman Anthony collected samples from "slag mountain", which is located at the northwest corner of Parcel 1. The samples were collected to determine if portions of "slag mountain" could be removed and re-graded into the site to accommodate a proposed bikeway/walkway along the eastern edge of Parcel 1. Three samples were collected for analysis of the 8 RCRA Metals. The sampling results were attached to a letter report and forwarded to the NYSDEC for comment. The NYSDEC responded that metal contaminant levels in the slag were below current or proposed soil cleanup guidelines and that the slag could be re-graded on north portions of the Parcel if delineated with grading stakes. The NYSDEC further indicated that a fine layer of light-grey material appearing to be ash and/or cinder located atop "slag mountain" needed to be sampled for the 8 RCRA Metals. This material was sampled in

December 2003 and analyzed for the metal constituents suggested by NYSDEC. Results of the sampling showed all analytes at concentrations below TAGM RSCOs with the exception of Selenium, which was detected at a concentration of 2.52 mg/kg versus its cleanup guideline of 2 mg/kg, though the detected concentration fell within the Eastern USA Background range of 0.1 - 3.9 mg/kg.

## 1.2.4 Contaminants of Concern

The previous discovery of coal tar at the New Penn property of STIP and other properties to the south of STIP indicate that coal tar is a potential contaminant of concern. Coal tar typically contains volatile and semi-volatile organic compound fractions as well as metals. Previous investigations of the slag at the site indicate that it is not a characteristic hazardous waste; however, it does have the potential to possess metals at concentrations greater than regulatory guidance levels. Cinders and ash which co-mingle with the site slag and are present at grade and depth within portions of the site suggest semi-volatile organic compounds and metals are potential contaminants of concern. The existence of a former petroleum above ground storage tank on the off-site parcel referred to as the "Alamo" suggest the potential presence of petroleum products such that volatile and semi-volatile organics are potential contaminants of concern. An abandoned petroleum transfer pipeline crosses a portion of Parcel 2, indicating the potential for petroleum contamination there.

Pesticides, herbicides and polychlorinated biphenyls (PCBs) have no history of use or occurrence at the site such that they are not considered to be contaminants of concern and therefore, were not selected for analyses.

#### 1.3 Report Organization

This RI Report consists of seven sections. Section 1 of the RI Report is an introduction, which presents the purpose of the project and background information such as project work tasks and modifications to the work plan, Site description, Site history and previous investigations of the Site. Section 2 relates to the study area investigation and consists of a description (i.e., dates of completion, number or sampling locations, etc.) of the investigative tasks. Section 3 presents the physical characteristics of the study area as obtained during the site investigation. This section includes site conditions (i.e., soils, groundwater, regional geology, etc.) and surface features such as water bodies

and drainage patterns. Section 4 discusses the nature and extent of the contamination in which the analytical results of soil (surface and subsurface) and groundwater samples are compared to applicable regulatory standards and guidance values. Section 5 describes the contaminant fate and transport (routes of migration, and contaminant persistence and migration) for the remaining site contamination. Section 6 presents the exposure assessment to evaluate the potential for human exposure and environmental impact from site related contaminants. Section 7 presents the summary and conclusions of the entire report.

## 2.0 STUDY AREA INVESTIGATION

## 2.1 Site Characterization

The investigations were conducted within the property boundaries of the subject site, with the exception of the collection of background surface soil samples which were collected from publicly owned lands located east of the Site. The Site Investigation involved the following specific tasks:

- Site Survey;
- Ground Penetrating Radar Survey;
- Surface Soil Sampling (inclusive of collection of background samples);
- Test Trenching and Test Pitting;
- Test Boring and Monitoring Well Installations;
- Groundwater Sampling;
- Slag Sampling;
- Effect of Tidal Influences on Groundwater Levels;
- Survey of Private and Public Wells;
- Community Dust Monitoring;
- Fish and Wildlife Impact Analysis;
- Review of Historical and Supplementary Investigations of the Site by Others; and
- Data Usability Summary Report (DUSR).

In addition to the investigative steps listed above, the following tasks were performed as a direct result of findings discovered during the course of the RI.

- Interim Remedial Measure (IRM) to address the discovery by others of buried vessels within the northeastern portion of Parcel 1 of the Site.
- Supplemental investigations (soil borings and monitoring wells) to further define impacted areas affected by the IRM and to determine the source of contaminated soils and groundwater discovered on Parcel 2 during the course of the RI.

## 2.1.1 Summary of Investigative Tasks

Table 2.1.1-1 presents a summary of the investigative tasks that were carried out as part of the RI. The table lists each task that was performed, along with the location where the task was performed, the media that was subject to investigation, sample identification nomenclature (if applicable), and the laboratory analyses performed on specific media that was sampled (if applicable).

	TABLE 2.1.1-1: Investigative Tasks Summary									
Remedial Investigatio n Task	Sample ID	Location	Media	Sampling Nomenclature	Labo TCL VOCs	TCL SVOCs	TAL Metals			
Site Survey	NA	Site Wide	NA	NA	NA	NA	NA			
GPR Survey	NA	Parcel 2	NA	NA	NA	NA	NA			
Surface Soil Sampling	Surface Soil #1 to #17 and #19 to #21	Parcel 1, Parcel 2 and Parcel 3	Surface Soils	Surface Soil #1 to #17 and #19 to #21	NA	х	х			
Background Surface Soil Sampling	Surface Soil #22 to #24	Off site, East of Parcel 1 & 2	Surface Soils	Surface Soil #22 to #24	NA	х	х			
Test Trench	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Upper (2.5')	Х	Х	Х			
Sampling	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Lower (15.5')	Х	Х	Х			
	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Upper-1 (6')	Х	Х	Х			
	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Lower-1 (20')	Х	Х	Х			
	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Upper-2 (6')	Х	Х	Х			
	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Lower-2 (17')	Х	Х	Х			
	CTM Trench #1	Parcel 1	Soil/Fill	Trench-1 Lower-3 (20')	Х	Х	Х			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 Upper (1.5')	Х	Х	Х			

	TABLE 2.1.1-1: Investigative Tasks Summary									
Remedial Investigatio	Sample ID	Location	Media	Sampling Nomenclature	Laboratory Analysis					
n Task					TCL VOCs	TCL SVOCs	TAL Metals			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 SS-1 (9.5')	Х	Х	Х			
Test Trench Sampling	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 SS-2 (7')	Х	Х	Х			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 SS-3 (8.5')	Х	Х	Х			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 Lower-1 (8')	Х	Х	Х			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 Upper-1 (4')	Х	Х	Х			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 Lower-2 (8')	Х	Х	Х			
	CTM Trench #2	Parcel 1	Soil/Fill	Trench-2 Upper-2 (3')	Х	Х	Х			
	CTM Trench #3	Parcel 1	Soil/Fill	Trench-3 Lower (13')	Х	Х	Х			
	CTM Trench #3	Parcel 1	Soil/Fill	Trench-3 Upper (3')	Х	Х	Х			
	CTM Trench #3	Parcel 1	Soil/Fill	Trench-3 Lower-1 (10')	Х	Х	Х			
	CTM Trench #3	Parcel 1	Soil/Fill	Trench-3 Upper-3 (4')	Х	Х	Х			
	CTM Trench #3	Parcel 1	Soil/Fill	Trench-3 Lower-2 (10')	Х	Х	Х			
	CTM Trench #3	Parcel 1	Soil/Fill	Trench-3 Upper-2 (4')	Х	Х	Х			
	CTM Trench #4	Parcel 1	Soil/Fill	Trench-4 Lower (18')	Х	Х	Х			
	CTM Trench #4	Parcel 1	Soil/Fill	Trench-4 Upper (5')	Х	Х	Х			
	CTM Trench #4	Parcel 1	Soil/Fill	Trench-4 Lower-1 (19')	Х	Х	Х			
	CTM Trench #4	Parcel 1	Soil/Fill	Trench-4 Upper-1 (6')	Х	Х	Х			
	CTM Trench #4	Parcel 1	Soil/Fill	Trench 4 Upper-2 (6')	Х	Х	Х			
	CTM Trench #4	Parcel 1	Soil/Fill	Trench-4 Lower-2 (20')	Х	Х	Х			
	CTM Trench #5	Parcel 1	Soil/Fill	Trench-5 Lower (9')	Х	Х	Х			
	CTM Trench #5	Parcel 1	Soil/Fill	Trench-5 Upper (2')	Х	Х	Х			
	CTM Trench #5	Parcel 1	Soil/Fill	Trench-5 Lower-1 (9')	Х	Х	Х			
	CTM Trench #5	Parcel 1	Soil/Fill	Trench-5 Upper-1 (2')	Х	Х	Х			
	CTM Trench #6	Parcel 1	Soil/Fill	Trench-6 Lower (8')	Х	Х	Х			
	CTM Trench #6	Parcel 1	Soil/Fill	Trench-6 Upper (4')	Х	Х	Х			
	CTM Trench #6	Parcel 1	Soil/Fill	Trench-6 Lower-1 (7')	Х	Х	Х			
	CTM Trench #6	Parcel 1	Soil/Fill	Trench-6 Upper-1 (3')	Х	Х	Х			
	CTM Trench #7	Parcel 1	Soil/Fill	Trench-7 Upper (4')	Х	Х	Х			
	CTM Trench #7	Parcel 1	Soil/Fill	Trench-7 Lower (12')	Х	Х	Х			
	CTM Trench #7	Parcel 1	Soil/Fill	Trench-7 Lower-1 (16')	Х	Х	Х			
	CTM Trench #7	Parcel 1	Soil/Fill	Trench-7 Upper-1 (5')	Х	Х	Х			
Test Pit	Test Pit 1	Parcel 2	Soil/Fill	Test Pit-1 Upper (2')	Х	Х	Х			
Sampling	Test Pit 1	Parcel 2	Soil/Fill	Test Pit-1 Lower (4')	Х	Х	Х			

	TABLE 2.1.1-1: Investigative Tasks Summary								
Remedial Investigatio	Sample ID	Location	Media	Sampling Nomenclature	Laboratory Analysis				
n Task				Nomenciature	TCL VOCs	TCL SVOCs	TAL Metals		
	Test Pit 2	Parcel 2	Soil/Fill	Test Pit-2 Upper (4')	Х	Х	Х		
Test Pit Sampling	Test Pit 2	Parcel 2	Soil/Fill	Test Pit-2 Lower (20')	х	х	Х		
	Test Pit 3	Parcel 2	Soil/Fill	Test Pit-3 Upper (2')	Х	Х	Х		
	Test Pit 3	Parcel 2	Soil/Fill	Test Pit-3 Lower (5')	Х	Х	Х		
	Test Pit 4	Parcel 2	Soil/Fill	Test Pit-4 Upper (7')	Х	Х	Х		
	Test Pit 4	Parcel 2	Soil/Fill	Test Pit-4 Lower (19')	Х	Х	Х		
Test Borings	Soil Boring 1	Parcel 1	Soil/Fill	CTM-1 (15-17')	Х	Х	Х		
	Soil Boring 2	Parcel 1	Soil/Fill	CTM-2 (6-8')	Х	Х	Х		
	Soil Boring 3	Parcel 1	Soil/Fill	CTM-3 (2-4')	Х	Х	Х		
	Soil Boring 5	Parcel 1	Soil/Fill	CTM-5 (10-12')	Х	Х	Х		
	Soil Boring 6	Parcel 1	Soil/Fill	CTM-6 (8-10')	Х	Х	Х		
	Soil Boring 7	Parcel 1	Soil/Fill	CTM-7 (2-4')	Х	Х	Х		
	Soil Boring 8	Parcel 1	Soil/Fill	CTM-8 (4-6')	Х	Х	Х		
	Soil Boring 9	Parcel 1	Soil/Fill	CTM-9 (4-8')	Х	Х	Х		
	Soil Boring 10	Parcel 1	Soil/Fill	CTM-10 (2-4')	Х	Х	Х		
	Soil Boring 11	Parcel 1	Soil/Fill	CTM-11 (8-10')	Х	Х	Х		
	Soil Boring 13	Parcel 1	Soil/Fill	CTM-13 (14-16')	Х	Х	Х		
Groundwate	CTM-1	Parcel 1	GW	CTM-1	Х	Х	Х		
r Sampling	CTM-1S	Parcel 1	GW	CTM-1S	Х	Х	Х		
	CTM-2	Parcel 1	GW	CTM-2	Х	Х	Х		
	CTM-3	Parcel 1	GW	CTM-3	Х	Х	Х		
	CTM-5	Parcel 1	GW	CTM-5	Х	Х	Х		
	CTM-6	Parcel 3	GW	CTM-6	Х	Х	Х		
	CTM-7	Parcel 2	GW	CTM-7	Х	Х	Х		
	CTM-8	Parcel 2	GW	CTM-8	Х	Х	Х		
	CTM-9	Parcel 2	GW	CTM-9	Х	Х	Х		
	CTM-10	Parcel 1	GW	CTM-10	Х	Х	Х		
	CTM-11	Parcel 1	GW	CTM-11	Х	Х	Х		
	CTM-13	Parcel 1	GW	CTM-13	Х	Х	Х		
	MW-3 (ESI)	Parcel 2	GW	MW-3 (ESI)	Х	Х	Х		
	MW-8 (ESI)	Parcel 1	GW	MW-8 (ESI)	Х	Х	Х		

# 2.1.2 Site Survey

Surveys were conducted by C.T. Male to locate all the test pits, trenches, soil borings, monitoring wells and surface soil sampling locations completed as part of the initial RI and supplemental investigations of the IRM and Parcel 2. The survey for the RI was conducted in November 2004. The survey for the supplemental investigations of the IRM and Parcel 2 was conducted in October 2005. Ground surface elevations were also determined at all test boring and monitoring well locations relative to mean sea level, including the top of PVC well casing (monitoring wells). All sampling locations (including the IRM and supplemental investigation of Parcel 2) are shown on the Site Boundary Survey and Sampling Locations Map presented as Figure 2. The updated metes and bounds description of the site is included in Appendix A.

# 2.1.3 Ground Penetrating Radar (GPR) Survey

C.T. Male subcontracted with Sub-Surface Information Surveys, Inc. to conduct a Ground Penetrating Radar (GPR) survey on Parcel 2 of the site. The GPR survey was completed on September 2, 2004 in general accordance with the approved Work Plan. The GPR survey was limited to the boundaries of Parcel 2 only, since Parcel 1 primarily consisted of mounded and buried slag and other fill materials, and Parcel 3 was limited in size (0.199 acre) and was not seen as having the potential to contain buried structures. The GPR survey report is presented as Exhibit 2 to this report.

The survey consisted of utilizing a Subsurface Interface Radar (SIR-300) to traverse the surface area of Parcel 2 in an attempt to located buried structures. The SIR-300 was set to detect subsurface anomalies to a depth of 10 feet below the ground surface (bgs). The parcel was traversed with the SIR-300 employing a grid pattern with five to ten foot spacing intervals, which is sufficient to detect all large capacity underground storage tanks (USTs) of 500 gallons or greater.

# 2.1.4 Surface Soil Sampling

Twenty one (21) surface soil samples denoted as CTM Surface Soil #1 to #17, Surface Soil #19 to #21 and Surface Soil #SS-21 were collected for analysis and are depicted on the RI Site Sampling Locations Map presented in Figure 3. Due to the presence of boulder-sized slag and the existence of Slag Mountain in the north and northwest portions of Parcel 1, surface soil samples were not collected from this section of the site.

Each surface soil sample was collected from either 0 to 2-inches below the ground surface or from the vegetative root zone employing proper sampling protocols. The samples were forwarded to the laboratory of record for analysis for TCL SVOCs and TAL metals.

One set of Quality Assurance/Quality Control (QA/QC) samples (i.e., duplicate samples, equipment blanks, and MS/MSDs) were collected during the surface soil sampling event, as follows:

- The equipment blank was collected at the conclusion of surface soil sampling, after Surface Soil Sample 21.
- The duplicate sample was collected from Surface Soil Sample 14.
- The MS/MSD was performed on Surface Soil Sample 17.

Three background surface soil samples were collected on January 7, 2005 from publicly owned (City of Troy) off site locations east of the Site to develop an understanding of the ambient surface soil conditions in the vicinity of the site for reference purposes only. The background soil samples are depicted as SS-22, SS-23 and SS-24 on the Background Surface Soil Sampling Locations Map in Figure 4.

Each background surface soil sample was collected from 0 to 2-inches below the vegetative root zone employing proper sampling protocols and forwarded to the laboratory of record for analysis for TCL SVOCs and TAL metals.

One set of QA/QC samples were collected during the background surface soil sampling event, as follows.

- The equipment blank was collected at the conclusion of background surface soil sampling.
- The duplicate sample was collected from Background Surface Soil Sample SS-22.
- The MS/MSD was performed on Background Surface Soil Sample SS-23.

# 2.1.5 Test Trenching/Test Pitting

Exploratory test trenches and test pits were completed in September and October of 2004 on Parcels 1 and 2 of the site utilizing a Kobelco SK 200 LC track mounted excavator with a vertical reach of 18 to 20 feet below ground level. The test trenches were confined to Parcel 1 while test pits were confined to Parcel 2 as shown on Figure 3. Due to the small acreage of Parcel 3, neither test trenches nor test pits were performed there. Rather, a test boring converted to a monitoring well was completed within Parcel 3 and is discussed in the following section. The trenches were completed in Parcel 1 as a means to assess the buried slag materials for evidence of coal tar and to further define the vertical extent of the slag across the parcel. Test pits were completed in Parcel 2 as there was significantly less acreage to be assessed.

Excavated materials (slag, fill, soil, etc.) were visually classified and logged vertically and horizontally by a C.T. Male representative and are presented in the Test Pit and Test Trench Logs in Appendix B. Representative samples of the excavated materials were screened for volatile organic vapors with a Photo Ionization Detector (PID). Results of the PID screening are presented in the Test Pit and Test Trench Organic Vapor Headspace Analysis Logs in Appendix C. Select samples were collected from the pits and trenches for laboratory analysis. The samples were collected employing standard sampling protocols and forwarded to the laboratory of record for analyses for TCL VOCs and SVOCs and TAL metals.

QA/QC samples were collected during the test trench and test pit sampling event, as follows.

- Two equipment blanks of the excavator bucket were collected prior to the sampling of Trench-3 Lower and Test Pit 1 Upper. Two equipment blanks of the sampling tools (stainless steel spoon and bowl) were collected prior to the sampling of Trench-3 Lower and Trench-1 Lower-2.
- Duplicate samples were collected from samples Trench-5 Lower-1 and Trench-1 Lower-1.
- The MS/MSD was performed on samples collected from Trench-5 Upper-1 and Trench-1 Upper-1.

Forty-seven (47) samples were collected for laboratory analyses from the test pits and test trenches. Table 2.1.5-1 provides both the nomenclature and locations for samples collected and also describes the media that was sampled.

Sample ID	Media Sampled	Trench Orientation (Start to End)	Distance from Trench Start	Sample Depth
Trench-1 Upper	Brown SILT and fine GRAVEL	South to North	8 feet	2.5 feet
Trench-1 Lower	M-F Brown SAND, trace silt	South to North	8 feet	15.5 feet
Trench-1 Upper-1	Black CINDER and brown SILT	South to North	90 feet	6 feet
Trench-1 Lower-1	Med. SAND, Some Gravel	South to North	90 feet	20 feet
Trench-1 Upper-2	Gray ASH, Some Cinder	South to North	235 feet	6 feet
Trench-1 Lower-2	Black CINDER and gray ASH	South to North	228 feet	17 feet
Trench-1 Lower-3	Gray med. SAND and GRAVEL	South to North	260 feet	20 feet
Trench-2 Upper	Black CINDER and ASH	South to North	44 feet	1.5 feet
Trench-2 SS-1	SILT, Stained with fuel odor	South to North	28 feet	9.5 feet
Trench-2 SS-2	White SLAG	South to North	90 feet	7 feet
Trench-2 SS-3	Brown SILT	South to North	90 feet	8.5 feet
Trench-2 Lower-1	Brown SILT	South to North	160 feet	8 feet
Trench-2 Upper-1	Black CINDER and ASH	South to North	160 feet	8 feet
Trench-2 Lower-2	Brown SAND, Some Silt	South to North	308 feet	8 feet
Trench-2 Upper-2	White ASH	South to North	312 feet	3 feet
Trench-3 Lower	Brown SILT	South to North	25 feet	13 feet
Trench-3 Upper	Black SILT and CINDER	South to North	25 feet	3 feet
Trench-3 Lower-1	Brown SILT	South to North	150 feet	10 feet
Trench-3 Upper-1	Black SILT and CINDER	South to North	150 feet	4 feet
Trench-3 Lower-2	Brown SILT	South to North	300 feet	10 feet
Trench-3 Upper-2	Black SILT and CINDER	South to North	300 feet	4 feet
Trench-4 Lower	Gray SILT	North to South	42 feet	18 feet
Trench-4 Upper	White pulverized rock	North to South	42 feet	5 feet
Trench-4 Lower-1	Black SLAG	North to South	125 feet	19 feet
Trench-4 Upper-1	White ASH	North to South	125 feet	6 feet
Trench 4 Upper-2	Brown CLAY and GRAVEL	North to South	258 feet	6 feet
Trench-4 Lower-2	Coarse SLAG	North to South	260 feet	20 feet
Trench-5 Lower	Brown SILT	East to West	20 feet	9 feet
Trench-5 Upper	Red SILT	East to West	20 feet	2 feet
Trench-5 Lower-1	Brown SILT	East to West	75 feet	9 feet
Trench-5 Upper-1	White ASH	East to West	90 feet	2 feet
Trench-6 Lower	Brown SILT	East to West	18 feet	8 feet
Trench-6 Upper	Coarse SLAG	East to West	18 feet	4 feet

TABLE 2.1.5-1: Test Pit and Test Trench Sampling Locations Summary							
Sample ID	Media Sampled	Trench Orientation (Start to End)	Distance from Trench Start	Sample Depth			
Trench-6 Lower-1	Brown SILT	East to West	85 feet	7 feet			
Trench-6 Upper-1	Black CINDER	ack CINDER East to West		3 feet			
Trench-7 Upper	BACKFILL	East to West	35 feet	4 feet			
Trench-7 Lower	Brown SILT and SAND	East to West	35 feet	12 feet			
Trench-7 Lower-1	Brown fine SAND	East to West	114 feet	16 feet			
Trench-7 Upper-1	SLAG and ASH	East to West	114 feet	5 feet			
Test Pit-1 Upper (2')	Black CINDER and SILT	NA	NA	2 feet			
Test Pit-1 Lower (4')	SAND and GRAVEL	NA	NA	4 feet			
Test Pit-2 Upper (4')	SAND, GRAVEL and FILL NA		NA	4 feet			
Test Pit-2 Lower (20')	SAND and GRAVEL	NA	NA	20 feet			
Test Pit-3 Upper (2')	Gray ASH	NA	NA	2 feet			
Test Pit-3 Lower (5')	Brown SILT and CLAY	NA	NA	5 feet			
Test Pit-4 Upper (7')	Black CINDER	NA	NA	7 feet			
Test Pit-4 Lower (19')	Gray SILT and CLAY	NA	NA	19 feet			

#### 2.1.6 Test Borings and Monitoring Well Installations

Twelve (12) exploratory test borings were completed on the Site at the locations identified on Figure 3. Test boring CTM-11 was moved from its proposed location identified in the Work Plan (north end of CTM Test Trench #2) to the south end of Test Trench #2 to further characterize stained soils with a fuel type odor discovered during trenching activities in this area. Test borings CTM-1 and CTM-1S were relocated to northeastern portions of Parcel 1 to monitor soil and groundwater quality in the backfilled excavation of the IRM. Soil borings CTM-4 and CTM-12 were not completed as part of the investigation. CTM-4 was proposed for southwestern portions of Parcel 1 adjacent east to East Industrial Parkway and CTM-12 was proposed on easternmost portions of Parcel 1 on a strip of land separating the banks of the Hudson River and the New Penn facility. CTM-4 was not performed because an existing well (MW-8 (ESI)) installed by others was located in the vicinity of CTM-4, and test trenches completed as part of this RI were located nearby. CTM-12 was not completed because a soil boring/monitoring well (CTM-2) completed as part of this investigation was located nearby.

The test borings were advanced with hollow stem auger casing. Subsurface soil/fill was collected at continuous 2 foot intervals with split spoon sampling barrels. All recovered soil/fill samples were screened for the presence of volatile organic compounds with a PID. The PID readings and subsurface soil profiles are recorded on the Subsurface Exploration Logs presented in Appendix D.

The test borings were advanced to depths that ranged from 17 feet bgs at boring CTM-1S to 40 feet bgs at boring CTM-2. A total of 11 soil samples were collected employing proper sampling protocols and forwarded to the laboratory of record for analyses for TCL VOCs and SVOCs and TAL metals.

QA/QC samples were collected during the soil boring sampling event, as follows.

- Two sets of equipment blanks were collected. One equipment blank was collected of the stainless steel spoon and bowl prior to collection of the soil sample at soil boring CTM-7. The second equipment blank was collected of the split spoon sampling barrel prior to the collection of the soil sample at soil boring CTM-7.
- The duplicate sample was collected from soil boring CTM-9.
- The MS/MSD was performed on the soil sample collected from soil boring CTM-1.

All of the test borings were converted to 2-inch permanent monitoring wells. Each monitoring well with the exception of monitoring well CTM-9 (flush mounted curb box) was protected with a metal guard pipe with locking hasp. Monitoring well construction details are provided in Appendix E.

Table 2.1.6-1 provides a summary of the boring and monitoring well identification numbers, boring depths, depths at which the monitoring wells were set, monitoring well screened interval depths, and soil sample collection depths.

TABLE 2.1.6-1: RI Soil Boring and Monitoring Well Summary						
Boring/MW ID #	Boring Depth	MW Depth	MW Screened Interval	Soil Sample Depth		
CTM-1	29' bgs	29' bgs	24 to 29' bgs	15-17' bgs		
CTM-1S	17' bgs	17' bgs	12 to 17' bgs	NA		
CTM-2	40' bgs	38' bgs	23 to 38' bgs	6-8' bgs		
CTM-3	28' bgs	25' bgs	15 to 25' bgs	2-4' bgs		
CTM-5	30' bgs	28' bgs	18 to 28' bgs	10-12' bgs		
CTM-6	30' bgs	28' bgs	18 to 28' bgs	8-10' bgs		
CTM-7	30' bgs	30' bgs	15 to 30' bgs	2-4' bgs		
CTM-8	30' bgs	30' bgs	20 to 30' bgs	4-6' bgs		
CTM-9	18' bgs	18' bgs	8 to 18' bgs	4-8' bgs		
CTM-10	32' bgs	30' bgs	10 to 30' bgs	2-4' bgs		
CTM-11	26' bgs	24' bgs	9 to 24' bgs	8-10' bgs		
CTM-13	32' bgs	30' bgs	20 to 30' bgs	14-16' bgs		

Notes: bgs denotes below ground surface

#### 2.1.7 Groundwater Sampling

Groundwater samples were collected from each of the newly installed monitoring wells and from two existing monitoring wells installed by others as part of historical investigations of the Site. The existing monitoring wells are denoted as MW-3 (ESI) and MW-8 (ESI), and are identified in Figure 3 along with the newly installed wells.

Prior to the collection of groundwater samples from the newly installed and existing monitoring wells, each well was developed utilizing a surge block, bailer and small

diameter submersible pump (Grunfos Redi-Flow II) to restore the hydraulic connection between the wells and aquifer materials.

Following the development of all of the monitoring wells, each well was purged prior to sampling. The 12 newly installed wells and two (2) existing wells were then sampled employing proper sampling techniques and the samples forwarded to the laboratory of record for analyses for TCL VOCs and SVOCs and TAL metals.

QA/QC samples were collected during the groundwater sampling event, as follows.

- The equipment blank of the peristaltic pump tubing was collected prior to collection of a groundwater sample from monitoring well CTM-3.
- The QA/QC duplicate sample was collected with the groundwater sample at monitoring well CTM-10.
- The MS/MSD was performed on groundwater collected from monitoring well CTM-1.

# 2.1.8 Slag Sampling

Three (3) samples of slag material and two (2) samples of a fine light-grey material have been collected from "slag mountain" for analysis for the 8 RCRA Metals. The samples were collected on two occasions by Erdman Anthony on behalf of the City of Troy. The samples of slag material were collected in September 2003 while the fine light-grey material was collected in December 2003. The samples were collected to determine if the components of slag mountain could be used as suitable cover material for both the project site and a proposed bike path along the Hudson River. Sampling results were compared to TAGM guidelines and are presented in Exhibit 8. As depicted, all analytes were detected at concentrations below guidelines with the exception of Selenium at sampling location S-4, which constitutes the fine light-grey material. Selenium was detected at this sampling location at a concentration of 2.52 mg/kg, which is above its guidelines of 2 mg/kg but below the Eastern USA Background range of 0.1-3.9 mg/kg.

# 2.1.9 Effect of Tidal Influences on Groundwater Levels

Water levels in select monitoring wells were gauged to determine the effects of tidal influences associated with the adjacent Hudson River. The wells chosen for the study included monitoring wells CTM-2, CTM-10, CTM-13 and MW-8 (ESI) which are located on western portions of Parcel 1 nearest the Hudson River and monitoring wells CTM-5 and CTM-11, which are located on southern and eastern portions of Parcel 1 at greater distances from the Hudson River than the aforementioned wells. The monitoring well locations are depicted on Figure 3.

Mini Troll Pro Transducers provided by In-Situ, Inc. were utilized to measure the water levels in each of the monitoring wells. Water levels in monitoring wells CTM-2 and CTM-13 were measured during an approximate 24-hour period on January 26 and 27, 2005 while water levels in monitoring wells CTM-10 and MW-8 (ESI) were measured during an approximate 24-hour period on January 27 and 28, 2005. Water levels in monitoring wells CTM-11 were measured for an approximate 72-hour period from January 28 – 31, 2005.

Graphs representing water levels relative to tidal fluctuations are presented in Exhibit 3. The graphs show a direct correlation between water levels and tidal fluctuations from groundwater in monitoring wells CTM-2, CTM-13, CTM-10 and MW-8 (ESI), which are located on portions of the site nearest the Hudson River. Monitoring wells CTM-5 and CTM-11, located on southern and eastern portions of Parcel 1 further away from the Hudson River also show water level fluctuations associated with tidal fluctuations, but to a lesser degree than the monitoring wells surveyed along the River. Water levels in CTM-5 and CTM-11 are shown on the graph as gradually declining over time, which may be attributed to the general decline in stage of the Hudson River during that same time period.

#### 2.1.10 Survey of Private and Public Wells

According to a representative of the Rensselaer County Department of Health, private potable water wells are not located in the vicinity of the site; including Public School No. 12, which is located in the vicinity (upgradient) of northeastern portions of Parcel 1. According to the representative, the City of Troy provides potable water to the site and its surrounding areas.

# 2.1.11 Community Dust Monitoring

Community Dust Monitoring was conducted in accordance with the Community Air Monitoring Program and included the measurement of airborne particulates and organic vapors during the test pit and test trench excavation portion of the RI. Results of the dust monitoring program are not included within this report but are retained in C.T. Male's file for review on request.

# 2.1.12 Fish and Wildlife Impact Analysis (FWIA)

C.T. Male completed a Fish and Wildlife Impact Analysis (FWIA) (dated August 10, 2004) pursuant to the October 1994 NYSDEC FWIA for Inactive Hazardous Waste Sites (see Exhibit 4). The purpose of the Step 1 FWIA is to identify fish and wildlife resources that presently exist and that existed before contaminant introduction, or to document their absence. This step includes a site description and map reviews, description of fish and wildlife resources, description of fish and wildlife resource value, and identification of applicable fish and wildlife regulatory criteria. Information for the site and the vicinity of the site was collected during a field visit and during off-site literature and mapping reviews.

The FWIA report concluded that no further steps need to be taken in the Fish and Wildlife Impact Analysis. The FWIA is presented as Exhibit 4.

#### 2.1.13 Review of Additional Investigations of the Site by Others

At the time that the Site Work Plan was developed, two investigations were proposed to be conducted on the site by others. The first investigation involved the City of Troy's (under the auspices of an USEPA Brownfield's Demonstration Pilot) intent to further investigate portions of Parcel 1 situated between the County Jail and the New Penn Facility. The City of Troy had hired an independent consultant to perform the investigation. Pursuant to discussions with the City of Troy, the RCIDA and the NYSDEC, it was determined that C.T. Male would be charged with investigating this portion of the site as part of its RI/AAR investigation for the RCIDA.

The second investigation consisted of the advancement of two subsurface soil borings by Erdman Anthony on the northern portions of Parcel 1 for preliminary design of the South Troy Industrial Park Road. Results of this investigation are further discussed in Section 2.1.15.

In addition to the aforementioned site investigations, two additional investigations were conducted by others on lands adjoining the Site. The investigations were conducted on the Former Sperry Warehouse Site (adjoins Parcel 2 to the east and south) and the Alamo (adjoins Parcel 2 to the north and Parcel 3 to the west). Copies of limited data from these investigations were made available to C.T. Male for review and are presented as Exhibit 5. The following provides the titles of the investigations along with brief investigative summaries.

1) Subsurface Investigation Report – Former Sperry Warehouse Site, prepared by North American Environmental Services, dated May, 1999. The investigation involved the advancement of seven (7) soil borings (five of which were converted to monitoring wells) and the collection of soil and groundwater samples to evaluate subsurface conditions and environmental quality of the site. Results of the investigation revealed the following:

- Groundwater flow direction is in an assumed south and west direction towards the Hudson River.
- The site is underlain to varying depths with fill material consisting of cinders, iron ore, cobbles, slag, wood, foundry sand, brick, ashes and silt. Native soils consisting of brown or gray clay were encountered for the most part at depths ranging from 14 to 17 feet bgs, with the exception of monitoring well MW-1, where it was encountered at 10 feet bgs. Native soils were not encountered at monitoring well MW-4 at the depths explored.
- Several petroleum related compounds were detected above NYSDEC STARS Memo #1 guidance values in soils sampled from soil borings B-1, B-3 and B-7.
- Possible elevated levels of arsenic and chromium were reported in the majority of analyzed soil samples. Cadmium was also reported at slightly elevated levels (2 ppm) from soils analyzed from soil boring SB-4.
- Several petroleum compounds were detected at concentrations exceeding ambient water quality standards in groundwater sampled from monitoring well

MW-7. Monitoring well MW-7 is depicted on Figure 3 as MW-7 (North American) and is located east of southern portions of Parcel 2.

• A heavy creosote odor was detected in fill materials within MW-7 and a fuel oil type odor was detected at MW-1.

2) Partial Report of results of surface and subsurface soil and groundwater sampling conducted at the Former Kings Fuels North (The Alamo), conducted by Sterling Environmental Engineering, P.C., dated January 14, 2005. The investigation by Sterling included the collection and laboratory analyses of select soil and groundwater samples in the vicinity of a former aboveground storage tank (AST) located in this area. Tabulated analytical results revealed the following:

- Several metals were detected at concentrations exceeding NYSDEC water quality standards from groundwater sampled from a permanent monitoring well identified as A-W-1 (Sterling) (see Figure 3). VOC and SVOC concentrations were below the laboratory detection limit at this well.
- Several metals were detected at concentrations exceeding NYSDEC cleanup guidelines at surface soil sampling locations SW-1, SW-2 and SW-3.
- Several metals were detected at concentrations exceeding NYSDEC cleanup guidelines at various depths below the ground surface from soil borings A-B-1, A-B-2 and A-W-1.
- Several SVOCs were detected at concentrations exceeding NYSDEC cleanup guidelines from shallow depths (0 to 0.5 feet bgs) at A-B-1 and from all of the sampled depths at A-B-2. Benzo(a)pyrene was the only SVOC detected at a concentration exceeding its NYSDEC guideline at boring location A-W-1.

# 2.1.14 Data Usability Summary Report

A Data Usability Summary Report (DUSR) was completed of the analytical data developed during this investigation to confirm the data is of adequate quality for subsequent decision making purposes. The DUSR for the RI was completed by Data Validation Services. The DUSR for the supplemental investigations of the IRM and Parcel 2 was completed by a C.T. Male data validator who was approved by the

NYSDEC Project Manager to conduct data validation on analytical data generated as part of this investigation. The DUSR reports are presented as Exhibit 6.

## 2.1.15 Interim Remedial Measure

An Interim Remedial Measure (IRM) was requested by the NYSDEC to address the discovery of a buried tank and drums on northeastern portions of Parcel 1. The drums and tank were discovered during the course of a geotechnical subsurface investigation conducted by Erdman Anthony (see Section 2.1.13) for the proposed alignment of South Troy Industrial Park Road.

The IRM involved the excavation and disposal of two drums and an approximate 1,000 gallon tank along with any associated liquids within them. Subsurface soils around the vessels were then investigated employing subjective methods of PID headspace analysis and organoleptic perception to determine the severity of impacts. Based on the severity and extent of subsurface contamination, the excavation was backfilled and two monitoring wells depicted as CTM-1 (deep well) and CTM-1S (shallow well) on Figure 3 were installed in the backfilled excavation to monitor groundwater quality and to evaluate remediation alternatives. A detailed summary of the investigation is presented in C.T. Male's February 16, 2005 letter report entitled "Summary of IRM Activities", which is presented as Exhibit 7 to this report.

# 2.1.16 Supplemental Investigations

Two supplemental investigations were conducted on the site to address the aforementioned IRM and to further investigate subsurface soil and groundwater contaminants discovered on Parcel 2 during the course of the RI. The investigations consisted of the advancement of soil borings and installation of groundwater monitoring wells to aid in the collection of soil and groundwater samples for subjective and laboratory analyses.

#### **IRM Supplemental Investigation**

Eight (8) soil borings, six (6) of which were converted to monitoring wells, were advanced in the vicinity of the IRM to determine the nature and extent of contamination in underlying soils and groundwater. The borings and monitoring wells were completed from August 15 to 19, 2005 and are depicted as test borings SB-102 and

SB-103 and monitoring wells CTM-100, CTM-101, CTM-101S, CTM-104, CTM-105 and CTM-105S. The soil boring and monitoring well locations are depicted on the IRM Supplemental Investigation Sampling Locations Map in Figure 5.

The test borings were advanced with hollow stem auger casing. Subsurface soil/fill was collected at continuous 2 foot intervals with split spoon sampling barrels. All recovered soil/fill samples were screened for the presence of volatile organic compounds with a PID. The PID readings are presented on the Organic Vapor Headspace Analysis Logs in Appendix F. Subsurface soil profiles are recorded on the Subsurface Exploration Logs presented in Appendix G.

The test borings were advanced to depths that ranged from 15 feet bgs at boring CTM-104 to 32 feet bgs at borings CTM-100 and CTM-101. One soil sample above the water table was collected from each new boring location with the exception of the following:

• Soil samples were not submitted for laboratory analyses from soil borings CTM-101 and CTM-104 as additional borings/monitoring wells were installed adjacent to these locations. Boring/monitoring well CTM-101S was installed alongside CTM-101 and acted as a shallow monitoring well. A soil sample was collected at the soil/groundwater interface from this location for laboratory analyses. Soil boring SB-103 was advanced adjacent of CTM-104. Two soil samples were collected for laboratory analyses from this location.

A total of six (6) soil samples were collected from the borings employing standard sampling protocols and forwarded to the laboratory of record for analyses for TCL VOCs and SVOCs.

Six (6) of the eight borings were converted to permanent monitoring wells and are identified as monitoring wells CTM-100, CTM-101, CTM-101S, CTM-104, CTM-105 and CTM-105S on Figure 5. Monitoring well construction details are provided in Appendix H.

Groundwater samples were collected from the monitoring wells employing proper sampling protocols and were submitted to the laboratory of record for analyses for TCL VOCs and SVOCs. Monitoring wells CTM-101S, CTM-104 and CTM-105S did not contain groundwater within them (dry) during the sampling event and were therefore not sampled.

### Parcel 2 Supplemental Investigation

A total of 19 soil borings (10 of which were converted to monitoring wells) were advanced on Parcel 2 for the collection of soil and groundwater samples to aid in the delineation of known contaminants beneath the Parcel and to determine a contaminant source area.

Fourteen (14) of the borings (SB-200 to SB-211 (2)) were completed from August 22 – 24, 2005 employing a truck mounted Geoprobe unit and are depicted on Figure 6 as soil borings SB-201, SB-202, SB-204, SB-206, SB-207, SB-209, SB-211, SB-211(1) and SB-211(2) and as monitoring wells CTM-200, CTM-203, CTM-205, CTM-208 and CTM-210. Soil boring SB-211 is identified three times because the boring was advanced at three locations due to shallow refusal. Soil samples were collected at 4-foot intervals employing a Geoprobe advanced MacroCore sampler with acetate liner. All recovered soil/fill samples were screened for the presence of volatile organic compounds with a PID. The PID readings are presented on the Organic Vapor Headspace Analysis Logs in Appendix I. Subsurface soil profiles are recorded on the Subsurface Exploration Logs presented in Appendix J.

The remaining five (5) borings (SB-212 to SB-216) were completed from September 29 to October 3, 2005 employing hollow stem auger drilling. The borings were all converted to monitoring wells and are depicted on Figure 6 as CTM-212 through CTM-216. Subsurface soil/fill was collected at continuous 2 foot intervals from the borings with split spoon sampling barrels. All recovered soil/fill samples were screened for the presence of volatile organic compounds with a PID. The PID readings are presented on the Organic Vapor Headspace Analysis Logs in Appendix I. Subsurface soil profiles are recorded on the Subsurface Exploration Logs presented in Appendix J.

As a note, monitoring well CTM-215 was installed to replace monitoring well CTM-200, which had an obstruction within it at approximately 14 feet bgs and was subsequently abandoned. Also, monitoring well CTM-213 was completed to replace existing monitoring well MW-3 (ESI) which was abandoned because it was originally installed

at a depth that straddled both the upper and lower water bearing zones and was not representative of shallow groundwater quality on Parcel 2.

The test borings were advanced to depths that ranged from 4.5 feet bgs at boring SB-211 (refusal) to 32 feet bgs at boring CTM-203. One soil sample above the water table was collected from each new boring location with the exception of the following locations:

- Soil samples were not collected for laboratory analysis from soil borings SB-204 and SB-211, SB-211(1) and SB-211(2) as shallow refusal was encountered at these boring locations.
- A soil sample was not collected for laboratory analysis from soil boring SB-207 as there was no evidence of contamination at this location employing subjective methods of PID headspace analysis and organoleptic perception.
- A soil sample was not collected for laboratory analysis from soil boring CTM-213 as this boring was completed for installation of a monitoring well to replace existing monitoring well MW-3 (ESI), for which subsurface data is available.

A total of 13 soil samples were collected from the borings for laboratory analysis. The samples were collected from the acetate liner and/or sampling barrel employing standard sampling protocols and forwarded to the laboratory of record for analyses for TCL VOCs and SVOCs.

Ten (10) of the soil borings were converted to permanent monitoring wells to aid in the collection of groundwater samples. Monitoring well construction details are provided in Appendix K. Groundwater samples were collected employing proper sampling protocols from newly installed monitoring wells CTM-203, CTM-208 and CTM-212 through CTM-216. The samples were submitted to the laboratory of record for analyses for TCL VOCs by EPA Method 8260 and TCL SVOCs by EPA Method 8270. In addition, groundwater in previously installed monitoring wells CTM-8 and CTM-9 was sampled to aid in the supplemental investigations of Parcel 2. Monitoring wells CTM-205 and CTM-210 were not sampled as the screen intervals within these wells were at depths beneath the confining clay and silt layer and were not viewed as being representative of shallow groundwater on Parcel 2. QA/QC samples collected during the soil and groundwater sampling event included the following:

- One equipment blank each (two total) was collected prior to the collection of a soil sample at soil boring SB-205 and prior to groundwater sampling at monitoring well CTM-1S.
- Duplicate samples were collected from soil borings CTM-205 and CTM-215 and groundwater samples collected from monitoring wells CTM-100 and CTM-214.
- MS/MSD analysis was conducted on soil samples submitted from soil borings SB-206 and CTM-215 and from a groundwater sample collected at CTM-215.

Table 2.1.16-1 provides a summary of the boring and monitoring well identification numbers, boring depths, depths at which the monitoring wells were set, monitoring well screened interval depths, soil sample collection depths and soil and groundwater laboratory analyses information.

		TABLE 2.	1.16-1: Soil Bor	ing and Monito	ring Well S	Summary		
Boring/ MW ID #	Boring Depth	MW Depth	MW Screened Interval	Soil Sample Depth		Laborator	y Analysis	
		•		- • •	TCL	VOCs	TCL S	VOCs
				-	Soil	GW	Soil	GW
	Borings	and Wells	Installed as Pa	rt of Suppleme	ntal Invest	igation of t	he IRM	
CTM-100	32'	27'	17' to 27'	14' to 16'	Х	Х	Х	Х
CTM-101	32'	32'	22' to 32'	NA	NA	Х	NA	Х
CTM-101S	17'	17'	12' to 17'	15' to 17'	Х	Dry	Х	Dry
SB-102	30'	30'	NA	16' to 18'	Х	NA	Х	NA
SB-103	26'	26'	NA	14-16' & 22-24'	Х	NA	Х	NA
CTM-104	15'	15'	10' to 15'	NA	NA	Dry	NA	Dry
CTM-105	30'	30'	20' to 30'	26' to 28'	Х	Х	Х	Х
CTM-105S	19'	17'	7' to 17'	17' to 19'	Х	Dry	Х	Dry
	Borings	and Wells	Installed as Pa	rt of Supplemer	ntal Invest	igation of F	Parcel 2	
CTM-200	28'	25'	10' to 15'	20' to 24'	Х	NA ⁽¹⁾	Х	NA
SB-201	28'	NA	NA	26' to 28'	Х	NA	Х	NA
SB-202	28'	NA	NA	20' to 22'	Х	NA	Х	NA
CTM-203	32'	20'	10' to 20'	16' to 18'	Х	Х	Х	Х
SB-204	10'	NA	NA	NA ⁽²⁾	NA	NA	NA	NA
CTM-205	30'	30'	25' to 30'	26' to 28'	Х	NA	Х	NA
SB-206	28'	NA	NA	10' to 12'	Х	NA	Х	NA
	Borings	and Wells	Installed as Pa	rt of Supplemer	ntal Invest	igation of F	Parcel 2	1
SB-207	28'	NA	NA	NA	NA	NA	NA	NA

		TABLE 2.	1.16-1: Soil Bor	ing and Monito	ring Well S	Summary		
Boring/ MW ID #	Boring Depth	MW Depth	MW Screened Interval	Soil Sample Depth		Laborator	y Analysis	
	•			•	TCL	VOCs	TCL S	SVOCs
					Soil	GW	Soil	GW
CTM-208	16'	15'	10' to 15'	6' to 8'	Х	Х	Х	Х
SB-209	16'	NA	NA	6' to 8'	Х	NA	Х	NA
CTM-210	28'	28'	23' to 28'	22' to 24'	Х	NA	Х	NA
SB-211	4.5'	NA	NA	NA ⁽²⁾	NA	NA	NA	NA
SB-211 (1)	8'	NA	NA	NA ⁽²⁾	NA	NA	NA	NA
SB-211 (2)	6.3'	NA	NA	NA ⁽²⁾	NA	NA	NA	NA
CTM-212	22'	20'	10' to 20'	10' to 12'	Х	Х	Х	Х
CTM-213	22'	20'	10' to 20'	NA	NA	Х	NA	Х
CTM-214	20'	18'	8' to 18'	2' to 4'	Х	Х	Х	Х
CTM-215	27'	25'	7' to 22'	20' to 22'	Х	Х	Х	Х
CTM-216	22'	22'	7' to 20'	18' to 20'	Х	Х	Х	Х

⁽¹⁾ Well could not be sampled due to obstruction at approximately 14' bgs. Well later abandoned and replaced with monitoring well CTM-215.

⁽²⁾ Refusal encountered at this boring location. No soil and groundwater samples collected.

All depths given are feet below ground surface

# 3.0 PHYSICAL CHARACTERISTICS OF THE STUDY AREA

### 3.1 Results of Study Area Investigation

A number of investigative tasks were completed by C.T. Male to characterize the project site. The results of the investigative tasks are supplemented with published literature including soil, bedrock, and aquifer mapping to further assess the physical characteristics of the project site. The physical characteristics of the site are discussed in the following sections.

### 3.1.1 Surface Features

The site presently consists of vacant land that has been subdivided into three Parcels. There are currently no structures on the site. Surface features on Parcel 1 consist of various mounds of debris on its northern portions consisting primarily of slag excavated during construction of the New Penn facility, and various piles of concrete, asphalt, stone and gravel that were illegally dumped along East Industrial Parkway. An abandoned tractor trailer is located on eastern portions of Parcel 1. The remainder of the Parcel is relatively flat with slight undulations and is overgrown with long grasses, thickets and is interspersed with trees. "Slag mountain" occupies the northwestern corner of Parcel 1. Slag is the predominant surface material on Parcel 1.

Parcel 2 surface features include grasses, thickets and limited tree growth on its eastern portions, and an asphalt paved road, gravel turnaround area and grasses, thickets and trees on its western portions. A concrete sub-ground pipe pit is present on northernmost portions of the Parcel. The Parcel is predominantly flat.

Parcel 3 surface features consist of grasses, thickets and trees and is bordered to its east by railroad tracks and to its west by the Alamo. The Parcel is predominantly flat.

### 3.1.2 Surface Water Bodies

Surface water bodies are not located on the site. The Hudson River adjoins the western portion of Parcel 1.

## 3.1.3 Surface Drainage Patterns

Storm water generated during the course of precipitation events either directly infiltrates the ground surface or sheet flows with the lay of the land, with the exception of pooled water in isolated low lying areas of the gravel turnaround on Parcel 2. The site's surface is predominantly flat and interspersed with mounds of fill material. There are no storm water catch basins located on the site, although several catch basins were observed along East Industrial Parkway and Main Street, which adjoin the project site.

# 3.1.4 Regional Geology

Based on a review of the Surficial Geologic Map of New York, Hudson-Mohawk Sheet, the surficial geology in the vicinity of the site is mapped as recent alluvium deposits which consists of fine sand to gravel and is generally confined to floodplains within a valley. In larger valleys, the sand and gravel may be overlain by silt. Based on the findings of the RI, native soils beneath overlying fill materials consist for the most part of silts with varying percentages of sand and clay over sand and gravel.

According to the Geologic Map of New York, Hudson-Mohawk Sheet, bedrock in the vicinity of the site is mapped in the category of the Trenton Group, which consists of shale and minor mudstone and sandstone. Bedrock was not encountered during subsurface investigations conducted of the site as part of this RI. Bedrock, composed of shale, was encountered during previous investigations of the site at depths that ranged from 35 feet bgs at MW-8 (ESI) to 58.5 feet bgs at MW-3 (ESI) (See Figure 2).

# 3.1.5 Site Soils

The site soils and fill were explored through the advancement of soil borings, test trenches and test pits completed for this RI and through subsurface investigations of the site conducted by others. Subsurface soil boring, test trench and test pit logs are included in the Appendices to this report. The logs summarize and present the classifications of the subsurface soil and fill, moisture content and other pertinent visual observations of the soil stratum for the site. The site is covered with fill materials to varying depths as depicted on the Site Wide Thickness of Fill Contour Map presented in Figure 7. The project site (particularly Parcel 1) was historically used for the disposal of past manufacturing by-products such as slag, cinder and ash. Additionally, building

rubble from structure fires and demolition activities were disposed of on the site by the City of Troy. These materials were disposed of on low lying areas of the site to raise that portion of the site's elevation above the Hudson. The following discusses the soil profiles for each of the site parcels.

• Parcel 1: Portions of Parcel 1 west of East Industrial Parkway consist of fill materials that extend to a maximum depth of at least 32 feet bgs (Figure 7) nearest the Hudson River, where weathered shale was encountered. The fill material consists primarily of slag, ash, cinders, brick and other construction related debris. Native soils were encountered beneath the fill materials at depths ranging from eight (8) feet bgs on eastern portions of the Parcel to 32 feet bgs on western portions of the Parcel. These soils are composed primarily of brown and gray silts. Groundwater was encountered during the investigation at the fill/native soil interface. Overall, the surface topography of native soils underlying the fill slopes westerly towards the Hudson River.

Portions of Parcel 1 east of East Industrial Parkway consists of fill material that ranges in depth from eight (8) to 14 feet bgs (Figure 7). The fill material is for the most part consistent with fill material described beneath western portion of Parcel 1. The fill is underlain by native soils consisting of silts with varying percentages of sands and clay. Groundwater was observed to lie atop the silt layer. A sand and gravel water bearing unit was encountered beneath the silt layer at select locations during advancement of the soil borings. Groundwater encountered atop the silt layer is referred to as shallow groundwater while groundwater encountered within the underlying sand and gravel layer is referred to as deep groundwater.

• Parcel 2: The subsurface profile at Parcel 2 consists of fill material that extends in depth from four (4) to 16 feet bgs (see Figure 7). The fill material consists primarily of ash, cinder, sand, gravel and to a lesser degree slag; with the slag being located beneath portions of Parcel 2 nearest the Hudson River. Native soils underlying the fill material are comprised predominantly of silts with varying percentages of clay overlying sand and gravel deposits. Shallow groundwater was encountered atop the silt layer while deep groundwater was encountered within a sand and gravel layer beneath the silt layer. As depicted on Figure 7, the thickness of fill increases in depth beneath the central portions of Parcel 2 and forms a trough type feature within the silt layer. Subsurface foundations were observed during the subsurface investigation of the Parcel.

• Parcel 3: The subsurface profile consists of fill material (silt, sand, cinder and slag) that ranges in depth from approximately six (6) to eight (8) feet bgs. The underlying native soils consist of silts with small percentages of clay.

### 3.1.6 Groundwater Characteristics

According to the map entitled "Unconsolidated Aquifers in Update New York, Hudson-Mohawk Sheet" (Edward F. Bugliosi and Ruth A. Trudell, 1988`), the subject site is located atop an unconfined aquifer yielding more than 100 gallons per minute.

Groundwater conditions were assessed through the advancement of test borings; test pits and test trenches; the installation of permanent monitoring wells; and investigation of groundwater within existing site wells. Static groundwater levels were collected from the site wells on several occasions during the course of the RI.

Based on the collected water level data, the water table across the site ranges in depth from approximately four (4) to 19 feet below existing site grades within the shallow, unconfined aquifer located atop the silt unit, and from approximately 20 to 33 feet below existing site grades for the deep, semi-confined aquifer located within the sand and gravel unit below the silt unit.

Water level measurements obtained on November 14 and 21, 2005 were used in conjunction with the survey of the site to generate a site wide groundwater contour map (Figure 8), groundwater contour maps of the shallow and deep aquifers on Parcel 2 (Figures 9, 10 and 11), and the shallow aquifer in the vicinity of the IRM on Parcel 1(Figure 12). The site-wide contour map shows groundwater to flow generally in a westerly direction towards the Hudson River with isolated groundwater flows directed towards the southwest and northwest on portions of the project site located north of Parcel 2. The shallow groundwater flow pattern on Parcel 2 (Figures 9 and 11) follows the topography of the silt layer and converges in a narrow trough area on central portions of Parcel 2. Extrapolating the localized groundwater flow on Parcel 2 to the site wide groundwater flow direction (Figure 8) indicates that the groundwater convergence ultimately flows in a northwesterly to westerly direction towards the

Hudson River. Deep groundwater flow direction on Parcel 2 (Figure 10) is towards the northwest, where it eventually changes direction and proceeds in a westerly direction towards the Hudson River, as depicted on the site wide groundwater contour map in Figure 8. Shallow groundwater flow in the vicinity of the IRM on Parcel 1 is depicted on Figure 12 as flowing towards the southwest.

Field observations and parameters (pH, conductivity, and temperature) were recorded during the groundwater sampling events completed in November and December 2004, and September and October 2005. Field observations and parameters were recorded on Groundwater Services Field Logs. The pH values for the collected groundwater samples were relatively neutral with values ranging from 5.95 to 7.68 standard units. The groundwater temperature upon sample collection ranged from 9.1 to 18.3 degrees Celsius. The conductivity for the groundwater samples ranged from 401  $\mu$ S to 4.99 ms. Turbidity values for the groundwater sampling event were monitored prior to collecting the analytical samples. Turbidity values ranged from 3.5 to 124.5 NTUs. Table 3.1.6 lists the field parameter values for each well prior to sample collection.

TA	ABLE 3.1.6:	Summar	y of Field Ob	servations	s (11/04, 12/0	)4, 9/05 &	& 10/05)
<u>Well ID</u>	<u>Turbidity</u>	<u>pH &amp;</u>	<u>Specific</u>	<u>Well ID</u>	<u>Turbidity</u>	<u>рН &amp;</u>	<u>Specific</u>
	(1)	<u>Temp.</u>	<u>Conductance</u>			<u>Temp.</u>	<u>Conductance</u>
CTM-1	4.74 NTU	7.54 @	655 μs	CTM-1S	12.02 NTU	7.45@	791µs
		10.2°C				12.3°C	
CTM-2	8.82 NTU	7.49@	408 µs	CTM-3	15.66 NTU	5.95 @	662 µs
		13.2°C				13.0°C	
CTM-5	10.92	7.47@	633 µs	CTM-6	57.6 NTU	6.88 @	721 µs
	NTU	10.7°C				10.5°C	
CTM-7	45.5 NTU	6.78@	761 µs	CTM-8	4.43 NTU	6.50 @	741 µs
		11.8°C				11.7°C	
CTM-9	3.50 NTU	6.74@	954 μs	CTM-10	2.58 NTU	7.32@	542 µs
		13.3°C				12.6°C	
CTM-11	34.6 NTU	<b>6.84</b> @	592 µs	CTM-13	2.48 NTU	7.37@	768 µs
		12.2°C				11.7°C	
MW-3	12.55	6.98 @	597 μs	MW-8	16.50 NTU	7.68 @	167.9 μs
(ESI)	NTU	13.0°C		(ESI)		9.1°C	

TA	ABLE 3.1.6:	Summar	y of Field Ob	servations	s (11/04, 12/0	)4, 9/05 8	& <b>10/05</b> )
<u>Well ID</u>	<u>Turbidity</u>	<u>рН &amp;</u>	<u>Specific</u>	<u>Well ID</u>	<u>Turbidity</u>	<u>pH &amp;</u>	<u>Specific</u>
	(1)	<u>Temp.</u>	<u>Conductance</u>			<u>Temp.</u>	<u>Conductance</u>
CTM-100	Low (2)	<b>6.82</b> @	606 µs	CTM-101	High ⁽²⁾	<b>6.57</b> @	560 µs
		17.4 °C				17.2°C	
CTM-105	High ⁽²⁾	7.26@	531 µs	CTM-203	100.3 NTU	6.17@	1,697 µs
		15.5 °C				15.9°C	
CTM-208	75.8 NTU	6.90 @	401 µs	CTM-212	124.5 NTU	7.61@	2.36 ms
		16.8 °C				14.9°C	
CTM-213	92.5 NTU	7.24 @	760 µs	CTM-214	36.0 NTU	7.01@	4.99 ms
		15.9 °C				18.3°C	
CTM-215	40.3 NTU	7.26@	1,082 µs	CTM-216	106.1 NTU	7.15@	808 µs
		17.25 °C				17.8°C	

⁽¹⁾ – A LaMotte Model 2008 Turbidity Meter was used. Turbidity readings were collected after purging, but before collecting laboratory samples.

⁽²⁾ – The turbidimeter was not functioning when parameters were collected for the sampled groundwater. Rather, a visual determination was made of the groundwater turbidity.

As depicted in the Table heading, groundwater samples were collected on four separate occasions. Groundwater samples collected as part of the RI were collected from monitoring wells CTM-1 through MW-8 (ESI) in November and December, 2004 while groundwater samples from the supplemental investigations of the IRM area and Parcel 2 were collected from monitoring wells CTM-100 through CTM-216 in September and October, 2005. The collection of the groundwater samples during different seasonal time periods accounts for the groundwater temperature range of 9.1 to 19.3 degrees Celsius.

Although every attempt was made to obtain turbidity levels of less than 50 NTU's prior to the collection of groundwater samples, samples collected from monitoring wells CTM-6, CTM-101, CTM-105, CTM-203, CTM-208, CTM-212, CTM-213 and CTM-216 had turbidity levels that were subjectively assessed as "high" or quantitatively measured above 50 NTU's. A review of the subsurface logs and monitoring well construction logs for the referenced wells shows that the screened interval for each well straddled subsurface soils that each had a silt component, indicating that the silt may have passed through the well screen during sampling despite best efforts at monitoring well development and purging.

## 3.1.7 Effect of Tidal Influences on Groundwater Levels

Water levels in select monitoring wells were gauged to determine the effects of tidal influences associated with the Site's west adjoining Hudson River. The wells chosen for the study included monitoring wells CTM-2, CTM-10, CTM-13 and MW-8 (ESI) which are located on western portions of Parcel 1 nearest the Hudson River and monitoring wells CTM-5 and CTM-11, which are located on southern and eastern portions of Parcel 1 at greater distances from the Hudson River than the aforementioned wells (see Figure 3).

Graphs representing water levels relative to tidal fluctuations are presented in Exhibit 3. The graphs show a direct correlation between water levels and tidal fluctuations from groundwater in monitoring wells CTM-2, CTM-13, CTM-10 and MW-8 (ESI), which are located on portions of the site nearest the Hudson River. Monitoring wells CTM-5 and CTM-11, located on southern and eastern portions of Parcel 1 further away from the Hudson River also show water level fluctuations conducive to tidal fluctuations, but to a lesser degree than the monitoring wells surveyed along the River. Water levels within CTM-5 and CTM-11 are shown on the graph as gradually declining over time, which may be attributed to the general decline in stage of the Hudson River during that same time period.

## 4.0 NATURE AND EXTENT OF CONTAMINATION

### 4.1 Sources

The previous discovery of coal tar beneath the New Penn property of STIP and other properties to the south of STIP indicate that coal tar is a potential contaminant of concern. Coal tar typically contains volatile and semi-volatile organic compound fractions as well as metals. Previous investigations of the slag beneath the site indicate that it is not a characteristic hazardous waste; however, it does have the potential to possess metals at concentrations greater than regulatory guidance levels. Cinders and ash which co-mingle with the site slag and are present at grade and depth within portions of the site suggest semi-volatile organic compounds and metals are potential contaminants of concern. The existence of a former petroleum above ground storage tank on the off-site parcel referred to as the "Alamo" suggests the potential presence of petroleum products such that volatile and semi-volatile organics are potential contaminants of concern. Known petroleum contaminants in soil and groundwater at the former Sperry Warehouse Site (adjacent of Parcel 2) suggests the potential presence of volatile and semi-volatile organic compounds on the site.

### 4.2 Determination of Project Standards, Criteria and Guidance (SCGs)

Project SCGs were established for evaluation of analytical results for the three media types that were sampled. The media types included surface soil/fill, subsurface soil/fill and groundwater.

Laboratory analysis for surface soil/fill included TCL SVOCs and TAL metals. Analytical results for TCL SVOCs and TAL Metals were compared to NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives (RSCOs).

Laboratory analysis for subsurface soil/fill collected as part of the RI included TCL volatile and semi-volatile organics and TAL metals. Laboratory analyses for subsurface soil/fill collected as part of supplemental investigations of the IRM and Parcel 2 included TCL volatile and semi-volatile organics. Analytical results for TCL volatile and semi-volatile organics and TAL Metals were compared to NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives (RSCOs).

Laboratory analysis for groundwater included TCL volatile and semi-volatile organics and TAL metals for the RI and TCL volatile and semi-volatile organics for the supplemental investigations of the IRM and Parcel 2. Analytical results were compared to NYSDEC Groundwater Standards and Guidance Values promulgated in the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS).

## 4.3 Background Soils

Three background surface soil samples were collected at off-site locations (see Figure 4) generally east of the project Site. The samples were collected from 0 to 2 inches below the vegetative root zone and analyzed for TCL semi-volatile organics and TAL metals. The samples were originally collected to establish local background levels for SVOCs and metals in surface soils for reference in evaluation of the analytical data from surface soils collected within the project site. However, pursuant to the NYSDEC project manager, the background analytical results will not be utilized for comparison to analytical data from site sampling. Analytical results for the background sampling event are presented for reference purposes only in Table 4.3-1 in the Tables section of the report.

# 4.4 Surface Soils

# 4.4.1 General

Twenty-one (21) surface soil samples (Surface Soil #1 through Surface Soil #17, Surface Soil #19 through Surface Soil #21 and Surface Soil #SS-21) were collected from across the site on November 18 and 19, 2004 and January 7, 2005 and analyzed for TCL semi-volatile organics and TAL metals. Analytical results were compared to NYSDEC guidelines. Analytical results showing compounds at concentrations exceeding guidelines are presented in Table 4.4. Summary analytical results are presented in Table 4.4-1 in the Tables section of the report.

# 4.4.2 Semi-Volatile Organic Compounds in Surface Soil/Fill

Six (6) SVOCs were detected above SCGs and included Benzo(a)anthracene, Chrysene,Benzo(b)fluoranthene,Benzo(k)fluoranthene,Benzo(a)pyreneandDibenz(a,h)anthracene.

### TABLE 4.4: Surface Soil Analytical Results Above SCGs SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

		r	1				r		î		1							
	NYSDEC	Eastern USA	SURFAC	CE SOIL#1	SURFAC	E SOIL#2	SURFAC	E SOIL#3	SURFAC	E SOIL#4	SURFAC	E SOIL#5	SURFAC	CE SOIL#6	SURFAC	E SOIL#7	SURFAC	E SOIL#8
	TAGM 4046	Background	m	g/kg	mg	g/kg	mg	g/kg	mg	g/kg	mg	g/kg	m	g/kg	mg	/Kg	mg	J/Kg
COMPOUND	RSCO's (mg/kg)****	(mg/kg)	Result	Qualifier														
SVOC's																		
Benzo(a)anthracene	0.224 or MDL	Not Applicable	3.00	J	0.0059	UJ	0.59	J	0.04	J	1.5	J	2.3	J	0.0059	UJ	0.0057	UJ
Chrysene	0.4	Not Applicable	3.20	J	0.012	U	0.66		0.045	J	1.2		3.4	J	0.075	J	0.012	U
Benzo(b)fluoranthene	1.1	Not Applicable	2.90	J	0.021	U	0.97	J	0.067	J	1.8	J	4.7	J	0.021	U	0.02	U
Benzo(k)fluoranthene	1.1	Not Applicable	2.60	J	0.013	U	0.45	J	0.013	U	1.3	J	2.8	J	0.071	J	0.013	U
Benzo(a)pyrene	0.061 or MDL	Not Applicable	2.50	J	0.0067	U	0.64		0.0064	U	1.3	J	2.8	J	0.0067	U	0.0065	U
Dibenz(a,h)anthracene	0.014 or MDL	Not Applicable	0.023	UJ	0.011	U	0.11	J	0.011	U	0.079	J	0.12	UJ	0.011	UJ	0.011	UJ
Metals			·															
Arsenic	7.5 or SB	3-12	17.1		37.5		19.5		6.240		32.8		24.8		4.420		6.300	
Barium	300 or SB	15-600	235		121		341		97.7		110		696		73.9		148	
Beryllium	0.16 or SB	0-1.75	0.851		1.720		2.740		0.584		0.833		0.264	J	0.446	J	0.736	
Cadmium	10 or SB*	0.1-1	7.220		4.350		2.880		0.703		4.860		17.2		2.27		0.872	
Calcium	SB	130-35,000	71400	J	48700	J	53500	J	14700	J	32400	J	37300	J	31100	J	3590	J
Chromium	50 or SB**	1.5-40	89.9	J	16.1	J	25.4	J	12.8	J	18.6	J	309	J	19.1	J	17.2	J
Copper	25 or SB	1-50	405		25.7		48.1		28.2		54.1		1020		18.5		25.6	
Iron	2,000 or SB	2,000-550,000	80000	J	144000	J	77500	J	26100	J	132000	J	135000	J	57100	J	27000	J
Magnesium	SB	100-5,000	5500	J	2450	J	5700	J	6140	J	4250	J	7030	J	5980	J	5000	J
Mercury	0.1	0.001-0.2	0.084		0.007	U	0.007	U	0.059		0.084		3.6		0.035		0.046	
Manganese	SB	50-5,000	4450		1950		2800		956		3480		8260		4320		946	
Nickel	13 or SB	0.5-25	107		7.660		29.8		20.7		29.5		124		13		22.7	
Selenium	2 or SB	0.1-3.9	3.020		2.220		2.420		1.010	J	5.660		6.110		2.8		0.998	
Silver	SB	N/A	6.710		0.123	U	0.127	U	0.118	U	4.010		6.140		5.460		1.370	
Vanadium	150 or SB	1-300	30.9		54.8		61.0		16.3		108		189		101		18.8	
Zinc	20 or SB	9-50	804		157		192		125		143		5290		732		78.3	

	NYSDEC	Eastern USA	SURFAC	E SOIL#9	SURFAC	E SOIL#10	SURFAC	E SOIL#11	SURFAC	E SOIL#12	SURFAC	E SOIL#13	SURFAC	E SOIL#14	SURFACE S	SOIL #14 DUP
	TAGM 4046	Background	mg	j/Kg	mç	j/Kg	mg	/Kg	mç	/Kg	mg	j/Kg	mg	/Kg	mg	g/Kg
COMPOUND	RSCO's (mg/kg)****	(mg/Kg)	Result	Qualifier	Result	Qualifier										
SVOC's																
Benzo(a)anthracene	0.224 or MDL	Not Applicable	0.0059	UJ	0.0056	UJ	0.14	J	0.085	J	0.39	J	0.44	J	0.67	J
Chrysene	0.4	Not Applicable	0.071	J	0.012	U	0.14	J	0.085	J	0.45		0.42		0.62	J
Benzo(a)pyrene	0.061 or MDL	Not Applicable	0.0068	U	0.0064	U	0.14	J	0.086	J	0.45		0.45		0.65	J
Dibenz(a,h)anthracene	0.014 or MDL	Not Applicable	0.012	UJ	0.011	U	0.011	U	0.011	U	0.011	U	0.086	J	0.1	J
Metals		·	·												·	
Arsenic	7.5 or SB	3-12	8.900		15.8		13.9		8.640		21.2		16.5		18.4	
Barium	300 or SB	15-600	73.5		191		601		153		157		230		253	
Beryllium	0.16 or SB	0-1.75	0.718		3.400		3.890		1.500		1.990		2.410		2.870	
Calcium	SB	130-35,000	39500	J	91900	J	95200	J	33000	J	34500	J	55800	J	55900	J
Copper	25 or SB	1-50	39.6		17.7		20.2		31.3		60.0		31.0		31.0	
Iron	2,000 or SB	2,000-550,000	71700	J	36000	J	88500	J	34300	J	74900	J	39100	J	69400	J
Magnesium	SB	100-5,000	5410	J	5210	J	8930	J	5360	J	3690	J	5420	J	5720	J
Mercury	0.1	0.001-0.2	0.103		0.006	U	0.006		0.007	U	0.214	U	0.007	U	0.007	U
Nickel	13 or SB	0.5-25	14.4		7.480		7.200		13.1		19.9		12.4		13.1	
Selenium	2 or SB	0.1-3.9	3.240		2.300		2.220		1.600		3.090		2.010		2.780	
Zinc	20 or SB	9-50	1200		199		168		292		280		321		208	

#### TABLE 4.4: Surface Soil Analytical Results Above SCGs SVOCs and Metals (Validated Results) **South Troy Industrial Park** C.T. Male Project No. 04.9138

	NYSDEC	Eastern USA	SURFAC	E SOIL#15	SURFAC	E SOIL#16	SURFAC	E SOIL#17	SURFAC	E SOIL#19	SURFAC	E SOIL#20	SURFAC	E SOIL#21	SURFACE	SOIL #SS-21	EQUIP	P.BLANK
	TAGM 4046	Background	m	g/kg	mg	g/kg	m	ng/l										
COMPOUND	RSCO's (mg/kg)****	(mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier										
SVOC's																		
Benzo(a)anthracene	0.224 or MDL	Not Applicable	0.048	J	0.74	J	12	J	1.3	J	2.6	J	0.13	J	0.96		0.00023	U
Chrysene	0.4	Not Applicable	0.013	U	0.78		11	J	1.6	J	2.5	J	0.13	J	0.76		0.00039	U
Benzo(b)fluoranthene	1.1	Not Applicable	0.06	J	1.4	J	15	J	1.1	J	2.5	J	0.19	J	1.1	J	0.00023	U
Benzo(k)fluoranthene	1.1	Not Applicable	0.014	U	0.47	J	7.6	J	1.5	J	1.4	J	0.058	J	0.54	J	0.00039	U
Benzo(a)pyrene	0.061 or MDL	Not Applicable	0.007	U	0.83		9.3	J	1	J	1.5	J	0.11	J	0.85	J	0.00045	U
Dibenz(a,h)anthracene	0.014 or MDL	Not Applicable	0.012	U	0.011	U	0.7	J	0.1	UJ	0.013	UJ	0.011	U	0.084	J	0.00029	U
Metals							·										-	
Arsenic	7.5 or SB	3-12	4.810		14.6		16.6		8.270		11.8		15.8		7.970		0.00484	U
Barium	300 or SB	15-600	893		119		43.2		130		160		191		257	J	0.011	U
Beryllium	0.16 (HEAST) or SB	0-1.75	5.490		0.683		0.361	J	0.789		0.669		3.400		1.570		0.00106	U
Calcium	SB	130-35,000	160000	J	13900	J	2020	J	27300	J	11500	J	91900	J	34,400	J	1.74	U
Copper	25 or SB	1-50	7.780		44.4		23.8		24.8		25.1		17.7		34.5		0.00508	J
Iron	2,000 or SB	2,000-550,000	22400	J	59900	J	11300	J	26700	J	27400	J	36000	J	32,300	J	0.0384	J
Magnesium	SB	100-5,000	12700	J	4870	J	546	J	15100	J	1260	J	5210	J	4140	J	0.361	J
Mercury	0.1	0.001-0.2	0.007	U	0.14		0.113		0.006	U	0.222		0.006	U	0.036		0.00003	U
Nickel	13 or SB	0.5-25	5.170		23.5		12.7		20.9		24.6		7.480		13.5		0.00555	U
Selenium	2 or SB	0.1-3.9	2.310		1.910		0.934	J	0.945	J	2.160		2.300		0.373	U	0.00367	U
Zinc	20 or SB	9-50	43.2		265		40.2		77.8		162		199		251	J	0.0199	J

**Qualifiers** 

U - The compound was not detected at the indicated concentration

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value

E - indicates compounds whose concentrations exceed the calibration range of the instrument for the specific analysis

MDL indicates the laboratory's minimum detection limit

mg/kg (milligram per kilogram) indicates parts per million or ppm. mg/l (milligram per liter) indicates parts per million or ppm NA - Not Applicable

Background range consists of the low and high concentration values obtained from background surface soil samples 22 through 24 collected at a vacant grassy lot west of Mr. Sub (22), northwest corner of the intersection of VanBuren and First Street (23) and southwest corner of Tyler and First Street (24). All background samples were collected within the City of Troy Right-of-Way.

* TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium. However, recent DEC Records of Decision (ROD) specify 10 ppm as the SCG.

** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium. However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.

*** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm

**** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs) Bolded numbers indicate values that have exceeded SCGs

Benzo(a)anthracene was detected above its SCG of 0.224 mg/kg at 11 of 21 sampling locations. These were Surface Soil #1 (3.0 mg/kg), Surface Soil #3 (0.59 mg/kg), Surface Soil #5 (1.5 mg/kg), Surface Soil #6 (2.3 mg/kg), Surface Soil #13 (0.39 mg/kg), Surface Soil #14 (0.44 mg/kg), Surface Soil #16 (0.74 mg/kg), Surface Soil #17 (12.0 mg/kg), Surface Soil #19 (1.3 mg/kg), Surface Soil #20 (2.6 mg/kg) and Surface Soil #SS-21 (0.96 mg/kg).

Chrysene was detected above its SCG of 0.4 mg/kg at 11 of 21 sampling locations. These were Surface Soil #1 (3.20 mg/kg), Surface Soil #3 (0.66 mg/kg), Surface Soil #5 (1.2 mg/kg), Surface Soil #6 (3.4 mg/kg), Surface Soil #13 (0.45 mg/kg), Surface Soil #14 (0.42 mg/kg), Surface Soil #16 (0.78 mg/kg), Surface Soil #17 (11.0 mg/kg), Surface Soil #19 (1.6 mg/kg), Surface Soil #20 (2.5 mg/kg) and Surface Soil #SS-21 (0.76 mg/kg).

Benzo(b)fluoranthene was detected above its SCG of 1.1 mg/kg at 6 of 21 sampling locations. These were Surface Soil #1 (2.9 mg/kg), Surface Soil #5 (1.8 mg/kg), Surface Soil #6 (4.7 mg/kg), Surface Soil #16 (1.4 mg/kg), Surface Soil #17 (15.0 mg/kg) and Surface Soil #20 (3.5 mg/kg).

Benzo(k)fluoranthene was detected above its SCG of 1.1 mg/kg at 6 of 21 sampling locations. These were Surface Soil #1 (2.60 mg/kg), Surface Soil #5 (1.3 mg/kg), Surface Soil #6 (2.8 mg/kg), Surface Soil #17 (7.6 mg/kg), Surface Soil #19 (1.5 mg/kg) and Surface Soil #20 (1.4 mg/kg).

Benzo(a)pyrene was detected above its SCG of 0.061 mg/kg at 14 of 21 sampling locations. These were Surface Soil #1 (2.50 mg/kg), Surface Soil #3 (0.64 mg/kg), Surface Soil #5 (1.3 mg/kg), Surface Soil #6 (2.8 mg/kg), Surface Soil #11 (0.14 mg/kg), Surface Soil #12 (0.086 mg/kg), Surface Soil #13 (0.45 mg/kg), Surface Soil #14 (0.45 mg/kg), Surface Soil #16 (0.83 mg/kg), Surface Soil #17 (9.3 mg/kg), Surface Soil #19 (1.0 mg/kg), Surface Soil #20 (1.5 mg/kg), Surface Soil #21 (0.11 mg/kg) and Surface Soil #SS-21 (0.85 mg/kg).

Dibenz(a,h)anthracene was detected above its SCG of 0.014 mg/kg or MDL at 8 of 21 sampling locations. These were Surface Soil #1 (0.023 mg/kg), Surface Soil #3 (0.11 mg/kg), Surface Soil #5 (0.079 mg/kg), Surface Soil #6 (0.12 mg/kg), Surface Soil #14

(0.086 mg/kg), Surface Soil #17 (0.7 mg/kg), Surface Soil #19 (0.1 mg/kg) and Surface Soil #SS-21 (0.084 mg/kg).

In summary, six (6) of six (6) SVOCs were detected above SCGs at Surface Soil sampling locations 1, 5, 6 and 17. Five (5) of six (6) SVOCs were detected above SCGs at Surface Soil sampling locations 19 and 20; four (4) of six (6) SVOCs were detected above SCGs at Surface Soil sampling locations 3, 14 16 and SS-21; and three (3) of six (6) SVOCs were detected above SCGs at Surface Soil sampling location 13. Surface soil sampling locations 1, 3, 5, 6, 13 and 14 are located on Parcel 1 of the project site. Surface soil sampling location 16 is located on Parcel 3 while surface soil sampling locations 17, 19, 20 and SS-21 are located on Parcel 2.

## 4.4.3 Metals in Surface Soils

Several metals were detected at concentrations above the laboratory detection limit from all analyzed surface soil samples (see Tables 4.4 and 4.4-1), with 14 metals being detected above SCGs.

Arsenic was detected at concentrations exceeding its SCG of 7.5 mg/kg at 17 of 21 sampling locations. These were Surface Soil #1 (17.1 mg/kg), Surface Soil #2 (37.5 mg/kg), Surface Soil #3 (19.5 mg/kg), Surface Soil #5 (32.8 mg/kg), Surface Soil #6 (24.8 mg/kg), Surface Soil #9 (8.9 mg/kg), Surface Soil #10 (15.8 mg/kg), Surface Soil #11 (13.9 mg/kg), Surface Soil #12 (8.64 mg/kg), Surface Soil #13 (21.2 mg/kg), Surface Soil #14 (16.5 mg/kg), Surface Soil #16 (14.6 mg/kg), Surface Soil #17 (16.6 mg/kg), Surface Soil #19 (8.27 mg/kg), Surface Soil #20 (11.8 mg/kg), Surface Soil #21 (15.8 mg/kg) and Surface Soil #SS-21 (7.97 mg/kg).

Barium was detected at concentrations exceeding its SCG of 300 mg/kg at 4 of 21 sampling locations. These were Surface Soil #3 (341 mg/kg), Surface Soil #6 (696 mg/kg), Surface Soil #11 (601 mg/kg) and Surface Soil #15 (893 mg/kg).

Beryllium was detected at concentrations exceeding its SCG of 0.16 mg/kg at all sampling locations with concentrations that ranged between 0.264 mg/kg at Surface Soil #6 to 5.49 mg/kg at Surface Soil #15.

Cadmium (17.2 mg/kg) was detected at concentrations exceeding its SCG of 10 mg/kg at Surface Soil #6 only.

Calcium was detected at concentrations exceeding its SCG range of 130 to 35,000 mg/kg at 10 of 20 sampling locations. These were Surface Soil #1 (71,400 mg/kg), Surface Soil #2 (48,700 mg/kg), Surface Soil #3 (53,500 mg/kg), Surface Soil #6 (37,300 mg/kg), Surface Soil #9 (39,500 mg/kg), Surface Soil #10 (91,900 mg/kg), Surface Soil #11 (95,200 mg/kg), Surface Soil #14 (55,800 mg/kg), Surface Soil #15 (160,000 mg/kg) and Surface Soil #21 (91,900 mg/kg).

Chromium was detected at concentrations exceeding its SCGs of 50 mg/kg at 2 of 21 sampling locations. These were Surface Soil #1 (89.9 mg/kg) and Surface Soil #6 (309 mg/kg).

Copper was detected at concentrations exceeding its SCG of 25 mg/kg at 14 of 21 sampling locations. These were Surface Soil #1 (405 mg/kg), Surface Soil #2 (25.7 mg/kg), Surface Soil #3 (48.1 mg/kg), Surface Soil #4 (28.2 mg/kg), Surface Soil #5 (54.1 mg/kg), Surface Soil #6 (1,020 mg/kg), Surface Soil #8 (25.6 mg/kg), Surface Soil #9 (39.6 mg/kg), Surface Soil #12 (31.3 mg/kg), Surface Soil #13 (60.0 mg/kg), Surface Soil #14 (31.0 mg/kg), Surface Soil #16 (44.4 mg/kg), Surface Soil #20 (25.1 mg/kg) and Surface Soil #SS-21(34.5 mg/kg).

Iron was detected at concentrations exceeding its SCG 2,000 mg/kg at all sampling locations with a range of concentrations between 11,300 mg/kg (Surface Soil #17) to 144,000 mg/kg (Surface Soil #2).

Magnesium was detected at concentrations exceeding its SCG range of 100 to 5,000 mg/kg at 13 of 21 sampling locations. These were Surface Soil #1 (5,500 mg/kg), Surface Soil #3 (5,700 mg/kg), Surface Soil #4 (6,140 mg/kg), Surface Soil #6 (7,030 mg/kg), Surface Soil #7 (5,980 mg/kg), Surface Soil #9 (5,410 mg/kg), Surface Soil #10 (5,210 mg/kg), Surface Soil #11 (8,930 mg/kg), Surface Soil #12 (5,360 mg/kg), Surface Soil #14 (5,420 mg/kg), Surface Soil #15 (12,700 mg/kg), Surface Soil #19 (15,100 mg/kg) and Surface Soil #21 (5,210 mg/kg).

Mercury was detected at concentrations exceeding its SCG of 0.1 mg/kg at 6 of 21 sampling locations. These were Surface Soil #6 (3.6 mg/kg), Surface Soil #9 (0.103 mg/kg), Surface Soil #13 (0.214 mg/kg), Surface Soil #16(0.14 mg/kg), Surface Soil #17 (0.113 mg/kg) and Surface Soil #20 (0.222 mg/kg)

Manganese (8,260 mg/kg) was detected at concentrations exceeding its SCG range of 100 to 5,000 mg/kg at Surface Soil #6 only.

Nickel was detected at concentrations exceeding its SCG of 13 mg/kg at 14 of 21 sampling locations. These were Surface Soil #1 (107 mg/kg), Surface Soil #3 (29.8 mg/kg), Surface Soil #4 (20.7 mg/kg), Surface Soil #5 (29.5 mg/kg), Surface Soil #6 (124 mg/kg), Surface Soil #8 (22.7 mg/kg), Surface Soil #9 (14.4 mg/kg), Surface Soil #12 (13.1 mg/kg), Surface Soil #13 (19.9 mg/kg), the duplicate of Surface Soil #14 (13.1 mg/kg), Surface Soil #16 (23.5 mg/kg), Surface Soil #19 (20.9 mg/kg), Surface Soil #20 (24.6 mg/kg) and Surface Soil #SS-21 (13.5 mg/kg).

Selenium was detected at concentrations exceeding its SCG of 2 mg/kg at 14 of 21 sampling locations. These were Surface Soil #1 (3.02 mg/kg), Surface Soil #2 (2.22 mg/kg), Surface Soil #3 (2.42 mg/kg), Surface Soil #5 (5.66 mg/kg), Surface Soil #6 (6.11 mg/kg), Surface Soil #7 (2.8 mg/kg), Surface Soil #9 (3.24 mg/kg), Surface Soil #6 (2.3 mg/kg), Surface Soil #11 (2.22 mg/kg), Surface Soil #13 (3.09 mg/kg), Surface Soil #14 (2.01 mg/kg), Surface Soil #15 (2.31 mg/kg), Surface Soil #20 (2.16 mg/kg) and Surface Soil #21 (2.3 mg/kg).

Zinc was detected at concentrations exceeding its SCGs of 20 mg/kg at all sampling locations with concentrations that ranged from 40.2 mg/kg at Surface Soil #17 to 5,290 mg/kg at Surface Soil #6.

In summary, arsenic, beryllium, calcium, copper, iron, magnesium, nickel, selenium and zinc were the most prevalent metals in surface soils, having been detected at 10 or more sampling locations. Surface Soil #6 contained the most metals (14 of 16) detected above SCGs. Surface Soil #'s 1, 3 and 9 each had 10 metals detected, while eight (8) metals each were detected at Surface Soil #'s 11, 14 and 20.

### 4.5 Subsurface Soils - Test Trenches and Test Pits

### 4.5.1 General

Forty-seven (47) samples were collected at various locations from the seven (7) test trenches (39 samples) and four test pits (8 samples) advanced on Parcels 1 and 2 of the project site. The samples were analyzed for TCL volatile and semi-volatile organics and TAL Metals and the results were compared to SCGs. Analytical results showing

compound and analyte detections at concentrations exceeding SCGs are presented in Table 4.5. The analytical summary results are presented in Table 4.5-1 in the Tables section of the report. The sampling locations, media type sampled (soils or fill), and frequency of parameters which were detected above SCGs are presented on Table 4.5-2.

## 4.5.2 Volatile Organic Compounds in Subsurface Soils (Test Trenches & Pits)

Acetone was the only VOC detected at concentrations exceeding the laboratory detection limit and was detected at concentrations exceeding its SCG of 0.2 mg/kg at one sampling location only. Acetone was detected at a concentration of 0.34 mg/kg from the sample submitted from Trench-2 SS-1, which is located on Parcel 1. Although acetone is a common laboratory contaminant, it was not detected above its SCG in the QA/QC equipment blanks and this result was not qualified during the data validation process.

### 4.5.3 Semi-Volatile Organic Compounds in Subsurface Soils (Test Trenches & Pits)

Five SVOCs were detected at concentrations exceeding SCGs. These included Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(a,h)anthracene.

Benzo(a)anthracene was detected at concentrations exceeding its SCG of 0.224 mg/kg or MDL at 14 of 47 sampling locations, as follows.

- Test Trench #1 at four (4) sampling locations denoted as Trench-1 Upper (0.35 mg/kg), Trench-1 Lower (0.39 mg/kg), Trench-1 Upper-1 (0.35 mg/kg) and Trench-1 Lower-3 (1.4 mg/kg).
- Test Trench #2 at one (1) location denoted as Trench-2 Lower-2 (1.2 mg/kg).
- Test Trench #3 at three (3) locations denoted as Trench-3 Upper-1 (0.3 mg/kg), Trench-3 Lower-2 (0.39 mg/kg) and Trench-3 Upper-2 (0.54 mg/kg).
- Test Trench #4 at two (2) locations denoted as Trench-4 Upper-2 (0.52 mg/kg) and Trench-4 Lower-2 (0.43 mg/kg).
- Test Trench #6 at one (1) location denoted as Trench-6 Upper-1 (0.35 mg/kg)

### TABLE 4.5: Trench and Test Pit Analytical Results Above SCGs VOCs, SVOCs and Metal (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	NYSDEC	TRENCH-1	I UPPER (2.5')	TRENCH-1	LOWER (15.5')	TRENCH-1	UPPER-1 (6')	TRENCH-1	LOWER-1 (20')	DUP 2 (Tre	ench-1 Lower-1)	TRENCH-1	LOWER-2 (17')	TRENCH-1	UPPER-2 (6')
	TAGM 4046	TAGM 4046	m	ng/kg	m	g/kg	m	g/kg	m	g/kg	r	ng/kg	m	g/kg	m	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SVOC's																
Benzo(a)anthracene	0.224 or MDL	NA	0.35	J	0.39		0.35	J	0.0053	U	0.0052	U	0.0057	U	0.0071	U
Chrysene	0.4	NA	0.29	J	0.28	J	0.44		0.011	U	0.011	U	0.012	U	0.015	U
Benzo(a)pyrene	0.061 or MDL	NA	0.34	J	0.28	J	0.39		0.0061	U	0.0059	U	0.0065	U	0.0081	U
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.011	U	0.011	U	0.043	J	0.01	U	0.01	U	0.011	U	0.014	U
Metals			·						·							
Arsenic	7.5 or SB	3-12	25.6		2.580		17.6		6.240		5.970		25.9		8.290	
Beryllium	0.16 (HEAST) or SB	0-1.75	1.510		0.201	J	0.846		0.428	J	0.449	J	3.120		0.731	
Calcium	SB	130-35,000	35100		1810		16900		1970		1740		85800		11300	
Copper	25 or SB	1-50	31.4	J	8.920	J	71.7	J	18.5	J	22.1	J	18.6	J	20.2	J
Iron	2,000 or SB	2,000-550,000	41800		11100		79500		22400		21400		61400		47300	
Mercury	0.1	0.001-0.2	0.068		0.366		0.165		0.025		0.027		0.036		0.008	U
Nickel	13 or SB	0.5-25	23.5	J	9.780	J	16.4	J	18.9	J	19.5	J	10.3	J	8.710	J
Selenium	2 or SB	0.1-3.9	2.440		0.350	U	4.330		0.744	J	0.973	J	2.990		1.920	
Zinc	20 or SB	9-50	114	J	34.1	J	185	J	49.8	J	48.6	J	50.8	J	57.9	J
							·									
<del></del>	NYSDEC	NYSDEC	TRENCH-1	LOWER-3 (20')	TRENCH-2	UPPER (1.5')	TRENCH-	2 SS-1 (9.5')	TRENCH	-2 SS-2 (7')	TRENCH	1-2 SS-3 (8.5')	TRENCH-2	LOWER-1 (8')	TRENCH-2	LOWER-2 (8')
	TAGM 4046	TAGM 4046	ll m	na/ka	m	a/ka	m	a/ka	m	a/ka	l r	na/ka	m	a/ka	m	a/ka

	NYSDEC	NYSDEC		LOWER-3 (20')		UPPER (1.5')		2 SS-1 (9.5')		-2 SS-2 (7')		-2 SS-3 (8.5')		LOWER-1 (8')		LOWER-2 (8')
	TAGM 4046	TAGM 4046	m	ig/kg	m	g/kg	mg	g/kg	m	g/kg	n	ng/kg	m	g/kg	m	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's																
Acetone	0.2	NA	0.046		0.0088	U	0.34		0.0085	U	0.0091	U	0.018	J	0.0088	U
SVOC's																
Benzo(a)anthracene	0.224 or MDL	NA	1.4		0.082	J	0.0064	U	0.0056	U	0.006	U	0.044	J	1.2	
Chrysene	0.4	NA	1.1		0.084	J	0.014	U	0.012	U	0.013	U	0.047	J	1.2	
Benzo(b)fluoranthene	1.1	NA	1.2	J	0.076	J	0.023	U	0.02	U	0.021	U	0.022	U	1.1	J
Benzo(a)pyrene	0.061 or MDL	NA	1.1		0.07	J	0.0073	U	0.0064	U	0.0069	U	0.007	U	0.98	
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.077	J	0.011	U	0.012	U	0.011	U	0.012	U	0.012	U	0.19	J
Metals																
Arsenic	7.5 or SB	3-12	4.080		22.5		3.090		42.7		3.880		4.310		4.700	
Barium	300 or SB	15-600	68.6	J	130	J	104	J	350	J	83.5	J	85.4	J	58.4	J
Beryllium	0.16 (HEAST) or SB	0-1.75	0.364	J	3.630		0.437	J	7.640		0.391	J	0.577	J	0.080	J
Calcium	SB	130-35,000	3700		56400		3080		181000		3040		7160		4200	
Iron	2,000 or SB	2,000-550,000	16500		40200		16800		36700		15600		15400		16700	
Mercury	0.1	0.001-0.2	0.213		0.011	J	0.023		0.009	J	0.045		0.040		0.124	
Nickel	13 or SB	0.5-25	15.5	J	8.440	J	15.5	J	9.960	J	15.6	J	14.5	J	12.8	J
Selenium	2 or SB	0.1-3.9	0.537	J	2.180		0.620	J	4.830		1.270		1.160	J	0.954	J
Sodium	SB	6,000-8,000	46.8	U	448	J	48.6	U	11500		264	J	733		43.6	U
Zinc	20 or SB	9-50	54.7	J	439	J	60.6	J	314	J	58.0	J	58.2	J	59.2	J

### TABLE 4.5: Trench and Test Pit Analytical Results Above SCGs VOCs, SVOCs and Metal (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

					C.T. Ma	le Project N	lo. 04.9138									
	NYSDEC	NYSDEC	TRENCH-2	UPPER-1 (4')	TRENCH-2	UPPER-2 (3')	TRENCH-3	LOWER (13')	TRENCH-3	B UPPER (3')	TRENCH-3	LOWER-1 (10')	TRENCH-3	UPPER-1 (4')	TRENCH-3 L	OWER-2 (10')
	TAGM 4046	TAGM 4046	m	g/kg	m	g/kg	mg	g/kg	m	g/kg	n	ng/kg	m	g/kg	m	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SVOC's																
Benzo(a)anthracene	0.224 or MDL	NA	0.065	J	0.006	U	0.0062	U	0.13	J	0.2	J	0.3	J	0.39	J
Benzo(a)pyrene	0.061 or MDL	NA	0.092	J	0.0068	U	0.0071	U	0.14	J	0.15	J	0.25	J	0.28	J
Metals																
Arsenic	7.5 or SB	3-12	28.6		6.960		4.340		36.0		3.800		13.8		4.620	
Beryllium	0.16 (HEAST) or SB	0-1.75	6.100		0.271	J	0.401	J	2.140		0.451	J	0.838		0.467	J
Calcium	SB	130-35,000	142000		1440		2940		30700		2490		21800		2960	
Copper	25 or SB	1-50	18.5	J	13.5	J	16.9		85.1		14.9	J	63.6	J	16.2	J
Iron	2,000 or SB	2,000-550,000	34000		6010		19300		72900		16100		67500		17000	
Magnesium	SB	100-5,000	5410		147	J	3620		3150		3400		2620		3480	
Mercury	0.1	0.001-0.2	0.007	U	0.007	U	0.016		0.135		0.063		0.008	J	0.078	
Nickel	13 or SB	0.5-25	12.2	J	5.390	J	15.3		15.3		15.1	J	21.5	J	15.8	J
Selenium	2 or SB	0.1-3.9	3.920		0.378	U	1.230	J	3.560		1.290		4.440		1.190	J
Sodium	SB	6,000-8,000	11400		204	J	49.0	J	607	J	44.5	U	642		46.5	U
Zinc	20 or SB	9-50	199	J	9.380	J	52.5		262		56.2	J	949	J	64.7	J
<u>.</u>									-							
	NYSDEC	NYSDEC	TRENCH-3	UPPER-2 (4')	TRENCH-4	LOWER (18')	TRENCH-4	UPPER (5')	TRENCH-4 I	LOWER-1 (19')	TRENCH-	4 UPPER-1 (6')	TRENCH-4	UPPER-2 (6')	TRENCH-4 L	_OWER-2 (20')
	TAGM 4046	TAGM 4046	m	g/kg	m	g/kg	mg	g/kg	m	g/kg	n	ng/kg	m	g/kg	m	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SVOC's			·										·			
Benzo(a)anthracene	0.224 or MDL	NA	0.54		0.052	J	0.0068	U	0.0059	U	0.0068	U	0.52		0.43	
Chrysene	0.4	NA	0.45		0.06	J	0.014	U	0.012	U	0.014	U	0.36	J	0.36	J
Benzo(a)pyrene	0.061 or MDL	NA	0.5		0.057	J	0.0078	U	0.0067	U	0.0077	UJ	0.3	J	0.42	
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.044	J	0.012	U	0.013	U	0.011	U	0.013	UJ	0.014	U	0.012	U
Metals					, <u>-</u>			-				-		-		
Aluminum	SB	33,000	6460		10200		11500		39500		9540		19300		21100	
Arsenic	7.5 or SB	3-12	14.1		10.3		4.930		21.0		4.760		10.0		10.9	
Barium	300 or SB	15-600	64.2		166		144		348		109		142		218	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.818		2.160		0.647	J	5.760		0.639	J	1.100		2.900	
Calcium	SB	130-35,000	15600		24700		68700		208000		65100		11400		93400	
Chromium	50 or SB**	1.5-40	14.1		106		20.0		2.320		16.9		28.5		4.800	
Copper	25 or SB	1-50	24.3	J	149		18.5		6.470		13.8		43.2		19.7	
Iron	2,000 or SB	2,000-550,000	64700		48200		15500		11800		11400		61600		34700	
Magnesium	SB	100-5,000	3310		6940		6670		23900		5260		6610		9340	
Mercury	0.1	0.001-0.2	0.014		0.210		0.120		0.010	U	0.030		0.030		0.010	U
NP-11									4 4 4 9		40.0		33.8		6.070	
Nickel	13 or SB	0.5-25	11.8	J	136		15.9		1.440	J	13.6		33.0		6.070	
Nickel Selenium	13 or SB 2 or SB	0.5-25 0.1-3.9	11.8 <b>2.910</b>	J	<b>136</b> 0.809	J	<b>15.9</b> 0.539	J	1.440 <b>2.390</b>	J	13.6 0.423	U	3.200		<b>2.300</b>	

### TABLE 4.5: Trench and Test Pit Analytical Results Above SCGs VOCs, SVOCs and Metal (Validated Results) South Troy Industrial Park

					C.T. Ma	le Project N	lo. 04.9138					
	NYSDEC	NYSDEC	TRENCH-5	LOWER (9')	TRENCH-5	5 UPPER (2')	TRENCH-5 I	_OWER-1 (9')	TRENCH-5	UPPER-1 (2')	DUP. (Trei	nch-
	TAGM 4046	TAGM 4046	m	g/kg	mg	g/kg	mg	g/kg	m	g/kg	r	ng/k
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	
SVOC's			·									
Benzo(a)pyrene	0.061 or MDL	NA	0.0074	U	0.054	J	0.078	J	0.094	J	0.072	
Metals												
Aluminum	SB	33,000	9580		3830		10500		1920		8920	1
Arsenic	7.5 or SB	3-12	4.950		44.5		7.41		5.83		6.91	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.407	J	0.334	J	0.454	J	0.339	J	0.371	
Calcium	SB	130-35,000	3350		15800		4180		2130		4490	
Copper	25 or SB	1-50	25.8		19.1		17.3		34.8		19.4	
Iron	2,000 or SB	2,000-550,000	20100		152000		25100		50600		21200	
Magnesium	SB	100-5,000	3610		9540		4020		298	J	3630	
Manganese	SB	50-5,000	363		6650		791		137		557	
Mercury	0.1	0.001-0.2	0.100		0.080		0.100		0.02		0.12	
Nickel	13 or SB	0.5-25	14.7		3.170	J	17.5		14.2		16.3	
Selenium	2 or SB	0.1-3.9	0.401	U	12.0		2.28		4.32		2.23	
Zinc	20 or SB	9-50	59.5		422		119		34.7		157	

	NYSDEC	NYSDEC	TRENCH-6	LOWER-1 (7')	TRENCH-6	UPPER-1 (3')	TRENCH-7	UPPER (4')	TRENCH-7	LOWER (12')	TRENCH-7	LOWER-1 (16')	TRENCH-7	UPPER-1 (5')	TEST PIT-	1 UPPER (2')
	TAGM 4046	TAGM 4046	m	ig/kg	m	g/kg	mg	j/kg	m	g/kg	n	ng/kg	m	g/kg	m	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SVOC's																
Benzo(a)anthracene	0.224 or MDL	NA	0.0061	U	0.35	J	0.24	J	1.3	J	0.006	U	0.0064	U	1.0	
Chrysene	0.4	NA	0.013	U	0.38		0.41		0.94		0.013	U	0.013	U	1.2	
Benzo(b)fluoranthene	1.1	NA	0.022	U	0.62	J	0.36	J	1.1	J	0.021	U	0.022	U	1.4	J
Benzo(a)pyrene	0.061 or MDL	NA	0.007	U	0.37	J	0.18	J	0.85		0.0069	U	0.0072	U	0.86	
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.012	U	0.011	U	0.01	U	0.045	J	0.012	U	0.012	U	0.048	J
Metals																
Arsenic	7.5 or SB	3-12	6.040		13.4		13.7		4.040		3.840		8.720		51	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.775		1.270		0.867		0.358	J	0.380	J	0.689		0.214	J
Calcium	SB	130-35,000	2460		39600		6430		3010		1830		4660		1780	
Cobalt	30 or SB	2.5-60	10.7		10.8		5.67		7.29		7.57		6.72		40.4	
Copper	25 or SB	1-50	67.9		32.9		51.1		13.1		13.5		20.3		355	J
Iron	2,000 or SB	2,000-550,000	27300		60800		39600		17200		15600		46500		375000	
Manganese	SB	50-5,000	522		6740		1080		426		522		1210		704	
Mercury	0.1	0.001-0.2	0.130		0.030		0.170		0.120		0.030		0.010	U	0.010	J
Nickel	13 or SB	0.5-25	21.5		17.1		9.850		13.2		14.7		11.7		93.5	
Selenium	2 or SB	0.1-3.9	1.090	J	5.510		2.810		0.369	U	0.411	J	1.460		7.1	
Zinc	20 or SB	9-50	93.1		109		159		45.4		43.9		26.5		665	

	nch-5 Lower-1) ng/kg		5 LOWER (8') g/kg	TRENCH-6 UPPER (4') mg/kg			
t	Qualifier	Result	Qualifier	Result	Qualifier		
	J	0.0075	U	0.0068	U		
		11600		41700			
		5.410		18.7			
	J	0.479	J	5.050			
		3770		158000			
		26.5		9.460			
		20900		21400			
		3960		31400			
		931		6430			
		0.160		0.010	U		
		15.3		4.230	J		
		0.415	U	2.670			
		63.4		108			

#### TABLE 4.5: Trench and Test Pit Analytical Results Above SCGs VOCs, SVOCs and Metal (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	NYSDEC	TEST PIT-	1 LOWER (4')	TEST PIT-	2 UPPER (4')	TEST PIT-2	LOWER (20')	TEST PIT-	B UPPER (2')	TEST PIT-	3 LOWER (5')	TEST PIT-	4 UPPER (7')	TEST PIT- 4	4 LOWER (19')
	TAGM 4046	TAGM 4046	m	g/kg	m	g/kg	mg	g/kg	m	g/kg	n	ng/kg	m	g/kg	m	ng/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals																
Arsenic	7.5 or SB	3-12	1.810		4.600		2.680		9.910		6.770		24.1		3.960	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.292	J	0.339	J	0.297	J	0.439	J	0.962		0.345	J	0.626	J
Copper	25 or SB	1-50	8.630	J	17.7	J	12.8	J	25.1	J	31.7	J	40.9	J	19.6	J
Iron	2,000 or SB	2,000-550,000	16500		20500		16300		50300		33500		90000		24000	
Magnesium	SB	100-5,000	3410		4800		3440		307	J	8800		1160		4690	
Nickel	13 or SB	0.5-25	12.7		17.7		15.3		17.4		30.3		12.2		20.4	
Selenium	2 or SB	0.1-3.9	0.330	U	0.360	J	0.357	U	2.160		0.539	J	4.530		0.472	J
Zinc	20 or SB	9-50	40.7		58.4		91.3		12.7		79.2		27.3		70.9	

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Bolded numbers indicate that the parameter is at a concentration that has exceeded its SCG

NA - Not Applicable

SB - Site Background

HEAST - Health Effects Assessment Summary Tables

MDL indicates the laboratory's minimum detection limit

mg/kg indicates mlligram per kilogram or parts per million (ppm)

mg/l indicates milligram per liter or parts per million (ppm)

(#) indicates number of feet below grade that sample was collected

- * TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium.
- ** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium.

However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.

- *** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm
- **** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs)

Sample ID	Media Sampled	Trench Orientation (Start to End)	Distance from Trench Start	Sample Depth	Compounds and Analytes Detected Above SCGs
Trench-1 Upper	Brown SILT and fine GRAVEL	South to North	8 feet	2.5 feet	2 SVOCs & 8 Metals
Trench-1 Lower	M-F Brown SAND, trace silt	South to North	8 feet	15.5 feet	2 SVOCs & 4 Metals
Trench-1 Upper-1	Black CINDER and brown SILT	South to North	90 feet	6 feet	4 SVOCs & 8 Metals
Trench-1 Lower-1	Med. SAND, Some Gravel	South to North	90 feet	20 feet	4 Metals
Trench-1 Upper-2	Gray ASH, Some Cinder	South to North	235 feet	6 feet	4 Metals
Trench-1 Lower-2	Black CINDER and gray ASH	South to North	228 feet	17 feet	6 Metals
Trench-1 Lower-3	Gray med. SAND and GRAVEL	South to North	260 feet	20 feet	5 Metals
Trench-2 Upper	Black CINDER and ASH	South to North	44 feet	1.5 feet	1 SVOC & 6 Metals
Trench-2 SS-1	SILT, Stained with fuel odor	South to North	28 feet	9.5 feet	1 VOC & 4 Metals
Trench-2 SS-2	White SLAG	South to North	90 feet	7 feet	8 Metals
Trench-2 SS-3	Brown SILT	South to North	90 feet	8.5 feet	4 Metals
Trench-2 Lower-1	Brown SILT	South to North	160 feet	8 feet	4 Metals
Trench-2 Upper-1	Black CINDER and ASH	South to North	160 feet	4 feet	1 SVOC & 8 Metals
Trench-2 Lower-2	Brown SAND, Some Silt	South to North	308 feet	8 feet	4 SVOCs & 3 Metals
Trench-2 Upper-2	White ASH	South to North	312 feet	3 feet	2 Metals
Trench-3 Lower	Brown SILT	South to North	25 feet	13 feet	4 Metals
Trench-3 Upper	Black SILT and CINDER	South to North	25 feet	3 feet	1 SVOC & 8 Metals
Trench-3 Lower-1	Brown SILT	South to North	150 feet	10 feet	1 SVOC & 4 Metals
Trench-3 Upper-1	Black SILT and CINDER	South to North	150 feet	4 feet	2 SVOCs & 7 Metals
Trench-3 Lower-2	Brown SILT	South to North	300 feet	10 feet	2 SVOCs & 4 Metals
Trench-3 Upper-2	Black SILT and CINDER	South to North	300 feet	4 feet	4 SVOCs & 5 Metals
Trench-4 Lower	Gray SILT	North to South	42 feet	18 feet	9 Metals
Trench-4 Upper	White pulverized rock	North to South	42 feet	5 feet	7 Metals
Trench-4 Lower-1	Black SLAG	North to South	125 feet	19 feet	9 Metals
Trench-4 Upper-1	White ASH	North to South	125 feet	6 feet	6 Metals
Trench 4 Upper-2	Brown CLAY and GRAVEL	North to South	258 feet	6 feet	2 SVOCs & 8 Metals
Trench-4 Lower-2	Coarse SLAG	North to South	260 feet	20 feet	2 SVOCs & 7 Metals
Trench-5 Lower	Brown SILT	East to West	20 feet	9 feet	5 Metals

# TABLE 4.5-2: Trench and Test Pit Parameters Above SCGs

Sample ID	Media Sampled	Trench Orientation (Start to End)	Distance from Trench Start	Sample Depth	Compounds and Analytes Detected Above SCGs
Trench-5 Upper	Red SILT	East to West	20 feet	2 feet	7 Metals
Trench-5 Lower-1	Brown SILT	East to West	75 feet	9 feet	1 SVOC & 5 Metals
Trench-5 Upper-1	White ASH	East to West	90 feet	2 feet	1 SVOC & 6 Metals
Trench-6 Lower	Brown SILT	East to West	18 feet	8 feet	6 Metals
Trench-6 Upper	Coarse SLAG	East to West	18 feet	4 feet	9 Metals
Trench-6 Lower-1	Brown SILT	East to West	85 feet	7 feet	6 Metals
Trench-6 Upper-1	Black CINDER	East to West	85 feet	3 feet	2 SVOCs & 9 Metals
Trench-7 Upper	BACKFILL	East to West	35 feet	4 feet	3 SVOCs & 7 Metals
Trench-7 Lower	Brown SILT and SAND	East to West	35 feet	12 feet	4 SVOCs & 5 Metals
Trench-7 Lower-1	Brown fine SAND	East to West	114 feet	16 feet	4 Metals
Trench-7 Upper-1	SLAG and ASH	East to West	114 feet	5 feet	4 Metals
Test Pit-1 Upper (2')	Black CINDER and SILT	NA	NA	2 feet	5 SVOCs & 8 Metals
Test Pit-1 Lower (4')	SAND and GRAVEL	NA	NA	4 feet	3 Metals
Test Pit-2 Upper (4')	SAND, GRAVEL and FILL	NA	NA	4 feet	4 Metals
Test Pit-2 Lower (20')	SAND and GRAVEL	NA	NA	20 feet	4 Metals
Test Pit-3 Upper (2')	Gray ASH	NA	NA	2 feet	6 Metals
Test Pit-3 Lower (5')	Brown SILT and CLAY	NA	NA	5 feet	6 Metals
Test Pit-4 Upper (7')	Black CINDER	NA	NA	7 feet	6 Metals
Test Pit-4 Lower (19')	Gray SILT and CLAY	NA	NA	19 feet	4 Metals

## TABLE 4.5-2: Trench and Test Pit Parameters Above SCGs

- Test Trench #7 at two (2) locations denoted as Trench-7 Upper (0.24 mg/kg) and Trench-7 Lower (1.3 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (1.0 mg/kg).

Chrysene was detected at concentrations exceeding its SCG of 0.4 mg/kg at seven (7) of 47 sampling locations, as follows.

- Test Trench #1 at two (2) locations denoted as Trench-1 Upper-1 (0.44 mg/kg) and Trench-1 Lower-3 (1.1 mg/kg).
- Test Trench #2 at one (1) location denoted as Trench-1 Lower-2 (1.2 mg/kg).
- Test Trench #3 at one (1) location denoted as Trench-3 Upper-2 (0.45 mg/kg).
- Test Trench #7 at two (2) locations denoted as Trench-7 Upper (0.41 mg/kg) and Trench-7 Lower (0.94 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (1.2 mg/kg).

Benzo(b)fluoranthene was detected at concentrations exceeding its SCG of 1.1 mg/kg at two (2) of 47 sampling locations, as follows.

- Test Trench #1 at one (1) location denoted as Trench-1 Lower-3 (1.2 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (1.4 mg/kg).

Benzo(a)pyrene was detected at concentrations exceeding its SCG of 0.061 mg/kg at 20 of 47 sampling locations, as follows.

- Test Trench #1 at four (4) locations denoted as Trench-1 Upper (0.34 mg/kg), Trench-1 Lower (0.28 mg/kg), Trench-1 Upper-1 (0.39 mg/kg) and Trench-1 Lower-3 (1.1 mg/kg).
- Test Trench #2 at three (3) locations denoted as Trench-2 Upper (0.07 mg/kg), Trench-2 Lower-2 (0.98 mg/kg) and Trench-2 Upper-1 (0.092 mg/kg).

- Test Trench #3 at five (5) locations denoted as Trench-3 Upper (0.14 mg/kg), Trench-3 Lower-1 (0.15 mg/kg), Trench-3 Upper-1 (0.25 mg/kg), Trench-3 Lower-2 (0.28 mg/kg) and Trench-3 Upper-2 (0.5 mg/kg).
- Test Trench #4 at two (2) locations denoted as Trench-4 Upper-2 (0.3 mg/kg) and Trench-4 Lower-2 (0.42 mg/kg).
- Test Trench #5 at two (2) locations denoted as Trench-5 Lower-1 (0.078 mg/kg) and Trench-5 Upper-1 (0.094 mg/kg).
- Test Trench #6 at one (1) location denoted as Trench-6 Upper-1 (0.37 mg/kg).
- Test Trench #7 at two (2) locations denoted as Trench-7 Upper (0.18 mg/kg) and Trench-7 Lower (0.85 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (0.86 mg/kg).

Dibenz(a,h)anthracene was detected at concentrations exceeding its SCG of 0.014 mg/kg or MDL at six (6) of 47 sampling locations, as follows.

- Test Trench #1 at two (2) locations denoted as Trench-1 Upper-1 (0.043 mg/kg) and Trench-1 Lower-3 (0.077 mg/kg).
- Test Trench #2 at one (1) location denoted as Trench-2 Lower-2 (0.19 mg/kg).
- Test Trench #3 at one (1) location denoted as Trench-3 Upper-2 (0.044 mg/kg).
- Test Trench #7 at one (1) location denoted as Trench-7 Lower (0.045 mg/kg)
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (0.048 mg/kg).

To summarize, five (5) semi-volatile organics were detected above SCGs at differing frequencies in all test trenches and test pits with the exception of Test Pit #2 through Test Pit #4. As presented in Table 4.5-2, SVOCs were detected in both fill materials (cinder, ash and to a lesser degree slag) and native soils beneath Parcels 1 and 2 of the site.

## 4.5.4 Metals in Subsurface Soils (Test Trenches & Pits)

Fifteen (15) metals were detected at concentrations above their respective SCGs. These included Aluminum, Arsenic, Barium, Beryllium, Calcium, Chromium, Copper, Magnesium, Manganese Mercury, Nickel, Selenium, Sodium and Zinc.

Aluminum was detected above its SCG of 33,000 mg/kg (SB) at 2 of 47 sampling locations, as follows.

- Test Trench #4 at one (1) location denoted as Trench-4 Lower-1 (39,500 mg/kg)
- Test Trench #6 at one (1) location denoted as Trench-6 Upper (41,700 mg/kg).

Arsenic was detected above its SCG of 7.5 mg/kg at 22 of 47 sampling locations, as follows.

- Test Trench #1 at four (4) locations denoted as Trench-1 Upper (25.6 mg/kg), Trench-1 Upper-1 (17.6 mg/kg), Trench-1 Lower-2 (25.9 mg/kg) Trench-1 Upper-2 (8.29 mg/kg)..
- Test Trench #2 at three (3) locations denoted as Trench-2 Upper (22.5 mg/kg), Trench-2 SS-2 (42.7 mg/kg) and Trench-2 Upper-1 (28.6 mg/kg).
- Test Trench #3 at three (3) locations denoted as Trench-3 Upper (36.0 mg/kg), Trench-3 Upper-1 (13.8 mg/kg) and Trench-3 Upper-2 (14.1 mg/kg).
- Test Trench #4 at four (4) locations denoted as Trench-4 Lower (10.3 mg/kg), Trench-4 Lower-1 (21.0 mg/kg), Trench-4 Upper-2 (10.0 mg/kg) and Trench-4 Lower-2 (10.9 mg/kg).
- Test Trench #5 at one (1) location denoted as Trench-5 Upper (44.5 mg/kg).
- Test Trench #6 at two (2) locations denoted as Trench-6 Upper (18.7 mg/kg) and Trench-6 Upper-1 (13.4 mg/kg).
- Test Trench #7 at two (2) locations denoted as Trench-7 Upper (13.7 mg/kg) and Trench-7 Upper-1 (8.72 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (51 mg/kg).

- Test Pit #3 at one (1) location denoted as Test Pit-3 Upper (9.91 mg/kg).
- Test Pit #4 at one (1) location denoted as Test Pit-4 Upper (24.1 mg/kg).

Barium was detected above its SCG of 300 mg/kg at 2 of 47 sampling locations, as follows.

- Test Trench #2 at one (1) location denoted as Trench-2 SS-2 (350 mg/kg).
- Test Trench #4 at one (1) location denoted as Trench-4 Lower-1 (348 mg/kg).

Beryllium was detected above its SCG of 0.16 mg/kg at 46 of 47 sampling locations and ranged in concentration from 0.201 mg/kg at sampling location Trench-1 Lower to 7.64 mg/kg at sampling location Trench-2 SS-2.

Calcium was detected above its SCG range of 130-35,000 mg/kg at 11 of 47 sampling locations, as follows.

- Test Trench #1 at two (2) locations denoted as Trench-1 Upper (35,100 mg/kg) and Trench-1 Lower-2 (85,800 mg/kg).
- Test Trench #2 at three (3) locations denoted as Trench-2 Upper (56,400 mg/kg), Trench-2 SS-2 (181,000 mg/kg) and Trench-2 Upper-1 (142,000 mg/kg).
- Test Trench #4 at four (4) locations denoted as Trench-4 Upper (68,700 mg/kg), Trench-4 Lower-1 (208,000 mg/kg), Trench-4 Upper-1 (65,100 mg/kg) and Trench-4 Lower-2 (93,400 mg/kg).
- Test Trench #6 at two (2) locations denoted as Trench-6 Upper (158,000 mg/kg) and Trench-6 Upper-1 (39,600 mg/kg)

Chromium was detected above its SCG of 50 mg/kg at one (1) of 47 sampling locations, as follows.

• Test Trench #4 at one (1) location denoted as Trench-4 Lower (106 mg/kg).

Copper was detected above its SCG of 25 mg/kg at 16 of 47 sampling locations, as follows.

- Test Trench #1 at two (2) locations denoted as Trench-1 Upper (31.4 mg/kg) and Trench-1 Upper-1 (71.7 mg/kg).
- Test Trench #3 at two (2) locations denoted as Trench-3 Upper (85.1 mg/kg) and Trench-3 Upper-1 (63.6 mg/kg).
- Test Trench #4 at two (2) locations denoted as Trench-4 Lower (149 mg/kg) and Trench-4 Upper-2 (43.2 mg/kg).
- Test Trench #5 at two (2) locations denoted as Trench-5 Lower (25.8 mg/kg) and Trench-5 Upper-1 (34.8 mg/kg).
- Test Trench #6 at three (3) locations denoted as Trench-6 Lower (26.5 mg/kg), Trench-6 Lower-1 (67.9 mg/kg) and Trench-6 Upper-1 (32.9 mg/kg).
- Test Trench #7 at one (1) location denoted as Trench-7 Upper (51.1 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (355 mg/kg).
- Test Pit #3 at two (2) locations denoted as Test Pit-3 Upper (25.1 mg/kg) and Test Pit-3 Lower (31.7 mg/kg).
- Test Pit #4 at one (1) location denoted as Test Pit-4 Upper (40.9 mg/kg).

Iron was detected at concentrations exceeding its SCG of 2,000 mg/kg at all sampling locations.

Magnesium was detected above its SCG range of 100-5,000 mg/kg at 10 of 47 sampling locations, as follows.

- Test Trench #2 at one (1) location denoted as Trench-2 Upper-1 (5,410 mg/kg).
- Test Trench #4 at six (6) locations denoted as Trench-4 Lower (6,940 mg/kg), Trench-4 Upper (6,670 mg/kg), Trench-4 Lower-1 (23,900 mg/kg), Trench-4 Upper-1 (5,260 mg/kg), Trench-4 Upper-2 (6,610 mg/kg) and Trench-4 Lower-2 (9,340 mg/kg).
- Test Trench #5 at one (1) location denoted as Trench-5 Upper (9,540 mg/kg).

- Test Trench #6 at one (1) location denoted as Trench-6 Upper (31,400 mg/kg).
- Test Pit #3 at one (1) location denoted as Test Pit-3 Lower (8,800 mg/kg).

Manganese was detected above its SCG range of 50-5,000 mg-kg at three (3) of 47 sampling locations, as follows.

- Test Trench #5 at one (1) location denoted as Trench-5 Upper (6,650 mg/kg).
- Test Trench #6 at two (2) locations denoted as Trench-6 Upper (6,430 mg/kg) and Trench-6 Upper 1 (6,740 mg/kg).

Mercury was detected above its SCG of 0.1 mg/kg at 11 of 47 sampling locations, as follows.

- Test Trench #1 at three (3) locations denoted as Trench-1 Lower (0.366 mg/kg), Trench-1 Upper-1 (0.165 mg/kg) and Trench-1 Lower-3 (0.213 mg/kg).
- Test Trench #2 at one (1) location denoted as Trench-2 Lower-2 (0.124 mg/kg).
- Test Trench #3 at one (1) location denoted as Trench-3 Upper (0.135 mg/kg).
- Test Trench #4 at two (2) locations denoted as Trench-4 Lower (0.210 mg/kg) and Trench-4 Upper (0.12 mg/kg).
- Test Trench #6 at two (2) locations denoted as Trench-6 Lower (0.16 mg/kg) and Trench-6 Lower-1 (0.13 mg/kg).
- Test Trench #7 at two (2) locations denoted as Trench-7 Upper (0.17 mg/kg) and Trench-7 Lower (0.12 mg/kg).

Nickel was detected above its SCG of 13 mg/kg at 30 of 47 sampling locations, as follows.

 Test Trench #1 at four (4) locations denoted as Trench-1 Upper (23.5 mg/kg), Trench-1 Upper-1 (16.4 mg/kg), Trench-1 Lower-1 (18.9 mg/kg) and Trench-1 Lower-3 (15.5 mg/kg).

- Test Trench #2 at three (3) locations denoted as Trench-2 SS-1 (15.5 mg/kg), Trench-2 SS-3 (15.6 mg/kg) and Trench-2 Lower-2 (14.5 mg/kg).
- Test Trench #3 at five (5) locations denoted as Trench-3 Lower (15.3 mg/kg), Trench-3 Upper (15.3 mg/kg), Trench-3 Lower-1 (15.1 mg/kg), Trench-3 Upper-1 (21.5 mg/kg) and Trench-3 Lower-2 (15.8 mg/kg).
- Test Trench #4 at four (4) locations denoted as Trench-4 Lower (136 mg/kg), Trench-4 Upper (15.9 mg/kg), Trench-4 Upper-1 (13.6 mg/kg) and Trench-4 Upper-2 (33.8 mg/kg).
- Test Trench #5 at three (3) locations denoted as Trench-5 Lower (14.7 mg/kg), Trench-5 Lower-1 (17.5 mg/kg) and Trench-5 Upper-1 (14.2 mg/kg).
- Test Trench #6 at three (3) locations denoted as Trench-6 Lower (15.3 mg/kg), Trench-6 Lower-1 (21.5 mg/kg) and Trench-6 Upper-1 (17.1 mg/kg).
- Test Trench #7 at two (2) locations denoted as Trench-7 Lower (13.2 mg/kg) and Trench-7 Lower-1 (14.7 mg/kg).
- Test Pit #1 at one (1) location denoted as Test Pit-1 Upper (93.5 mg/kg).
- Test Pit #2 at two (2) locations denoted as Test Pit-2 Upper (58.4 mg/kg) and Test Pit-2 Lower (91.3 mg/kg).
- Test Pit #3 at two (2) locations denoted as Test Pit-3 Upper (17.4 mg/kg) and Test Pit-3 Lower (30.3 mg/kg).
- Test Pit #4 at one (1) location denoted as Test Pit-4 Lower (20.4 mg/kg).

Selenium was detected above its SCG range of 2 mg/kg at 21 of 47 sampling locations, as follows.

- Test Trench #1 at three (3) locations denoted as Trench-1 Upper (2.44 mg/kg), Trench-1 Upper-1 (4.33 mg/kg) and Trench-1 Lower-2 (2.99 mg/kg)
- Test Trench #2 at three (3) locations denoted as Trench-2 Upper (2.18 mg/kg), Trench-2 SS-2 (4.830 mg/kg) and Trench-2 Upper-1 (3.920 mg/kg).

- Test Trench #3 at three (3) locations denoted as Trench-3 Upper (3.56 mg/kg), Trench-3 Upper-1 (4.440 mg/kg) and Trench-3 Upper-2 (2.91 mg/kg).
- Test Trench #4 at three (3) locations denoted as Trench-4 Lower-1 (2.39 mg/kg), Trench-4 Upper-2 (3.2 mg/kg) and Trench-4 Lower-2 (2.3 mg/kg).
- Test Trench #5 at three (3) locations denoted as Trench-5 Upper (12.0 mg/kg), Trench-5 Lower-1 (2.28 mg/kg) and Trench-5 Upper-1 (4.32 mg/kg).
- Test Trench #6 at two (2) locations denoted as Trench-6 Upper (2.67 mg/kg) and Trench-6 Upper-1 (5.510 mg/kg).
- Test Trench #7 at one (1) location denoted as Trench-7 Upper (2.81 mg/kg).
- Test Pit #1 at one (1) location denotes as Test Pit-1 Upper (7.1 mg/kg).
- Test Pit #3 at one (1) location denoted as Test Pit-3 Upper (2.16 mg/kg).
- Test Pit #4 at one (1) location denoted as Test Pit-4 Upper (4.53 mg/kg).

Sodium was detected above its SCG range of 6,000-8,000 mg/kg at two (2) of 47 sampling locations, as follows.

• Test Trench #2 at two (2) locations denoted as Trench-2 SS-2 (11,500 mg/kg) and Trench-2 Upper-1 (11,400 mg/kg).

Zinc was detected above its SCG of 20 mg/kg at 45 of 47 sampling locations. Zinc was detected in each of the test trenches and test pits and ranged in concentration from 26.5 mg/kg at Test Trench #7 to 949 mg/kg at Test Trench #3.

To summarize, metals were detected at concentrations exceeding SCGs in all of the test trenches and test pits with Arsenic (22 of 47), Beryllium (46 of 47), Iron (47 of 47), Nickel (30 of 47), Selenium (21 of 47) and Zinc (45 of 47) being detected at the highest frequencies. The frequency of metals detections above SCGs in the sampled trenches and pits is presented on Table 4.5-2. The table depicts that metals were detected in fill materials and native soils in all of the test trenches and test pits located on Parcels 1 and 2.

### 4.5.5 Subjective Observations and Analyses

The following pertinent subjective observations were made in the field during the course of the test trench and test pit investigations.

• **Test Trench No.1:** Slag exhibiting a sweet chemical type odor with noticeable staining was encountered at approximately one foot above native soils (± 16' bgs) at 74 to 80 feet north of the trench start with the odor becoming more noticeable as the trench was advanced nearer to the 80 foot mark. The impacted fill could no longer be observed beyond the 80 foot mark due to a rise in the surface topography, which precluded the excavator from attaining the necessary depth bgs required for observation of the impacted media. A sample of the impacted fill was not collected for laboratory analyses, but field instrumentation showed a PID reading of 17.4 ppm.

The sweet petroleum odor was again encountered at 17' bgs at 220 to 254 feet north of the trench starting point.

Groundwater with a slight sheen at its surface was encountered at 20 feet bgs, approximately 305 feet north of the trench starting point. The groundwater was encountered at the interface between native soils (silt and sand) and the overlying fill material (slag). A groundwater sample was collected from monitoring well CTM-10, which was installed down gradient of the trench as part of the RI. The sample was forwarded to the laboratory of record for analyses for TCL volatile and semi-volatile organics and TAL Metals. Analytical results show one (1) metal (sodium) at a concentration exceeding its SCG.

• **Test Trench No. 2:** Heavily stained native soils emitting a strong fuel oil type odor were encountered from 28 to 40 feet north of the trench start at approximately 9.5' bgs. A sample of the impacted media (identified as sample Trench-2 SS-1 on Tables 4.5 and 4.5.2) was collected for laboratory analyses for TCL volatile and semi-volatile organics and TAL Metals. Analytical results show one (1) VOC (acetone) and four (4) metals (beryllium, iron, nickel and zinc) at concentrations exceeding SCGs.

Slag, and to a lesser degree native soils emitting a sweet chemical type odor were observed at 4 to 8 feet bgs approximately 90 to 105 feet north of the trench

start. A sample of the impacted native soils underlying the slag (identified as sample Trench-2 SS-3 on Tables 4.5 and 4.5.2) was collected for laboratory analyses for TCL volatile and semi-volatile organics and TAL Metals. Analytical results show four (4) metals (beryllium, iron, nickel and zinc) at concentrations exceeding SCGs.

- **Test Trench No. 4**: Several sporadic and isolated pockets of coal tar, each approximately 8 to 10 inches in diameter, were encountered at 14 to 15' bgs approximately 145' south of the trench start. Headspace analysis conducted on the coal tar showed PID readings that ranged from 10 to 12 ppm. Samples of the coal tar were not collected for laboratory analyses. Sections of coal tar were not encountered within any remaining portions of the trench.
- **Test Pit No. 1:** Fuel oil contaminated silt and clay were encountered at approximately 10.5' bgs. Groundwater and petroleum free product were observed entering the pit at approximately 12' bgs.
- **Test Pit No. 3:** An old brick foundation was encountered at approximately 2' bgs.

# 4.6 Subsurface Soils (Soil Borings)

### 4.6.1 General

A total of twelve (12) soil borings were advanced as part of the RI. Subsurface soil samples were collected from 11 of the 12 borings and submitted for laboratory analyses. The borings where soil samples were collected are depicted on Figure 2 as CTM-1, CTM-2, CTM-3, CTM-5 through CTM-11 and CTM-13. Soil samples were not collected from boring CTM-1S, as this boring was solely advanced for the installation of a monitoring well.

The samples were analyzed for TCL volatile and semi-volatile organics and TAL metals. Analytical results were compared to site specific SCGs. Analytical results for compounds and analytes detected at concentrations exceeding SCGs are presented in Table 4.6. A summary of analytical results is presented in Table 4.6-1 in the Tables section of the report. Sampling depth intervals, type of material sampled and parameters which exceeded SCGs are presented in Table 4.6-2, which also includes

#### TABLE 4.6: Soil Boring Analytical Results Above SCGs VOCs, SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	NYSDEC	CTM-1	(15-17')	CTM-	2 (6-8')	CTM-	3 (2-4')	CTM-5	(10-12')	CTM-6	6 (8-10')	CTM-	7 (2-4')	CTM-	·8 (4-6')
	TAGM 4046	TAGM 4046	m	g/kg	mg	g/kg	mg	g/kg	mg	/kg	mg	g/kg	m	g/kg	mg	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier										
SVOC's																
Benzo(a)anthracene	0.224 or MDL	NA	0.0064	U	0.0054	U	0.13	J	0.0062	U	0.0059	U	0.55		0.0066	U
Chrysene	0.4	NA	0.013	U	0.011	U	0.15	J	0.013	U	0.012	U	0.56		0.014	U
Benzo(a)pyrene	0.061 or MDL	NA	0.0072	U	0.0061	U	0.13	J	0.007	U	0.0067	U	0.41		0.0075	U
Metals		·														
Arsenic	7.5 or SB	3-12	3.060		6.550		23.4		5.690		8.840		14.4		16.9	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.439	J	0.938		1.410		0.642		1.070		0.329	J	2.890	
Calcium	SB	130-35,000	2690		5560		46,800		5370		10900		3030		114,000	
Copper	25 or SB	1-50	15.9	J	25.9	J	81.4	J	14.2	J	32.1	J	37.0	J	11.8	J
Iron	2,000 or SB	2,000-550,000	16400		34300		169000		32300		31200		65600		97900	
Magnesium	SB	100-5,000	3370		5560		6110		3580		4430		2320		4870	
Nickel	13 or SB	0.5-25	14.9		29.8		15.3		15.6		21.7		16.6		6.440	
Selenium	2 or SB	0.1-3.9	0.399	U	0.337	U	4.250		0.556	J	2.260		0.337	U	0.420	U
Zinc	20 or SB	9-50	48.9		77.0		245		58.6		81.6		36.4		14.5	

	NYSDEC	NYSDEC	CTM-	9 (4-8')	CTM-1	0 (2-4')	CTM-1	1 (8-10')	CTM-13	8 (14-16')	DU	P #3	EQUIPE	BLANK#5	EQUIPE	BLANK#6
	TAGM 4046	TAGM 4046	m	g/kg	mg	j/kg	mg	j/kg	mg	g/kg	mg	g/kg	m	ig/l	m	ng/l
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Metals																
Beryllium	0.16 (HEAST) or SB	0-1.75	0.246	J	2.130		0.510	J	1.120		0.300	J	1.060	U	1.060	U
Calcium	SB	130-35,000	2010		117,000		3700		35,900		4580		1740	u	1740	u
Copper	25 or SB	1-50	11.2	J	27.7	J	14.2	J	2.960	J	12.6		0.739	U	0.739	U
Iron	2,000 or SB	2,000-550,000	23700		48400		17600		25800		27300		29.0	U	29.0	U
Magnesium	SB	100-5,000	2680		8950		3320		2910		3810		254	U	254	U
Nickel	13 or SB	0.5-25	14.0		10.8		15.3		1.900	J	17.3		5.550	U	5.550	U
Selenium	2 or SB	0.1-3.9	0.328	U	3.420		0.830	J	0.366	U	0.338	U	6.540	J	5.730	J
Zinc	20 or SB	9-50	50.7		74.6		55.0		24.3		36.1		8.110	U	8.110	U

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* -For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA - Not Applicable

mg/kg indicates mlligram per kilogram or parts per million (ppm) and mg/l indicates milligram per liter or parts per million (ppm)

HEAST - Health Effects Assessment Summary Tables

MDL indicates the laboratory's minimum detection limit

- * TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium. However, recent DEC Records of Decision (ROD) specify 10 ppm as the SCG.
- ** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium. However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.

*** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm

**** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs) SB- Site Background

information for borings advanced as part of the supplemental investigations of the IRM and Parcel 2.

#### 4.6.2 Volatile Organic Compounds in Subsurface Soils (Soil Borings)

Several volatile organic compounds were detected at concentrations exceeding the laboratory detection limit but below SCGs. The detected compounds were Acetone, Carbon Disulfide, Methyl tert-butyl Ether (MTBE), Methylene Chloride, 2-Butanone (MEK), Methylcyclohexane, Toluene and Isopropylbenzene.

#### 4.6.3 Semi-volatile Organic Compounds in Subsurface Soils (Soil Borings)

Three (3) SVOCs were detected above SCGs in the sampled soils. The SVOCs were detected in soil borings CTM-3 and CTM-7 and included Benzo(a)anthracene, Chrysene and benzo(a)pyrene.

Benzo(a)anthracene (0.55 mg/kg), Chrysene (0.56 mg/kg) and Benzo(a) pyrene (0.41 mg/kg)were detected above their respective SCGs from soils sampled from 2 to 4 feet bgs at soil boring CTM-7 (Parcel 2). Benzo(a)pyrene (0.13 mg/kg) was also detected above its SCG from soil sampled from 2 to 4 feet bgs at soil boring CTM-3 (Parcel 1). The SCGs for the detected compounds are 0.224 mg/kg or MDL for Benzo(a)anthracene, 0.4 mg/kg for Chrysene and 0.061 mg/kg or MDL for Benzo(a)pyrene.

#### 4.6.4 Metals in Subsurface Soils (Soil Borings)

Several metals were detected in the soil samples above the method and/or instrument detection limits. Of the metals detected, nine (9) were detected at concentrations exceeding their SCGs.

Arsenic was detected above its SCG of 7.5 mg/kg at 4 of 11 sampling locations. These were CTM-3 (23.4 mg/kg), CTM-6 (8.84 mg/kg), CTM-7 (14.4 mg/kg) and CTM-8 (16.9 mg/kg). CTM-3 is located on Parcel 1, CTM-7 and CTM-8 are located on Parcel 2 and CTM-6 is located on Parcel 3.

Beryllium was detected above its SCG of 0.16 mg/kg at all sampling locations with concentrations that ranged between 0.246 mg/kg at CTM-9 to 2.89 mg/kg at CTM-8.

Boring/ MW ID #	Boring Depth	Soil Sample Depth	Material Sampled	Compounds and Analytes Detected Above SCGs
	Boring	s Installed as P	art of the RI (Analyzed for VOCs, SVOC	s and Metals)
CTM-1	29'	15 to 17'	Gray Silt, Some Sand	4 Metals
CTM-1S	17'	NS	NA	NA
CTM-2	40'	6 to 8'	Cinder and Slag	6 Metals
CTM-3	28'	2 to 4'	Cinder and Slag (fuel type odor)	1 SVOC & 9 Metals
CTM-5	30'	10 to 12'	Brown Silt, trace sand	4 Metals
CTM-6	30'	8 to 10'	Silt and sand	7 Metals
CTM-7	30'	2 to 4'	Brown Sand and gravel	3 SVOCs & 6 Metals
CTM-8	30'	4 to 6'	Slag becoming silt and clay (wet)	4 Metals
CTM-9	18'	4 to 8'	Brown sand and gravel (brick noted)	4 Metals
CTM-10	32'	2 to 4'	Slag and ash	7 Metals
CTM-11	26'	8 to 10'	Brown silt (stained & fuel type odor)	4 Metals
CTM-13	32'	14 to 16'	Bluish green slag	4 Metals
Borings I	nstalled a	s Part of Supple	emental Investigation of the IRM (Analy	zed for VOCs and SVOCs)
SB-100	32'	14' to 16'	Silt, trace clay and gravel	None
SB-101	32'	NS	NA	NA
SB-101S	17'	15' to 17'	Sand, gravel, slag, silt and clay	1 SVOC
SB-102	30'	16' to 18'	Silt, little sand and clay	1 SVOC
SB-103	26'	14-16' & 22-24'	Silt and sand/Sand and gravel	None
SB-104	15'	NS	NA	NA
SB-105	30'	26' to 28'	Sand and gravel, trace silt	None
SB-105S	19'	17' to 19'	Silt, little sand and clay, trace gravel	None
Borings I	nstalled as	s Part of Supple	mental Investigation of Parcel 2 (Analy	zed for VOCs and SVOCs)
SB-200	28'	20' to 24'	Sand and gravel, some silt	None
SB-201	28'	26' to 28'	Silt, sand and gravel	None
SB-202	28'	20' to 22'	Sand, gravel, silt and clay (petro odor)	None
CTM-203	32'	16' to 18'	Sand and gravel (petro odor)	None
SB-204	10'	NS	NA	NA
CTM-205	30'	26' to 28'	Sand, little silt	None
SB-206	28'	10' to 12'	Silt, some clay, trace gravel	None
SB-207	28'	NS	NA	NA
CTM-208	16'	6' to 8'	Silt, sand and gravel	None
SB-209	16'	6' to 8'	Silt and clay	None
CTM-210	28'	22' to 24'	Silt and sand	None
SB-211	4.5'	NS	NA	NA
SB-211 (1)	8'	NS	NA	NA
SB-211 (2)	6.3'	NS	NA	NA
CTM-212	22'	10' to 12'	Sand, trace gravel and red brick	None
CTM-213	22'	NS	NA	NA
CTM-214	20'	2' to 4'	Cinders and slag	None
CTM-215	27'	20' to 22'	Silt and clay	None
CTM-216	22'	18' to 20'	Silt and clay	None

### TABLE 4.6-2: Soil Boring Sampling Depths, Media Sampled and Parameters Above SCGs

NS denotes that a soil sample was not collected for laboratory analyses

NA denotes Not Applicable

Calcium was detected above its SCG range of 130-35,000 mg/kg at 4 of 11 sampling locations. These were CTM-3 (46,800 mg/kg), CTM-8 (114,000 mg/kg), CTM-10 (117,000 mg/kg) and CTM-13 (35,900 mg/kg). CTM-3, CTM-10 and CTM-13 are located on Parcel 1. CTM-8 is located on Parcel 2.

Copper was detected above its SCG of 25 mg/kg at 5 of 11 sampling locations. These were CTM-2 (25.9 mg/kg), CTM-3 (81.4 mg/kg), CTM-6 (32.1 mg/kg), CTM-7 (37.0 mg/kg) and CTM-10 (27.7 mg/kg). CTM-2, CTM-3 and CTM-10 are located on Parcel 1. CTM-7 is located on Parcel 2. CTM-6 is located on Parcel 3.

Iron was detected above its SCG of 2,000 mg/kg at all sampling locations with concentrations that ranged between 16,400 mg/kg at CTM-1 to 169,000 mg/kg at CTM-3.

Magnesium was detected above its SCG range of 100-5,000 mg/kg at 3 of 11 sampling locations. These were CTM-2 (5,560 mg/kg), CTM-3 (6,110 mg/kg) and CTM-10 (8,950 mg/kg). CTM-2, CTM-3 and CTM-10 are all located on Parcel 1.

Nickel was detected above its SCG of 13 mg/kg at 8 of 11 sampling locations. These were CTM-1 (14.9 mg/kg), CTM-2 (29.8 mg/kg), CTM-3 (15.3 mg/kg), CTM-5 (15.6 mg/kg), CTM-6 (21.7 mg/kg), CTM-7 (16.6 mg/kg), CTM-9 (14.0 mg/kg) and CTM-11 (15.3 mg/kg. CTM-1, CTM-2, CTM-3, CTM-5 and CTM-11 are located on Parcel 1. CTM-7 and CTM-9 are located on Parcel 2. CTM-6 is located on Parcel 3.

Selenium was detected above its SCG of 2 mg/kg at 3 of 11 sampling locations. These were CTM-3 (4.25 mg/kg), CTM-6 (2.26 mg/kg) and CTM-10 (3.42 mg/kg). Selenium was also detected above its SCG in both QA/QC Equipment Blanks (see Table 4.6). CTM-3 and CTM-10 are located on Parcel 1. CTM-6 is located on Parcel 3.

Zinc was detected above its SCG of 20 mg/kg at 10 of 11 sampling locations. These were CTM-1 (48.9 mg/kg), CTM-2 (77.0 mg/kg), CTM-3 (245 mg/kg), CTM-5 (58.6 mg/kg), CTM-6 (81.6 mg/kg), CTM-7 (36.4 mg/kg), CTM-9 (50.7 mg/kg), CTM-10 (74.6 mg/kg), CTM-11 (55.0 mg/kg) and CTM-13 (24.3 mg/kg). CTM-1, CTM-2, CTM-3, CTM-5, CTM-10, CTM-11 and CTM-13 are located on Parcel 1. CTM-7 and CTM-9 are located on Parcel 2. CTM-6 is located on Parcel 3.

#### 4.6.5 Subjective Observations and Analyses

The following pertinent subjective observations and analyses were made during the course of the advancement of the soil borings.

- Soil Boring CTM-1: PID readings ranging from 24 to 144 ppm were obtained from soils collected from 15' to 22' bgs within the IRM backfilled excavation. The soils emitted a paint type odor and saturated soils exhibited sheens. A soil sample from 15' to 17' bgs in this boring was submitted to the laboratory of record for analyses of TCL volatile and semi-volatile organics and TAL Metals. Analytical results showed 4 metals at concentrations exceeding SCGs (see Tables 4.6 and 4.6-2).
- Soil Boring CTM-1S: PID readings ranging from 2.4 to 380 ppm were obtained from soils collected from 10 to 17' bgs within the IRM backfilled excavation. The soils emitted a paint type odor. Soil samples were not collected for analysis from this boring as the purpose of the boring was to install a groundwater monitoring well. See section 4.7 for analytical results of sampled groundwater from this well.
- **Soil Boring CTM-3:** A PID reading of 11.2 ppm was obtained from fill (cinder and slag) emitting a sulfur and fuel oil type odor at 2' to 4' bgs. The impacted fill was sampled and analyzed for TCL volatile and semi-volatile organics and TAL Metals. Analytical results depict one (1) SVOC and 9 metals at concentrations exceeding SCGs (see Tables 4.6 and 4.6-2).
- Soil Boring CTM-9: A PID reading of 2.2 ppm was obtained from wet soils that emitted a slight fuel odor at the 14 to 16' bgs sampling interval. Due to the low PID readings, a sample was not submitted to the laboratory of record for analyses. Groundwater sampled from this well (see Section 4.7) showed the metals Iron, Manganese and Sodium at concentrations exceeding their respective SCGs.
- Soil Boring CTM-11: Heavily stained soils emitting a fuel type odor were observed in soils sampled from 8 to 26' bgs. The soils displayed PID readings that ranged from 14.5 to 102 ppm. A representative soil sample from 8' to 10' bgs was submitted to the laboratory for analyses for TCL volatile and semi-

volatile organics and TAL Metals. Analytical results depict four (4) metals at concentrations exceeding SCGs (see Tables 4.6 and 4.6-2).

• Soil Boring CTM-13: Soil samples collected from 14 to 26' bgs were heavily stained and emitted fuel oil type odors. PID readings ranged from 14.5 to 102 ppm. A representative sample from 14' to 16' bgs was submitted to the laboratory of record for analyses for TCL volatile and semi-volatile organics and TAL Metals. Analytical results depict four (4) metals at concentrations exceeding SCGs (see Tables 4.6 and 4.6-2).

#### 4.7 Groundwater

#### 4.7.1 General

Twelve (12) groundwater monitoring wells (denoted as CTM-1, CTM-1S, CTM-2, CTM-3, CTM-5 to CTM-11 and CTM-13) were installed as part of the RI. Groundwater samples were collected from each newly installed well and from two existing wells (MW-3 (ESI) and MW-8 (ESI)) installed by others as part of historic investigations of the site. The groundwater samples were analyzed for TCL volatile and semi-volatile organics and TAL metals. Analytical results were compared to site specific SCGs which consist of NYSDEC Groundwater Standards and Guidance Values. Analytical results exceeding SCGs are presented in Table 4.7. Full analytical summary results are presented in Table 4.7-1 in the Tables section of the report.

#### 4.7.2 Volatile Organic Compounds in Groundwater

A total of nine (9) VOCs were detected in groundwater and were confined to groundwater sampled from monitoring wells CTM-1, CTM-1S and MW-3 (ESI). CTM-1 and CTM-1S are located in the IRM backfilled excavation on northeastern portions of Parcel 1. MW-3 (ESI) is located on Parcel 2. It should be noted that one VOC (methylene chloride) was detected above its SCG in the QA/QC Equipment Blank only.

Benzene (17 ug/l), Ethyl Benzene (39 ug/l), o-Xylene (22 ug/l) and Isopropylbenzene (6.9 ug/l) were detected above SCGs in groundwater sampled from monitoring well CTM-1.

#### TABLE 4.7: Groundwater Analytical Results Above SCGs VOCs, SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	СТ	M-1	СТІ	M-1S	СТ	M-3	СТ	M-5	CT	⁻ M-6	СТ	M-7	СТ	M-8
	Groundwater Standard ⁽¹⁾	u	g/l	u	g/l	u	g/l	u	g/l	u	g/I	u	g/l	u	g/l
COMPOUND	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's															
Acetone	50 (GV)	3.3	U	66		3.3	U	3.3	U	3.3	U	3.3	U	3.3	U
Methyl tert-butyl Ether	10	0.36	U	27		0.36	U	0.36	U	0.36	U	0.36	U	0.36	U
Benzene	1	17	J	9.9		0.24	U	0.24	U	0.24	U	0.24	U	0.24	U
Toluene	5	1.6	J	110		0.39	U	0.39	U	0.39	U	0.39	U	0.39	U
Ethyl Benzene	5	39		110		0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
m/p-Xylenes	5	1.9	J	250		0.96	U	0.96	U	0.96	U	0.96	U	0.96	U
o-Xylene	5	22		180		0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
Styrene	5	0.34	U	22		0.34	U	0.34	U	0.34	U	0.34	U	0.34	U
lsopropylbenzene	5	6.9		38		0.33	U	0.33	U	0.33	U	0.33	U	0.33	U
SVOC's					· · · · · · · · · · · · · · · · · · ·										
Naphthalene	10(GV)	6.5	U	83		0.270	U	0.270	U	0.270	U	0.270	U	0.270	U
Metals															
Iron	300	3690		412		2230		477		1480		461		86.1	J
Manganese	300	2990		1680		303		478		2560		6870		6680	
Selenium	10	5.2	U	5.240	U	10.8		5.900	J	5.240	U	5.240	U	5.240	U
Sodium	20,000	16800		14500		10200		42900		21200		22400		27300	
	NYSDEC	СТ	M-9	СТ	M-10	СТ	M-11	СТІ	M-13	MW-	3(ESI)	MW-	8(ESI)	EQIUP.	BLANK
	Groundwater Standard ⁽¹⁾		g/l	u	g/l	u	g/l	u	g/l		ig/l		g/l	u	g/l
COMPOUND	ug/I	Posult	Oualifier	Posult	Oualifier	Posult	Qualifier	Posult	Qualifier	Posult	Qualifier	Posult	Oualifier	Posult	Oualifier

	NYSDEC	СТ	M-9	СТІ	И-10	СТІ	<b>M-11</b>	СТІ	<b>VI-13</b>	MM-:	B(ESI)	MW-	B(ESI)	EQIUP	. BLANK
	Groundwater Standard ⁽¹⁾	u	g/l	u	g/I	u	g/l	u	g/l	u	g/I	u	g/l	u	ıg/l
COMPOUND	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's															
Methylene Chloride	5	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	5.9	
Benzene	1	0.24	U	0.24	U	0.24	U	0.24	U	2.0	J	0.24	U	0.24	U
Isopropylbenzene	5	0.33	U	0.33	U	0.33	U	0.33	U	6.6		0.33	U	0.33	U
Metals															
Cobalt	5	2.380	U	2.380	U	5.4	J	2.380	U	2.4	U	2.380	U	2.4	U
Iron	300	2050		80.5	J	1530		62.4	J	21700		444		38.4	J
Manganese	300	734		20.3		3670		9.820	J	1200		15.8		1.3	J
Selenium	10	5.240	U	5.240	U	13.9	J	10.8		5.2	U	5.240	U	5.2	U
Sodium	20,000	151000	J	26900	J	8300	J	25600	J	39200	J	8640	J	189	U

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, New York State Department of Environmental Conservation, June 1998 and Addendum, April 2000.

Concentrations expressed in ug/l (micrograms per liter) or parts per billion (ppb)

**Qualifiers** 

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

GV - denotes Guidance Value

(ESI) Monitoring Well previously installed by Empire Soils Investigations

NA - Not Applicable

Acetone (66 ug/l), Methyl tert-butyl ether (27 ug/l), Benzene (9.9 ug/l), Toluene (110 ug/l), Ethyl benzene (110 ug/l), m/p Xylenes (250 ug/l), o-Xylene (180 ug/l), Styrene (22 ug/l) and Isopropylbenzene (38 ug/l) were detected above their SCGs in groundwater sampled from monitoring well CTM-1S.

Benzene (2.0 ug/l) and Isopropylbenzene (6.6 ug/l) were detected above their SCGs in groundwater sampled from monitoring well MW-3 (ESI).

The VOC detections at CTM-1 and CTM-1S are associated with contaminant sources removed during the course of the IRM for Parcel 1. The VOC detections at MW-3 (ESI) and subsurface conditions encountered in Test Pit #1 led to supplemental subsurface investigations on Parcel 2 which are further discussed in Section 4.9.

# 4.7.3 Semi-volatile Organic Compounds in Groundwater

Naphthalene was the only SVOC detected above its SCG of 10 ug/l. Naphthalene was detected in groundwater sampled from monitoring well CTM-1S at a concentration of 83 ug/l.

### 4.7.4 Metals in Groundwater

Five (5) metals were detected in groundwater above their respective SCGs. These included Cobalt, Iron, Manganese, Selenium and Sodium.

Cobalt was detected above its SCG (5 ug/l) from groundwater sampled from monitoring well CTM-11 (5.4 ug/l) only.

Iron was detected above its SCG (300 ug/l) at 10 locations. These included CTM-1 (3,690 ug/l), CTM-1S (412 ug/l), CTM-3 (2,230 ug/l), CTM-5 (477 ug/l), CTM-6 (1,480 ug/l), CTM-7 (461 ug/l), CTM-9 (2,050 ug/l), CTM-11 (1,530 ug/l), MW-3 (ESI) (21,700 ug/l) and MW-8 (ESI) (444 ug/l).

Manganese was detected above its SCG (300 ug/l) at 10 locations. These included CTM-1 (2,990 ug/l), CTM-1S (1,680 ug/l), CTM-3 (303 ug/l), CTM-5 (478 ug/l), CTM-6 (2,560 ug/l), CTM-7 (6,870 ug/l), CTM-8 (6,680 ug/l), CTM-9 (734 ug/l), CTM-11 (3,670 ug/l) and MW-3 (ESI) (1,200 ug/l).

Selenium was detected above its SCG (10 ug/l) at 3 locations. These included CTM-3 (10.8 ug/l), CTM-11 (13.9 ug/l) and CTM-13 (10.8 ug/l).

Sodium was detected above its SCG (20,000 ug/l) at 8 locations. These included CTM-5 (42,900 ug/l), CTM-6 (21,200 ug/l), CTM-7 (22,400 ug/l), CTM-8 (27,300 ug/l), CTM-9 (151,000 ug/l), CTM-10 (26,900 ug/l), CTM-13 (25,600 ug/l) and MW-3 (ESI) 39,200 ug/l).

#### 4.8 Supplemental Investigations of the IRM

#### 4.8.1 General

As discussed in Section 2.1.15, an IRM was conducted in the northeastern portion of Parcel 1 to address the discovery of buried drums and an underground storage tank. Upon excavation and disposal of the vessels and their contents, adjacent subsurface soils were examined for the presence of contaminants employing PID headspace analysis and organoleptic (sight and smell) perception. Due to the anticipated volume of impacted soils uncovered employing the above methods, it was decided that the excavation would be backfilled with the impacted soils and that a layer of polyethylene would be installed at the bottom of the excavation to separate impacted soils from nonimpacted soils until an remedial strategies were developed and evaluated for the situation.

Further investigation of the IRM included installation of two monitoring wells in the backfilled excavation during the RI phase of the investigation and installation of eight (8) soil borings and six (6) monitoring wells to better define the extent of contamination in the IRM Supplemental Investigation. Additionally, as part of the supplemental investigation, monitoring wells CTM-1 and CTM-1S were re-sampled to determine the severity of impacts to groundwater.

The sampled soils and groundwater were analyzed in the laboratory for TCL volatile and semi-volatile organics. The subsurface soils analytical results were compared to NYSDEC soil cleanup guidelines and groundwater results were compared to NYSDEC Groundwater Standards.

#### 4.8.2 Subsurface Soils

Seven (7) subsurface soil samples were collected from the eight (8) borings for laboratory analyses. A soil sample was not collected for analyses from soil boring SB-104 because a soil sample was collected from SB-103, which was located adjacent to SB-104. The samples were collected from soil borings SB-100 (14-16'), SB-101S (15-17'), SB-102 (16-18'), SB-103 (14-16'), SB-103 (22-24'), SB-105 (17-19') and SB-105S (17-19'). The boring locations are depicted on the IRM Supplemental Investigation Sampling Locations Map in Figure 5.

Results of the sampling event shows a total of seven (7) VOCs and 11 SVOCs detected at concentrations above the laboratory detection limit. Of the detected VOC and SVOC compounds, only one (1) SVOC was detected at a concentration exceeding its SCG. Benzo(a)pyrene was detected in soils sampled from SB-101 (0.12 mg/kg) and SB-102 (0.16 mg/kg). The SCG for benzo(a)pyrene is 0.061. The full analytical results are presented in Table 4.8.2 (Soil Boring Analytical Results Summary-IRM Investigation) located in the Tables section of the report.

### 4.8.3 Groundwater

Groundwater samples were collected from monitoring wells CTM-100, CTM-101, CTM-105 and CTM-1. Groundwater from monitoring well CTM-1 was not sampled in conjunction with the sampling of the other wells, but was sampled at a later date when wells installed as part of the Parcel 2 Supplemental Investigation were sampled. Monitoring wells CTM-101S, CTM-104 and CTM-105S were not sampled as these wells were dry during the sampling event. The monitoring well locations are depicted in Figure 5.

Results of the sampling show a total of four (4) VOCs and three (3) SVOCs detected at concentrations above the laboratory detection limit. Of the detected compounds, Benzene was the only compound detected slightly above its SCG of 1 ug/l in monitoring wells CTM-101 (4.0 ug/l), CTM-105 (3.4 ug/l) and CTM-1 (1.7 ug/l). Groundwater analytical results above SCGs are presented in Table 4.8.3. The full set of groundwater analytical results summaries are presented in Table 4.8.3-1 within the Tables section of this report.

#### TABLE 4.8.3: Groundwater Analytical Results Above SCGs IRM Investigation VOCs and SVOCs (Validated Data) South Troy Industrial Park C. T. Male Project No. 04.9138

	NYSDEC	CTM	<i>I</i> -100	CTN	1-101	CTN	1-105	FD (C1	FM-105)	СТ	·M-1	EQUIPME	NT BLANK	FIELD	BLANK
COMPOUND	Groundwater Standard (1)	u	g/L	u	g/L	uç	g/L	u	g/L	u	g/L	u	g/L	u	g/L
	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs															
Benzene	1	0.39	U	4.0	J	3.4	J	0.39	U	1.7	J	0.39	U	0.39	U

(1) TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, New York State Department of Environmental Conservation, June 1998 and Addendum, April 2000.

Concentrations expressed in ug/l (micrograms per liter) or parts per billion (ppb)

<u>Qualifiers</u>

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

GV - denotes Guidance Value

(ESI) Monitoring Well previously installed by Empire Soils Investigations

NA - Not Applicable

NS - Not Sampled

#### 4.8.4 Subjective Observations and Analyses

There was no evidence of subjective impacts to subsurface soils employing PID headspace analyses and organoleptic perception during the course of the installation of the soil borings in the IRM area.

#### 4.9 Supplemental Investigation of Parcel 2

#### 4.9.1 General

A total of 19 soil borings (10 of which were converted to monitoring wells) were advanced on Parcel 2 for the collection of soil and groundwater samples to aid in the delineation of contaminants beneath the Parcel and to determine a contaminant source.

The sampled soils and groundwater were analyzed in the laboratory for TCL volatile and semi-volatile organics. Subsurface soil results were compared to SCGs and groundwater results were compared to NYSDEC Groundwater Standards.

#### 4.9.2 Subsurface Soils

Thirteen (13) subsurface soil samples were collected for laboratory analyses from the soil borings. The samples were collected from soil borings SB/CTM-200 (20-24'), SB-201 (26-28'), SB-202 (20-22'), SB/CTM-203 (16-18'), SB/CTM-205 (26-28'), SB-206 (10-12'), SB/CTM-208 (6-8'), SB-209 (6-8'), SB/CTM-210 (22-24'), CTM-212 (10-12'), CTM-214 (2-4'), CTM-215 (20-22') and CTM-216 (18-20'). The boring locations are depicted on Figure 6.

Results of the sampling event show a total of 11 VOCs and 12 SVOCs detected at concentrations above the laboratory detection limit. Of the detected compounds, none were at concentrations exceeding their respective SCGs. Analytical results are presented in Table 4.9.2.

### 4.9.3 Groundwater

Nine groundwater samples were collected from the newly installed wells and from monitoring wells installed as part of the RI of the site. Samples were collected from newly installed monitoring wells CTM-203, CTM-208, CTM-212, CTM-213, CTM-214,

CTM-215 and CTM-216 and from existing monitoring wells CTM-8 and CTM-9. The monitoring well locations are depicted on Figure 6.

Results of the sampling show a total of 11 VOCs and six (6) SVOCs at concentrations above the laboratory detection limits. Of the detected compounds, three (3) VOCs were detected at concentrations above SCGs. These included Methylene chloride at CTM-208 (18 ug/l vs. SCG of 5 ug/l); Benzene at CTM-214 (23 ug/l vs. SCG of 1 ug/l); and Ethyl benzene at CTM-208 (15 ug/l vs. SCG of 5 ug/l).

Groundwater analytical results above SCGs are presented in Table 4.9.3. Groundwater analytical summary results are presented in Table 4.9.3-1 located in the Tables section of this report.

#### 4.9.4 Subjective Observations and Analyses

The following subjective observations and analyses were made during the course of the advancement of soil borings for the supplemental investigation of Parcel 2.

- **Soil Boring CTM-200:** Stained soils with a petroleum type odor were observed at 14 to 28' bgs. PID readings ranged from 1.9 to 23.1 ppm. A soil sample was collected from the 20 to 24 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.
- **Soil Boring CTM-202:** Stained soils with a petroleum type odor were observed at 20.9 to 21.1' bgs. The soils emitted a PID reading of 5.5 ppm. A soil sample was collected from the 20 to 22 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.
- Soil Boring CTM-203: Stained soils with a slight petroleum type odor were observed at 14 to 18' bgs. PID readings ranged from 4.2 to 5.8 ppm. A soil sample was collected from the 16 to 18 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.

#### TABLE 4.9.3: Groundwater Analytical Results Above SCGs Parcel 2 Supplemental Investigation VOCs and SVOCs (Validated Data) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	CTN	1-208	CTN	1-214	FD (CTM-214)		
COMPOUND	Groundwater Standard ⁽¹⁾	uç	g/L	uç	g/L	ug/L		
	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	
VOCs	-							
Methylene Chloride	5	18		0.43	U	0.43	U	
Benzene	1	0.39	U	23		20		
Toluene	5	0.36	U	1.2	J	0.98	J	
Ethyl Benzene	5	0.45	U	15		12		

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations,

New York State Department of Environmental Conservation, June 1998 and Addendum, April 2000.

Concentrations expressed in ug/I (micrograms per liter) or parts per billion (ppb)

Qualifiers

- $\ensuremath{\mathsf{U}}$  The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.
- B The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.
- P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.
- * For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
- GV denotes Guidance Value
- (ESI) Monitoring Well previously installed by Empire Soils Investigations
- NA Not Applicable
- NS Not Sampled

- Soil Boring CTM-206: PID readings of 17.9 ppm and 12.7 ppm were obtained from soils sampled from 6-8' bgs and 10-12' bgs, respectively. Soils did not display evidence of staining or emit any peculiar odors. A soil sample was collected from the 10 to 12 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.
- **Soil Boring SB-211:** Stained soils with a petroleum type odor were observed from soils collected at 3.6' bgs. The impacted soils appeared to lie atop a buried concrete slab. A soil sample was not collected for laboratory analyses.
- Soil Boring CTM-212: Stained wet soils with a petroleum type odor were observed at 15 to 17' bgs. Soils sampled from 10 to 20' bgs displayed PID readings that ranged from 11.5 to 28.1 ppm. A soil sample was collected from the 10 to 12 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.
- **Soil Boring CTM-214:** Soils sampled at two foot intervals to a depth of 20 feet bgs exhibited PID readings that ranged from 5.6 to 109.3 ppm. A soil sample was collected from the 2 to 4 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.
- **Soil Boring CTM-215:** Damp soils sampled at 15 to 17' bgs and 18 to 20' bgs exhibited a mild petroleum type odor and displayed PID readings of 4.9 ppm and 0.7 ppm, respectively. A soil sample was collected from the 20 to 22 foot interval for laboratory analyses for VOCs and SVOCs. Analytical results did not show any of the analyzed compounds at concentrations exceeding SCGs.

### 4.10 Ground Penetrating Radar (GPR) Survey

The GPR survey consisted of utilizing a Subsurface Interface Radar (SIR-300) to traverse the surface area of Parcel 2 in an attempt to located buried structures. The SIR-300 was set to detect subsurface anomalies to a depth of 10 feet below the ground surface (bgs). The parcel was traversed with the SIR-300 employing a grid pattern with five to ten foot spacing intervals, which is sufficient to detect all large capacity underground storage tanks (USTs) of 500 gallons or greater.

Results of the GPR survey did not identify the presence of subsurface anomalies.

#### 4.11 Fish and Wildlife Impact Analysis (FWIA)

C.T. Male completed a Fish and Wildlife Impact Analysis (FWIA) (dated August 10, 2004) pursuant to the October 1994 NYSDEC FWIA for Inactive Hazardous Waste Sites (see Exhibit 4).

The FWIA report concluded that no further steps need to be taken in the Fish and Wildlife Impact Analysis. The FWIA is presented as Exhibit 4.

#### 4.12 Summary of Extent of Contamination

#### 4.12.1 General Overview

This section summarizes compounds and analytes that were detected at concentrations exceeding SCGs per environmental media type (i.e., surface soils, subsurface soils and groundwater) and includes media that was sampled as part of the RI and subsequent supplemental investigations. A summary discussion is provided relative to the IRM.

#### 4.12.2 IRM

As discussed in the report, the IRM involved the excavation and disposal of buried liquid containing vessels from the northeastern portion of Parcel 1. Soils which were impacted by the IRM were left in place and were not transported off-site for disposal. Rather, soil borings and monitoring wells were installed within and around the IRM excavation to aid in the collection of soil and groundwater samples to aid in determining the severity and extent of contamination.

#### 4.12.3 Background Surface Soils

Three surface soil samples were collected from off-site locations to evaluate background levels for reference purposes only.

#### 4.12.4 Surface Soils

Twenty-one (21) surface soil samples were collected from the project site for analyses for TCL SVOCs and metals. Analytical results were compared to SCGs. Six (6) SVOCs and 14 metals were detected at concentrations exceeding SCGs.

Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene and Dibenz(a,h)anthracene were detected above SCGs at different frequencies at nine (9) sampling locations on Parcel 1, four (4) sampling locations on Parcel 2, and the only sampling location on Parcel 3.

Arsenic, Barium, Beryllium, Cadmium, Calcium, Chromium, Copper, Iron, Magnesium, Manganese, Mercury, Nickel, Selenium and Zinc were detected above SCGs at different frequencies at all of the sampling locations and included the detection of 14 metals on Parcel 1, nine (9) metals on Parcel 2 and five (5) metals on Parcel 3.

Based on the foregoing, it appears that SVOCs and metals are present at concentrations exceeding SCGs in surface soils on each parcel of the site.

### 4.12.5 Subsurface Soils (Test Trenches and Test Pits)

Forty-seven subsurface soil samples were collected and analyzed for TCL VOCs and SVOCs and TAL metals from seven (7) test trenches located on Parcel 1 (39 samples collected) and four (4) test pits located on Parcel 2 (8 samples collected) of the project site. Trenches and test pits were not advanced on Parcel 3. Analytical results were compared to SCGs. One (1) VOC, five (5) SVOCs and 13 metals were detected at concentrations exceeding SCGs.

Acetone was the only VOC detected at a concentration slightly above its SCG in native soils sampled from Test Trench #2, located on Parcel 1. Although acetone is a common laboratory contaminant, it was not detected above SCGs in the QA/QC equipment blank and the result was not qualified in the DUSR.

Benzo(a)anthracene, Chrysene, Benzo(b)fluoranthene, Benzo(a)pyrene and Dibenz(a,h)anthracene were detected at concentrations slightly above SCGs at various sampling locations in all of the Test Trenches on Parcel 1 and Test Pit #1 (Parcel 2). SVOCs were not detected above SCGs from samples collected from Test Pit #'s 2 through 4, which are located on Parcel 2 of the site. The SVOCs were detected in both native soils and overlying fill material.

The metals of Aluminum, Arsenic, Barium, Beryllium, Calcium, Chromium, Copper, Iron, Magnesium, Manganese Mercury, Nickel, Selenium, Sodium and Zinc were detected at varying frequencies at concentrations exceeding SCGs at various sampling locations in all of the test trenches and test pits. The metals were detected in both native soils and overlying fill material.

Based on the foregoing, it appears that SVOCs and metals exceeding SCGs are present in subsurface native soils and fill material across Parcels 1 and 2 of the project site.

#### 4.12.6 Subsurface Soils (Soil Borings)

Thirty-one (31) subsurface soil samples were collected from a total of 38 soil borings advanced across the site as part of the RI and supplemental investigations of the IRM and Parcel 2. The type of media (native soils and/or fill material) that was sampled for analyses from all of the borings is presented in Table 4.6-2. To summarize, samples of native soils beneath Parcel 1 were collected for analyses from soil borings CTM-1, CTM-5, and CTM-11 as part of the RI of the Parcel and from all of the borings advanced as part of the supplemental investigation of the IRM. Samples collected from the remaining borings on Parcel 1 (CTM-2, CTM-3, CTM-10 and CTM-13) consisted of fill material that was primarily composed of cinder and slag. Soil samples collected from beneath Parcel 2 as part of the RI and supplemental investigations consisted primarily of native soils (sand, gravel, silt and clay) with the exception of two samples of fill material (cinders and slag) collected from soil borings CTM-8 and CTM-214. The sample collected from soil boring CTM-6 on Parcel 3 consisted of native soils (silt and sand).

Subsurface soil samples collected as part of the RI (i.e., CTM-1, CTM-2, etc.) were analyzed for TCL VOCs and SVOCs and TAL Metals. Samples collected as part of the supplemental investigations (i.e., CTM-100 and CTM-200 series) were analyzed for TCL VOCs and SVOCs, only. Analytical results were compared to site specific SCGs. Three (3) SVOCs and nine (9) metals were detected above SCGs. VOCs were not detected above SCGs. Benzo(a)anthracene, Chrysene and benzo(a)pyrene were detected at different frequencies at concentrations slightly above SCGs at CTM-3 (Parcel 1)and CTM-7 (Parcel 2), only. The sample submitted for analyses from CTM-3 consisted of fill material (cinders and slag) while the sample submitted from CTM-7 consisted of sand and gravel, but was collected at a depth of only 2' to 4' bgs, and may be indicative of fill material.

Arsenic, Beryllium, Calcium, Copper, Iron, Magnesium, Nickel, Selenium and Zinc were detected at different frequencies above SCGs at all RI sampling locations. Beryllium and iron were detected above SCGs at all sampling locations. Zinc was detected at 10 of 11 sampling locations on all Parcels. Nickel was detected at 8 of 11 sampling locations on all Parcels. Copper was detected at 5 of 11 sampling locations on all Parcels. Arsenic and calcium were each detected at 4 of 11 sampling locations on Parcels 1 and 2 only. Magnesium was detected at 3 of 11 sampling locations on Parcel 1 only.

From the foregoing, the following conclusions can be made:

- SVOCs were detected above SCGs in native soils (perhaps fill) and fill material at only two boring locations (see Table 4.6-2), although SVOCs were also detected above SCGs at several locations within native soils and fill material from the test trench and test pit sampling activities (see Table 4.5-2), thus indicating the presence of SVOCs in both native soils and fill materials throughout the project site.
- Metals were detected in samples from several borings across the site, and were present at differing frequencies at concentrations exceeding SCGs in native soils and fill material (see Table 4.6-2). Metals were also detected at concentrations exceeding SCGs in soils and fill material sampled during the advancement of the test trenches and test pits (see Table 4.5-2).

### 4.12.7 Groundwater

Twenty-six (26) groundwater samples were collected from monitoring wells installed as part of the RI and supplemental investigations of the site and from existing wells installed by others as part of historical investigations of the site. Groundwater sampled as part of the RI was analyzed for TCL VOCs and SVOCs and TAL Metals. Groundwater sampled as part of the supplemental investigations was analyzed for TCL VOCs and SVOCs, only. Analytical results were compared to site specific SCGs. Results of the groundwater sampling events show 10 VOCs, one (1) SVOC and five (5) metals at concentrations above SCGs.

VOCs detected above SCGs included Acetone, Methylene chloride, Methyl tert-butyl ether (MTBE), Benzene, Toluene, Ethyl Benzene, m/p Xylenes, o-Xylene, Styrene and Ten (10) of the 10 VOCs were detected in groundwater at Isopropylbenzene. monitoring well CTM-1S, which is screened in the shallow aquifer of the backfilled IRM excavation area of Parcel 1. Four (4) of the 10 VOCs were detected in groundwater at monitoring well CTM-1, which is located in the deep aquifer of the IRM excavation area. Two (2) of the 10 VOCs were detected in groundwater at monitoring well CTM-214, which is a shallow well located in the western portion of Parcel 2, and monitoring well MW-3 (ESI), which is a deep well located in the central portion of Parcel 2 that has since been abandoned. One (1) VOC each was detected in groundwater at monitoring wells CTM-101 (benzene), CTM-105 (benzene) and CTM-208 (methylene chloride). Monitoring wells CTM-101 and CTM-105 were each installed immediately down gradient of the IRM excavation and are deep wells. Monitoring well CTM-208 is a shallow well located on northern portions of Parcel 2. No VOCs were detected in groundwater sampled from monitoring well CTM-6 on Parcel 3.

Naphthalene (SVOC) was detected above its SCG in groundwater at monitoring well CTM-1S, which is a shallow well located in the IRM excavation area of Parcel 1. SVOCs were not detected above SCGs in groundwater from monitoring wells which were sampled on Parcels 2 and 3.

Metals detected above SCGs included Cobalt, Iron, Manganese, Selenium and Sodium. The metals were detected at different frequencies in all monitoring wells sampled as part of the RI, including existing monitoring wells MW-3 (ESI) and MW-8 (ESI).

Based on the foregoing, VOC detections are limited to groundwater that was sampled from both shallow and deep monitoring wells in and near the IRM area of Parcel 1, and at three (3) locations on Parcel 2. Metals were detected at varying frequencies in all RI wells and select existing wells on all three Parcels. As such, it can be concluded that metals are present in groundwater throughout the project site at concentrations exceeding SCGs and that VOCs are present above SCGs in groundwater in the immediate vicinity of the IRM excavation and at select locations on Parcel 2.

#### 5.0 CONTAMINANT FATE AND TRANSPORT

#### 5.1 General Overview

The site related contaminants include VOCs and SVOCs that are associated with petroleum based fuels or solvents, and metals. Compounds detected in surface and subsurface soils and groundwater are presented in Table 5.1-1. Chemical compounds and analytes which were detected at concentrations below SCGs are not included in the table.

The fate and transport of the contaminants are based on the physical and chemical properties of the compounds and the site characteristics. This section defines and discusses the general characteristics of the contaminants which affect the fate and transport, the specific characteristics of the contaminants identified at the site, the site conditions which impact fate and transport, the transport off-site of the contaminants in the groundwater and soil vapor, and the fate of the contaminants in terms of transformation and degradation.

#### 5.2 Definition of Relevant Properties

Due to their similar composition, the site contaminants have some general characteristics and behavior in common. Characteristics which affect fate and transport include density, organic carbon/water partition coefficient, solubility in water, volatility, and degradability.

Table 5.2 presents various properties of the known and potential contaminants of concern. The specific gravity of a contaminant describes the weight of the contaminant relative to water, where one is the weight of water. The volatile organic compounds typically have a specific gravity value less than 1, while semi-volatile compounds and metals generally have specific gravity value greater than 1. Therefore, separate phase volatile organic compounds would have a tendency to float within the upper portions of the aquifer whereas the semi-volatile organic compounds and metals would tend to migrate vertically downward. At the subject site, the depth to shallow groundwater ranged from approximately 6 to 20 feet below grade while the depth to deep groundwater ranged from approximately 22 to 35 feet bgs. However, none of the

# TABLE 5.1-1: Contaminants of ConcernSouth Troy Industrial ParkC.T. Male Project No. 04.9138

Media	Class	Contaminant of Concern	Frequency of Exceeding SCGs (Project Site)	Frequency of Exceeding SCGs (Parcel 1)	Frequency of Exceeding SCGs (Parcel 2)	Frequency of Exceeding SCGs (Parcel 3)
Surface Soils	SVOCs	Benzo(a)anthracene	9 of 21	6 of 16	3 of 4	1 of 1
(mg/kg)		Chrysene	11 of 21	7 of 16	3 of 4	1 of 1
		Benzo(b)fluoranthene	6 of 21	3 of 16	2 of 4	1 of 1
		Benzo(k)fluoranthene	6 of 21	3 of 16	3 of 4	0 of 1
		Benzo(a)pyrene	14 of 21	9 of 16	4 of 4	1 of 1
		Dibenz(a,h)anthracene	8 of 21	5 of 16	3 of 4	0 of 1
	Metals	Arsenic	17 of 21	12 of 16	4 of 4	1 of 1
		Barium	4 of 21	4 of 16	0 of 4	0 of 1
		Beryllium	21 of 21	16 of 16	4 of 4	1 of 1
		Cadmium	1 of 21	1 of 16	0 of 4	0 of 1
		Calcium	10 of 21	10 of 16	0 of 4	0 of 1
		Chromium	2 of 21	2 of 16	0 of 4	0 of 1
		Copper	14 of 21	11 of 16	2 of 4	1 of 1
		Iron	21 of 21	16 of 16	4 of 4	1 of 1
		Magnesium	13 of 21	12 of 16	1 of 4	0 of 1
		Manganese	1 of 21	1 of 16	0 of 4	0 of 1
		Mercury	6 of 21	3 of 16	2 of 4	0 of 1
		Nickel	14 of 21	11 of 16	3 of 4	0 of 1
		Selenium	14 of 21	13 of 16	1 of 4	0 of 1
		Zinc	21 of 21	16 of 16	4 of 4	1 of 1
Subsurface Soils	VOCs	Acetone	1 of 47	1 of 39	0 of 8	NA
(Trenches/Pits)	SVOCs	Benzo(a)anthracene	14 of 47	13 of 39	1 of 8	NA
(mg/kg)		Chrysene	7 of 47	6 of 39	1 of 8	NA
		Benzo(b)fluoranthene	2 of 47	1 of 39	1 of 8	NA
		Benzo(a)pyrene	20 of 47	19 of 39	1 of 8	NA
		Dibenz(a,h)anthracene	6 of 47	5 of 39	1 of 8	NA
	Metals	Aluminum	2 of 47	2 of 39	0 of 8	NA
		Arsenic	22 of 47	19 of 39	3 of 8	NA
		Barium	2 of 47	2 of 39	0 of 8	NA
		Beryllium	46 of 47	38 of 39	8 of 8	NA
		Calcium	11 of 47	11 of 39	0 of 8	NA
		Chromium	1 of 47	1 of 39	0 of 8	NA
		Copper	16 of 47	12 of 39	4 of 8	NA
		Iron	47 of 47	39 of 39	8 of 8	NA
		Magnesium	10 of 47	9 of 39	1 of 8	NA
		Manganese	3 of 47	3 of 39	0 of 8	NA

# TABLE 5.1-1: Contaminants of ConcernSouth Troy Industrial ParkC.T. Male Project No. 04.9138

Media	Class	Contaminant of Concern	Frequency of Exceeding SCGs (Project Site)	Frequency of Exceeding SCGs (Parcel 1)	Frequency of Exceeding SCGs (Parcel 2)	Frequency of Exceeding SCGs (Parcel 3)
		Mercury	11 of 47	11 of 39	0 of 8	NA
Subsurface Soils		Nickel	30 of 47	24 of 39	6 of 8	NA
(Trenches/Pits)		Selenium	21 of 47	18 of 39	3 of 8	NA
(mg/kg)		Sodium	2 of 47	2 of 39	0 of 8	NA
		Zinc	45 of 47	38 of 39	7 of 8	NA
Subsurface Soils	SVOCs	Benzo(a)anthracene	1 of 31	0 of 14	1 of 16	0 of 1
(Soil Borings)		Chrysene	1 of 31	0 of 14	1 of 16	0 of 1
(mg/kg)		Benzo(a)pyrene	4 of 31	3 of 14	1 of 16	0 of 1
	Metals	Arsenic	4 of 11	1 of 7	2 of 3	1 of 1
		Beryllium	11 of 11	7 of 7	3 of 3	1 of 1
		Calcium	4 of 11	3 of 7	1 of 3	0 of 1
		Copper	5 of 11	3 of 7	1 of 3	1 of 1
		Iron	11 of 11	7 of 7	3 of 3	1 of 1
		Magnesium	3 of 11	3 of 7	0 of 3	0 of 1
		Nickel	8 of 11	5 of 7	2 of 3	1 of 1
		Selenium	3 of 11	2 of 7	0 of 3	1 of 1
		Zinc	10 of 11	7 of 7	2 of 3	1 of 1
Groundwater	VOCs	Acetone	1 of 26	1 of 12	0 of 13	0 of 1
(ug/l)		Methylene Chloride	1 of 26	0 of 12	1 of 13	0 of 1
		MTBE	1 of 26	1 of 12	0 of 13	0 of 1
		Benzene	5 of 26	4 of 12	1 of 13	0 of 1
		Toluene	1 of 26	1 of 12	0 of 13	0 of 1
		Ethyl Benzene	3 of 26	2 of 12	1 of 13	0 of 1
		m/p Xylenes	1 of 26	1 of 12	0 of 13	0 of 1
		o-Xylene	2 of 26	2 of 12	0 of 13	0 of 1
		Styrene	1 of 26	1 of 12	0 of 13	0 of 1
		Isopropylbenzene	2 of 26	2 of 12	0 of 13	0 of 1
	SVOCs	Naphthalene	1 of 26	1 of 12	0 of 13	0 of 1
	Metals	Cobalt	1 of 13	1 of 8	0 of 4	0 of 1
		Iron	10 of 13	6 of 8	3 of 4	1 of 1
		Manganese	10 of 13	5 of 8	4 of 4	1 of 1
		Selenium	3 of 13	3 of 8	0 of 4	0 of 1
		Sodium	8 of 13	3 of 8	4 of 4	1 of 1

contaminants found at the site are present at levels that would suggest a separate phase.

TABLE 5.2: F	hysical and	Chemical	Properties of	f Site Contamina	nts
Compound	Density	Kow ⁽¹⁾	Koc ⁽²⁾	Water	Henry's Law
				Solubility ⁽³⁾	Constant ⁽⁴⁾
Volatile Organic Comp	ounds:			JJ	
Acetone	0.79	-0.24	2.2	Miscible	5.69E-05
Methylene Chloride	1.318	1.25	21	20,000	1.31E-03
MTBE	0.74	1.1	12	5,000	1.24E-03
Benzene	0.879	2.12	83	1.75E+06	5.59E-03
Toluene	0.87	2.69	300	515	2.20E+01
Ethylbenzene	0.867	3.15	1100	1.52E+05	6.43E-03
O-Xylene	0.8802	2.95	363	1.52E+02	5.27E-03
M-Xylene	0.8642	3.20	363	1.58E+02	7.00E-03
P-Xylene	0.8610	3.18	363	1.98E+02	7.10E-03
Styrene	0.91	3.02	520	310	2.75E-3
Isopropylbenzene	0.862	4.10	948	50	NDA
Semi-Volatile Organic			1 000 000	1.000 00	0.0000.00
Benzo(a)anthracene	1.274	5.90	1,380,000	1.20E-02	2.30E-06
Benzo(a)pyrene	1.351	6.00	5,500,000	3.90E-03	2.40E-06
Benzo(b)fluoranthene	NDA	6.57	550,000	1.40E-02	1.20E-05
Benzo(k)fluoranthene	NDA	6.85	550,000	5.50E-04	1.04E-03
Chrysene	1.274	5.61	200,000	1.80E-03	7.26E-20
Naphthalene	1.145	3.36	1,300	3.00E+01	4.60E-04
Dibenzo(a,h)anthracene	1.282	6.19	1,668,800	5.00E-03	7.33E-09
Metals:		•			NDA
Aluminum	7.7	NDA	NA	NDA	NDA
Arsenic	5.73	NA	NA	0.3	NA
Beryllium	1.848	NA	NA	NDA	NA
Cadmium	8.65	NDA	NA	NDA	NDA
Calcium	1.55	NDA	NA	2.5E-06	NDA
Chromium	7.14	NA	NA	0.2	NA
Cobalt	8.92	NDA	NA	Insoluble	NDA
Copper	8.94	NA	NA	0.12	NA
Iron	7.86	NA	NA	NDA	NA
Magnesium	1.74	NA	NA	NDA	NA
Manganese	7.43	NA	NA	NDA	NA
Mercury	13.53	NA	NA	2.0E-21	NA
Nickel	8.9	NA	NA	6.1	NA
Selenium	4.79	NA	NA	NDA	NA
Sodium	0.97	NA	NA	Soluble	NA
Joululli	0.01	1 1/ 1	1 1/ 1	Solubic	1 47 7

TABLE 5.2: P	TABLE 5.2: Physical and Chemical Properties of Site Contaminants											
Compound	Density	Kow ⁽¹⁾	Koc ⁽²⁾	Water	Henry's Law							
				Solubility ⁽³⁾	Constant ⁽⁴⁾							
Zinc	7.14	NA	NA	1.0E-4	NA							

<u>References:</u> Superfund Public Health Evaluation Manual; EPA/540/189/002; Hawley's Condensed Chemical Dictionary, Twelfth Edition; Howard, Philip H., Fate and Exposure Data for Organic Chemicals. Vols. 1&2. 1989; and Robert C. Knox and others, Subsurface Transport and Fate Processes, 1993; Wilson & Clarke, Hazardous Waste Site Soil Remediation, Theory and Application of Innovative Technologies, 1994; various internet sources searched per chemical compound.

NDA denotes no data available in cited references.

NA denotes not applicable.

- (1) Log octanol/water partition coefficient.
- (2) Organic carbon partition coefficient. Often a range is available rather than a single number.
- (3) mg/l at 25 degrees C.
- (4) Henry's Law constant,  $atm-m^3$  / mole.

#### 5.3 Contaminant Persistence

The organic carbon/water partition coefficient (Koc) indicates the tendency of an organic contaminant (VOCs and SVOCs) to sorb onto soil or sediment particles. Where the Koc is not experimentally available, it can be calculated based on the log octanol/water partition coefficient. The Koc multiplied by the organic carbon content of a given soil gives the estimated absorption partition coefficient (K_d) for that soil. Some absorption may occur between contaminants and inorganic soil or sediment particles, particularly clay. However, experimental data indicates that the absorption of nonionic, undissociated chemicals to inorganic soil or sediment is low. Once the sorption sites in soil are used up, mobility will usually increase to some extent.

Mobility is expected to be lowest in surface soils, which tend to have some organic carbon. Below several feet in depth, the organic carbon content of soils is likely to be very low, and even a compound with a high Koc will be moderately mobile. However, fill containing organic materials such as ash, cinders or building rubble may have organic carbon levels that equal or exceed surface soils. The VOCs have organic carbon partition coefficients that range from 2.2 for acetone to 1,100 for ethylbenzene, indicating low to medium sorption and medium to high mobility. The SVOCs have a wide range of organic carbon partition coefficients, from 5,500,000 for benzo(a)pyrene, indicating medium to high sorption and low to medium mobility in soil, to 1,300 for

naphthalene, indicating low sorption and high mobility.

The mobility of metals is affected by geologic conditions, and is often gauged by the environment's oxidation/reduction (redox) potential. As the pH and dissolved oxygen vary, the solubility of metals can change substantially. Generally, but not always, reductive conditions favor the solid phase of the metal, so a change toward reducing conditions can precipitate soluble metals, making them immobile.

Water solubility indicates the tendency of a compound to dissolve in and travel in water. The site contaminants (except for metals) have a wide range of solubilities, but are generally soluble. When contaminant concentrations are above approximately ten percent of the water solubility, a separate phase will tend to form. The water solubility values of the volatile and semi-volatile organic contaminants in groundwater vary, but are on the order of 50 to 1,750,000,000 mg/l (VOCs) and 0.00055 to 30 mg/l (SVOCs). Since the concentration of the contaminants detected at the site are much less than their water solubility values, separate phase layers are not likely to exist within the site. The majority of the metals of concern, with the exception of arsenic, calcium, chromium, copper, mercury, nickel and zinc, are nearly insoluble in water.

Volatility in diffuse aqueous conditions such as occur in groundwater at the subject site is quantified by Henry's constant ( $K_h$ ). The rate of volatilization increases as  $K_h$ increases. Volatility increases with decreases in atmospheric pressure, increase in temperature and when the compound vapor pressure is low relative to saturation. The contaminants of concern (except for metals, which are not volatile) consist of volatile and semi-volatile organic compounds, which will volatilize to some degree when unsaturated vapor, such as soil gas or the open atmosphere, are present. VOC contaminants in surface soil thus volatilize quickly to the atmosphere. The density of the VOCs is typically lighter than water, and so these compounds typically migrate vertically within the vadose zone due to capillary forces. In the subsurface soils, these compounds commonly dissolve in the groundwater in the saturated and vadose zone. The VOCs dissolved in groundwater tend to volatilize into the vadose zone.

Due to the chemical composition of metals, they do not typically biodegrade. The lighter petroleum hydrocarbon contaminants biodegrade readily. The heavier semi-volatile organic compounds biodegrade at a slower rate, primarily under anaerobic conditions. Biodegradation of VOCs and SVOCs in soil/groundwater has been found

to occur under aerobic and to a lesser extent anaerobic conditions, such as occurs in groundwater. The presence of acclimatized microbes, which are likely to occur within the site, enhances biodegration of VOCs and SVOCs. Acclimatized microbes are soil micro-organisms which have adapted themselves to the contaminants by producing enzymes to withstand toxic effects and to allow metabolism of the contaminants. Addition of nutrients and oxygen would be expected to increase the rate of biotic degradation.

#### 5.4 Contaminant Migration

The potential routes of contaminant migration are through groundwater and the atmosphere. Depending on their solubility, contaminants could dissolve in groundwater and be transported in the direction of groundwater flow. Contaminants present in the vapor phase in the unsaturated soil and fill zone above the water table could disperse into the open atmosphere or into structures constructed at the site. The contaminant dispersal would depend on its volatility and the depth of soil/fill cover. Contaminants (SVOCs and metals) present in surface soils could be transported to the atmosphere should this media be disturbed or through displacement of this media by excessive winds.

#### 5.4.1 Groundwater Migration

Because the site is underlain with VOCs, SVOCs and metals having densities greater to, or lesser than water, there may be migration of contaminants occurring in the upper portions of the shallow aquifer and along the top of the lower, less permeable silt layer of the shallow aquifer. It is expected that the lighter VOCs would migrate in the direction of the groundwater flow. Similar migration patterns for the heavier semi-VOCs may occur, but could also be influenced by the surface topography of the underlying silt layer. The detected metals are for the most part insoluble in water and would tend to adsorb and absorb to soil and/or fill particles, thus making it difficult for the metals to migrate with groundwater. Metals that are soluble in water (such as sodium) would readily migrate with groundwater. Based on monitoring well data, groundwater at the site appears to be flowing in an overall westerly direction towards the Hudson River.

Generally, groundwater contamination consists of low level VOCs (nine total) and SVOCs (one total) that were detected in the vicinity of the IRM and at two locations on Parcel 2 and Metals (five total) that were detected in groundwater sampled on Parcels 1 and 2. Based on groundwater flow direction, the contaminants will migrate towards the Hudson River within the shallow and deep aquifers.

#### 5.4.2 Atmospheric Migration

Site contaminants (VOCs and SVOCs) in the soil vapor will diffuse slowly upward and horizontally to unsaturated soil vapor. At the soil surface, where an impermeable barrier does not exist, contaminants in the surface soil vapor will diffuse to the atmosphere. The rate of diffusion into the atmosphere depends on the differential in vapor saturation and on the atmospheric pressure. Under natural soil conditions, the differential is expected to be low within the soil. At the soil/atmosphere interface, the differential can change frequently, with great increases in differential causing contaminants to transport rapidly from surface soil to the atmosphere. Site contaminants which may volatilize from the site soils to the atmosphere will disperse or abiotically degrade, with rates dependent on wind speed and levels of atmospheric radicals, respectively. Since the levels of contaminants are relatively low, VOC and SVOC contaminants in the atmosphere are not expected to accumulate at detectable levels under existing conditions. Metals do not exhibit volatility and therefore would not likely enter the atmosphere unless site soils were disturbed such that dust particles with metals adhered to them enter the atmosphere.

#### 6.0 EXPOSURE ASSESSMENT

#### 6.1 Qualitative Exposure Assessment

The purpose of the qualitative exposure assessment is to evaluate the potential for human exposure from site related contamination without any additional remedial action. In performing the qualitative exposure assessment, the potential site related contaminants were identified, and the actual or potential exposure pathways, the potentially exposed populations and the extent of actual or potential exposure were evaluated.

The potential site related contaminants were identified as those contaminants detected in various media at the site above NYSDEC regulatory levels including the NYSDEC TAGM 4046 soil cleanup objectives and the NYSDEC groundwater standards and/or guidance values, as applicable. The potential site related contaminants that have been identified in various media at the site are presented in Table 5.1-1.

Potential exposure pathways for site contaminants are a function of the contaminant, the affected media, contaminant location and the potentially impacted population. The potential exposure routes and pathways include the following:

- dermal contact and/or ingestion of potentially contaminated soil on-site;
- dermal contact and/or ingestion of potentially contaminated soil off-site, generated from storm water runoff leaching contaminants from on-site and transporting and depositing them down gradient of the site;
- dermal contact and/or ingestion of potentially contaminated groundwater generated from potential leaching of contaminants during storm water infiltration/percolation and then migrating with groundwater; and
- inhalation of dust and/or vapor emissions transported by wind, or within enclosed structures.

The potential impacted populations at the site and vicinity include residents in the neighboring community, site visitors, trespassers on the site, workers engaged in subsurface excavation or other ground disturbance activity and construction workers during impending future site development.

Several metals and semi-volatile organic compounds were detected in surface soil at concentrations exceeding SCGs. The concentrations of these contaminants of concern may warrant remedial action in portions of the site, as they are present within surface soil that is readily accessible to dermal contact, ingestion or inhalation. Furthermore, disturbance of the surface soils is likely should the site undergo future development. If this is the case, development activities could create airborne contaminants that may be inhaled. The potential for dermal contact (including ingestion and inhalation) with exposure to the impacted surface soil and the associated impact is, therefore, anticipated to be high.

Several metals and semi-volatile organic compounds, as well as one volatile organic compound, were detected in subsurface soil and fill materials at concentrations exceeding SCGs. The concentrations of these contaminants of concern may warrant remedial action in portions of the site that are slated for future development. Disturbance of the subsurface soils and fill materials during construction activities could potentially create airborne contaminants that may be inhaled and/or ingested. The potential for dermal contact, inhalation and ingestion of the impacted subsurface soil and fill material is, therefore, anticipated to be high.

Groundwater impacts consisted of several metals and volatile organic compounds, as well as one semi-volatile organic compound, which were above NYSDEC groundwater standard and guidance values. Considering that the depth to groundwater is greater than 3 feet below grade, the potential for dermal contact through exposure to groundwater and the associated impact is anticipated to be low, unless groundwater is encountered and subsequently disturbed during impending future construction activities. Ingestion of the contaminated groundwater is unlikely since the area surrounding the site is serviced by public water and no private water supply wells used for drinking water are known to exist.

#### 7.0 SUMMARY AND CONCLUSIONS

#### 7.1 Summary

The site investigation work tasks have been completed in substantial conformance with the Final Site Investigation Work Plan dated August 31, 2004. Any deviations to the final approved work plan have been described within the body of this report. In addition to the tasks set forth within the Work Plan, an IRM and supplemental investigations of the IRM and Parcel 2 were also conducted as part of this investigation. The following provides an overview of the RI of the project site.

#### 7.1.1 Site Background

The project site consists of three (3) separate parcels of undeveloped land situated within the South Troy Industrial Park. The project site consisted of farmland up until the late 1800's when it was developed into the lower works of the Burden Iron Works. Iron manufacturing by-products and construction and demolition debris generated by the City of Troy have historically been deposited on the site as fill material to bring low lying western portions of the site in the vicinity of the Hudson River to grade with remaining portions of the site. Fill materials observed during the course of the RI included slag, cinder, ash, brick, construction and demolition debris, and differing fill soils consisting primarily of sand and gravel.

Extensive environmental investigations have been conducted on the site since 1986. The investigations included the advancement of soil borings, test pits and trenches and the installation of monitoring wells to aid in the collection of media samples for laboratory analyses and to characterize subsurface conditions beneath the project site. Additionally, several samples of "slag mountain" have been collected for laboratory analyses to determine if the slag could be used as backfill for the site.

Results of the past investigations revealed the presence of select VOCs, SVOCs and metals in groundwater and SVOCS and metals in surface and subsurface soils at concentrations exceeding regulatory action levels. Additionally, coal tar was discovered beneath the present New Penn facility. The coal tar was subsequently remediated under the auspices of the NYSDEC Voluntary Cleanup Program in 2000

and 2001. Analytical results for samples collected of "slag mountain' did not reveal the presence of hazardous constituents within this media.

#### 7.1.2 Physical Characteristics of the Project Site

The site consists of three (3) parcels of undeveloped land underlain with fill materials that range in thickness from four (4) to 32 feet bgs. Overall, the fill material slopes to greater thicknesses near the Hudson River on western portions of the site. The fill present beneath Parcel 1 consists primarily of slag, cinder, ash, brick, construction and demolition debris, and varying intermingled soils consisting primarily of sand and gravel. Fill underlying Parcel 2 consists primarily of slag, cinders and ash that are intermingled with sand and gravel. Fill underlying parcel 3 is primarily made up of silt, sand, cinder and slag. The thickness of fill material on Parcel 2 of the site deepens and converges within central portions of the Parcel constituting a trough type feature that may represent a former stream channel. Bedrock, in the form of shale, was encountered during previous investigations on all parcels of the site at depths that ranged from 35 to 58.5 feet bgs. Soils underlying the fill material consist primarily of silts with varying percentages of sand, gravel and clay. Groundwater was observed atop this native silt layer and is referenced as shallow groundwater. A sand and gravel water bearing unit is located beneath the native silt layer at select locations across the site and is referenced as deep groundwater.

Groundwater contour maps were generated from water level measurements collected on November 14 and 21, 2005. Overall, site wide groundwater flows westerly towards the Hudson River. Groundwater beneath Parcel 1 was encountered at the fill material and native soil interface. Shallow groundwater flow within Parcel 2 converges into the trough type feature in the central portion of the parcel. Deep groundwater flow direction on Parcel 2 is towards the northwest, where it eventually changes flow direction and proceeds in a westerly direction towards the Hudson River.

#### 7.1.3 Survey of Public and Private Wells

According to officials from the Rensselaer County Health Department, the project site and its surrounding area are serviced by public water furnished by the City of Troy. Private water wells are not located on the project site or its vicinity.

# 7.1.4 Ground Penetrating Radar (GPR) Survey

The GPR survey consisted of utilizing a Subsurface Interface Radar (SIR-300) to traverse the surface area of Parcel 2 in an attempt to located buried structures. The SIR-300 was set to detect subsurface anomalies to a depth of 10 feet below the ground surface (bgs). The parcel was traversed with the SIR-300 employing a grid pattern with five to ten foot spacing intervals, which is sufficient to detect all large capacity underground storage tanks (USTs) of 500 gallons or greater.

Results of the GPR survey did not identify the presence of subsurface anomalies.

#### 7.1.5 Slag Sampling

Three samples of slag material and two samples of a fine light-grey material were collected from "slag mountain" for analysis for the 8 RCRA Metals.

Sampling results show all analytes at concentrations below SCGs with the exception of Selenium, which was detected within the sampled fine light-grey material. Selenium was detected at this sampling location at a concentration of 2.52 mg/kg, which is slightly above its RSCO of 2 mg/kg but below the Eastern USA Background range of 0.1-3.9 mg/kg.

### 7.1.6 Fish and Wildlife Impact Analysis (FWIA)

C.T. Male completed a Fish and Wildlife Impact Analysis (FWIA) (dated August 10, 2004) pursuant to the October 1994 NYSDEC FWIA for Inactive Hazardous Waste Sites.

The FWIA report concluded that no further steps need to be taken in the Fish and Wildlife Impact Analysis.

#### 7.1.7 Investigations of Lands Adjoining the Project Site

Environmental investigations were conducted by others on the Former Sperry Warehouse Site (adjoins Parcel 2) and of the Former King Fuels North (The Alamo) (adjoins Parcels 1 and 2). Results of the investigations show several petroleum related compounds and metals detected above regulatory levels in soils and groundwater sampled at the Former Sperry Warehouse Site, while several metals and SVOCs in soils

and several metals in groundwater were detected at concentrations above regulatory levels at the Former King Fuels North (The Alamo).

#### 7.1.8 Interim Remedial Measure

An IRM was conducted to address the discovery of buried liquid containing vessels beneath northeastern portions of Parcel 1. The vessels were excavated and disposed off-site along with the liquids found within them. Subjective analyses of subsurface soils in the vicinity of the buried vessels showed evidence of impacts. The soils were left in place and the severity of impacts to soils and groundwater in the vicinity of the IRM were further investigated by the installation of soil borings and monitoring wells to aid in the collection of samples for laboratory analyses. The result of the investigation shows subsurface soils and groundwater impacted by VOCs, SVOCs and metals at concentrations exceeding their SCGs; with the impacts being localized to the immediate vicinity of the tank and drums. The highest concentration of VOCs were present in groundwater sampled from monitoring wells CTM-1 and CTM-1S, which are located within the IRM backfilled excavation. Low level detections (above SCGs) of benzene in groundwater were encountered at monitoring wells CTM-101 and CTM-105, which are located in the vicinity of, and hydraulically down gradient of, the IRM excavation.

### 7.1.9 Supplemental Investigation of Parcel 2

Additional soil borings and monitoring wells were advanced on Parcel 2 to further delineate known subsurface soil and groundwater contaminants discovered during the RI. The result of the investigation showed low levels of VOCs above SCGs in groundwater at two monitoring well locations. No VOCs and SVOCs were present at concentrations exceeding SCGs from soils sampled from the soil borings. Based on both the analytical results for the sampled media and the groundwater flow direction beneath the parcel, the Sperry Warehouse appears to be a contributor to the contaminants uncovered on the parcel during the course of this investigation and historic investigations conducted by others.

#### 7.1.10 Nature and Extent of Contamination

The primary contaminants of concern at the site are metals and SVOCs in surface and subsurface soils and fill material, and metals and VOCs in groundwater. Additionally,

petroleum related contaminants and contaminants displaying paint-like odors were subjectively observed and analyzed during the course of the investigation of the project site. The following summarizes the nature and extent of contamination for the project site on a parcel by parcel basis.

#### Parcel 1

The following summarizes the nature and extent of contaminants in Parcel 1 of the project site.

- Several SVOCs and metals were detected at varying frequencies above their respective SCGs in all surface soil sampling locations on Parcel 1. Based on the foregoing, it can be concluded that surface soils throughout Parcel 1 are impacted with SVOCs and metals at concentrations exceeding SCGs.
- One VOC and several SVOCs and metals were detected at varying frequencies above their respective SCGs from all subsurface soil/fill sampling locations on Parcel 1. The contaminants were detected in both native soils and overlying fill material, indicating that fill material and native soils beneath Parcel 1 are impacted by SVOCs and metals, and one (1) VOC.
- One (1) SVOC and several VOCs and metals were detected at varying frequencies above their respective SCGs from all groundwater sampled on Parcel 1. The VOCs and SVOC in groundwater are associated with the tank and drums that were removed from the northeastern portion of the Parcel.
- Subjective evidence of contamination was observed during the RI and IRM investigations. Subjective impacts were observed and qualitatively analyzed from native soils and fill material within Test Trench #'s 1, 2 and 4 and soil borings CTM-1, CTM-1S, CTM-3, CTM-11 and CTM-13.
- Impacted soils are present within the backfilled IRM excavation area.

#### Parcel 2

The following summarizes the nature and extent of contaminants in Parcel 2 of the project site.

- Several SVOCs and metals were detected at varying frequencies above their respective SCGs from all surface soil sampling locations on Parcel 2. Based on the foregoing, it can be concluded that surface soils throughout Parcel 2 are contaminated with SVOCs and metals at concentrations exceeding SCGs.
- Several SVOCs and metals were detected at varying frequencies above their respective SCGs from subsurface soil/fill sampled from test pits and soil borings on Parcel 2. The contaminants were detected in both native soils and overlying fill material, thus indicating that fill material and native soils beneath Parcel 2 are impacted by SVOCs and metals.
- Several VOCs and metals were detected at varying frequencies above their respective SCGs from groundwater sampled on Parcel 2.
- Subjective evidence of contamination was observed on Parcel 2 at Test Pit #1 (fuel oil contaminated soils and free petroleum product in groundwater); and soil boring CTM-9 (slight fuel odor in wet soils).

#### Parcel 3

The following summarizes the nature and extent of contaminants in Parcel 3 of the project site.

- Several SVOCs and metals were detected above their SCGs from the sole surface soil sampling location on Parcel 3.
- Several metals were detected above their SCGs from native soils sampled through the advancement of one soil boring on Parcel 3.
- Several metals were detected above their SCGs in groundwater sampled from one monitoring well installed on Parcel 3.

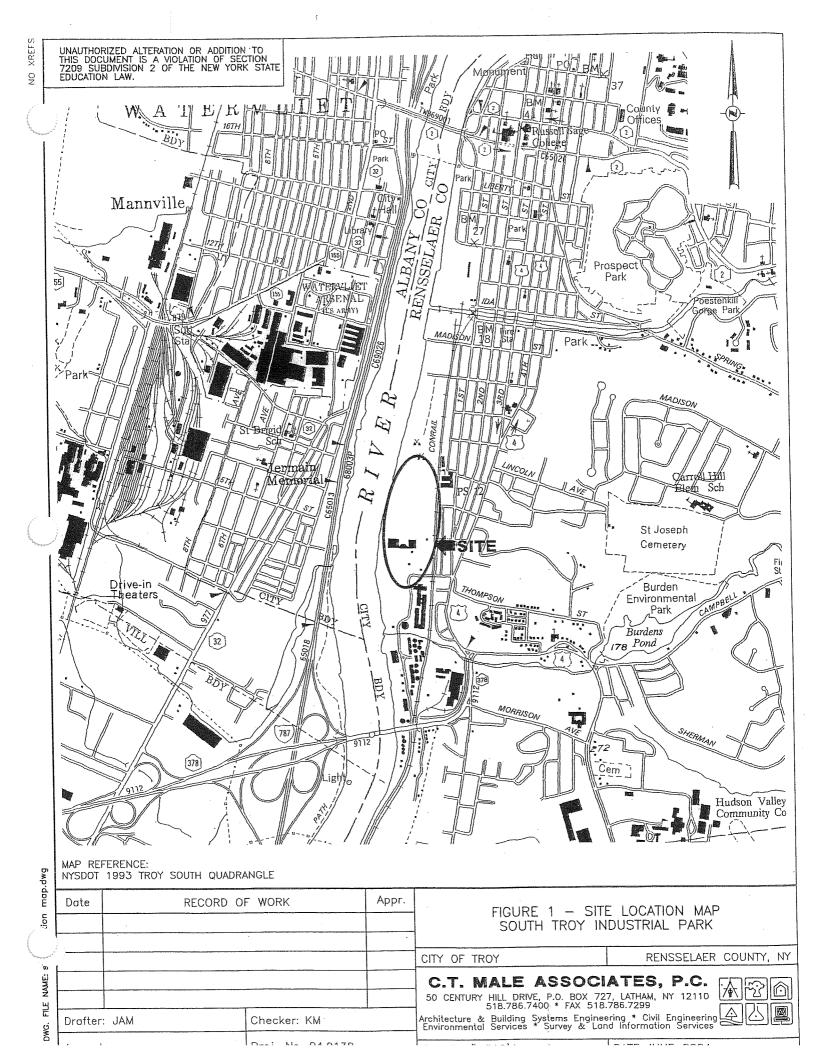
#### 7.1.11 Fate and Transport

The site contaminants are predominantly metals and SVOCs in surface and subsurface soils and VOCs and metals in groundwater. One VOC (acetone) was detected in subsurface soils and one SVOC (naphthalene) was detected in groundwater.

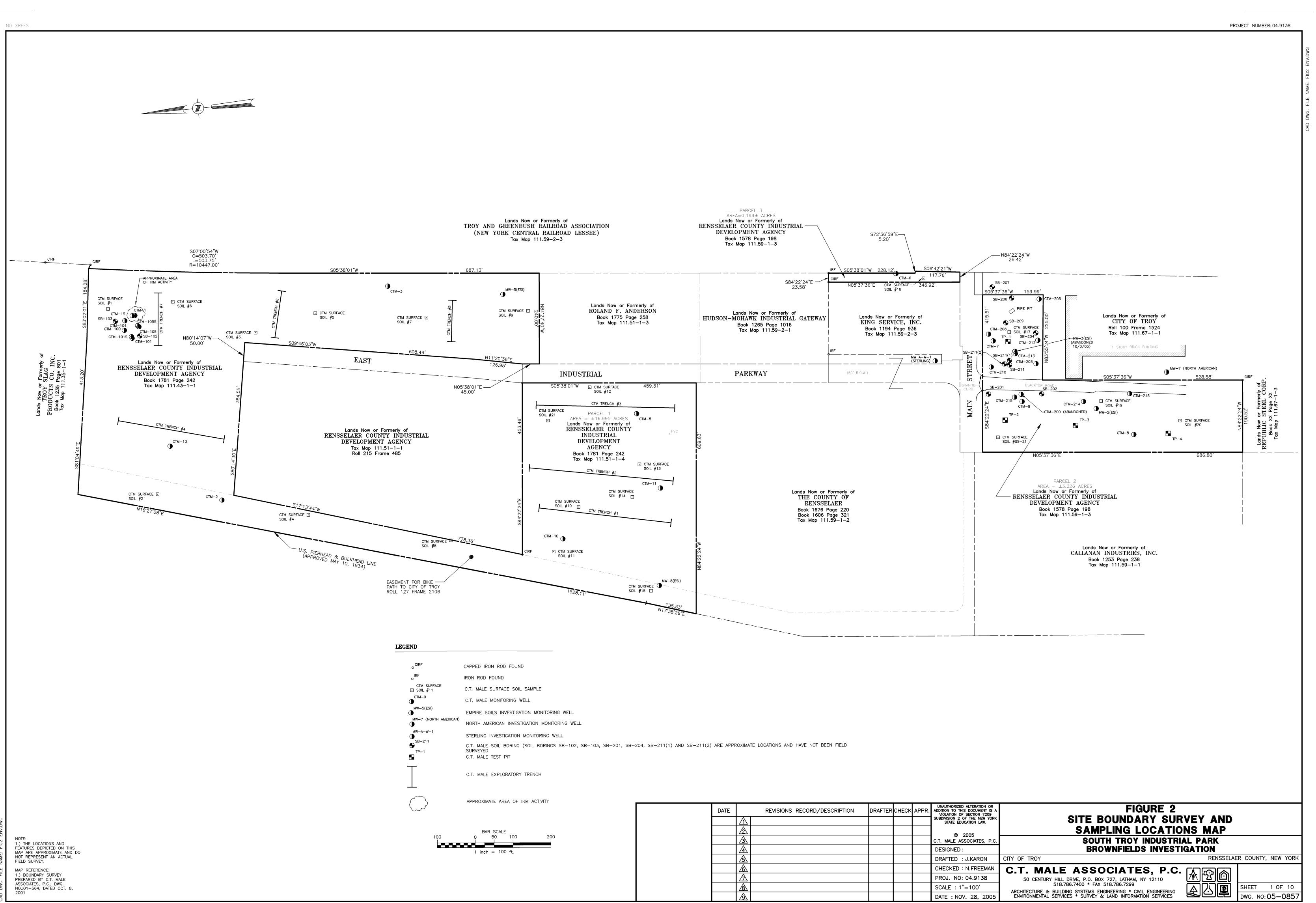
The SVOCs and metals in surface soil and subsurface soil/fill will tend to adhere to surrounding soil and fill particles and not migrate into underlying groundwater. This is exemplified by the presence of only four (4) of the 13 metals and no SVOCs identified in the surface soil and subsurface soil/fill sampling results within the sampled groundwater. Surface soil and subsurface soil/fill metals are not anticipated to volatilize to the open atmosphere. SVOCs in surface soils and subsurface soil/fill may volatilize to the atmosphere should the soils/fill be disturbed.

The VOCs and one SVOC in groundwater are in a dissolved phase and will tend to migrate with groundwater flow direction towards the Hudson River. Metals in groundwater are expected to adhere to surrounding soil and fill particles and will not necessarily follow groundwater flow direction nor volatilize to the vadose zone.

The transport mechanisms for the contaminants present at the site are migration in the groundwater and/or volatilization into the atmosphere. The petroleum fuel related compounds tend to occur and migrate in the upper portions of the aquifer due to their densities being less than 1. The SVOCs will tend to sink to the bottom of the aquifer to a less permeable soil type and migrate in the direction of groundwater flow and/or the surface of the less permeable unit. Most metals are strongly held, reducing their migration and extent of contamination. VOC and SVOC contaminants within the groundwater and vadose zone will volatilize into the unsaturated soils above the water table, and eventually will diffuse into the atmosphere.

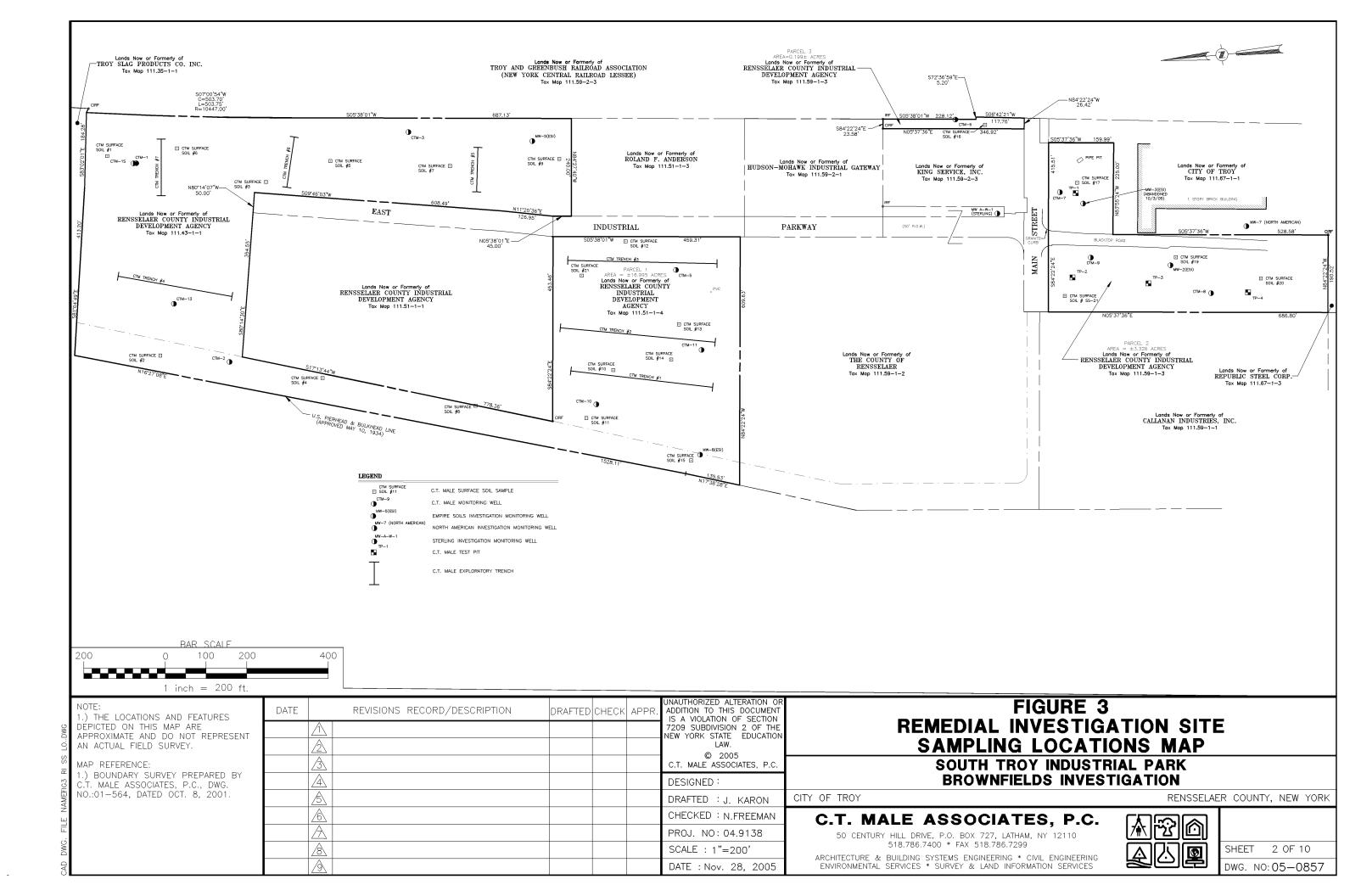

#### 7.2 Conclusions

Based upon the findings and conclusion of this site investigation, additional investigative activities are not warranted at this time. The site investigation has adequately delineated the presence and extent of the contaminants of concern identified for the site. Further investigations may be necessary during the design phase of the selected remedial actions to refine the areas of concern and gather additional information necessary to complete the remedial design. However, the existing data is considered to be sufficient for the preparation of the Alternatives Analysis Report (AAR). The AAR presents and discusses potential options for addressing the contaminants of concern.

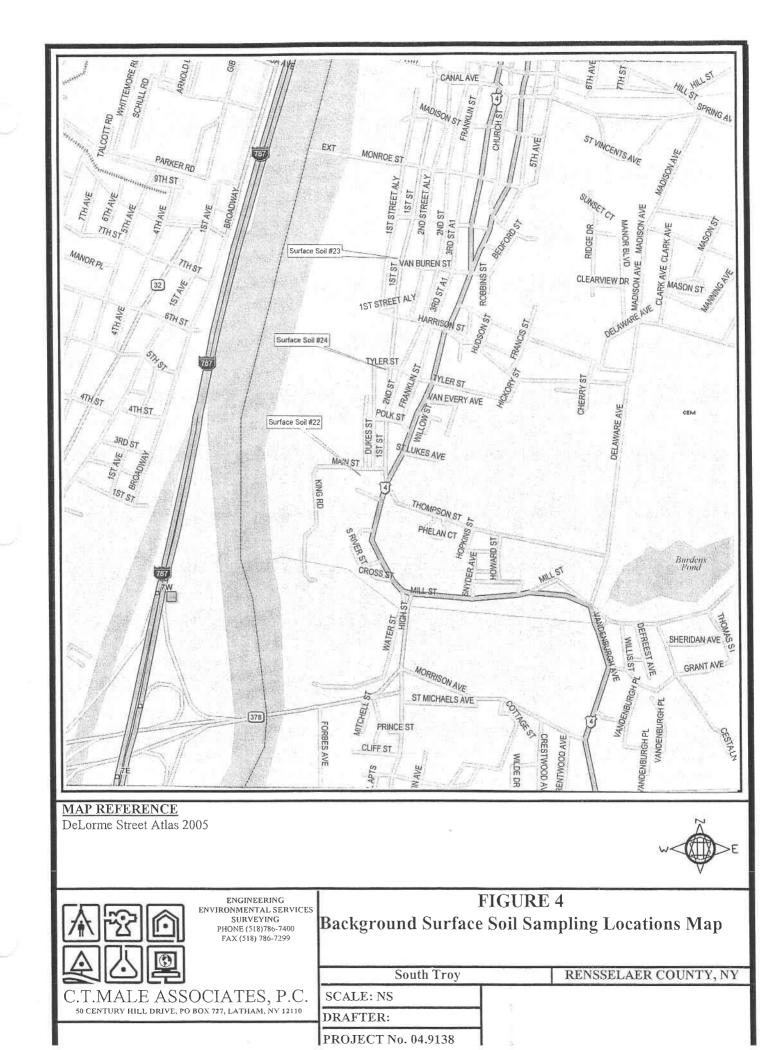

#### 7.2.1 Data Limitations and Disclaimer

All of the site investigation analytical data has been independently validated in accordance with NYSDEC DUSR requirements. The analytical results tabulated herein reflect the results of the DUSR and have been appropriately qualified. The DUSRs are presented in Exhibit 6 of this report.

# FIGURE 1 SITE LOCATION MAP

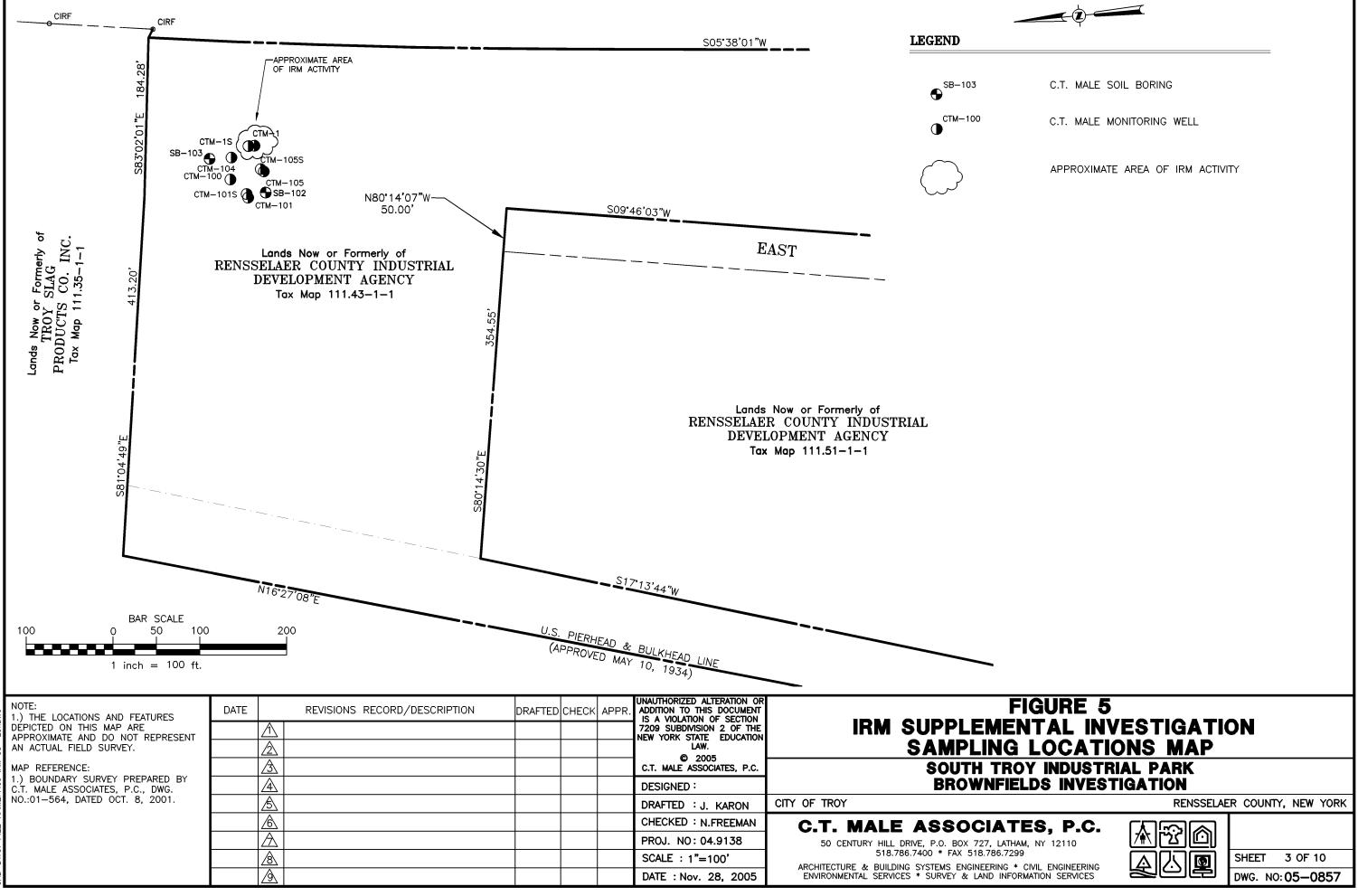



# **FIGURE 2** SITE BOUNDARY SURVEY AND SAMPLING LOCATIONS MAP




DATE : NOV. 28, 2005

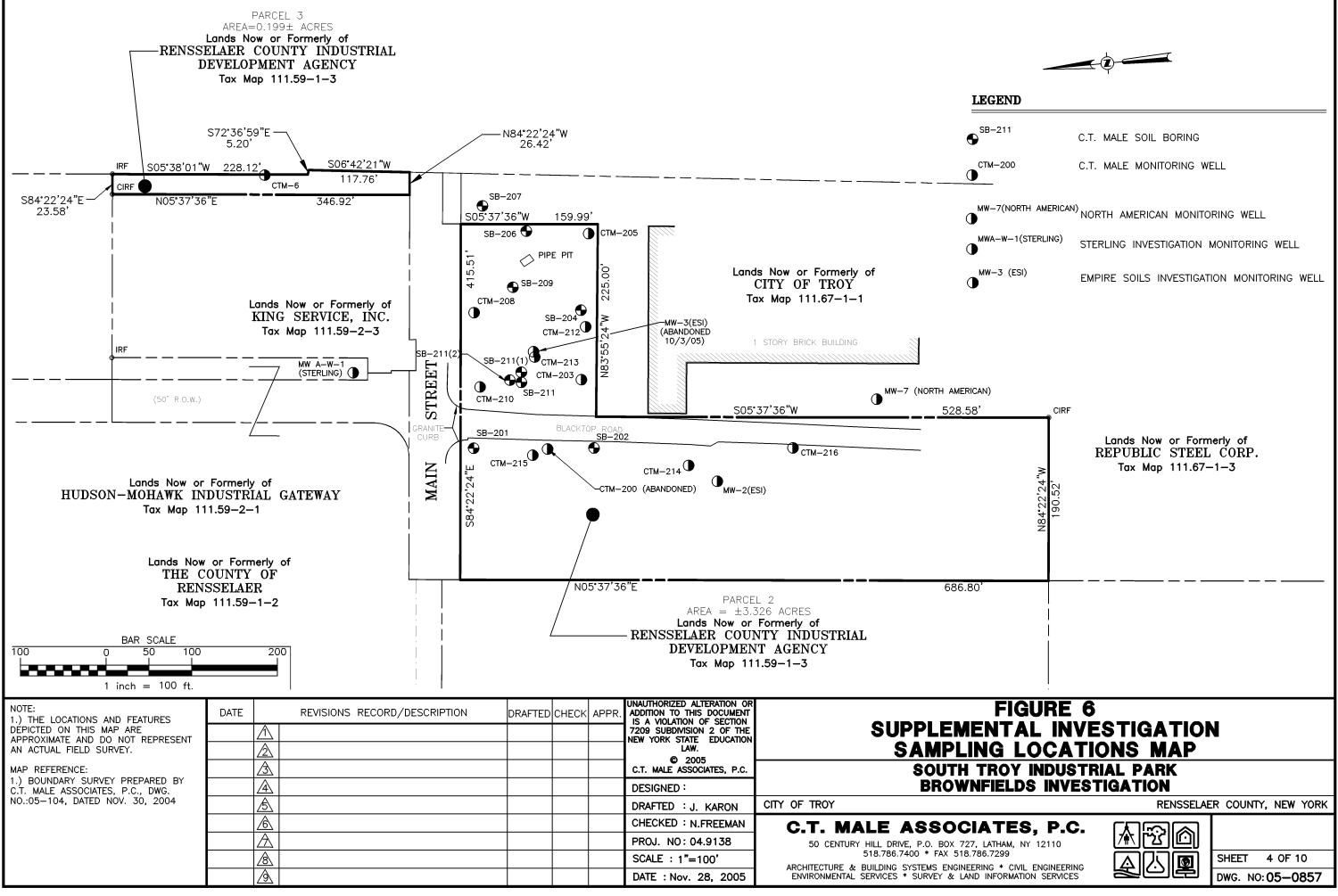
### **RI SITE SAMPLING LOCATIONS MAP**

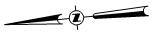



## **FIGURE 4** BACKGROUND SURFACE SOIL SAMPLING LOCATIONS MAP



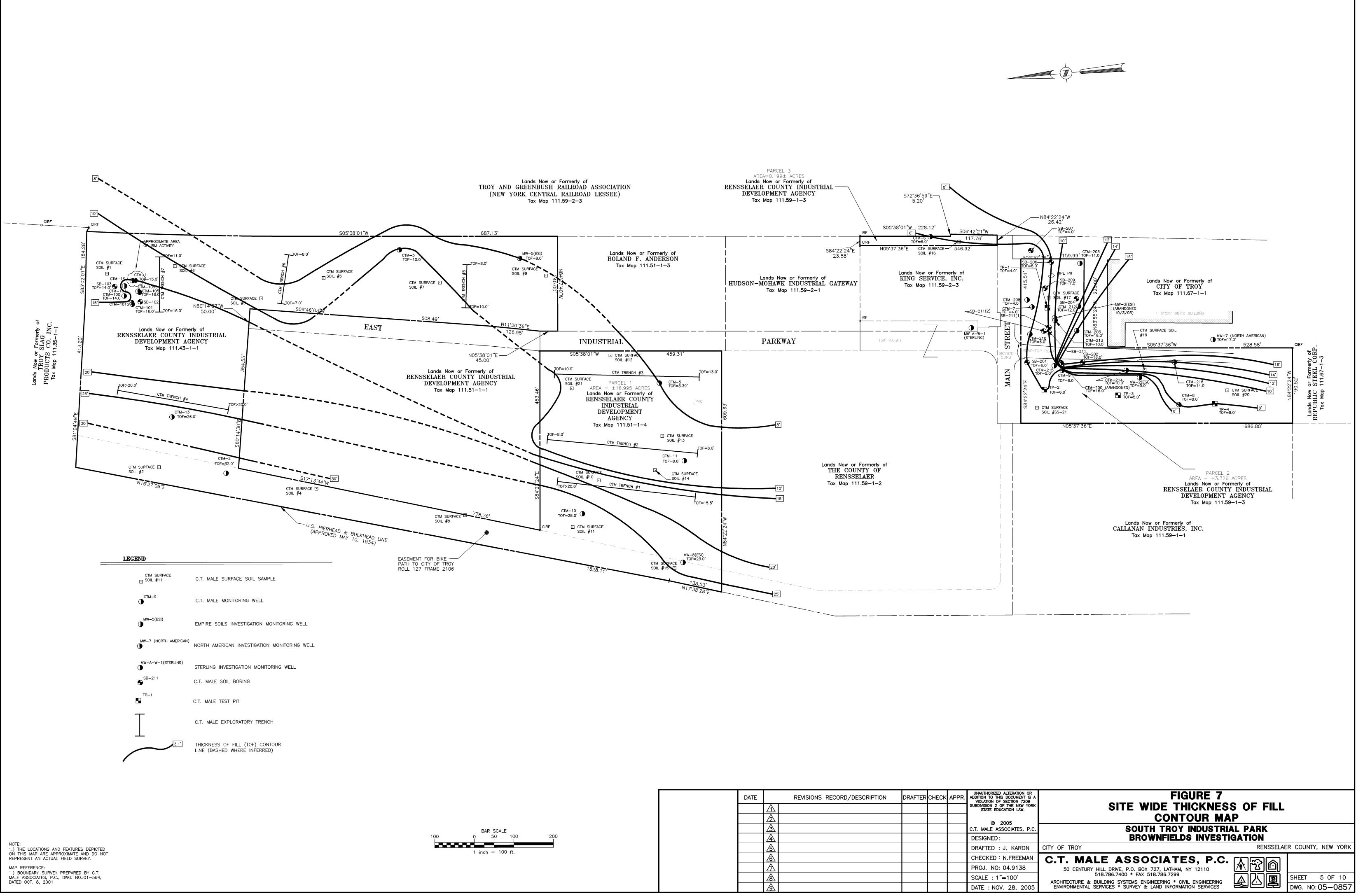
## IRM SUPPLEMENTAL INVESTIGATION SAMPLING LOCATIONS MAP


NO XREFS






## PARCEL 2 SUPPLEMENTAL INVESTIGATIONS SAMPLING LOCATIONS MAP


NO XREFS

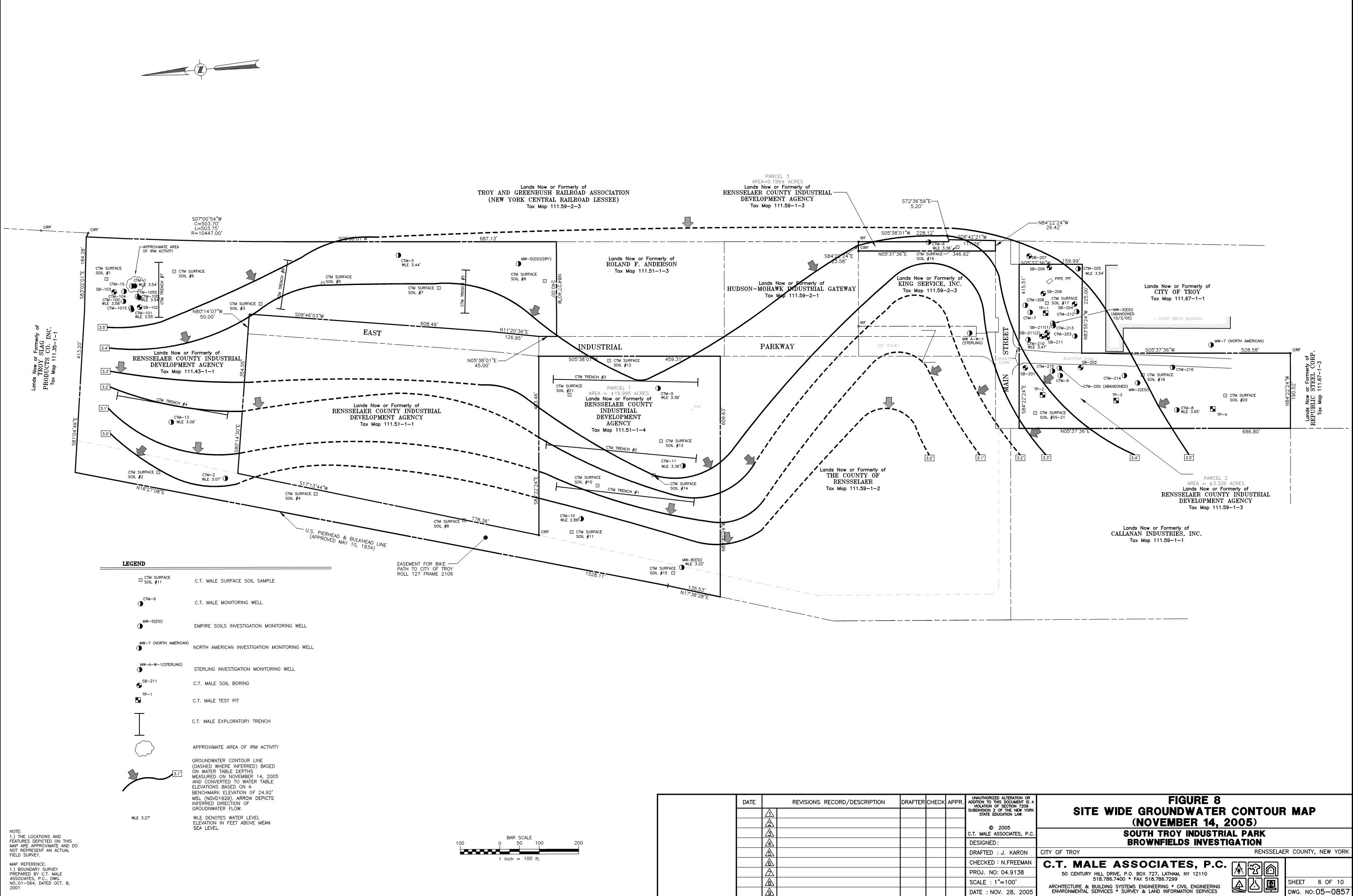




# FIGURE 7 SITE WIDE THICKNESS OF FILL CONTOUR MAP






	DATE		REVISIONS RECORD/DESCRIPTION	DRAFTER	СНЕСК
		$\triangle$			
BAR SCALE		A			
		$\triangle$			
1 inch = 100 ft.		ß			
		$\bigcirc$			
		$\triangle$			
		$\textcircled{\black}{\black}$			
		A			



### SITE WIDE GROUNDWATER CONTOUR MAP

### (November 14, 2005)



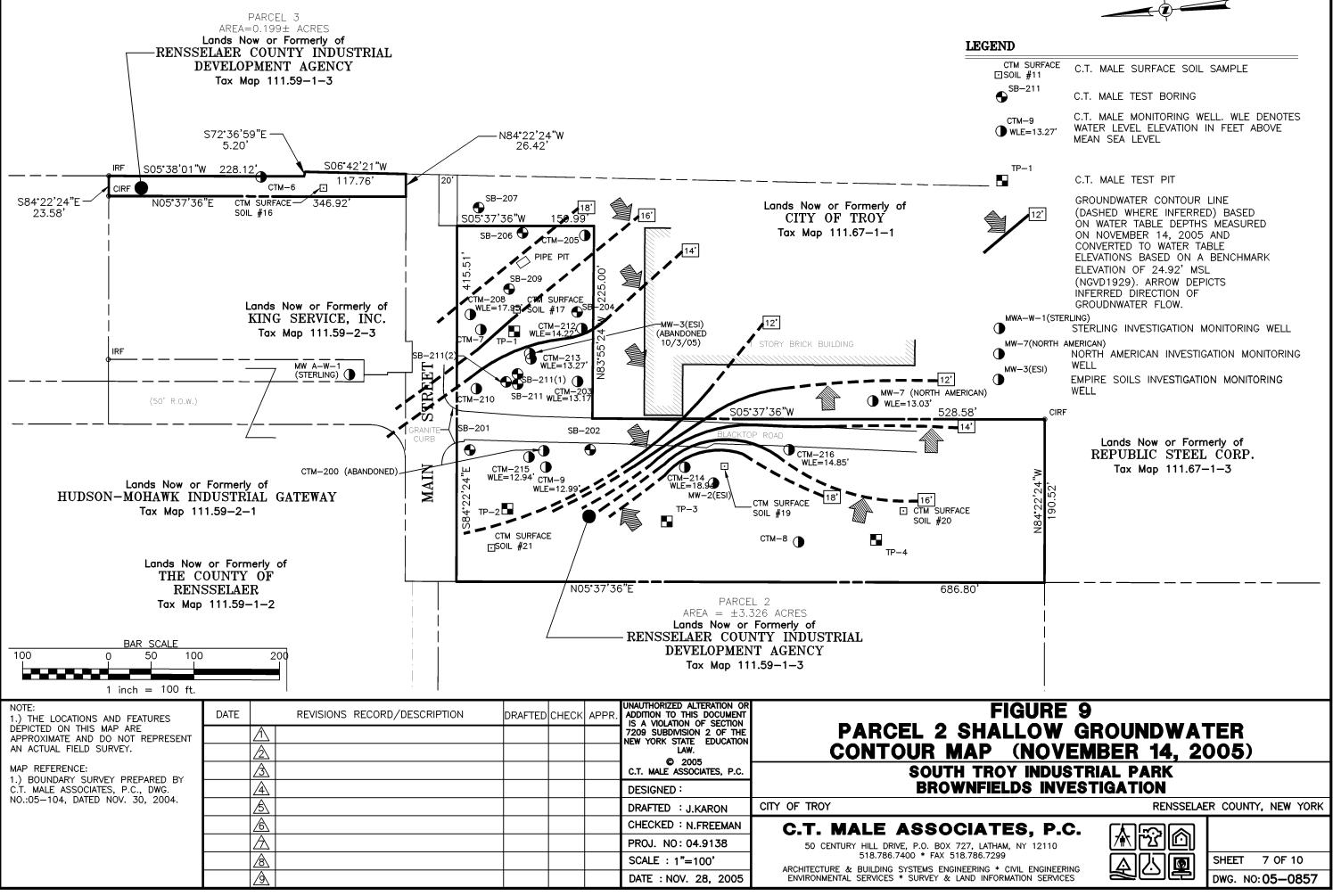


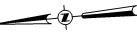
2001

	DAT	ATE	REVISIONS RECORD/DESCRIPTION	DRAFTER	CHEC
BAR SCALE 100 0 50 100 200 1 inch = 100 ft.					

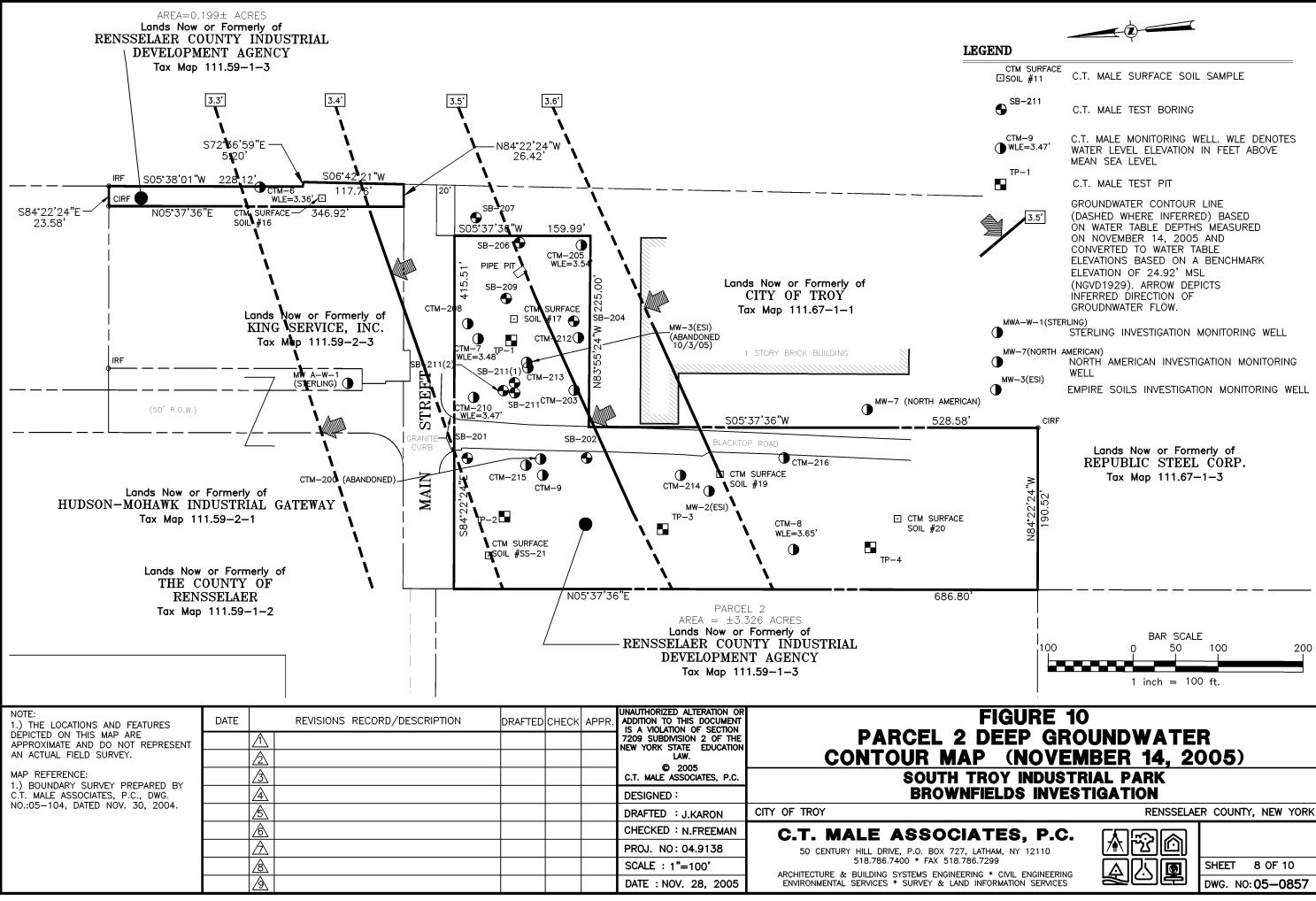
#### PROJECT NUMBER: 04.9138

DWG. NO:05-0857


DATE : NOV. 28, 2005


### **PARCEL 2 SHALLOW**

#### **GROUNDWATER CONTOUR MAP**


#### (November 14, 2005)

NO XREFS





### PARCEL 2 DEEP GROUNDWATER CONTOUR MAP (November 14, 2005)



DEEP

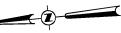
NAME:FIG10

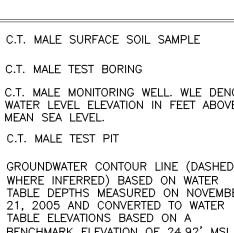
FILE

DWG. CAD

DWG. NO: 05-0857

#### **PARCEL 2 SHALLOW GROUNDWATER**

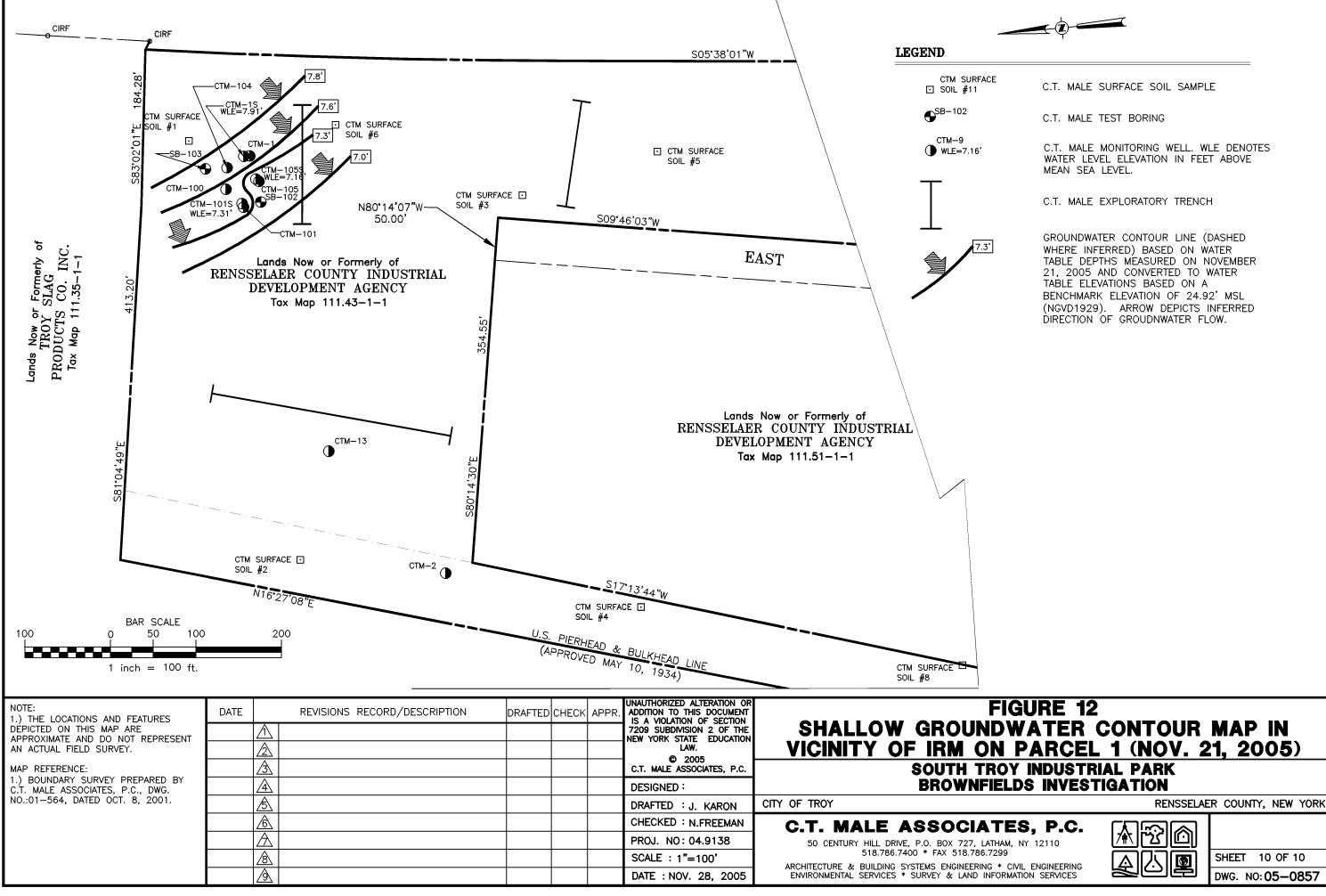

#### **CONTOUR MAP**


(November 21, 2005)

NO XREFS



PROJECT NUMBER: 04.9138






## SHALLOW GROUNDWATER CONTOUR MAP IN VICINITY OF IRM ON PARCEL 1

(November 21, 2005)





PROJECT NUMBER: 04.9138



|--|

DWG. NO: 05-0857

## APPENDIX A

### **METES AND BOUNDS DESCRIPTION**

#### DESCRIPTION PORTION OF LANDS OF RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY

All those certain tracts, pieces or parcels of land situate, in the City of Troy, Rensselaer County, State of New York, lying Easterly of the Hudson River and Northerly of Main Street, and being more particularly bounded and described as follows:

#### PARCEL 1

BEGINNING at the point of intersection of the division line between the lands now or formerly of Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the North and lands now or formerly of The County of Rensselaer as described in Book 1675 of Deeds at Page 220 and Book 1606 of Deeds at Page 321 on the South with the Westerly street boundary of East Industrial Parkway; thence from said point of beginning along said division line North 84 deg. 22 min. 24 sec. West 609.63 feet to its intersection with the Easterly U.S. Pierhead and Bulkhead line of the Hudson River (approved May 10, 1934); thence along said Easterly U.S. Pierhead and Bulkhead line the following two (2) courses: 1) North 17 deg. 38 min. 28 sec. East 135.54 feet to a point; and 2) North 16 deg. 27 min. 08 sec. East 1,528.11 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the South and lands now or formerly of Troy Slag Products Company, Inc. as described in Book 1235 of Deeds at Page 801 and Roll 98 of Deeds at Frame 1,641 on the North; thence along said division line the following two (2) courses: 1) South 81 deg. 04 min. 49 sec. East 413.20 feet to a point; and 2) South 83 deg. 02 min. 00 sec. East 184.28 feet to its point of intersection with the

DESCRIPTION

RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY PAGE - 2

division line between the lands of said Rensselaer County Industrial Development Agency on the West and lands now or formerly of Troy and Greenbush Railroad Association (New York Central Railroad Company Lessee) on the East; thence along said division line the following two (2) courses: 1) Southerly along a curve to the left of radius 10,447.00 feet, an arc length of 503.75 feet and a chord bearing of South 07 deg. 00 min. 54 sec. West 503.70 feet to a point of tangency; and 2) South 05 deg. 38 min. 01 sec. West 687.13 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the North and other lands now or formerly of Rensselaer County Industrial Development Agency as described in Book 1781 of Deeds at Page 242 on the South; thence along said division line North 84 deg. 27 min. 40 sec. West 240.00 feet to a point on the Easterly street boundary of East Industrial Parkway; thence along said Easterly street boundary the following three (3) courses: 1) North 05 deg. 38 min. 01 sec. East 45.00 feet to a point; 2) North 11 deg. 20 min. 36 sec. East 126.95 feet to a point; and 3) North 09 deg. 46 min. 03 sec. East 608.49 feet to the Northeasterly terminus of East Industrial Parkway; thence along the Northerly terminus of East Industrial Parkway, North 80 deg. 14 min. 23 sec. West 50.00 feet to a point on the Westerly street boundary of East Industrial Parkway at its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the North and other lands now or formerly of Rensselaer County Industrial Development Agency as described in Book

DESCRIPTION

RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY PAGE - 3

of Deeds at Page on the South; thence along said division line North 80 deg. 14 min. 23 sec. West 354.56 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the West and other lands of said Rensselaer County Industrial Development Agency as described in Book _____ of Deeds at Page _____ on the East; thence along said division line South 17 deg. 13 min. 45 sec. West 778.36 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the South and other lands of said Rensselaer County Industrial Development Agency as described in Book of Deeds at Page on the North; thence along said division line South 84 deg. 22 min. 24 sec. East 453.47 feet to its intersection with the Westerly street boundary of East Industrial Parkway; thence along said Westerly street boundary South 05 deg. 38 min. 01 sec. West 459.31 feet to the point or place of beginning, containing 16.955± acres of land.

#### PARCEL 2

BEGINNING at the point of intersection of the division line between the lands now or formerly of Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the West and lands now or formerly of The City of Troy as described in Roll 100 of Deeds at Frame 1,524 on the East with the Southerly street boundary of Main Street; thence along said division line South 05 deg. 37 min. 36 sec. West 159.99 feet to its point of intersection with the division line between the lands of

DESCRIPTION

RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY PAGE - 4

said Rensselaer County Industrial Development Agency on the North and lands of said City of Troy on the South; thence along said division line North 83 deg. 55 min. 24 sec. West 225.00 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the West and lands of said City of Troy on the East; thence along said division line South 05 deg. 37 min. 36 sec. West 528.58 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the North and lands now or formerly of King Service, Inc. as described in Book 1194 of Deeds at Page 936 and Book 1253 of Deeds at Page 531 on the South; thence along said division line North 84 deg. 22 min. 24 sec. West 190.52 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the East and lands now or formerly of Callanan Industries, Inc. as described in Book 1253 of Deeds at Page 238 on the West; thence along said division line North 05 deg. 37 min. 36 sec. East 686.80 feet to its intersection with the Westerly terminus of Main Street at its point of intersection with the Southerly street boundary of Main Street; thence along said Southerly street boundary of Main Street, South 84 deg. 22 min. 24 sec. East 415.51 feet to the point or place of beginning, containing 3.826± acres of land.

#### PARCEL 3

BEGINNING at the point of intersection with the division line between the lands now or formerly of Rensselaer County Industrial Development Agency as described in Book 1578 of Deeds at Page 198 on the West and lands now or formerly of Troy and

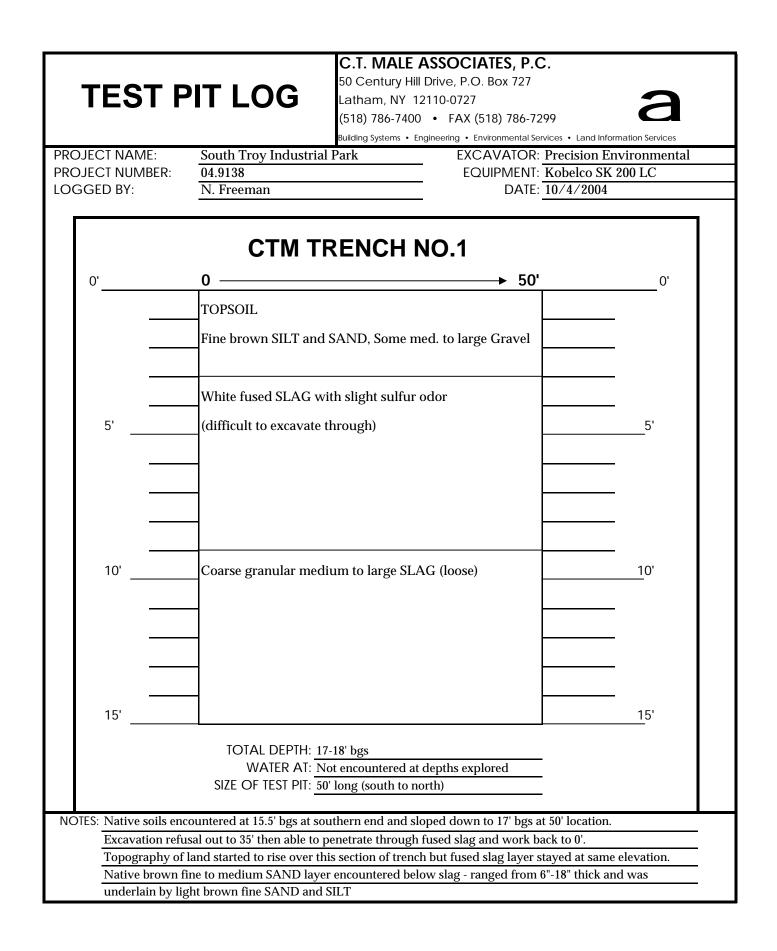
DESCRIPTION

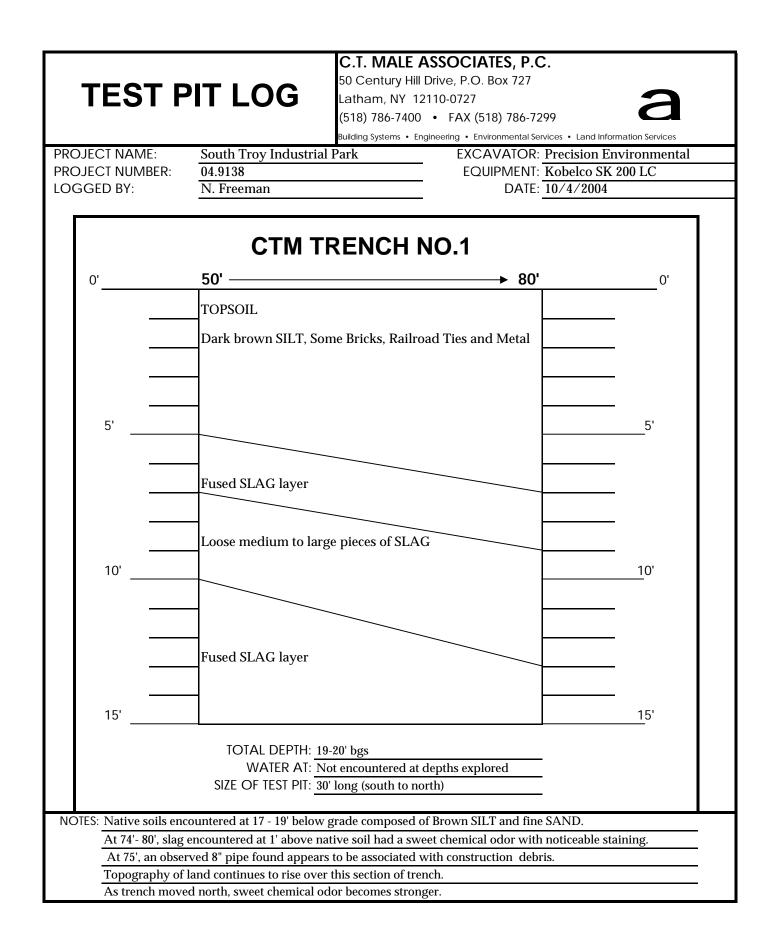
RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY PAGE - 5

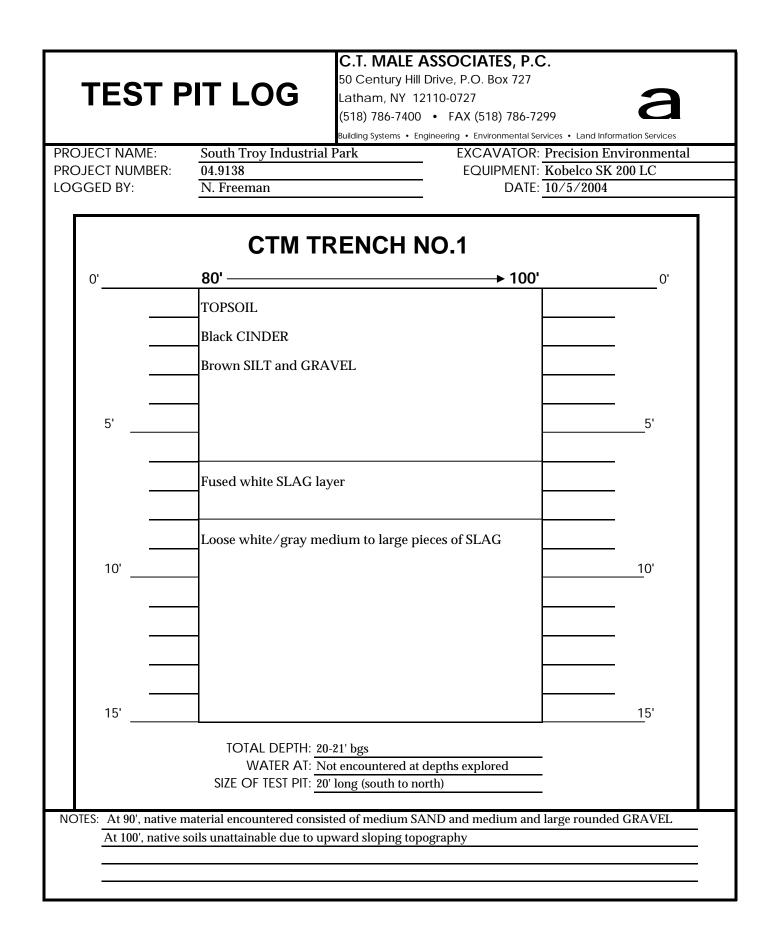
Greenbush Railroad Association (New York Central Railroad Company Lessee) on the East with the Northerly street boundary of Main Street; thence from said point of beginning along said Northerly street boundary North 84 deg. 22 min. 24 sec. West 26.43 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the East and lands now or formerly of King Service, Inc. as described in Book 1194 of Deeds at Page 936 on the West; thence along said division line North 05 deg. 37 min. 36 sec. East 346.92 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the South and lands now or formerly of Hudson-Mohawk Industrial Gateway as described in Book 1265 of Deeds at Page 1016 on the North; thence along said division line South 84 deg. 22 min. 24 sec. East 23.58 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the West and lands of said Troy and Greenbush Railroad Association on the East; thence along said division line South 05 deg. 38 min. 01 sec. West 228.12 feet to its point of intersection with the division line between the lands of said Rensselaer County Industrial Development Agency on the South and lands of said Troy and Greenbush Railroad Association on the North; thence along said division line South 72 deg. 36 min. 59 sec. East 5.20 feet to its point of intersection with the above first mentioned division line; thence along said above last mentioned division line South 06 deg. 42 min. 21 sec. West 117.76 feet to the point or place of beginning, containing 0.199± acres of land.

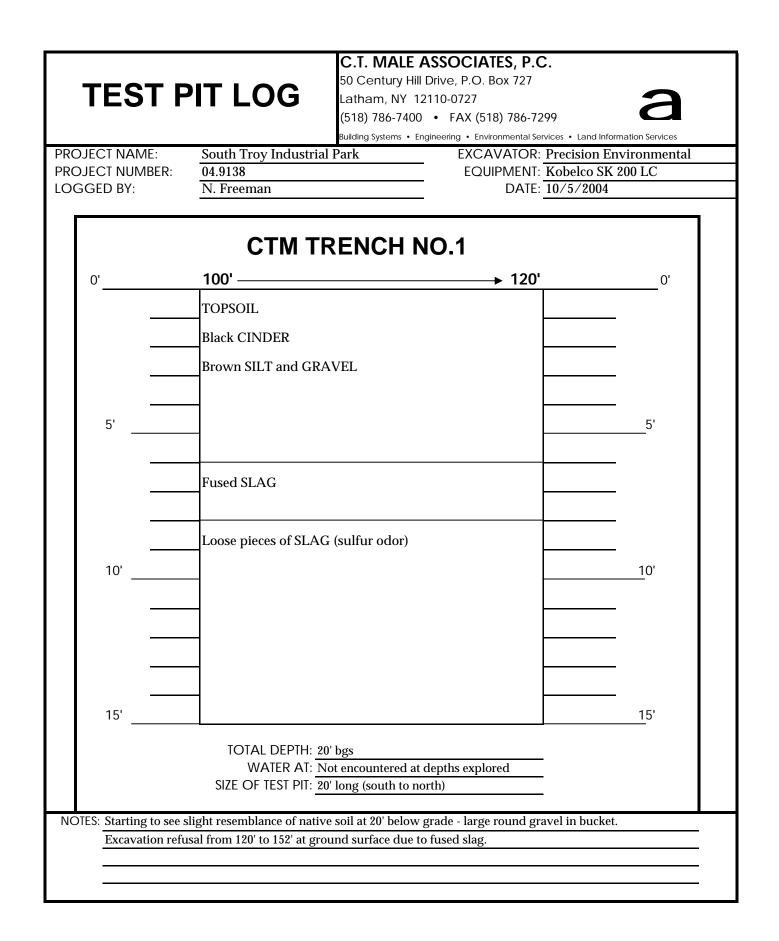
DESCRIPTION RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY PAGE - 6

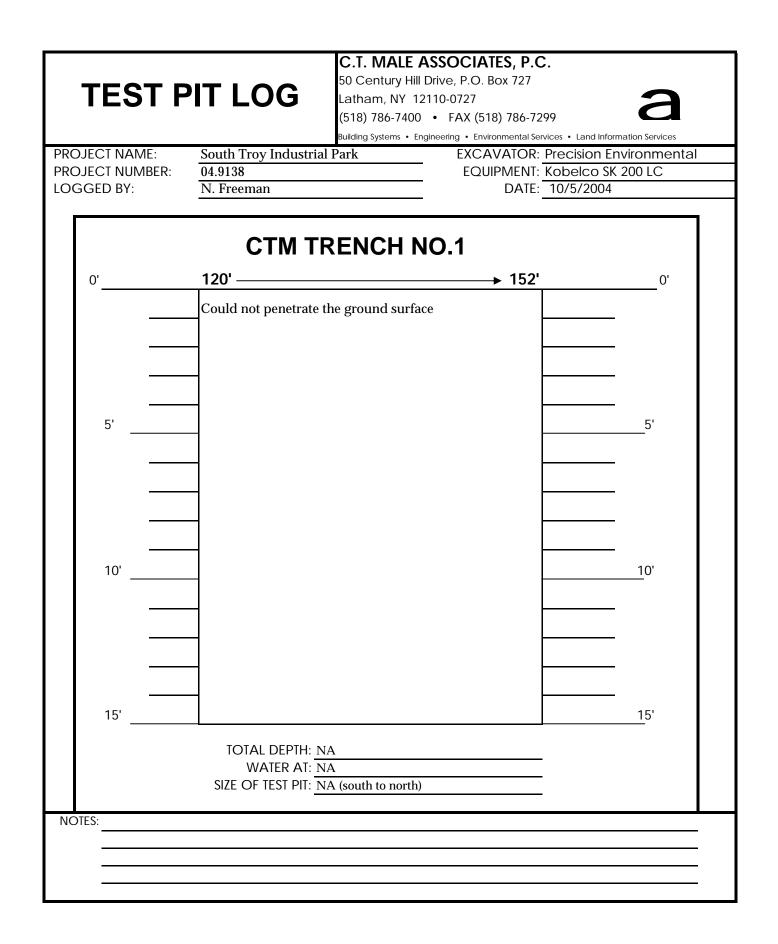
Subject to any easements, restrictions or covenants of record.

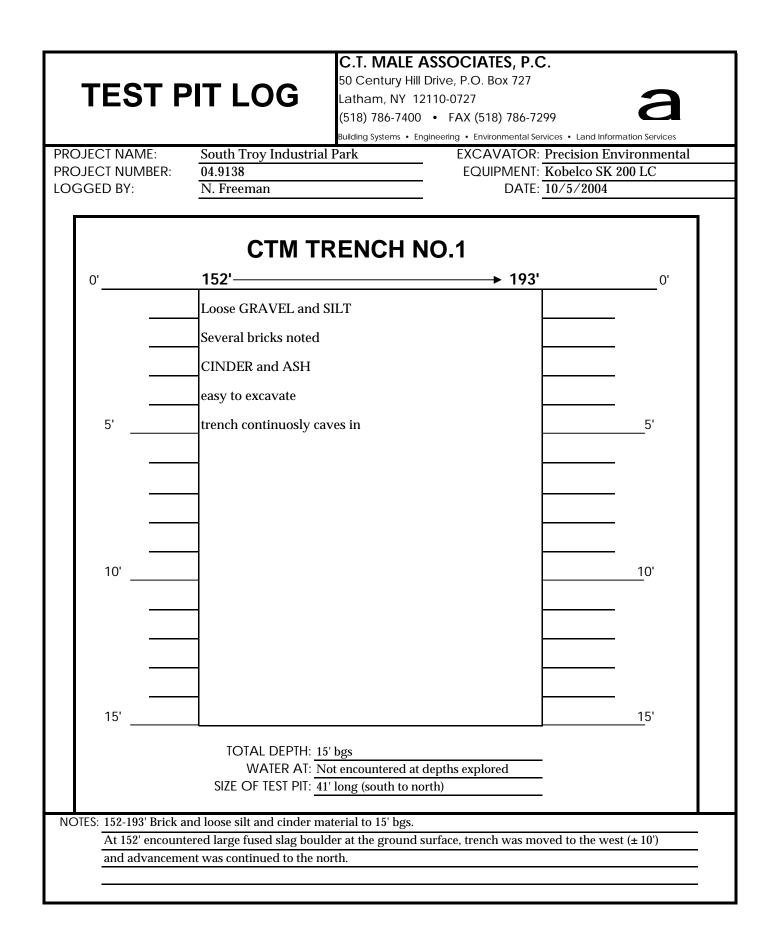

C.T. MALE ASSOCIATES, P.C.

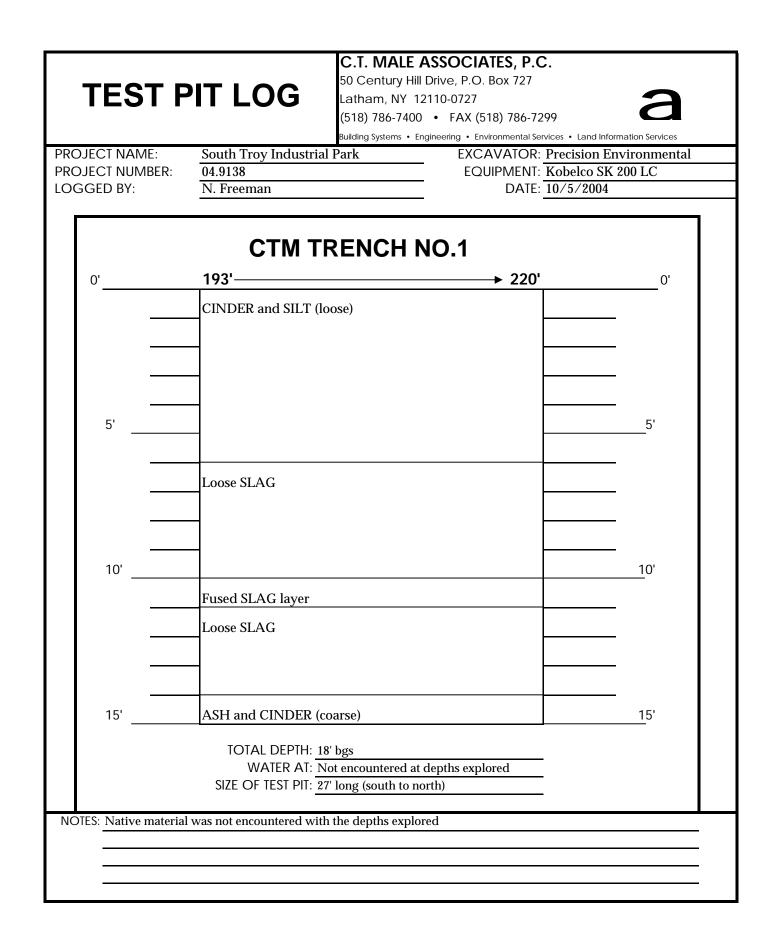

James F. Cook, PLS

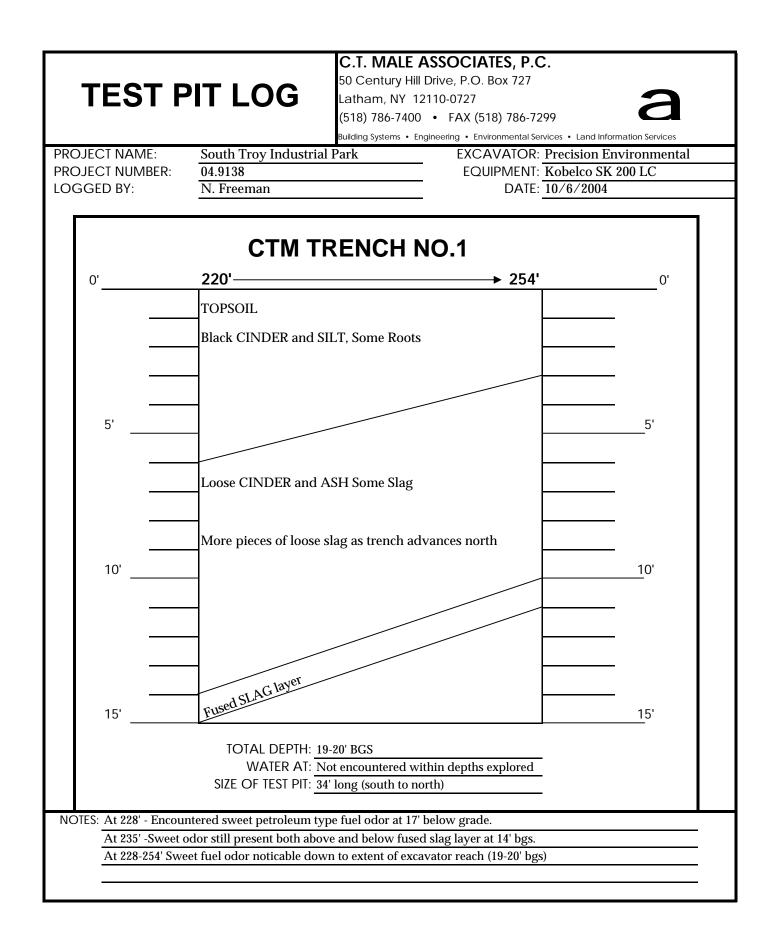

September 27, 2001 JFC/am/jc/jfc C.T. Male Project No. 01.7300

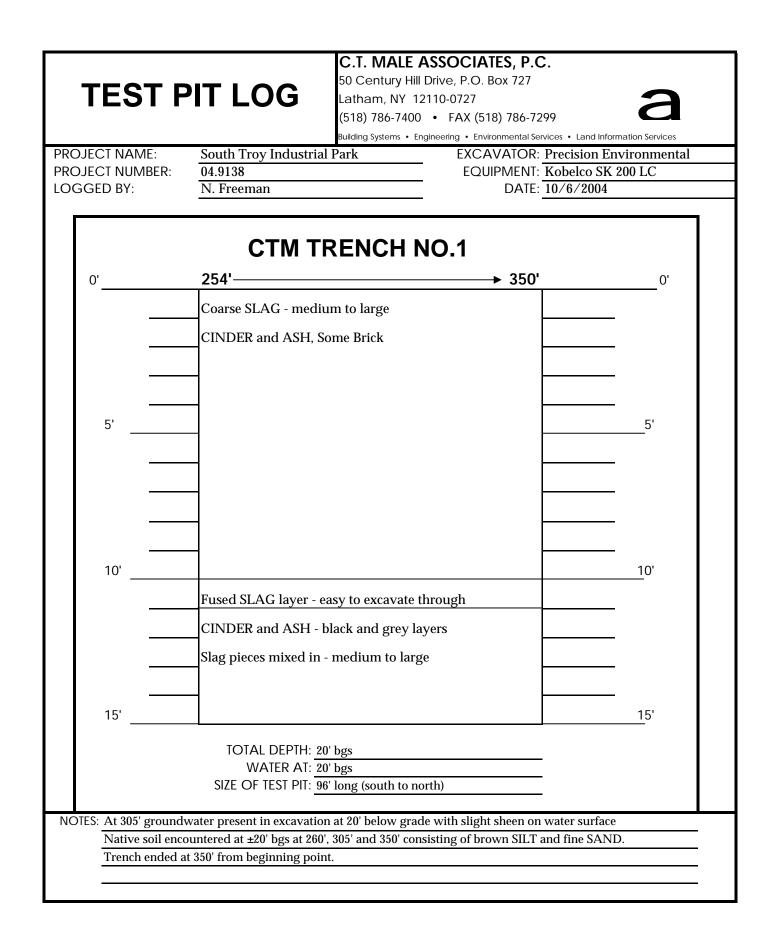

### **APPENDIX B**

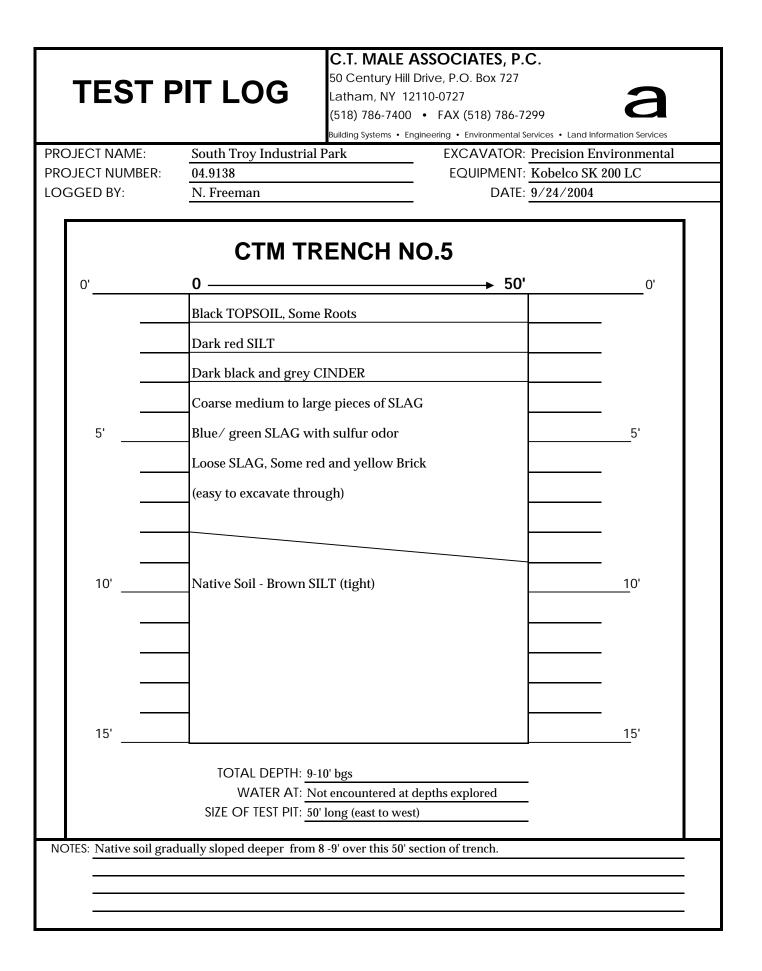

### **TEST PIT AND TEST TRENCH LOGS**

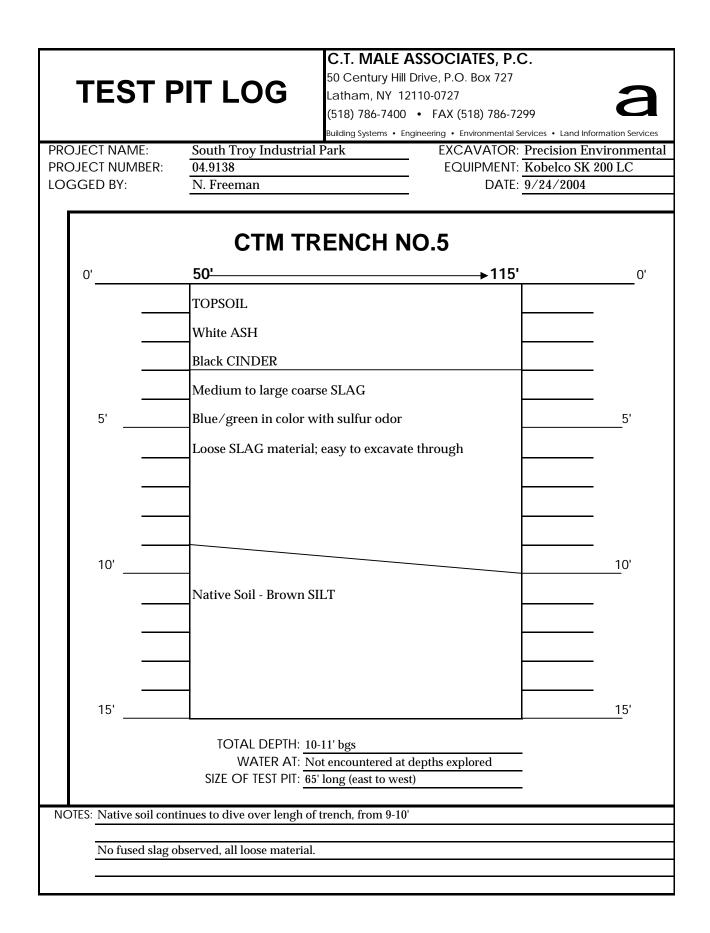


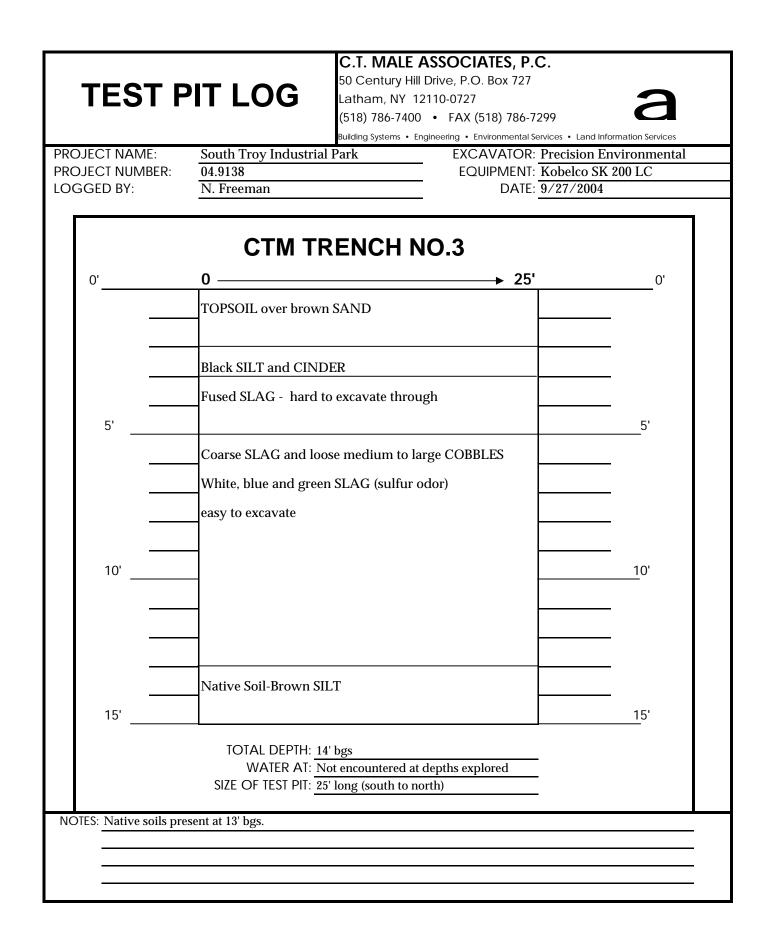



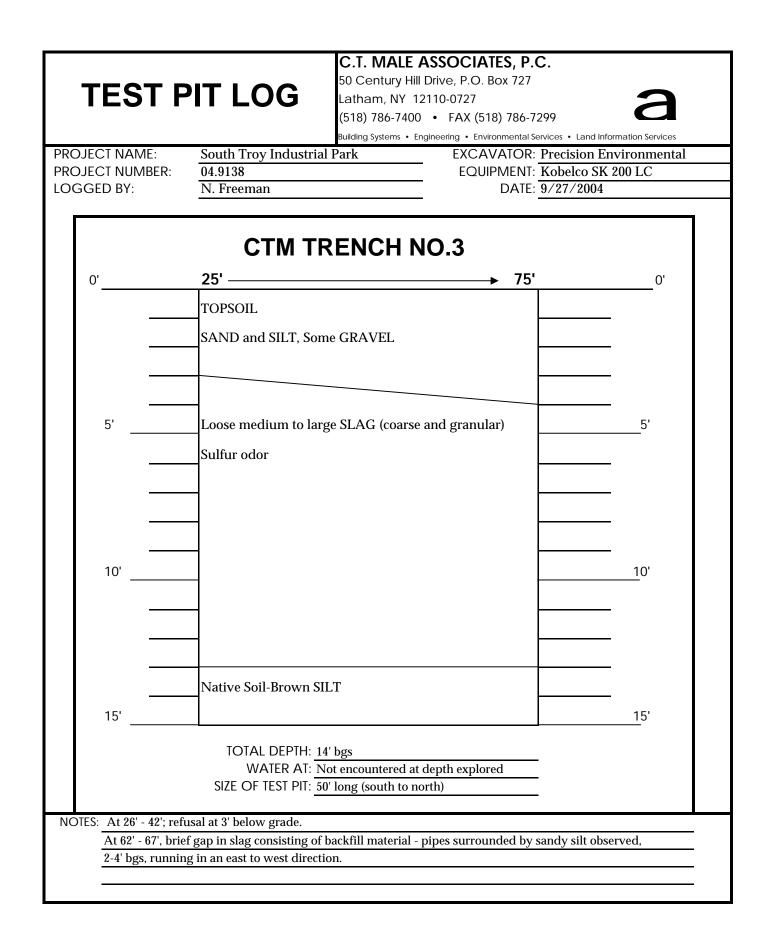



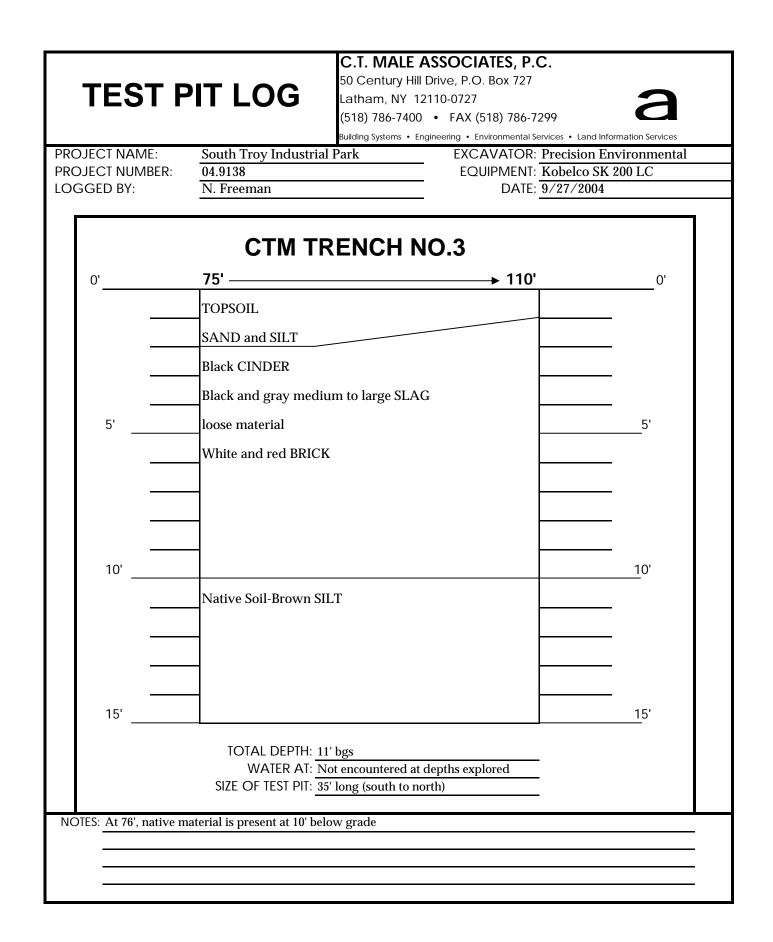



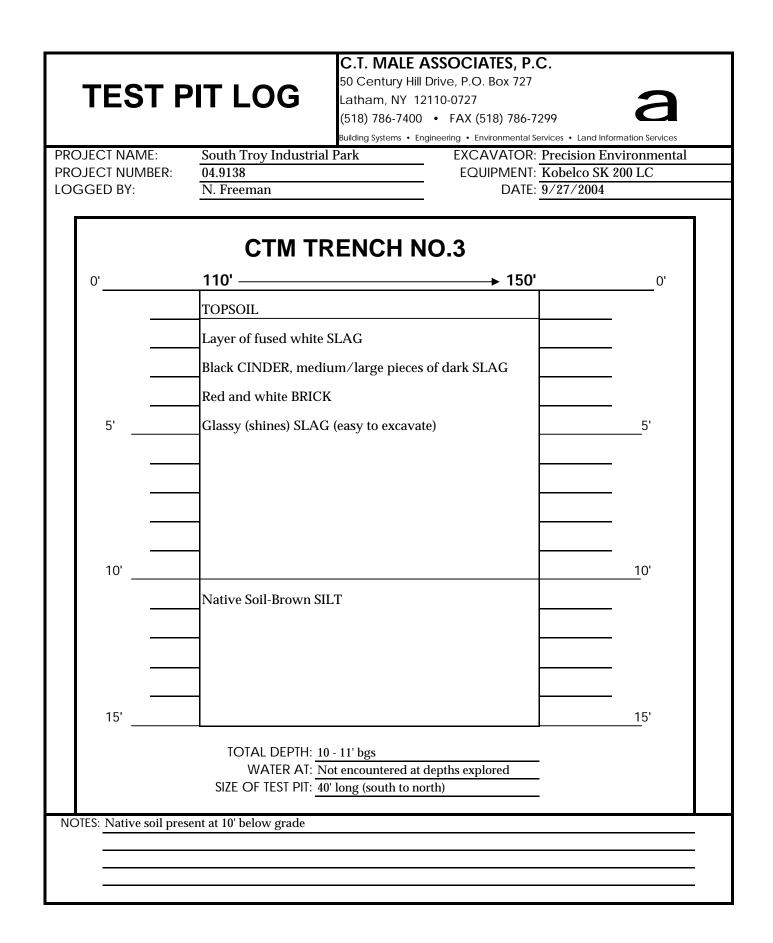



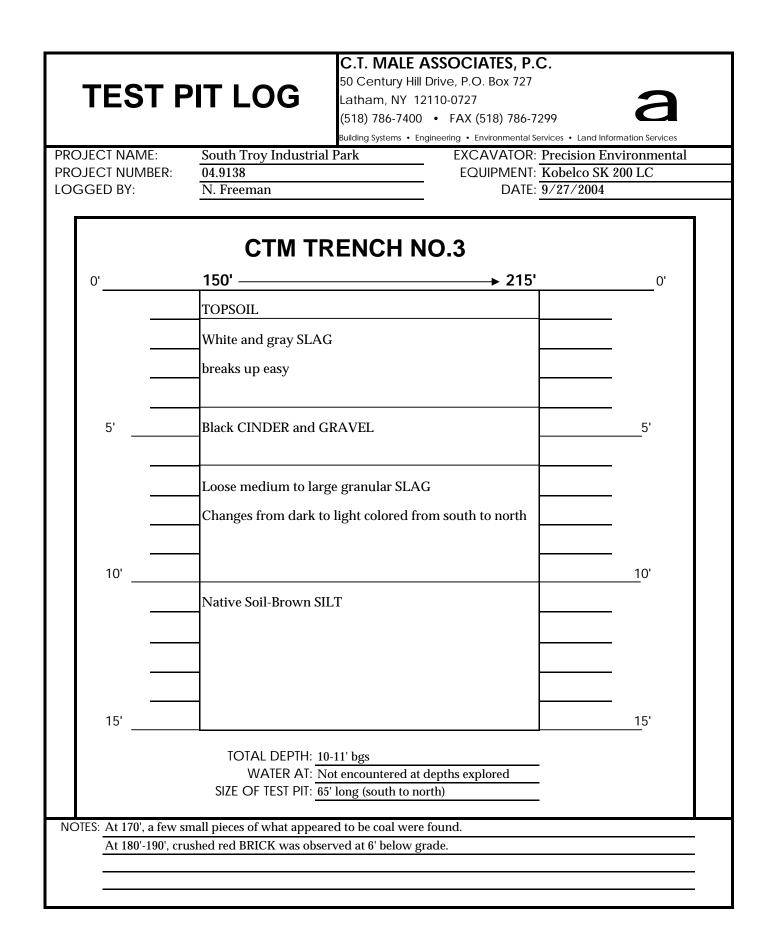



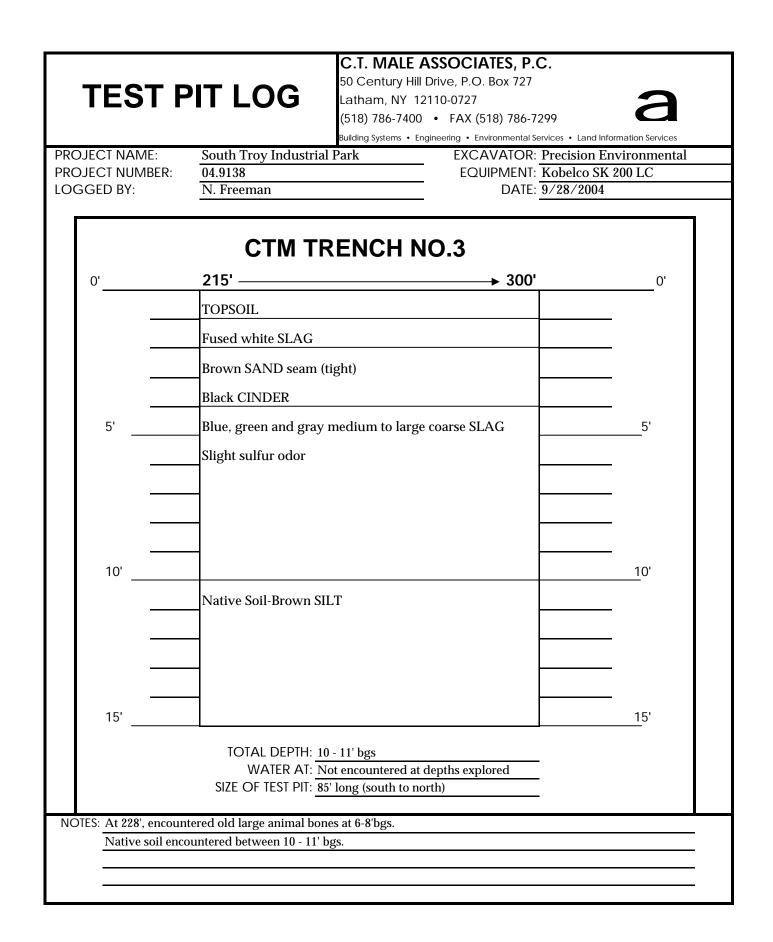



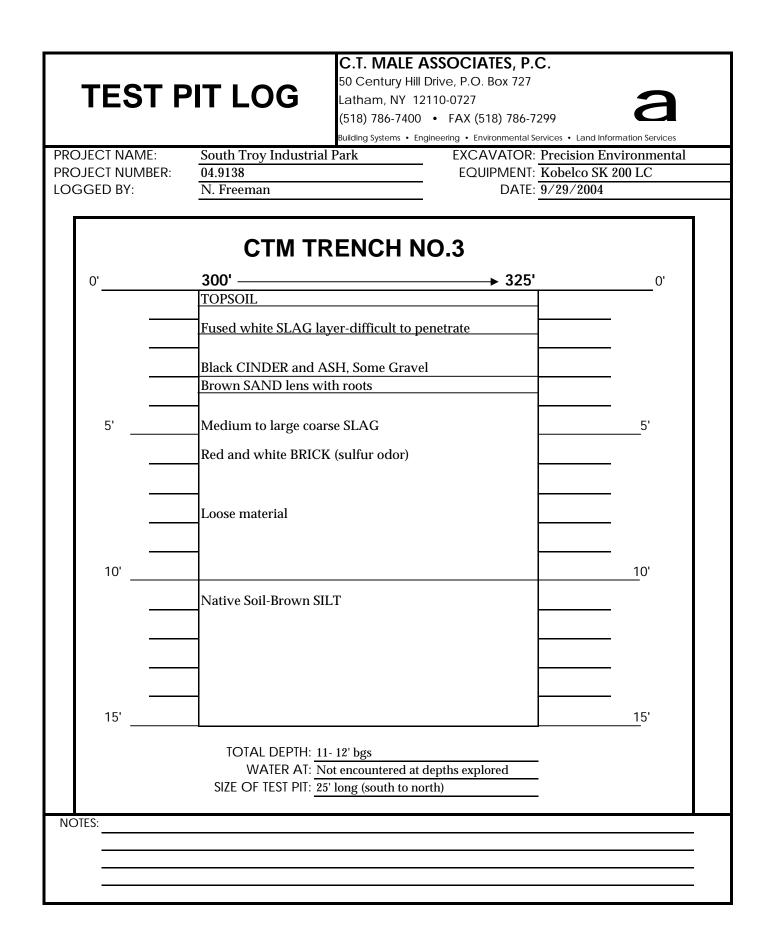



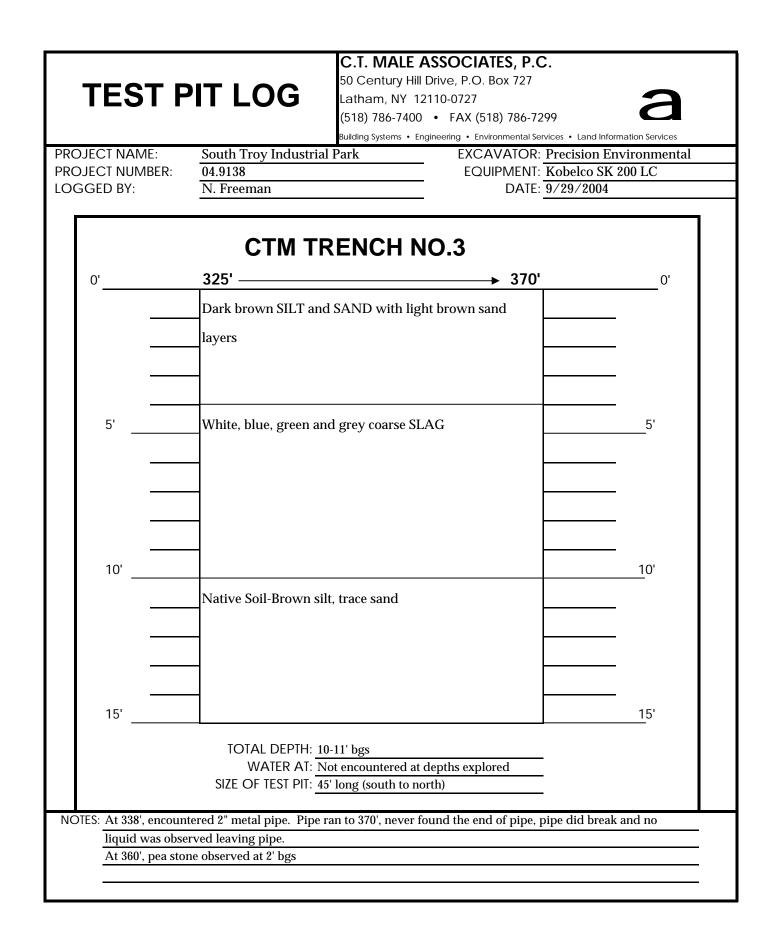



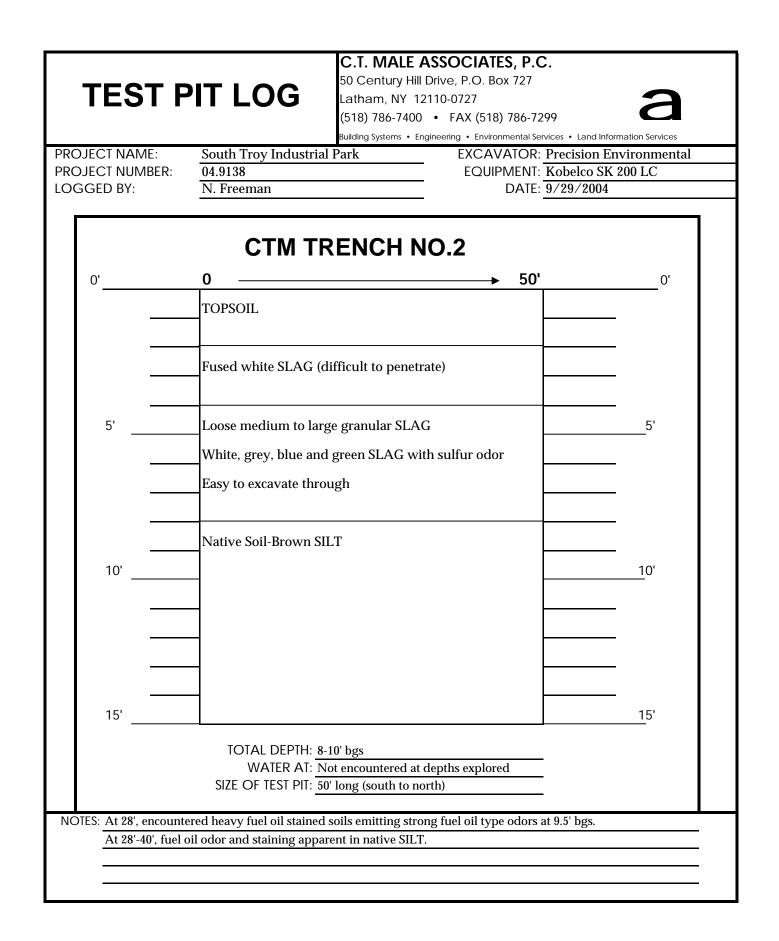



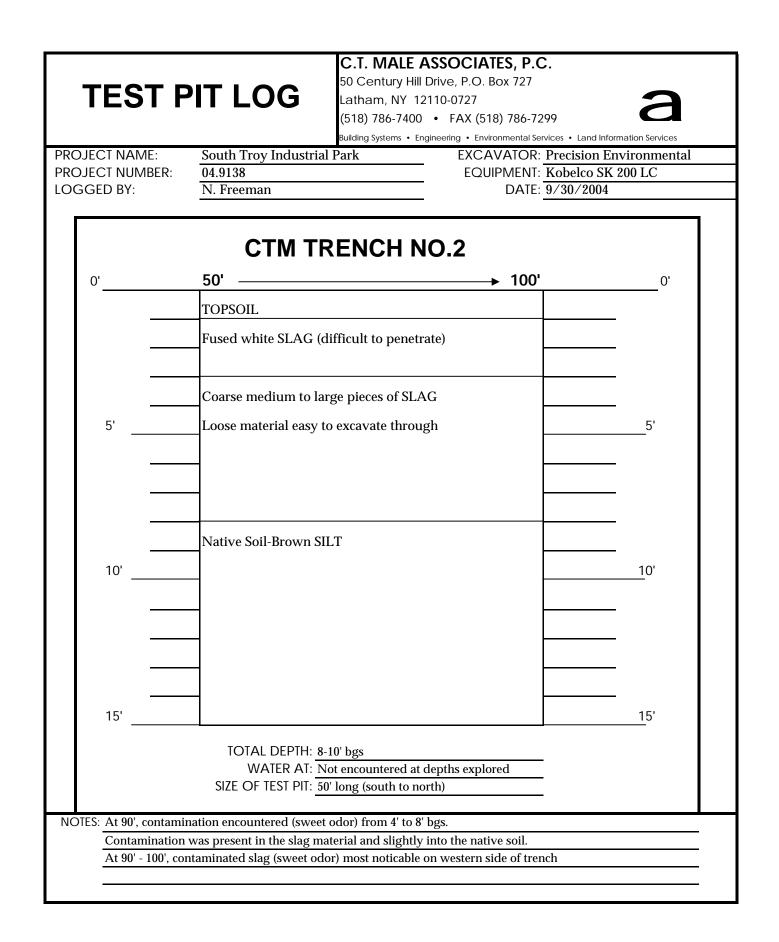



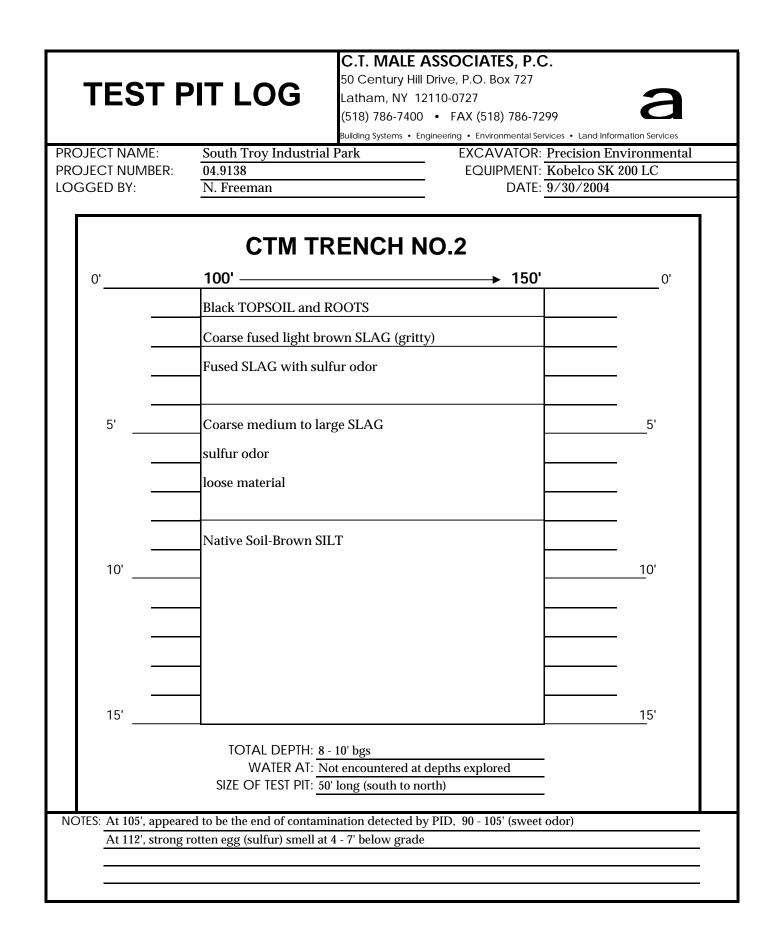



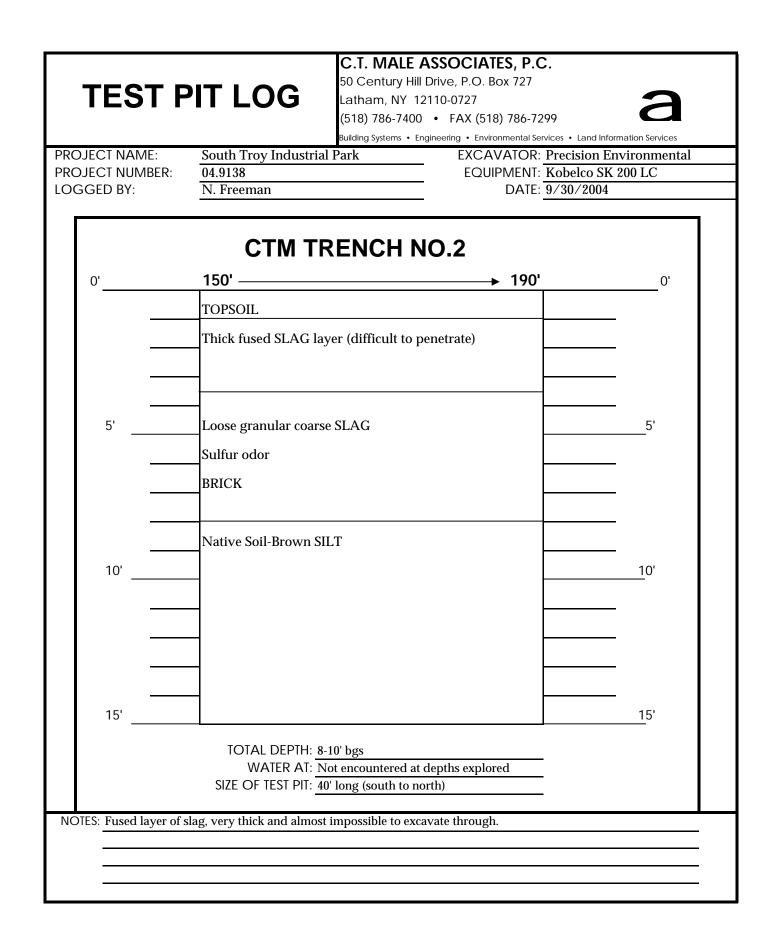



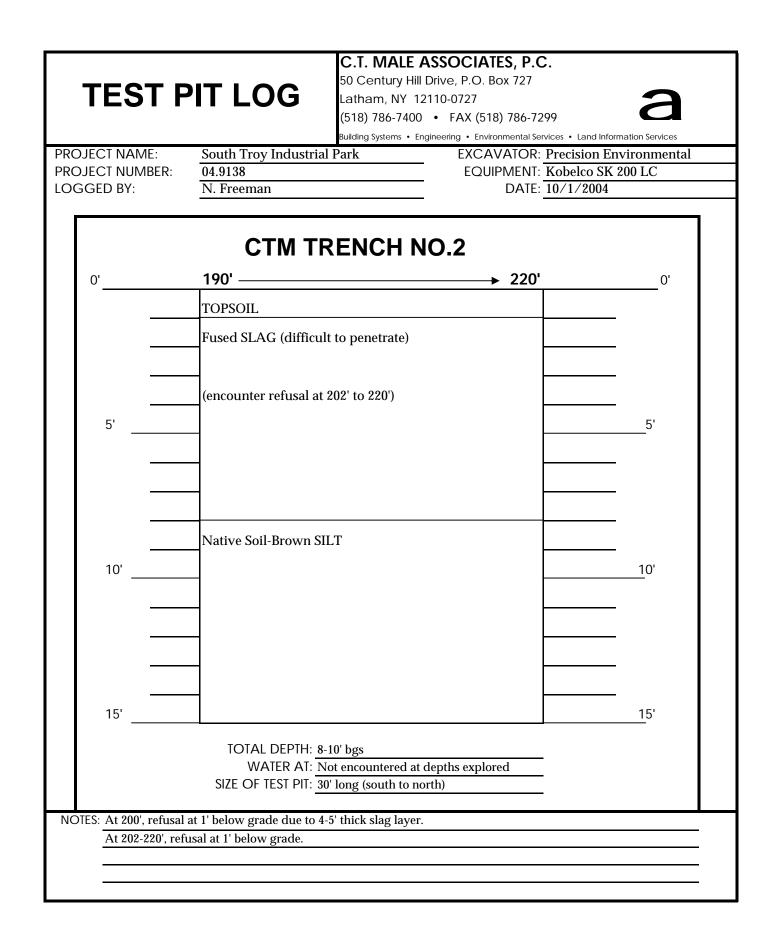



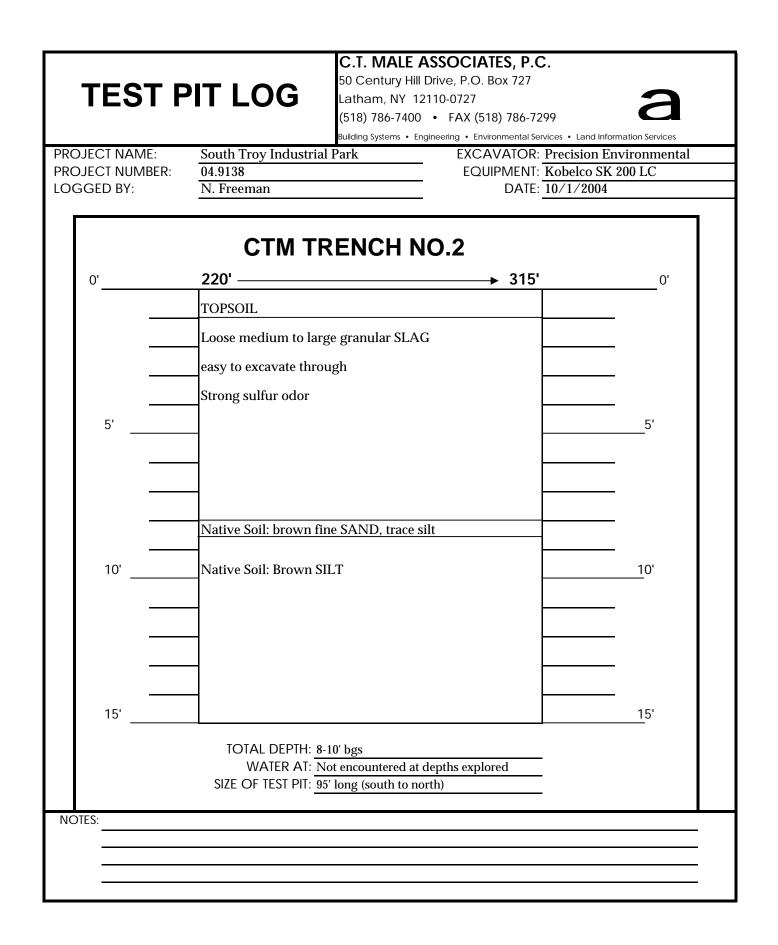



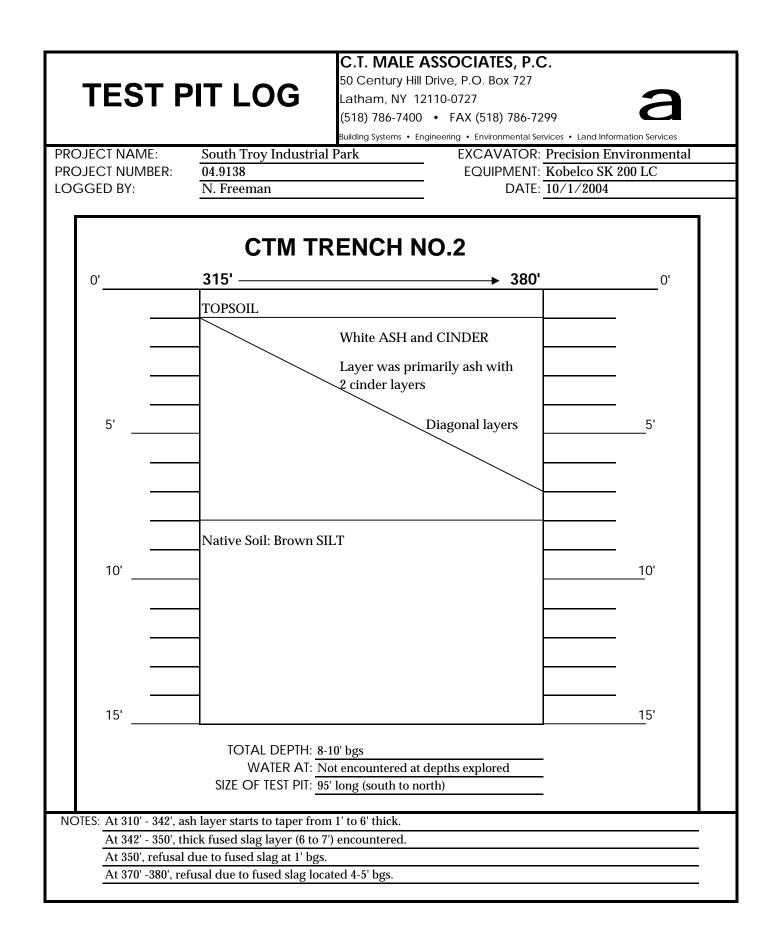



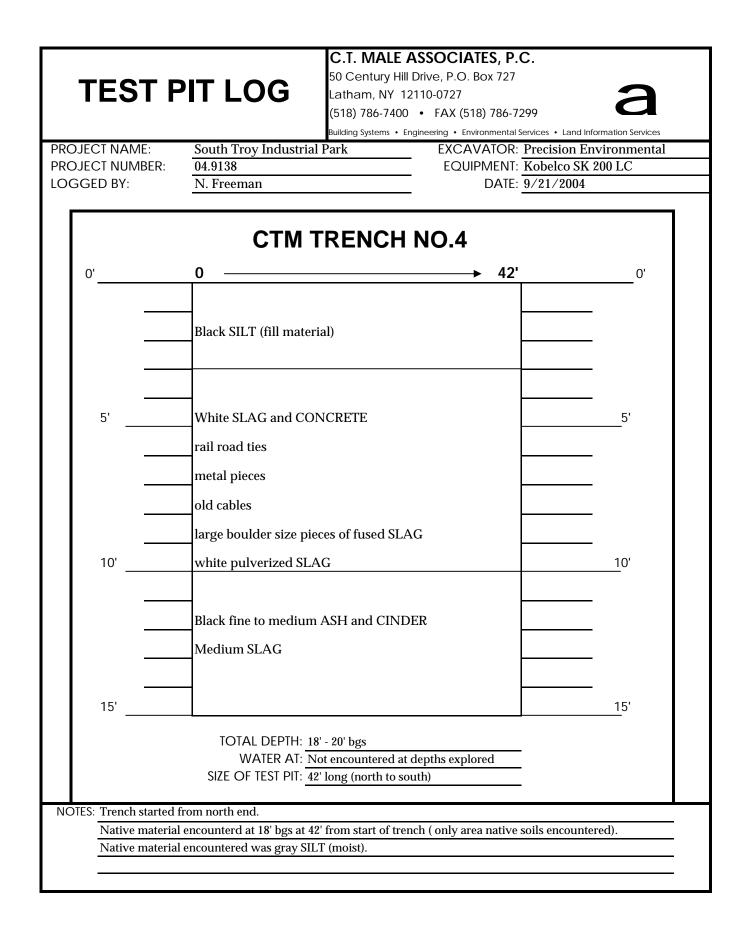



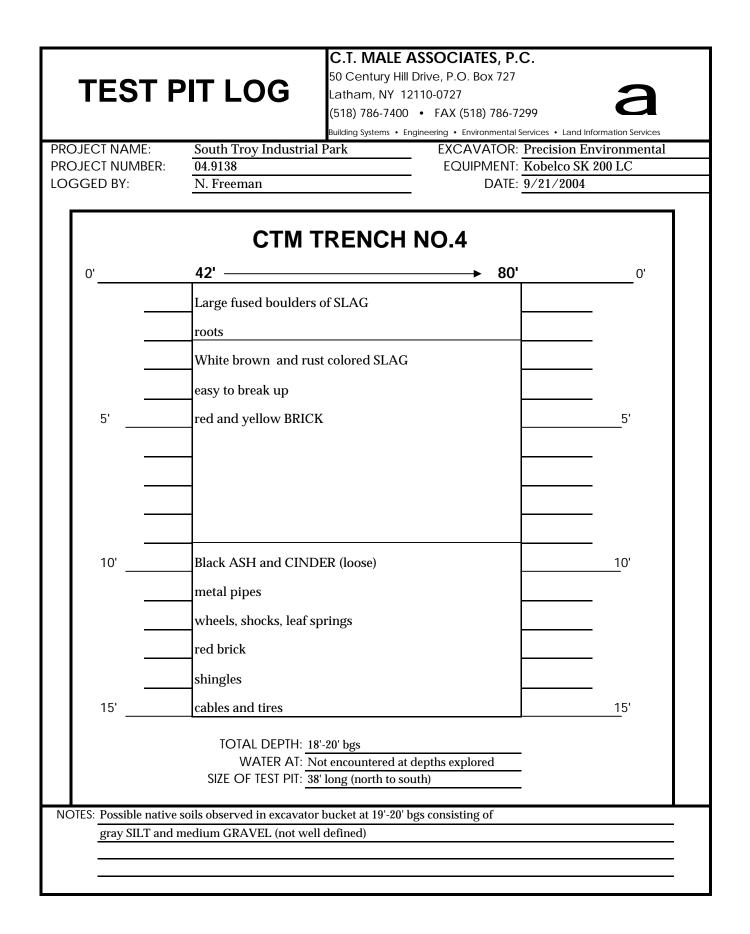



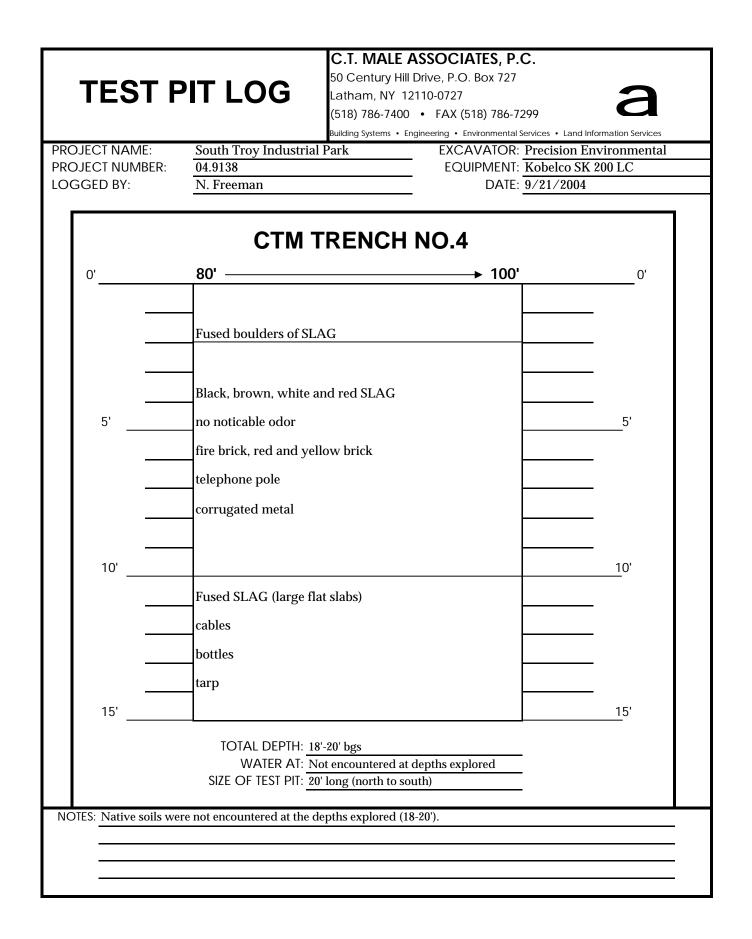



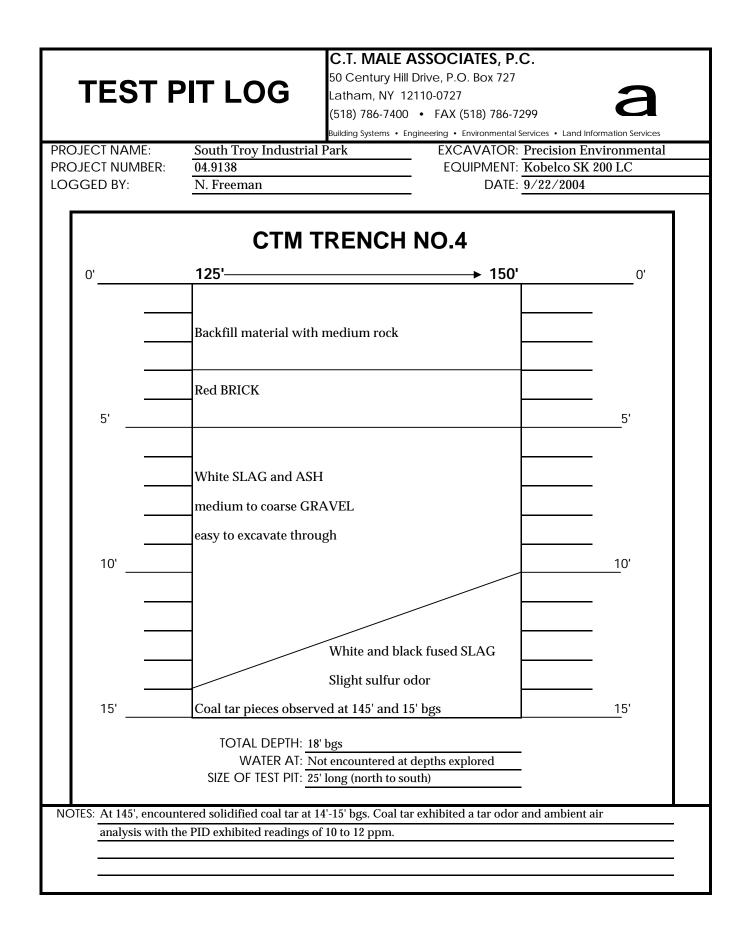


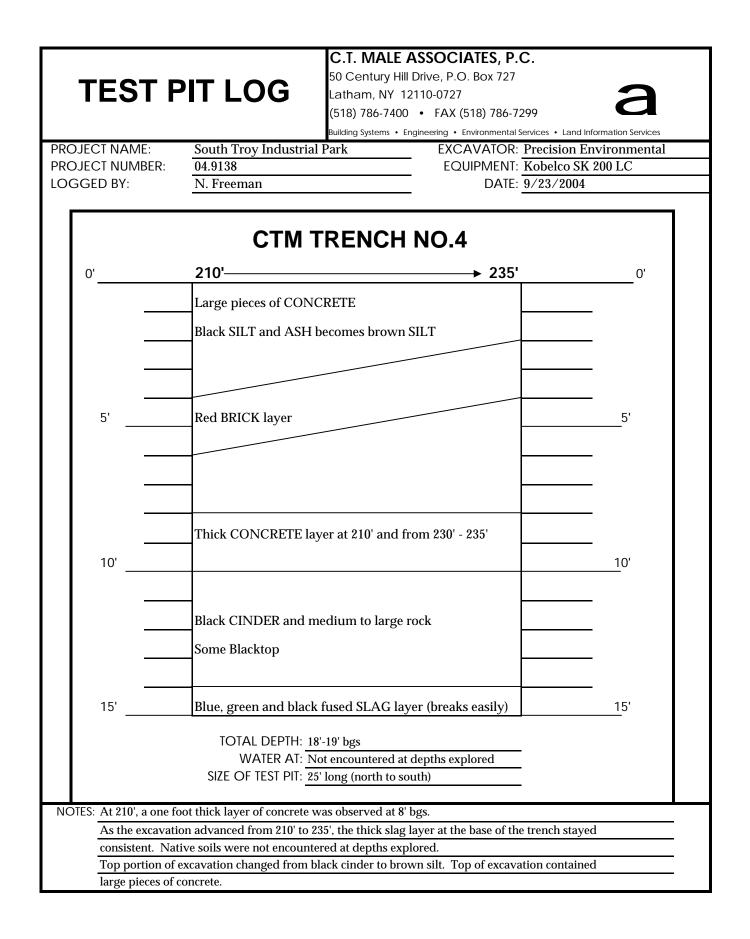



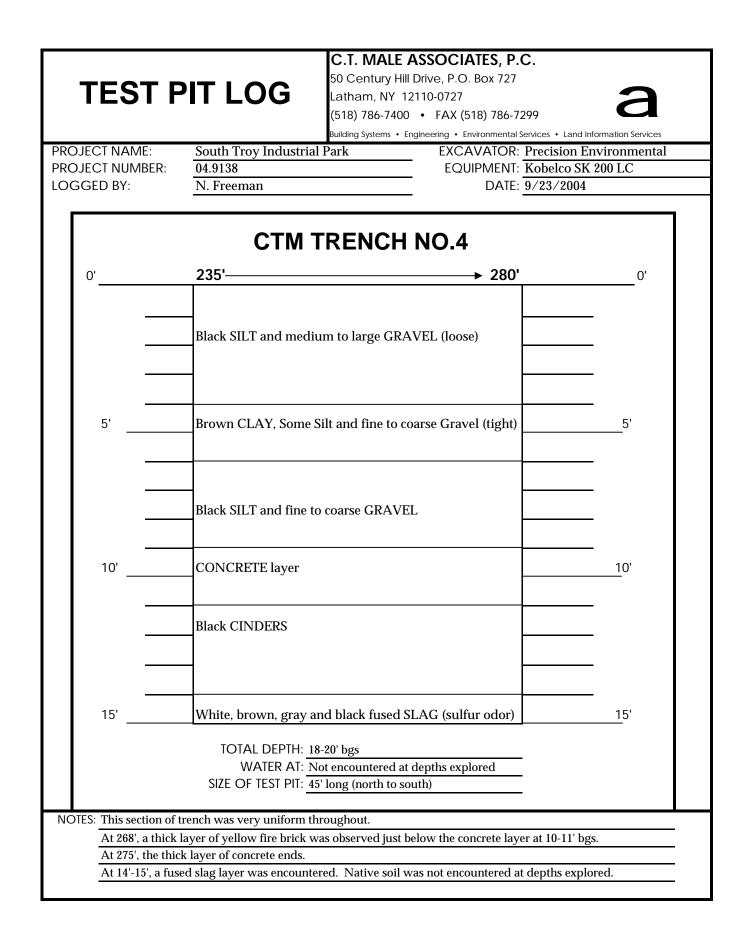



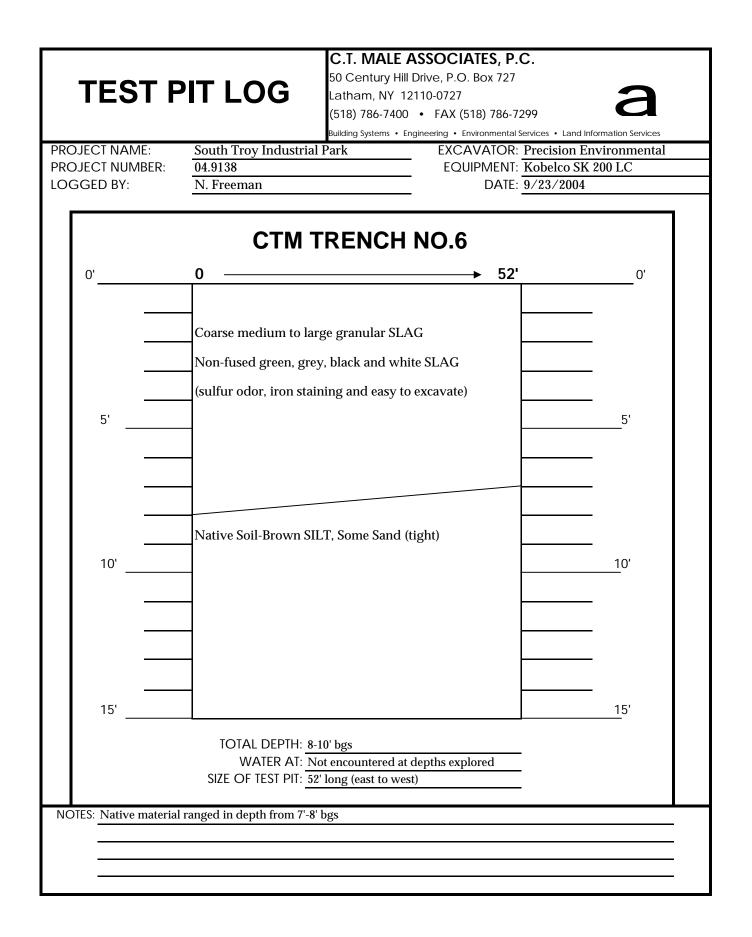


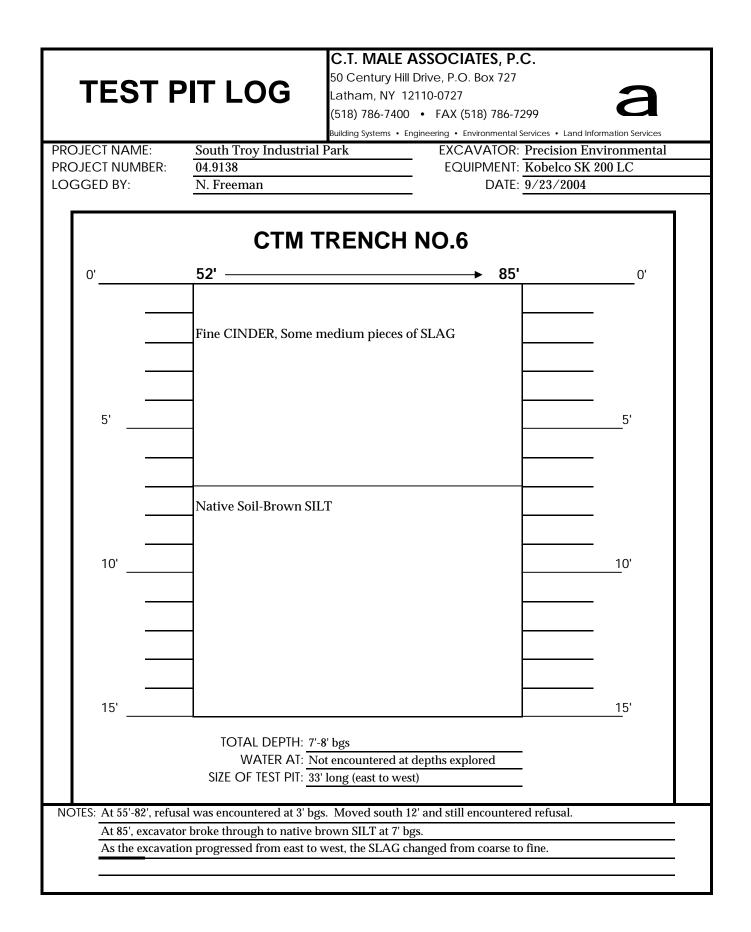


TEST F	PIT LOG	50 Century Hill Latham, NY 1 (518) 786-7400	ASSOCIATES, P.C. Drive, P.O. Box 727 2110-0727 • FAX (518) 786-7299 regineering • Environmental Services • Land Info	<b>a</b> prmation Services
PROJECT NAME: PROJECT NUMBER:	South Troy Industr 04.9138	ial Park	EXCAVATOR: Precision E EQUIPMENT: Kobelco SE	K 200 LC
LOGGED BY:	N. Freeman		DATE: <u>10/1/2004</u>	
	СТМ Т		10.2	
0'	270' ———		West into Bank	0'
	Black CINDER, Sor	ne Brick		_
	Medium pieces of f	used SLAG		_
				-
	_			_
5'				5'
				_
	ASH			_
	Coarse medium to	large pieces of SLA	AG	-
	sulfur odor			_
10'				10'
	_			-
	_			-
				-
	_			-
15'				<u>    1</u> 5'
	total depth: Water At:	10' bgs Not encountered at	depths explored	
			it into an elevated bank)	
	t 2 foot intervals showed			
Directly to th rise in elevatio		d trench was a cha	ange in the land topography, co	nsisting of a
	t and west to see what ty	pe of material made	up the elevated bank	

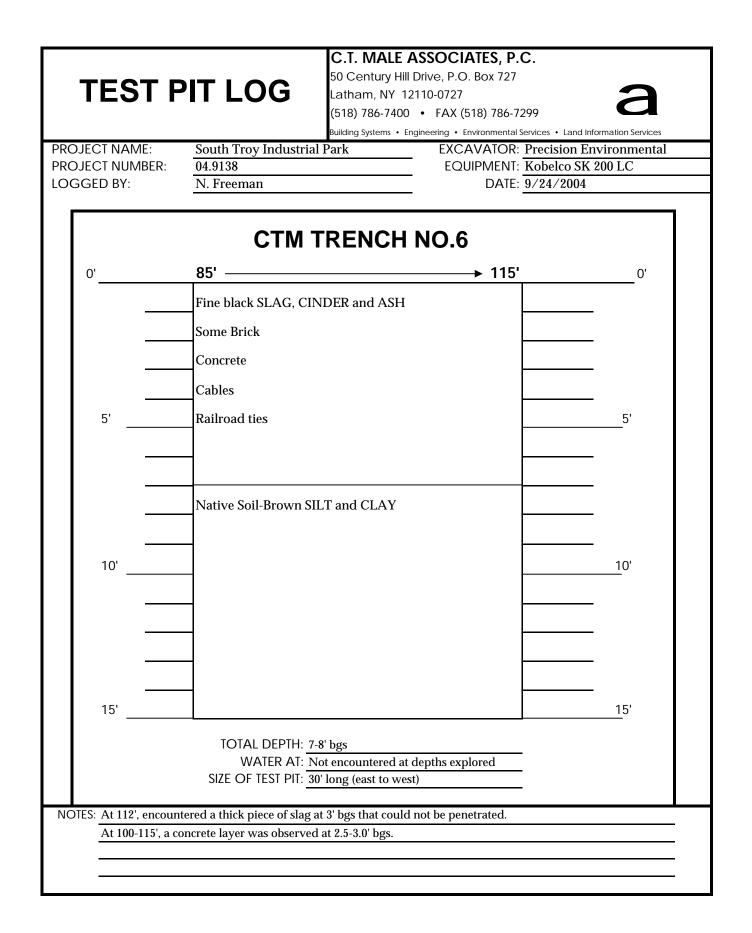


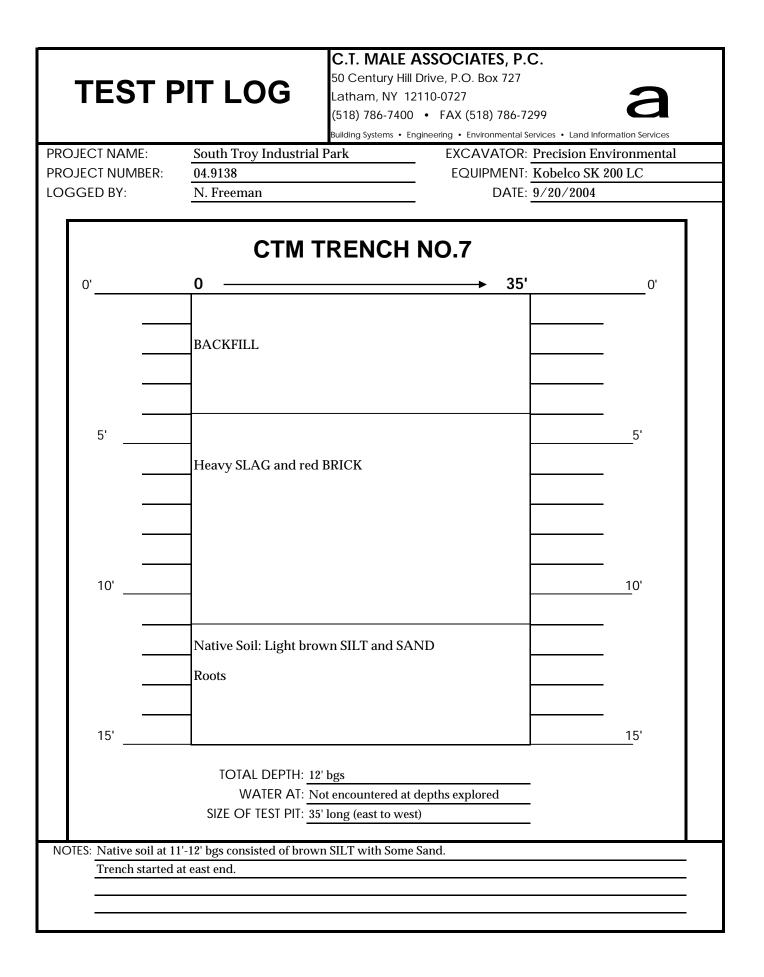


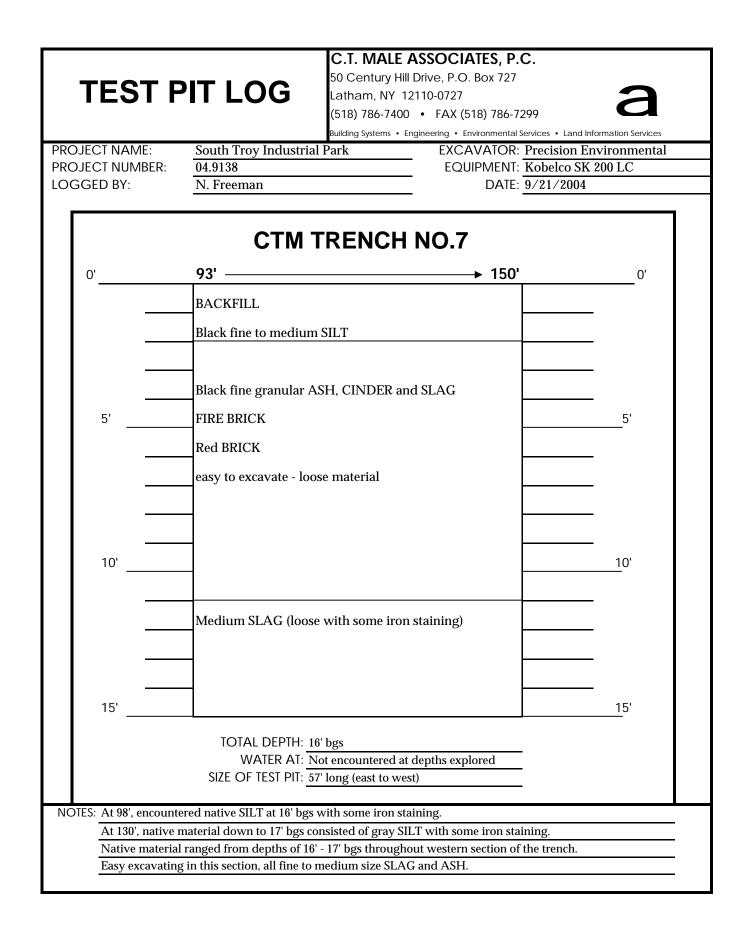



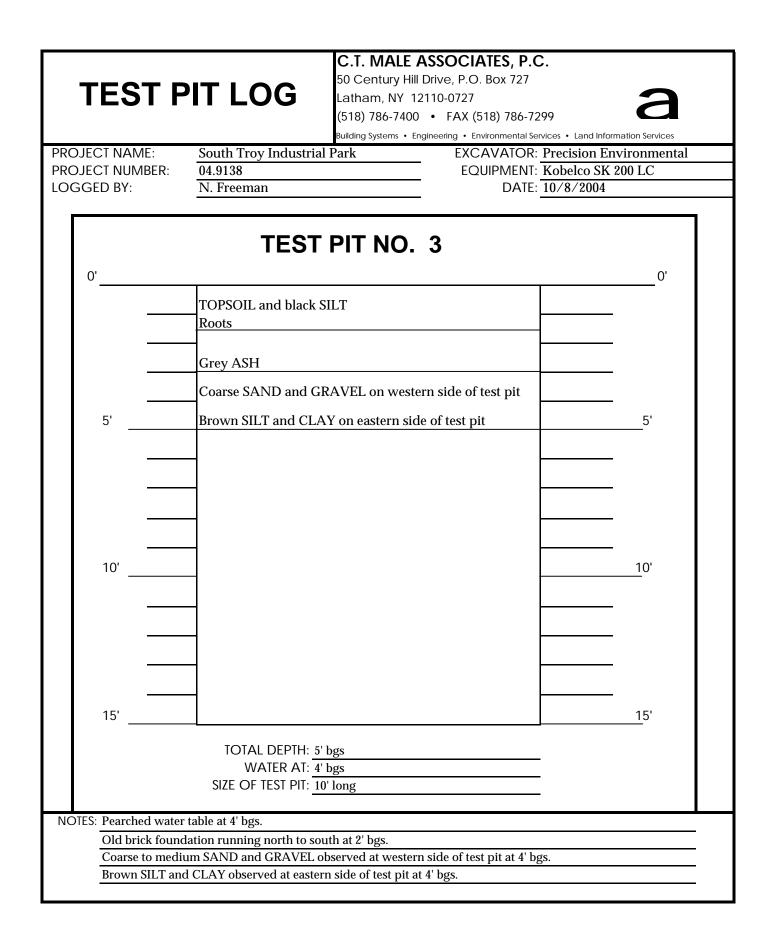



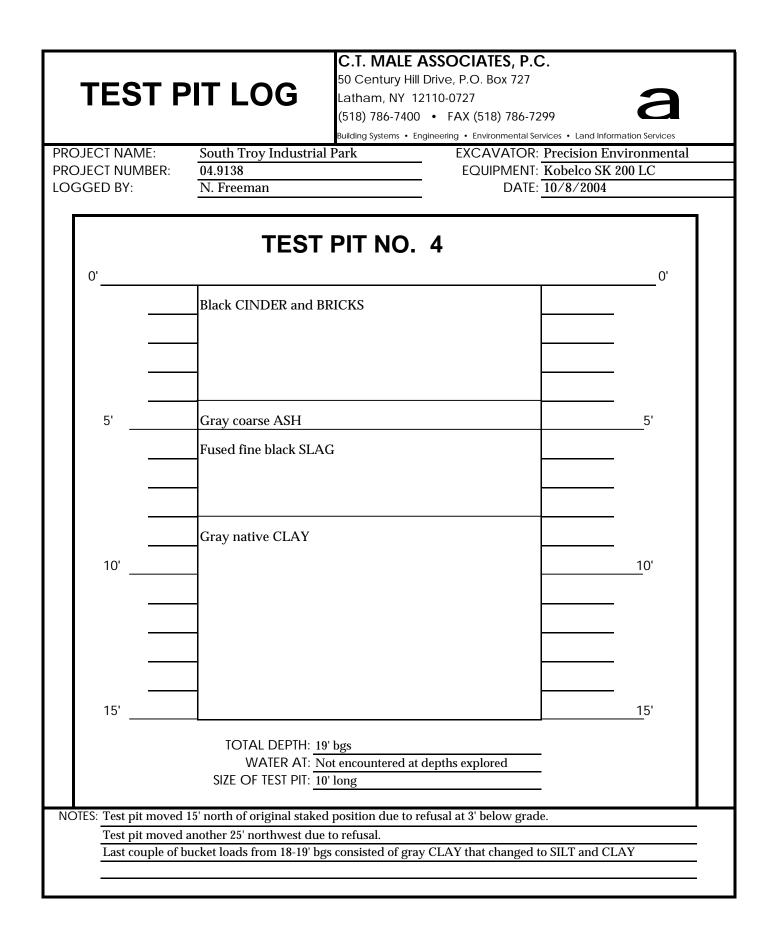









TEST F	PIT LOG	50 Century Hill Latham, NY 12	ASSOCIATES, P.C. Drive, P.O. Box 727 110-0727 • FAX (518) 786-7299	а
PROJECT NAME: PROJECT NUMBER: LOGGED BY:	South Troy Industri 04.9138 N. Freeman	Building Systems • En	gineering • Environmental Services • EXCAVATOR: Precis EQUIPMENT: Kobe DATE: 10/7/	sion Environmental Ico SK 200 LC
0'	TES	Γ PIT NO.	1	0'
· ·	TOPSOIL			0
	Black CINDER and	SILT		_
5'	Native brown medi	um SAND and GR	AVEL	5'
	Native brown SILT	and CLAY		_
 10'	-			<u>1</u> 0'
	Brown medium SA Heavily stained and			
15'	Total Depth: Water At: Size of test pit:	12' bgs		<u> </u>
At 12' bgs, wate At 12', start of r Clay pipe obser	art of contaminated soil co er and free product obser nedium SAND and GRA rved running east to west nning north to south at 6	rved in excavation. VEL. t at 3' bgs.	SILT and CLAY.	

	PIT LOG		P.O. Box 727 727 AX (518) 786-7299 • Environmental Services • La	
JECT NAME: JECT NUMBER: GGED BY:	South Troy Industr 04.9138 N. Freeman	ial Park E	EXCAVATOR: Precision EQUIPMENT: Kobelc DATE: 10/8/2	o SK 200 LC
0'	TES	T PIT NO. 2		0'
	Driveway GRAVEI	and black CINDER		
	Medium brown SA	ND and GRAVEL ( fill m	naterial)	
	_			
5'	_			5'
	Native brown SILT	, Some Clay		
	_			
	_			
10'	_			<u> </u>
	_			
	_			
	Dark brown SILT, S	Some Clay		
15'				<u> </u>
	total depth: Water at: Size of test pit:	Not encountered at depths	explored	
	omes medium SAND an			
	inter old clay sewer pipe intered in base of test pit	e t, but sandy gravel in last ex	cavator bucket was sati	irated. (no odor)





### **APPENDIX C**

# **TEST PIT AND TEST TRENCH**

# **ORGANIC VAPOR HEADSPACE ANALYSIS LOGS**



PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	unty				DATE
LOCATION:	Troy					COLLECTED: 9/20/04
INSTRUMENT USED:		Photovac	LAMP		EV	DATE
DATE INSTRUMENT	CALIBRATED:	9/20/2004	Prior to Use	BY:	NF	ANALYZED: 9/20/04
TEMPERATURE OF S	ioil:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	sample Reading	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #7	1	12	Soil	0.2	0.0	15' west of trench start
Test Trench #7	2	12	Soil	0.4	0.0	* 35' west of trench start
Test Trench #7	3	13	Soil	0.2	0.0	40' west of trench start
Test Trench #7	4	6	Soil	0.5	0.0	75' west of trench start
Test Trench #7	5	15	Soil	0.8	0.0	75' west of trench start
Test Trench #7	6	15	Soil	0.8	0.0	93' west of trench start

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air. ***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected.

PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	unty				DATE
LOCATION:	Troy					COLLECTED: 9/21/04
INSTRUMENT USED:		Photovac	LAMP		EV	DATE
DATE INSTRUMENT			Prior to Use	BY:	NF	ANALYZED: 9/21/04
TEMPERATURE OF S	il:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #7	1	6	Soil	0.3	0.0	98' W from start of trench
Test Trench #7	2	16	Soil	0.1	0.0	98' W from start of trench
Test Trench #7	3	16	Soil	0.1	0.0	* 114' W from start of trench
Test Trench #7	4	5	Soil	0.1	0.0	* 114' W from start of trench
Test Trench #7	5	17	Soil	0.0	0.0	130' W from start of trench
Test Trench #7	6	16	Soil	0.4	0.0	145' W: Silt (moist)
Test Trench #7	7	6	Fill	0.3	0.0	145' W: Ash and cinder
Test Trench #4	8	20	Soil	0.3	0.0	5' S from start of trench
Test Trench #4	9	5	Soil	0.2	0.0	5' S from start of trench
Test Trench #4	10	18	Soil	0.3	0.0	* 42' S: Gray silt
Test Trench #4	11	5	Fill	0.7	0.0	* 42' S: Shite crushed rock
Test Trench #4	12	18	Soil	0.2	0.0	54' S: Gray silt
Test Trench #4	13	5	Fill	0.8	0.0	54' S: Shite slag
Test Trench #4	14	6	Fill	0.8	0.0	80' S: Red slag
Test Trench #4	15	17	Fill	0.9	0.0	80' S: Black ash/silt
Test Trench #4	16	18	Fill	0.2	0.0	100' S: Black Set silt and slag

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Ind	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	unty				DATE
LOCATION:	Troy					COLLECTED: 9/22/04
INSTRUMENT USED:		Photovac	LAMP		EV	DATE
DATE INSTRUMENT			Prior to Use	BY:	NF	ANALYZED: 9/22/04
TEMPERATURE OF S	ioil:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #4	1	5	Fill	0.4	0.0	114' S: Coarse sand (iron rich)
Test Trench #4	2	5	Fill	1.2	0.0	120' S: White ash
Test Trench #4	3	16	Fill	2.2	0.0	120' S: Coarse black slag
Test Trench #4	4	19	Fill	2.3	0.0	* 125' S: Coarse black slag (wet)
Test Trench #4	5	6	Fill	1.3	0.0	* 125' S: White ash
Test Trench #4	6	14	Fill	5.2	0.0	130' S: Coarse black soot
Test Trench #4	7	16	Fill	4.6	0.2	135' S: Coarse black slag (wet)
Test Trench #4	8	15	Fill	5.2	0.2	145' S: Coal tar/solid - tar odor
Test Trench #4	9	15	Fill	2.4	0.2	145' S: Black slag and rock
Test Trench #4	10	5	Fill	1.8	0.2	145' S: Black cinder and ash
Test Trench #4	11	7	Fill	1.6	0.2	175' S: Brown silt above black slag
Test Trench #4	12	16	Fill	5.8	0.2	175' S: Wet coarse black slag
Test Trench #4	13	13	Fill	3.2	0.2	187' S: Coarse black granular slag
Test Trench #4	14	5	Fill	1.4	0.2	187' S: Black coarse cinder
Test Trench #4	15	17	Fill	2.8	0.2	200' S: Coarse black pieces of slag
Test Trench #4	16	7	Soil	1.3	0.2	200' S: Brown sand and silt
Test Trench #4	17	18	Fill	3.4	0.2	205' S: Black pieces of slag
						1

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

 $\ensuremath{^{**}\text{PPM}}\xspace$  represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	istrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	DATE				
LOCATION:	Troy			COLLECTED: 9/23/04		
INSTRUMENT USED:		Photovac LAMP 10.6 EV		EV	DATE	
DATE INSTRUMENT	Calibrated:	9/23/2004	Prior to Use	BY:	NF	ANALYZED: 9/23/04
TEMPERATURE OF S	oil:	Am	ibient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #4	1	14	Fill	0.4	0.0	210' S: Slag with sulfur odor
Test Trench #4	2	19	Fill	1.2	0.0	210' S: Coarse granular black slag
Test Trench #4	3	8	Soil	0.4	0.1	235' S: Brown silt
Test Trench #4	4	18	Fill	0.9	0.1	235' S: Coarse black slag
Test Trench #4	5	10	Fill	0.8	0.2	245' S: Coarse black cinder
Test Trench #4	6	19	Fill	2.2	0.2	245' S: Gray coarse slag (wet)
Test Trench #4	7	6	Soil	1.2	0.2	*258' S: Brown clay, medium gravel
Test Trench #4	8	20	Fill	1.2	0.2	*260' S: Coarse slag
Test Trench #4	9	7	Fill	0.4	0.2	280' S: Black medium cinder
Test Trench #4	10	17	Fill	1.6	0.2	280' S: Coarse grey wet slag
Test Trench #6	11		C 11	0.7	0.0	
	11	8	Soil	0.7	0.2	4' W: Brown fine sand, some silt
Test Trench #6	12	4	Fill	1.5	0.2	*18' W: Coarse slag (sulfur odor)
Test Trench #6	13	8	Soil	1.1	0.2	*18' W: Native brown silt
Test Trench #6	14	4	Fill	2.4	0.2	35' W: Slag (sulfur odor/iron stained)
Test Trench #6	15	8	Soil	1.6	0.2	35' W: Native brown silt
Test Trench #6	16	8	Soil	2.0	0.2	52' W: Native brown silt
Test Trench #6	17	4	Fill	4.5	0.2	52' W: Coarse white/grey slag
Test Trench #6	18	3	Fill	1.5	0.2	* 85' W: Black cinder layer
Test Trench #6	19	7	Soil	1.0	0.2	*85' W: Brown silt

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected.

PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	unty				DATE
LOCATION:	Troy			COLLECTED: 9/24/04		
INSTRUMENT USED:		Photovac LAMP 10.6 EV			DATE	
DATE INSTRUMENT			Prior to Use	BY:	NF	ANALYZED: 9/24/04
TEMPERATURE OF S	Soil:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #6	1	8	Soil	0.6	0.2	85' W: Brown clay
Test Trench #6	2	3	Fill	1.6	0.2	100' W: Black cinder
Test Trench #6	3	7	Soil	0.5	0.2	110' W: Brown silt, trace sand
Test Trench #6	4	4	Fill	0.8	0.2	110' W: Black soot overlying slag
Teat Trench #5	5	9	Soil	0.8	0.2	5' W: Brown native silt
Teat Trench #5	6	9	Soil	0.8	0.2	*20' W: Brown silt
Teat Trench #5	7	2	Soil	1.2	0.2	*20' W: Dark red silt above slag
Teat Trench #5	8	3	Fill	0.7	0.2	35' W: Black cinder and slag
Teat Trench #5	9	9	Soil	0.7	0.2	35' W: Brown silt with roots
Teat Trench #5	10	3	Fill	0.4	0.2	45' W: Black topSoil
Teat Trench #5	11	10	Soil	0.9	0.2	45' W: Brown silt
Teat Trench #5	12	4	Fill	0.8	0.2	60' W: Black cinder
Teat Trench #5	13	10	Soil	0.9	0.2	60' W: Brown wet silt
Teat Trench #5	14	2	Fill	0.4	0.2	70' W: Gray ash
Teat Trench #5	15	10	Soil	0.7	0.2	70' W: Brown silt
Teat Trench #5	16	9	Soil	0.6	0.2	* 75' W: Brown silt
Teat Trench #5	17	2	Fill	0.8	0.2	*90' W: White coarse ash
Teat Trench #5	18	10	Soil	0.7	0.2	105' W: Brown silt

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected.

PROJECT:	South Troy Indu	istrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	unty				DATE
LOCATION:	Troy			COLLECTED: 9/27/04		
INSTRUMENT USED:		Photovac LAMP 10.6 EV			DATE	
DATE INSTRUMENT	-		Prior to Use	BY:	NF	ANALYZED: 9/27/04
TEMPERATURE OF S	Soil:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #3	1	2	Soil	0.1	0.0	5' N: Fine brown sand
Test Trench #3	2	13	Soil	0.4	0.1	5' N: Brown native silt
Test Trench #3	3	13	Soil	0.6	0.1	*25' N: Brown silt
Test Trench #3	4	3	Fill	0.7	0.1	*25' N: Black silt and cinder
Test Trench #3	5	12.5	Soil	0.8	0.1	50' N: Brown silt
Test Trench #3	6	3	Soil	1.0	0.1	50' N: Brown sand
Test Trench #3	7	4	Soil	1.2	0.0	60' N: Brown sand, some silt
Test Trench #3	8	13	Soil	1.6	0.1	60' N: Light brown silt
Test Trench #3	9	13	Soil	1.1	0.1	75' N: Brown silt
Test Trench #3	10	4	Fill	0.7	0.2	85' N: Black silt and cinder
Test Trench #3	11	10	Soil	1.0	0.2	88' N: Brown silt
Test Trench #3	12	10	Soil	0.8	0.2	100' N: Brown silt
Test Trench #3	13	4	Fill	3.0	0.2	110' N: Coarse black cinder
Test Trench #3	14	10	Soil	1.2	0.2	110' N: Brown silt
Test Trench #3	15	10	Soil	1.3	0.2	135' N: Brown silt
Test Trench #3	16	5	Fill	1.7	0.2	135' N: Black cinder
Test Trench #3	17	10	Soil	1.1	0.2	* 150' N: Brown silt
Test Trench #3	18	4	Fill	1.1	0.2	* 150' N: Black silt and cinder
Test Trench #3	19	4	Fill	1.0	0.2	170' N: Brown silt and black cinder
Test Trench #3	20	11	Soil	1.3	0.2	170' N: Brown native silt
Test Trench #3	21	10	Soil	1.1	0.2	200' N: Brown native silt
Test Trench #3	22	4	Fill	1.1	0.2	200' N: Black cinder and silt

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Ind	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	unty				DATE
LOCATION:	Troy			COLLECTED: 9/28/04		
INSTRUMENT USED:		Photovac	LAMP	10.6	EV	DATE
DATE INSTRUMENT			Prior to Use	BY:	NF	ANALYZED: 9/28/04
TEMPERATURE OF S	OIL:	Am	ibient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #3	1	11	soil	0.2	0.0	215' N: Brown native silt
Test Trench #3	2	11	soil	0.3	0.0	225' N: Brown native silt
Test Trench #3	3	4	Fill	0.6	0.0	225' N: Black cinder
Test Trench #3	4	4	Fill	3.4	0.0	250' N: Black cinder
Test Trench #3	5	10	soil	0.6	0.0	250' N: Brown silt
Test Trench #3	6	5	Fill	0.8	0.0	275' N: Black cinder and gravel
Test Trench #3	7	10	soil	0.6	0.0	275' N: Brown silt
Test Trench #3	8	10	soil	0.4	0.0	*300' N:Native brown silt
Test Trench #3	9	4	Fill	0.4	0.0	*300' N: Black silt and cinder

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

 $\label{eq:second} *** \text{Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .}$ 

PROJECT:	South Troy Indu	istrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	unty				DATE
LOCATION:	Troy			COLLECTED: 9/29/04		
INSTRUMENT USED:		Photovac LAMP 10.6 EV		EV	DATE	
DATE INSTRUMENT	Calibrated:	9/29/2004	Prior to Use	BY:	NF	ANALYZED: 9/29/04
TEMPERATURE OF S	oil:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #3	1	10	Soil	0.2	0.0	315' N: Native brown silt
Test Trench #3	2	2	Fill	0.6	0.0	315' N: Black cinder
Test Trench #3	3	4	Soil	0.2	0.0	330' brown sand
Test Trench #3	4	10	Soil	0.3	0.1	330' N: Brown native silt
Test Trench #3	5	4	Soil	0.4	0.1	345' N: Brown sand
Test Trench #3	6	11	Soil	0.3	0.1	345' N: Brown native silt
Test Trench #3	7	10	Soil	0.5	0.1	365' N: Brown native silt
Test Trench #2	8	8	Soil	0.5	0.1	10' N: Brown native silt
Test Trench #2	9	9.5	Soil	96.4	0.1	*28' N: Stained silt with fuel oil odor
Test Trench #2	10	8	Soil	42.2	0.5	*40' N: Brown silt (fuel oil odor)
Test Trench #2	11	1.5	Fill	1.8	0.8	*44' N: Black cinder and ash
Test Trench #2	12	8	Soil	1.1	0.5	50' N: Brown native silt
Test Trench #2	13	1.5	Fill	1.3	0.5	50' N: Black cinder and gray ash

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	unty				DATE
LOCATION:	Troy					COLLECTED: 9/30/04
INSTRUMENT USED		Photovac	LAMP		EV	DATE
DATE INSTRUMENT	-		Prior to Use	BY:	NF	ANALYZED: 9/30/04
TEMPERATURE OF	Soil:	Am	bient		DA OKODOLINID	ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Trench #2	1	9	Soil	0.6	0.0	62' N: Native brown silt
Test Trench #2	2	2	Fill	0.7	0.2	65' N: Black/grey cinder and ash
Test Trench #2	3	8	Soil	0.6	0.2	77' N: Native brown silt
Test Trench #2	4	5	Fill	13.9	0.4	90' N: White slag (sweet odor)
Test Trench #2	5	7	Fill	12.0	0.4	90' N: White slag (sweet odor)
Test Trench #2	6	8.5	Soil	2.9	0.8	*90' N: Native brown silt
Test Trench #2	7	7	Fill	20.2	0.8	92' N: Coarse white slag (sweet odor)
Test Trench #2	8	5	Fill	70.0	0.8	94' N: Medium/fine slag (strong sweet odor)
Test Trench #2	9	8.5	Soil	1.9	1.3	94' N: Native brown silt
Test Trench #2	10	5	Fill	15.2	1.3	100' N: Medium/coarse slag (sweet odor)
Test Trench #2	11	6-7	Fill	36.0	1.3	100' N: Medium/coarse slag (sweet odor)
Test Trench #2	12	5	Fill	4.6	1.3	105' N: Medium/coarse slag (sweet odor)
Test Trench #2	13	7	Fill	9.4	1.3	105' N: Medium/coarse slag (sweet odor)
Test Trench #2	14	4	Fill	0.9	0.8	112' N: Medium to coarse slag
Test Trench #2	15	7	Fill	1.4	0.8	112' N: Medium to coarse slag (sulfur odor)
Test Trench #2	16	8	Soil	0.8	0.8	112' N: Native brown silt
Test Trench #2	17	5	Fill	0.9	0.7	122' N: Fine/medium slag (sulfur odor)
Test Trench #2	18	8	Soil	0.8	0.7	122' N: Native brown silt
Test Trench #2	19	5	Fill	0.8	0.6	142' N: Coarse slag (sulfur odor)
Test Trench #2	20	9	Soil	0.6	0.5	150' N: Native brown silt
Test Trench #2	21	8	Soil	0.8	0.5	*160' N: Native brown silt
Test Trench #2	22	4	Fill	2.2	0.5	* 160' black cinder and ash
Test Trench #2	23	4	Fill	0.8	0.4	180' N: Loose slag (sulfur odor)
Test Trench #2	24	9	Soil	0.8	0.5	180' N: Native brown silt

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

# ć

### **ORGANIC VAPOR HEADSPACE ANALYSIS LOG**

PROJECT:	South Troy Ind	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	ounty				DATE
OCATION:	Troy					COLLECTED: 10/1/04
INSTRUMENT USED: DATE INSTRUMENT CALIBRATED:		Photovac LAMP 10.6 EV		EV	DATE	
			Prior to Use	BY:	NF	ANALYZED: 10/1/04
TEMPERATURE OF S	SOIL:	Am	ibient			ANALYST: N. Freeman
		DEDTU		SAMPLE	BACKGROUND	
EXPLORATION NUMBER	SAMPLE NUMBER	DEPTH (FT.)	SAMPLE TYPE	READING (PPM)**	READING (PPM)**	REMARKS
	INUIVIBER	(F1.)	ITPE	(PPIVI)	(PPIVI)	REIVIARKS
Test Trench #2	1	8	soil	0.4	0.0	200' N: Native fine brown silt
Test Trench #2	2	8	soil	0.3	0.0	220' N: Native fine brown silt
Test Trench #2	3	4	Fill	2.5	0.1	220' N: Slag (strong sulfur odor)
Test Trench #2	4	8	soil	0.3	0.1	240' N: Native fine brown silt
Test Trench #2	5	6	Fill	6.4	0.1	250' N: Slag (strong sulfur odor)
Test Trench #2	6	8	soil	0.2	0.1	250' N: Native fine brown silt
Test Trench #2	7	8	soil	0.4	0.1	275' N: Native fine brown silt
Test Trench #2	8	4	Fill	0.4	0.1	275' N: Coarse slag
Test Trench #2	9	8	soil	0.6	0.1	* 308' N: Native sand, trace silt
Test Trench #2	10	3	Fill	0.9	0.2	* 312' N: White coarse ash
Test Trench #2	11	3	Fill	1.2	0.2	330' N: White coarse ash
Test Trench #2	12	8	soil	0.6	0.2	330' N: Native brown silt
Test Trench #2	13	8	soil	0.4	0.2	350' N: Native brown silt
nstrument was calibrate			L, ,	<u> </u>		

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer. **PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air. ***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected.

PROJECT:	South Troy Indu	istrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	unty		-		DATE
LOCATION:	Troy					COLLECTED: 10/4/04
INSTRUMENT USED:		Photovac	LAMP	10.6	EV	DATE
DATE INSTRUMENT			Prior to Use	BY:	NF	ANALYZED: 10/4/04
TEMPERATURE OF S	OIL:	Am	bient			ANALYST: N. Freeman
				SAMPLE	BACKGROUND	
EXPLORATION NUMBER	SAMPLE NUMBER	DEPTH (FT.)	SAMPLE TYPE	READING (PPM)**	READING (PPM)**	REMARKS
Test Trench #1	1	6	Fill	0.4	0.1	At 35' N: Coarse Slag
Test Trench #1	2	17	soil	0.4	0.2	At 35' N: Native fine brown sand
Test Trench #1	2	17	soil	0.8	0.2	At 40' N: Native fine brown sand
Test Trench #1	4	2.5	soil	0.5	0.2	* At 8' N: Brown silt - small gravel
Test Trench #1	5	15.5	soil	0.6	0.2	* At 8' N: Brown sand trace silt
Test Trench #1	6	16	soil	0.4	0.2	15' N: Brown native sand
Test Trench #1	7	5	Fill	0.8	0.2	15' N: Coarse slag (sulfur odor)
Test Trench #1	8	6	soil	0.2	0.2	50' N: Brown silt
Test Trench #1	9	19	soil	0.4	0.2	50' N: Brown native sand
Test Trench #1	10	5	soil	0.4	0.2	64' N: Brown silt and gravel
Test Trench #1	11	19	soil	0.7	0.2	64' N: Sand and gravel (native soil)
Test Trench #1	12	18	Fill	4.2	0.2	74' N: Slag (sweet odor)
Test Trench #1	13	19	soil	1.0	0.6	74' N: Brown native sand
Test Trench #1	14	17	Fill	17.4	0.6	78' N: Slag (stained and sweet odor)
Test Trench #1	15	10	Fill	0.8	0.4	80' N: Coarse slag (no odor)

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	istrial Park	04.9138	PAGE 1 OF 1		
CLIENT:	Rensselaer Cou	unty				DATE
LOCATION:	Troy					COLLECTED: 10/5/04
INSTRUMENT USED:		Photovac	LAMP		EV	DATE
DATE INSTRUMENT		10/5/2004	Prior to Use	BY:	NF	ANALYZED: 10/5/04
TEMPERATURE OF S	SOIL:	Am	bient			ANALYST: N. Freeman
				SAMPLE	BACKGROUND	
EXPLORATION NUMBER	SAMPLE NUMBER	DEPTH (FT.)	SAMPLE TYPE	READING (PPM)**	READING (PPM)**	REMARKS
-	-					
Test Trench #1	1	6	Fill	0.4	0.1	* 90' N: Black cinder and brown silt
Test Trench #1	2	20	soil	0.9	0.1	* 90' N: Sand and gravel (native)
Test Trench #1	3	6	Fill	0.3	0.1	100' N: Black cinder and silt
Test Trench #1	4	16	Fill	0.6	0.1	100' N: Coarse slag (sulfur odor)
Test Trench #1	5	20	Fill	0.4	0.1	100' N: Coarse slag
Test Trench #1	6	9	Fill	0.4	0.1	104' N: Black cinder
Test Trench #1	7	18	Fill	0.8	0.2	108' N: Coarse slag (sulfur odor)
Test Trench #1	8	14	Fill	0.6	0.2	160' N: Coarse slag
Test Trench #1	9	10	Fill	0.4	0.2	168' N: Black cinder
Test Trench #1	10	10	Fill	1.6	0.2	180' N: Cinder, silt and large rock
Test Trench #1	11	14	Fill	1.0	0.2	200' N: Coarse slag (sulfur odor)
Test Trench #1	12	5	soil	0.6	0.2	202' N: Black silt

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	strial Park		PROJECT #:	04.9138	PAGE 1 OF 2		
CLIENT:	Rensselaer Cou	unty				DATE		
LOCATION:	Troy					COLLECTED: 10/6/04		
INSTRUMENT USED:		Photovac	LAMP	10.6	EV	DATE		
DATE INSTRUMENT			Prior to Use	BY:	NF	ANALYZED: 10/6/04		
TEMPERATURE OF S	OIL:	Am	ibient			ANALYST: N. Freeman		
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING			
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS		
Test Trench #1	1	16	Fill	0.9	0.1	220' N: Black cinder and grey ash		
Test Trench #1	2	17	Fill	26.4	0.2	* 228' N: Cinder and ash (fuel odor)		
Test Trench #1	3	6	Fill	1.4	0.9	* 235' N: Gray ash and cinder		
Test Trench #1	4	20	Fill	12.6	0.6	228' N: Cinder and slag (sweet odor)		
Test Trench #1	5	13	Fill	4.0	0.8	235' N: Slag and cinder (sweet odor)		
Test Trench #1	6	15	Fill	3.6	0.8	235' N: Slag and cinder (sweet odor)		
Test Trench #1	7	17	Fill	42.0	0.8	235' N: Slag and cinder (sweet odor)		
Test Trench #1	8	19	Fill	36.0	0.8	235' N: Slag and cinder (sweet odor)		
Test Trench #1	9	16	Fill	50.0	1.0	240' N: Slag (sweet odor and stained)		
Test Trench #1	10	19-20	Fill	52.4	1.2	240' N: Slag (sweet odor and stained)		
Test Trench #1	11	6	Fill	1.0	0.6	248' N: Gray ash and cinder		
Test Trench #1	12	11	Fill	22.0	0.6	248' N: Slag and cinder (sweet odor/stained)		
Test Trench #1	13	14	Fill	10-20	0.6	254' N: Coarse slag and cinder		
Test Trench #1	14	20	soil	3.5	0.6	* 260' N: Sand and gravel (sweet odor)		
Test Trench #1	15	20	Fill	15-20	0.6	272' N: Coarse slag (sweet odor)		
Test Trench #1	16	6	Fill	0.8	0.6	282' N: Black cinder		
Test Trench #1	17	14	Fill	8.0	0.6	282' N: Coarse slag and ash		
Test Trench #1	18	18	Fill	5.0	0.6	282' N: Coarse medium slag		

 *  Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	strial Park		PROJECT #:	04.9138	PAGE 2 OF 2
CLIENT:	Rensselaer Cou	inty				DATE
LOCATION:	Troy					COLLECTED: 10/6/04
INSTRUMENT USED	:	Photovac	LAMP	10.6	EV	DATE
DATE INSTRUMENT	CALIBRATED:	10/6/2004	Prior to Use	BY:	NF	ANALYZED: 10/6/04
TEMPERATURE OF S	SOIL:	Am	ibient			ANALYST: N. Freeman
				SAMPLE	BACKGROUND	
EXPLORATION NUMBER	SAMPLE NUMBER	DEPTH (FT.)	SAMPLE TYPE	READING (PPM)**	READING (PPM)**	REMARKS
-		. ,			, ,	
Test Trench #1	19	8	Fill	0.8	0.6	298' N: Black cinder
Test Trench #1	20	19	Fill	25.0	0.6	295' N: Coarse slag (wet-kerosene odor)
Test Trench #1	21	14	Fill	5.0	0.6	305' N: Coarse slag
Test Trench #1	22	20	soil	5.0	0.6	305' N: Native wet sand
Test Trench #1	23	19	Fill	4.0	0.6	312' N: Coarse wet slag
Test Trench #1	24	5	Fill	0.9	0.6	320' N: Black cinder
Test Trench #1	25	19	Fill	2.2	0.6	320' N: Coarse wet slag
Test Trench #1	26	19	Fill	60.0	0.6	330' N: Coarse wet slag (kerosene odor)
Test Trench #1	27	8	Fill	0.8	0.6	340' N: Black cinder
Test Trench #1	28	14	Fill	0.8	0.6	340' N: Coarse slag and cinder
Test Trench #1	29	19	Fill	8.0	0.6	340' N: Coarse wet slag (kerosene odor)
Test Trench #1	30	8	Fill	20.0	0.6	350' N: Brick and ash
Test Trench #1	31	19	Fill	0.8	0.6	350' N: Coarse wet slag and gray sand

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Co	unty				DATE
LOCATION:	Troy					COLLECTED: 10/7/04
INSTRUMENT USED		Photovac	LAMP		EV	DATE
DATE INSTRUMENT	CALIBRATED:	10/7/2004	Prior to Use	BY:	NF	ANALYZED: 10/7/04
TEMPERATURE OF	SOIL:	Am	bient			ANALYST: N. Freeman
				SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Pit #1	1	2	Fill	0.6	0.3	* Black cinder and silt
Test Pit #1	2	4	soil	0.8	0.3	* Medium native sand and gravel
Test Pit #1	3	6	soil	0.9	0.3	Native silt and clay
Test Pit #1	4	10.5	soil	75.0	0.3	Native silt and clay
Test Pit #1	5	12-14	soil	175.0	1.0	Native sand and gravel. Stained with free product

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	unty				DATE
LOCATION:	Troy					COLLECTED: 10/8/04
INSTRUMENT USED:		Photovac	LAMP	10.6	EV	DATE
DATE INSTRUMENT		10/7/2004	Prior to Use	BY:	NF	ANALYZED: 10/8/04
TEMPERATURE OF S	OIL:	Am	bient			ANALYST: N. Freeman
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
Test Pit #2	1	4	soil	0.5	0.3	* Brown sand and gravel
Test Pit #2	2	10	soil	0.4	0.3	Native silt and clay
Test Pit #2	3	13	soil	0.4	0.3	Native silt and clay
Test Pit #2	4	20	soil	0.5	0.3	* Brown sand and gravel (wet)
Test Pit #3	5	2	Fill	0.8	0.5	* Coarse gray ash
Test Pit #3	6	5	soil	0.8	0.5	* Silt and clay (native)
Test Pit #4	7	4	Fill	0.6	0.5	Black coarse cinder
Test Pit #4	8	7	Fill	0.9	0.5	* Black coarse cinder
Test Pit #4	9	10	soil	0.5	0.5	Gray clay (native)
Test Pit #4	10	14	soil	0.5	0.5	Gray clay (native)
Test Pit #4	11	19	soil	0.8	0.5	Gray silt and clay (native)

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

PROJECT:	South Troy Indu	ustrial Park		PROJECT #:	04.9138	PAGE 1 OF 1
CLIENT:	Rensselaer Cou	unty				DATE
LOCATION:	Troy					COLLECTED: 10/12/04
INSTRUMENT USED		Photovac	LAMP		EV	DATE
DATE INSTRUMENT		10/12/2004	Prior to Use	BY:	NF	ANALYZED: 10/12/04
TEMPERATURE OF S	SOIL:	Am	bient			ANALYST: N. Freeman
				SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)	TYPE	(PPM)**	(PPM)**	REMARKS
ERD 2	1	9	soil	0.4	0.0	Coarse slag
ERD 2	2	12.5	soil	6.2	0.0	Coarse slag
ERD 2	3	14	soil	0.3	0.0	Coarse slag
ERD 2	4	16	soil	0.5	0.0	Brownish gray silt (native)
ERD 2	5	12-13	soil	52.0	0.0	Stained wet slag (paint odor)
*Tustuumout suos oolikust					tion was supplied by the	

*Instrument was calibrated in accordance with manufacturer's recommended procedure using a calibration gas supplied by the manufacturer.

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air.

***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .

# **APPENDIX D**

# SUBSURFACE EXPLORATION LOGS WITH PID READINGS

С	.Т.	MA	٩LE	AS	SSC	DCI	IAT	ES,	P.C.	SUBSURFACE EX	(PLOR	ATION	JL	.0G			
	2	E								BORING NO.: CTM-1 ELEV.: 21.33' START DATE: 11/2/0 SHEET 1 OF 1	D	ATUM: NISH D		SGS E: 11/2/04			
	DJEC					ndus	trial	Park	<u> </u>	CTM PROJE							
LOC	CATIO	DN:	Troy	/ , N	Y					CTM INSP	ECTOR:	N. Fre	em	an			
	SAM	IPLE	BLC	WS	ON S	SAMP	LER										
DEPTH (FT.)	түре	NO.	0/6	6/12	12/18	318/24	N	RECOVERY	SAN	IPLE CLASSIFICATIO	ON			NOTE	S		
		1	1	3	3	4	6	0.5	Black CIND	ER and coarse SLAG					PID = 0.7		
	$\overline{/}$	2	4	3	5	6	8	0.7							PID = 1.2		
_5	$\overline{/}$	3	9	6	5	4	11	0.0	No recovery	7							
		4	2	3	3	5	6	0.4	Black CIND	ER, coarse SLAG and red I	BRICK				PID = 0.7		
10	/									sampling not conducted fr pot depth interval	om						
10										ou depui intervar							
15		5	1	1	1	2	2	1.0	Gray SILT, S	Some Sand (WET)		Paint of	dor		PID = 144.0	*	
	$\vdash$	6	1	3	4	5	7	2.0				Paint o	dor	and sheen	PID = 56.0		
20	L	7	WR	1	1	3	2	18	Fine SAND	trace silt and fine gravel		Paint of	lor		PID = 72.0		
									ĺ	U U		i unit o					
	$\square$	8	4	6	6	8	12	1.2	Organic Gra roots and fin	ny SILT, Some Sand, little ne gravel					PID = 24.0		
25		9	3	5	3	6	8	1.8	Becomes tra	ce organic peat					PID = 1.4		
		10	16	12	16	12	28	1.2	Gray SAND	and coarse GRAVEL (Wet	t)				PID = 0.8		
	$\square$	11	5	7	9	12	16	0.8							PID = 0.6		
30 * T									Bor	ring Terminated at ± 29' bg	(S		2" F	VC well ins	talled at ± 29'	bgs	
	borat 10. OF	v						2" WI	TH A 140 LB.	WT. FALLING 30" PER BLOW		GRO	UN	DWATER LEV	EL READINGS	3	
	LING ( HOD ()							0117 C+-	-	LL RIG TYPE: Acker Soil Max		DATE LEV	EL	CASING STABILIZ	ZAT ON TIME		
	000	1° IINV	23116		N.	41/4	HOIL	uw 2(6	em Auger			<b>}</b> -					
										TAINED FOR C.T. MALE DES ONLY THAT THEY MAY HAY							
ACC FAIT	ESS T	O TH T IS N	E SAN IOT IN	1E INF	FORM DED A	IATIOI AS A S	N AVA	AILAB TTUTI	LE TO C.T.MA	LE. IT IS PRESENTED IN GO TIGATIONS, INTERPRETATIO	DOD	SAMPLE N. Fre		ASSIFICATIC	ON BY:		

C.T.	. IVI	AL	ΕA	122		IAI	<u>-</u> 3,	P.C	•	SUBSURFACE EXP	LORAT	ION LOG	
2										BORING NO.: CTM-1S ELEV.: 21.60' START DATE: 11/3/04 SHEET 1 OF 1		UM: USGS 3H DATE: 11/3/04	
ROJE	CT:		Sout	h Tro	oy Inc	lustria	al Par	k		CTM PROJ	ECT NO.:	04.9138	
OCAT	TION:	:	Troy	, NY	7					CTM INSI	PECTOR:	N. Freeman	
S	SAMP	PLE	BL	OWS	ON S	SAMPL	.ER						
DEPTH (FT.)	1 YPE	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAM	IPLE CLASSIFICATIO	N	NOT	ES
1									-	collected from 0 to 9.5' bgs			
									(see CTM-1)				
	⊢												
5													
	-												
10													
	/Γ	1	5	4	6	10	10	0.9	Black CINDI	ER and coarse SLAG			PID = 13.1
	7	2	5	6	5	11	11	0.7	Becomes coa	rse Brown SLAG (Wet at 12.5	;')		PID = 2.4
15	/	3	8	8	6	4	14	0.8	Brown SILT	and Coarse SLAG (Wet)		Strong Paint odor	PID = 380.0
		4	3	4	6	9	10	2.0	Gray SILT, S	ome Sand		Paint odor	PID = 212.0
4									В	oring Terminated at ± 17' bgs		2" PVC well ins	talled at ± 17' b _i
20													
	┢												
25	-												
	F												
	_												
30													
= NO. C	OF BLC	OWS	ro dr	IVE 2'	SAMP	LER 12	" WITH	A 140	LB. WT. FALL	ING 30" PER BLOW		GROUNDWATER L	EVEL READING
RILLING ETHOD					SJB Se	rvices I		/ Stem /		RIG TYPE: Acker Soil Max		DATE LEVEL CASING STA	BILIZATION TIME
		.veði	GATIC	JIN.		<b>4</b> 1/4"	101100	, stem /	augei			∮	
										FOR C.T. MALE DESIGN PURPO			
										Y HAVE ACCESS TO THE SAM FAITH, BUT IS NOT INTENDED		SAMPLE CLASSIFICA	TION BY
BSTIT	TUTE I	FOR I	NVES	TIGA	TIONS,	INTER	PRET	ATION	OR JUDGMEN	T OF SUCH AUTHORIZED USE	RS.	N. Freeman	

С	.T. N	ЛАI	E ASS	OCIA	TES, F	P.C.			SUBSURFACE EXPLORA	TION LOG	
	2	E								ATUM: USGS NISH DATE: 10/26/0	14
PRO	JECT	:	South Tr	oy Indus	trial Parl	K			CTM PROJECT NO	.: 04.9138	
LOC	ATIO	N:	Troy , NY	l					CTM INSPECTOR	R: N. Freeman	
	1							1			
$\overline{}$	SAN	1PLE		BLOWS	ON SAMF	LER		~			
DEPTH (FT.)	гүре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTI	ES
	7	1	10	13	15	28	28		0-0.4': TOPSOIL		PID = 0.3
	$\square$								Blue and green SLAG		
		2	22	32	22	22	54	0.8	Crushed Red BRICK and blue and green SLAG		PID = 0.2
_5		3	23	33	17	14	50	0.9	Red brown CINDER and blue green SLAG	Sulfur odor	PID = 0.4
	- /	4	10	10	10	8	20	1.4			PID = 4.0*
	$\backslash$				-	-	-				
10		5	12	100/0.4				0.5	White and black SLAG	Sulfur odor	PID = 1.1
		6	1	2	2	11	4	0.6	Red crushed BRICK and gray SLAG		PID = 0.5
		7	24	6	6	24	12	0.6			PID = 5.2
15		8	15	12	6	8	18	0.7	Blue green SLAG	Sulfur odor	PID = 1.1
		9	14	12	14	18	26	0.5			PID = 0.8
20		10	4	7	7	18	14	1.1			PID = 0.8
		11	55	44	30	100/0.4		0.6			PID = 1.2
		12	14	43	100/0.4			1.4			PID = 0.9
25	[	13	100/0.4					0.3	White pulverized SLAG		PID = 0.4
		14	100/0.3						No recovery		PID =
	$\square$	15	2	4	6	14	10	0.3	White Coarse SLAG	Sulfur odor	PID = 0.8
30 * L . I											
-		5	mple Coll		12" WITH	A 1401B	WT F		30" PER BLOW	GROUNDWATER LE	VEL READINGS
		) NTRA			SJB Service				DRILL RIG TYPE: Acker Soil Max	DATE LEVEL CASING STAB	
METH	OD OF	INVES	TIGATION:			4 1/4" Holl	ow Ste	m Auge			
L											
									R C.T. MALE DESIGN PURPOSES. IT IS MADE SS TO THE SAME INFORMATION AVAILABLE TO		
C.T.N	IALE.	T IS P		IN GOOD F	AITH, BUT	IS NOT IN	ITEND	ED AS	A SUBSTITUTE FOR INVESTIGATIONS,	SAMPLE CLASSIFICAT N. Freeman	TION BY:

С	.T. N	ЛАL	e ass	OCIA	TES, I	P.C.			SUBSURFACE EXPLOR	ATIO	N LO	G	
	2	E								DATUM FINISH		S : 10/26/04	ŀ
PRO	JECT	:	South Tr	oy Indus	trial Parl	k			CTM PROJECT N	NO.: 04.	9138		
LOC	ATIO	N:	Troy , NY	Y					CTM INSPECTO	OR: N.	Freem	lan	
	SAN	1PLE			ON SAMF								
Ĥ	SAN			BLOWS				۲					
<b>DEPTH (FT.)</b>	гүре							RECOVERY	SAMPLE CLASSIFICATION			NOTE	S
Ö	É /	NO.	0/6	6/12	12/18	18/24	N	RE		Stre	ong sul	fur odor,	
		16	7	14	4	24	18	1.0	Coarse wet blue SLAG	We			PID = 1.4
	$\square$	17	20	25	20	19	45	1.2	Gray medium SAND and GRAVEL				PID = 1.3
35	$\square$	18	8	12	13	10	25	1.0	Gray medium to coarse SAND and GRAVEL				PID = 0.9
	$\square$	19	11	14	16	12	30	1.7	Gray medium SAND, Some Gravel				PID = 0.8
40	$\square$	20	12	18	8	13	26	1.3					PID = 0.6
	r								Boring Terminated at $\pm 40'$ bgs		2" PVC	C well instal	led at ± 38' bgs
45													
_													
50													
55													
1													
60													
_		Ų	mple Coll										
	D. OF E ING CC			" SAMPLEF	8 12" WITH SJB Service		WT. FA	ALLING	30" PER BLOW DRILL RIG TYPE: Acker Soil Max				EL READINGS
			TIGATION:			4 1/4" Holl	ow Stei	n Auge		DATE	LEVEL	CASING STABIL	IZATION TIME
									C.T. MALE DESIGN PURPOSES. IT IS MADE SS TO THE SAME INFORMATION AVAILABLE TO				
C.T.M	IALE. I	T IS PI	RESENTED	IN GOOD F	AITH, BUT	IS NOT IN	ITEND		A SUBSTITUTE FOR INVESTIGATIONS,			I LASSIFICATI	ON BY:
INTE	TREI	ATION	OR JUDGM	IEINT OF SU		IORIZED U	JERS.			N.	Freem	an	

Image: Constraint of the second state in the second st		2	E							BORING NO.: CTM- 3 ELEV.: 22.29' START DATE: 10/18/04 SHEET 1 OF 1		TUM: USGS SH DATE: 10/18/0	)4
SAMPLE         BLOWS ON SAMPLER         August of the second secon	RO	JECT	-	Sout	h Tro	oy Ind	lustria	al Par	k	CTM PROJEC	CT NO.:	04.9138	
Lip         NO.         OB         6/12         12/18         18/24         N         OC         SAMPLE CLASSIFICATION         NOTES           1         4         10         31         42         41         0.9         Topsoil to SLAG         PID = 0           2         11         11         13         7         24         0.5         Black cinder and slag in tip         Odor         Sulfur and fuel oil         PID = 0           5         3         7         9         10         11         19         0.5         Garse SLAG         Sulfur odor         PID = 0           10         5         3         3         4         6         7         0.2         No recovery         Strong Sulfur odor         PID = 0           10         5         5         5         10         1.7         Brown fine SAND and SILT         PID = 0         PID = 0           10         27         24         25         1.4         1.0         Brown fine to medium SAND         PID = 0           10         27         24         25         1.4         1.0         Brown medium SAND and medium to large         GRAVEL (Moisi)         PID = 0           11         7         12         <	OCA		N:	Troy	, NY	7				CTM INSPE	CTOR:	N. Freeman	
1       4       10       31       42       41       0.9       Topsoil to SLAG       PID = 0         2       11       11       13       7       24       0.5       Black cinder and slag in tip       odor       Sulfur and fuel oil       PID = 0         5       3       7       9       10       11       19       0.5       Coarse SLAG       Sulfur odor       PID = 0         4       17       22       25       15       47       0.5       Strong Sulfur odor       PID = 0         10       4       17       22       5       5       10       1.7       Strong Sulfur odor       PID = 0         10       4       5       5       5       10       1.7       PID = 0       PID = 0         10       27       5       5       5       10       1.7       PID = 0       PID = 0         10       27       24       25       14       9       10       8       3       4       5       7       1.5         10       27       24       25       110       1.0       Brown fine to medium SAND and medium to large       PID = 0       PID = 0         111       7       <		SAM	IPLE	BL	ows	ON S	AMPL	.ER					
2         11         11         13         7         24         0.5           3         7         9         10         11         19         0.5           3         7         9         10         11         19         0.5           4         17         22         25         15         47         0.5           3         3         4         6         7         0.2           10         5         3         3         4         6         7         0.2           10         6         2         3         3         4         6         1.2           10         7         5         5         5         10         1.7           15         8         3         3         4         6         1.2           11         7         12         16         14         28         1.0           11         7         13         5         10         0.8           11         7         13         10         10         23         1.1           11         7         12         16         14         28         1.0	DEPTH (FT.)	түре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION		NOT	ES
5         3         7         9         10         11         19         0.5           4         17         22         25         15         47         0.5           10         4         17         22         25         15         47         0.5           10         4         17         22         25         15         47         0.5           10         4         17         22         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         11         19         0.5         10         11.7         11.7         11.7         11.7         11.7         11.0         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <t< td=""><td></td><td></td><td>1</td><td>4</td><td>10</td><td>31</td><td>42</td><td>41</td><td>0.9</td><td>Topsoil to SLAG</td><td></td><td></td><td>PID = 0.6</td></t<>			1	4	10	31	42	41	0.9	Topsoil to SLAG			PID = 0.6
4       17       22       25       15       47       0.5         10       5       3       3       4       6       7       0.2         10       6       2       3       3       4       6       1.2         10       6       2       3       3       4       6       1.2         10       7       5       5       5       10       1.7         15       8       3       3       4       5       7       1.5         15       8       3       3       4       5       7       1.5         16       27       24       25       11       1.0       PID = 0         9       3       6       8       23       14       1.0         9       3       6       8       23       14       1.0         10       27       24       25       1.1       Brown medium SAND and medium to large       PID = 0         20       11       7       12       16       14       28       1.0         112       16       18       16       16       34       1.2         12			2	11	11	13	7	24	0.5	Black cinder and slag in tip			PID = 11.2
10         5         3         3         4         6         7         0.2           10         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <td>_5</td> <td></td> <td>3</td> <td>7</td> <td>9</td> <td>10</td> <td>11</td> <td>19</td> <td>0.5</td> <td>Coarse SLAG</td> <td></td> <td>Sulfur odor</td> <td>PID = 0.7</td>	_5		3	7	9	10	11	19	0.5	Coarse SLAG		Sulfur odor	PID = 0.7
10       6       2       3       3       4       6       1.2         10       7       5       5       5       10       1.7       PID       0         15       8       3       3       4       5       7       1.5       Brown fine SAND and SILT       PID       0         15       8       3       3       4       5       7       1.5       Brown fine to medium SAND       PID       0         10       27       24       25       21       49       1.0       Brown medium SAND and medium to large       PID       0         20       10       27       24       25       21       49       1.0       Brown medium SAND and medium to large       PID       0         21       10       17       12       16       14       28       1.0       Iron stained (Wet)       PID       0         25       13       5       7       3       5       10       0.8       Boring Terminated at ± 28' bgs       2" PVC well installed at ±         26       13       5       7       3       5       10       0.8       Boring Terminated at ± 28' bgs       2" PVC well installed at ±	ĺ		4	17	22	25	15	47	0.5			Strong Sulfur odor	PID = 0.8
15       7       5       5       5       10       1.7         15       8       3       3       4       5       7       1.5         9       3       6       8       23       14       1.0         9       3       6       8       23       14       1.0         10       27       24       25       21       49       1.0         10       27       24       25       21       49       1.0         11       7       12       16       14       28       1.0         11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = 0         20       13       5       7       3       5       10       0.8         4       14       9       13       10       10       23       1.1         30       14       9       13       10       10       23       1.1         30       14       9       13       10       10       23       1.1         30       14       9       13       10       10       23       1.1	10		5	3	3	4	6	7	0.2	No recovery			
15       8       3       3       4       5       7       1.5       Brown fine to medium SAND       PID = 0         9       3       6       8       23       14       1.0       PID = 0       PID = 0         20       9       3       6       8       23       14       1.0       PID = 0       PID = 0         20       10       27       24       25       21       49       1.0       Brown medium SAND and medium to large       PID = 0         20       11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = 0         21       12       16       18       16       16       34       1.2       PID = 0       PID = 0         23       13       5       7       3       5       10       0.8       PID = 0       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0       PID = 0 </td <td>Ť</td> <td></td> <td>6</td> <td>2</td> <td>3</td> <td>3</td> <td>4</td> <td>6</td> <td>1.2</td> <td>Brown fine SAND and SILT</td> <td></td> <td></td> <td>PID = 0.5*</td>	Ť		6	2	3	3	4	6	1.2	Brown fine SAND and SILT			PID = 0.5*
9       3       6       8       23       14       1.0         20       10       27       24       25       21       49       1.0         20       10       27       24       25       21       49       1.0         20       11       7       12       16       14       28       1.0         11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = 0         25       13       5       7       3       5       10       0.8         24       14       9       13       10       10       23       1.1         14       9       13       10       10       23       1.1       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0         30       14       9       14       9       14       14       14       14       14       14       14       14       14       14       14       14       14	ŕ		7	5	5	5	5	10	1.7				PID = 0.3
10       27       24       25       21       49       1.0       Brown medium SAND and medium to large GRAVEL (Moist)       PID = 0         11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = 0         12       16       18       16       16       34       1.2       PID = 0         11       7       3       5       10       0.8       PID = 0       PID = 0         12       16       18       16       16       34       1.2       PID = 0         14       9       13       10       10       23       1.1       PID = 0       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0       PID = 0       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0	15		8	3	3	4	5	7	1.5	Brown fine to medium SAND			PID = 0.4
20       11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = (         11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = (         12       16       18       16       16       34       1.2       PID = (       PID = (         25       13       5       7       3       5       10       0.8       PID = (       PID = (         24       14       9       13       10       10       23       1.1       PID = (       PID = (         30       14       9       13       10       10       23       1.1       PID = (	ŕ		9	3	6	8	23	14	1.0				PID = 0.5
11       7       12       16       14       28       1.0       Iron stained (Wet)       PID = 0         12       16       18       16       16       34       1.2       PID = 0         25       13       5       7       3       5       10       0.8       PID = 0         21       14       9       13       10       10       23       1.1       PID = 0         23       14       9       13       10       10       23       1.1       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0         30       14       9       13       10       10       23       1.1       PID = 0         30       14       14       9       13       10       10       23       1.1       PID = 0         30       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14<	20	/	10	27	24	25	21	49	1.0	°	e		PID = 0.5
25       13       5       7       3       5       10       0.8         21       13       5       7       3       5       10       0.8         24       14       9       13       10       10       23       1.1         14       9       13       10       10       23       1.1       PID = 0         30       1       1       1       1       1       1       1       1         30       1       1       1       1       1       1       1       1       1         30       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       <	20	/	11	7	12	16	14	28	1.0				PID = 0.4
I4       9       13       10       10       23       1.1         I5       I5       I5       I5       I5       I5       I5         I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5       I5	2		12	16	18	16	16	34	1.2				PID = 0.6
30       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         30       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Boring Terminated at ± 28' bgs       2" PVC well installed at ± 28' bgs         20       Bo	25	/	13	5	7	3	5	10	0.8				PID = 0.4
30       Advantage         2aboratory Sample Collection         = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW         RILLING CONTRACTOR:       SIB Services Inc.         DRILL RIG TYPE:       Acker Soil Max	ź	/	14	9	13	10	10	23	1.1				PID = 0.4
Laboratory Sample Collection	20	/								Boring Terminated at ± 28' bgs		2" PVC well inst	alled at ± 25' b _i
= NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW GROUNDWATER LEVEL REA RILLING CONTRACTOR:		orato	ry Sa	mple	Colle	ection	1						
	= NO	. OF B	LOWS	TO DR	IVE 2"	SAMP	LER 12	" WITH	A 140	LB. WT. FALLING 30" PER BLOW		GROUNDWATER LE	VEL READING
						SJB Sei			Ctore			DATE LEVEL CASING STAE	BILIZATION TIME
	THC	UU	INVES	IGATI	JIN:		41/4"	r10110W	Stem /	ugei			_
1E SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN PURPOSES.	HE S	UBSU	RFACE	INFO	RMAT	ION SH	HOWN	HERE	ON WA	S OBTAINED FOR C.T. MALE DESIGN PURPOS	ES.		

С	.T. N	ΛAI	LE A	۹SS	OC	IAT	ES,	P.C	2.	SUBSURFACE EXPLORATION LOG		
	2	E								ELEV.: 23.73' START DATE: 10/20/04 SHEET 1 OF 1	DATUM: USGS FINISH DATE: 10/20/04	
	JECT					lustria	al Par	k		CTM PROJECT		-
LOC	ATIO	N:	Troy	' , NY	[					CTM INSPEC	CTOR: N. Freeman	
SAMPLE BLOWS ON SAMPLER												
DEPTH (FT.)	түре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAM	IPLE CLASSIFICATION	NOTES	
		1	5	19	42	93	61	0.8	TOPSOIL ov	TOPSOIL over SLAG and BRICK PID =		
		2	79	55	31	35	86	0.8	Black CINDE	ER and coarse SLAG	PID = 0.3	
_5	$\square$	3	36	57	33	27	90	1.0	-		PID = 0.6	
	$\square$	4	22	16	15	23	31	0.9			PID = 0.1	
		5	16	13	11	5	24	1.0	Brown SILT	PID = 0.2		
<u>10</u>		6	3	2	4	7	6	1.3	Dark brown SILT with trace sand PID = 0			
		7	8	8	9	11	17	0.8			PID = 0.2	
15		8	1	2	3	8	5	1.5	Grading to li	ght brown medium SAND (Mois	st) PID = 0.2	
		9	18	35	36	44	71	0.5	-		PID = 0.1	
20		10	27	53	28	19	81	1.3	Coarse SANI	D and GRAVEL	PID = 0.3	
	$\square$	11	14	30	22	33	52	1.4	(Wet at 21.5')		PID = 0.2	
	$\square$	12	11	22	19	21	41	1.2	-		PID = 0.2	
25		13	19	14	6	6	20	1.5	Coarse SANI Sand (Wet)	D and GRAVEL grades to mediu	m PID = 0.2	
	$\square$	14	13	12	10	12	22	1.6	Medium SAN sand and gra	ND lens becomes medium to larg	9 PID = 0.3	
30		15	12	13	7	5	20		No Recovery			
	r oorato	ory Sa	mple	Coll	ectio	n			Bor	ing Terminated at ± 30' bgs	2" PVC well installed at ± 28' bgs	
N = N0	D. OF E	BLOWS	TO DF	RIVE 2	" SAM	PLER 1		HA 14	40 LB. WT. FAL	LING 30" PER BLOW	GROUNDWATER LEVEL READINGS	
	ING CO				SJB Se	rvices Ii 4 1/4"		/ Stem	 Auger	RIG TYPE: Acker Soil Max	DATE LEVEL CASING STABILIZATION TIME	7
	55 01					11/7	. 10/10	Jucin				+
										FOR C.T. MALE DESIGN		+
THE S	PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED LISERS										SAMPLE CLASSIFICATION BY: N. Freeman	

C.T	. M	ALI	E AS	SSC	)Cl/	<b>ATE</b>	S, P	P.C.		SUBSURFACE EXPLC	ORATI	ON LO	DG	
	2	E								BORING NO.: CTM-6 ELEV.: 23.62 START DATE: 10/19/04 SHEET 1 OF 1		TUM: US SH DAT	GS E: 10/19	/04
PROJECT: South Troy Industrial Park CTM PROJECT N														
.0C/	ATIOI	N:	Troy	, NY						CTM INSPEC	CTOR:	N. Free	man	
	SAM	IPLE	BL	ows	ON S	AMPL								
DEPTH (FT.)	түре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAN	IPLE CLASSIFICATION			NO	TES
	/	1	5	7	6	8	13	0.9	Black SILT a	nd SAND, Some Gravel				PID = 1.7
		2	29	19	29	21	48	0.5	CINDER and	l Brown SILT with slag in spoon	tip			PID = 0.4
5		3	31 14 24 26 38 0.6				PID = 0.6							
		4	19	11	9	18	20	0.0	Pushed a pie	ce of slag		Sulfur oc	lor	
		5	7	19	9	10	28	1.2	Gray SILT and SAND			PID = 0.8*		
10		6	2	26	12	4	38	1.4	Gray SILT, tr	race clay (tight)		PID = 0.4		
		7	5	8	12	20	20	1.2						PID = 0.5
15	/	8	6	11	16	21	27	1.4						PID = 0.5
		9	19	42	33	46	75	1.4	becomes grey	y/brown in color (tight)				PID = 0.4
	/	10	6	12	18	27	30	1.7						PID = 0.6
20		11	5	11	14	26	25	2.0	Becomes bro	wn SILT, trace clay				PID = 0.4
ł		12	20	20	16	17	36	2.0			PID = 0.4			
25		13	1	1	2	2	3	2.0			PID = 0.4			
		14	2	1	2	3	3	2.0	Brown fine to	o medium SAND				PID = 0.3
30		15	WH	3	4	6	7	1.8						PID = 0.3
	/ orato	ry Sa	mple	Colle	ection				Boring Term	inated at $\pm$ 30' bgs		2" PVC v	vell install	ed at ± 28' bgs
= NC	. OF B	LOWS	-	IVE 2"	SAMPI			A 140		NG 30" PER BLOW . RIG TYPE: <u>Acker Soil Max</u>				LEVEL READINGS
ETHC	DD OF	INVES	TIGATIO	ON:		4 1/4"	Hollow	Stem A	Auger				1	
URP HE S NTEN	oses. Ame i Ided <i>A</i>	IT IS NFORI	MADE MATIO UBSTI	AVAIL N AVA	.ABLE ILABLI	TO AU E TO C	THOR	IZED U _E. IT	SERS ONLY T	FOR C.T. MALE DESIGN HAT THEY MAY HAVE ACCESS TO D IN GOOD FAITH, BUT IS NOT DN OR JUDGMENT OF SUCH	)	SAMPLE N. Free		ATION BY:

С	C.T. MALE ASSOCIATES, P.C. SUBSURFACE EXPLORATION LOG												
	2	3								NTUM: USGS IISH DATE: 11/2/04			
PRO	JECT	:	Sout	h Trov	y Indu	ıstrial	Park		CTM PROJECT NO	04.9138			
	ATIO		Troy	0	/		-		CTM INSPECTOR				
	SAN	IPLE	BI	LOWS	ON S	AMPL	ER						
ОЕРТН (FT.)	гүре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES			
		1	3	10	22	28	32	1.3	TOPSOIL, Black CINDER, ASH and Red BRICK	PID = 0.3			
	$\overline{/}$	2	30	21	16	17	37	1.3	Becomes Meduim brown SAND and GRAVEL	PID = 0.5*			
_5		3	22	17	8	11	25	1.1	Brown SILT and CLAY	PID = 0.8			
		4	7	8	12	11	20	0.8		PID = 0.8			
10		5	1	4	4	5	8	1.5	Gray SILT and CLAY	PID = 0.7			
		6	2	2	3	4	5	1.6		PID = 0.6			
		7	5	5	5	6	10	1.8		PID = 0.8			
15		8	1	3	4	5	7	1.7		PID = 0.7			
		9	7	7	9	11	16	2.0	Gray SILT (Tight)	PID = 0.7			
20		10	4	5	7	8	12	2.0	Similar with trace sand	PID = 0.6			
		11	1	3	4	7	7	1.8	Gray fine SAND, trace silt	PID = 0.6			
		12	12 5 6 5 7 11 2.0 Light		Light brown medium SAND, trace silt (wet)	PID = 0.7							
25	$\square$	13	2	1	2	2	3	1.8	Brown fine SAND and SILT (wet)	PID = 0.4			
	$\square$	14	3	8	19	22	27	1.2	Coarse GRAVEL, Some brown medium Sand	PID = 0.7			
30	$\square$	15	6	18	18	17	36	0.9		PID = 0.6			
										2" PVC well installed at ± 30' bgs			
		*	-			R 12" V	VITH A	140 LB	WT. FALLING 30" PER BLOW	GROUNDWATER LEVEL READINGS			
DRILLING CONTRACTOR: SJB Services Inc. DRILL RIG TYPE: Acker Soil Max DATE LEVEL CASING STABLIZATION T													
METHOD OF INVESTIGATION: 4 1/4" Hollow Stem Auger													
MADE AVAIL	AVAIL	ABLE TO C.T	INFOF TO AUT .MALE. INTERF	SAMPLE CLASSIFICATION BY: N. Freeman									

С	.T. N	ЛАI	LE A	TION LOG										
	2	E								ATUM: USGS NISH DATE: 10/2	29/04			
PRC	JECT	:	Sout	h Troy I	ndus	trial F	Park		CTM PROJECT NO.:	04.9138	04.9138			
LOC	ATIO	N:	Troy	, NY					CTM INSPECTOR:	N. Freeman				
		IPLE						<u> </u>		<u> </u>				
DEPTH (FT.)	SAN BAL	NO.	0/6	6/12	NOTES									
		1	6	8	13	24	21	1.3	Black CINDER and BRICK		PID = 0.4			
		2	52	100/0.4				0.8	Red BRICK		PID = 0.4			
_5	//	3	3	4	3	5	7	1.5	Crushed SLAG becoming brown SILT and CLAY	Perched water	PID = 0.3*			
		4	1	1	4	6	5	1.3	Gray CLAY		PID = 0.5			
		5	3	5	6	8	11	1.0	Gray/Brown SILT and CLAY (tight)	Sheen on spoon	PID = 1.3			
<u>10</u>	/	6	3	4	4	6	8	1.3			PID = 0.8			
		7	5	5	6	7	11	2.0			PID = 0.6			
15		8	2	2	4	6	6	1.8	Gray SILT, trace sand		PID = 0.5			
		9	4	7	6	8	13	1.8			PID = 0.4			
		10	1	2	4	4	6	2.0			PID = 0.4			
20	/	11	3	5	7	12	12	1.2	Gray SILT and CLAY		PID = 0.2			
		12	4	7	13	21	20	1.3	Brown medium SAND and medium to coarse	-	PID = 0.4			
25		13	3	9	17	20	26	1.3	GRAVEL (Wet)		PID = 0.4			
		14	5	13	20	18	33	0.8	Brown coarse GRAVEL and medium SAND (Wet)		PID = 0.4			
		15	4	12	13	14	25	1.0	-		PID = 0.3			
30 * Lal	1	orv Sa	mple	e Collect	ion				Boring Terminated at ± 30' bgs	2" PVC well installe	ed at ± 30' bgs			
			-			12" WI	THA 1	40 LB.	WT. FALLING 30" PER BLOW	GROUNDWATER L	0			
	ING CO				SJB Se	rvices I		C1	DRILL RIG TYPE: Acker Soil Max Auger	DATE LEVEL CASING ST	TABILIZATION TIME			
IVIETH		INVES	IGAL	]										
									SOBTAINED FOR C.T. MALE DESIGN					
THE INTE	Poses Same Nded Horize	INFOR AS A S	MATIC	SAMPLE CLASSIFIC N. Freeman	ATION BY:									

С.	T. I∕	1AL	E AS	SSC	)Cl/	ATE:	SUBSURFACE EXPLO	RATION LOG						
	2								BORING NO.: CTM-9 ELEV.: 23.54' START DATE: 11/1/04 SHEET 1 OF 1	DATUM: USGS FINISH DATE: 11/1/04				
PRO	PROJECT:			h Tro	y Ind	lustria	al Par	k	CTM PROJECT NO.: 04.9138					
LOCA		l:	Troy	, NY	0				CTM INSPECTOR: N. Freeman					
	→ SAMPLE		BL	.OWS	ON S	AMPL	ER	~						
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES				
		1	4	8	59	20	67	1.2	Black SAND, GRAVEL and BRICK	PID = 0.2				
		2	13	9	5	8	14	1.4	Black fine CINDERS	PID = 0.1				
5	7	3	10	13	21	28	34	1.4	Brown medium SAND and GRAVEL	$PID = 0.2^*$				
	/	4	20	28	37	28	65	1.5	Red Brick noted Brown medium SAND and GRAVEL	PID = 0.2*				
10		5	14	14	12	12	26	1.2		PID = 0.5				
-	$\mathbb{Z}$	6	11	16	15	16	31	1.1		PID = 0.6				
		7	13	10	13	15	23	1.1	Becomes Wet	PID = 0.8				
		8	18	9	7	4	16	1.2	Gray medium SAND becoming gray SILT, trace sand	Slight fuel oil odor PID = 2.2				
		9	4	7	6	8	13	1.8	Gray SILT	PID = 1.5				
20									Boring Terminated at ± 18' bgs	2" PVC well installed at ± 18' bgs				
30						-								
* Lab	orator	y San	nple C	Collec	tion	<u> </u>	•			•				
								140 L	B. WT. FALLING 30" PER BLOW	GROUNDWATER LEVEL READINGS				
			TOR: IGATIOI		SJB Se	ervices I	nc. Hollov	Store	DRILL RIG TYPE: Acker Soil Max	DATE LEVEL CASING STABLIZATION TIME				
		11501	GATIO	N.		41/4	1 101101	v Stein	Augei	┥-┼-┼┼				
-									S OBTAINED FOR C.T. MALE DESIGN					
HT OT NOT IN	PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF									SAMPLE CLASSIFICATION BY: N. Freeman				

	.T. N		E A	SSC	DCIAT	ES, P.	C.			TION LO	GS	04
	JECT			h Troy	.: 04.9138							
LOC	DCATION:     Troy , NY     CTM INSPECTOR											
	SAM	IPI F		BLOV	VS ON SA							
DEPTH (FT.)	гүре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION		NOT	ËS
		1	3	3	5	13	8	0.5	0-0.1': TOPSOIL			PID = 0.4
1	$\vdash$	6	10	1.4		0.0	0.0	0.0	Yellow BRICK and SLAG		hla a 1	
1		2	10	14	22	32	36	0.8	SLAG and Gray ASH	no notica	idle odor	PID = 8.2 *
_5	$\mathbf{r}$	3	8	77	100/0.1			0.4	SLAG and Black CINDER			PID = 4.2
		4	7	7	19	18	26	1.3	Similar with white brick			PID = 1.4
		5	10	6	3	3	9	1.1	Black CINDER and ASH			PID = 1.3
10	/	6	6	4	6	4	10	0.6				PID = 0.4
	/	7	3	4	4	5	8	1.0	Similar with Some Slag			PID = 1.0
15	$\square$	8	6	4	5	3	9	0.7	Black CINDER and SLAG	Sulfur oc	lor	PID = 1.1
	$\square$	9	6	5	3	13	8	1.2				PID = 0.5
	$\square$		-	-	-		_					
20		10	9	5	7	2	12	0.0	Pushed a piece of slag in tip of spoon			PID = 0.3
		11	17	55	27	18	82	0.3	SLAG and CINDER			PID = 0.4
1	$\square$	12	17	22	16	17	38	0.0	No Recovery			PID =
25	[	13	11	6	4	5	10	0.8	SLAG and GRAVEL	Wet		PID = 1.0
		14	8	4	6	4	10	1.0				PID = 0.5
	$\square$	15	5	8	6	5	14	0.7	Gray fine SAND, Some Silt and Gravel	-		PID = 1.0
30 * Lak	<u> </u>		1	Call								
		-	-	Collec		2" WITH A	140   F	wт	FALLING 30" PER BLOW	GROUN	IDWATER L	EVEL READINGS
	ING CC				SJB Service		. 40 LL		DRILL RIG TYPE: Acker Soil Max			BILIZATION TIME
METH	OD OF	INVES	FIGATIO	ON:		4 1/4" Holl	ow Stei	n Auge	r			
MADE AVAIL	ETHOD OF INVESTIGATION: 4 1/4" Hollow Stem Auger HE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN PURPOSES. IT IS IADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION VAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR IVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.									SAMPLE ON. Free	CLASSIFICA	TION BY:

C	.T. N	ЛАl	E A	SSC	RATIO	N LC	)G							
	2	E							BORING NO.: CTM-10 ELEV.: 26.97' START DATE: 10/21/04 SHEET 2 OF 2	DATUM FINISH I		GS :: 10/22/04		
PRO	PROJECT: South Troy Industrial Park CTM PROJECT NO.													
LOC	OCATION: Troy, NY CTM INSPECTOR										Freen	nan		
_	CAN	1PLE		DI OV		AMPLER								
DEPTH (FT.)	ТУРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION			NOTES	6	
	7	16	19	29	74	100/0.2	103	1.3	Medium SAND becomes Weathered SHALE			I	PID = 0.4	
	/													
<u>40</u> <u>45</u> <u>50</u>									Boring Terminated at ± 32' bgs		2 PV	C well install	ed at ± 30' bş	35
<u>55</u> 60														
	orato	rv Sa	mple	Collec	tion									
						2" WITH A	140 LE	3. WT.	FALLING 30" PER BLOW	G	ROUN	DWATER LEVI	EL READINGS	3
			CTOR:		SJB Service				DRILL RIG TYPE: Acker Soil Max	DATE	LEVEL	CASING STABILIZ	ATION TIME	
METH	METHOD OF INVESTIGATION: 4 1/4" Hollow Stem Auger							n Auge	r					
	SURGU	REAC		RMATIC	N SHOW		WASI		NED FOR C.T. MALE DESIGN PURPOSES. IT IS	_				
MADE	AVAII	ABLE	TO AU	THORIZ	ED USER	S ONLY TH	IAT TH	EY MA	Y HAVE ACCESS TO THE SAME INFORMATION					
	AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.										SAMPLE CLASSIFICATION BY: N. Freeman			

#### C.T. MALE ASSOCIATES, P.C.

а

#### SUBSURFACE EXPLORATION LOG

BORING NO.: CTM-11 ELEV.: 22.47' DAT START DATE: 10/20/04 FINIS SHEET 1 OF 1

DATUM: USGS FINISH DATE: 10/21/04

PRO	JECI	:	Sout	h Tro	oy Ind	lustrial	Park		CTM PROJECT NC	0.: 04.9138	
LOC	ΑΤΙΟ	N:	Troy	, NY	7				CTM INSPECTO	R: N. Freeman	
	SAN	1PLE	В	LOW	S ON	SAMPLE	R				
DEPTH (FT.)	T → H H H H H H H H H H H H H		RECOVERY	SAMPLE CLASSIFICATION	NOTES						
		1	4	43	99	100/0.1	142	1.2	Black CINDER and SLAG	Fuel oil odor	PID = 17.8
	/ /	2	9	0	10	17	10	1.1			
		Z	9	9	10	17	19	1.1	Blue, Green and Black SLAG		PID = 7.0
5		3	7	5	12	10	17	0.7		Sulfur odor	PID = 0.8
	/ /	4	12	7	5	3	12	0.3		Sulfur odor	PID = 1.4
			12		Ū	Ū	12	0.0		Sunti Subi	110 - 1.1
10		5	2	1	2	4	3	1.8	Brown SILT	Fuel oil odor and heavily stained	PID = 102*
	7	6	2	2	3	3	5	2.0		Fuel oil odor and	PID = 98.4
	Ζ,									heavily stained	
		7	2	3	3	3	6	1.6	Becomes trace sand	Fuel oil odor and heavily stained	PID = 97.3
15	7	8	2	14	29	28	43	0.6	Gray fine SAND, trace silt and gravel	Fuel oil odor and	PID = 82.4
	Ζ,									heavily stained	
		9	19	24	21	28	45	1.0	heavily stained		PID = 96.8
	7	10	18	38	29	33	67	1.3			PID = 81.5
20	Ζ,									heavily stained	
		11	13	11	20	42	31	0.7	(Wet)	Fuel oil odor and heavily stained	PID = 67.2
	7	12	7	12	13	10	25	0.7		Fuel oil odor	PID = 21.4
05	Ζ,	10	0	0	10	10	10	1.0		Tool all adam	
25		13	8	6	12	18	18	1.3		Fuel oil odor	PID = 14.5
									Boring Terminated at ± 26' bgs	2" PVC well inst	alled at ± 24' bgs
30									1		
* Lab	orato	ry Sa	mple	Coll	ectior	1			·	-	
							WITH A	. 140 L	.B. WT. FALLING 30" PER BLOW	GROUNDWATER L	EVEL READINGS
		NTRA INVES			SJB Se	rvices Inc. 4 1/4" Ho	llow Si	em Δu	DRILL RIG TYPE: Acker Soil Max	DATE LEVEL CASING STA	BILIZATION TIME
	55 01					. 1/ 4 110			<del>~</del> ح	∃	
									OBTAINED FOR C.T. MALE DESIGN PURPOSES.		
INFO	IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS. N. Freeman									ATION BY:	

C,	.T. N	JAI	le Ass	OCIA	SUBSURFACE EXPLORAT	ION LOG					
	2	3								TUM: USGS ISH DATE: 10/25/04	
	JECT			roy Indus	strial Parl	ĸ	_	_	CTM PROJECT NO.:		
LOC	ATIO	N:	Troy , N	Y	CTM INSPECTOR:	N. Freeman					
╘	<u> </u>		<del></del>	2110 (	1	I					
$\widehat{}$	SAIV	MPLE	<b> </b> '	BLOWSO	ON SAMPL	.ER	—_'	<b> </b> →			ļ
<b>DEPTH (FT.)</b>	түре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES	
	$\square$	1	2	6	30	28	36		0-0.8' GRAVEL and TOPSOIL becoming white	PID = 0.2	2
	$\square$	2	3	10	40	40	50	0.5	SLAG PID = 0.2		
5	$\square$	3	13	48	24	18	72	1.0	Red crushed BRICK and white SLAG PID = 0.5		
	$\square$	4	12	12	8	18	20	1.2	Crushed CONCRETE, SAND and GRAVEL	PID = 0.5	}
	$\square$	5	31	100/0.2			F	0.5	White SLAG	PID = 0.4	1
<u>10</u>	$\vdash$	6	12	75	100/0.3	──'	──'	0.9	Crushed white, blue and green SLAG	PID = 0.5	5
	$V_{-}$				100/ 512	<u>├</u> '		0.0			
	$\overline{\mathbb{V}}$	7	18	9	7	12	16	1.2	Black SLAG - heavy iron content	PID = 0.9	)
<u>15</u>		8	4	18	20	63	38	1.1	Blue green SLAG	Sulfur odor PID = 3.3	}*
	$\square$	9	64	24	18	9	42	0.8		PID = 1.2	2
	$\square$	10	21	75	100/0.2			1.0	White and blue coarse SLAG	PID = 0.7	7
20	$\vdash$	<u></u>	100/0.2	<b></b> '	<b>[</b> '	<u>['</u>	<b> </b> '	<b></b> '			
	/	11	100/0.2	───′	<b>├</b> ───′	–	$\vdash$	<u> </u> '			
	$\overline{\square}$	12	100	100/0.3			$\square$	F			
25		13	5	7	8	18	15	0.6	Coarse SLAG	Wet PID = 2.2	2
	$\square$	14	15	10	11	11	21	0.9	Grey SILT, trace sand	- PID = 1.3	3
30	$\square$	15	13	12	15	16	27	1.3	Grey medium to coarse SAND and GRAVEL	PID = 0.7	7
		orv Si	ample Coll	lection	<b>ـــــ</b>			<u> </u>			
-		Ų	•		R 12" WITH	A 140 L	.B. WT	. FALLI	NG 30" PER BLOW	GROUNDWATER LEVEL READ	INGS
		ONTRA			SJB Services				DRILL RIG TYPE: Acker Soil Max	DATE LEVEL CASING STABILIZATION TIME	
METH	JD OF	INVES	STIGATION:			4 1/4" H	Iollow	Stem A	uger		
THE !	<i ibsl<="" td=""><td>IRFAC</td><td></td><td>TION SHO</td><td>WN HEREC</td><td></td><td></td><td></td><td>OR C.T. MALE DESIGN PURPOSES. IT IS MADE</td><td>╡_   _      </td><td></td></i>	IRFAC		TION SHO	WN HEREC				OR C.T. MALE DESIGN PURPOSES. IT IS MADE	╡_   _	
AVAIL	LABLE	TO AU	JTHORIZED	USERS ON	NLY THAT T	THEY MA	AY HAV	VE ACC	CESS TO THE SAME INFORMATION AVAILABLE TO AS A SUBSTITUTE FOR INVESTIGATIONS,		
			N OR JUDGN		SAMPLE CLASSIFICATION BY: N. Freeman						

C.	.T. N	ΛAI	E ASS	SOCIA	ATES, F	P.C.			SUBSURFACE EXPLOR	SUBSURFACE EXPLORATION LOG		
	2	E								DATUM: USGS IINISH DATE: 10/25/04		
PRO	ROJECT: South Troy Industrial Park CTM PROJECT NC											
LOC	ATIO	N:	Troy , N	Y					CTM INSPECTO	DR: N. Freeman		
	SVI	/IPLE		BLOWS C		ED						
ОЕРТН (FT.)	түре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES		
	7	16	4	6	17	21	23	1.1	Grey medium to coarse SAND and GRAVEL	PID = 1.1		
	/											
		<u> </u>							Boring Terminated at ± 32' bgs	2" PVC well installed at ± 30' bgs		
35												
40												
45												
50												
55												
60		<u> </u>		<u> </u>								
		ory Sa	mple Col	llection		<u> </u>						
				2" SAMPLER			B. WT	FALLI	NG 30" PER BLOW	GROUNDWATER LEVEL READINGS		
			CTOR: TIGATION:		SJB Service	es Inc. 4 1/4" F	Jollow	Storn A	DRILL RIG TYPE: Acker Soil Max	DATE LEVEL CASING STABILIZATION TIME		
					·	71/4 [	10110W	Stelli A	ugu.			
									OR C.T. MALE DESIGN PURPOSES. IT IS MADE			
									CESS TO THE SAME INFORMATION AVAILABLE TO AS A SUBSTITUTE FOR INVESTIGATIONS,	SAMPLE CLASSIFICATION BY:		
INTER	C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.									N. Freeman		

# **APPENDIX E**

# MONITORING WELL CONSTRUCTION LOGS (CTM-1 to CTM-13)

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

		Project Number 04.9138
		Project Name South Troy Industrial Park
	Protective Enclosure	
	Curb Box	Well No.   CTM-1   Boring No.   CTM-1
<u>23.65ft.</u>	Guard Pipe	
		Town/City Troy
2 <u>1.33 ft.</u>	LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
	8_inch diameter drilled hole	Installation Date(s) 11/3/04
	Well casing,	Drilling Contractor SJB Services, Inc.
		Drilling Method 4.25-inch Hollow Stem Augers
	Backfill Grout Portland	Water Depth From Top of Riserft1/31/05 Date
		C.T. Male Observer N. Freeman
	12.0 ft*       ■ slurry         Bentonite       ■ pellets         22.0 ft*       ■	
	24.0 ft*	Notes: When setting well, sand was placed from 29 to 22 feet bgs followed by the addition of bentanita. The bentanita pellete bridged thus
		bentonite. The bentonite pellets bridged, thus
	Well Screen 2 -inch diameter	leaving a void space between the top of the sand pack and the bentonite pellets. This was
	PVC 0.010 slot	corrected by the addition of a slurry; which
		filled in the void spaces.
	Gravel Pack	inieu in the volu spaces.
	Sand Pack	
	29.0 ft*	
	29.0 ft*	

* Depth below land surface.

MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name South Troy Industrial Park
Protective Enclosure	Well No. CTM-1S Boring No. CTM-1S
24.10 ft. Guard Pipe	
23.91 ft. elev.	Town/City Troy
LAND SURFACE	County Rensselaer State NY
Bentonite Backfill Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentoni	Installation Date(s) <u>11/3/04</u> Drilling Contractor <u>SIB Services, Inc.</u> Drilling Method <u>4.25-inch Hollow Stem Augers</u> Water Depth From Top of Riser <u>16.23 ft</u> <u>1/31/05</u> Date C.T. Male Observer <u>N. Freeman</u> <u>Notes:</u>
* Denth below land surface	

* Depth below land surface.

MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name South Troy Industrial Park
Protective Enclosure Curb Box 36.57 ft. Guard Pipe	Well No. <u>CTM-2</u> Boring No. <u>CTM-2</u>
<u>36.10</u> ft. elev.	Town/City Troy
	County <u>Rensselaer</u> State <u>NY</u>
<u>8</u> inch diameter drilled hole Well casing,	Installation Date(s) <u>10/26/04 to 10/27/04</u> Drilling Contractor SJB Services, Inc.
inch diameter,	Drilling Method 4.25-inch Hollow Stem Augers
Grout Portland	Water Depth From Top of Riser <u>33.14</u> ft <u>1/31/05</u> Date
* Depth below land surface	C.T. Male Observer <u>N. Freeman</u> Notes:

MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name South Troy Industrial Park
Protective Enclosure	Well No. <u>CTM-3</u> Boring No. <u>CTM-3</u>
25.06 ft. ■ Guard Pipe 24.76 ft. elev. 22.29 ft. LAND SURFACE 	Town/City       Troy         County       Rensselaer       State       NY         Installation Date(s)       10/18/04         Drilling Contractor       SJB Services, Inc.
2_inch diameter, Backfill Grout_Portland	Drilling Method       4.25-inch Hollow Stem Augers         Water Depth From Top of Riser       21.41 ft         1/31/05       Date         C.T. Male Observer       N. Freeman
10.5 ft*       slurry pellets         13.0 ft*       15.0 ft*         15.0 ft*       2-inch diameter         PVC       0.010 slot         Gravel Pack       Sand Pack         Formation Collapse       25.0 ft*         25.0 ft*       25.0 ft*	Notes:

* Depth below land surface.

MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name South Troy Industrial Park
Protective Enclosure	
26.44 ft. Curb Box	Well No.         CTM-5         Boring No.         CTM-5
<u>26.17</u> ft. elev.	Town/City Troy
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
23.73 ft ]	Installation Date(s) <u>10/20/04</u> Drilling Contractor <u>SJB Services, Inc.</u> Drilling Method <u>4.25-inch Hollow Stem Augers</u> Water Depth From Top of Riser <u>22.90 ft</u> <u>1/31/05</u> Date C.T. Male Observer <u>N. Freeman</u> <u>Notes:</u>
* Depth below land surface.	

MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name South Troy Industrial Park
Protective Enclosure Curb Box 26.06 ft. Guard Pipe	Well No. <u>CTM-6</u> Boring No. <u>CTM-6</u>
<u></u>	Town/City Troy
23.62 ft. LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
8_inch diameter drilled hole	Installation Date(s) 10/19/04
Well casing, 2 inch diameter,	Drilling Contractor SJB Services, Inc.
	Drilling Method 4.25-inch Hollow Stem Augers
Backfill Grout Portland	Water Depth From Top of Riser 22.38 ft 1/31/05 Date
	C.T. Male Observer N. Freeman
Bentonite ■ pellets	
<u>16.0</u> ft*	Notes:
18.0 ft*	
Well Screen	
2 -inch diameter	
<u>PVC 0.010</u> slot	
Sand Pack	
Formation Collapse	
28.0 ft*	
28.0 ft*	

MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138			
	Project Name South Troy Industrial Park			
Protective Enclosure Curb Box 26.19 ft. Guard Pipe	Well No. CTM-7 Boring No. CTM-7			
<u>26.10</u> ft. elev.	Town/City Troy			
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>			
<u>8</u> inch diameter drilled hole	Installation Date(s) <u>11/2/04</u>			
Well casing,	Drilling Contractor SJB Services, Inc.			
inch diameter,	Drilling Method 4.25-inch Hollow Stem Augers			
Backfill Grout Portland	Water Depth From Top of Riser 22.78 ft 1/31/05			
	C.T. Male Observer N. Freeman			
11.0     ft*       Bentonite     13.0       13.0     ft*	Notes:			
15.0 ft*				
Well Screen <u>2</u> -inch diameter <u>PVC</u> 0.010 slot				
Gravel Pack				
Formation Collapse				
<u>30.0</u> ft*				
30.0 ft*				
* Depth below land surface.				

MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138			
	Project Name South Troy Industrial Park			
Protective Enclosure				
Curb Box	Well No. CTM-8 Boring No. CTM-8			
26.61ft.				
<u>26.53</u> ft. elev.	Town/City Troy			
LAND SURFACE	County <u>Rensselaer</u> State NY			
24.20 ft.1	Installation Date(s) <u>10/29/04</u> Drilling Contractor <u>SIB Services, Inc.</u> Drilling Method <u>4.25-inch Hollow Stem Augers</u> Water Depth From Top of Riser <u>23.12 ft</u> <u>1/31/05</u> Date C.T. Male Observer <u>N. Freeman</u> <u>Notes:</u>			
* Depth below land surface				

MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138			
	Project Name South Troy Industrial Park			
Protective Enclosure Curb Box	Well No. CTM-9 Boring No. CTM-9			
<u>23.54</u> ft.	Town/City Troy			
	County <u>Rensselaer</u> State <u>NY</u>			
Bentonite Benton	Installation Date(s) <u>11/1/04</u> Drilling Contractor <u>SJB Services, Inc.</u> Drilling Method <u>4.25-inch Hollow Stem Augers</u> Water Depth From Top of Riser <u>10.11 ft 1/31/05</u> Date C.T. Male Observer <u>N. Freeman</u> Notes:			
* Depth below land surface				

* Depth below land surface.

# MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138			
	Project Name South Troy Industrial Park			
Protective Enclosure				
29.50 ft. Curb Box	Well No.   CTM-10   Boring No.   CTM-10			
	Town/City Troy			
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>			
<u>8</u> inch diameter drilled hole Well casing, 2 inch diameter,	Installation Date(s) 10/22/04 Drilling Contractor SJB Services, Inc.			
	Drilling Method 4.25-inch Hollow Stem Augers			
Backfill Grout Portland	Water Depth From Top of Riser <u>26.72</u> ft <u>1/31/05</u>			
	Date C.T. Male Observer N. Freeman			
6.0 ft* □ slurry Bentonite ■ pellets				
10.0 ft*	Notes:			
Well Screen <u> 2</u> -inch diameter PVC 0.010 slot				
Gravel Pack				
Formation Collapse				
<u>30.0</u> ft*				
<u>30.0</u> ft*				
* Depth below land surface.				

MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138			
	Project Name South Troy Industrial Park			
Protective Enclosure	Well No. CTM-11 Boring No. CTM-11			
24_31ft.				
<u>24.15</u> ft. elev.	Town/City Troy			
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>			
Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Bentonite Benton	County       Rensselaer       State       NY         Installation Date(s)       10/21/04			
Sand Pack				
24.0 ft*				
24.0 ft*				
* Depth below land surface.				

# MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138			
	Project Name South Troy Industrial Park			
Protective Enclosure				
	Well No.   CTM-13   Boring No.   CTM-13			
<u>32.37ft.</u>	Town/City Troy			
	County <u>Rensselaer</u> State <u>NY</u>			
<u>8</u> inch diameter drilled hole	Installation Date(s) 10/21/04			
Well casing, 2 inch diameter,	Drilling Contractor SJB Services, Inc.			
	Drilling Method 4.25-inch Hollow Stem Augers			
Backfill Grout Portland	Water Depth From Top of Riser 29.28 ft 1/31/05			
	Date			
	C.T. Male Observer N. Freeman			
10.0 //t				
16.0 ft* □ slurry				
Bentonite pellets 18.0 ft*				
	Notes:			
20.0 ft*				
Well Screen				
2 -inch diameter				
PVC 0.010 slot				
Gravel Pack				
Sand Pack				
Formation Collapse				
30.0 ft*				
<u>30.0</u> It				
30.0 ft*				
* Depth below land surface.				

### **APPENDIX F**

# ORGANIC VAPOR HEADSPACE ANALYSIS LOGS IRM SUPPLEMENTAL INVESTIGATION (CTM-100 to CTM-105S)



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: RCIDA	DATE					
LOCATION: Troy, N	COLLECTED: 8/15/05					
INSTRUMENT USED	DATE ANALYZED: 8/15/05					
DATE INSTRUMENT			8/15/2005 Ibient	BA:	S. Bieber	ANALYST: S. Bieber
TEIVIPERATURE OF S		AIT	Ibient	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-100	1	0-2	Soil/Fill	0	0	
SB-100	2	2-4	Soil/Fill	0	0	
SB-100	3	4-6	Soil/Fill	0	0	
SB-100	4	6-8	Soil/Fill	0	0	
SB-100	5	8-10	NA	NA	NA	No recovery
SB-100	6	10-12	Soil/Fill	0	0	
SB-100	7	12-14	Soil/Fill	0	0	
SB-100	8	14-16	Soil	0	0	
SB-100	9	16-18	Soil	0	0	
SB-100	10	18-20	Soil	0	0	
SB-100	11	20-22	Soil	0	0	
SB-100	12	22-24	Soil	0	0	
SB-100	13	24-26	Soil	0	0	
SB-100	14	26-28	Soil	0	0	
SB-100	15	28-30	Soil	0	0	



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: RCIDA	DATE					
LOCATION: Troy, N	COLLECTED: 8/16/05					
INSTRUMENT USED	DATE ANALYZED: 8/16/05					
DATE INSTRUMENT			8/16/2005	BA:	S. Bieber	ANALYST: S. Bieber
TEIMPERATURE OF S		Aff	nbient	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	ТҮРЕ	(PPM)**	(PPM)**	REMARKS
SB-101	1	0-2	Soil/Fill	0	0	
SB-101	2	2-4	Soil/Fill	0	0	
SB-101	3	4-6	Soil/Fill	0	0	
SB-101	4	6-8	Soil/Fill	0	0	
SB-101	5	8-10	Soil/Fill	0	0	
SB-101	6	10-12	Soil/Fill	0	0	
SB-101	7	12-14	Soil/Fill	0	0	
SB-101	8	14-16	Soil/Fill	0	0	
SB-101	9	16-18	Soil/Fill	0	0	
SB-101	10	18-20	Soil	0	0	
SB-101	11	20-22	NA	NA	NA	No recovery
SB-101	12	22-24	Soil	0	0	
SB-101	13	24-26	Soil	0	0	
SB-101	14	26-28	Soil	0	0	
SB-101	15	28-30	Soil	0	0	
SB-101	16	30-32	NA	NA	NA	No recovery



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: RCIDA	DATE					
LOCATION: Troy, N	<b>COLLECTED</b> : 8/17/05					
INSTRUMENT USED:	DATE ANALYZED: 8/17/05					
DATE INSTRUMENT			8/17/2005 Ibient	BY:	S. Bieber	ANALYST: S. Bieber
TEIVIPERATURE OF S		Am	Indient	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	ТҮРЕ	(PPM)**	(PPM)**	REMARKS
SB-101S	1	15-17	Soil/Fill	0	0	
SB-102	1	0-2	Soil/Fill	0	0	
SB-102	2	2-4	Soil/Fill	0	0	
SB-102	3	4-6	Soil/Fill	0	0	
SB-102	4	6-8	Soil/Fill	0	0	
SB-102	5	8-10	Soil/Fill	0	0	
SB-102	6	10-12	Soil/Fill	0	0	
SB-102	7	12-14	Soil/Fill	0	0	
SB-102	8	14-16	Soil/Fill	0	0	
SB-102	9	16-18	Soil	0	0	
SB-102	10	18-20	NA	NA	NA	No recovery
SB-102	11	20-22	Soil	0	0	
SB-102	12	22-24	Soil	0	0	
SB-102	13	24-26	Soil	0	0	
SB-102	14	26-28	Soil	0	0	
SB-102	15	28-30	Soil	0	0	



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: RCIDA	DATE					
LOCATION: Troy, N	COLLECTED: 8/18/05					
INSTRUMENT USED	DATE ANALYZED: 8/26/05					
DATE INSTRUMENT			8/26/2005 Ibient	BA:	S. Bieber	ANALYST: S. Bieber
TEIMPERATURE OF S		Aff		SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-103	1	0-2	Soil/Fill	2.1	1.4	
SB-103	2	2-4	Soil/Fill	1.5	1.2	
SB-103	3	4-6	Soil/Fill	1.2	1.1	
SB-103	4	6-8	Soil/Fill	1.0	0.8	
SB-103	5	8-10	Soil/Fill	1.2	0.8	
SB-103	6	10-12	Soil/Fill	0.8	0.8	
SB-103	7	12-14	Soil/Fill	0.9	0.7	
SB-103	8	14-16	Soil	0.7	0.6	
SB-103	9	16-18	Soil	0.8	0.7	
SB-103	10	18-20	Soil	0.6	0.6	
SB-103	11	20-22	Soil	0.8	0.6	
SB-103	12	22-24	Soil	0.6	0.5	
SB-103	13	24-26	Soil	0.7	0.5	
SB-104	1	13-15	Soil/Fill	0.7	0.5	



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: RCIDA	DATE					
Location: Troy, N	COLLECTED: 8/18/05					
INSTRUMENT USED:						
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/26/05 ANALYST: S. Bieber
TEMPERATURE OF S	OIL:	Am	nbient	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	ТҮРЕ	(PPM)**	(PPM)**	REMARKS
SB-105	1	0-2	Soil/Fill	0.5	0.2	
SB-105	2	2-4	Soil/Fill	0.4	0.4	
SB-105	3	4-6	Soil/Fill	0.5	0.5	
SB-105	4	6-8	Soil/Fill	0.6	0.5	
SB-105	5	8-10	Soil/Fill	0.6	0.5	
SB-105	6	10-12	NA	NA	NA	No recovery
SB-105	7	12-14	Soil/Fill	0.5	0.3	
SB-105	8	14-16	NA	NA	NA	No recovery
SB-105	9	16-18	Soil	0.5	0.3	
SB-105	10	18-20	Soil	0.5	0.2	
SB-105	11	20-22	Soil	0.5	0.4	
SB-105	12	22-24	Soil	0.4	0.3	
SB-105	13	24-26	NA	NA	NA	No recovery
SB-105	14	26-28	Soil	0.4	0.1	
SB-105	15	28-30	Soil	0.8	0.5	
SB-105S	1	14-Dec	Soil/Fill	0.4	0.3	
SB-105S	2	14-16	Soil/Fill	0.5	0.3	
SB-105S	3	17-19	Soil/Fill	0.4	0.4	

# APPENDIX G SUBSURFACE EXPLORATION LOGS IRM SUPPLEMENTAL INVESTIGATION (CTM-100 to CTM-105S)

C.T. MALE ASSOCIATES, P.C.								P.C	SUBSURFACE EXPLO BORING NO.: SB-100 ELEV.: 22.66' DA START DATE: 8/15/05 FIN	ATUM: USGS
SHEET 1 OF 1										
PRO	JECT	ī:	STIP	' Supj	pleme	ntal I	nvest	igatic	on (Parcel 1) CTM PROJECT NO.:	: 04.9138
LOC	ATIO	N:	Troy	y, New	v Yor	k			CTM INSPECTOR:	: S. Bieber
SAMPLE BLOWS ON SAMPLER										<u> </u>
DEPTH (FT.)	гүре							RECOVERY	SAMPLE CLASSIFICATION	NOTES
-	⊢	NO. 1	0/6	6/12 6	12/18 6	3 18/24 7	N 12	1.5	Dark Gray fine to medium SAND and	(damp)
		2	3	4	4	4	8	0.8	GRAVEL, little red brick and cinder Same with Some Red Brick and Cinder	(damp)
5	 	3	4	5	14	8	19	0.7	Same (rock in sampler shoe)	(damp)
		4	9	4	1	2	5	1.2	Same with Some Slag	(damp)
10		5	3	6	10	9	16	0.0	No Recovery	
<u>10</u>		6	5	4	2	1	6	1.6	Dark Gray SILT, SAND and GRAVEL,	(damp)
		7	3	2	2	4	4	1.4	Some Red Brick, Cinder & Slag, little glass Dark Gray SAND and GRAVEL, Some	(damp)
<u>15</u>		8	4	3	1	2	4	1.2	Red Brick, Cinder and Slag Gray/Brown SILT, trace clay and gravel	(damp)
		9	2	2	2	2	4	2.0	Same. Changes to Brown SILT, little	(little moist)
20		10	5	1	1	1	2	1.5	clay at ± 17.6' bgs. Brow Silt, Some Clay	(little moist)
20		11	2	1	1	2	2	1.2	Gray SILT, SAND and GRAVEL	(wet)
		12	5	8	9	10	17	1.8	Changes to Gray fine to coarse SAND and GRAVEL, little wood at ± 23.5' bgs	(little moist)
25		13	8	13	10	6	23	0.9	Gray fine to coarse SAND and GRAVEL	(wet)
	'	14	8	19	18	6	37	0.9	Same	(wet)
30		15	14	20	16	18	36	0.7	Same Boring Terminated at ± 30' bgs	(wet) 2" PVC well installed at $\pm 27$ " bgs
	N = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW         DRILLING CONTRACTOR:       SJB Services, Inc.       DRILL RIG TYPE: CME 75         METHOD OF INVESTIGATION:       Continuous 2' split spoon sampling         THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN									
TO TH NOT I	PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS								SAMPLE CLASSIFICATION BY: S. Bieber	

C.1	Г. IV	1AL	ΕA	SSC	DCI	Ate	ES, F	P.C	SUBSURFACE EXPLOF BORING NO.: SB-101	RATION LOG
	2	3								TUM: USGS ISH DATE: 8/16/05
PRO	JECT		STIP	Supp	oleme	ntal I	nvest	igatio	n (Parcel 1) CTM PROJECT NO.:	04.9138
LOC		۷:	Troy	S. Bieber						
	SAM		Ы							
DEPTH (FT.)	LYPE	NO.	0/6			AMPL 18/24		RECOVERY	SAMPLE CLASSIFICATION	NOTES
	F	NO. 1	3	6	9	18/24	15	<u>≃</u> 1.0	Dark Gray fine to coarse SAND and GRAVEL,	(damp)
		2	5	9	10	10	19	0.1	trace red brick and slag Dark Gray fine to coarse SAND, little gravel and slag	(damp)
_5		3	6	8	6	4	14	0.1	Dark Gray fine to coarse SAND, little	(damp)
		4	2	3	3	4	6	0.5	gravel, trace slag Dark Gray fine to coarse SAND and GRAVEL, Some Cinder, little slag, trace red brick	rock in sampler shoe ((damp)
10		5	2	3	4	4	7	0.3	Same	(damp)
$\frac{10}{}$		6	2	5	4	3	9	0.1	Same	(damp)
		7	4	1	1	1	2	0.4	Dark Gray fine to coarse SAND and GRAVEL, little slag, cinder and red brick	(little moist)
<u>15</u>		8	1	3	3	4	6	0.9	Dark Gray fine to coarse SAND, GRAVEL and SLAG, trace cinder	(moist to wet)
		9	4	1	2	2	3	1.8	Gray SILT, little fine sand	(moist)
20		10	3	1	WH	WH	1	1.5	Gray SILT, Some Clay	(moist)
		11	1	1	1	2	1	0.0		No recovery
		12	4	3	3	4	6	2.0	Gray SAND and GRAVEL, trace silt and brick Gray SAND, little silt, trace wood	(damp) (damp)
25		13	5	9	9	10	18	0.1	Gray fine SAND and GRAVEL	(wet) (rock in shoe)
		14	4	9	11	12	20	1.1	Gray fine to coarse SAND and GRAVEL	(wet)
30		15	4	9	13	4	22	0.6	Same	(wet)
DRILLI	NG CC	NTRA	S TO DI CTOR: STIGAT		SJB Se	rvices,	Inc.		0 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u> mpling	GROUNDWATER LEVEL
PURP TO TH NOT II	OSES. IE SAN	IT IS IE INF DED A	E INFC MADE ORMA S A SU	SAMPLE CLASSIFICATION BY: S. Bieber						

	T. N		E A	.SSC	RATION LOG ATUM: USGS NISH DATE: 8/16/05					
					pleme v Yorl		nvesti	igatio	n (Parcel 1) CTM PROJECT NO. CTM INSPECTOR	
				,		<u> </u>				
DЕРТН (FT.)	SAM IAPE	NO.	BL 0/6			SAMPLI 3 18/24		RECOVERY	SAMPLE CLASSIFICATION	NOTES
		16	16	16	22	26	38	0.0		No Recovery
<u>35</u> 40									Boring Terminated at ± 32' bgs	2" PVC well installed at ± 32' bgs
<u>40</u> <u>45</u>										
<u>50</u>										
<u>55</u> 60										_
DRILLI METHO THE S PURP TO TH	ING CO OD OF SUBSU POSES. HE SAM	IRFAC	ACTOR: STIGAT E INFC MADE FORMA	: ION: DRMAT E AVAIL	SJB Se Contin FION SI LABLE AVAILA	HOWN TO AU	Inc. ' split s HERE THORI O C.T.!	Spoon sa ON WA IZED U MALE.	0 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u> mpling S OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS IT IS PRESENTED IN GOOD FAITH, BUT IS S, INTERPRETATION OR JUDGMENT OF SUCH	GROUNDWATER LEVEL

	T. N		EA	SSC	SUBSURFACE EXPLO	ATUM: USGS						
PRO	JECT		STIP	' Supj	pleme	ental I	nvest	igatic	n (Parcel 1) CTM PROJECT NO.	: 04.9138		
LOC/	ATION	N:	Troy	: S. Bieber								
H	SAN	/IPLE	BL	OWS	ON S	SAMPL	.ER					
<b>DEPTH (FT.)</b>	түре	NO.	0/6	6/12	12/18	3 18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES		
<u>5</u> <u>10</u> <u>15</u> <u>20</u>									Dark Gray SAND, GRAVEL and SLAG Dark Gray SILT, little clay Boring Terminated at ± 17' bgs	SB-101S converted to a shallow well alongside SB-101. Soils sampled at 15 to 17' bgs interval to confirm the presence of groundwater (little wet) (moist) 2" PVC well installed at ± 17' bgs		
DRILLI METHO THE S	O. OF E ING CC IOD OF SUBSU	ONTRA INVES	ACTOR: STIGATI	ION:	SJB Se Contir	ervices, l nuous 2 HOWN	Inc. 2' split s HERE	spoon s	10 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u> ampling	GROUNDWATER LEVEL DATE LEVEL CASING STABILIZATION TIME		
PURP TO TH NOT II	POSES. HE SAN	5. IT IS ME INF DED A	S MADE FORMA AS A SU	E AVAIL ATION A	LABLE AVAILA	TO AU	THOR	IZED U MALE.	SERS ONLY THAT THEY MAY HAVE ACCESS IT IS PRESENTED IN GOOD FAITH, BUT IS S, INTERPRETATION OR JUDGMENT OF SUCH	SAMPLE CLASSIFICATION BY: S. Bieber		

	Г. М		E A	SSC	DCI	Ate	ES, F	P.C	SUBSURFACE EXPLO	ATUM: NA
PRO,	JECT		STIP	Supr	oleme	ntal I	nvest	ioatio	n (Parcel 1) CTM PROJECT NO.:	04 9138
			Troy	S. Bieber						
	0.00									
DEPTH (FT.)	SAN	NO.	0/6			AMPL 18/24	ER N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
		1	51	8	7	5	15	0.9	Dark Gray fine to coarse SAND and GRAVEL,	(damp)
		2	12	7	7	7	14	0.9	Some Cinder, little slag Same	(damp)
5		3	12	8	6	7	14	1.4	Dark Gray fine to coarse SAND and GRAVEL,	(damp)
		4	5	3	2	3	5	0.8	Some Slag, trace cinder and red brick Same	(damp)
				_		_				
10		5	2	2	2	3	4	1.1	Same	(damp)
		6	5	2	2	1	4	0.7	Same	(little moist)
		7	3	1	2	1	3	1.0	Same with trace wood	(little wet)
<u>15</u>		8	4	4	2	2	6	0.8	Same to 15.5'	(little wet)
		9	3	1	2	1	3	0.9	Gray SILT, little fine sand and clay Same to 17.8'	(little moist)
		10	4	1	2	3	3	0.0	Gray SILT and f. to m. SAND & GRAVEL	(damp) No recovery
20			1	1	1		2		Cross SILT and fine SAND trace group	(little moist)
		11	1	1	1	1		1.0	Gray SILT and fine SAND, trace gravel	
		12	2	2	4	7	6	1.1	Gray fine to coarse SAND and GRAVEL, trace silt and red brick	(little wet)
25		13	4	7	7	7	14	0.7	Same	(wet)
		14	4	6	6	5	12	2.0	Bray/Brown fine to coarse SAND and	(wet)
		15	6	14	18	26	32	0.5	GRAVEL, trace silt Same	(wet
30									Boring Terminated at $\pm$ 30' bgs	
DRILLI	ING CO	ONTRA	S TO DI ACTOR: STIGAT		SJB Se	rvices,	lnc.		DRILL RIG TYPE: <u>CME 75</u> mpling	GROUNDWATER LEVEL
PURP TO TH NOT I	OSES. IE SAN	. IT IS ME INF DED A	S MADE FORMA S A SU	AVAIL	_ABLE AVAILA	TO AU ABLE T	THORI O C.T.I	ZED U MALE.	AS OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS IT IS PRESENTED IN GOOD FAITH, BUT IS S, INTERPRETATION OR JUDGMENT OF SUCH	SAMPLE CLASSIFICATION BY: S. Bieber

	T. N		E A	SSC	P.C	SUBSURFACE EXPLOI	ATUM: NA			
_	JECT		STID	Supr	lome	ntal I	nvost	idatio	n (Parcel 1) CTM PROJECT NO.:	0/ 0138
			Troy	S. Bieber						
LUU,	41101	N.	110y							
	SAN	IPLE	BL	ows	ON S	AMPL	ER			
DEPTH (FT.)	ТҮРЕ	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
	-	1	4	4	6	5	10	1.3	Dark Brown fine to coarse SAND and	(damp)
		2	5	5	5	7	10	1.3	GRAVEL, Some Slag, little cinder Same with trace red brick	(damp)
5		3	3	4	1	2	5	1.2	Same	
_		ა	ა	4	1	۵	J	1.6	Same	(damp)
		4	3	2	2	4	4	0.9	Same	(little moist)
10		5	2	2	1	2	3	0.8	Same	(moist)
_		6	2	2	1	2	3	0.9	Same	(moist)
		7	3	3	4	5	7	1.0	Same to 13.8'	(moist)
15		0	0	1	1	1	0	1.0	Brown SILT, Some Clay and Gravel	(moist)
<u>15</u>		8	2	1	1	1	2	1.3	Gray SILT and fine SAND, little gravel	(moist)
		9	WH	WH	WH	1	WH	2.0	Gray SILT, little fine sand and clay	(little moist)
		10	1	1	WH	1	1	1.6	Gray SILT, Some Clay, little fine sand	(little moist)
20		11	2	1	2	5	3	2.0	Gray/Brown SILT and fine SAND, trace	(little moist)
		12	2	2	5	4	7	0.7	wood and gravel Gray fine to coarse SAND and GRAVEL,	(little wet)
95		13	9	8	7	11	15	1.2	trace silt	(becomes wet at $\pm 23.8$ ')
25		13	9	ð	7	11	15	1.2	Same Boring Terminated at ± 26' bgs	(wet)
		14								
		15								
30										
DRILL	ING CO	ONTRA	S TO DI CTOR: STIGAT		SJB Se	rvices,	Inc.		O LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u> ampling	GROUNDWATER LEVEL
PURP TO TH NOT I	SUBSU POSES HE SAM NTENI	. IT IS ME INF DED A	SAMPLE CLASSIFICATION BY: S. Bieber							

	T. N		E A	SSC	CI	IATE	:S, F	».С	SUBSURFACE EXPLO	ATUM: USGS
PRO	JECT		STIP	: 04.9138						
LOC	ΑΤΙΟΙ	N:	Troy	: S. Bieber						
	SAN	1PLE	BL	.OWS	ON S	SAMPL	ER	$\square$		<u> </u>
<b>DEPTH (FT.)</b>	түре	NO.	0/6	6/12	12/18	3 18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
<u>5</u> <u>10</u> <u>15</u> <u>20</u> <u>25</u> <u>30</u>									Dark Gray SAND and GRAVEL, Some Slag Brown Silt, Some Clay and Gravel Boring Terminated at ± 15' bgs	SB-104 converted to a shallow well alongside SB-103. Soils sampled at 13 to 15' bgs interval to confirm the presence of groundwater (little wet) (moist) 2" PVC well installed at ± 15' bgs
			S TO DI ACTOR:			PLER 12 ervices, l		HA 14	0 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u>	
THE S PURP TO TH NOT I	SUBSU POSES HE SAM	IRFAC . IT IS ME INF DED A	S MADE FORMA S A SU	ORMAT AVAIL	FION SH LABLE AVAILA	HOWN TO AU ABLE TO	HERE	ON WA IZED U MALE.	AND THE ACCESS ONLY THAT THEY MAY HAVE ACCESS IT IS PRESENTED IN GOOD FAITH, BUT IS S, INTERPRETATION OR JUDGMENT OF SUCH	SAMPLE CLASSIFICATION BY: S. Bieber

C.	Г. IV	1AL	E A	SSC	DCI	ATE	ES, F	P.C	SUBSURFACE EXPLO	RATION LOG
	2	E							BORING NO.: SB-105 ELEV.: 22.62' DA START DATE: 8/18/05 FIN SHEET 1 OF 1	ATUM: USGS NSH DATE: 8/19/05
PRO	JECT	:	STIP	n (Parcel 1) CTM PROJECT NO.:	04.9138					
LOC		N:	Troy	S. Bieber						
_	SAN	IPLE	BI							
DEPTH (FT.)	ТҮРЕ	NO.	0/6			AMPL 18/24		RECOVERY	SAMPLE CLASSIFICATION	NOTES
	F	1	1	6	7	5	13	<u>∼</u> 1.2	Dark Gray fine to coarse SAND and GRAVEL,	(damp)
		2	5	9	4	3	12	0.7	Some Slag and Cinder, little red brick Same	(damp)
5		3	3	3	6	5	9	0.6	Same	(damp)
		4	3	1	3	4	4	0.6	Same	(damp)
		_	_	_						
10		5	3	3	6	6	9	1.1	Same	(little moist)
		6	2	2	1	2	3	0.0		No recovery
		7	2	2	1	3	3	0.4	Same	(moist to a little wet)
<u>15</u>		8	6	4	5	5	9	0.0		No recovery
		9	2	2	2	2	4	2.0	Gray/Brown SILT, Some fine Sand, trace	(little moist)
		10	4	2	2	1	4	0.2	fine gravel Gray SILT, little fine sand, trace clay	(little moist)
20		11	1	1	1	1	2	2.0	Same	(little moist)
		12	2	2	4	1	6	2.0	Gray/Brown SILT, Some fine Sand, trace	(little moist)
25		13	2	4	4	3	8	0.0	fine gravel and wood	No recovery
		_								
		14	4	4	8	9	12	1.4	Brown/Gray fine to coarse SAND and GRAVEL, trace silt	(wet)
30		15	11	10	9	11	19	0.4	Gray fine to coarse SAND and GRAVEL, trace silt	(wet)
									Boring Terminated at ± 30' bgs	2" PVC well installed at ± 30' bgs
			S TO DI CTOR:			PLER 1 rvices,		HA 14	0 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: CME 75	GROUNDWATER LEVEL
			STIGAT					poon sa	ampling	DATE LEVEL CASING STABILIZATION TIME
									AS OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS	
TO TH NOT I	IE SAN	ME INF	FORMA S A SU	TION	AVAILA	ABLE T	0 C.T.I	MALE.	IT IS PRESENTED IN GOOD FAITH, BUT IS S, INTERPRETATION OR JUDGMENT OF SUCH	SAMPLE CLASSIFICATION BY: S. Bieber

	T. N		E A	SSC	CI	ATE	SUBSURFACE EXPLOI	ATUM: USGS		
PRO	JECT	:	STIP	04.9138						
LOC	ATION	N:	Troy	, New	v Yorl	k			CTM INSPECTOR:	S. Bieber
	SAM	1PLE	BL	OWS	ON S	AMPL	.ER			1
<b>DEPTH (FT.)</b>	түре	NO.	0/6	6/12	12/18	8 18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
5										SB-105S converted to a shallow well alongside SB-105. Soils sampled at 12 to 17' bgs intervals to confirm the presence of groundwater
<u>10</u> <u>15</u>		1	3	4	5	6 5	9 7	0.2	Gray fine to coarse SAND, GRAVEL and SLAG, trace red brick Same to 15.7' Gray SILT, little fine sand, trace clay and grave	(moist) (little wet) I (moist)
		3	1	WH	WH	1	WH	2.0	Gray SILT, little fine sand and clay, trace gravel	(moist)
<u>20</u> <u>25</u>									Boring Terminated at ± 19' bgs	2" PVC well installed at ± 17' bgs
30										-
DRILLI METHO THE S PURP TO TH	ING CC OD OF SUBSU POSES. HE SAM	IRFAC	ACTOR: STIGATI EE INFO MADE FORMA	: ION: DRMAT E AVAIL	SJB Ser Contin	ervices, 1 nuous 2 HOWN TO AU ABLE T	Inc. 2' split s HERE JTHORI	Spoon sa CON WA IZED U MALE.	0 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u> Impling S OBTAINED FOR C.T. MALE DESIGN SERS ONLY THAT THEY MAY HAVE ACCESS IT IS PRESENTED IN GOOD FAITH, BUT IS S, INTERPRETATION OR JUDGMENT OF SUCH	GROUNDWATER LEVEL

# **APPENDIX H**

# MONITORING WELL CONSTRUCTION LOGS IRM SUPPLEMENTAL INVESTIGATION (CTM-100 to CTM-105S)

## MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Pare
Protective Enclosure Curb Box 25.59_ft. Guard Pipe	Well No. <u>CTM-100</u> Boring No. <u>SB-100</u>
	Town/City Troy
	County <u>Rensselaer</u> State <u>NY</u>
8- inch diameter drilled hole	Installation Date(s) 8/15/2005
Well casing,	Drilling Contractor SJB Services, Inc
<u>2-</u> inch diameter,	Drilling Method4.25- inch HSA
Backfill Grout Portland	Water Depth From Top of Riser 23.02 ft 9/9/05
	C.T. Male Observer S. Bieber
14.0 ft*       slurry         Bentonite       16.0 ft*         17.0 ft*       Well Screen         2 -inch diameter       0.010 slot         Gravel Pack       Sand Pack         Formation Collapse       27.0 ft*	Notes:
30.0 ft*	
* Depth below land surface.	

## MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Pare
Protective Enclosure ☐ Curb Box 25.57 ft.	Well No. CTM-101 Boring No. SB-101
25.39 ft. elev.	Town/City Troy
	County <u>Rensselaer</u> State <u>NY</u>
<u>8-</u> inch diameter drilled hole	Installation Date(s) 8/16/2005
Well casing,	Drilling Contractor SJB Services, Inc
<u>2-</u> inch diameter,	Drilling Method4.25- inch HSA
Grout Portland	Water Depth From Top of Riser 23.09 ft 9/9/05 Date
	C.T. Male Observer S. Bieber
19.0       ft*         Bentonite       ■         21.0       ft*	
22.0 ft*	Notes:
Well Screen	
2 -inch diameter 	
Gravel Pack	
Formation Collapse	
32.0 ft*	
32.0 ft*	
* Depth below land surface.	

## MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

Project Number 04.9138
Project Name STIP Supplemental Investigation (Pare
Well No. <u>CTM-101S</u> Boring No. <u>SB-101S</u>
Town/City Troy
County <u>Rensselaer</u> State <u>NY</u>
Installation Date(s) 8/17/2005 Drilling Contractor SJB Services, Inc
Drilling Method 4.25- inch HSA
Water Depth From Top of Riser Dry ft 9/9/05 Date
C.T. Male Observer S. Bieber
Notes:

* Depth below land surface.

### MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Pare
Protective Enclosure ☐ Curb Box 24.91 ft.	Well No. <u>CTM-104</u> Boring No. <u>SB-104</u>
24.8 ft. elev.	Town/City Troy
22.36 ft. LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
<u>8-</u> inch diameter drilled hole	Installation Date(s) 8/18/2005
Well casing,	Drilling Contractor SJB Services, Inc
inch diameter,	Drilling Method4.25- inch HSA
Backfill Grout Portland	Water Depth From Top of Riser <u>Dry</u> ft <u>9/9/05</u>
	C.T. Male Observer S. Bieber
Bentonite 9.0 ft* □ slurry pellets	
10.0 ft*	Notes:
Well Screen 2 -inch diameter	
0.010 slot	
Sand Pack	
15.0 ft*	
15.0 ft*	
* Depth below land surface.	

## MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Pare
Protective Enclosure ☐ Curb Box 25.36 ft.	Well No.         CTM-105         Boring No.         SB-105
<u>25.11</u> ft. elev.	Town/City Troy
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
<u>8-</u> inch diameter drilled hole	Installation Date(s) 8/19/2005
Well casing, 	Drilling Contractor SJB Services, Inc
Backfill Grout Portland	Drilling Method       4.25- inch HSA         Water Depth From Top of Riser       22.75 ft       9/9/05
	C.T. Male Observer S. Bieber
Bentonite 19.0 ft* □ slurry pellets	
20.0 ft*	Notes:
Well Screen <u>2</u> -inch diameter 0.010 slot	
Gravel Pack Gravel Pack Sand Pack Formation Collapse	
<u>30.0</u> ft*	
<u>30.0</u> ft*	
* Depth below land surface.	

## MONITORING WELL CONSTRUCTION LOG

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Pare
Protective Enclosure Curb Box Subscription 25.84 ft. elev. Subscription 25.57 ft. elev.	Well No. <u>CTM-105S</u> Boring No. <u>SB-105S</u> Town/City Troy
	County <u>Rensselaer</u> State <u>NY</u>
8- inch diameter drilled hole	Installation Date(s) 8/19/2005
Well casing, inch diameter,	Drilling Contractor       SJB Services, Inc         Drilling Method       4.25- inch HSA
Grout Portland	Water Depth From Top of Riser <u>19.89</u> ft <u>9/9/05</u> Date C.T. Male Observer S. Bieber
4.0 ft*       slurry         Bentonite       0.0 ft*         6.0 ft*       pellets         7.0 ft*       Well Screen        2 -inch diameter       0.010 slot         Gravel Pack       Sand Pack         Formation Collapse       17.0 ft*	Notes:
17.0 ft*	

### **APPENDIX I**

## ORGANIC VAPOR HEADSPACE ANALYSIS LOGS PARCEL 2 SUPPLEMENTAL INVESTIGATION (CTM-200 to CTM-216)



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: Rensselae	DATE					
LOCATION: Troy, N	COLLECTED: 8/22/05					
INSTRUMENT USED:		ne 2000	LAMP		eV	DATE
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/26/05
TEMPERATURE OF S	SOIL:	Am	ibient			ANALYST: S. Bieber
EVELODATION		DEDTU		SAMPLE	BACKGROUND	
EXPLORATION NUMBER	SAMPLE NUMBER	DEPTH (FT.)***	SAMPLE TYPE	READING (PPM)**	READING (PPM)**	REMARKS
	NUIVIDER	(F1.)	ITPE		(PPIVI)	REIVIARIO
SB-200	1	0-2	Soil	0.8	0.5	No Odor/Staining
SB-200	2	2-4	Soil	1.1	0.5	No Odor/Staining
SB-200	3	4-6	Soil	0.9	0.4	No Odor/Staining
SB-200	4	6-8	Soil	0.8	0.3	No Odor/Staining
SB-200	5	8-10	Soil	0.6	0.6	No Odor/Staining
SB-200	6	10-12	Soil	0.7	0.5	No Odor/Staining
SB-200	7	12-14	Soil	0.9	0.5	No Odor/Staining
SB-200	8	14-16	Soil	23.1	0.5	Petro Odor/Staining @ 16' bgs
SB-200	9	16-20	Soil	6.4	2.4	Slight Petro Odor/Staining
SB-200	10	20-24	Soil	7.3	1	Petro Odor/Staining
SB-200	11	25-28	Soil	1.9	0.6	Slight Petro Odor/ No Staining
SB-201	1	0-2	Soil	0.7	0.7	No Odor/Staining
SB-201	2	2-4	Soil	0.7	0.6	No Odor/Staining
SB-201	3	4-6	Soil	0.8	0.5	No Odor/Staining
SB-201	4	6-8	Soil	0.7	0.5	No Odor/Staining
SB-201	5	8-10	Soil	0.6	0.5	No Odor/Staining
SB-201	6	10-12	Soil	0.7	0.4	No Odor/Staining
SB-201	7	12-14	Soil	0.6	0.3	No Odor/Staining
SB-201	8	14-16	Soil	0.5	0.4	No Odor/Staining
SB-201	9	16-20	Soil	0.7	0.4	No Odor/Staining



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: Rensselae	DATE					
Location: Troy, N	COLLECTED: 8/22/05					
INSTRUMENT USED:		ae 2000	LAMP		eV	DATE
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/26/05
TEMPERATURE OF S	SOIL:	Am	bient	CANADIE	DA OKODOLINID	ANALYST: S. Bieber
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-201	10	18-20	Soil	0.9	0.4	No Odor/Staining
SB-201	11	20-22	Soil	0.9	0.6	No Odor/Staining
SB-201	12	22-24	Soil	0.5	0.5	No Odor/Staining
SB-201	13	24-26	Soil	0.6	0.1	No Odor/Staining
SB-201	14	26-28	Soil	0.7	0.5	No Odor/Staining
SB-202	1	0-2	Soil	0.5	0.2	No Odor/Staining
SB-202	2	2-4	Soil	0.5	0.5	No Odor/Staining
SB-202	3	4-6	Soil	0.5	0.4	No Odor/Staining
SB-202	4	6-8	Soil	1	0.7	No Odor/Staining
SB-202	5	8-10	Soil	0.5	0.6	No Odor/Staining
SB-202	6	10-12	Soil	0.9	0.5	No Odor/Staining
SB-202	7	12-14	Soil	0.6	0.3	No Odor/Staining
SB-202	8	14-16	Soil	0.7	0.5	No Odor/Staining
SB-202	9	16-18	Soil	0.4	0.4	No Odor/Staining
SB-202	10	18-20	Soil	0.6	0.4	No Odor/Staining
SB-202	11	20-22	Soil	5.5	0.4	Petro Odor/Some Staining
SB-202	12	22-24	Soil	1.3	1.1	No Odor/Staining
SB-202	13	24-26	Soil	1	0.6	No Odor/Staining
SB-202	14	26-28	Soil	0.9	0.9	No Odor/Staining



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: Rensselae	DATE					
LOCATION: Troy, N	COLLECTED: 8/22/05					
INSTRUMENT USED:		ne 2000	LAMP		eV	DATE
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/26/05 ANALYST: S. Bieber
TEIVIPERATURE OF S		Afr	nbient	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	ТҮРЕ	(PPM)**	(PPM)**	REMARKS
SB-203	1	0-2	Soil	1.2	0.5	No Odor/Staining
SB-203	2	2-4	Soil	1.1	1	No Odor/Staining
SB-203	3	4-6	Soil	1.1	0.9	No Odor/Staining
SB-203	4	6-8	Soil	1.3	0.9	No Odor/Staining
SB-203	5	8-10	Soil	1	0.9	No Odor/Staining
SB-203	6	10-12	Soil	1.2	0.9	No Odor/Staining
SB-203	7	12-14	Soil	1	0.9	No Odor/Staining
SB-203	8	14-16	Soil	4.2	0.9	Slight Petro Odor
SB-203	9	16-18	Soil	5.8	1.2	Slight Petro Odor
SB-203	10	18-20	Soil	1.7	1.1	No Odor/Staining
SB-203	11	20-22	Soil	NA	NA	Not enough sample
SB-203	12	22-24	Soil	NA	NA	Not enough sample
SB-203	13	24-26	Soil	5.4	0.9	No Odor/Staining
SB-203	14	26-28	Soil	1.3	1.0	No Odor/Staining
SB-203	15	28-30	Soil	1.6	1	No Odor/Staining
SB-203	16	30-32	Soil	1.2	0.8	No Odor/Staining



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: Rensselae	DATE					
LOCATION: Troy, N	COLLECTED: 8/23/05					
INSTRUMENT USED		ie 2000	LAMP		eV	DATE
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/23/05
TEMPERATURE OF S	SOIL:	Am	bient			ANALYST: S. Bieber
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-204	1	0-2	Soil	7.2	0	Musty Odor
SB-204	2	2-4	Soil	0.1	0	No Odor/Staining
SB-204	3	4-6	Soil	0.1	0	No Odor/Staining
SB-204	4	6-8	Soil	0.1	0	No Odor/Staining
SB-204	5	8-10	Soil	0	0	No Odor/Staining
SB-205	1	0-2	Soil	0.6	0	Musty Odor
SB-205	2	2-4	Soil	0.1	0	No Odor/Staining
SB-205	3	4-6	Soil	2.6	0	No Odor/Staining
SB-205	4	6-8	Soil	1.5	0	No Odor/Staining
SB-205	5	8-10	Soil	4.4	0	No Odor/Staining
SB-205	6	10-12	Soil	5.4	0	No Odor/Staining
SB-205	7	12-14	Soil	1.2	0	No Odor/Staining
SB-205	8	14-16	Soil	3.2	0	No Odor/Staining
SB-205	9	16-18	Soil	3.5	0	No Odor/Staining
SB-205	10	18-20	Soil	3.1	0	No Odor/Staining
SB-205	11	20-22	Soil	4.1	0	No Odor/Staining
SB-205	12	22-24	Soil	3.8	0	No Odor/Staining
SB-205	13	24-26	Soil	2.6	0	No Odor/Staining
SB-205	14	26-28	Soil	1.1	0	No Odor/Staining
SB-205	15	28-30	Soil	1	0	No Odor/Staining



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: Rensselae	DATE					
LOCATION: Troy, N	<b>COLLECTED</b> : 8/23/05					
INSTRUMENT USED:		ne 2000	LAMP		eV	DATE
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/23-24/05 ANALYST: S. Bieber
TEMPERATURE OF S	SOIL:	Am	ibient		PACKODOLIND	ANALTSI: 3. DIEDEI
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-206	1	0-2	Soil	4.2	0	No Odor/Staining
SB-206	2	2-4	Soil	2.3	0	No Odor/Staining
SB-206	3	4-6	Soil	3.2	0	No Odor/Staining
SB-206	4	6-8	Soil	17.9	0	No Odor/Staining
SB-206	5	8-10	Soil	5.4	0	No Odor/Staining
SB-206	6	10-12	Soil	12.7	0	No Odor/Staining
SB-206	7	12-14	Soil	0.4	0.2	No Odor/Staining
SB-206	8	14-16	Soil	0.4	0.1	No Odor/Staining
SB-206	9	16-18	Soil	0.3	0.1	No Odor/Staining
SB-206	10	18-20	Soil	0.4	0	No Odor/Staining
SB-206	11	20-22	Soil	0.5	0.1	No Odor/Staining
SB-206	12	22-24	Soil	0.5	0	No Odor/Staining
SB-206	13	24-26	Soil	0.7	0	No Odor/Staining
SB-206	14	26-28	Soil	0.7	0.2	No Odor/Staining
SB-207	1	0-2	Soil	0.7	0.2	No Odor/Staining
SB-207	2	2-4	Soil	0.7	0.4	No Odor/Staining
SB-207	3	4-6	Soil	0.4	0.3	No Odor/Staining
SB-207	4	6-8	Soil	0.4	0.3	No Odor/Staining
SB-207	5	8-10	Soil	0.4	0.2	No Odor/Staining
SB-207	6	10-12	Soil	0.4	0.3	No Odor/Staining



PROJECT: STIP Sup	PAGE 1 OF 1					
CLIENT: Rensselae	DATE					
LOCATION: Troy, N	COLLECTED: 8/23/05					
INSTRUMENT USED:		ne 2000	LAMP		eV	DATE
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/24/05
TEMPERATURE OF S	SOIL:	Arr	nbient	0.00.001.5		ANALYST: S. Bieber
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	ТҮРЕ	(PPM)**	(PPM)**	REMARKS
SB-207	7	12-14	Soil	0.4	0.2	No Odor/Staining
SB-207	8	14-16	Soil	0.6	0.3	No Odor/Staining
SB-207	9	16-18	Soil	0.4	0.3	No Odor/Staining
SB-207	10	18-20	Soil	0.4	0.2	No Odor/Staining
SB-207	11	20-22	Soil	0.4	0.2	No Odor/Staining
SB-207	12	22-24	Soil	0.3	0.1	No Odor/Staining
SB-207	13	24-26	Soil	0.4	0.1	No Odor/Staining
SB-207	14	26-28	Soil	0.5	0.3	No Odor/Staining
SB-208	1	0-2	Soil	0.7	0.2	No Odor/Staining
SB-208	2	2-4	Soil	0.6	0.2	No Odor/Staining
SB-208	3	4-6	Soil	1	0.2	No Odor/Staining
SB-208	4	6-8	Soil	0.4	0.2	No Odor/Staining
SB-208	5	8-10	Soil	0.6	0.2	No Odor/Staining
SB-208	6	10-12	Soil	0.5	0.3	No Odor/Staining
SB-208	7	12-16	Soil	0.6	0.3	No Odor/Staining



PROJECT: STIP Sup	plemental In	04.9138	PAGE 1 OF 1			
CLIENT: Rensselae	5	ustrial Develc	pment Author	ity		DATE
Location: Troy, N	<b>COLLECTED</b> : 8/24/05					
INSTRUMENT USED:		e 2000	LAMP		eV	DATE ANALYZED: 8/24/05
DATE INSTRUMENT			8/26/2005 Ibient	BY:	S. Bieber	ANALYST: S. Bieber
TEIVIPERATURE OF S		Aff	IDIENI	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-209	1	0-2	Soil	3.2	0.2	No Odor/Staining
SB-209	2	2-4	Soil	0.7	0.4	No Odor/Staining
SB-209	3	4-6	Soil	0.7	0.3	No Odor/Staining
SB-209	4	6-8	Soil	0.5	0.4	No Odor/Staining
SB-209	5	8-10	Soil	0.6	0.4	No Odor/Staining
SB-209	6	10-12	Soil	0.8	0.4	No Odor/Staining
SB-209	7	12-14	Soil	0.5	0.4	No Odor/Staining
SB-209	8	14-16	Soil	0.6	0.3	No Odor/Staining
SB-210	1	0-2	Soil	1.3	0.4	No Odor/Staining
SB-210	2	2-4	Soil	0.6	0.3	No Odor/Staining
SB-210	3	4-6	Soil	0.7	0.3	No Odor/Staining
SB-210	4	6-8	Soil	0.6	0.2	No Odor/Staining
SB-210	5	8-12	Soil	0.6	0	No Odor/Staining
SB-210	6	12-14	Soil	0.6	0.4	No Odor/Staining
SB-210	7	14-16	Soil	0.6	0.4	No Odor/Staining
SB-210	8	16-18	Soil	0.7	0.4	No Odor/Staining
SB-210	9	18-20	Soil	0.6	0.4	No Odor/Staining
SB-210	10	20-22	Soil	0.6	0.4	No Odor/Staining
SB-210	11	22-24	Soil	0.6	0.4	No Odor/Staining
SB-210	12	24-26	Soil	0.5	0.4	No Odor/Staining
SB-210	13	26-28	Soil	0.5	0.2	No Odor/Staining

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air. ***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected.



PROJECT: STIP Sup	plemental In	PAGE 1 OF 1				
CLIENT: Rensselae	2	ustrial Develo	pment Author	ity		DATE
Location: Troy, N	lew York					<b>COLLECTED</b> : 8/24/05
INSTRUMENT USED:		e 2000	LAMP		eV	
DATE INSTRUMENT			8/26/2005	BY:	S. Bieber	ANALYZED: 8/24/05 ANALYST: S. Bieber
TEMPERATURE OF S		Am	ibient	SAMPLE	BACKGROUND	
EXPLORATION	SAMPLE	DEPTH	SAMPLE	READING	READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-211	1	0-2	Soil	0.8	0.2	No Odor/Staining
SB-211	2	2-4	Soil	16.7	0.2	Slight Petro Odor/Staining
SB-211	3	4-4.5	Soil	11.3	0.3	Slight Petro Odor/Staining
SB-211 (1)	1	0-2	Soil	0.5	0.2	Musty Odor
SB-211 (1)	2	2-4	Soil	0.6	0.2	No Odor/Staining
SB-211 (1)	3	4-6	Soil	0.7	0.2	No Odor/Staining
SB-211 (1)	4	6-8	Soil	0.4	0.3	No Odor/Staining
SB-211 (2)	1	0-2	Soil	0.9	0.2	Musty Odor
SB-211 (2)	2	2-4	Soil	0.8	0.3	No Odor/Staining
SB-211 (2)	3	4-6.3	Soil	1.1	0.2	No Odor/Staining

**PPM represents concentration of detectable volatile and gaseous compounds in parts per million of air. ***Due to poor sample recovery the sample is not sufficient enough to specify which portion of the recovered sample interval was collected .



PROJECT: STIP Sup	plemental In	04.9138	PAGE 1 OF 1			
CLIENT: Rensselae	5	ustrial Develo	pment Author	ity		DATE
LOCATION: Troy, N	lew York					COLLECTED: 9/29/05
INSTRUMENT USED:		ne 2000	LAMP		eV	DATE
DATE INSTRUMENT			9/29/2005	BY:	J. Favreau	ANALYZED: 9/29/05
TEMPERATURE OF S	SOIL:	Am	nbient			ANALYST: J. Favreau
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-212	1	0-2	Soil	12.1	2.5	
SB-212	2	2-4	Soil	7.8	2.4	
SB-212	3	4-6	Soil	4.2	2.1	
SB-212	4	6-8	Soil	6.5	2.5	
SB-212	5	8-10	Soil	NA	NA	No recovery
SB-212	6	10-12	Soil	13.4	3.1	Submitted for lab analyses
SB-212	7	12-14	Soil	11.5	2.8	
SB-212	8	14-15.5	Soil	13.2	3.5	
SB-212	9	15.5-16	Soil	22.5	2.1	
SB-212	10	16-18	Soil	28.1	2.5	
SB-212	11	18-20	Soil	20.5	2.3	
SB-212	12	20-22	Soil	6.4	2.1	
SB-213	1	5-7	Soil	3.2	1.8	
SB-213	2	10-12	Soil	4.3	1.8	
SB-213	3	15-17	Soil	4.7	1.2	
SB-213	4	17-19	Soil	2.7	0.5	
SB-213	5	19-21	Soil	NA	NA	Wash material
SB-213	6	20-22	Soil	NA	NA	No recovery



PROJECT: STIP Sup	plemental In	04.9138	PAGE 1 OF 1			
CLIENT: Rensselae	5	ustrial Develo	pment Author	ity		DATE
LOCATION: Troy, N						COLLECTED: 9/30/05
INSTRUMENT USED		ie 2000	LAMP		eV	DATE
DATE INSTRUMENT			9/30/2005	BY:	J. Favreau	ANALYZED: 9/30/05 ANALYST: J. Favreau
TEMPERATURE OF S	SOIL:	Am	nbient		DA OKODOLINID	ANALYSI: J. Favleau
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-214	1	0-2	Soil	5.6	0.2	
SB-214	2	2-4	Soil	219	0.2	Submitted for lab analyses
SB-214	3	4-6	Soil	12.5	0.6	
SB-214	4	6-8	Soil	7.4	0.6	
SB-214	5	8-10	Soil	109.3	0.8	
SB-214	6	10-12	Soil	65.4	0	
SB-214	7	12-14	Soil	63.2	0.8	
SB-214	8	14-16	Soil	44.5	1.1	
SB-214	9	16-18	Soil	11.2	0.9	
SB-214	10	18-20	Soil	6.3	0.9	
SB-215	1	5-7	Soil	3.6	0.1	
SB-215	2	10-12	Soil	4.3	0.1	
SB-215	3	15-17	Soil	4.9	0	
SB-215	4	18-20	Soil	0.7	0	
SB-215	5	20-22	Soil	5	0	
SB-215	6	25-27	Soil	2.6	0	



PROJECT: STIP Sup		04.9138	PAGE 1 OF 1			
CLIENT: Rensselae		ustrial Develo	pment Author	ity		DATE
LOCATION: Troy, N						COLLECTED: 10/3/05
INSTRUMENT USED:		ie 2000	LAMP		eV	DATE
DATE INSTRUMENT			10/3/2005	BY:	J. Favreau	ANALYZED: 10/3/05 ANALYST: J. Favreau
TEMPERATURE OF S	SOIL:	Am	bient	0.00.001.5		ANALYSI: J. Favleau
EXPLORATION	SAMPLE	DEPTH	SAMPLE	SAMPLE READING	BACKGROUND READING	
NUMBER	NUMBER	(FT.)***	TYPE	(PPM)**	(PPM)**	REMARKS
SB-216	1	0-2	Soil	0.7	0.6	
SB-216	2	2-4	Soil	0.9	0.6	
SB-216	3	4-6	Soil	0.7	0.6	
SB-216	4	6-8	Soil	0.9	0.6	
SB-216	5	8-10	Soil	0.8	0.6	
SB-216	6	10-12	Soil	NA	NA	No Recovery
SB-216	7	12-14	Soil	0.8	0.7	
SB-216	8	14-16	Soil	0.8	0.7	
SB-216	9	16-18	Soil	0.9	0.7	
SB-216	10	18-20	Soil	0.9	0.6	
SB-216	11	20-22	Soil	0.9	0.7	

# APPENDIX J SUBSURFACE EXPLORATION LOGS PARCEL 2 SUPPLEMENTAL INVESTIGATION (CTM-200 to CTM-216)

C.	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG								
	2		22/05 FINISH DATE: 8/22/05 OF 1						
PRO	JECT:	STIP	Suppl	0.: 04.9138					
LOC	ATION	: Troy	R: S. Bieber						
	S	AMPLE	Ξ						
DEPTH (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES				
4		1	2.8	Dark Brown fine to coarse SAND and GRAVEL, little red brick, trace concrete, cinder and organics	(damp)				
8		2		Dark Brown fine to coarse SAND and GRAVEL, trace red brick. Lense of black cinder at ± 5.2 to 5.4' bgs.	(damp)				
12		3	1.6	Brown fine to coarse SAND and GRAVEL, trace red brick	(damp)				
	$\overline{\ }$	4	1.1	Same to ± 15.9' bgs					
1 <u>6</u> 20		5	0.2	Coarse GRAVEL (Petro odor and stained) Black fine to medium SAND and GRAVEL, little silt	(little wet) (little wet) (strong petro odor and stained)				
24		6	0.7	Same with Some Silt					
28		7		24' to 24.7': Gray fine to coarse SAND and GRAVEL 24.7' to 25': Same with Some Silt 25 to 27.5': Gray SILT and CLAY 27.5 to 30': Gray SILT, Some fine Sand and Clay Boring Terminated at ± 28' bgs	(petro odor/stained and wet) (moist) (little moist) (damp) 1" PVC well installed at ± 25' bgs				
	ING CON OD OF S/			GROUNDWATER LEVEL READINGS DATE LEVEL REFERENCE MEASURING POINT					
ASSE MAY I GOOI	SUBSURI SSMENT HAVE AC D FAITH, RPRETAT	PURP CESS BUT IS	OSES. TO THE NOT IN	N SAMPLE CLASSIFICATION BY: S. Bieber					

C.	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG							
	3			BORING NO. ELEV.: NA	.: SB-20	01 DATUM: NA 2/05 FINISH DATE: 8/22/05		
PRO	JECT:	STIP	Suppl	T NO.:	04.9138			
LOC	ATION:	: Troy	/, New	RVER:	S. Bieber			
	S	AMPLE	.E					
<b>DEPTH (FT.)</b>	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION		NOTES		
4		1	2.6	Dark Brown and Gray fine to coarse SAND and GRAVEL, Some Red Brick, trace organics	(	(damp)		
<u> </u>		2	3.0	Brown fine to coarse SAND, GRAVEL and RED BRICK		(damp)		
8				Brown SILT, Some Clay, little fine sand		(little moist)		
<u> </u>		3	1.6	Same to ± 11.1' bgs		(little moist)		
12				11.1 to 11.6': Gray SILT, Some Clay Gray/Brown SILT, Some Clay		(damp) (damp)		
<u> </u>		4	2.6	Same to $\pm$ 15.3' with layer of Gray fine to coarse SAND and fine GRAVEL, little silt at $\pm$ 14.6 to 14.9' bgs.		(damp)		
16		5	3.0	Dark Brown SILT, little clay, trace fine sand 16 to 18': Gray/Green SILT, Some Clay, trace fine sand		(damp) (damp)		
	$\left  \right\rangle$	Ŭ	0.0	18 to 19.8': Gray SILT, fine to coarse SAND and GRAVEL, little clay		(damp)		
20		6	3.0	Brown fine to medium SAND, little silt Brown fine to medium SAND, little silt		(damp) (little wet)		
	$\left  \right\rangle$							
24		7	3.6	Gray fine to medium SAND, trace silt 24 to 25': Green/Gray SILT, Some Clay 25 to 26.5': Gray/Brown SILT, little clay, trace fine sand		(little wet) (damp) (damp)		
<u>28</u>				26.5 to 27.3': Brown SILT, little fine sand Brown/Gray fine to medium SAND and GRAVEL Boring Terminated at ± 28' bgs		(moist) (little wet)		
<u> </u>			<u> </u>	<u> </u>				
	ING CON			GROUNDWATER LEVEL READINGS				
ASSE MAY GOOI	SUBSURF ESSMENT HAVE AC D FAITH, RPRETAT	F PURP CESS BUT IS	POSES. TO THE S NOT IN		SAMPLE CLASSIFICATION BY: S. Bieber			

C.7	Г. М <b>/</b>	ALE	ASS	SOCIATES, P.C.	4 OF	
	3			GEOPROBE SUBSURFA BORING NO.: 5 ELEV.: NA START DATE: SHEET 1	SB-20	02 DATUM: NA 2/05 FINISH DATE: 8/22/05
PRO	JECT:	STIP	Suppl	NO.:	04.9138	
LOC	ATION:	: Troy	, New	/ York CTM OBSERV	VER:	S. Bieber
DEPTH (FT.)	INTERVAL	AMPLE NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION		NOTES
4		1	1.6	0 to 0.5': Concrete Dark Brown fine to coarse SAND and GRAVEL, little red brick, trace cinder	(	(damp)
$\frac{4}{8}$ $\frac{12}{16}$ $\frac{16}{20}$ $\frac{24}{28}$		2 3 4 5 6 7	2.7	Same to ± 7' bgs Brown fine to coarse SAND and GRAVEL, trace red brick 8 to 10.6': Gray fine to coarse SAND and GRAVEL, trace red brick 10.6 to 11.8': Brown fine to coarse SAND and GRAVEL Brown SILT, fine SAND and GRAVEL 12 to 13.9': Brown fine to coarse SAND and GRAVEL Gray fine to coarse SAND and GRAVEL, little silt, trace red brick 16 to 18.6': Gray fine to coarse SAND and GRAVEL, little silt 18.6 to 19.8': Gray SILT, Some Clay, trace fine sand Gray SILT and fine SAND 20 to 20.9': Dark Brown fine to coarse SAND and GRAVEL, trace silt 21.1 to 21.3': Gray SILT and CLAY, little fine sand Gray/Brown fine to coarse SAND & GRAVEL, trace silt Same Boring Terminated at ± 28' bgs		(damp) (damp) (little wet) (little moist) (moist) (little moist) (moist) (moist) petro odor and staining at ± 20.9 to 21.1' bgs (wet) (wet)
F				SJB Services, Inc. GEOPROBE TYPE: Truck Mounted Model 540		GROUNDWATER LEVEL READINGS
	ING CON IOD OF SA			40 U	DATE LEVEL REFERENCE MEASURING POINT	
ASSE MAY H GOOD	SUBSURF ESSMENT HAVE AC D FAITH, RPRETAT	F PURP CESS ⁻ BUT IS	POSES. TO THE S NOT IN		SAMPLE CLASSIFICATION BY: S. Bieber	

C.	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG							
	3	203 DATUM: USGS 22/05 FINISH DATE: 8/23/05 DF 1						
PRO	JECT:	STIP	Suppl	.: 04.9138				
LOC	ATION:	: Troy	, New	York CTM OBSERVER	: S. Bieber			
, ,		AMPL	1		<u> </u>			
<b>DEPTH (FT.)</b>	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES			
		1		0 to 2.7': Fill: SAND, GRAVEL, ASH, CINDER and RED BRICK	(damp)			
				Brown fine to coarse SAND and GRAVEL	(damp)			
<u>4</u>		2	1.8	Brown fine to coarse SAND and GRAVEL, trace red brick, cinder and ash	(damp)			
8		l		becomes a little moist at ± 7.8' bgs				
	$\left  \right $	3	3.3	Same	(little moist)			
<u>12</u>		4	1.4	Same to ± 15.9' bgs	(damp)			
<u>16</u>		5	4.0	Gray GRAVEL, Some fine sand 16 to 17.3': Gray fine to coarse SAND and GRAVEL	(wet) petro odor and stained (wet) petro odor and stained			
90		J	4.0	Gray SILT and CLAY, trace fine sand	(little moist)			
<u>20</u>		6	0.0	No recovery				
24 28		7	2.2	(wet) Petro odor from overwash (little moist) (little wet) (little moist)				
				CENER Type: Type: Type: Type: Type: Mounted Model 540 II	GROUNDWATER LEVEL READINGS			
	ING CON OD OF SA			SJB Services, Inc.         GEOPROBE TYPE: Truck Mounted Model 540 U           Direct Push Percussion Hammer 4' Macro Core Sampler with           Acetate Liner	DATE LEVEL REFERENCE MEASURING POINT			
				IATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE				
MAY I GOOL	SSMENT HAVE AC D FAITH, RPRETAT	CESS BUT IS	TO THE S NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber				

C.1	Г. М <b>/</b>	٩LE	ASS	SOCIATES, P.C. GEOPRO	obe subsurface	E EXPLORATION LOG
	2			203 (cont'd) DATUM: USGS 2/05 FINISH DATE: 8/23/05 F 1		
PRO	JECT:	STIP	Supp!	lemental Investigation (Parcel 2)	CTM PROJECT NO.:	04.9138
LOC	ATION:	: Troy	, New	York	CTM OBSERVER:	S. Bieber
<b>DEPTH (FT.)</b>	INTERVAL O	AMPLE NO.	RECOVERY (FT)	SAMPLE CLASSIFI	ICATION	NOTES
32		NO. 8		Same to ± 28.8' bgs, then Brown fine to o GRAVEL, trace silt	(wet) Petro odor from overwash	
<u>32</u> <u>36</u>				Boring Terminated at	± 32' bgs	1" PVC well installed at ± 20' bgs
<u>40</u> <u>44</u>						
<u>48</u>		 				
52						
<u>56</u>						
	ING CON OD OF SA			SJB Services, Inc. GEOPROBE TYPE: 7 Direct Push Percussion Hammer 4' Macro Core Acetate Liner	Truck Mounted Model 540 U e Sampler with	GROUNDWATER LEVEL READINGS
ASSE MAY H GOOD	ESSMENT HAVE AC D FAITH,	T PURPO CCESS 1 BUT IS	POSES. TO THE S NOT IN	ATION SHOWN HEREON WAS OBTAINED F IT IS MADE AVAILABLE TO AUTHORIZED U E SAME INFORMATION AVAILABLE TO C.T.N NTENDED AS A SUBSTITUTE FOR INVESTIG GMENT OF SUCH AUTHORIZED USERS.	USERS ONLY THAT THEY MALE. IT IS PRESENTED IN	SAMPLE CLASSIFICATION BY: S. Bieber

C.]	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG							
	2			BORING NO.: SE ELEV.: NA START DATE: 8/				
PRO	JECT:	STIP	Suppl	04.9138				
LOC	ATION	: Troy	, New	R: S. Bieber				
<b>DEPTH (FT.)</b>	INTERVAL	AMPLI NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES			
4		1	2.1	Black/Brown fine to coarse SAND and GRAVEL, Some Red Brick, little ash and cinder, trace rootlets	(damp)			
		2	1.2	Fill: CINDER, ASH, SAND and GRAVEL, little red brick trace black canvas	(wet)			
	$\overline{\ }$	3	0.4	Same with little wood	(wet)			
<u>12</u>				Refusal at ± 10' bgs				
<u>16</u>								
<u>20</u>								
<u>24</u>								
<u>28</u>								
					GROUNDWATER LEVEL READINGS			
	NG CON			SJB Services, Inc. GEOPROBE TYPE: Truck Mounted Model 540 U Direct Push Percussion Hammer 4' Macro Core Sampler with Acetate Liner	DATE LEVEL REFERENCE MEASURING POINT			
				ATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE				
MAY H GOOD	ASSESSMENT PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY AAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN SAMPLE CLASSIFICATION BY: GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, NTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS. SBieber							

C.	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG								
	2				205 DATUM: USGS 3/05 FINISH DATE: 8/23/05 F 1				
PRO	JECT:	STIP	Suppl	04.9138					
LOC	ATION	: Troy	, New	S. Bieber					
_	S	AMPLI	E						
DEPTH (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES				
		1	3.1	Black fine to coarse SAND and GRAVEL, trace ash and red brick	(damp)				
				Brown fine to coarse SAND and GRAVEL, Some Silt,	(damp)				
4		2	1.0	trace ash and red brick Brown Silt, little fine sand, trace clay	(damp)				
8									
12		3	1.4	Same to ± 10.4' bgs 10.4 to 11.3': Dark Brown fine to coarse SAND and GRAVEL, trace ash and red brick Gray SILT and CLAY	(damp) (damp)				
16		4	2.5	Same	(little moist)				
10	$\overline{\ }$	5	2.8	Same to ± 19' bgs	(little moist)				
20				Gray SILT, Some Clay	(damp)				
		6	1.6	Same to $\pm 23.5$ ' bgs	(damp)				
24		7	4.0	Gray/Brown SILT, little clay and fine sand Same to $\pm 26.6'$ bgs	(damp)				
28				Brown fine to medium SAND, little silt	(wet)				
		8	2.0	Same	(little wet)				
				Boring Terminated at $\pm$ 30' bgs	1 PVC well installed at $\pm 30$ bgs				
	ING CON OD OF S			GROUNDWATER LEVEL READINGS					
ASSE MAY GOOI	SUBSURI SSMENT HAVE AC D FAITH, RPRETA	F PURP CESS BUT IS	OSES. TO THE NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber					

C.	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG													
	2				206 DATUM: NA 3/05 FINISH DATE: 8/24/05 F 1									
PRO	JECT:	STIP	Suppl	emental Investigation (Parcel 2) CTM PROJECT NO.:	04.9138									
LOC	ATION	: Troy	, New	S. Bieber										
	S	AMPLI	1											
DEPTH (FT.)	INTERVAL	NO.	RECOVERY (FT)	NOTES										
4		1	1.9	(damp)										
		2	0.8	Dark Brown fine to coarse SAND and GRAVEL, little brown silt, trace red brick	(damp) Silt in tip of sampler									
12		3	2.5	Brown SILT, Some Clay, trace gravel	(damp to a little moist)									
16		4	2.3	Gray/Brown SILT and CLAY, trace gravel	(little moist)									
		5	4.0	16 to 18.2': Brown SILT, Some Clay, trace fine sand and gravel Gray SILT, little clay, trace gravel	(little moist) (damp)									
20		6	3.5	Same to $\pm 22.8'$ bgs	(damp)									
24		7	1.5	22.8 to 23.7': Brown/Gray SILT, Some Clay, trace fine sand Brown fine to medium SAND, little silt Same	(damp) (damp) (wet)									
<u>28</u>				Boring Terminated at ± 28' bgs										
	ING CON OD OF S		GROUNDWATER LEVEL READINGS											
ASSE MAY I GOOI	SUBSURI SSMENT HAVE AC D FAITH, RPRETA	PURP CESS BUT IS	OSES. TO THE NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber										

			ASS	SOCIATES, P.C. GEOPROBE SUBSURFACE BORING NO.: SB-2 ELEV.: NA			
				START DATE: 8/24			
PRO	JECT:	STIP	Suppl	lemental Investigation (Parcel 2) CTM PROJECT NO.:	04.9138		
LOC	ATION:	Troy	, New	S. Bieber			
	S/	AMPLE	1				
<b>DEPTH (FT.)</b>	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES		
4		1	3.5	(damp) (damp)			
8		2	3.5	Brown SILT, little clay, trace fine sand	(damp) (damp)		
_	$\left  \right\rangle$	3	2.0	Same with trace gravel to ± 11.8' bgs			
<u>12</u>	$\overline{\big }$	4	1.5	Gray SILT and CLAY Gray SILT, Some Clay	(damp) (damp)		
16 20		5	3.4	Gray/Brown SILT, Some Clay, trace fine sand	(damp)		
	$\left  \right\rangle$	6	3.2	Same to ± 23' bgs	(damp)		
24 28		7	1.8	Gray/Brown SILT and fine SAND, trace clay Gray/Brown fine to medium SAND, little silt	(moist∕little wet) (little wet)		
				Boring Terminated at ± 28' bgs			
	ING CON ⁻ OD OF S/			GROUNDWATER LEVEL READINGS			
ASSE MAY H GOOD	SUBSURF SSMENT HAVE AC D FAITH, RPRETAT	F PURP CESS F BUT IS	POSES. TO THE S NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber			

C.	T. M/	٩LE	ASS	SOCIATES, P.C.		
	2			GEUPKU	BORING NO.: SB-2 ELEV.: 23.67' START DATE: 8/24	E EXPLORATION LOG 208 DATUM: USGS 4/05 FINISH DATE: 8/24/05 IF 1
PRO	JECT:	STIP	Suppl	lemental Investigation (Parcel 2)	CTM PROJECT NO.:	04.9138
LOC	ATION	: Troy	, New	S. Bieber		
DEPTH (FT.)	INTERVAL S	AMPLI	RECOVERY (FT)	SAMPLE CLASSIFIC		NOTES
$\frac{4}{12}$ $\frac{16}{20}$ $\frac{24}{28}$		1 2 3 4	3.1	0 to 3.1': Dark Brown fine to coarse SAND little red brick, trace organics Brown fine to coarse SAND and GRAVEI Same to ± 6.5' bgs 6.5 to 6.9': Gray SILT and GRAVEL, trace 6.9 to 7.2': Brown f. to m. SAND and GRA Gray/Brown SILT, little clay, trace fine sa Gray/Brown SILT, Some Clay Gray SILT, Some Clay Boring Terminated at ±	L fine sand AVEL, little silt and	(damp) (damp) (damp) (little moist) (damp) (little moist) (damp) 1" PVC well installed at ± 15' bgs
	ING CON			SJB Services, Inc. GEOPROBE TYPE: Tr Direct Push Percussion Hammer 4' Macro Core Sa	ruck Mounted Model 540 U Sampler with	GROUNDWATER LEVEL READINGS
ASSE MAY I GOOI	SUBSURF ESSMENT HAVE AC D FAITH, RPRETAT	F PURP CESS BUT IS	POSES. TO THE S NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber		

C.	C.T. MALE ASSOCIATES, P.C.											
	3			GEOPROBE SUBSURFAC BORING NO.: SE ELEV.: NA START DATE: 8 SHEET 1	3-209 DATUM: NA							
PRO	JECT:	STIP	Suppl	emental Investigation (Parcel 2) CTM PROJECT NC	0.: 04.9138							
LOC	ATION	: Troy	, New	R: S. Bieber								
	S	AMPL										
DEPTH (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFICATION	NOTES							
		1	2.9	Brown fine to coarse SAND and GRAVEL, little brown silt and rad brick trace organics	(damp)							
4				silt and red brick, trace organics Dark Brown fine to coarse SAND and GRAVEL, Some Red Brick, Ash and Cinder, trace canvas	(damp)							
		2	2.6	Same to $\pm 6.4'$ bgs	(damp)							
0				6.4 to 7.4: Brown SILT, Some Clay	(damp) (little moist) (damp)							
8		3	1.7	Brown SILT, Some fine Sand, little clay, trace fine gravel Gray/Brown SILT, Some Clay								
	$\backslash$											
<u>12</u>		4	2.2	Same to ± 15.6' bgs	(damp)							
	$\backslash$											
16				Gray SILT, Some Clay Boring Terminated at ± 16' bgs	(damp)							
				bonng remnaced at 210 bgs								
20												
24												
28												
					GROUNDWATER LEVEL READINGS							
	ING CON OD OF S/			SJB Services, Inc. GEOPROBE TYPE: Truck Mounted Model 540 U Direct Push Percussion Hammer 4' Macro Core Sampler with								
ASSE	SSMENT	PURP	OSES.	ATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY								
GOO	IAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN SAMPLE CLASSIFICATION BY: DOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, S. Bieber St. Bieber S											

C.	Г. M <i>I</i>	٩LE	ASS	SOCIATES, P.C. GEOPROBE SUBSURFACE	E EXPLORATION LOG
	3				210 DATUM: USGS 4/05 FINISH DATE: 8/24/05 9F 1
PRO	JECT:	STIP	Suppl	lemental Investigation (Parcel 2) CTM PROJECT NO.:	04.9138
LOC	ATION:	: Troy	, New	S. Bieber	
┢──	S	AMPLE	1	<u></u>	
<b>DEPTH (FT.)</b>	INTERVAL	NO.	RECOVERY (FT)	NOTES	
		1	3.0	Dark Brown fine to coarse SAND and GRAVEL, little red brick	(damp)
_4		2	3.4	Brown fine to coarse SAND and GRAVEL, trace silt Same with trace red brick	(damp) (damp)
8		l		Brown SILT, trace clay and fine sand	(little moist at $\pm 6$ to 7' bgs)
		3	0.8	Brown SILT, little clay, trace fine sand	(moist to a little wet)
<u>12</u>		4	2.7	Same to ± 15.6' bgs	(little wet)
<u>16</u>		5	3.0	Gray SILT, little clay, trace fine sand Same	(little moist) (damp)
<u>20</u> 24		6		Same to ± 21.9' bgs 21.9 to 23.3': Gray/Brown SILT, little fine sand, trace clay Gray/Brown fine to medium SAND, little silt, trace gravel	(damp) (damp) (wet)
		7	2.5	Same to $\pm 26.2$ ' bgs	
28				Gray fine to medium GRAVEL, Some Sand, trace silt	(wet)
				Boring Terminated at ± 28' bgs	1" PVC well installed at ± 28' bgs
					GROUNDWATER LEVEL READINGS
	ING CON OD OF SA			SJB Services, Inc.         GEOPROBE TYPE: Truck Mounted Model 540 U           Direct Push Percussion Hammer 4' Macro Core Sampler with           Acetate Liner	DATE LEVEL REFERENCE MEASURING POINT
ASSE MAY I GOOI	SUBSURF SSMENT HAVE AC D FAITH, RPRETAT	F PURP CESS ⁻ BUT IS	POSES. TO THE S NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber	

C.	Г. М <i>І</i>	٩LE	ASS	SOCIATES, P.C. GEOPRO	) DBE SUBSURFACE	E EXPLORATION LOG			
	3				BORING NO.: SB-2 ELEV.: START DATE: 8/24	211 DATUM:			
PRO	JECT:	STIP	Suppl	lemental Investigation (Parcel 2)	CTM PROJECT NO.:	04.9138			
LOC	ATION	: Troy	, New	S. Bieber					
	S,	AMPLE	1						
DEPTH (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFI	CATION	NOTES			
4		1	3.2	Dark Brown fine to coarse SAND and G brick, trace cinder and ash Fill: RED BRICK, SAND and GRAVEL, t	(damp) (little wet at ± 3.6' bgs and stained with petro odor)				
<u>"</u>	$\square$	2	0.4	Same Refusal at ± 4.5' b		(wet with petro odor and			
8				Refusal may be from subground concret	•	staining)			
<u>12</u>									
<u>16</u>									
<u>20</u>									
<u>24</u>									
<u>28</u>									
						GROUNDWATER LEVEL READINGS			
	ING CON OD OF S/		NG:	SJB Services, Inc. GEOPROBE TYPE: T Direct Push Percussion Hammer 4' Macro Core S Acetate Liner	Fruck Mounted Model 540 U Sampler with	DATE LEVEL REFERENCE MEASURING POINT			
			NFORM	IATION SHOWN HEREON WAS OBTAINED F					
ASSESSMENT PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS. S. Bieber									

C.1	C.T. MALE ASSOCIATES, P.C. GEOPROBE SUBSURFACE EXPLORATION LOG										
	8				BORING NO.: SB-2 ELEV.: START DATE: 8/24	211 (1) DATUM:					
PRO	JECT:	STIP	Suppl	lemental Investigation (Parcel 2)	CTM PROJECT NO.:	04.9138					
LOC	ATION:	: Troy	, New	S. Bieber							
╞──┐	S	AMPLE	1			<del>_</del>					
DEPTH (FT.)	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFI	ICATION	NOTES					
4		1		Brown fine to coarse SAND and GRAV brick, trace cinder and ash	EL, little red	(damp)					
	$\begin{bmatrix} \\ \end{bmatrix}$	2	2.2	Same to ± 7.3' bgs		(damp)					
8				Brown fine to medium SAND and GRA		(damp)					
		-   		Refusal at ± 8' b	ogs	Crushed stone in sampler shoe					
<u>12</u>		ا ا									
<u>16</u>		 									
20		!									
24											
28		 									
DRILL	ING CON	TRACT		SJB Services, Inc. GEOPROBE TYPE: '	Truck Mounted Model 540 U	GROUNDWATER LEVEL READINGS					
	OD OF SA			Direct Push Percussion Hammer 4' Macro Core Acetate Liner		DATE LEVEL REFERENCE MEASURING POINT					
				IATION SHOWN HEREON WAS OBTAINED F IT IS MADE AVAILABLE TO AUTHORIZED U							
MAY H GOOD	HAVE AC	CESS T BUT IS	TO THE 3 NOT IN	MALE. IT IS PRESENTED IN IGATIONS,	SAMPLE CLASSIFICATION BY: S. Bieber						

C.7	Г. М/	٩LE	ASS	SOCIATES, P.C.		
	3			GEUPKU	BORING NO.: SB-2 ELEV.: START DATE: 8/24	E EXPLORATION LOG 211 (2) DATUM: 4/05 FINISH DATE: 8/24/05 IF 1
PRO	JECT:	STIP	Suppl	lemental Investigation (Parcel 2)	CTM PROJECT NO.:	04.9138
LOC	ATION	: Troy	, New	CTM OBSERVER:	S. Bieber	
( L		AMPLE	1			
<b>DEPTH (FT.)</b>	INTERVAL	NO.	RECOVERY (FT)	SAMPLE CLASSIFI	CATION	NOTES
		1	2.8	Brown fine to coarse SAND and GRAVE	EL, trace red brick	(damp)
4	$\square$	2	1.8	Same to ± 5.2' bgs CRUSHED STONE		(damp) (damp)
_8		 	'	Refusal at ± 6.3' b	ogs	
<u>12</u>						
<u>16</u>			'			
<u>20</u>		 	 	-		
<u>24</u>				-		
<u>28</u>			 			•
	I		<u> </u>			
	ING CON OD OF SA		NG:	Direct Push Percussion Hammer 4' Macro Core	Truck Mounted Model 540 U Sampler with	GROUNDWATER LEVEL READINGS
THE 5	SUBSUR	FACE I		Acetate Liner	FOR C.T. MALE	
MAY H GOOD	ESSMENT HAVE AC D FAITH, RPRETAT	CESS T BUT IS	TO THE S NOT IN	SAMPLE CLASSIFICATION BY: S. Bieber		

	T. N		E A	'SSC	RATION LOG DATUM: NISH DATE: 9/29/05					
PRO	JECT		STIF	? Sup	pleme	ental I	invest	tigatic	on (Parcel 2) CTM PROJECT NO.:	: 04.9138
				y, Nev	_			<u>'8</u>	CTM INSPECTOR:	
L			ī				_	—	 	
DЕРТН (FT.)	SAN BAN	NO.			S ON S	SAMPL		RECOVERY	SAMPLE CLASSIFICATION	NOTES
	<u>LÉ </u>	NO. 1	0/6 1	6/12 4	12/18 4	3 18/24 10	1 N 8	0.9	Fine to medium SAND, little silt, trace	(damp)
_5		2	15	20 13	4 17 6	10	37 19	0.9	gravel (loose) Light Tan ASH and CINDERS, Some fine sand (loose) Same	(damp) (damp)
10		4	28 8	19 8	11 8	11 6	30 16	2.0 0.0	Dark gray medium SAND, trace fine gravel (loose) No Recovery	(moist)
<u>10</u>		6	6 17	21 17	94	100/.2 13	2 115 31	0.8	Dark gray fine to medium SAND, trace fine gravel and red brick (loose) Dark gray fine to medium SAND, trace gravel, silt and clay (loose)	(damp) (moist)
<u>15</u>		8	2	2	7	7	9	2.0		(moist) (wet with petroleum odor) (wet with petroleum odor) (wet)
<u>20</u>		10 11	1	1	1 2	1 4	1 3	2.0	Gray SILT, little clay CLAY and SILT, trace sand SILT, little fine sand, trace clay SILT and fine SAND Boring Terminated at ± 22' bgs	(wet) (wet) (wet) (wet) 2" PVC well installed at ± 20' bg:
25										~ · · · · ·
30	<u> </u>									1
DRILLI METHO THE S	ING CO	ONTRA F INVES	S TO DI ACTOR: STIGAT	GROUNDWATER LEVEL						
TO TH NOT II	HE SAN	ME INF	S MADE FORMA AS A SU FRS	SAMPLE CLASSIFICATION BY: J. Favreau						

	T. N		E A	RATION LOG lacement of MW-3 (ESI)) DATUM: NISH DATE: 9/29/05						
PRO	JECT	:	STIP	Supp	oleme	ntal I	nvest	igatio	n (Parcel 2) CTM PROJECT NO.	04.9138
LOC	ΑΤΙΟΙ	N:	Troy	, New	v Yorl	k			CTM INSPECTOR	J. Favreau
	SAN	1PLE	BL	.OWS	ON S	AMPL	ER			
DEPTH (FT.)	түре	NO.	0/6	6/12	12/18	18/24	N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
										Standard sampling (five foot intervals) to 15' bgs, then continuous sampling
_5		1	12	10	12	14	22	1.0	Fill: Dark gray ASH, CINDERS, SLAG, BRICK, GRAVEL and SAND	(damp)
<u>10</u>		2	15	13	8	8	21	1.0	Fill: CINDERS, ASH and BRICK Light Brown fine SAND and GRAVEL	(damp)
<u>15</u>		3	1	1	1	1	1	1.5	Light Brown fine SAND and GRAVEL Dark Gray SILT and CLAY Same	(damp) (moist) (moist)
<u>20</u>		5	3 WH	4 WH	6	6	10	0.0	No recovery No recovery	
25									Boring Terminated at ± 22' bgs	2" PVC well installed at ± 20' bgs
30										
DRILLI METH	D. OF E ING CC OD OF	ONTRA INVES	GROUNDWATER LEVEL							
PURP TO TH NOT I	SUBSU POSES HE SAM NTENI IORIZE	. IT IS ME INF DED A	SAMPLE CLASSIFICATION BY: J. Favreau							

	T. N		.E A	.SSC	CI	IATE	ES, F	P.C	SUBSURFACE EXPLOI	DATUM:
PRO	JECT	:	STIP	' Supj	pleme	ental I	nvest	igatic	on (Parcel 2) CTM PROJECT NO.:	: 04.9138
LOC	ATIO	N:	Troy	y, New	v Yor	k			CTM INSPECTOR:	: J. Favreau
$\vdash$	SAN	/IPLE	Bl	LOWS	ON S	SAMPL	ER	<u> </u>		<u> </u>
<b>DEPTH (FT.)</b>	түре	NO.	0/6	6/12	12/18	8 18/24	4 N	RECOVERY	SAMPLE CLASSIFICATION	NOTES
	, <u> </u>	1	4	4	6	34	10		SILT, fine SAND and GRAVEL	(damp)
	1	2	55	54	14	9	68	1.0	Fill: Coarse CINDERS Dark Gray and Brown coarse CINDERS and	(damp) (damp)
5		3	2	2	2	2	4	0.5	SLAG Dark Gray SLAG, CINDERS and BRICK	(moist)
	ļ	4	1	3	1	2	4	0.5	Same	(moist)
									]	
10	۱	5	1	1	1	1	1	1.3	Dark Gray SILT and CLAY, trace slag	(moist)
	1	6	1	1	1	1	1	1.0	Dark Gray SILT and CLAY	(moist)
		7	1	1	1	2	1	1.0	Same	(wet)
<u>15</u>		8	4	3	2	2	5	0.8	Dark Gray SILT	(wet)
	ļ	9	2	2	2	3	4	1.5	Same	(wet)
		10	1	2	1	2	3	2.0	Dark Gray SILT, trace clay	(wet)
20		<b>—</b>	F		F	F	F	F	Boring Terminated at ± 20' bgs	2" PVC well installed at ± 18' bgs
		F	F		┢	$\vdash$	╞	╞		
95					┢	$\vdash$	┢			
25	1	$\vdash$	<u>+</u> '	<u> </u> '	┝──	<u>+</u> '	┣—_	┝	•	
	1	$\square$	F		╞	F	F			
30		F	$\vdash$		┢			╞	·	4
		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
			S TO DE			PLER 12 ervices, l		HA 14	40 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: CME 75	GROUNDWATER LEVEL
			STIGATI					spoon s:	ampling	DATE LEVEL CASING STABILIZATION TIME
TO TH NOT II	THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.									SAMPLE CLASSIFICATION BY: J. Favreau

	T. N		E A	.SSC	JCI	ATE	ES, F	э.С	SUBSURFACE EXPLO	placement of CTM-200) DATUM:
PRO	JECT	<u></u> г:	STIP	' Supj	pleme	ental I	nvest	igatic	on (Parcel 2) CTM PROJECT NO	.: 04.9138
	ATIO				w Yorl			<u> </u>		
┢─┐	SAN	MPLE					FR		 	 
DEPTH (FT.)						RECOVERY	SAMPLE CLASSIFICATION	NOTES		
		NO.	0/6	0,	121	10,2.				Standard sampling (five foot intervals) to 15' bgs
_5		1	9	10	10	10	20	1.0	Brown fine to coarse SAND and GRAVEL	(damp)
<u>10</u>		2	5	5	6	9	11	0.5	Same	(damp)
<u>15</u>		3	1	2	1	2	3	0.7	Same Gray/Brown SILT, little clay	(damp) (damp with mild petro odor)
		4	2	2	2	3	4		Dark Gray/Brown SILT and CLAY	(damp with mild petro odor)
20		5	6	6	6	9	12		Same	(damp)
<u>25</u>		6	4	7	8	10	15		Brown fine to coarse SAND and GRAVEL	(wet)
20				$\square$	$\square$				Boring Terminated at ± 27' bgs	2" PVC well installed at ± 22' bgs
N = NC DRILLI METHO THE S	30       N = NO. OF BLOWS TO DRIVE 2" SAMPLER 12" WITH A 140 LB. WT. FALLING 30" PER BLOW         DRILLING CONTRACTOR:       SJB Services, Inc.       DRILL RIG TYPE:         METHOD OF INVESTIGATION:       Continuous 2' split spoon sampling         THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN							DRILL RIG TYPE: <u>CME 75</u> ampling AS OBTAINED FOR C.T. MALE DESIGN		
TO TH NOT II	PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS								SAMPLE CLASSIFICATION BY: J. Favreau	

	T. M		.E A	.SSC	JCI	IATE	ES, F	э.С	SUBSURFACE EXPLOF	DATUM:
PRO	JECT		STIP	' Supj	pleme	ental I	nvest	igatic	on (Parcel 2) CTM PROJECT NO.:	: 04.9138
LOC/	ATIO	N:	Troy	y, New	v Yor	k	CTM INSPECTOR:	J. Favreau		
╞	SAN	ЛРLE	ВІ	LOWS	S ON S	SAMPL	ER	<del>—</del>	1	<u> </u>
DEPTH (FT.)			SAMPLE CLASSIFICATION	NOTES						
		1	9	11	11	10/24	22		Dark Gray fine to medium SAND, SILT,	(damp)
_5		2	10 6	29 4	30 5	21 4	59 9	1.0	GRAVEL and BRICK FRAGMENTS	(damp to moist) (moist) (damp)
		4	3	3	2	2	5	1.0	Same	(moist)
<u>10</u>		5 6	5 8	3	4	4	7		Dark Gray CINDERS, coarse SAND, GRAVEL and BRICK FRAGMENTS No recovery	(moist) (wet)
15		7	10	8	8	9	16	0.8	Black/dark Gray SILT, coarse SAND and GRAVEL, trace slag Dark Gray CLAY and SILT	(wet) (moist)
<u> </u>		8 9	3	4	2	4	3 7	1.2	Same	(moist) (moist)
20		10	1	1	1	3	2	1.8	Same	(moist)
<u>20</u>		11	1	1	3	4	4	1.8	Same Greenish Brown SILT and fine SAND Boring Terminated at ± 22' bgs	(moist) (moist) 2" PVC well installed at ± 20' bgs
25									     	
30	!									1
DRILLI METHC	ING CC OD OF	ONTRA INVES	ACTOR: STIGAT	R: TION:	SJB Se Contir	ervices, l inuous 2	Inc. 2' split s	spoon sa	40 LB. WT. FALLING 30" PER BLOW DRILL RIG TYPE: <u>CME 75</u> sampling	GROUNDWATER LEVEL
PURP TO TH NOT II	THE SUBSURFACE INFORMATION SHOWN HEREON WAS OBTAINED FOR C.T. MALE DESIGN PURPOSES. IT IS MADE AVAILABLE TO AUTHORIZED USERS ONLY THAT THEY MAY HAVE ACCESS TO THE SAME INFORMATION AVAILABLE TO C.T.MALE. IT IS PRESENTED IN GOOD FAITH, BUT IS NOT INTENDED AS A SUBSTITUTE FOR INVESTIGATIONS, INTERPRETATION OR JUDGMENT OF SUCH AUTHORIZED USERS.								SAMPLE CLASSIFICATION BY: J. Favreau	

### **APPENDIX K**

# MONITORING WELL CONSTRUCTION LOGS PARCEL 2 SUPPLEMENTAL INVESTIGATION (CTM-200 to CTM-216)

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Pare
Ft. elev.	Well No.    CTM-200    Boring No.    SB-200
ft. elev.	Town/City Troy
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
2 inch diameter drilled hole	Installation Date(s) 8/22/2005
Well casing,	Drilling Contractor SJB Services, Inc.
<u>1.25</u> inch diameter, <u>PVC</u>	Drilling Method Geoporobe Direct Push
Backfill Grout Portland	Water Depth From Top of Riser <u>NA*</u> ft Date
	C.T. Male Observer S. Bieber
2.0 ft* slurry Bentonite 4.0 ft* 10.0 ft* Well Screen 1.25 -inch diameter	<u>Notes:</u> * Well obstruction at ± 14' bgs. Well abandon(
0.010 slot Gravel Pack Sand Pack Formation Collapse 25.0 ft* 25.0 ft*	
* Depth below land surface.	

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosure	Well No. CTM-203 Boring No. SB-203
26.24 ft. elev.	Town/City Troy
LAND SURFACE	County Rensselaer State NY
2 inch diameter drilled hole Well casing, <u>1.25</u> inch diameter, <u>PVC</u> Backfill Grout Portland 6.0 ft* Bentonite <u>8.0</u> ft* <u>10.0</u> ft* <u>10.0</u> ft* <u>125</u> -inch diameter <u>1.25</u> -inch diameter <u>0.010</u> slot Gravel Pack Sand Pack Formation Collapse <u>20.0</u> ft* <u>20.0</u> ft*	Installation Date(s) <u>8/23/2005</u> Drilling Contractor <u>SJB Services, Inc.</u> Drilling Method <u>Geoporobe Direct Push Method</u> Water Depth From Top of Riser <u>14.83 ft</u> <u>9/14/05</u> Date C.T. Male Observer <u>S. Bieber</u> <u>Notes:</u>

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosure	Well No. CTM-205 Boring No. SB-205
<u>25.80ft.</u>	Town/City Troy
23.32 ftLAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
2 inch diameter         dilled hole         Well casing,         1.25 inch diameter,         PVC         Backfill         Grout Portland         18.0 ft*         pellets         1.25 -inch diameter         0.010 slot         Gravel Pack         Gravel Pack         Sand Pack         Formation Collapse         30.0 ft*	Installation Date(s) <u>8/23/2005</u> Drilling Contractor <u>SJB Services, Inc.</u> Drilling Method <u>Geoporobe Direct Push Method</u> Water Depth From Top of Riser <u>23.54 ft 9/14/05</u> Date C.T. Male Observer <u>S. Bieber</u> <u>Notes:</u>

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosure	Well No. CTM-208 Boring No. SB-208
<u>25.73</u> ft.	Town/City Troy
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
	Installation Date(s) <u>8/24/2005</u> Drilling Contractor <u>SJB Services, Inc.</u> Drilling Method <u>Geoporobe Direct Push Method</u> Water Depth From Top of Riser <u>14.83 ft 9/14/05</u> Date C.T. Male Observer <u>S. Bieber</u> Notes:

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosure	Well No. CTM-210 Boring No. SB-210
25.94 _ft.	Town/City Troy
23.64 ft.	County <u>Rensselaer</u> State <u>NY</u>
2 inch diameter         drilled hole         Well casing,         1.25 inch diameter,         PVC         Backfill         Grout Portland         13.0 ft*         slurry         Bentonite         15.0 ft*         gravel Pack         Gravel Pack         Gravel Pack         Sand Pack         Formation Collapse         28.0 ft*	Installation Date(s) <u>8/24/2005</u> Drilling Contractor <u>SJB Services, Inc.</u> Drilling Method <u>Geoporobe Direct Push Method</u> Water Depth From Top of Riser <u>23.84</u> ft <u>9/14/05</u> Date C.T. Male Observer <u>S. Bieber</u> <u>Notes:</u>

## MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosure Curb Box 27.05 ft. Guard Pipe	Well No. CTM-212 Boring No. SB-212
<u></u>	Town/City Troy
LAND SURFACE	County <u>Rensselaer</u> State <u>NY</u>
8 inch diameter drilled hole	Installation Date(s) 9/29/2005
Well casing,	Drilling Contractor SJB Services, Inc.
2 inch diameter, PVC Backfill	Drilling Method4.25-inch Hollow Stem Augers
Grout Portland	Water Depth From Top of Riserft
	C.T. Male Observer J. Favreau
6.0 ft* □ slurry Bentonite 8.0 ft*	
10.0 ft*	Notes:
Well Screen 2 -inch diameter	
0.010 slot	
Gravel Pack	
Sand Pack	
20.0.44	
20.0 ft*	
20.0 ft*	
* Depth below land surface.	

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosur	e Well No. <u>CTM-213</u> Boring No. <u>SB-213</u>
26.11 _ ft.	lev. Town/City Troy
LAND SURFACE	County Rensselaer State NY
<pre>8 inch diameter drilled hole</pre> <pre></pre>	Installation Date(s) 9/29/2005 Drilling Contractor SJB Services, Inc. Drilling Method 4.25-inch Hollow Stem Augers Water Depth From Top of Riser 15.1 ft 9/30/05 Date C.T. Male Observer J. Favreau

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

		Project Num	ber 04.913	8	
		Project Nam	e STIP Suppl	emental Investigation	(Parcel 2)
	Protective Enclosure Curb Box	Well No.	CTM-214	Boring No. SB-	214
<u>23.87ft.</u>	Guard Pipe 23.52 ft. elev.	Town/City	Ггоу		
<u>ft. elev.</u>	LAND SURFACE		Rensselaer	State	NY
	<ul> <li><u>8</u> inch diameter drilled hole</li> <li><u>Well casing,</u></li> <li><u>1</u> inch diameter, PVC</li> <li>Backfill</li> <li>Grout Portland</li> <li><u>4.0</u> ft*</li> <li>grout Portland</li> <li><u>8.0</u> ft*</li> <li><u>8.0</u> ft*</li> <li><u>8.0</u> ft*</li> <li><u>9</u> pellets</li> <li><u>18.0</u> ft*</li> <li><u>18.0</u> ft*</li> <li><u>18.0</u> ft*</li> <li><u>18.0</u> ft*</li> </ul>	Drilling Meth	ractor SJB Sen nod 4.25-in n From Top of	ch Hollow Stem A	ugers 9/30/05 Date

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number 04.9138
	Project Name STIP Supplemental Investigation (Parcel 2)
Protective Enclosure ■ Curb Box □ Guard Pipe	Well No. <u>CTM-215</u> Boring No. <u>SB-215</u> Town/City Troy
	Town/City     Troy       County     Rensselaer     State
8 inch diameter drilled hole	Installation Date(s) 9/30/2005
Well casing, 2 inch diameter,	Drilling Contractor SJB Services, Inc.
PVC Backfill	Drilling Method 4.25-inch Hollow Stem Augers
Grout Portland	Water Depth From Top of Riser ft Date
	C.T. Male Observer J. Favreau
Bentonite 3.0 ft* □ slurry 5.0 ft*	
7.0 ft*	Notes:
Well Screen 2 -inch diameter	
0.010 slot	
Sand Pack	
22.0 ft*	
25.0 ft*	
* Depth below land surface.	

### MONITORING WELL CONSTRUCTION LOG

C.T. MALE ASSOCIATES, P.C.

	Project Number     04.9138       Project Name     STIP Supplemental Investigation (Parcel 2)				
Protective Enclosure Curb Box Curb Box	Well No. CTM-216 Boring No. SB-216				
24.03 Guard Pipe 23.58 ft. elev.	Town/City Troy				
	County <u>Rensselaer</u> State <u>NY</u>				
8 inch diameter drilled hole Well casing, inch diameter, PVC	Installation Date(s) 9/30/2005 Drilling Contractor SJB Services, Inc.				
	Drilling Method 4.25-inch Hollow Stem Augers				
Backfill Grout Portland	Water Depth From Top of Riser ft Date				
	C.T. Male Observer J. Favreau				
Bentonite 3.0 ft* ☐ slurry 5.0 ft*					
7.0 ft*	Notes:				
Well Screen 2 -inch diameter					
0.010 slot					
Sand Pack					
<u>20.0</u> ft*					
22.0 ft*					
* Depth below land surface.					

## EXHIBIT 1

### NYSDEC WORK PLAN APPROVAL LETTER

New York State Department of Environmental Conservation

### Division of Environmental Remediation

Remedial Bureau D, 12th Floor 525 Broadway, Albany, New York 12233-7013 Phone: (518) 402-9814 • FAX: (518) 402-9819 Website: www.dec.state.ny.us

> Mr. Kirk Moline C.T. Male Associates 50 Century Hill Drive PO Box 727 Latham, New York 12110

> > RE: South Troy Industrial Park Environmental Restoration Project #B00163-4

O.T. MALE ACCOUNT

JUN 17 2004

Erin M. Crotty

Commissioner

Dear Mr. Moline:

The NYSDEC and NYSDOH have reviewed the June 9, 2004 Draft Site Investigation Work Plan, and have the following comments. Generally, the investigation scope of work is acceptable, and only minor revisions to the work plan are necessary. We look forward to receiving the Field Sampling Plan, Quality Assurance Plan, and Citizen Participation Plan for review.

#### Substantive Comments

Section 3.2.2 - With regard to the location of background surface soil samples, the NYSDEC and NYSDOH would like to be present when the final locations are selected. This may be done as a site reconnaissance during either the work plan revision, or during the early stages of investigation field work. Please contact both Dan Geraghty and me to arrange a site visit when the locations will be selected. The work plan should state that the locations will be determined in consultation with the State, and the samples 22, 23 and 24 should be removed from the map for now.

Section 3.2.3 - At the top of page 12, if coal tar is found in a test pit or trench, the DEC's project manager should be notified by telephone if they are not on site during the excavation.

Section 3.2.6 - The second sentence should be revised to reflect that two samples of the fine light grey material have been taken and analyzed. In the second paragraph, change "indicate it is not a hazardous waste" to "do not exceed TAGM 4046 soil cleanup guidelines".

Section 3.2.8 - In the last sentence, delete "third party". The DUSR should be prepared by a validator that is independent of the laboratory, but this may be a qualified employee of the consultant.

#### Mr. Kirk Moline

Section 4.0 - A brief scope of work should be given for the Analysis of Alternatives (AA) process. The DEC recommends that, along with the submittal of RI tables and "a discussion of the necessity for additional site investigation", a list of alternatives to be developed and evaluated should be included. This will help streamline the AA process, and enable the IDA to meet the stated 45-day time frame for submittal of the draft SI/RAR. The work plan should also state that the final RAR will be prepared by a Licensed Professional Engineer with current NYS registration.

Section 9.0 - Revise the NYSDOH submittals as follows:

Gary Litwin (one copy) Bureau of Environmental Exposure Investigation NYSDOH Flanigan Square, 547 River Street Troy, NY 12180-2216

Dan Geraghty (one copy) Capital District Regional Office NYSDOH 1 Fulton Street Troy, NY 12180-3281

#### Community Health & Safety Plan (to be submitted)

Based on the proximity of the site to a school, it is essential that every effort be made to reduce the potential for particulate emissions during ground intrusive activities. Particulate levels should be monitored during test pitting. The NYSDOH's generic Community Air Monitoring Plan (CAMP), a copy of which is enclosed, should be incorporated in the Health & Safety Plan.

If the community has health-related questions or concerns, the DOH project manager, Dan Geraghty, should be listed as the contact at 1-800-458-1158 extension 85423.

#### **Editorial Comments**

Section 1.1, last paragraph - Change "appendix" to "attachment"

Section 1.2, last paragraph - Delete "as" in the last sentence

Mr. Kirk Moline

Section 1.5 - Define "DUSR" before the acronym is given.

Section 2.1 - Change "Tray" to "Troy"

Please call me at 402-9813 if you have any questions about these items.

Sincerely,

George W.Heitzman, P.E. Senior Environmental Engineer Remedial Section C Remedial Bureau D Division of Environmental Remediation

cc:

D. Pollay - RCIDA D. Geraghty - NYSDOH

### New York State Department of Environmental Conservation

Division of Environmental Remediation Remedial Bureau D, 12th Floor 625 Broadway, Albany, New York 12233-7013 Phone: (518) 402-9814 • FAX: (518) 402-9819 Website: www.dec.state.ny.us



August 5, 2004

Mr. Kirk Moline C.T. Male Associates 50 Century Hill Drive PO Box 727 Latham, NY 12110

Dear Mr. Moline:

Re: South Troy Industrial Park Environmental Restoration Project #B00163-4

The NYSDEC and NYSDOH have reviewed the June 29, 2004 Site Investigation Work Plan, and find that it acceptably addresses our previous comments. As a result, the work plan is hereby approved. Please deliver two hard copies of the work plan to the DEC and DOH, and place a copy in the document repository for the project.

I look forward to successful implementation of the project. Please call me at 402-9813 to discuss contractor procurement, citizen participation, and the commencement of field work.

Sincerely,

George W. Heitzman, P.E. Senior Environmental Engineer Remedial Bureau D Division of Environmental Remediation

cc: D. Pollay, RCIDA D. Geraghty, NYSDOH

### EXHIBIT 2

### GROUND PENETRATING RADAR SURVEY REPORT

### GROUND PENETRATING RADAR SURVEY RESULTS

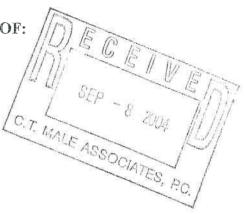
## FOR THE INVESTIGATION FOR THE LOCATION OF:

Underground Storage Tanks

AT:

South Troy Industrial Park Troy, NY

#### **PREPARED FOR:**


C.T. Male Associates P.C. Latham, NY

#### PREPARED BY:

<u>SUB-SURFACE INFORMATIONAL SURVEYS, INC.</u> <u>143C SHAKER ROAD, SUITE 206</u> <u>EASTLONGMEADOW, MA 01028</u>



September 2, 2004



R.cover.2004.sw

GPR TABLE OF CONTENTS

1-1 INTRODUCTION 1.0 · · · . 1.0 Introduction 1.1 Purpose and Scope of work 2-1 GEOPHYSICAL SURVEY 2.0 2-1 Geophysical Survey Procedures Explanation of the equipment used during this survey 2-2 Geophysical Survey Results Outline of the area (s) surveyed with explanation of collected data Reference to match File #'s with collected data . Reference to photo's taken on site (if applicable) 3-1 ANALYTICAL RESULTS 3.0 Data with applicable annotations 41 COPIES OF GPR DATA OBTAINED IN THE FIELD 4.0 Site maps (if applicable) Amachments for anomaly locations (if applicable) Copies of digital photo's (if applicable) Data by File ≓'s 5-1 ACQUIRING PROCEDURES 5.0 GPR Principles-Dielectric Constants Report Notes Blank

y kji - s

# SUB-SURFACE INFORMATIONAL SURVEYS, INC.

143C Shaker Road Suite 206 Post Office Box 452 E. Longmeadow, MA 01028-0452

Phone - 413-525-4666 Fax - 413-525-2887 Web - <u>www.subsurfaceinc.com</u> Email - <u>bacan@gte.net</u>

#### 1.0 Introduction

In accordance with your authorization, Sub-Surface Informational Surveys, Inc. (SIS) reports to you the results of ground penetrating radar survey conducted on September 2, 2004 at the South Troy Industrial Park in the City of Troy, NY. This survey was directed by your approval of SIS quotation #1.2430.04 dated August 2, 2004.

#### 1.1 Purpose and Scope

The purpose of the survey was to investigate for the presence of suspected underground storage tanks within Parcel 2 as indicated in attached Field Reference Drawing dated September 2, 2004.



#### 2.0 Geophysical Survey

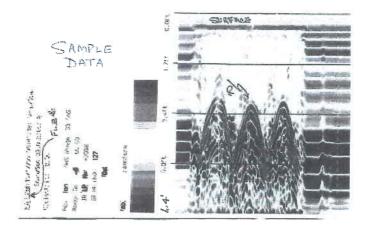
The geophysical survey was performed by Sub-Surface Informational Surveys, Inc. A transducer operator / supervising GPR technician performed the survey.

#### 2.1 Geophysical Survey Procedures

The depth setting of the GPR survey was approximately 10.0' to locate any existing underground storage tanks. (UST's) A traverse grid with a 5.0' & 10.0' minimum spacing was used to conduct the GPR survey. Typically a 5.0' - 10.0' spacing is sufficient to detect all large capacity UST's (500-gallon or greater) with a high degree of certainty. The spacing of 5.0' was used to better define any existing suspected anomalies.

The equipment used to conduct the geophysical survey included GPR equipment which consists of subsurface **interface radar (SIR-3000)** computer manufactured by Geophysical Survey Systems, Inc., power supply, graphic recorder, video display unit and transmitting/receiving antenna. The equipment is known collectively as a **GPR system**. The transmitting/receiving antenna transmits electromagnetic signals into the subsurface and then detects, amplifies and displays reflections of the signal on a graphic recorder and a video display unit. As the antenna is moved slowly across the ground surface or surface of contact, a radar image of the subsurface is produced. The maximum depth of penetration of the GPR signal and the resolution of the reflections are a function of the antenna frequency and the electrical properties of the subsurface. As electrical conductivity of the subsurface increases, GPR signal penetration decreases. GPR reflections are produced by spatial changes in the physical properties of the subsurface (I.e., type of material, presence of any subsurface fluid, and porosity) and related changes in the electrical properties of the subsurface material in the path of the signals. The greater the difference, the stronger the observed GPR reflection.

Characteristics that are considered in the interpretation of GPR data from a given site include the size, shape and amplitude of the reflections. Metallic underground storage tanks, (UST's) utilities and conduits have electrical properties uniquely different from those of the soils in which they are buried. As a result, the GPR reflections are usually of high amplitude and have distinctive shapes. For GPR profiles oriented perpendicular to the long axis of the tanks, the signature is similar to a hyperbola. The signature is also a function of the tank diameter.


#### 2.2 Geophysical Survey Results

Ground Penetrating Radar (GPR) was performed in a 3.826 parcel (L-shaped) as indicated in attached Field Reference Drawing Dated September 2, 2004. The survey started with the parcel on the eastern side of the access road. The survey continued to the western side of the access road and then proceeded in a southerly direction to the end of the parcel. No parabolic features were found to indicate the presence of any underground storage tanks. There were multiple areas throughout the survey that GPR could not be performed due to high vegetation and/or surface debris as seen in the photos accompanying this report. Every effort was made to scan the property. We "dog-legged" rocks and surface debris in order to maintain continuity of the traverses. There is a high conductivity interface near  $4.5^{\circ} - 5.0^{\circ}$  throughout the data which could be that of wet soils or the presence of silts and clays. Several utilities were seen in the northeast corner which appears to be that of power. This is marked on the grass area. There is a pit near the center of the northeast portion of the parcel which has pipes in the direction of the street. (North/south) No other unusual anomalies were seen. NOTE: A White Professional Metal Detector was also used in several areas where GPR was unable to obtain data.



SIR-3000 GPR Unit used in this survey

#### **ACQUIRED DATA EXPLANATION**



Above represents a sample of data collected by Sub-Surface Informational Surveys, Inc. on October 17, 1999 at a site in the State of Connecticut. It shows three (3) underground storage tanks with a marked centerline. The data FILE# is located on the left tab which also shows the nanosecond (depth) setting, dielectric constant, etc., which is set by our SIR-2000 computer operator. Please match the FILE# on the data with the same FILE# in this report for an explanation of the collected data. NOTE: The above is <u>not</u> part of the data collected for this survey.



Multiple data points off northeast corner of the parcel



Area of high vegetation in background where GPR could not be performed

#### **GROUND PENETRATING RADAR SURVEY**



Areas of high vegetation (left & center photos) – Pit with pipes surrounded by retainer



Collection of data around pit (left) and rocks (right)



Metal Detector used in higher vegetation areas



Area west of access road- Data points

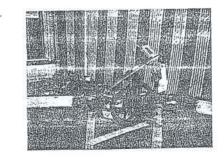
#### **GROUND PENETRATING RADAR SURVEY**





Multiple data points near the southern end of the parcel - No tanks found

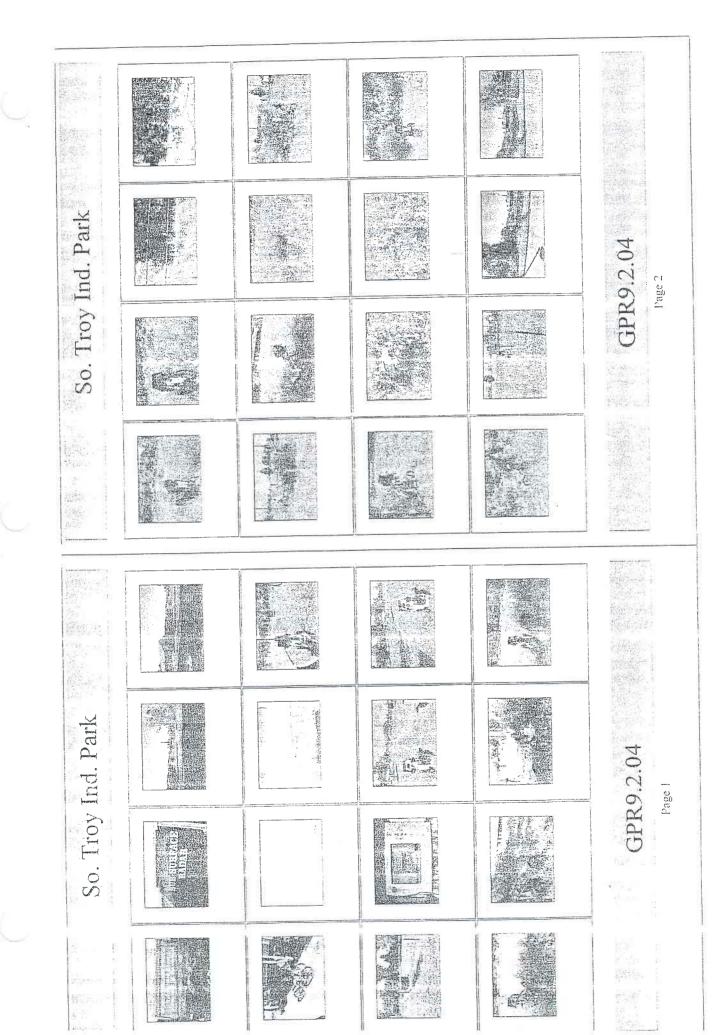





**END OF REPORT** 

The attached analytical result are copies of GPR Data Files collected in the field and reproduced at our corporate office. After reviewing the data, selected samples are taken and duplicated for this report.

Copies are made under the following guidelines:


- A. When there are distinctive differences in the collected data. NOTE: When one traverse is almost identical in characterization to another, only one copy would be reproduced.
- B. If there is a significant difference with suspected anomaly found within the data.
- C. In the location of anomalies, such as pipes, and/or conduits, underground storage tanks or other specific characteristics important to the investigation, such data is copied and annotated.
- D. Samples of *signal refusal*, (water, clay, or some other highly conductive subsurface interface).
- E. Requested data.
- F. Specific locations of rebar and conduits using encoder wheel with measured bench marks.



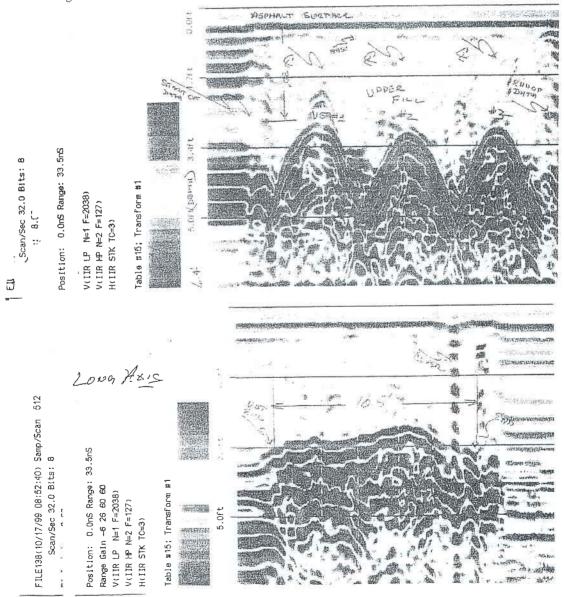


Ind. Park					GPR9.2.04
So. Troy Ind. Park					GPRG
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					
8	ł				
Ind. Park					.2.04
So. Troy Ind. Park	<b>P</b>			a second	GPR9.2.04
		Å		Start Start	
nd. Park					2.04
So. Troy Ind. Park					GPR9.2.04





1.0

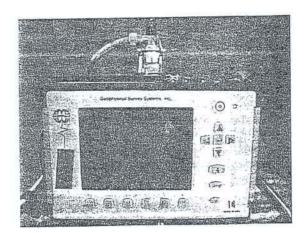




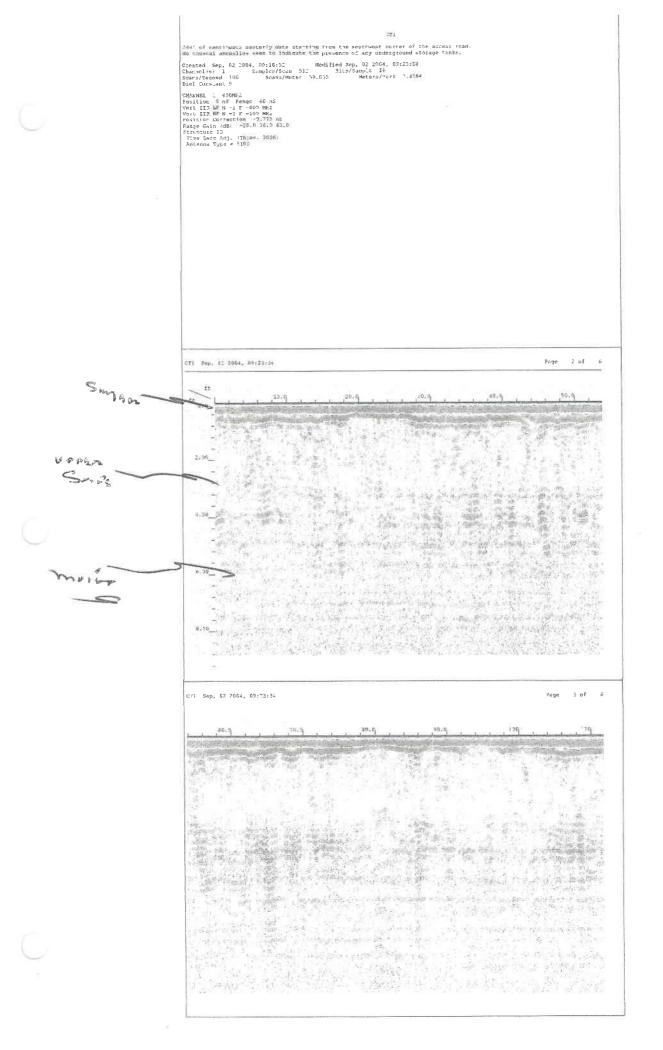



#### **GPR REPORT**

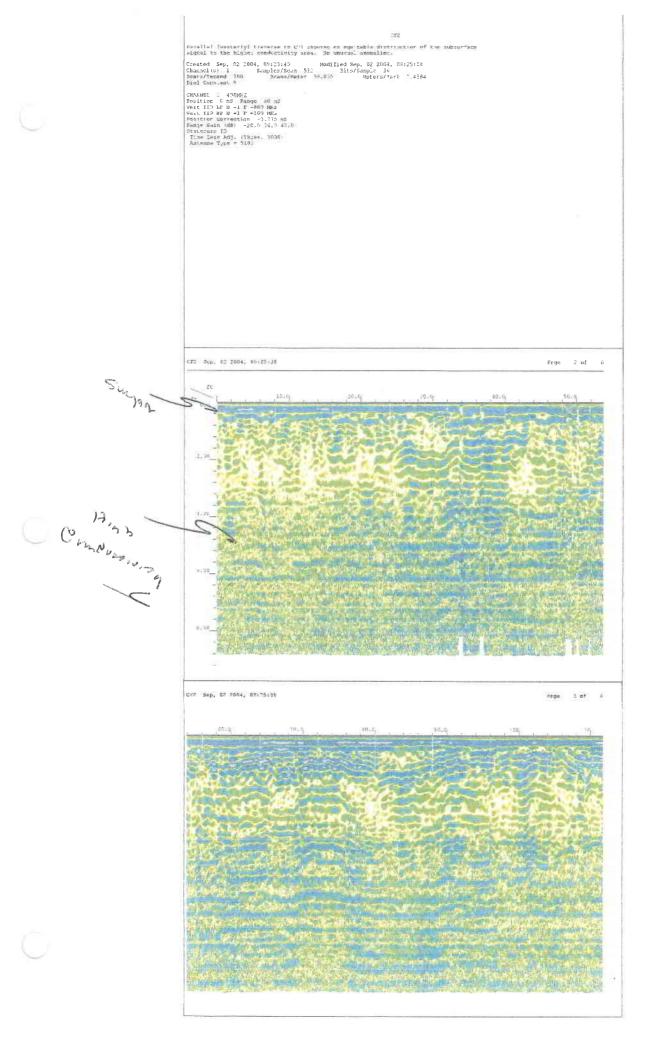
The profiles shown below represent copies of real data collected in the field. Each collected piece of data is issued a FILE# on the information tab to the left of the data. This FILE# is referenced within Each piece of data is annotated from the information collected in the field such as the report. estimated depth, length, direction or any other information that may be helpful to the subsurface investigation. The computer settings such as dielectric values, range in nanoseconds etc., is part of the information tab. The vertical benchmarks indicate points designated on the surface for the purpose of pinpointing a particular anomaly. This is used to estimate sometimes width or length or even distance between surface points such as fence posts, white lines in parking lots, centerlines of sign indicates 180 degree change in direction such as from a northerly L.J. vehicles etc. The traverse to a southerly traverse within the same piece of data. The profile below (FILE134) represents a perpendicular traverse over three 1,000g underground storage tanks at approximately 30" below the asphalt surface. The vertical benchmarks represent the centerline of each tank which was marked with marking paint on the surface per customer request. FILE138 is traversing over the long axis of one of the tanks with the vertical benchmarks at 2' intervals. The tank shows a profile of 10.5' in length from end-to-end.

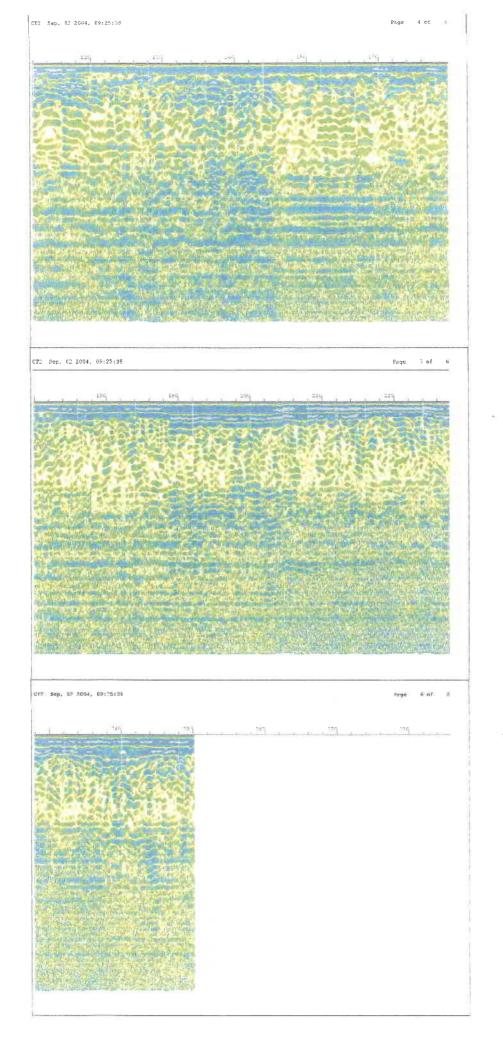


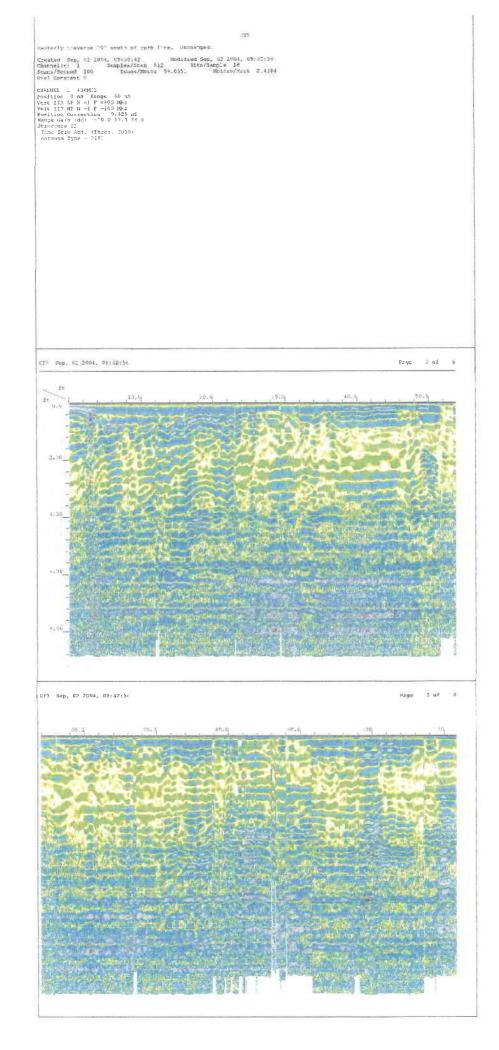

#### SAMPLE.PROFILE.2002.Win.ME.pb

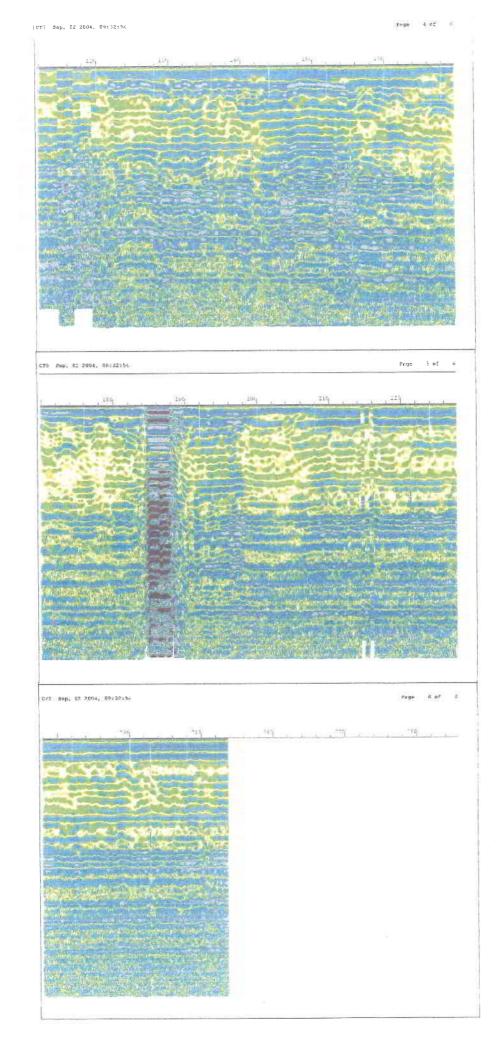

### GPR PROFILES OBTAINED IN THE FIELD

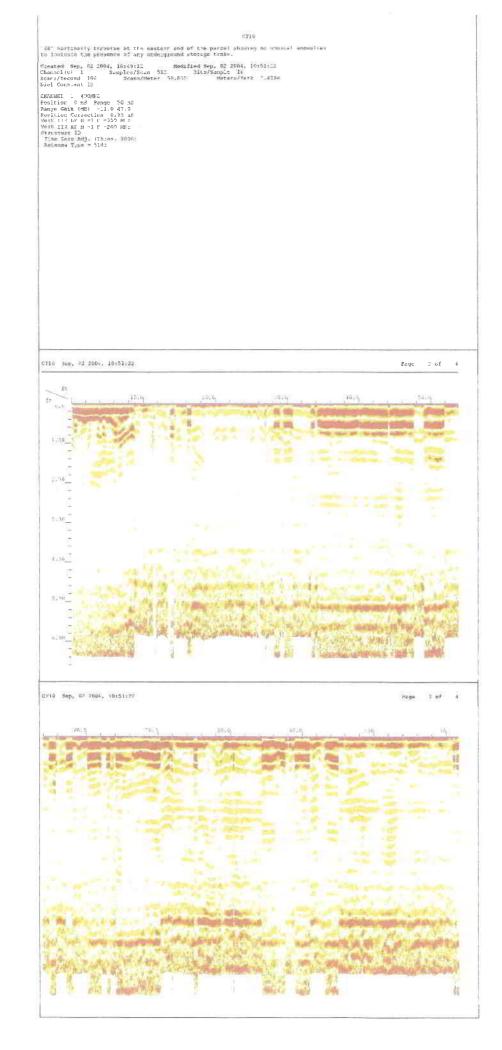
The attached copies are reproductions from data acquired in the field from the GSSI, SIR 3000 Geophysical computer. The original copies are downloaded on a T-104 thermal printer and reproduced on our commercial copier. Photo's are taken by a Sony DSC-F707 Digital still camera, using a 128 MB memory stick. The camera has the ability to take pictures in a no-light environment, which is useful for inside low light or no light building interiors, or during overcast days.

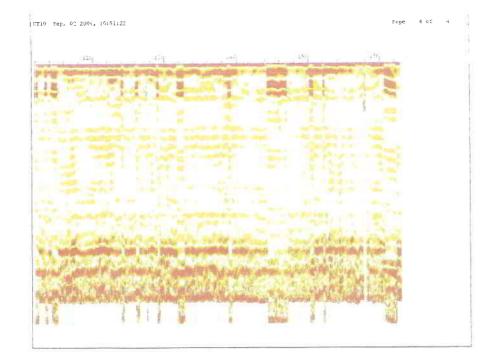

The pictures are downloaded in a Photo Suite program and reproduced at 640 X 480: 0.35 mega pixels. In addition, a disc is supplied with most reports of all the important photo's taken at the survey site. The image size duplicated makes it easy for e-mail attachments to be sent to your customer.

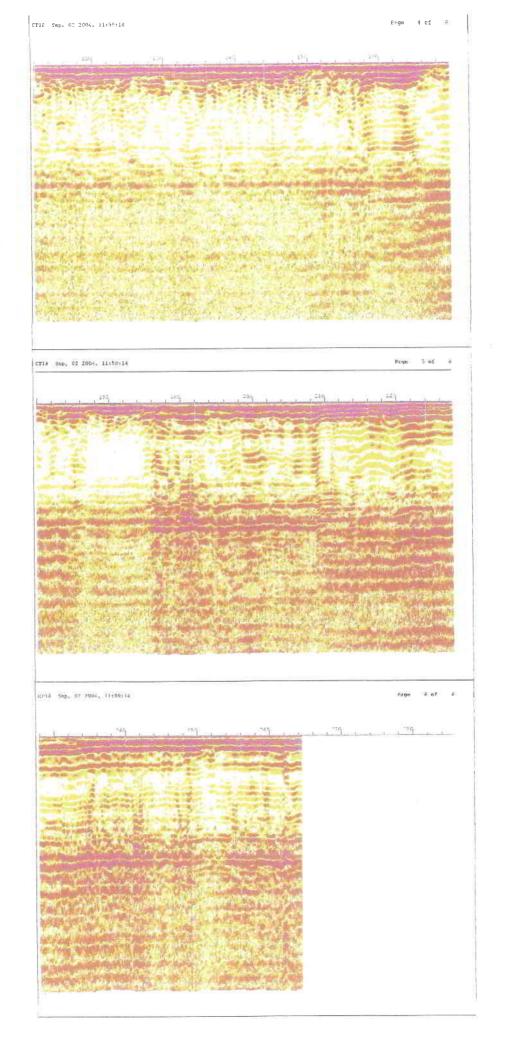


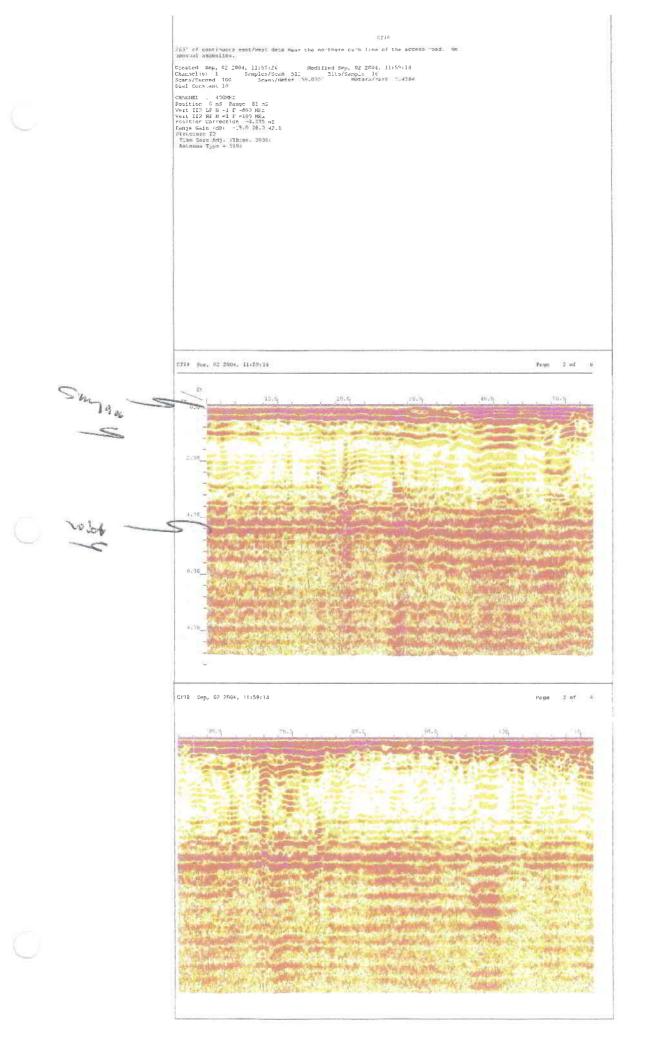


4-1

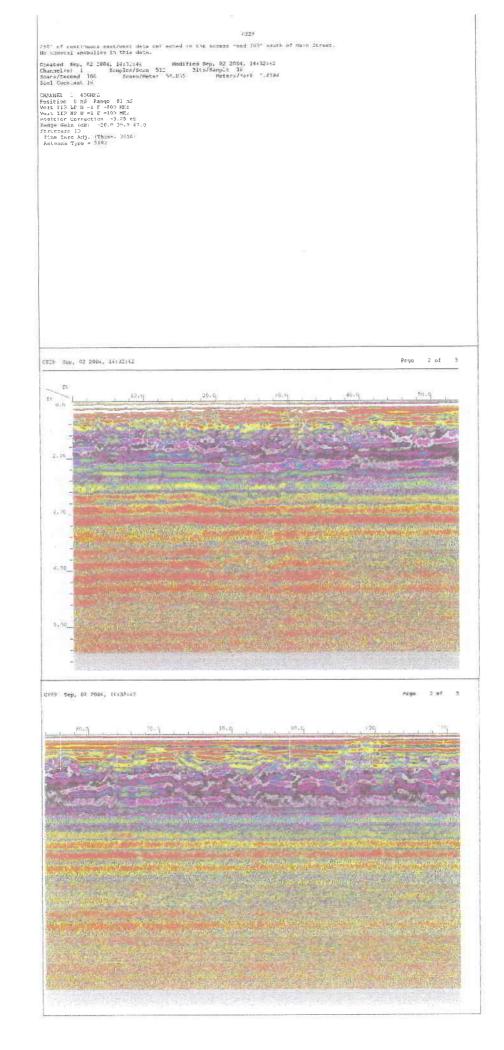


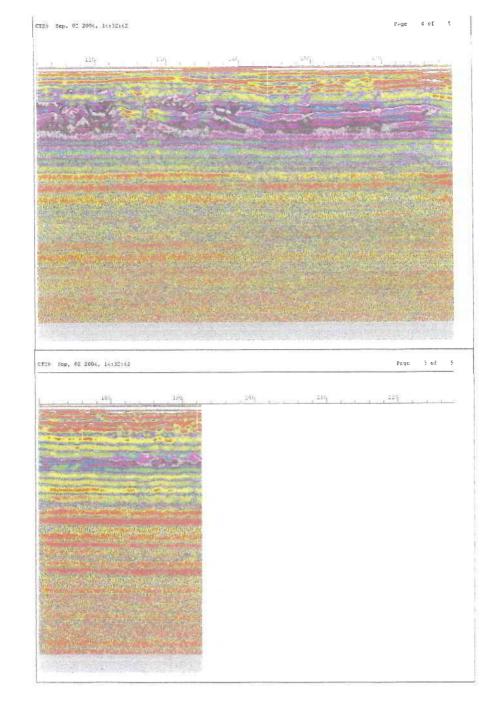


CTJ Sep, 02 2004, 09:23:54 4 01 120 Stand . Salar Ale Vigeran 10-3070 m (d. 1 CT1 Sep. 02 2004, 09:23:34 Page 5 of p P 75 38 - HALLAN and the second states of the second Weining of the second |Cf) Sep, 02 2004, 09:13:84 6 of 6 16月1日日日 行。 当时,韩国中, 

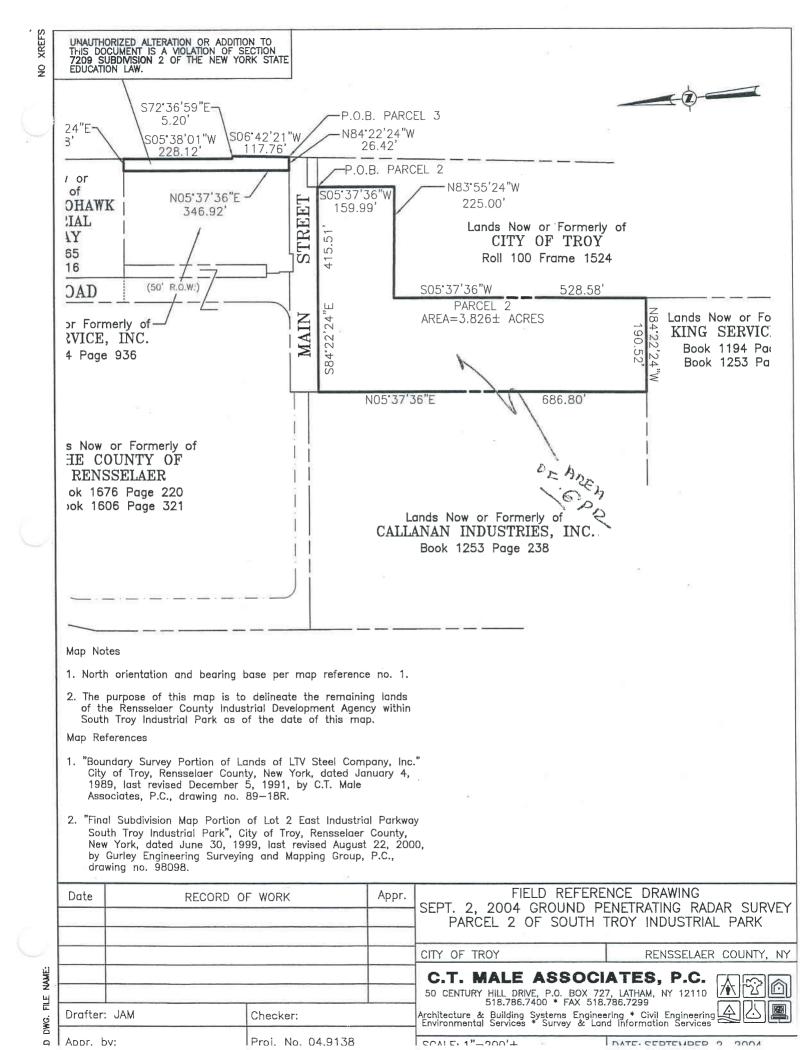













#### GPR REPORT

## 5.0 ACQUIRING PROCEDURES

The acquiring of data from the field for the location and orientation of underground storage tanks, utilities, conduits w/in slab, rebar location, grave sites and other specific anomalies has been established by the ground penetrating radar for many years. Since 1988, Sub-Surface Information Surveys, Inc. has completed a multitude of successful investigations covering most phases of the ground penetrating radar profession. During an investigation, a cross-section of the project will be recorded on the hard drive of our computer. The data is then transferred, copied and duplicated to be made part of this report.

We do not necessarily record every traverse in most of our investigation since most of the information viewed on our monitor is related to the previous traverse. Traverses (I.e., profiles) are monitored on a constant basis. When a traverse is collected on the hard drive, it is also played back in the field for a second look. Where there is an *out-of-place characteristic*, it may be played back a number of times to determine its location and origin. This is recorded on the hard drive for further analyzing at our office. When specific anomalies are located, *all* are documented for reporting. Anomalies are marked in the field if requested to do so. Measurements are taken to identify the exact location such as a tank or utility.

During the start of all surveys, site characteristics and features must be documented to set the standard for that particular site such as soil conditions, conductive features, etc. While the survey is being conducted, there are periodic documentations which are used as a permanent visual comparison to confirm the standard of that site.

After the completion of our survey, it must be reasonably assured that the information is a true cross-section of the project and the information obtained is accurate according to our best professional efforts.

#### GPR PRINCIPLES DIELECTRIC CONSTANTS TWO-WAY SLOWNESS

<u>GROUND PENETRATING RADAR (GPR)</u>...looks like an X-ray picture of the ground which is the spical initial impression of the graphic results obtained by radar. GPR, unlike sonic or seismic uses an electromagnetic (radio wave) antenna tuned to a frequency, which can penetrate most soils, rock, concrete, ice and other common natural and manmade materials. Such capabilities make GPR a prime technique to a multitude of tasks.

GPR determines subsurface conditions by sending pulses of high frequency radio waves into the ground from a transmitter antenna located on the surface. Subsurface structures and interfaces cause some of the wave energy to be reflected back to the surface, while the rest of the energy continues to penetrate deeper. A receiver antenna on the surface picks up the reflected wave energy. These signals are then processed and plotted in a distance versus time-depth display. Thus, as the radar antenna is slowly towed across the surface, a continuous cross-section *picture* of the subsurface is generated. The reflections are caused by wave responses at interfaces of materials having different electrical properties. These interfaces include many natural conditions such as bedding, cementation, changes in moisture and clay content, voids etc., as well as man-made objects.

PENETRATION of the radar signal is dependent on the conditions found at each site. Radar waves are attenuated (absorbed or scattered) by certain properties of the site's soil; the most important of which is the <u>electrical conductivity</u> of the material. Generally, better overall penetration is achieved in dry sandy soils; reduced penetration is achieved in moist, clayey or conductive soils. Radar penetration is excellent in massive dry materials such as granite, limestone and concrete. The following is a partial list of the approximate <u>dielectric constants</u> of certain materials:

	DIFIFCTRIC/C	*TSm (ns/ft)	*TSm (ns/m)
MATERLAL ALR FRESH WATER SEA WATER SAND-DRY SAND-SATURATED SILT-SATURATED	DIELECTRIC/C 1 81 81 4-6 30 10	*TSm (ns/fi) 2 18 18 4.5 11 6 6	*TSm (ns/m) 6.5 59 59 15 36 20 20
CLAY-SATURATED DRY SANDY COASTAL LAI MARSHY FORESTED FLAI RICH AGRICULTURAL LA PASTORAL LAND, HILLY FRESH WATER ICE PERMAFROST GRANITE (DRY) LIMESTONE (DRY)	LAND 12	6 7 8 7 4 5 4 5 2.5	20 23 26 23 13 16 15 16 8 13
DOLOMITE QUARTZ COAL CONCRETE ASPHALT SEA ICE PVC, EPOXY, VINYL	4 4-5 6 3-5 4-12 3	4 5 4-5 4-7	13 13 16 13-16 13-23 13
POLYESTERS, RUBBER	2		

TSm = Two Way Slowness

. ....

Compliments of Sub-Surface Informational Surveys, Inc. E. Longmeadow, MA 01028-0452

### GPR PRINCIPLES DIELECTRIC CONSTANTS TWO-WAY SLOWNESS

*Dielectric Constant* = This parameter is the value of the dielectric constant used to convert two-way travel time to depth. The value ranges from 1 to 81 and depends upon the dielectric properties of the subsurface materials being profiled. *WARNING*: Dielectric constants for various materials, and thus the resulting depth scales, are only approximations. Additional approximates of various materials are as follows:

	D/C	MATERIAL	D/C
MATERIAL	<u></u>		
Air	1	Wet Granite	6.5
Snow Firm	1.5	Trayertine	8
Dry Loamy/Clayey Soils	2.5	West Limestone	8
	4	Wet Basalt	8.5
Dry Clay	4	Tills	11
Dry Sands	4	Wet Concrete	12.5
Ice	4.5	Volcanic Ash	13
Coal	5	Wet Sands	15
Asphalt	5	Wet Sandy Soils	23.5
Dry Granite	5	Dry Bauxite	25
Frozen Sand & Gravel	5.5	Saturated Sands	25
Dry Concrete	5.5	Wet Clay	27
Dry Limestone	5.5	Pents	61.5
Dry Sand & Gravel	5.5	Organic Soils	64
Potash Ore	6	Sea Water	81
Dry Mineral/Sandy Soils	6	Water	81
Dry Salt	б б	Syenite Porphyry	6
Frozen Soil/Permafrost	6	Overnie i or pul (j	23
Wet Sandstone	0		
	-	MATERIAL	T/ns/meters/ft
	neters/ft	MATERIAL	1
MATERIAL T/ns/r	neters/ft	MATERIAL	59/18
MATERIAL T/ns/r	<u>neters/ft</u> 8/2.5	Water	59/18 15/4.5
MATERIAL T/ns/r Snov Asphalt	neters/ft 8/2.5 14/4.5		59/18 15/4.5 13/4
MATERIAL T/ns/r Snov Asphalt Wet concrete	neters/ft 8/2.5 14/4.5 23/7	Water Dry concrete	59/18 15/4.5 13/4 33/10
MATERIAL T/ns/r Snor+ Asphalt Wet concrete Wet sands	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5	Water Dry concrete Dry sands Saturated sands	59/18 15/4.5 13/4
MATERIAL T/ns/r Snov Asphalt Wet concrete	neters/ft 8/2.5 14/4.5 23/7	Water Dry concrete Dry sands	59/18 15/4.5 13/4 33/10 14.5/4.5
MATERIAL T/ns/r Snorv Asphalt Wet concrete Wet sands Dry sand & gravel	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5
MATERIAL T/ns/r Snor+ Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5
MATERIAL T/ns/r Snor+ Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5
MATERIAL T/ns/r Snow Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5
MATERIAL T/ns/r Snow Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills Wet clay	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5
MATERIAL T/ns/r Snow Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats Dry clay	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5 13/4	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5 19/6
MATERIAL T/ns/r Snow Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats Dry clay Wet granite	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5 13/4 16.5/5	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills Wet clay Dry granite	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5 19/6 15/4.5
MATERIAL T/ns/r Snor+ Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats Dry clay Wet granite Volcanic ash	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5 13/4 16.5/5 23.5/7	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills Wet clay Dry granite Wet basalt Potash ore	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5 19/6 15/4.5 16/5
MATERIAL T/ns/r Snor, Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats Dry clay Wet granite Volcanic ash Dry bauxite	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5 13/4 16.5/5 23.5/7 33/10	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills Wet clay Dry granite Wet basalt	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5 19/6 15/4.5 16/5 14/4
MATERIAL T/ns/r Snoty Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats Dry clay Wet granite Volcanic ash Dry bauxite Travertine	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5 13/4 16.5/5 23.5/7 33/10 18.5/5.5	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills Wet clay Dry granite Wet basalt Potash ore Syenite porphyry	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5 19/6 15/4.5 16/5
MATERIAL T/ns/r Snor, Asphalt Wet concrete Wet sands Dry sand & gravel Dry loamy/clayey soils Organic soils Frozen soil/permafrost Peats Dry clay Wet granite Volcanic ash Dry bauxite	neters/ft 8/2.5 14/4.5 23/7 25.5/7.5 15.5/4.5 10.5/3 52.5/16 16/5 51.5/15.5 13/4 16.5/5 23.5/7 33/10	Water Dry concrete Dry sands Saturated sands Frozen sand & gravel Dry mineral/sandy soils Wet sandy soils Tills Wet clay Dry granite Wet basalt Potash ore Syenite porphyry Coal	59/18 15/4.5 13/4 33/10 14.5/4.5 16/5 32/9.5 22/6.5 34/10.5 14.5/4.5 19/6 15/4.5 16/5 14/4

Compliments of Sub-Surface Informational Surveys, Inc. E. Longmeadow, MA 01028-0452 REPORT NOTES

80.0 - 9

DATE_____

÷.

ŝ

26

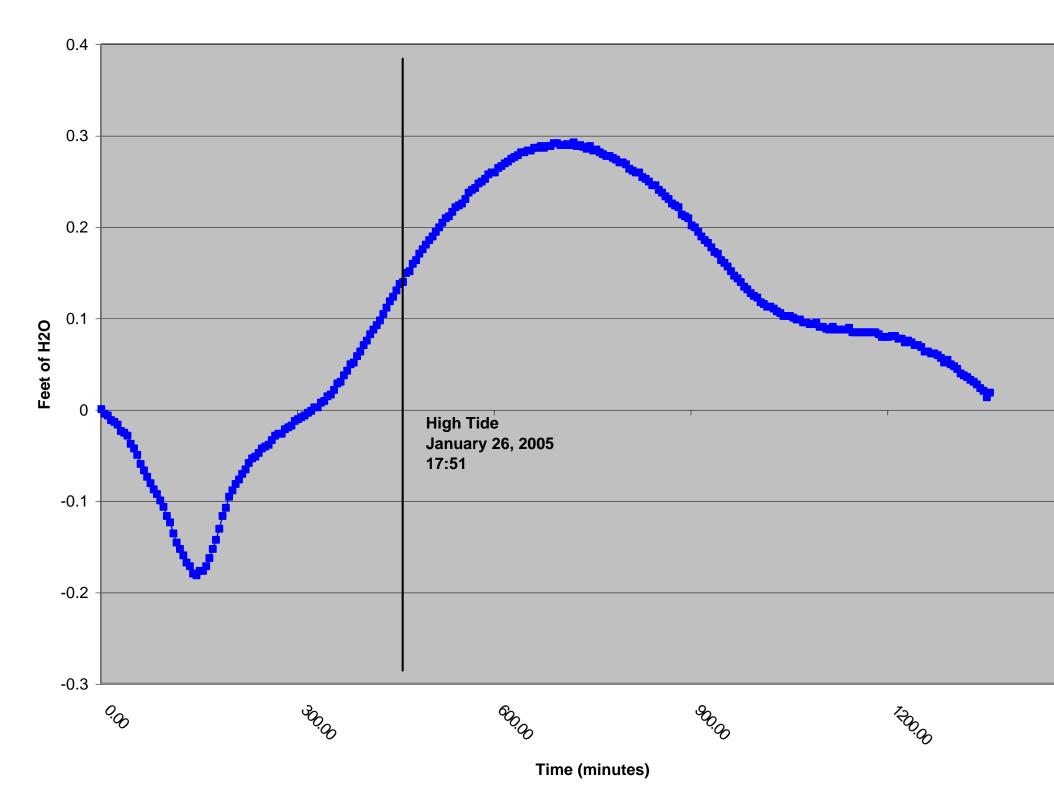
DATE:_____

DATE_____

4

DATE _____

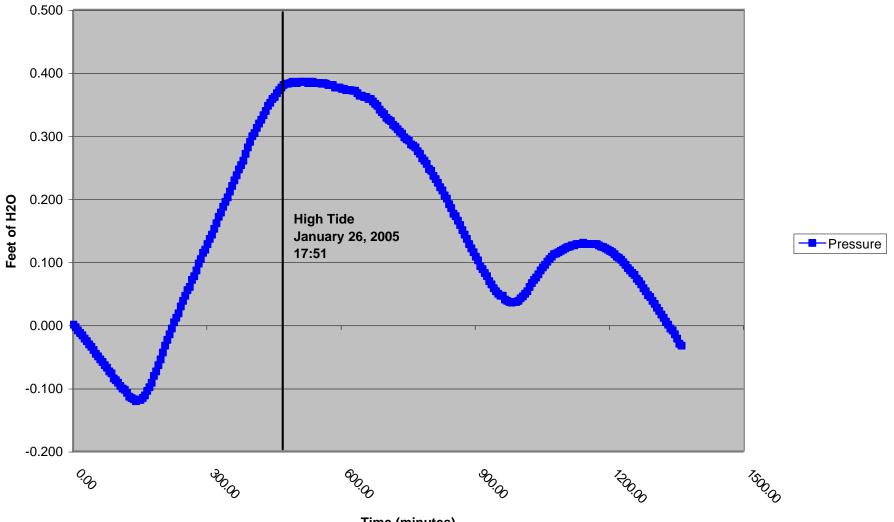
*


DATE:

"LET US SEEK AND FIND"

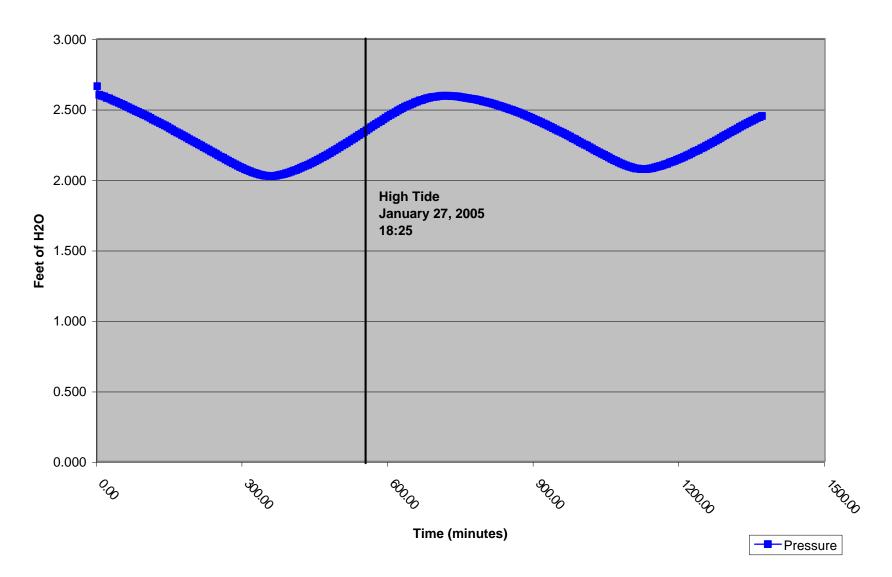
2 X.P

# EXHIBIT 3

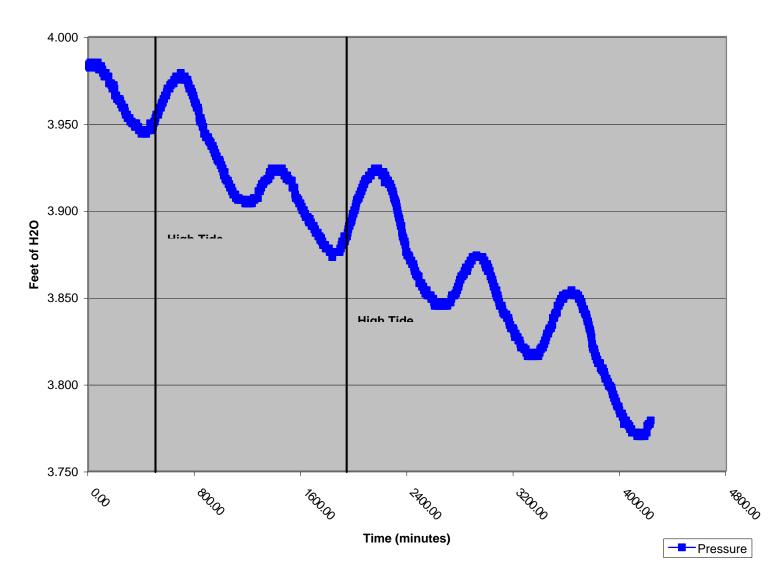

# **TRANSDUCER DATA CHARTS**



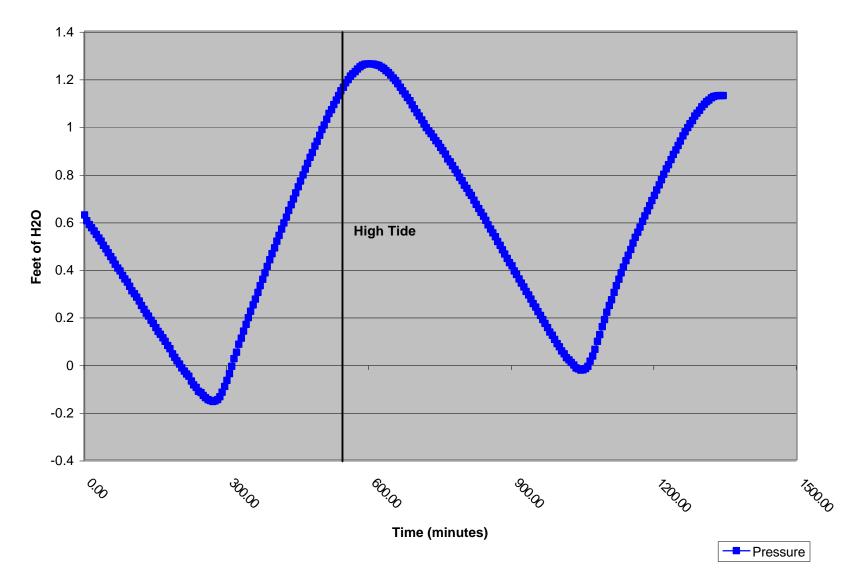




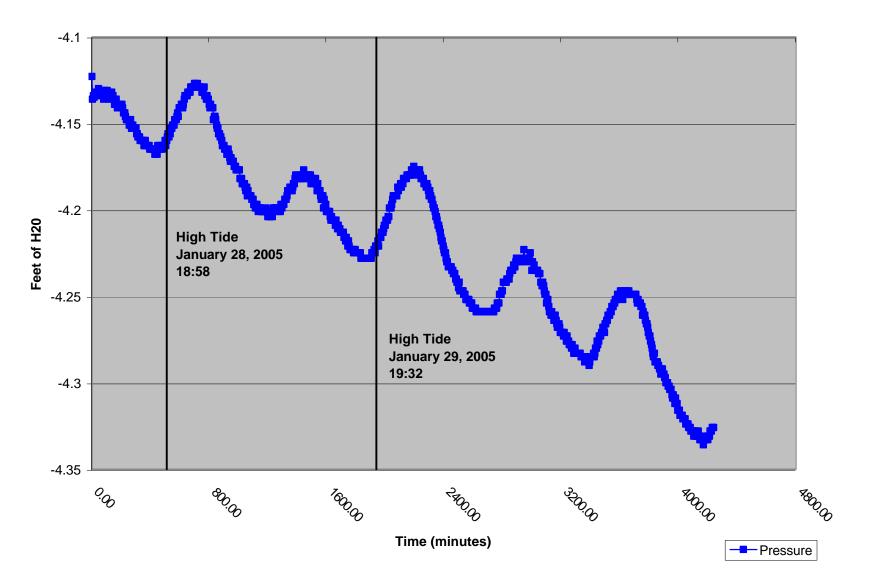

Hudson River Tidal Influence on CTM-13




Time (minutes)


Hudson River Tidal Influence on CTM-10




Hudson River Tidal Influence on CTM-5



Hudson River Tidal Influence on MW-8 (ESI)



Hudson River Tidal Influence on CTM-11



# **WWW Tide and Current Predictor**

Pick a different site | Frequently Asked Questions

Web interface by Dean Pentcheff, calculations and graphics by David Flater's XTide Program

NOT FOR NAVIGATION. This program is furnished in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of merchantability or fitness for a particular purpose. Do not use this program as a basis for any decisions that could result in harm to people, other organisms, or property. Check these predictions against officially sanctioned tables. Agencies like NOAA exist because there is a need for certifiably correct tide predictions. Do not rely on these predictions if you need guaranteed results. There is NO WAY we can get certified data on a zero budget. We rely on users like you to tell us when something is wrong. Please continue to do so. Remember that weather conditions affect tidal ranges and current speeds, sometimes very strongly.

## Troy, Hudson River, New York

## 26 January 2005 - 1 February 2005

42.7333° N, 73.7000° W

2005-01-26	00:10	EST	-0.19 feet	Low Tide
2005-01-26	05:45	EST	4.00 feet	High Tide
2005-01-26	07:14	EST	Sunrise	
2005-01-26	08:18	EST	Moonset	
2005-01-26	12:09	EST	0.24 feet	Low Tide
2005-01-26	17:00	EST	Sunset	
2005-01-26	17:51	EST	5.29 feet	High Tide
2005-01-26	18:11	EST	Moonrise	
2005-01-27	00:50	EST	-0.15 feet	Low Tide
2005-01-27	06:22	EST	4.12 feet	High Tide
2005-01-27	07:13	EST	Sunrise	
2005-01-27	08:42	EST	Moonset	
2005-01-27	12:51	EST	0.33 feet	Low Tide
2005-01-27	17:01	EST	Sunset	
2005-01-27	18:25	EST	5.21 feet	High Tide
2005-01-27	19:16	EST	Moonrise	
2005-01-28	01:30	EST	-0.09 feet	Low Tide
2005-01-28	06:59	EST	4.28 feet	High Tide
2005-01-28	07:13	EST	Sunrise	
2005-01-28	09:03	EST	Moonset	
2005-01-28	13:34	EST	0.44 feet	Low Tide ·
2005-01-28	17:03	EST	Sunset	
2005-01-28	18:58	EST	5.09 feet	High Tide ~
2005-01-28	20:20	EST	Moonrise	
2005-01-29	02:09		-0.02 feet	Low Tide
2005-01-29	07:12	EST	Sunrise	
2005-01-29	07:37	EST	4.45 feet	High Tide -
2005-01-29	09:22		Moonset	
2005-01-29	14:19		0.54 feet	Low Tide
2005-01-29	17:04		Sunset	
2005-01-29	19:32		4.94 feet	High Tide
2005-01-29	21:25		Moonrise	
2005-01-30	02:48		0.05 feet	Low Tide
2005-01-30	07:11		Sunrise	
2005-01-30	08:18		4.62 feet	High Tide 🛥
2005-01-30	09:40		Moonset	
2005-01-30	15:08		0.64 feet	Low Tide
2005-01-30	17:05	EST	Sunset	

#### Tide/Current Predictor

2005-01-30	20:11	EST	4.74 feet	High Tide —
2005-01-30	22:31	EST	Moonrise	
2005-01-31	03:30	EST	0.14 feet	Low Tide
2005-01-31	07:10	EST	Sunrise	
2005-01-31	09:04	EST	4.78 feet	High Tide
2005-01-31	10:00	EST	Moonset	
2005-01-31	16:01	EST	0.71 feet	Low Tide
2005-01-31	17:06	EST	Sunset	
2005-01-31	20:56	EST	4.51 feet	High Tide
2005-01-31	23:38	EST	Moonrise	
2005-02-01	04:15	EST	0.22 feet	Low Tide
2005-02-01	07:09	EST	Sunrise	
2005-02-01	09:55	EST	4.92 feet	High Tide
2005-02-01	10:22	EST	Moonset	
2005-02-01	16:59	EST	0.73 feet	Low Tide
2005-02-01	17:08	EST	Sunset	
2005-02-01	21:48	EST	4.26 feet	High Tide

Make Prediction Using Options

# **Prediction Options**

### Select a different site

### Select display type

- Tabular List (quickest)
- Text Plot (Plot Type: Horizontal Vertical) (more plot options below)

- C Extreme Highest and Lowest Tides Only
- O Strict Intervals (Interval Time: 1 minute 💽 )

### Select presentation options

1 week Length of time to display (ignored by One-Month Calendars)

+0 Change text size (only for browsers supporting font size changes)

Select tide height units: O meters O feet @ default

- Suppress credits and warnings on top of page
- Suppress sunrise/sunset and lunar information
- □ Printer-friendly bare output (□ Force plot to B&W lines)
- Show site information from database
- Show the URL that would recreate this prediction

## Starting time and time display options

Standard time range:

- Start at: 2005 Jan 26 at 00 :00 •
- Local timezone: [America/New_York] (automatic daylight saving correction)
- C UTC (also known as GMT or Zulu time)

Distant dates (<u>See notes</u>. Available only for **boldface** sitenames; type in a year 1700-2100; timezone forced to UTC):

Tide/Current Predictor

Page 3 of 3

Start at: Jan 💌 01 💌 at 00 🛩 :00 🛩

Hour format: @ 24-hour time C am/pm time

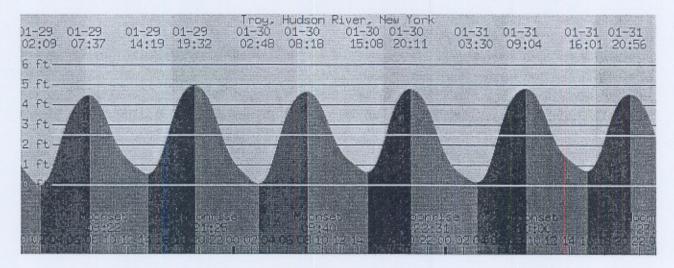
□ Show day of week

### Select options for plots

- Omit mean sea level and datum lines on plot
- Omit high/low times on plots (clears overlapping text)
- □ Plot with lines only, not color-filled (graphical plot only)

Pick colors for color elements (graphical plot only):

Colors:	black	white	yellow	red	skyblue	deep- skyblue	seagreen	blue
Elements:								
Text Color	۲	C	0	0	0	С	C	0
Datum Line Color	С	()	0	0	0	0	0	0
Mean Sea Level Line	0	0	۲	0	C	0	С	С
Mark Tics Color	С	0	0	۲	C	С	0	C
Day Background	0	0	0	0		0	0	С
Night Background	0	0	0	0	0	۲	0	C
Falling/Ebb Color	О	0	0	0	0	0	6	0
Rising/Flood Color	С	0	C	0	0	0	C	۲


Make Prediction Using Options

Puzzled by something? Please check the <u>Frequently Asked Questions</u> list. Send queries about the **WWW interface** to Dean Pentcheff <tide@crustacea.nhm.org>. Send queries about the <u>XTide</u> program to David Flater <dave@flaterco.com>.

> WWW Tide/Current Predictor: http://tbone.biol.sc.edu/tide Dean Pentcheff <tide@crustacea.nhm.org> <u>Biological Sciences</u>, <u>University of South Carolina</u>, Columbia SC 29208 USA

## Troy, Hudson River, New York

# 29 January 2005 - 31 January 2005



If present, horizontal lines mark mean sea level and datum (usually mean lower low water). Colors under the curve indicate rising and falling tide (not ebb and flood currents).

WWW Tide/Current Predictor: http://tbone.biol.sc.edu/tide Dean Pentcheff <tide@crustacea.nhm.org> <u>Biological Sciences</u>, <u>University of South Carolina</u>, Columbia SC 29208 USA

# **EXHIBIT 4**

# FISH AND WILDLIFE IMPACT ASSESSMENT

August 10, 2004



# Fish and Wildlife Impact Assessment South Troy Industrial Park Troy, New York

Prepared for:

RENSSELAER COUNTY INDUSTRIAL DEVELOPMENT AGENCY 1600 7TH Avenue Troy, New York 12180

Prepared by:

C.T. MALE ASSOCIATES, P.C. 50 Century Hill Drive P.O. Box 727 Latham, New York 12110 (518) 786-7400 FAX (518) 786-7299

C.T. Male Project No: 04.9138

© Copyright 2004 C.T. MALE ASSOCIATES, P.C.

Unauthorized alteration or addition to this document is a violation of Section 7209 Subdivision 2 of the New York State Education Law.

## FISH AND WILDLIFE IMPACT ASSESSMENT SOUTH TROY INDUSTRIAL PARK

### TABLE OF CONTENTS

1.0	INTR	ODUCT	'ION	1
2.0	NYSE	EC FW	IA STEP I	1
	2.1	SITE D	DESCRIPTION	1
	2.2	COVE	RTYPE DELINEATION	2
		2.2.1	Successional Northern Hardwoods	2
			Unconfined River	
			Cultural Covertype Designations	
			South Troy Industrial Park Site	
	2.3	DESCI	RIPTION OF FISH AND WILDLIFE RESOURCES	4
		2.3.1	Fauna Expected Within Each Terrestrial Covertype	4
		2.3.2	Observed Fish and Wildlife Species	4
	2.4	VALU	JE OF FISH AND WILDLIFE RESOURCES	4
		2.4.1	Main Channel Stream	4
		2.4.2	Mixed Deciduous Forest	
		2.4.3	Cultural Covertypes	5
		2.4.4	Value of Resources to Humans	5
	2.5	OBSE	RVATIONS OF STUDY AREA STRESS	5
	2.6	OTHI	ER RESOURCES	5
		2.6.1	Freshwater Wetlands	
		2.6.2	Significant Habitats	6
		2.6.3	Rare, Endangered or Threatened Plant and Animal	
			Species	
	2.7	APPL	ICABLE FISH AND WILDLIFE CRITERIA	6
		2.7.1	Location-Specific FWRC	6
		2.7.2	Chemical-Specific FWRC	7
3.0	SUN	/IMARY	AND CONCLUSIONS	7
4.0	REF	ERENC	ES	ç

## C.T. MALE ASSOCIATES, P.C.

### FIGURES

- Figure 1 Site Location Map
- Figure 2 Covertype Delineation Map
- Figure 3 National Wetland Inventory Map
- Figure 4 NYSDEC Freshwater Wetlands Map

### TABLES

Table 1 Wildlife Species Potentially Utilizing Habitats Within the Study Area

### ATTACHMENTS

Attachment A Site Photographs

Attachment B Correspondence

### C.T. MALE ASSOCIATES, P.C.

### 1.0 INTRODUCTION

Step I of a New York State Department of Environmental Conservation (NYSDEC) Fish and Wildlife Impact Analysis (FWIA) (NYSDEC, 1994) was completed by C. T. Male Associates, P. C. (C. T. Male) for the remaining parcels of South Troy Industrial Park in June, 2004. A Site Location Map is presented in Figure 1.

The objective of the Step I Site Description is to identify the fish and wildlife resources, land-use and habitat types that exist in the vicinity of the site. In addition, fish and wildlife species that may utilize habitats that could potentially be impacted by site-related contaminants are identified. This information is necessary to allow identification of potential pathways of contaminant migration into and through fish and wildlife resources.

### 2.0 NYSDEC FWIA STEP I

### 2.1 SITE DESCRIPTION

The remaining parcels of South Troy Industrial Park consist of three (3) separate areas that were previously occupied by Burden Iron Works. Throughout its occupancy of the site, Burden Iron Works produced steel, coke, gas and pig iron until approximately 1940, when it was acquired by Republic Steel Corporation that operated until 1972. Republic Steel had rail lines that crossed the parcel, but there were apparently no structures. The parcels cover a combined area of 20.89 acres and are currently vacant.

Parcel 1 is a 16.955 acre lot that extends easterly from the Hudson River to the existing railroad tracks. Parcel 1 surrounds a developed area and is bordered to the north by an asphalt plant. Historically, the northern portion of Parcel 1 was used as a disposal area for the Burden Iron Works steel-making process from the mid 1800's to the early 1900's. The site was originally a tidal wetland area of the Hudson River and was filled in with up to 25 feet of slag, coal ash, brick and other waste products of the time. The southern portion of the site was used as a foundry in the in steel-making process.

Parcel 2 is a 3.826 acre lot that is located near the intersection of Main Street and East Industrial Road. Parcel 2 is bordered to the west by a vacant lot and to the north, south and east by developed land. Historically, Parcel 2 was not used as a disposal area. The parcel was mainly vacant except for a guard house located on Main Street.

Parcel 3 is a 0.199 acre lot located along the railroad tracks. Parcel 3 is bordered to the east by railroad tracks and to the west by a concrete wall. Developed areas lie to the north and south. Historically, Parcel 3 was not developed and was not used as a disposal area.

The majority of the site was observed to be relatively level with piles of concrete, metal, construction materials, and slag debris interspersed throughout the site. In Parcel 1, a large mound consisting of slag material (Slag Mountain) was observed along the western edge of the site at an elevation of approximately 20-25 feet above the Hudson River. The mound was observed to steeply drop off to the river's edge west of the site. Land use in the vicinity of the site was observed to be primarily industrial and commercial, with residential areas to the north and east.

### 2.2 COVERTYPE DELINEATION

In the context of this report, a "covertype" is defined as an area characterized by a distinct pattern of natural (e.g., forest) or cultural (e.g., industrial) land use. Covertypes of the site and areas within 0.5 miles of the site (the study area) were identified based on the physical and vegetative features observed by C. T. Male personnel during a site visit on June 17, 2004, aerial photographs of the site (NYS GIS Clearinghouse, 2000-2001) and USGS topographic maps of the surrounding area.

For each covertype identified in the covertype delineation, dominant vegetative species observed during the field reconnaissance are listed in the section describing the covertype. A covertype map detailing the major land use/vegetative communities within a one-half mile radius of the site is presented in Figure 2. The covertype map was prepared based on an interpretation/evaluation of aerial photographs, topographic maps, NYSDEC wetland maps and National Wetland Inventory wetland maps. The covertypes within a one-half mile of the site were classified using the New York Heritage Program Classification System (Edinger et al., 2002). Four cover types are identified. Of the four covertypes identified, two are considered natural covertypes and two are considered to be cultural covertypes (Edinger et al., 2002). This information reflects the extent of human disturbance to the study area for land uses such as industrial/commercial development, roadways and residential areas. All of the identified covertypes have a secure global and state ranking, indicating that they are not rare ecological communities requiring preservation (Edinger et al., 2002). Below are descriptions of the four covertypes identified within the study area.

### 2.2.1 Successional Northern Hardwoods

This covertype is a hardwood or mixed successional forest that occurs on sites that have been cleared or otherwise disturbed. Characteristic trees and shrubs include quaking aspen (*Populus tremuloides*), gray birch (*Betula populifolia*), pin cherry (*Prunus pensylvanica*), black cherry (*P. serotina*), red maple (*Acer rubrum*) and white pine (*Pinus strobes*). White ash (*Fraxinus americana*), green ash (*F. pensylvanica*) and American elm (*Ulmus americana*) may also be found in this covertype. Chestnut-sided warbler (*Dendroica pennsylvanica*) is a common bird species found in successional northern hardwood forests.

### 2.2.2 Unconfined River

This is an aquatic community of large, quiet, base level sections of streams or rivers. Unconfined rivers usually have clearly distinguished meanders. They are characterized by significant deposition and a relatively minor amount of erosion. Waterfalls and springs may be present. Characteristic fishes are deep-bodied fishes such as suckers (Castotomids), pickerel (*Esox americanus*), largemouth bass (*Micropterus salmoides*) and smallmouth bass (*M. dolomieui*). The shallow shores and backwaters of unconfined rivers typically support rooted macrophytes.

### 2.2.3 Cultural Covertype Designations

The remaining covertypes in the study area are heavily influenced by urbanization. Industrial and residential areas have eliminated much of the natural habitat in the area and have replaced it with urban wildlife habitats consisting primarily of mowed lawns with trees, paved roads, parking lots, railroads, urban vacant lots and urban structure exteriors. These areas are considered covertypes by NYSDEC since they provide habitat for urban wildlife. Since the majority of the area in and around the South Troy Industrial Park site can be classified as an urban vacant lot and urban structure exterior, these two covertypes are shown in the Covertype Delineation Map (refer to Figure 2).

Characteristic animal species found within cultural covertypes include American robin (*Turdus migratorius*), house sparrow (*Passer domesticus*), mourning dove (*Zenaida macroura*), mockingbird (*Mimus polyglottos*), and gray squirrel (*Sciurus carolinensis*). Common tree species include introduced species such as Norway maple (*Acer platanoides*) and white mulberry (*Morus alba*).

### 2.2.4 South Troy Industrial Park Site

The South Troy Industrial Park Site itself consists of an open urban vacant lot that has been cleared for development or was formerly occupied by buildings. The site contains piles of debris, including asphalt and/or construction materials. Parcel 1 of the site is bordered on the west by a mound of slag material that was observed along the western edge of the site at an elevation of approximately 20-25 feet above the Hudson River. The mound was observed to steeply drop off to the river's edge west of the site. Parcel 1 is bordered by active railroad tracks to the east and developed land to the north and south. Parcel 2 is bordered by a vacant lot to the south and developed land to the north. Parcel 3 is bordered by railroad tracks to the east and a concrete wall to the west.

Plant species observed on all three (3) parcels on the site included black locust (*Robinia pseudo-acacia*), poplars (*Deltoides spp*), quaking aspen (*Populus tremuloides*) and American elm (*Ulnus americana*). Observed species of birds included American crow (*Corvus brachyrhynchos*), starling (*Sturnus vulgaris*), American robin (*Turdis migratoris*), house sparrow (*Passer domesticus*) and chestnut-sided warbler (*Dendroica pensylvanica*).

### 2.3 DESCRIPTION OF FISH AND WILDLIFE RESOURCES

The objectives of the description of the fish and wildlife resources were to list wildlife observed within the study area and identify fauna expected to inhabit each covertype or aquatic habitat. The tasks conducted to meet each of these objectives and the results of the tasks are discussed in the following sections.

## 2.3.1 Fauna Expected Within Each Terrestrial Covertype

A list of avian, mammalian, amphibious and reptilian wildlife species potentially inhabiting the identified covertypes is presented in Table 1 (Edinger et al., 2002). Although several wildlife receptors are listed, the majority are associated with natural covertypes and would not be expected to inhabit the site.

#### 2.3.2 Observed Fish and Wildlife Species

Fish and wildlife observed during the study area reconnaissance were identified and are indicated in Table 1. Included in the list of observed species are species for which evidence (e. g. tracks or scat) was observed in the study area.

#### 2.4 VALUE OF FISH AND WILDLIFE RESOURCES

The habitat value of each covertype in the vicinity of the study area was qualitatively evaluated based on field observations of physical characteristics. For the Hudson River, physical characteristics were examined qualitatively to evaluate their value as a fish habitat. For evaluations of habitat quality of terrestrial covertypes, resident wildlife species requirements for food sources, home range, breeding requirements and cover were examined and compared to covertype characteristics. Additional information used in the evaluation of habitat quality included:

- The nature, extent and diversity of observed wildlife;
- The availability of similar habitats in the immediate vicinity;
- The size of the habitat, and;
- Adjacent land use patterns

#### 2.4.1 Main Channel Stream

Fish in the Hudson River, and in the Wynantskill Creek within the study area, can provide a food source for piscivorous wildlife. However, the banks of the river in the study area are relatively steep and the water is too deep to support aquatic macrophytes. There were very little areas of shallow shores and backwaters to support rooted macrophytes. The close proximity of the urbanized city has significantly impacted the natural habitats normally associated with the streams.

#### 2.4.2 Mixed Deciduous Forest

This covertype would normally support a diversity of wildlife including many bird species. However, its location and size within the study area likely limit its use by wildlife. The covertype in the study area is limited to a small area interspersed by residential and industrial exteriors. Access to the covertype is severely limited by the industrial/residential areas and urban development that has restricted its growth in the area.

#### 2.4.3 Cultural Covertypes

The cultural covertypes in the vicinity of the study area, mowed lawns and paths, paved roads, urban vacant lots and urban and industrial exterior areas provide habitat for urbanized bird and mammal species. As natural habitat communities diminish in size and quality, wildlife are forced to adapt to the more urban environment. However, urbanization is not practical for most wildlife species. This analysis acknowledges the need and use of urban area by many wildlife species, but does not consider these habitats to be impacted by the study area.

#### 2.4.4 Value of Resources to Humans

In general, fish and wildlife resources are valuable to humans for recreational and aesthetic reasons. Many sportsmen hunt, fish and consume their catches. Wildlife resources are also enjoyed by naturalists who enjoy observations of wildlife during hiking or camping. However, the value of wildlife inhabiting the study area to humans is very limited. Access to the Hudson River is restricted by the residential and business properties and fences; there is no hunting allowed within the City of Troy; access barriers restrict fishing in the Hudson River. For these reasons the value of wildlife in the study area for humans is considered to be low.

#### 2.5 OBSERVATIONS OF STUDY AREA STRESS

During the study area reconnaissance on June 17, 2004, the study area was examined for evidence of stress to biota potentially attributable to chemical residues of the study area. No signs of discolored soils, dying or dead vegetation or dead fish or wildlife species were observed on or in the vicinity of the study area.

#### 2.6 OTHER RESOURCES

#### 2.6.1 Freshwater Wetlands

A review of the National Wetland Inventory (NWI) wetlands maps for the Troy South USGS Quadrangle (USDOI, 1998) indicated that thirteen (13) NWI wetland areas are located within two miles of the study area (Figure 3). Based on a review of NYSDEC Freshwater Wetlands Maps (NYSDEC, 1985 and 1986), there are two (2) NYSDEC regulated wetlands located within two miles of the study area (Figure 4). These wetlands are identified as TS-102 and TS-2. The study area does not encompass any NYSDEC regulated wetlands or NWI wetlands.

#### 2.6.2 Significant Habitats

The NYSDEC and the USFWS were contacted for information regarding the presence of significant wildlife habitats on or within two miles of the study area. According to both NYSDEC and USFWS, no significant habitats are present on or within two miles of the study area.

## 2.6.3 Rare, Endangered or Threatened Plant and Animal Species

Information regarding the presence of state or federally listed rare, threatened or endangered plant or animal species on or within two miles of the study area was requested from the NYSDEC and the USFWS (Correspondence, Attachment B). The NYSDEC and the USFWS indicated that there were no state or federal listed or proposed endangered or threatened species are known to exist within two miles of the study area.

#### 2.7 APPLICABLE FISH AND WILDLIFE CRITERIA

#### 2.7.1 Location-Specific FWRC

Location-specific FWRC are qualitative examinations of significant features protected by the state or federal government that might be affected by current conditions at the study area or future remedial activities. Location-specific FWRC are regulations that apply to freshwater wetlands; regulated streams; navigable waterways, coastal zones; significant fish and wildlife habitats; wild, scenic and recreational rivers; and rare, endangered or threatened plant and animal species. The Coastal Zone Management and the tidal wetland FWRC were not required to be addressed because the study area is not located in a Coastal Zone and is not influenced by tides. Location-specific FWRC that may be applicable to the site include the following:

- Clean Water Act, 233 U.S.C. 1261 et seq. Sec. 404 regulates the discharge of pollutants into wetlands and other water bodies, including dredged or fill materials;
- The Freshwater Wetlands Act (Article 24 of the Environmental Conservation Law) and the Freshwater Wetlands Implementing Regulations (6 NYCRR Parts 663 and 664) are designed to protect wetlands. Only wetlands that have been mapped by the State of New York are regulated;
- Executive Order 11990, Protection of Wetlands. This order recognized the value of wetlands and directed federal agencies to minimize the degradation, destruction and loss of wetlands; and
- Endangered Species Act (87 Statute 884, as amended; 16 U.S.C. 1531 et seq.)

### 2.7.2 Chemical-Specific FWRC

Chemical-specific FWRC include the following:

- NYSDEC, Division of Water Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998;
- NYSDEC, Water Quality Regulations for Surface Waters and Groundwaters, 6 NYCRR Parts 700-705; and
- NYSDEC, Technical Guidance for Screening Contaminated Sediments, November 1993.
- NYSDEC, Determination of Soil Cleanup Objectives and Cleanup Levels TAGM 4046 (1995).

## 3.0 SUMMARY AND CONCLUSIONS

Step I of a NYSDEC FWIA was completed by C. T. Male for the remaining parcels within the South Troy Industrial Park in Troy, New York. The FWIA included portions of the site comprising the former Burden Iron Works disposal area, where historic discharge of slag, cinders and ash, and other materials are filled to comprise the current surface grade.

The Step I site description has indicated that the study area consists of an approximately 20.89-acre portion of the former Republic Steel Property. The site itself consists of an open urban vacant lot with sparse vegetation and the site is bordered to

the north by an asphalt patch plant, to the west by the Hudson River and to the east and south by industrial and residential properties.

In general, the value of the fish and wildlife resources located within the study area is low. Industrial and residential areas have eliminated much of the natural habitat in the area and have replaced it with urban wildlife habitats consisting primarily of mowed lawns with trees, paved roads, parking lots, landfills and urban structure exteriors. Overall, the covertypes in the study area have been heavily influenced by urbanization.

The value of fish and wildlife resources to humans is very limited within the study area. Access to the Hudson River is restricted by the residential and business properties and fences; there is no hunting allowed within the City of Troy. As a result, the value of these resources to humans was determined to be low.

No evidence of stress resulting from chemical residues was observed within the study area. As a result, it was determined that fish and wildlife resources within the study area are most likely not adversely affected.

This completes Step I of the Fish and Wildlife Impact Analysis. Through this investigation, it has been determined that no further steps need to be taken in the Fish and Wildlife Impact Analysis.

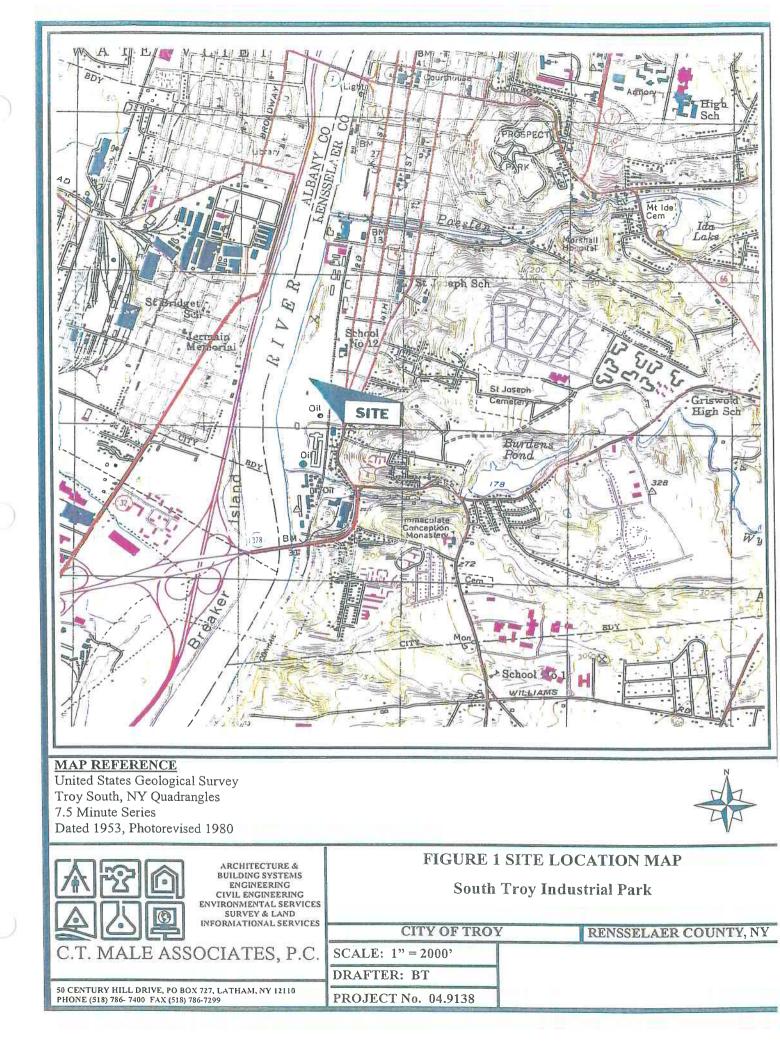
# C.T. MALE ASSOCIATES, P.C.

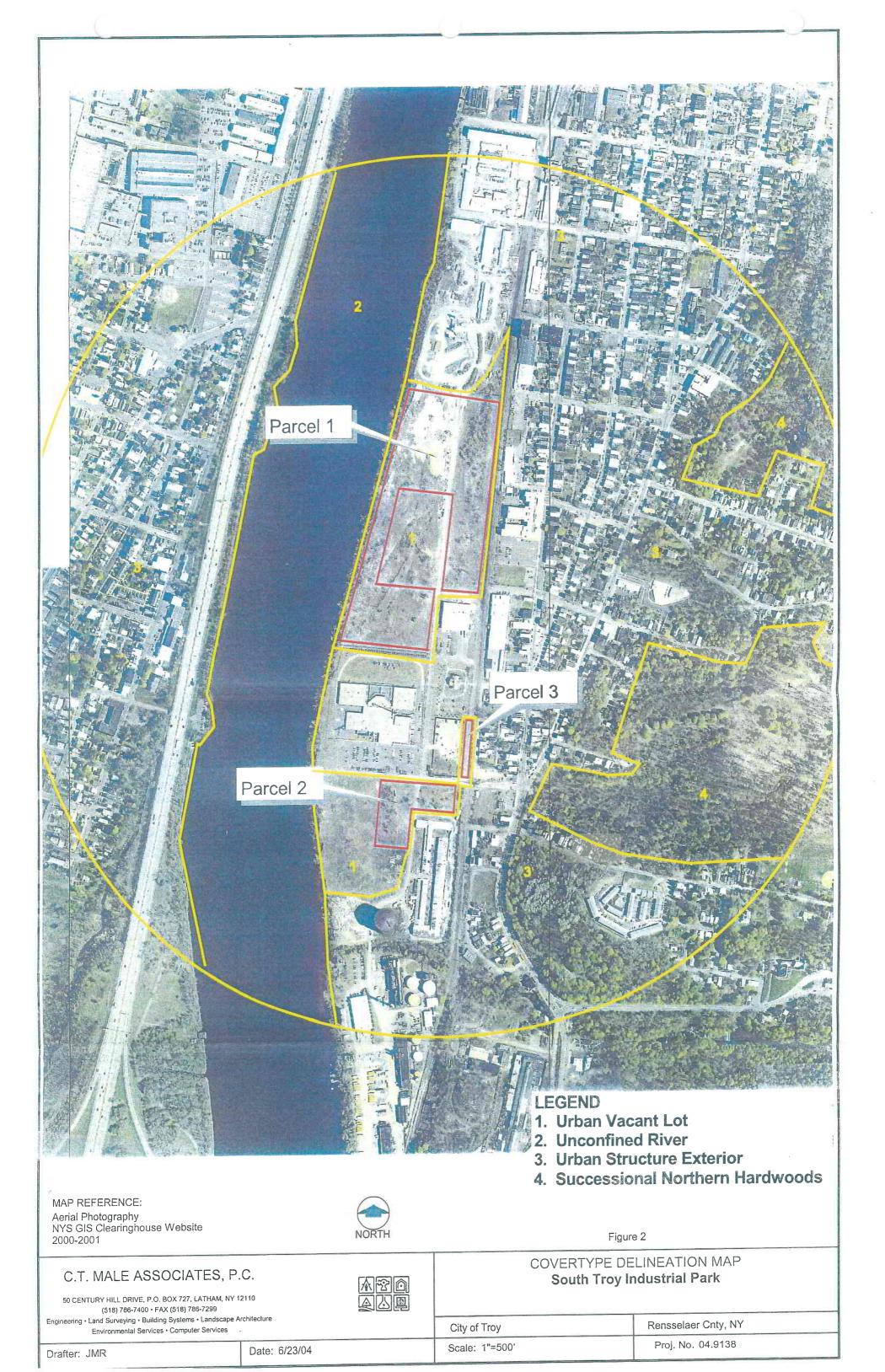
#### 4.0 REFERENCES

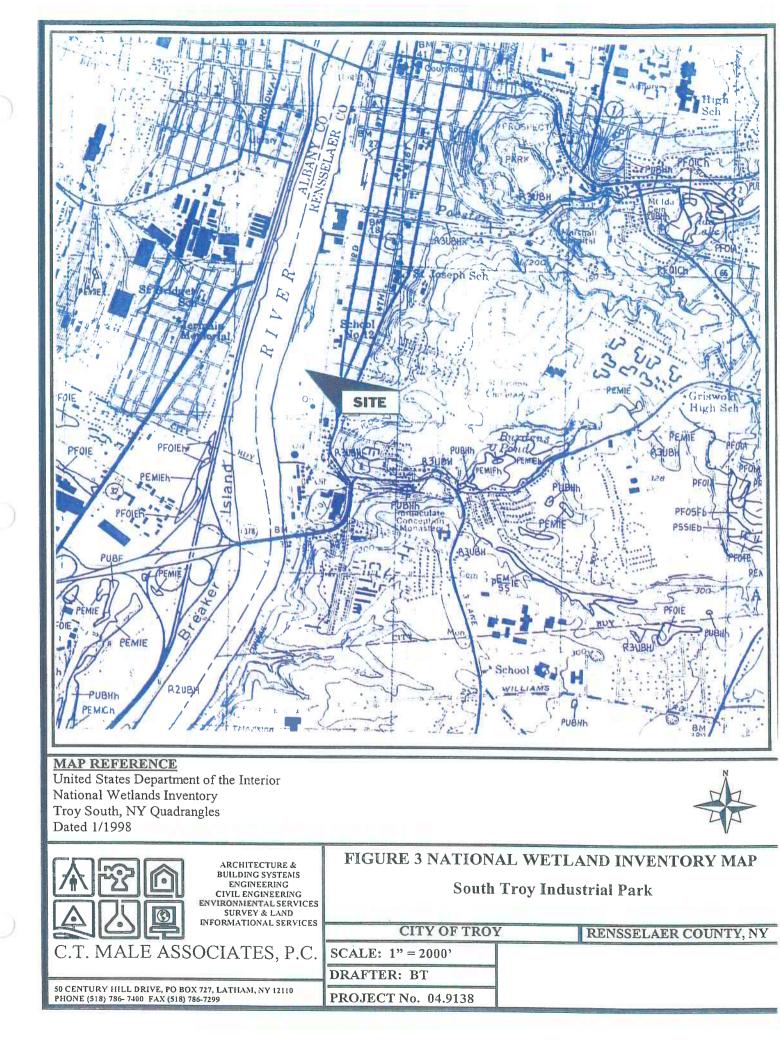
Andrle, R. F.; Carroll, F. R. 1988. *The Atlas of Breeding Birds In New York State*. Cornell University Press.

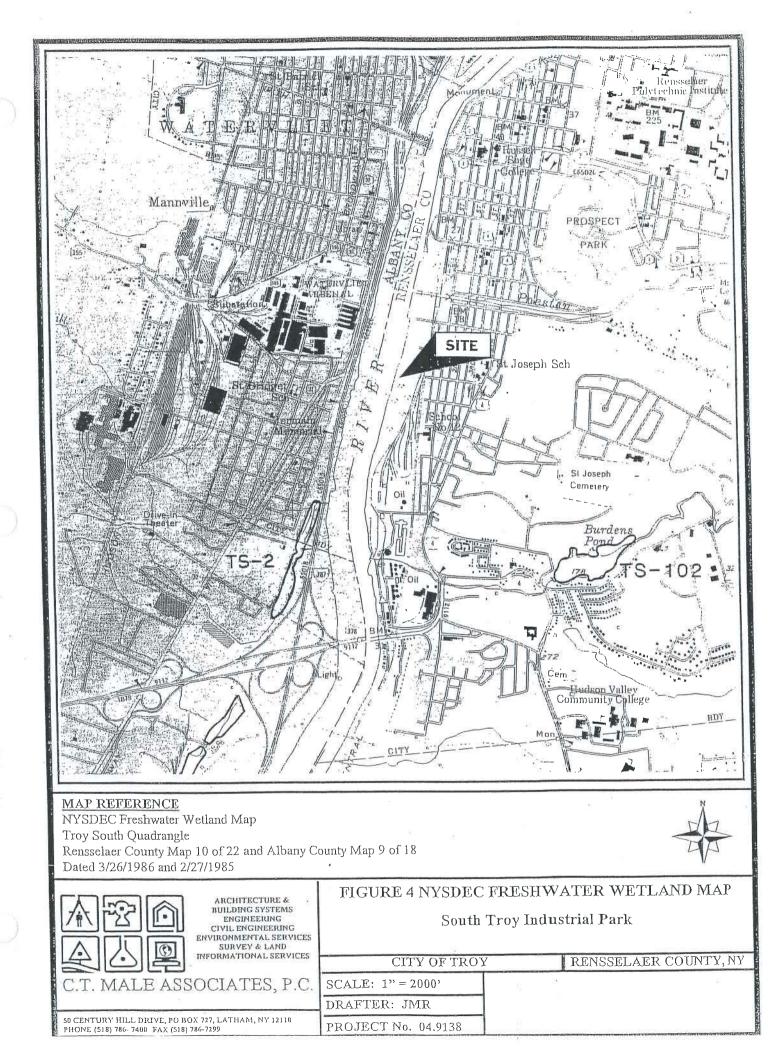
Behler, J. L.; King, F. W. 1998. National Audobon Society Field Guide to North American Reptiles and Amphibians. Knopf.

Edinger, G.J., D.J. Evans, S. Gebauer, T.G. Howard, D.M. Hunt, and A.M. Olivero (editors). 2002. Ecological Communities of New York State. Second Edition. A revised and expanded edition of Carol Reschke's Ecological Communities of New York State. (Draft for review). New York Natural Heritage Program, New York State Department of Environmental Conservation, Albany, NY.


NYSDEC. October 1994. Division of Fish and Wildlife, Fish and Wildlife Analysis, For Inactive Hazardous Waste Sites (FWIA).


Page, L. M.; Burr, B. M. 1991. Peterson Field Guides, Freshwater Fishes. Houghton Mifflin Company.


- 9 -


Peterson, R. T. 1980. Peterson Field Guides, Eastern Birds. Houghton Mifflin Company.

# FIGURES









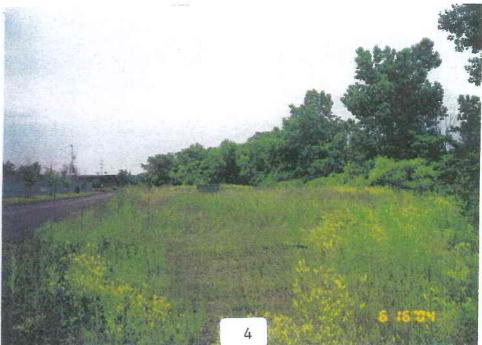
# ATTACHMENT A Site Photographs

# PHOTO LOG

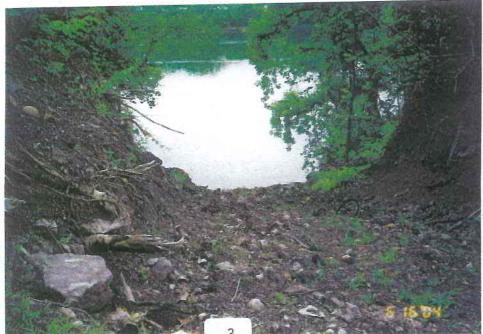
# SOUTH TROY INDUSTRIAL PARK

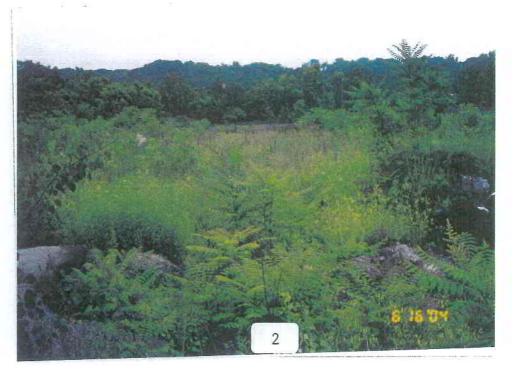
# TROY, NY

## C.T. Male Project No. 04.9138


# 6/17/04

DESCRIPTION		
View north of top of berm along the Hudson River, Parcel 1		
View east of open field in Parcel 1		
View west of debris slope along the Hudson River, Parcel 1		
View north of Parcel 2, east of East Industrial Park Road		
View southeast of debris piles in Parcel 2		
View northeast of open field in Parcel 2		
View south of forested area in Parcel 2		
View south of Parcel 3		
	<ul> <li>View north of top of berm along the Hudson River, Parcel 1</li> <li>View east of open field in Parcel 1</li> <li>View west of debris slope along the Hudson River, Parcel 1</li> <li>View north of Parcel 2, east of East Industrial Park Road</li> <li>View southeast of debris piles in Parcel 2</li> <li>View northeast of open field in Parcel 2</li> <li>View south of forested area in Parcel 2</li> </ul>	
















# C.T. MALE ASSOCIATES, P.C.

# ATTACHMENT B Correspondence

# New York State Department of Environmental Conservation

Division of Environmental Remediation Bureau of Central Remedial Action, Room 228 50 Wolf Road, Albany, New York 12233-7010 Phone: (518) 457-5677 • FAX: (518) 457-7925 Website: www.dec.state.ny.us



#### July 11, 2000

Kirk Moline, Project Manager C.T. Male Associates, P.C. 50 Century Hill Drive P. O. Box 727 Latham, NY 12110-0727

RE: Fish and Wildlife Impact Analysis for Subdivision of Lot 2 Site South Troy Industrial Park VCP

The Fish and Wildlife Impact Analysis has been reviewed by Paul Carella of the Division of Fish, Wildlife, and Marine Resources. It appears that the document has been complete up to step I and not up to step II B as was directed in our April 3, 2000 letter. In particular, the pathway analysis (II A) and criteria-specific analysis (II B) must be addressed.

From Mr. Carella's memo, the following comments are offered:

Based on the information presented in the document, the site exists in an urban area with little value as habitat for terrestrial wildlife. Since the site is located on the Hudson River, potential impacts to the river may exist from past use of the site which may have resulted in the contamination of soils and/or groundwater. A discussion of ecological risk for the site must include a presentation of known or possible site contamination resulting from historical use.

The letter does not satisfy the requirement for a discussion of ecological risk. Without knowledge of site contamination and site history, no determination can be made concerning potential impacts to the Hudson River.

Please respond to these issues as part of the final report for this project. If you have further questions, feel free to call me at the above number.

Very truly yours,

Ralph T. Keating Environmental Engineer 2 CC.

D. Smith E. Hamilton P. Carella

4

RK/s

C.T. MALE ASSOCIATES, P.C.

50 Century Hill Drive, P.O. Box 727, Latham, New York 12110-0727 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com

May 17, 2000

Ms. Jean Petrusiak NY Natural Heritage Program New York State Department of Environmental Conservation Wildlife Resources Center Information Services 700 Troy-Schenectady Road Latham, New York 12110-2400

Re: Threatened and Endangered species file review request Subdivision of Lot 2; South Troy Industrial Park C.T. Male Project No. 00.6209

Dear Ms. Petrusiak:

C.T. Male Associates, P.C. (C.T. Male) is working with the Rensselaer County Industrial Development Agency (IDA) on a Site Remediation Plan pursuant to a New York State Voluntary Cleanup Program Application. The site is a 7 acre parcel of land to be subdivided from Lot 2 within the South Troy Industrial Park located in the City of Troy, Rensselaer County, New York (refer to site location map attached). Please provide us with information on known occurrences of threatened or endangered organisms or habitats on and within 2 miles of this site.

Thank you very much for your time and if you have any further questions, please do not hesitate to contact me or Kirk Moline at (518) 786-7400.

Sincerely,

C.T. MALE ASSOCIATES, P.C menin

Karen M. Hummel Environmental Biologist

C:

Robert L. Pasinella, Director (Rensselaer County IDA) Kirk Moline (C.T. Male)

k:\projects\0006209\env\I dec t&e 5 17 00.doc

# C.T. MALE ASSOCIATES, P.C.

50 Century Hll Drive, P.O. Box 727, Latham, New York 12110-0727 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com



May 17, 2000

Mr. Mark Clough United States Fish and Wildlife Service 3817 Luker road Cortland, New York 13045

Re: Threatened and Endangered species file review request Subdivision of Lot 2; South Troy Industrial Park C.T. Male Project No. 00.6209

Dear Mr. Clough:

C.T. Male Associates, P.C. (C.T. Male) is working with the Rensselaer County Industrial Development Agency (IDA) on a Site Remediation Plan pursuant to a New York State Voluntary Cleanup Program Application. The site is a 7 acre parcel of land to be subdivided from Lot 2 within the South Troy Industrial Park located in the City of Troy, Rensselaer County, New York (refer to site location map attached). Please provide us with information on known occurrences of threatened or endangered organisms or habitats on and within 2 miles of this site.

Thank you very much for your time and if you have any further questions, please do not hesitate to contact me or Kirk Moline at (518) 786-7400.

Sincerely,

C.T. MALE ASSOCIATES, P.C.

oum on Munul.

Karen M. Hummel Environmental Biologist

C:

Robert L. Pasinella, Director (Rensselaer County IDA) Kirk Moline (C.T. Male)

k:\projects\0006209\env\1fws t&e 5 17 00.doc

# C.T. MALE ASSOCIATES, P.C.

50 Century Hill Drive, P.O. Box 727, Latham, New York 12110-0727 518.786.7400 FAX 518.786.7299 ctmale@ctmale.com

May 17, 2000

Mr. Stanley Gorski Habitat and Protected Resources Division Area Coordinator National Marine Fisheries Service James J. Howard Marine Sciences Laboratory 74 Magruder Road Highlands, NJ 07732

Re: Threatened and endangered marine species file review request Subdivision of Lot 2; South Troy Industrial Park C.T. Male Project No. 00.6209

Dear Mr. Gorski:

C.T. Male Associates, P.C. (C.T. Male) is working with the Rensselaer County Industrial Development Agency (IDA) on a Site Remediation Plan pursuant to a New York State Voluntary Cleanup Program Application. The site is a 7 acre parcel of land to be subdivided from Lot 2 within the South Troy Industrial Park located in the City of Troy, Rensselaer County, New York (refer to site location map attached). Please provide us with information on federally listed threatened or endangered marine species that may be found near the project area.

Thank you very much for your time and if you have any further questions, please do not hesitate to contact me or Kirk Moline at (518) 786-7400.

Sincerely,

C.T. MALE ASSOCIATES. P.C

Karen M. Hummel Environmental Biologist

c. Robert L. Pasinella, Director (Rensselaer County IDA) Kirk Moline (C.T. Male)

k:\projects\0006209\env\1 nmfs 05 17 00.doc

# New York State Department of Environmental Conservation Division of Fish, Wildlife & Marine Resources Wildlife Resources Center - New York Natural Heritage Program 700 Troy-Schenectady Road, Latham, New York 12110-2400 Phone: (518) 783-3932 EAX: (518) 783-3916

CCI-KITK Moline (CTM) Robert Pasinelli (Rereselaer IDA)

John P. Cahill Commissioner

June 2, 2000

Karen M Hummel C T Male Associates 50 Century Hill Drive Latham, NY 12110-0727

Terral P  $(\mathbf{\hat{F}})$ JUN O man C. T. MALE ASSOCIATES

Dear Ms. Hummel:

In response to your recent request, we have reviewed the New York Natural Heritage Program databases with respect to the proposed Subdivision of Lot 2; South Troy Industrial Park, site as indicated on the map you provided, including a 2 mile perimeter, located in the City of Troy, Rensselaer County.

We have no records of <u>known</u> occurrences of rare or state-listed animals or plants, significant natural communities, or other significant habitats, on or in the immediate vicinity of your site.

The absence of data does not mean, however, that rare or state-listed species, natural **commu**nities or other significant habitats do not exist on or adjacent to the proposed site, but rather that our files currently do not contain any information which indicates their presence. For most sites, comprehensive field surveys have not been conducted. For these reasons, we cannot provide a definitive statement on the presence or absence of rare or state-listed species, or of significant natural communities. This information should <u>not</u> be substituted for <u>on-site</u> surveys that may be required for environmental assessment.

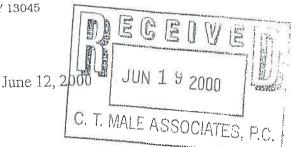
Our databases are continually growing as records are added and updated. If this proposed project is still under development one year from now, we recommend that you contact us again so that we may update this response with the most current information.

This response applies only to known occurrences of rare or state-listed animals, and plants, significant natural communities, and other significant habitats. For information regarding regulated areas or permits that may be required under state law (e.g., <u>regulated</u> <u>wetlands</u>), please contact the appropriate NYS DEC Regional Office, Division of Environmental Permits, at the enclosed address.

Sincerely. Teresa Mackey, Information Services

Teresa Mackey, Information Service NY Natural Heritage Program

Enc. cc:


Reg. 4, Regional Mgr. Reg. 4, Fisheries Mgr. NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF ENVIRONMENTAL PERMITS REGIONAL OFFICES

	1 abroit of the		·
REGION	COUNTIES	NAME	ADDRESS AND PHONE NO.
Region 1	Nassau Suffolk	John Pavacic Permit Administrator	Loop Road, Bldg. 40 SUNY Stony Brook, NY 11790-2356 (516) 444-0365
Region 2	New York City	Charles deQuillfeldt Permit Administrator	Hunters Point Plaza 4740 21st Street Long Island City, NY 11101-5407 (718) 482-4997
Region 3	Dutchess Orange Putnam Rockland, Sullivan Ulster, Westcheste		21 South Putt Corners Road New Paltz, NY 12561-1696 (914) 256-3059
Region 4	Albany Columbia Delaware	William J. Clarke Permit Administrator	1150 N. Westcott Road Schenectady, NY 12306-2014 (518) 357-2234
12	Greene, Montgome Rensselaer, Schen		
Region 5	Clinton Essex Franklin Fulton, Hamilton	Richard Wild Permit Administrator	Route 86 Ray Brook, NY 12977 (518) 897-1234
70	Saratoga, Warren	, Washington	
Region 6	Herkimer Jefferson Lewis Oneida, St. Lawr	Randy Vaas Permit Administrator ence	State Office Building 317 Washington Street Watertown, NY 13601 (315) 785-2246
Region 7	Broome Cayuga	Ralph Manna, Jr. Permit Administrator	615 Erie Blvd. West Syracuse, NY 13204-2400 (315) 426-7439
	Chenango Cortland, Madis Oswego, Tioga,		(313) 420 (435
Region 8	Chemung Genesee Livingston Monroe, Ontario Schuyler, Senec Wayne, Yates		6274 East Avon-Lima Road Avon, NY 14414 (716) 226-2466
Region 9	Allegany Cattaraugus Chautauqua	Steven Doleski Permit Administrator	270 Michigan Avenue Buffalo, NY 14203-2999 (716) 851-7165
¥0	Erie, Niagara, T	Wyoming	1/2000



# United States Department of the Interior

FISH AND WILDLIFE SERVICE 3817 LUKER ROAD CORTLAND, NY 13045



Ms. Karen M. Hummel Environmental Biologist C.T. Male Associates, P.C. P.O. Box 727 Latham, NY 12110-0727

Attention: Mr. Kirk Moline

Dear Ms. Hummel:

This responds to your letter of May 17, 2000, requesting information on the presence of endangered or threatened species in the vicinity of the South Troy Industrial Park Subdivision of Lot 2 Site Remediation in the City of Troy, Rensselaer County, New York.

Except for occasional transient individuals, no Federally listed or proposed endangered or threatened species under our jurisdiction are known to exist in the project impact area. Therefore, no Biological Assessment or further Section 7 consultation under the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) is required with the U.S. Fish and Wildlife Service (Service). Should project plans change, or if additional information on listed or proposed species becomes available, this determination may be reconsidered.

The above comments pertaining to endangered species under our jurisdiction are provided pursuant to the Endangered Species Act. This response does not preclude additional Service comments under the Fish and Wildlife Coordination Act or other legislation.

For additional information on fish and wildlife resources or State-listed species, we suggest you contact:

New York State Department of Environmental Conservation Region 4 1150 N. Westcott Road Schenectady, NY 12306 (518) 357-2066 New York State Department of Environmental Conservation Wildlife Resources Center - Information Services New York Natural Heritage Program 700 Troy-Schenectady Road Latham, NY 12110-2400 (518) 783-3932

National Wetlands Inventory (NWI) maps may or may not be available for the project area. However, while the NWI maps are reasonably accurate, they should not be used in lieu of field surveys for determining the presence of wetlands or delineating wetland boundaries for Federal regulatory purposes. Copies of specific NWI maps can be obtained from:

Cornell Institute for Resource Information Systems 302 Rice Hall Cornell University Ithaca, NY 14853 (607) 255-4864

Work in certain waters and wetlands of the United States may require a permit from the U.S. Army Corps of Engineers (Corps). If a permit is required, in reviewing the application pursuant to the Fish and Wildlife Coordination Act, the Service may concur, with or without stipulations, or recommend denial of the permit depending upon the potential adverse impacts on fish and wildlife resources associated with project implementation. The need for a Corps permit may be determined by contacting Mr. Joseph Seebode, Chief, Regulatory Branch, U.S. Army Corps of Engineers, 26 Federal Plaza, New York, NY 10278 (telephone: [212] 264-3996).

If you require additional information please contact Michael Stoll at (607) 753-9334.

Sincerely, Mark W. Clough ACTING FOR

David A. Stilwell Field Supervisor

cc: NYSDEC, Schenectady, NY (Environmental Permits) NYSDEC, Latham, NY COE, New York, NY

# EXHIBIT 5

# ENVIRONMENTAL INVESTIGATIONS OF ADJOINING LANDS BY OTHERS



WASTE DISPOSAL • TANK SERVICES • EMERGENCY RESPONSE • REMEDIATION OPERATIONS CENTER Tel: 518-266-0542 Fax: 518-266-1296

#### SUBSURFACE INVESTIGATION REPORT

Site Location:

City of Troy: Former Sperry Warehouse Site King Street City of Troy Rensselaer County, New York Spill No: 98-15284

Prepared For:

King Fuels, Inc. King Road Troy, New York 12081

Prepared By:

North American Environmental, Inc. 9 Monroe Street Troy, New York 12180 (518) 226-0542

May, 1999

### City of Troy: Former Sperry Warehouse Site King Street Troy, New York

### TABLE OF CONTENTS

1.0 Introd	uction	Page 3		
1.0 110.00		-		
2.0 Object	2.0 Objectives			
3.0 Site Description				
4.0 Scope	of Work	4		
4.1	Soil Borings	4		
4.2	Soil Sample Collection	5		
4.3	Monitoring Well Installation and Construction	5		
4.4	Groundwater Sampling	6		
5 0 Regult	s of Investigation	6		
5.1	Regional Geology/Hydrology	6		
5.2	Site Geology/Hydrology	7		
5.3	Field Screening Results	8		
5.4	Soil Analytical Results	9		
5.5	Groundwater Analytical Results	10		
6.0 Conch	usions	10		
Table 2 - N	Soil Sample Analytical Results: March 25–30, 1999 Metals in Soil Samples: Analytical Results: March 25 Water Sample Analytical Results: March 25-30, 1999			
FIGURES		44 <u>-</u>		
Figure 1				
Figure 2	Site Plan with Well & Boring Locations			
APPENDI	CES			
Appendix A				
Appendix 1	B Laboratory Analytical Results			

f:\phaseii\kingmain.doc

#### 1.0 INTRODUCTION

Between March 25 and 30, 1999, North American Environmental Services (NAES), Inc, under contract to King Fuels, Inc, performed a subsurface investigation to assess the soil and groundwater quality at the City of Troy property located along the east side of King Street for the purposes of a property transaction. The location of the site is shown in Figure 1. A site plan, showing the approximate location of the buildings, roads, and borings/monitoring wells is enclosed as Figure 2.

#### 2.0 OBJECTIVES

The objectives of the site investigation were the following:

- to characterize the soil beneath the site;
- to determine if there is any petroleum contamination in the soil;
- to determine if there is any petroleum contamination in the groundwater;
- and, if so, to define and characterize it within the limits of the scope of this investigation.

#### 3.0 SITE DESCRIPTION

The site, which is located on the east side of King Street, south of Main Street, is a large relatively level plot of land with two buildings. Various companies have used the buildings over the years including an iron works, a package carrier company, a storage company, and a wood working company. The land around the buildings is unkept lawn or field with some brush and small trees, outside storage areas, or parking and access ways. The area along the Wynantskill Creek, which borders the southern portion of the property is forested. Water and sewage is provided to the property by the City of Troy.

#### 4.0 SCOPE OF WORK

The objectives of the site investigation were the following:

- Installation of seven soil borings around the property;
- Soil sample collection every five feet using a split spoon sampler. Between the split spoon sampling, soil samples were collected from the drill cuttings;
- Field screening of soil samples collected during drilling to assess the level of petroleum contamination in the soil;
- Installation of wells at contaminated boring locations at the approval of the City of Troy;
- Collection of water samples from each boring location;
- Submission of soil and water samples to the laboratory for analysis
- Preparation of report summarizing the methods used, the data collected, and the results and conclusions.

#### 4.1 SOIL BORINGS

The subsurface investigation was started on March 25 and completed on March 30, 1999. Seven test borings were drilled at the site utilizing a trailer mounted RAM hollow stem auger drill rig. Soil samples were collected every five feet by augering to a discreet depth, withdrawing the plug from the interior of the augers and inserting a hollow, two foot long split spoon sampler within the augers. The split spoon was driven into the undisturbed soil beneath the lead auger using a 140 pound hammer falling a vertical distance of 30 inches. The split spoon was withdrawn and opened and each soil sample was measured and characterized. Part of each sample was deposited into a resealable plastic bag half full for field screening. The rest of the sample filled glass jars for later possible submission to the laboratory for analysis.

#### 4.2 SOIL SAMPLE COLLECTION

The soil exhibiting the highest PID readings from each boring was selected for laboratory analysis. In addition, if elevated levels of VOCs were recorded in the soil, a sample of the soil beneath the "hot" sample was also collected to document the depth of the contamination. Since all of the PID readings of the soil collected from B-4, B-5, and B-6 were less than 3.5 ppm, only one sample was collected from each of these three borings.

Each of the soil samples were collected in clean, 8-ounce Teflon sealed jars and put on ice until submitted under chain-of-custody to SciLab of Albany, located at 15 Century Hill Drive in Latham, New York. Soil samples were analyzed for VOCs using EPA Method 8021, semi-volatile organic compounds (SVOCs), and eight RCRA metals according to the New York State "STARS Memo" #1 guidelines. The laboratory report of the analytical results is enclosed in Appendix B.

#### 4.3 MONITORING WELL INSTALLATION AND CONSTRUCTION

The soil borings were installed to 17 to 20 feet below grade. Monitoring wells were constructed in six of the seven borings. No monitoring well was installed in B-5 because there was no indication of contamination in the soil or groundwater at the time of the drilling, and a well had been installed by others just southwest of the location of B-5.

The lower ten to 15 feet of each well was constructed of 0.01" machine slotted Schedule 40 PVC well screen. The top portion of each well was constructed with threaded solid

Schedule 40 PVC well riser. The annular space between the borehole wall and the well was backfilled with No. 0 sand as the augers were withdrawn from the borehole. The sand filter was installed to approximately one foot above the top of the well screen, and then sealed with approximately one to two feet of bentonite. The remainder of the borehole was backfilled with clean, native backfill. The well was completed with a standpipe grouted in place to protect the PVC pipe extending above grade. After construction of the wells, they were developed using a manual surge and bail technique with a dedicated bailer until visual clarity was attained. The development was performed to remove excess sediment from the well and to insure adequate hydraulic conductivity between the newly installed well and the native formation.

#### 4.4 GROUNDWATER SAMPLING

Using standard sampling techniques, a groundwater sample was collected for analyses from each of the borings after purging each well of three to five well volumes. The groundwater samples were collected in three, 40 ml. Teflon capped vials, preserved with HCl, and stored on ice until transported to SciLab of Albany. The groundwater samples were analyzed for VOCs using EPA Methods 8021 and 8270.

#### 5.0 RESULTS OF INVESTIGATION

#### 5.1 REGIONAL GEOLOGY/HYDROLOGY

According to the "Roadside Geology of New York" (Van Diver, 1985), the bedrock in the vicinity of Troy consists of Paleozoic sedimentary rocks, primarily shales, siltstones and sandstones. No bedrock was encountered during the drilling at the site.

The nearest surface water is the Wynantskill Creek, which borders the southern boundary of the property, and the Hudson River to which it discharges, which is approximately 600 feet east of the site.

#### 5.2 SITE GEOLOGY/HYDROLOGY

Based on the information gathered during the subsurface investigation, the site is covered by a black gravel fill with cinders, chunks of iron ores, cobbles, slag, cinders, wood fragments, foundry sand, pieces of fire bricks and red bricks, ashes, and some silt. Composition varies slightly around the site. A heavy creosote odor was found in the fill at MW-7. A fuel oil odor was observed at the MW-1 location. Brown or gray clay was found at depths of between 14 and 17 feet at the site, with the exception of the clay found at a depth of ten feet at MW-1 and no clay found within the first twenty feet at MW-4.

Groundwater was reported at depths of between ten and 12 feet below grade throughout most of the site during drilling, with the exception of the groundwater found in the boring at MW-3 at 5.5 feet below grade and in the boring at MW-2 at seven feet below grade. It is assumed that groundwater is moving toward and with the river resulting in a southwesterly flow. The westerly flowing Wynantskill Creek effects the groundwater movement along the south boundary of the site, where it is located.

#### 5.3 FIELD SCREENING RESULTS

During the subsurface investigation, after the characteristics of each soil sample collected were recorded, a portion of each recovered soil sample was deposited into resealable bags. Vapors from the soil were allowed to collect in the headspace of the bag. The probe of a 10.2 eV photoionization detector (PID) calibrated to a 100 ppm hydrocarbon standard was inserted into the headspace vapors within the bag, and the PID was used to screen the soil samples for total volatile organic compounds (VOCs).

The results of the headspace analysis performed in the field indicated that PID readings of soil vapors from the soil samples collected from soil borings indicated on the map as MW- 4, B-5, and MW-6 were all less than 4 ppm.

Elevated PID readings (>5 ppm) were reported in the remaining borings as follows:

Boring No:	Depth	PID Reading
MW-1	10-12'	88 ppm
	15-17'	14.6 ppm
	17-20'	27 ppm
MW-2	0-17'	15 – 26 ppm (26 ppm at 10-12')
MW-3	0-17'	14 – 113 ppm (113 ppm at 10-12')
MW-7	0-17'	0.9 – 48.8 ppm (48.8 ppm at 15-17');
		below 5 ppm at 5-10', 12-15', & 17-20')

The results of the soil characterization and the headspace analysis are recorded on the soil boring logs, which are enclosed in Appendix A.

#### 5.4 SOIL ANALYTICAL RESULTS

Analytical results indicated that no petroleum compounds were detected above the laboratory method detection levels in the soil samples collected from B-2 at depths of 10-17 feet below grade, B-3 at depths of 16-17 feet below grade, B-4 at depths of 10-15 feet below grade, B-5 at depth of 10-15 feet below grade, or from B-6 at depths of 15-17 feet below grade.

Several petroleum compounds were detected above their respective New York State "STARS Memo #1" guidance values in the soil samples collected from B-1 at depths of 10-20 feet below grade, B-3 at depths of 7-10 feet below grade and from B-7 at depths of 15-18 feet below grade. Lighter volatiles (benzene, toluene, ethylbenzene, and xylenes or BTEX) were reported in the soil samples collected from B-7 from 15-18 feet below grade. Heavier volatiles (isopropylbenzene to naphthalene) were reported in the soil samples collected from 10 –12 feet below grade, from B-3 from 7-10 feet below grade, and at B-7 from 15-17 feet below grade. Semivolatiles were reported in the soil from B-1 at 17-20 feet below grade, and from B-7 at 15 to 18 feet below grade.

In addition, the soil samples submitted were tested for the eight RCRA metals. The results indicated possible elevated levels of chromium at each boring location. Elevated arsenic levels were reported at all locations except B-1 at a depth of 10 - 12 feet below grade; and at B-5 at a depth of 15 - 17 feet below grade. Possible elevated levels of cadmium were reported at B-4 at a depth of 10 to 15 feet below grade.

The laboratory results of the soil sample analyses are summarized in Tables 1 and 2. The laboratory report is enclosed in Appendix B.

#### 5.5 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from each of the seven borings and analyzed for VOCs and MtBE using EPA Methods 8021 and 8270. Analytical results indicated that none of the petroleum compounds tested for were detected above the Ambient Ground water Quality Guideline Values in the groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, and MW-6. Slightly elevated levels of benzene, above the guidance value of 0.7 ppb, were reported in the groundwater collected from MW-4 (0.8 ppb) and B-5 (5 ppb). Elevated levels of several petroleum hydrocarbons were reported in the groundwater collected from MW-7. The laboratory results of the groundwater sample analyses are summarized in Table 3. The laboratory report is enclosed in Appendix B.

#### 6.0 CONCLUSIONS

Based upon the data collected during the field work and results of the analyses, North American Environmental Services, Inc. has drawn the following conclusions.

1) Groundwater flow is assumed to be to the south, and west, toward and with the Hudson River. The Wynantskill Creek effects the groundwater movement on the site along the southern boundary, where it is located. It also is assumed to effect groundwater movement to the south and west. The depth to groundwater at the site was generally found to be ten to 12 feet below grade during the drilling, with the exception of MW-2, where it was reported at seven feet below grade and at MW-3, where groundwater was reported at 5.5 feet below grade.

- 2) Soil at the site is a black gravel fill with cinders, chunks of iron ores, cobbles, slag, cinders, wood fragments, foundry sand, pieces of fire bricks and red bricks, ashes, and some silt. Composition varies slightly around the site. Brown or gray clay was found at depths of between 14 and 17 feet at the site, with the exception of the clay found at a depth of ten feet at MW-1 and no clay found within the first twenty feet at MW-4.
- 3) Several petroleum compounds were detected above their respective New York State "STARS Memo #1" guidance values in the soil samples collected from B-1 at depths of 10-20', B-3 at depths of 7-10' and from B-7 at depths of 15-18'. Soil collected from B-1 and B-7 was contaminated to depths of 20 and 18 feet respectively. Soil collected from B-3 was contaminated to a depth of between 10 and 16 feet below grade. At a depth of 16 feet, the soil was not contaminated with petroleum hydrocarbons at B-3.
- 4) Possible elevated levels of arsenic and chromium were reported in the majority of the soil collected at the site. Cadmium was also reported at slightly elevated levels (2 ppm) in the soil collected from B-4.
- 5) Slightly elevated levels of benzene, above the guidance value of 0.7 ppb, were reported in the groundwater collected from MW-4 (0.8 ppb) and B-5 (5 ppb). Elevated levels of several petroleum hydrocarbons were reported in the groundwater collected from MW-7.

11

# TABLES

Table 1 - Soil Sample Analytical Results: March 25–30, 1999 Table 2 - Metals in Soil Samples: Analytical Results: March 25–30, 1999 Table 3 – Water Sample Analytical Results: March 25-30, 1999

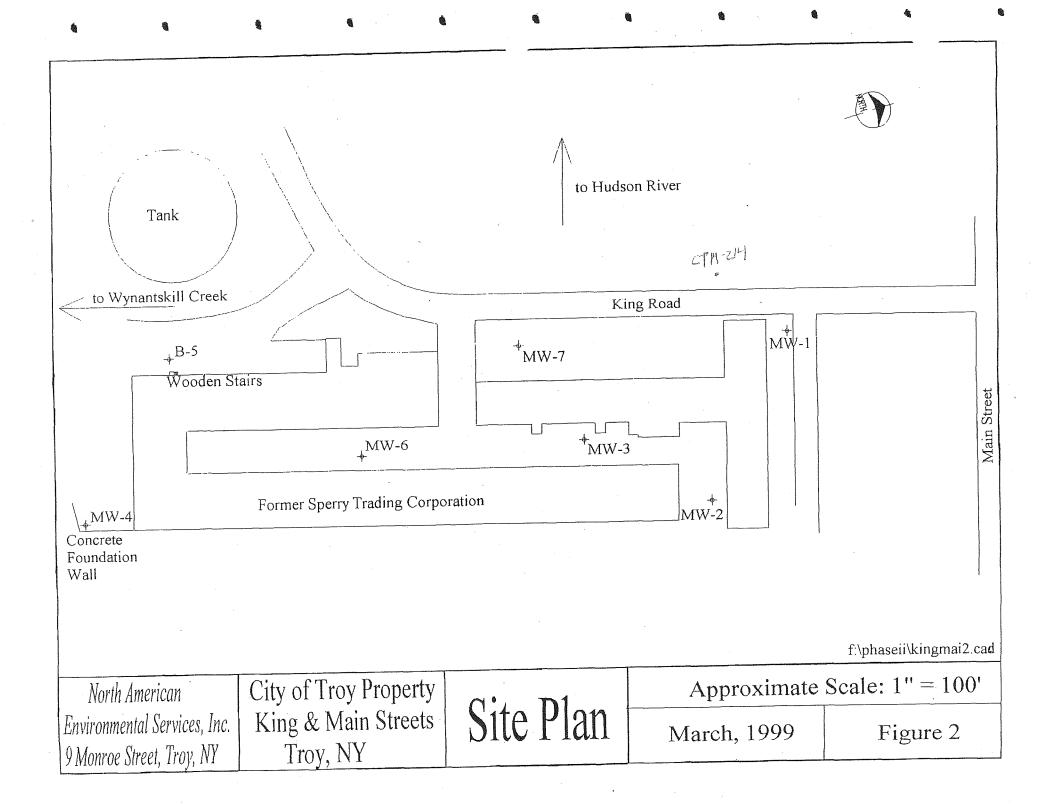



TABLE 1

Soil Sample Analytical Results (ppb)

City of Troy: Former Sperry Warehouse

King Street, Troy, New York

			·	March 2	5 - 30, 199	9				f:\kingmain.xl	s sheet 1	
Parameter	Guidance	B-1	₿-1	B-2	B-2	B-3	B-3	B-4	B-5	B-6	B-7	B-7
, ulumotor	Value *	10-12'	17-20'	10-15'	15-17'	7-10'	16-17'	10-15'	15-17'	15-17'	15-17'	17-18'
benezene	14	0.7	BDL	BDL	BDL	9	BDL	BDL	BDL	' BDL	780	92
toluene	100	2	BDL	BDL	BDL	28	BDL	BDL	BDL	BDL	1,100	110
ethylbenzene	100	BDL	BDL	BDL	BDL	20	BDL	BDL	BDL	BDL	130	24
o-,m-,p-xylenes	100 ea	44	BDL	BDL	2	129	BDL	BDL	2	BDL	2,700	290
Total BTEX		46.7	0	0	2	186	0	0	2	0	4,710	516
isopropylbenzene	100	17	BDL	BDL	BDL	50	BDL	BDL	BDL	BDL	<134	3
n-propylbenzene	100	140	BDL	3	BDL	370	BDL	BDL	BDL	BDL	490	8
1,3,5 trimethylbenzene	100	94	BDL	BDL	BDL	<12	BDL	BDL	BDL	BDL	690	25
tert-butylbenzene	100	160	BDL	BDL	BDL	370	BDL	BDL	BDL	BDL	<134	7
1,2,4 trimethylbenzene	100	70	BDL	BDL	BDL'	<12	BDL	BDL	BDL	BDL	1,400	58
sec-butylbenzene	100	230	BDL	BDL	BDL	83	BDL	BDL	BDL	BDL	330	5
p-cymene	100	<10	BDL	BDL	BDL	110	BDL	BDL	BDL	BDL	<134	2
n-butylbenzene	100	420	2	BDL	BDL	140	BDL	BDL	BDL	BDL	830	15
naphthalene	200	430	BDL	12	BDL	470	BDL	BDL	BDL	BDL	85,000	4,200
Total VOCs		1,607.7	2	15	2	1,779	0	0	2 .	0	93,450	4,839
	400	<220	<220	<220	<240	<200	<210	<180	<220	<220	240	<220
acenaphthene		300	<220	<220	<240	<200	<210	<180	<220	<220	1,300	690
fluorene	1,000	590	750	<220	<240	<200	<210	<180	<220	<220	3,200	2,600
phenanthrene	1,000	<220	280	<220	<240	<200	<210	<180	<220	<220	1,300	680
anthracene	1,000 1,000	<220	870	<220	<240	<200	<210	<180	<220	<220	1,800	1,100
fluoranthene pyrene	1,000	<220	690	<220	<240	<200	220	<180	<220	<220	2,500	1,400
chrysene	0.04	<220	700	<220	<240	<200	<210	<180	<220	<220	1,100	560
benzo(a)anthracene	0.04	<220	570	<220	<240	<200	<210	<180	<220	<220	1,100	660
benzo(b)fluoranthene	0.04	<220	630	<220	<240	<200	<210	<180	<220	<220	750	410
benzo(k)fluoranthene	0.04	<220	240	<220	<240	<200	<210	<180	<220	<220	480	<220
benzo(a)pyrene	0.04	<220	520	<220	<240	<200	<210	<180	<220	<220	870	<220
indeno(1,2,3-cd)pyrene	0.04	<220	270	<220	<240	<200	<210	<180	<220	<220	<220	<220
dibenz(a,h)anthracene	1,000	<220	<220	<220	<240	<200	<210	<180	<220	<220	<220	<220
benzo(g,h,l)perylene	0.04	<220	350	<220	<240	<200	<210	<180	<220	<220	<220	<220
Total Semi-VOCs	-	890	5,872	BDL	BDL	BDL	220	BDL	BDL	BDL	14,640	8,100

BDL = below detection limits

ð,

VOCs = volatile organic compounds

<240 = below detection limit of 240 ppb No MtBE detected in any of the samples analyzed

* = guidance values according to NYSDEC "STARS" Memo #1

## Sheet2

## TABLE 2

# Metals in Soil Samples: Analytical Results (ppm) City of Troy: Former Sperry Warehouse King Street, Troy, New York

## March 25 - 30, 1999

										f:\kingmain.:	xls sheet2	
and the supervised of	Quidanae	B-1	B-1	B-2	B-2	B-3	В-3	B-4	B-5	B-6	B-7	B-7
Parameter	Guidance	10-12'	17-20'	10-15'	15-17'	7-10'	16-17'	10-15'	15-17 ¹	15-17'	15-17'	17-18'
	Value *	<5	10.6	13.5	12	11	13.4	43.4	5.6	9.4	120	10.6
arsenic	7.5 or SB (3-12)		143	252	181	210	176	14.2	184	148	23.8	123
barium	300 or SB (15-600)	and the second se	A COMPANY OF THE OWNER OF THE OWNER OF	<0.5	<0.5	< 0.5	< 0.5	2	<0.5	<0.5	<0.5	<0.5
cadmium	1 or SB (0.1-1)	< 0.5	< 0.5	26.3	21.9	17,9	16	17.8	14.8	14.6	50	18.6
chromium	10 or SB (1.5-40)	16	17.3	-	15	12.4	10.5	3,7	10.4	17.2	• 11	10
lead	SB (4-500)	8	11.8	7.6	Commences and the second second	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
mercury	0.1	<0.1	<0.1	<0.1	<0.1		Company of the local division of the local d	<6	<6	<6	<6	<6
selenium	2 or SB (0.1-3.9)	<6	<6	<6	<6	<6	<6	Contracting on the Party of Contraction of Contract	Contraction of the Contraction o	<1	<1	<1
silver	SB	. <1	<1	<1	<1	<1	<1	<1	<1			

* guidance values according to TAGM HWR-94-4046; Appendix A; Table 4

SB = site background levels

### Sheet3

### TABLE 3

# Water Sample Analytical Results (ppb)

City of Troy: Former Sperry Warehouse King Street, Troy, New York

March 25 - 30, 1999

f:\kingmain.xls sheet 3

Parameter	Guidance	quelos dos entre anternaminadornia					BANAL C	BALD / 77
	Value *	MW-1	MW-2	MW-3	MW-4	B-5 .	MW-6	MW-7
benezene	0.7	BDL	BDL	BDL	0:8	5	BDL	2,500
toluene	5	BDL	BDL	BDL	BDL	2	BDL	910
ethylbenzene	5	BDL	BDL	BDL	BDL	BDL	BDL	81
o-,m-,p-xylenes	5 ea	3	2	2	BDL	BDL	BDL	750
Total BTEX	. –	3	2	2	0.8	7	0	4,241
isoprop <u>y</u> lbenzene	5	BDL	<25	BDL	BDL	BDL	BDL	<10
n-propylbenzene	5	BDL	<25	BDL	BDL	BDL	BDL	14
1,3,5 trimethylbenzene	5	BDL	<25	BDL	BDL	BDL	BDL	36
tert-butylbenzene	5	BDL	<25	BDL	BDL	BDL	BDL	<10
1,2,4 trimethylbenzene	5	1	<25	BDL	BDL	BDL	BDL	100
sec-butylbenzene	5	1	<25	BDL	BDL	BDL	BDL	<10
p-cymene	5	BDL	<25	BDL	BDL	BDL	BDL	<10
n-butylbenzene	5	1	<25	BDL	BDL	BDL	BDL	36
naphthalene	10	5	<25	BDL	BDL	BDL	BDL	4,200
Total VOCs	~	11	2	2	0.8	7	0	8,627
acenaphthene	20	<25	<25	<5	<5	<6	<6	. 11
fluorene	50	<25	<25	<5	<5	<6	<6	35
phenanthrene	50	50	<25	<5	<5	<6	<6	75
anthracene	50	<25	<25	<5	<5	<6	<6	16
fluoranthene	50	30	<25	<5	<5	<6	<6	21
pyrene	50	30	<25	<5	<5	<6	<6	29
chrysene	0.002	<25	<25	<5	<5	<6	<6	10
benzo(a)anthracene	0.002	<25	<25	<5	<5	<6	<6	10
benzo(b)fluoranthene	0.002	<25	<25	<5	<5	<6	<6	<6
benzo(k)fluoranthene	0.002	<25	<25	<5	<5	<6.	<6	<6
benzo(a)pyrene	0.002	<25	<25	<5	<5	<6	<6	6
indeno(1,2,3-cd)pyrene	0.002	<25	<25	<5	<5	<6	<6	<6
dibenz(a,h)anthracene	50	<25	<25	<5	<5	<6	<6	<6
benzo(g,h,l)perylene	0.002	<25	<220	<5	<5	<6	<6	<6
Total Semi-VOCs	-	110	BDL	BDL	BDL	BDL	BDL	213

BDL = below detection limits

* = guidance values according to NYSDEC Ambient Water Quality Guidelines VOCs = volatile organic compounds

Drill Rig: I OPERATO INSPECTO START DA FINISHDA	9 M Troy, N DeepRock R: H. Sto DR: P. Ev ATE: 3/2:	ionroe Streed ew York 1 RAM BO ohl WE ans RIS 5/99 SCI	ental Servic t 2180 RING: 20' deep LL DEPTH: 20 SER: 10' REEN: 10' E: 2''		SITE: & Main Troy, PAGE OI PAGE		eet		WELL NO. <u>MW-1</u> vortuation River <u>King Road</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u> <u>1</u>					
DEPTH (FT)	NO.	RANGE (FT)	SAMPLE		PPM	W	ELI		FIELD CLASSIFICATION AND REMARKS					
			BLOWS	REC										
0'									Locking wellcap & Stickup.					
									0-0.5': Vegetation & topsoil.					
	S-1	1-4'	TFF	-	0.1				Concrete grout.					
									0.5-6': Black GRAVEL w/ cinders,					
									iron ore (galena & hematite) cobbles					
5'	SS-2	5-7'	50/R.	0	ND				and slag.					
			-						2" PVC riser; Native fill.					
								1	6-10': Moist, black GRAVEL w/					
	S-3	7-10'	TFF	-	0.2				cinders and some silt and clay.					
		1					1		Bentonite seal.					
10'	SS-4	10-12'	2-4-5-4	13"	88				Water at 11.9 feet below top of					
						1			casing. Sheen.					
	S-5	12-15'	TFF	-	0.8	1		1	10-12': Mottled brown/gray CLAY.					
						1		]	Petroleum odor.					
			<u> </u>		1	1			No. 0 quartz sand.					
15'		15-17'	TFF	-	14,6	1			12-20': Moist, gray, plastic CLAY.					
					_		-	-						
					-			]	2" PVC 0.01" threaded screen.					
	S-7	17-20'	TFF		27									
		TFF =	taken from	auger	flight									
20'		ND =	no data				E		Boring terminated at 20'below gra-					

ø

Drill Rig: I OPERATC INSPECTC START DA	9 N Troy, N DeepRock DR: H. Sto DR: P. Ev ATE: 3/2	Aonroe Stre New York RAM BO ohl W vans RI 6/99 SO	12180 DRING: 17' dee ELL DEPTH: SER: 10' CREEN: 10'	:p	SITE: & Main Troy PAGE O	) St , N 1	reet Y		WELL NO. <u>MW-3</u> 37
FINISHDA	TE: 3/26		ZE: 2"		PAGE	·1			
DEPTH (FT)	NO.	RANGE (FT)	SAMPLI	SAMPLER			WELL		FIELD CLASSIFICATION AND REMARKS
(* *)	110,		BLOWS	REC	PPM	Í		Ī	memory - pack Andre Salle Bales
0'	- term			T					Locking wellcap & Grouted Stickup.
							1 1	1	
	S-1	2-4'	TFF	-	14	 			2" PVC threaded riser.
									Bentonite seal.
							$\left\{ \right\}$		0-5': Black cinder GRAVEL with
5'	SS-2	5-7'	14-21-50R	13"	15.6				bricks, slag cobbles, ashes. Needed
							日		backhoe to penetrate cobbles.
									Water at 5.5 feet below grade-sheen.
	S-3	7-10'	TFF	-	17	1	日		5-7': Orange/brown GRAVEL with
			<u> </u>	1.022	110				cinders.
10'	SS-4	10-12'	6-5-4-3	10"	113	-			7-10': Brown GRAVEL with ashes.
	C =	10 15	TFF		26	-	Ħ		Some silt and clay.
	S-5	12-15'			20				10-15': Black, wet, coarse, cinder GRAVEL w/ some foundry sand.
		1	 	-		Ĩ.			2" PVC 0.01" threaded screen.
1.5'	S-6A	15-15.5'	4-4-	8"	40	Ī			15-17': Brown CLAY w/ some silt.
	S-6B	15.5-17'	-5-9	16"	33	1	l		No. 0 quartz sand.
						1			Boring terminated at 17' below
						]			grade.
		TFF =	taken from	auger	flight				
20'	1.	ND =	no data						

North An	9 N	Environm Aonroe Stree Iew York		2es	SITE: & Main Troy,	1 Street	WELL NO. <u>MW-4</u> i Tera	in Hudeon Airer -15 King Raad
Drill Rig: I OPERATO INSPECTO START DA FINISHDA	OR: H. Sto OR: P. Ev ATE: 3/2:	ohl WH vans RIS 5/99 SC	DRING: 20' deep ELL DEPTH: 2 SER: 10' CREEN: 15' ZE: 2"		PAGE O PAGE	)F	B-1 Vicidian Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Subra Su	MW-: 
DEPTH (FT)	NO.	RANGE (FT)	SAMPLE	ER REC	PPM	WELL	FIELD CLASSIFIC REMAR	
			BLOWS	KEU		++++	Locking wellcap & S	Stickup
0"						<del>  </del>	0-0.5': Vegetation &	
1	S-1	1-5'	TFF	-	0.1		Concrete grout.	
						FT F	Bentonite seal.	
i							2" PVC riser.	
5'	SS-2	5-7	TFF	-	0.1		0.5-20': Black GRAV	VEL w/ cinders,
							fire brick, slag, cobb	les, sand, red &
							yellow brick, and asl	nes. Used back-
	S-3	7-10'	TFF	-	1.7		hoe to dig to 7 feet b	- 1
							would not penetrate	
10'	SS-4	10-12'	7-12-7-8	1,2"	3.4		Water at 11.5 feet be	elow top of
			 				casing.	
	S-5	12-15'	TFF		3.1			
		1		<u> </u> .	+		No. 0 quartz sand.	
15'	S-6	15-17'	6-5-4-6	14"	0.7	+	NO. O quana sama	
<u>د ۲</u>			0-0		+	十日		
				+		=	2" PVC 0.01" three	aded screen.
	S-7	17-20'	TFF	-	0.9			
		TFF =	taken from	auger	flight			
20'		ND =	no data		1		Boring terminated a	at 20'below grade

Drill Rig: I OPERATC INSPECTO START DA	9 N Troy, N DeepRock DR: H. Ste DR: P. Ex ATE: 3/2	Nonroe Stree Yew York k RAM BC ohl W. yans RI 9/99 SC	nental Servi et 12180 DRING: 17' dee ELL DEPTH: - SER: no well s CREEN: - ZE: 8"	Ţ.	SITE: & Mair Troy PAGE O PAGE	Street         -1         Street           NY         Tank         -1         Strang Ro           1         ,8-5         -1         Milw-7           F							
FINISHDA DEPTH (FT)	NO.	RANGE (FT)	SAMPLI		PPM	FIELD CLASSIFICATION AND REMARKS							
	<u></u>		BLOWS	REC									
0'	S-1	1-5'	TFF	-	0.5	0-1': Asphalt and subbase.							
						0-14.9': Black cinder GRAVEL with							
5'	SS-2	5-7	50R	1"	2.0	bricks, slag, cobbles, and ashes.							
						Cobbles impeded drilling from							
						2 - 5 feet below grade.							
	S-3	7-10'	TFF		1.1	Water at 11 feet below grade-sheen.							
10'	SS-4	10-12'	4-6-2-3	0"	-								
	S-5	12-15'	TFF	-	1.7	14.9-15': Coarse, gray SAND.							
. 15'	S-6A	15-17'	1-1-1-2	20"	0.7	15-17': Gray CLAY w/ some silt.							
						Boring terminated at 17' below grade.							
		TFF =	taken from	auger	flight								
20'		ND =	no data										

North A1	9 M	Environi Ionroe Stre ew York		ces	SITE: & Main Troy,	Street	WELL NO. <u>MW-6</u>
Drill Rig: I OPERATC INSPECT( START DA FINISHDA	0R: H. Sto 0R: P. Ev ATE: 3/30	hl W ans RI 0/99 SC	DRING: 17' dee ELL DEPTH: 1 SER: 10' CREEN: 10' ZE: 2''		PAGE O PAGE	F	Ling Rood KIVV-2 VIV-1 VIV-2 Fuener Sparry Tracing Corporation NIVV-2
DEPTH (FT)	NO.	RANGE (FT)	SAMPLE BLOWS	REC	PPM	WELL	FIELD CLASSIFICATION AND REMARKS
0'						╪╡┈╞╸	Locking wellcap & Grouted Stickup.
	S-1	1-5'	TFF		0.1		2" PVC threaded riser. Bentonite seal.
5'	SS-2	5-7'	16-13-50R	11"	1.8		0-15': Black GRAVEL with cinders, bricks, slag, cobbles, ashes. Needed backhoe to penetrate cobbles.
	S-3	7-10'	TFF		0.1		2" PVC 0.01" threaded screen. No. 0 quartz sand.
10'	SS-4	10-12'	50R	3"'	0.1		Water at 10 feet below grade.
	S-5	12-15'	TFF	-	0.2		15-16': Coarse, wet, iron foundry SAND.
15'	S-6A	15-16'	3-4-	11"	2.0		16-17': Gray, plastic CLAY.
	S-6B	16-17'	-2-2	11"	0.5		Boring terminated at 17' below
		TFF =	taken from	auger	flight		grade.
20'	_	ND =	no data			1	

North An Drill Rig: I OPERATO INSPECTO START DA FINISHDA	9 M Troy, N DeepRock R: H. Sto DR: P. Ev ATE: 3/3	Aonroe Stre Iew York CRAM B( ohl W rans RI 0/99 S(	nental Servi et 12180 DRING: 18' dee ELL DEPTH: 1 SER: 10' CREEN: 10' ZE: 2"		& Mair Troy PAGE	<u>l</u> PF		WELL NO. <u>MW-7</u>
DEPTH	NG	RANGE (FT)	SAMPLE	ER	PPM	WEL	L	FIELD CLASSIFICATION AND REMARKS
(FT)	NO.		BLOWS	REC				
0'		1					,	Locking wellcap & grouted Stickup.
								0-0.5': Vegetation & topsoil.
	S-1	1-3'	TFF	-	7.5			0.5-3': Black fibrous soil.
							$\square$	Bentonite seal.
	S-2	3-5'	TFF	-	5.4			2" PVC riser
5'	SS-3	5-7'	12-5-2-2	12"	1.1			3-5': Black GRAVEL w/ silt and
	1						] .	clay and wood fibers. Creosote odor.
								5-10': Black and brown GRAVEL w
	S-4	7-10'	TFF	-	4,0		1	cinders, ash, slag, and bricks: Moist
		alle,				- 46		at 6 feet. Smells like creosore.
10'	SS-5	10-12'	7-12-7-8	11"	18		3	Water at 11 feet below top of riser.
			: ; T					10-15': Black GRAVEL w/ cinders,
	S-6	12-15'	TFF	-	4.7		1	rust, and some silt. Creosote odor.
	ļ		 					No. 0 quartz sand.
					49.0		4	2" PVC 0.01" threaded screen,
15'	S-7	15-17'	6-5-4-6	23"	48.8		-	15-17': Black GRAVEL w/ cinders, rust, silt and some fine sand.
	S-8	17-18'	TFF		<u>,, ,</u>			Creosote odor.
	0.7	17-20'	TFF		0.9	$\downarrow \models$	4	17-18': Gray, plastic CLAY.
	S-7	T7-20 TFF =	taken from	auger	flight			Boring terminated at 18' below
20'		$\frac{1 \text{ FF}}{\text{ND}} =$	no data			-		Grade.
20								

øð

100

247 241 241 25

j.B



FORMER KING FUELS NORTH ("THE ALAMO") PROPERTY AOC
SS
OF THE STORY OF TH
AMPLE LOCATION KEY: = SAMPLE LOCATION
ST LETTER: A = THE ALAMO 2ND LETTER: W = BORING SAMPLE AND WELL SAMPLE B = BORING SAMPLE S = SURFACE SAMPLE
3RD LETTER OR NUMBER: # = NUMBER DESIGNATING LOCATION I <u>AP NOTES:</u> ERIAL PHOTOGRAPHY CIRCA APRIL 2000.
FIGURE 5
PROPERTY AOC – SOIL SAMPLING PLAN CITY OF TROY SOUTH TROY BROWNFIELD STUDY AREA CITY OF TROY RENSSELAER CO., N.Y.
SCALE: 1" = 40' DWG. NO. 22026008 FIGURE 5

By: AK Date: 5/16/2005 Chk by: Date:

Mercury

## South Troy Phase II Sampling Results

ANALYTE	UNITS	RECOMMENDE		Lab	Val	<u></u>	Lab	Val		Lab	Val		Lab	Val
ANALTIE	UNITO	D SOIL	BACKGR	BACKGROUND-1			OUND	-2	A-B-1-0-0.5			A-B-1-6-10		0
		CLEANUP OBJECTIVES		C1463-11A 11/17/2004			C1463-12A 11/17/2004			188-05B 15/2005		D0161-06A 02/15/2005		
Antimony	mg/Kg	0.655	0.42	UN	J	0.89	BN	J	4.6	BN	J	17.8	E	J
Arsenic	mg/Kg	10.7	14.1			7.3			5.1			4.7		J
Beryllium	mg/Kg	0.37	0.47	В		0.27	В		0.82			1.9		J
Cadmium	mg/Kg	1	0.042	UN	J	0.038	UN	J	4.9	*E	J	20.6	E	J
Chromium	mg/Kg	11.1	13.9			8.3			16.9	*E	J	67.4	E	J
Copper	mg/Kg		37.0	E	J	25.7	E	J	32.4	NE	J	18.1		J
Lead *	mg/Kg		94.1			12.5			45.5	E	J	17.5	E	J
Nickel	mg/Kg		17.4			14.9			23.8	*E	J	10.3	E	J
Selenium	mg/Kg		0.99	BN	J	0.57	UN	J	0.48	UN	R	0.57	U	
Silver	mg/Kg		8.6	_		0.38	U		13.7	N*E	J	46.1	E	J
Thallium	mg/Kg		4.2	N	J	0.68	BN	J	1.7			4.7		J
Zinc	mg/Kg		100			51.2			154	N*E	J	29.0	Е	J
LIII0	mgring											0.040		

0.060

В

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

mg/Kg

0.145

0.23

0.049

0.11

U

By: AK	Date: 5/16/2005
Chk by:	Date:

## South Troy Phase II Sampling Results

	10,070	DECOMMENDE		Lab	Val		Lab	Val		Lab	Val		Lab	Val		Lab	Val
ANALYTE	UNITS	RECOMMENDE D SOIL	A-B	Lab -1-14-16		A-E	8-2-0-0.5		Α-	B-2-4-6		A-B	-2-12-1	6	A-V	V-1-0-0.	5
		CLEANUP OBJECTIVES		188-07B 15/2005			188-06B 15/2005			188-04A 15/2005			161-07A 15/2005			188-08A /15/2005	1
A time a ray (	mg/Kg	0.655	6.0	BN	J	3.1	BN	J	5.1	BN	J	4.8	BE	J	1.8	BN	J
Antimony	mg/Kg	10.7	4.0			1.2	В		8.8			3.3		J	0.87	В	1
Arsenic	mg/Kg	0.37	1.1			0.48	В		1.2			0.78	В	J	0.31	В	
Beryllium	mg/Kg	1	6.6	*E	J	3.8	*E	J	5.5	*E	J	4.3	E	J	1.5	*E	J
Cadmium		11.1	26.6	*E	J	296	*E	J	12.0	*Е	J	13.2	E	J	5.1	*E	J
Chromium	mg/Kg	31.35	25.2	NE		50.8	NE	J	20.5	NE	J	23.7		J	8.5	NE	J
Copper Lead *	mg/Kg mg/Kg	400	18.0	E	J	82.0	E	J	39.6	Е	J	21.3	E	J	3.8	E	J
Nickel	mg/Kg	16.15	25.7	*E	J	166	*E	J	12.0	*E	J	18.9	E	J	6.4	B*E	J
Selenium	mg/Kg		0.58	UN	R	0.60	UN	R	0.54	UN	R	0.56	U		0.59	UN	R
Silver	mg/Kg	4.49	21.9	N*E	J	8.9	N*E	J	11.7	N*E	J	13.3	E	J	5.7	N*E	J
Thallium	mg/Kg	2.44	0.68	В		0.40	U		0.36	U		1.9	В	J	0.39	U	
·····	mg/Kg	75.6	87.3	N*E	J	170	N*E	J	69.5	N*E	J	66.4	E	J	25.7	N*E	J
Zinc Mercury	mg/Kg	0.145	0.058	U		0.50			0.065	В	J	0.068	В	J	0.050	U	<u> </u>

*See Document titled "Data Qualifiers" for in qualifiers and data interpretation

By: AK

Chk by:

## Date: 5/16/2005

Date:

## South Troy Phase II Sampling Results

	UNITS	RECOMMENDE		Lab	Val		Lab	Val		Lab	Val
ANALYTE	UNITS	D SOIL	۵-۷	/-1-12-14		A-W-1-1	18-20		A-W-1-	16-18	
		CLEANUP			-	DUP OF A-V	V-1-12-1	4	DUP OF A-	N-1-12-1	4
-		OBJECTIVES	D0 ⁴	188-09B		D0188-	-10B		D0188	-11B	
		0000000000	02/	15/2005		02/15/2	2005		02/15/2	2005	
Antimony	mg/Kg	0.655	3.8	BN	J	3.9	BN	J	5.2	BN	J
Arsenic	mg/Kg	10.7	2.5			2.7			3.0		
Beryllium	mg/Kg	0.37	0.89	В		0.89	В		1.3		
Cadmium	mg/Kg	1	4.0	*E	J	4.0	*E	J	5.4	*E	J
Chromium	mg/Kg	11.1	17.1	*E	J	17.4	*E	J	23.5	*E	J
Copper	mg/Kg	31.35	22.7	NE	J	21.5	NE	J	36.4	NE	J
Lead *	mg/Kg	400	14.1	E	J	13.9	E	J	24.5	. E	J
Nickel	mg/Kg	16.15	23.4	*E	J	23.6	*E	J	32.5	*E	J
Selenium	mg/Kg	2	0.64	UN	R	0.66	UN	R	0.70	UN	R
Silver	mg/Kg	4.49	15.6	N*E	J	15.9	N*E	J	19.4	N*E	J
Thallium	mg/Kg	2.44	0.64	В		0.72	В		0.47	U	<u> </u>
Zinc	mg/Kg	75.6	83.2	N*E	J	85.7	N*E	J	115	N*E	J
Mercury	mg/Kg	0.145	0.071	В	J	0.064	U		0.12	В	J

*See Document titled "Data Qualifiers" for in qualifiers and data interpretation

.

Date: 5/16/2005 Date:

By: AK Chk by:

#### South Troy Phase II Sampling Results

raue I UI J	Page	1	of	5	
-------------	------	---	----	---	--

				Lab	Val		Lab	Val		Lab	Val		Lab Val		Lab V	al
ANALYTE	Units		A-B-1-0-0		var	A-B-1	-0-0.5		A-B	-1-6-1	)	A-B-	1-14-16	A-B	-1-14-16	
		RECOMMENDED SOIL	A-0-1-0													
		CLEANUP OBJECTIVES	D0188-0	5A		D0188	-05AF	RE	D01	61-06/	۹	D01	88-07A	D018	8-07AR	-
		CLEANDI ODULOTIVLO	02-15-0	5		02-1	5-05		02	-15-05			-15-05		-15-05	
Naphthalene	UG/KG	13000	69	J		42	J		390	U		460	<u> </u>	460	<u> </u>	
Acenaphthene	UG/KG	50000	390	U		390	U		390	U		460	U	460	<u> </u>	
Fluorene	UG/KG	50000	140	J		90	J		390	<u> </u>		460	<u> </u>	460		_
Phenanthrene	UG/KG	50000	2100			1100			390	U		460	<u> </u>	460		_
Anthracene	UG/KG	50000	410			230	J		390	U		460	<u> </u>	460	U	_
Fluoranthene	UG/KG	50000	3600	D		3000			390	U		460	U	460	<u> </u>	_
Pyrene	UG/KG	50000	6300	D		1700				U		460	U	460	U	
Benzo(a)anthracene	UG/KG	224	2000			1200			390	U		460	U	460	<u> </u>	_
Chrysene	UG/KG	400	1500			840			390	U		460	<u> </u>	460	_U	
Benzo(b)fluoranthene	UG/KG	1100	2900			1400			390	U		460	<u> </u>	460	U	
Benzo(k)fluoranthene	UG/KG	1100	900			660 ·			390	<u> </u>		460	U	460	U	_
	UG/KG	61	1900			1000			390	U		460	U	460	U	
Benzo(a)pyrene	UG/KG	3200	750			300	J		390	U		460	U	460	U	
Indeno(1,2,3-cd)pyrene	1	14	230	J		120	J	1	390	υ		460	U	460	U	
Dibenzo(a,h)anthracene	UG/KG	50000	570			130	J		390	U		86	J	460	U	
Benzo(g,h,i)perylene	UG/KG	50000														
Total SVOC	UG/KG	50000	23369			11812			0			86		0		

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

Sterling Environmental Engineering

Date: 5/16/2005

### By: AK Date: 5 Chk by: Date:

#### South Troy Phase II Sampling Results

				Lab	Val		Lab	Val		Lab	Val		Lab	Val		202	Val		200	/al		Lab V
ANALYTE	Units		A-B-2	2-0-0.5		A-B-2-0		1	A-B	-2-4-6	5	A-B-2	2-4-6R	E	A-B-2	2-4-6F	RA	A-B-	2-12-16		A-B-2-12	2-16RA
		RECOMMENDED SOIL CLEANUP OBJECTIVES		8-06A		D0188- 02-1	-06AR 5-05	E		88-04 15-05	1		3-04AF 15-05			3-04A	1	02	61-07A -15-05		D0161-0 03-03 450	
Naphthalene	UG/KG	13000	380	U		380	U		65			54	J U		72 410			450 450	U U		450.	Ŭ
Acenaphthene	UG/KG	50000	46	J		35			420	<u> </u>		<u>420</u> 420	U U		410	<u> </u>		69	1		76	J
Fluorene	UG/KG	50000	45	J		35	J		56			250	J		420			51	j		58	J
Phenanthrene	UG/KG	50000	1200			970			<u>360</u> 110			420	U		120	.1		58	J		53	J
Anthracene	UG/KG	50000	160			170	J		890			1600			680			100	Ĵ		95	J
Fluoranthene	UG/KG	50000	2100	D		7200	E		1200			1200			1900			310	J		420	J
Pyrene	UG/KG	50000	4300	D		2700						520			630			120			130	J
Benzo(a)anthracene	UG/KG	224	1300			1400			630				·		730			230			150	
Chrysene	UG/KG	400	1300			1500			660			530						130			120	
Benzo(b)fluoranthene	UG/KG	1100	2800			3300	E		1100			600 180			750 290			450	u		450	U U
Benzo(k)fluoranthene	UG/KG	1100	960			1100			300				ر ار		570			130	J		110	J
Benzo(a)pyrene	UG/KG	61	1600			1800			690		<u> </u>	400	J		310	<u> </u>		450			450	U
Indeno(1,2,3-cd)pyrene	UG/KG	3200	520		<u> </u>	590			150	J		150			89			450	l u l		450	U
Dibenzo(a,h)anthracene	UG/KG	14	200	J	<u> </u>	160	J		53	J		48	J		260	J		450			450	<del>u</del>
Benzo(g,h,i)perylene	UG/KG	50000	330	J		430			180	<u> </u>		85			200	- J						1-1-
												5617			6821			1198			1212	+
Total SVOC	UG/KG	50000	16861		L	21390	L	L	6444	L	I	5017		L	0021	1	1		·	L.,		

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation Page 2 of 5

ż.

### South Troy Phase II Sampling Results

	Units			Lab	Val		Lab \	/al		Lab	Val		Lab V	/al
ANALYTE	Units		A-W-1-			A-W-1-0	-0.5RE		A-W-1-0	-0.5RA		A-W-1-	-12-14	
		RECOMMENDED SOIL CLEANUP OBJECTIVES	D0188 02-15			D0188-0 02-18			D0188- 02-1			D0188 02-1	5-05	
Naphthalene	UG/KG	13000	420	U		420	U		420	U		460		
Acenaphthene	UG/KG	50000	420	U		420	U		420	U		460	U	
Fluorene	UG/KG	50000	420	U		420	U		420	U		<u>460</u> 460		
Phenanthrene	UG/KG	50000	420	U		420	U	·	420	U		460		~
Anthracene	UG/KG	50000	420	U		420	U		420			460		
Fluoranthene	UG/KG	50000	420	U		420			420			460	U -	
Pyrene	UG/KG	50000	420	U		420	U		420					
Benzo(a)anthracene	UG/KG	224	420	U		420	U		420	U		460	U	
Chrysene	UG/KG	400	420	υ		420	U		420	U	-	460	U	
Benzo(b)fluoranthene	UG/KG	1100	420	υ		420	U		420	U		460		
Benzo(k)fluoranthene	UG/KG	1100	420	U		420	U		420	U		460	U	
Benzo(a)pyrene	UG/KG	61	420	U		420	U		420	υ		270	J	
Indeno(1,2,3-cd)pyrene	UG/KG	3200	420	U		420	U		420	U		460	U	
Dibenzo(a,h)anthracene	UG/KG	14	420	U		420	U		420	U		460	U	
Benzo(g,h,i)perylene	UG/KG	50000	420	U		420	U		420	U		460	U	
Donzo(g,n,n)porytono														
Total SVOC	UG/KG	50000	0			0			0			270		

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation Page 3 of 5

> >

#### Date: 5/16/2005 Date:

# By: AK Chk by:

#### South Troy Phase II Sampling Results

Page 4 of 5

ANALYTE	Units		A-W-1-12	Lab Val 2-14RE	A-W-1-12	Lab Va 2-14RA		Lab Va 1-16-18		Lab Val 16-18RE	A-W-1-18 DUP OF A-W		A-W-1-18- DUP OF A-W	
		RECOMMENDED SOIL CLEANUP OBJECTIVES	D0188-0 02-15		D0188-0 02-15			88-11A 15-05	02-1	-11ARE	D0188-1 02-15-(	)5	D0188-10 02-15-0 450	
Naphthalene	UG/KG	13000	460	U	460	U	450	U U	450	U U	450 450	UU	450	U
Acenaphthene	UG/KG	50000	460	U	<u>460</u> 460		450	U	450	U	450	U	450	U
Fluorene	UG/KG	50000	460		460	U	92	J	71	J	450	U	100	J
Phenanthrene	UG/KG	50000	460	U	460	1 Ŭ	450	U	450	U	450	U	450	<u> </u>
Anthracene	UG/KG UG/KG	50000	140	J	460	U	72	J	77	J	450	<u> </u>	<u> </u>	
Fluoranthene	UG/KG	50000	120	J	460	U	99	J	60		450	<u> </u>	91	
Pyrene	UG/KG	224	94	J	460	U	49	J	46	J	450	U		
Benzo(a)anthracene	UG/KG	400	81	J	460	U	46	J	49	J	450	<u> </u>	94	
Chrysene	UG/KG	1100	110	J	460	U	450	U	47	J	450		130 49	
Benzo(b)fluoranthene Benzo(k)fluoranthene	UG/KG	1100	36	J	460	U	450	U	450	U	450	<u> </u>	78	J
Benzo(a)pyrene	UG/KG	61	65	J	460	U	450	U	450		300 450	J U	450	- U
Indeno(1,2,3-cd)pyrene	UG/KG	3200	460	U	460	U	450	<u>U</u>	450		450	U	450	U
Dibenzo(a,h)anthracene	UG/KG	14	460	U	460	U	450		450		450		450	U
Benzo(g,h,i)perylene	UG/KG	50000	460	<u> </u>	460	<u> </u>	450			<u> </u>				
							358		350		300		792	
Total SVOC	UG/KG	50000	776		0			L			J			

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

### South Troy Phase II Sampling Results

Page	5	of	5	
------	---	----	---	--

ANALYTE	Units			Lab Val
711712112			A-W-1-1	8-20RA
		RECOMMENDED SOIL		
		CLEANUP OBJECTIVES	D0188-	10ARA
			02-15	5-05
Naphthalene	UG/KG	13000	450	U
Acenaphthene	UG/KG	50000	450	U
Fluorene	UG/KG	50000	450	U
Phenanthrene	UG/KG	50000	450	U
Anthracene	UG/KG	50000	450	<u> </u>
Fluoranthene	UG/KG	50000	450	U
Pvrene	UG/KG	50000	450	U
Benzo(a)anthracene	UG/KG	224	450	U
Chrysene	UG/KG	400	450	U
Benzo(b)fluoranthene	UG/KG	1100	450	U
Benzo(k)fluoranthene	UG/KG	1100	450	U
Benzo(a)pyrene	UG/KG	61	450	U
Indeno(1,2,3-cd)pyrene	UG/KG	3200	450	U
Dibenzo(a,h)anthracene	UG/KG	14	450	U
Benzo(g,h,i)perylene	UG/KG	50000	450	
	UG/KG	50000	0	
Total SVOC	UG/KG	50000	L	II

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

Sterling Environmental Engineering

By: AK Chk by: Date: 5/16/2005

Date:

### South Troy Phase II Sampling Results

				· · ·			1 - 1-	Val		Lab	Val		Lab	Val		Lab	Val
ANALYTE	Units	RECOMMENDE		Lab	Val		Lab		A-B-1-			A.R.2	2-12-10		A-B-2-1		=
		D SOIL	A-B-1-			A-B-1									D0161-		
		CLEANUP	D0161	-06B		D0161		RE	D0161-		E		1-07B				-
		OBJECTIVES	02-15	-05		02-	15-05			5-05			15-05		02-1	5-05	.
	UG/KG	120	NA	۱		6	<u> </u>	. J		IA			JA		7		
Benzene	UG/KG	60	12	U	J	6	U	J	12	U		14	U		7		
Toluene	UG/KG	1500	1	J	J	6	U	J	12	U	_J_	14	U	J		U	
·	UG/KG	5500	12	U	J	6	U	J	12	U	J	14	U	J	7	U	J
Ethylbenzene	UG/KG		NA			6	U	J	NA			NA			7	U	J
m,p-Xylene			NA			6	U	J	NA			NA			7	U	J
o-Xylene	UG/KG			U	J	6	Ŭ		12	U	J	14	U	J	7	U	J
Xylene (Total)	UG/KG		12		<u> </u>	6	U		12	U	-	14	U	.1	7	U	J
Isopropylbenzene	UG/KG		12	<u> </u>	J				12 NA	<u> </u>		NA			7	Ū	
n-Propylbenzene	UG/KG	14000	NA			6	U					NA			7	U	
1,3,5-Trimethylbenzene	UG/KG	3300	NA	ļ	ļ	6	U		NA						7	U	
tert-Butylbenzene	UG/KG	-	NA	<u> </u>		6	U	J	NA	ļ		NA			7	U	
1,2,4-Trimethylbenzene	UG/KG	13000	NA			6	U	J	NA	<u> </u>		NA			7		
sec-Butylbenzene	UG/KG	25000	NA			6	U	J	NA		·	NA		<u> </u>	7		
4-Isopropyltoluene	UG/KG		NA			6	U	J	NA			NA	ļ			<u>U</u>	
n-Butylbenzene	UG/KG		NA			6	U	J	NA			NA			7	U	
	UG/KG		NA	1	1	5	JB	UJ	NA	1		NA			7	U	J
Naphthalene	100/NG					·											

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation Page 1 of 1

By: AK Date: Chk by: Date:

# Date: 5/16/2005

# Control Control Phase II Sampling Results

Date.			$\mathbf{V}$							T			
ANALYTE	Units	Water		Lab Va	al	Lab \	/al		Lab	Val		Lab	Val
		Quality	A-V	V-1	S-V	V-1		S-W	1-2		S-W		
		Standards	D0257	7-04B	D025	7-01B		D0257	'-02B		D0257	7-03B	
			03/03/	/2005	03/03	/2005		03/03/	2005		03/03/	2005	
Antimony	ug/L	3	39.5	BN	10.3	BN		18.1	BN		2.2	BN	
Arsenic	ug/L	25	179		20.9			29.3			26.1		
Beryllium	ug/L	3	33.7	E	4.7	BE		3.1	BE		10.8	E	
Cadmium	ug/L	5	104	E	17.3	E		19.8	E		10.4	E	
Chromium	ug/L	50	329	E	55.5	E		86.1	E		49.5	E	
Copper	ug/L	200	861		367			884			394		
Lead	ug/L	25	419	E	902	E		1590	E		106	E	
Nickel	ug/L	100	550	E	115	E		106	E		89.2	E	
Selenium	ug/L	10	3.0	UN	3.0	UN		3.0	UN		3.0	UN	
Silver	ug/L	50	275	E	30.2	E		41.8	E		29.0	E	
Thallium	ug/L	.5	29.6		15.2			8.5	В		2.0	U	
Zinc	ug/L	2000	2570	E	839	E		989	E		730	E	
Mercury	ug/L	.7	2.7	N	3.7	N		8.0	N		0.14	UN	

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

Date: 5/16/2005 By: AK Chk by: Date:

## South Troy Phase II Sampling Results

ANALYTE	Units	Water		Lab V	/al		Lab	Val		Lab	Val		Lab Val
ANALTIE	Onito	Quality	S-W				-2		S-W	-3		A-N	/-1
		Standards	D0257	-01A		D0257-02A			D0257-	-03A	D0257-04A		
			03-03	-05		03-03	-05		03-03	-05		03-03	3-05
Naphthalene	UG/L	10 .	10	U		10	U		10	U		10	U
Acenaphthene	UG/L	20	10	U		10	U		10	U		10	U
Fluorene	UG/L	50	10	U		10	U		10	U		10	<u> </u>
Phenanthrene	UG/L	50	10	U		4	J		10	U		10	U
Anthracene	UG/L	50	10	U		1	J		10	U		10	U
Fluoranthene	UG/L	50	1	J		5	J		10	U		10	U
Pyrene	UG/L	50	10	U		4	J		10	U		10	U
Benzo(a)anthracene	UG/L	0.002	10	U		2	J		10	U		10	U
Chrysene	UG/L	0.002	10	U		2	J		10	U		10	U
Benzo(b)fluoranthene	UG/L	0.002	10	U		2	J		10	U		10	U
Benzo(k)fluoranthene	UG/L	0.5	10	U		1	J		10	U		10	U
Benzo(a)pyrene	UG/L		10	U		2	J		10	U		10	U
Indeno(1,2,3-cd)pyrene	UG/L	0.002	10	U		10	U		10	U		10	U
Dibenzo(a,h)anthracene	UG/L		10	U		10	U		10	U		10	U
Benzo(g,h,i)perylene	UG/L		10	U		10	U		10	U		10	U

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

By: AK Chk by:

### Date: 5/16/2005

Date:

## South Troy Phase II Sampling Results

Analyte	Water	Units	. <u> </u>	Lab	Val
7 (nory to	Quality		A-W	-1	
	Standards		D0257-	-04C	
Methyl tert-butyl ether	10		03-03-05		
Benzene	1	UG/L	5	U	
Toluene	5	UG/L	5	U	
Ethylbenzene	5	UG/L	5	U	
m,p-Xylene	5	UG/L	5	U	
o-Xylene	5	UG/L	5	U	
Xylene (Total)	5	UG/L	5	U	
Isopropylbenzene	5	UG/L	5	U	
n-Propylbenzene	5	UG/L	5	U	
1,3,5-Trimethylbenzene	5	UG/L	5	U	
tert-Butylbenzene	5	UG/L	5	U	
1,2,4-Trimethylbenzene	5	0.5	5	U	
sec-Butylbenzene	5	UG/L	5	U	
4-Isopropyltoluene	5	UG/L	5	U	
n-Butylbenzene	5	UG/L	5	U	
Naphthalene	10	UG/L	5	U	<u> </u>

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

Date: 5/16/2005 Date:

# By: AK Chk by:

## South Troy Phase II Sampling Results

ANALYTE	LINITS	RECOMMENDE		Lab	Val		Lab	Val		Lab	Val		Lab	Val
ANALITL	01110	D SOIL	BACKGR	OUND	-1	BACKGR	A-5	6-1-0-6		A-S-4-0-6				
		CLEANUP										DUP A-S-1-0-6		
		OBJECTIVES	C1463	-11A		C1463	-12A		C14	63-13A	.		3-19A	
			11/17/	2004		11/17/	2004		11/1	5/2004		11/15	r	
Antimony	mg/Kg	0.655	0.42	UN	J	0.89	BN	J	0.78	BN	J	0.44	UN	J
Arsenic	mg/Kg	10.7	14.1			7.3			29.7			32.0		
Beryllium	mg/Kg	0.37	0.47	В		0.27	В		1.3			2.1		
Cadmium	mg/Kg	1	0.042	UN	J	0.038	UN	J	0.038	UN	J	0.044	UN	J
Chromium	mg/Kg	11.1	13.9			8.3			6.3			6.2		
Copper	mg/Kg	31.35	37.0	E	J	25.7	Е	J	39.0	E	J	47.6	E	J
Lead *	mg/Kg	400	94.1			12.5			38.8			54.7		
Nickel	ma/Ka	16.15	17.4			14.9			11.4			13.4		
Selenium	mg/Kg	2	0.99	BN	J	0.57	UN	J	0.57	UN	J	1.4	N	J
Silver	mg/Kg	4.49	8.6			0.38	U		12.1			10.1		
Thallium	mg/Kg	2.44	4.2	N	J	0.68	BN	J	5.3	N	J	6.6	N	J
Zinc	mg/Kg	75.6	100			51.2			238			345		
Mercury	mg/Kg	0.145	0.23			0.060	В		0.13			0.096	В	

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

Page 1 of 2

### By: AK Date: 5/16/2005 Chk by: Date:

## South Troy Phase II Sampling Results

ANALYTE	LIMITS	RECOMMENDE		Lab	Val		Lab	Val		Lab	Val		Lab	Val		Lab	Val		Lab	Val
ANALTIE	UNITS	D SOIL A-S-1-12-18			A-S	A-S-2-0-6			A-S-2-12-18			A-S-3-0-6			A-S-5-0-6			A-S-3-12-18		
	CLEANUP OBJECTIVES C1463-14A 11/15/2004				C1463-15A 11/17/2004			C1463-16A 11/17/2004			C1463-17A 11/17/2004			COL A-S-3-0-6 C1463-20A 11/17/2004			C140 11/1	-		
Antimony	mg/Kg	0.655	0.45	UN	J	0.56	BN	J	0.86	BN	J	0.41	UN	J	0.45	UN	J	0.51	BN	J
Arsenic	mg/Kg	10.7	26.5			14.0			24.3			3.7			3.8			13.3		
	mg/Kg		1.7			0.48	В		0.81	В		0.14	В		0.12	В		1.3		
Beryllium Cadmium	mg/Kg		0.045	UN	J	0.043	UN	J	0.041	UN	J	0.041	UN	J	0.045	UN	J	0.043	UN	J
Chromium	mg/Kg		4.4			12.1			15.5	•		4.1			4.3			15.0		
	mg/Kg		37.4	E	J	33.8	Ε	J	54.4	E	J	12.8	Е	J	11.4	E	J	29.8	E	J
Copper Lead *	mg/Kg		36.6			38.3			96.7			7.8			6.3			50.1		<u> </u>
	mg/Kg		10.6			16.0			14.4			10.4			8.4	В		108		
Nickel Selenium	mg/Kg		0.68	UN	J	0.65	UN	J	0.62	UN	J	0.62	UN	J	0.68	UN	J	0.64	UN	J
	mg/Kg		8.7		J	7.7		J	10.9			2.8		J	2.9		J	8.9		
Silver		2.44	5.0	N	J	5.2	N	J	6.7	N	J	1.0	BN	J	0.98	BN	J	8.6	N	J
Thallium	mg/Kg	75.6	127		<u> </u>	94.3			246			36.1			30.4			138		
Zinc Mercury	mg/Kg mg/Kg		0.13			0.090	В		0.42			0.048	в		0.087	В		0.058	U	

*See Document titled "Data Qualifiers" for i qualifiers and data interpretation

Page 2 of 2

Chk by:

#### Date: 5/16/2005 Ву: АК Date:

### South Troy Phase II Sampling Results

	11.11.	RECOMMENDE		Lab	Val		Lab	Val		Lab	Val		Lab	Val		Lab	Val		Lab	Val	
ANALYTE	Units		A-S-1-0-6			A-S-	<b>A-S-4-0-6</b> <b>DUP A-S-1-0-6</b> C1463-19A 11-15-04			<b>A-S-1-12-18</b> C1463-14A 11-15-04			A-S-2-0-6 C1463-15A 11-17-04			A-S-2-0-6RE C1463-15ARE 11-17-04			A-S-2-12-18		
		CLEANUP OBJECTIVES	C146	C1463-13A		C146													C1463-16A 11-17-04		
				15-04		380	5-04		390	U		100	J		100	J		270	J	:	
Naphthalene	UG/KG	13000	380	UU		380	<u>U</u>		390	U		370	U		370	U		1900	U		
Acenaphthene	UG/KG	50000	380			78			390	U		210	J		170	J		490	J		
Fluorene	UG/KG	50000	160			640			130			860			840			4800			
Phenanthrene	UG/KG		1400			120			390	Ū		200	J		200	J		1200	J		
Anthracene	UG/KG	50000	250	J		730			200	J		710			700			11000			
Fluoranthene	UG/KG	50000	1700			910			280	J		1400		J	1500		J	11000			
Pyrene	UG/KG	50000	1900			530			210	J		600		J	620		J	6000			
Benzo(a)anthracene	UG/KG	224	1100		<u> </u>							480		J	440		J	5000		:	
Chrysene	UG/KG	400	1100			510			190									6300		J	
Benzo(b)fluoranthene	UG/KG	1100	1100			530			200	J		830		J	690						
Benzo(k)fluoranthene	UG/KG	1100	410			210	J		49	J		270	J	J	390			2000		J	
Benzo(a)pyrene	UG/KG	61	750			360	J		110	J		530		J	420		J	4200		J	
Indeno(1,2,3-cd)pyrene	UG/KG		360	J		180	J		70	J		220		J	190	J	J	2100		J	
Dibenzo(a,h)anthracene	UG/KG		150	J		380	υ		390	υ		110	J	J	120	J	J	1000	J	J	
Benzo(g,h,i)perylene	UG/KG		490			170	J		77	J		270	J	<u>    J    </u>	240	J		1900	J	J	
Denzo(g,n,,)peryiene																				<u> </u>	
Total SVOC	UG/KG	50000	10870			4968			1516			6790			6620			57260			

*See Document titled "Data Qualifiers" for information regarding qualifiers and data interpretation

By: AK

### K Date: 5/16/2005

Date:

### Chk by:

### South Troy Phase II Sampling Results

	Linita	RECOMMENDE		Lab	Val		Lab	Val		Lab	Val		Lab	Val		Lab	Val
ANALYTE	Units	D SOIL	A-S-2-1			A-S-	3-0-6		A-S-3	-0-6R	E	A-S-	5-0-6		A-S-3	-12-1	8
			M-0-7-1	Z- 101	<b>\ J</b>							COL A-	S-3-0-	6			
			C1463-	164P	F	C146	3-17A		C1463	-17AF	RE	C1463	3-20A		C146	3-18A	۹.
		OBJECTIVES		7-04			7-04	•		7-04	_	11-1	7-04		11-1	17-04	
	110/1/0	13000	270	1-0-7		1900	<u>1</u>		1900	U		380	U		75	J	
Naphthalene	UG/KG		1900	U		1900	- Ŭ		1900			380	U		390	υ	
Acenaphthene	UG/KG	50000				1900	<u>U</u>		1900	U		380	U		390	U	
Fluorene	UG/KG	50000	600	J		440	- 0		540			120			140	J	
Phenanthrene	UG/KG	50000	4600			380	<u> </u>		420	- <del></del>		380	U		130	J	
Anthracene	UG/KG	50000	1100	J			J		1300			150	J		610		
Fluoranthene	UG/KG		7800			1100		J				370	J		2900		-
Pyrene	UG/KG	50000	12000			4600		J	5200				·····				
Benzo(a)anthracene	UG/KG	224	5900			2400		J	2500			220	J		1100		
Chrysene	UG/KG	400	4200		J	3300		J	2900		J	330	J		1400		
Benzo(b)fluoranthene	UG/KG	1100	7000		J	4600		J	5600		J	290	J		1700		
Benzo(k)fluoranthene	UG/KG	1100	2400		J	1000	J	J	1500	J		130	J		510		
Benzo(a)pyrene	UG/KG	61	4300		J	5800		J	5700		J	290	J		2100		
Indeno(1,2,3-cd)pyrene	UG/KG	3200	1400	J	J	3200		J	2100		J	130	J		890		
Dibenzo(a,h)anthracene	UG/KG	14	720	J	J	1400	J	J	910	J	J	380	U		370	J	ļ
Benzo(g,h,i)perylene	UG/KG	50000	1400	J	J	4600		J	3000		J	170	J		1300		
																	ļ
Total SVOC	UG/KG	50000	53690			32820			31670			2200			13225		i

*See Document titled "Data Qualifiers" for informatior qualifiers and data interpretation

## SOUTH TROY BROWNFIELDS DATA QUALIFIERS

### General:

Sample ID:	A-W-1
Bacchater) Denter, croup.	D0257-04B
Date Sampled:	3/3/2005

ug/L = Micrograms per Liter of water - parts per billion (ppb)

ug/kg = Micrograms per Kilogram of soil – parts per billion (ppb)

mg/L = Milligrams per Liter of water - parts per million (ppm) mg/kg = Milligrams per Kilogram of soil – parts per million (ppm)

### Laboratory Flags/Qualifiers (Lab):

- U Not Detected. This compound was analyzed-for but not detected. For Organics analysis the reporting limit (lowest standard concentration) is the value listed. For Inorganics analysis, the value listed is the detection limit. For Inorganics analyzed using SW-846 methods, the detection limit is the Method Detection Limit, for Inorganics analyzed using EPA CLP and NY ASP CLP methods, the detection limit is the Instrument Detection Limit.
- J For Organics analysis, this flag indicates an estimated value due to either:
  - the compound was detected below the reporting limit, or
  - estimated concentration for Tentatively Identified Compound
- B For Organic analyses, this flag indicates the compound was also detected in the associated Method Blank. The B flag has an alternative meaning for Inorganics analyses, indicating a "trace" concentration below the reporting limit and equal to or above the detection limit.
- D For Organics analysis, this flag indicates the compound concentration was obtained from a diluted analysis.
- E For Organics analysis, this flag indicates the compound concentration exceeded the Calibration Range. The E flag has an alternative meaning for Inorganics analyses, indicating an estimated concentration due to the presence of interferences, as determined by the serial dilution analysis.
- P This flag is used for Pesticides/PCB/Herbicide compound when there is a greater than 40% difference for detected concentration between the two GC columns used for Primary and Confirmation analyses. This difference typically indicates an interference, causing one value to be unusually high. The **lower** of the two values is reported in the Analysis Report.
- A Used to flag Semivolatile Organic Tentatively Identified Compound library search results for compounds identified as aldol condensation byproducts.

ŀ.

Used to flag results for Volatile and Semivolatile Organics analysis Tentatively Identified Compounds where an analyte has passed the identification criteria, and is considered to be positively identified. For Inorganics analysis, the N flag indicates the matrix spike recovery falls outside of the control limit.

For Inorganics analysis the * flag indicates Relative Percent Difference for duplicate analyses is outside of the control limit.

### Data Validation Qualifiers Used in the QA/QC Reviews for USEPA Region II (Val):

- U Not detected. The associated number indicates the approximate sample concentration necessary to be detected significantly greater than the level of the highest associated blank.
- R Unreliable result; data is rejected or unusable. Analyte may or may not be present in the sample. Supporting data or information is necessary to confirm the result.
- N Tentative identification. Analyte is considered present. Special methods may be needed to confirm its presence or absence during future sampling efforts.
- J Analyte is present. Reported value may be associated with a higher level of uncertainty than is normally expected with the analytical method.
- UJ Not detected, quantitation limit may be inaccurate or imprecise.
- Note: These qualifiers are used for data validation purposes. The data validation qualifiers may differ from the qualifiers that the laboratory assigns to the data. Refer to the laboratory analytical report for the definitions of the laboratory qualifiers.

Ν

## SOIL DATA:

Notes:

Samples analyzed by Mitkem Corp., based in Warwick, R.I.

Values in **BOLD** indicate reported concentrations above applicable Recommended Soil Cleanup Objectives.

- "**" Soil Standards obtained from NYSDEC DHWR TAGM 4046 (1994), "Determination of Soil Cleanup Objectives and Cleanup Levels" and supporting NYSDEC Memorandums dated. 12/20/00, 4/10/01, and 7/10/01.
- "***" As per TAGM #4046, Total Semi-VOCs <500,000 ug/L and Individual Semi-Volatile <50,000 ug/L.
- "<" Indicates the parameter was not detected at the laboratory detection limit shown.
- "DUP" Denotes that a duplicate sample was taken at the location specified.
- "COL" Denotes that a sample was collected from the same area as the location specified.
- "NA" Denotes not analyzed.

### GROUNDWATER DATA:

### Notes:

Samples analyzed by Mitkem Corp., based in Warwick, R.I.

Values in **BOLD** indicate an exceedance of applicable standard or guidance value provided by Technical and Operational Guidance Series (TOGS) 1.1.1.

"NA" Denotes not analyzed.

# EXHIBIT 6

# DATA USABILITY SUMMARY REPORTS

# Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

June 24, 2005

Kurt Moline C. T. Male Associates 50 Century Hill Dr. Latham, NY 12110

RE: South Troy Industrial Park (STIP) Data Usability Summary Report (DUSR) for the STIP site Chemtech SDG Nos. S4821, S4885, S4964, S4989, S5072, S5116, S5301, S5365, S5443, S5560, S5842, S5931, S5952, S5996, and T1092

### Dear Mr. Moline:

Review has been completed for the data packages generated by Chemtech Laboratories that pertain to samples collected 9/20/05 through 01/07/05 at the STIP site. Sixty six soil samples and fifteen aqueous samples (including field duplicates) were processed for TCL volatiles, TCL semivolatiles, and TAL metals. Twenty-six additional soil samples were processed for TCL semivolatiles and TAL metals. Equipment blanks and trip blanks were also analyzed. Methodologies utilized are those of the USEPA SW846, with QC requirements of the NYSDEC ASP and project QAPP.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with full review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, with consideration of the requirements of the project QAPP. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Case Narratives
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicates
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration/CRI/CRA Standards
- * ICP Interference Check Standards
- * ICP Serial Dilution Correlations
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for this level of review.

In summary, most sample results are usable as reported, or usable with minor qualification due to sample matrix or to typical processing outliers. However, a few of the semivolatile analyte results are not usable in a limited number of samples due to processing or matrix.

Included with this report are summaries of sample IDs, and red-ink qualified client results forms. The following text discusses quality issues of concern.

### **Data** Completeness

Many of the Tentatively Identified Compounds (TICs) were not correctly identified by the laboratory (i.e. not in compliance with the protocol requirements). Identifications were made based on best library matches, and in most instances they were very poor matches. In some cases target compounds and even surrogate standards were reported as TICs. If the characterization of TICs is important for this project, the laboratory would need to re-review and re-submit those forms. During this review, the target analytes and surrogate compounds have been removed from those lists on the (attached) sample forms.

The matrix spike, duplicate, and serial dilution evaluations reported in SDG T1092 were initially submitted in the data package using an incorrect parent sample. These were resubmitted on request, and the correct ones were used for those evaluations.

Resubmissions were made for raw ICP data for SDG T1092.

Matrix spikes of semivolatiles consistently show outlying internal and surrogate standard responses that are evidently related to processing rather than sample matrix (the parent samples do not show similar excursions). This has limited the evaluation for accuracy and precision; the matrix spike analyses should have been repeated.

The data package should include a statement as to the methodologies used for analysis. Although required by the QAPP, the QC requirements of the NYSDEC ASP were not always applied by the laboratory for QC evaluation of matrix spike recoveries, duplicate correlations, and calibration standards. Metals' report forms do not show the "E" qualifier for outlying serial dilution evaluations. In most instances, raw data are not identified with the client ID.

### General

Reporting limits for organic analytes are to be derived from the "RL" column of the report forms, not the "Conc" column. The latter should be used only for the detected values.

Blind field duplicate correlations were performed on Trench 5 Lower-1, Trench1 Lower-1, SB-9, CTM-10, and SS-22. All correlations were within validation guidelines, with the following exceptions, results for which are qualified as estimated in the corresponding parent sample and duplicate:

 $\circ$  zinc in CTM-10(>+-CRDL)

o fluoranthene, pyrene, benoz(a)anthracene, barium, calcium, mercury, and silver in SS-22 Many of the other elements in SS-22 varied by more than twofold.

### TCL Volatiles by USEPA CLP

The following samples exhibited outlying low surrogate standard responses, and results are qualified as estimated, with a possible low bias: Trench 4 Upper, Trench 4 Upper-1, Trench 3 Upper-1, Trench 3 Upper-2, Test Pit 4 Lower, and SB-11. Samples Trench 3 Upper-1, Trench 3 Upper -2, TestPit 4 Upper, SB-11also show low response for one of the internal standards.

Test Pit 4 Lower shows low responses for two internal standards, and the results for associated compounds are qualified as estimated.

Matrix spike evaluations were performed on project samples Trench 5 Upper, Trench 1 Upper-1, SB-1, and CTM-1.

Those for Trench 1 Upper-1 and SB-1 were acceptable.

The matrix spikes of CTM-1 show low recovery of benzene (74% and 76%, below 79%), and the result for that compound in the parent sample is qualified as estimated.

The matrix spikes of Trench 5 Upper were not useful for evaluation due to poor processing. The spikes show low surrogate and matrix spike compound recoveries. However, the parent sample showed acceptable surrogate recoveries (indicating a non-hostile matrix), and the matrix spikes should have been re-analyzed.

The detection of isopropyl benzene in SB-11 is qualified as tentative in identification ("NJ") due to non-subtractive mass spectral interferences.

Due to consistent presence of methylene chloride in associated method, equipment, and/or trip blanks, the detections of that compound in the project samples are considered external contamination, and are edited to reflect nondetection at the CRDL.

Detected results for acetone in the samples reported in SDG S5301 and S5366 are similarly edited due to method blank constituency.

The analytical columns used in instruments I and K (soils) and D (waters) showed severe tailing, indicating that they should have been replaced. This results in a spreading of the eluent, poor signal/noise ratio, and loss of sensitivity (basically, smearing the analytes into the background). Consequently, the calibration standards required manual intervention and integration. This affects soil samples in SDGs S4885, S4964, S4989, S5072, and S5931. Although no qualification of the data is made in most cases, it was so severe that results for the four gases are qualified as estimated in the samples reported in SDG S5931. Similarly, results for Equipment Blanks #1 through #4 are qualified as estimated due to very poor tailing and low concentration calibration standard performance.

Calibrations standard responses were generally within laboratory guidelines, but some exceed validation criteria. Results for these analytes (primarily bromomethane, chloroethane, methylene choride, methyl acetate, and ketones) have been qualified as estimated on the associated sample report forms.

Tentatively Identified Compounds (TICs) flagged as "B" by the laboratory are considered external contamination (indicated by presence in associated blanks), and results should be rejected as sample components.

TICs reported with a CAS number should also have been flagged as "N" (indicating tentative ID) by the laboratory. See the discussion above regarding characterization. Target analytes should not have been reported as TICs, and are removed. The TIC reported for the Equipment Blank #4 was rejected by the analyst (likely a CO2 peak), and should not have been reported; it has been rejected.

A surrogate standard recovery acceptance range of 75% to 125% was used. The laboratory should have used either ASP ranges, or their laboratory-determined ranges (per protocol).

### Semivolatile Analyses by USEPA CLP

All detected results for benzo(b)fluoranthene and benzo(k)fluoranthene are qualified as estimated due to poor resolution of those responses from one another. The analysis oven temperature programming cycle was very short, in effect merging the compounds, and reducing resolution.

Results for the phenolic compounds in CTM-1 and CTM-7 are not usable ("R" qualifier) due to lack of recovery of two of the acid surrogates in those samples indicating a matrix effect).

Due to low response for internal standard d12-perylene (indicating matrix effect), the results for the seven associated compounds are qualified as estimated in Trench 4 Upper-1, Trench 2 Upper, Surface Soil#5, Surface Soil#6, and SS#21 (unless used from a dilution analysis).

Due to low response for internal standards (IS) d12-chrysene and d12-perylene (indicating matrix effect), the results for the thirteen associated compounds are qualified as estimated in Surface Soil#1 and Surface Soil#20 Results for the seven analytes associated with the latter IS are to be derived from the dilution analyses.

All results for Surface Soil#17 except that for hexachlorocyclopentadiene are qualified as estimated due to low internal standard recoveries and subsequent high surrogate recoveries. The excursions were less evident in the matrix spikes of that sample. The result for hexachlorocyclopentadiene is not usable ("R" qualifier) due to recoveries below 30% in the matrix spikes.

The low level detection of dimethyl phthalate in Trench 2 Lower 2 is edited to nondetection at the CRDL due to incorrect identification (artifact of IS d10-anthracene).

The detection of n-nitrosodiphenylamine in Surface Soil#5 is edited to nondetection at the originally reported concentration due to incorrect identification (artifact of surrogate d5-nitrobenzene).

Detected results for bis(2-ethylhexyl)phthalate in the samples reported in SDG S5116, S5072, S5931, S5952, and S5996, and the detected results for di-n-butylphthalate in samples reported in SDG S5842 are considered external contamination (they are also present in associated blanks), and are edited

to reflect nondetection at the CRDL. Other detections of this compound should be used with caution. Low level detected results for naphthalene and 2-methylnaphthalene are also edited to reflect nondetection due to Equipment Blank constituency.

Results for sample analytes initially reported with the "E" flag are to be derived from the dilution ("-DL") analyses of the samples. All other target analyte results can be derived from the initial analyses.

Calibrations standard responses were generally within protocol guidelines (although continuing standards were analyzed at the less strict, non-compliant, highest concentration level), but some exceed validation criteria. Results for these analytes (primarily phenolics and hexachlorocyclopentadiene) have been qualified as estimated on the associated sample report forms. The following exceedences were also observed:

- For some samples, the reporting limit of hexachlorocyclopentadiene is raised by 2.5X due to very poor response in the low concentration initial calibration standard.
- The result for 4-bromomphenylphenyl ether is not usable in the Equipment Blank #4 due to poor instrument response (RRF=0.023). Two other compound results are qualified as estimated in that blank.
- Caprolactum results are not usable in SB-1, SB-7, DUP#3, and Equipment Blanks #5 and #6 due to poor continuing calibration response (RRF=0.011).
- The results for 4-nitrophenol in the samples reported in SDG S4885 are not usable ("R" qualifier) due to calibration standard evaluation. The response utilized for that compound is not resolved from a contributing response from dibenzofuran (see the above comment on temperature ramping).

Matrix spike evaluations were performed on project samples Trench 7 Lower, Trench 5 Upper, Trench 3 Lower, Trench 2 SS-2, Trench 1 Upper, SB-11, SB-1, SB-8, Surface Soil#17, SS#23, and CTM-1. Results fall within laboratory guidelines, with the following exceptions, results for which are qualified as estimated in the parent sample:

- Acenaphthene, 4-nitrophenol, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene in Trench 7 Lower (the matrix spikes (MS/MSD) exhibited low internal standard responses not shown by the parent sample)
- Four compounds show low recoveries in one of the matrix spikes of Trench 5 Upper. This MS also showed low response of the associated internal standard (not shown in the parent or MSD). An extract specific anomaly is suspected.
- The matrix spikes of Trench 3 Lower show very poor recovery for 4,6-dinitro-3-methylphenol (below 10%) and 2,4-dinitrophenol (10% and 11%), and low recoveries for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. The result for the 4,6-dinitro-3-methylphenol is not usable in the parent sample, and the results for the other three compounds are qualified as estimated in that sample. Those matrix spikes show outlying low responses for two internal standards not exhibited by the parent sample.
- The matrix spikes of SB-11 show four outlying low recoveries in the MS. No qualification is made because the MSs exhibited low internal standard responses not shown in the parent sample. The same instrument response was evaluated as both phenanthrene and anthracene in those spikes.

- The matrix spikes of SB-8 show very poor recovery for 4,6-dinitro-3-methylphenol (below 29%) and 2,4-dinitrophenol (8% and 11%). The result for 4,6-dinitro-3-methylphenol is not usable in the parent sample, and the result for the other compound is qualified as estimated in that sample.
- Matrix spikes of Trench 1 Upper show recoveries below 10% for hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-3-methylphenol, and low recoveries for indeno(1,2,3-cd)pyrene and n-nitrosodiphenyl amine. Results for the first three are not usable, and those for the latter two are qualified as estimated, in the parent sample. These matrix spikes were reported as having twofold high surrogate standard recoveries. Inspection of the raw data (response ratios of d5-phenol to phenol and d5-nitrobenzene to nitrobenzene) shows that the surrogate standards were likely spiked twice into those matrix spikes. The parent sample is unaffected.
- The MS of SB-1 shows low response for four of the six surrogate standards, none of which were outlying in the sample or MSD. That extract also reports 23 elevated target compound spike recoveries, not elevated in the MSD. No qualification is made to the parent sample results.
- The result for hexachlorocyclopentadiene is not usable ("R" qualifier) in Surface Soil#17 due to recoveries below 30% in the matrix spikes.
- The matrix spikes of CTM-1 show target analyte recoveries about twice of those expected. Inspection of the raw data (recovery ratios of d5-phenol to phenol and d5-nitrobenzene to nitrobenzene) shows that the targets analytes were likely spiked twice into those matrix spikes. The parent sample is therefore not qualified for the elevated MS recoveries.
- Matrix spikes of SS#23 show recoveries below 10% for hexachlorocyclopentadiene, 2,4dinitrophenol, and 4,6-dinitro-3-methylphenol, and low recoveries for about forty-five other compounds. Results for the first three are not usable. All other results for that sample are qualified as estimated. The spikes show low recoveries for internal standards that are not observed in the parent sample, so it is not known if the recoveries are low due to sample matrix.

Tentatively Identified Compounds (TICs) flagged as "B" or "A" by the laboratory are considered external contamination (indicated by presence in associated blanks), and results should be rejected as sample components.

TICs reported with a CAS number should also have been flagged as "N" (indicating tentative ID) by the laboratory. See the discussion above regarding characterization. Target analytes and surrogate standards should not have been reported as TICs, and are removed. Some of the TIC retention times are not reported correctly on the sample report forms.

### TAL Metals/CN by CLP

The results for sodium and silver in TestPit 1 Upper are derived from the dilution analysis (therefore tenfold higher reporting limits) due to large negative response in the undiluted analysis.

Due to low level detection in the associated Equipment Blank, detections of zinc in the samples reported in SDG S5952 are considered external contamination, and are edited to nondetection.

Matrix spike recoveries and duplicate correlations were performed on samples Trench 5 Upper, Trench 1 Upper-1, Test Pit 4 Upper, SB-1, Surface Soil#13, Surface Soil#17, CTM-1S, CTM-1, and SS-23. Those for SB-1, Surface Soil#13, Surface Soil#17, CTM-1S, and SS-23 show acceptable accuracy and precision. The following table outlines the outlying values, and the affected samples, results for

which are qualified a	s estimated:		ter en	·
Parent Sample	Element	Recovery	Dupl. Correlation	Affected Samples
Trench 5 Upper	Cadmium	66% and 67%		S4821,S4885,Trench3Lower,
1 1	Silver		>2X±CRDL	and Trench 3 Upper
Trench 1 Upper-1	Silver	47%		6 from \$4964, \$4989, \$5072
* *	Thallium	73%		
TestPit 4 Upper	Silver	-11% and -14%	)	S5116
1 1	Sodium	50% and 60%		
	Thallium	71% and 71%		

pg. 7/7

The ICP serial dilution evaluations of Trench 5 Upper, and Surface Soil#17 were acceptable.

The ICP serial dilution evaluation of Trench 1 Upper-1 shows outlying correlations for barium, copper, lead, nickel, potassium, and zinc (correlations between 12%D and 32%D). Detected results for those elements in the samples reported in SDGs S4964, S4989, and S5072 are therefore qualified as estimated.

The ICP serial dilution evaluation of TestPit 4 Upper shows outlying correlations for copper and potassium (correlations of 12%D and 20%D). Detected results for those elements in the samples reported in SDG S5116 are therefore qualified as estimated.

The ICP serial dilution evaluation of SB-1 shows outlying correlations for cobalt, copper, lead, potassium, and vanadium (correlations between 11%D and 22%D). Detected results for those elements in the samples reported in SDGs S5301, S5366, S5443, and S5560 (all SBs) are therefore qualified as estimated.

The ICP serial dilution evaluation of Surface Soil#13 shows outlying correlations for calcium, chromium, iron, lead, magnesium, and potassium (correlations between 11%D and 17%D). Detected results for those elements in ten of the samples reported in SDG 5842 are therefore qualified as estimated.

The ICP serial dilution evaluation of CTM-1S shows outlying correlations for calcium and sodium (correlations of 11%D and 12%D). Detected results for those elements in the samples reported in SDG S5931 and S5952 are therefore qualified as estimated.

The ICP serial dilution evaluation of CTM-1 shows outlying correlations for calcium, magnesium, sodium, and potassium (correlations between 23%D and 73%D). Detected results for those elements in the samples reported in SDG 5996 are therefore qualified as estimated.

The ICP serial dilution evaluation of SS-23 shows outlying correlations for aluminum, barium, calcium, chromium, iron, lead, magnesium, manganese, potassium, and zinc (correlations between 13%D and 29%D). Detected results for those elements in the samples reported in SDG T1092 are therefore qualified as estimated.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

# COVER PAGE

CustomerName:

ProjectID: Rensselaer Cty Indust. Dev.

C.T. Male & Associates

OrderID:

S4821

LAB SAMPLE NO. S4821-01 S4821-02 S4821-03 S4821-04 S4821-05 S4821-06 S4821-07 S4821-08

CLIENT SAMPLE NO TRENCH7UPPER **TRENCH7LOWER TRENCH7LOW ER-1 TRENCH7UPPER-1 TRENCH4LOWER** TRENCH4UPPER **TRENCH4LOWER-1 TRENCH4UPPER-1** 

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as werified by the following signature. Λ

Signature:	The D.	Name:	Anna puty
Date:	TiObInY	Title:	TOMATON J
Dute			0-11/0-0

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

OrderID: 3

S4885

CustomerName:

C.T. Male & Associates

LAB SAMPLE NO.	CLIENT SAMPLE NO
S4885-01	TRENCH4UPPER-2
S4885-02	TRENCH4LOW ER-2
S4885-03	TRENCH6LOW ER
S4885-04	TRENCH6UPPER
S4885-05	TRENCH6LOW ER-1
S4885-06	TRENCH6UPPER-1
S4885-07	TRENCH5LOW ER
S4885-08	TRENCH5UPPER
S4885-09	TRENCH5LOW ER-1
S4885-10	TRENCH5UPPER-1
S4885-11	TRENCH5UPPER-1MS
S4885-12	TRENCH5UPPER-1MSD
S4885-13	DUP
S4885-14	EQUIPBLANK#1
S4885-15	EQUIPBLANK#2

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	lund.	Name:	upa Aubul
Date:	10/8/04	Title:	OALDC.

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012

3

# **CHEMITECH**

284 Sheffield Street, Mountainside NJ 07092 Tel: 908-789-8900 Fax 908-789-8922

# COVER PAGE

**CustomerName:** 

ProjectID: Rensselaer Cty Indust. Dev.

C.T. Male & Associates

OrderID: S4964

LAB SAMPLE NO. S4964-01 S4964-02 S4964-03 S4964-04 S4964-05 S4964-06 S4964-07 S4964-08 CLIENT SAMPLE NO TRENCH3LOWER TRENCH3UPPER TRENCH3LOWER-1 TRENCH3UPPER-1 TRENCH3LOWER-2 TRENCH3UPPER-2 TRENCH2UPPER TRENCH2SS-1

I certify that the data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Releas of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature

	\	00	Υ -	Λ Û . Ι
Signature:	Im	Name:	dupa.	histy
Date:	TIMINOY	Title:	ØA	al J

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev. CustomerName: C.T. Male & Associates

OrderID: S4989

LAB SAMPLE NO. S4989-01 S4989-02 S4989-03 S4989-04 S4989-05 S4989-06 CLIENT SAMPLE NO TRENCH2SS-2 TRENCH2SS-3 TRENCH2LOW ER-1 TRENCH2UPPER-1 TRENCH2LOW ER-2 TRENCH2UPPER-2

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	Auth	Name:	Lupa	Dusul
Date:	10/16/04	Title:	OA OA	foc



# COVER PAGE

ProjectID:Rensselaer Cty Indust. Dev.CustomerName:C.T. Male & Associates

OrderID: S5072

		<ul> <li>A start of the sta</li></ul>
LAB SAMPLE NO.		CLIENT SAMPLE NO
S5072-01		TRENCH1UPPER
S5072-02		TRENCH1LOW ER
S5072-03		TRENCH1UPPER-1
S5072-04		TRENCH1UPPER-1MS
\$5072-05		TRENCH1UPPER-1MSD
S5072-06		TRENCH1LOW ER-1
S5072-07		DUP2
S5072-08		EQUIPBLANK#3
S5072-09	· ·	TRENCH1LOW ER-2
S5072-10	• •	TRENCH1UPPER-2
S5072-11		TRENCH1LOW ER-3
S5072-12		ERDSB-2
00012-12		

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as warified by the following signature.

manager of ma design			
Signature:	Must a	Name:	Juna mon
	Mandrid		TYONINCI
Date:	1012510	Title:	1 HILL
	. 15 . ( . 1	•	11

NYDOH CERTIFICATION NO.11376



# COVER PAGE

ProjectID:Rensselaer Cty Indust. Dev.CustomerName:C.T. Male & Associates

OrderID: S5116

LAB SAMPLE NO. S5116-01 S5116-02 S5116-03 S5116-04 S5116-05 S5116-06 S5116-07 S5116-08 S5116-09 CLIENT SAMPLE NO EQUIPBLANK4 TESTPIT1UPPER TESTPIT2UPPER TESTPIT2LOWER TESTPIT3UPPER TESTPIT3LOWER TESTPIT4UPPER TESTPIT4UPPER

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory

manager or his	designee, as kenne	a by the lon	owing signature	· \1	0 0 .
Signofuro:		-	Name:	Lupa	Jusul
Signature:				AI	
•	TAL	A A A	2.1	· · · · · · · · · · · · · · · · · · ·	MARU
Date:	10121	10-1	Title:		SINC-
Date	<u>\</u>	1			
				· •	1

NYDOH CERTIFICATION NO.11376

NJDEP; CERTIFICATION NO. 20012



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

OrderID: S5301

CustomerName:

C.T. Male & Associates

LAB SAMPLE NO. S5301-01 S5301-02 S5301-03 S5301-04 CLIENT SAMPLE NO SB-3A SB-6 SB-5 SB-11

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	Hund	Name:	Luba	Jula	-
Date:	11/10/04	Title:	AN T	lec.	

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012



# COVER PAGE

ProjectID: CustomerName:

Rensselaer Cty Indust. Dev. C.T. Male & Associates

OrderID: S5366

LAB SAMPLE NO. S5366-01 CLIENT SAMPLE NO

SB-10

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Name: Signature: ( Q Title: Date:

NYDOH CERTIFICATION NO.11376



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

OrderID: S5443

CustomerName:

C.T. Male & Associates

LAB SAMPLE NO. S5443-01 S5443-02 S5443-03

CLIENT SAMPLE NO SB-13 SB-2 SB-8

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature: Name: Date: Title:

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

C.T. Male & Associates

OrderID: S5560

LAB SAMPLE NO. S5560-01 S5560-02 S5560-03 S5560-04 S5560-05 S5560-06 S5560-07 S5560-08 CustomerName:

SB-1MS

SB-1MSD

CLIENT SAMPLE NO SB-9 DUP#3 EQUIPBLANK#5 EQUIPBLANK#6 SB-7 SB-1

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as yerified by the following signature.

Signature:	Minal I	Name:	Terra mille
Date:	N12304	Title:	Offall
<u> </u>			

NJDEP CERTIFICATION NO. 20012



C.T. Male & Associates

# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

CustomerName:

OrderID: S5842

CLIENT SAMPLE NO LAB SAMPLE NO. SURFACESOIL#1 S5842-01 SURFACESOIL#6 S5842-02 SURFACESOIL#3 S5842-03 SURFACESOIL#5 S5842-04 SURFACESOIL#4 S5842-05 SURFACESOIL#8 S5842-06 SURFACESOIL#7 S5842-07 SURFACESOIL#9 S5842-08 SURFACESOIL#12 S5842-09 SURFACESOIL#21 S5842-10 SURFACESOIL#13 S5842-11 S5842-12 SURFACESOIL#10 SURFACESOIL#14 S5842-13 SURFACESOILDUP S5842-14 SURFACESOIL#15 S5842-15 SURFACESOIL#11 S5842-16 SURFACESOIL#16 S5842-17 SURFACESOIL#17 S5842-18 SURFACESOIL#17MS S5842-19 SURFACESOIL#17MSD S5842-20 SURFACESOIL#19 S5842-21 SURFACESOIL#20 S5842-22

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Name: Signature: Title: Date:



# COVER PAGE

ProjectID:

OrderID: S5842

CustomerName:

C.T. Male & Associates

Rensselaer Cty Indust. Dev.

LAB SAMPLE NO. S5842-23 S5842-24

### CLIENT SAMPLE NO SURFACESOIL#2 SURFACESOILEQUIP.B

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	Name:
Date:	Title:

NYDOH CERTIFICATION NO.11376



# COVER PAGE

CustomerName:

Rensselaer Cty Indust. Dev. **ProjectID:** 

C.T. Male & Associates

OrderID:

S5931

LAB SAMPLE NO. CLIENT SAMPLE NO TRIPBLANK S5931-01 CTM-5 S5931-02 MW-8(ESI) S5931-03 **CTM-10** S5931-04 CTM-2 S5931-05 **CTM-13** S5931-06 S5931-07 CTM-1S GWDUP S5931-08 **TRIPBLANK1** S5931-09 CTM-8 S5931-10 CTM-9 S5931-11 CTM-7 S5931-12 CTM-6 S5931-13

I certify that the data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Releas of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature

Name: Signature: Title: Date:

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012



# COVER PAGE

ProjectID:

ID: Rensselaer Cty Indust. Dev.

OrderID: S5952

CustomerName:

C.T. Male & Associates

LAB SAMPLE NO. S5952-01 S5952-02 S5952-03 S5952-04 CLIENT SAMPLE NO TRIPBLANK CTM-11 MW-3 (ESI) EQUIP. BLANK

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	ler D	Name:	Lupa Miscul
Date:	12/20/04	Title:	offe

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

OrderID: S5996

LAB SAMPLE NO. S5996-01 S5996-02 S5996-03 S5996-04

S5996-05

CustomerName:

C.T. Male & Associates

CLIENT SAMPLE NO TRIPBLANK CTM-3 CTM-1 CTM-1-MS CTM-1-MSD

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	Meler	Name:	Luyandul
Date:	Re1941M	Title:	AR

NYDOH CERTIFICATION NO.11376



# COVER PAGE

ProjectID: Rensselaer Cty Indust. Dev.

C.T. Male & Associates

OrderID: T1092

LAB SAMPLE NO. T1092-01 T1092-02 T1092-03 T1092-04 T1092-05 T1092-06 T1092-07 T1092-08 CustomerName:

CLIENT SAMPLE NO SS-22 SS-23-MS SS-23-MSD SS-24 SS-24 SS-21 EQUIPBLANK DUPLICATE

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:	Und	Name:	upa Aubu
Date:	1 affort	Title:	affect
Duto			

NYDOH CERTIFICATION NO.11376

NJDEP CERTIFICATION NO. 20012

# Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, N. Y. 12853 Phone 518-251-4429 Facsimile 518-251-4428

June 24, 2005

Kurt Moline C. T. Male Associates 50 Century Hill Dr. Latham, NY 12110

RE: South Troy Industrial Park (STIP) Data Usability Summary Report (DUSR) for the STIP site Chemtech SDG Nos. S4821, S4885, S4964, S4989, S5072, S5116, S5301, S5365, S5443, S5560, S5842, S5931, S5952, S5996, and T1092

Dear Mr. Moline:

Review has been completed for the data packages generated by Chemtech Laboratories that pertain to samples collected 9/20/05 through 01/07/05 at the STIP site. Sixty six soil samples and fifteen aqueous samples (including field duplicates) were processed for TCL volatiles, TCL semivolatiles, and TAL metals. Twenty-six additional soil samples were processed for TCL semivolatiles and TAL metals. Equipment blanks and trip blanks were also analyzed. Methodologies utilized are those of the USEPA SW846, with QC requirements of the NYSDEC ASP and project QAPP.

The data packages submitted contained full deliverables for validation, but this usability report is generated from review of the summary form information, with full review of sample raw data, and limited review of associated QC raw data. Full validation has not been performed. However, the reported summary forms have been reviewed for application of validation qualifiers, per the USEPA Region 2 validation SOPs and the USEPA National Functional Guidelines for Data Review, with consideration of the requirements of the project QAPP. The following items were reviewed:

- * Laboratory Narrative Discussion
- * Case Narratives
- Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Matrix Spike Recoveries/Duplicate Correlations
- * Field Duplicates
- * Preparation/Calibration Blanks
- * Control Spike/Laboratory Control Samples
- * Instrumental Tunes
- * Calibration/CRI/CRA Standards
- * ICP Interference Check Standards
- * ICP Serial Dilution Correlations
- * Method Compliance
- * Sample Result Verification

pg. 2/7

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for this level of review.

In summary, most sample results are usable as reported, or usable with minor qualification due to sample matrix or to typical processing outliers. However, a few of the semivolatile analyte results are not usable in a limited number of samples due to processing or matrix.

Included with this report are summaries of sample IDs, and red-ink qualified client results forms. The following text discusses quality issues of concern.

#### **Data Completeness**

Many of the Tentatively Identified Compounds (TICs) were not correctly identified by the laboratory (i.e. not in compliance with the protocol requirements). Identifications were made based on best library matches, and in most instances they were very poor matches. In some cases target compounds and even surrogate standards were reported as TICs. If the characterization of TICs is important for this project, the laboratory would need to re-review and re-submit those forms. During this review, the target analytes and surrogate compounds have been removed from those lists on the (attached) sample forms.

The matrix spike, duplicate, and serial dilution evaluations reported in SDG T1092 were initially submitted in the data package using an incorrect parent sample. These were resubmitted on request, and the correct ones were used for those evaluations.

Resubmissions were made for raw ICP data for SDG T1092.

Matrix spikes of semivolatiles consistently show outlying internal and surrogate standard responses that are evidently related to processing rather than sample matrix (the parent samples do not show similar excursions). This has limited the evaluation for accuracy and precision; the matrix spike analyses should have been repeated.

The data package should include a statement as to the methodologies used for analysis. Although required by the QAPP, the QC requirements of the NYSDEC ASP were not always applied by the laboratory for QC evaluation of matrix spike recoveries, duplicate correlations, and calibration standards. Metals' report forms do not show the "E" qualifier for outlying serial dilution evaluations. In most instances, raw data are not identified with the client ID.

### General

Reporting limits for organic analytes are to be derived from the "RL" column of the report forms, not the "Conc" column. The latter should be used only for the detected values.

pg. 3/7

Blind field duplicate correlations were performed on Trench 5 Lower-1, Trench1 Lower-1, SB-9, CTM-10, and SS-22. All correlations were within validation guidelines, with the following exceptions, results for which are qualified as estimated in the corresponding parent sample and duplicate:

zinc in CTM-10(>+-CRDL)

o fluoranthene, pyrene, benoz(a)anthracene, barium, calcium, mercury, and silver in SS-22 Many of the other elements in SS-22 varied by more than twofold.

#### TCL Volatiles by USEPA CLP

The following samples exhibited outlying low surrogate standard responses, and results are qualified as estimated, with a possible low bias: Trench 4 Upper, Trench 4 Upper-1, Trench 3 Upper-1, Trench 3 Upper-2, Test Pit 4 Lower, and SB-11. Samples Trench 3 Upper-1, Trench 3 Upper -2, TestPit 4 Upper, SB-11also show low response for one of the internal standards.

Test Pit 4 Lower shows low responses for two internal standards, and the results for associated compounds are qualified as estimated.

Matrix spike evaluations were performed on project samples Trench 5 Upper, Trench 1 Upper-1, SB-1, and CTM-1.

Those for Trench 1 Upper-1 and SB-1 were acceptable.

The matrix spikes of CTM-1 show low recovery of benzene (74% and 76%, below 79%), and the result for that compound in the parent sample is qualified as estimated.

The matrix spikes of Trench 5 Upper were not useful for evaluation due to poor processing. The spikes show low surrogate and matrix spike compound recoveries. However, the parent sample showed acceptable surrogate recoveries (indicating a non-hostile matrix), and the matrix spikes should have been re-analyzed.

The detection of isopropyl benzene in SB-11 is qualified as tentative in identification ("NJ") due to non-subtractive mass spectral interferences.

Due to consistent presence of methylene chloride in associated method, equipment, and/or trip blanks, the detections of that compound in the project samples are considered external contamination, and are edited to reflect nondetection at the CRDL.

Detected results for acetone in the samples reported in SDG S5301 and S5366 are similarly edited due to method blank constituency.

The analytical columns used in instruments I and K (soils) and D (waters) showed severe tailing, indicating that they should have been replaced. This results in a spreading of the eluent, poor signal/noise ratio, and loss of sensitivity (basically, smearing the analytes into the background). Consequently, the calibration standards required manual intervention and integration. This affects soil samples in SDGs S4885, S4964, S4989, S5072, and S5931. Although no qualification of the data is made in most cases, it was so severe that results for the four gases are qualified as estimated in the samples reported in SDG S5931. Similarly, results for Equipment Blanks #1 through #4 are qualified as estimated due to very poor tailing and low concentration calibration standard performance.

pg. 4/7

Calibrations standard responses were generally within laboratory guidelines, but some exceed validation criteria. Results for these analytes (primarily bromomethane, chloroethane, methylene choride, methyl acetate, and ketones) have been qualified as estimated on the associated sample report forms.

Tentatively Identified Compounds (TICs) flagged as "B" by the laboratory are considered external contamination (indicated by presence in associated blanks), and results should be rejected as sample components.

TICs reported with a CAS number should also have been flagged as "N" (indicating tentative ID) by the laboratory. See the discussion above regarding characterization. Target analytes should not have been reported as TICs, and are removed. The TIC reported for the Equipment Blank #4 was rejected by the analyst (likely a CO2 peak), and should not have been reported; it has been rejected.

A surrogate standard recovery acceptance range of 75% to 125% was used. The laboratory should have used either ASP ranges, or their laboratory-determined ranges (per protocol).

### Semivolatile Analyses by USEPA CLP

All detected results for benzo(b)fluoranthene and benzo(k)fluoranthene are qualified as estimated due to poor resolution of those responses from one another. The analysis oven temperature programming cycle was very short, in effect merging the compounds, and reducing resolution.

Results for the phenolic compounds in CTM-1 and CTM-7 are not usable ("R" qualifier) due to lack of recovery of two of the acid surrogates in those samples indicating a matrix effect).

Due to low response for internal standard d12-perylene (indicating matrix effect), the results for the seven associated compounds are qualified as estimated in Trench 4 Upper-1, Trench 2 Upper, Surface Soil#5, Surface Soil#6, and SS#21 (unless used from a dilution analysis).

Due to low response for internal standards (IS) d12-chrysene and d12-perylene (indicating matrix effect), the results for the thirteen associated compounds are qualified as estimated in Surface Soil#1 and Surface Soil#20 Results for the seven analytes associated with the latter IS are to be derived from the dilution analyses.

All results for Surface Soil#17 except that for hexachlorocyclopentadiene are qualified as estimated due to low internal standard recoveries and subsequent high surrogate recoveries. The excursions were less evident in the matrix spikes of that sample. The result for hexachlorocyclopentadiene is not usable ("R" qualifier) due to recoveries below 30% in the matrix spikes.

The low level detection of dimethyl phthalate in Trench 2 Lower 2 is edited to nondetection at the CRDL due to incorrect identification (artifact of IS d10-anthracene).

The detection of n-nitrosodiphenylamine in Surface Soil#5 is edited to nondetection at the originally reported concentration due to incorrect identification (artifact of surrogate d5-nitrobenzene).

Detected results for bis(2-ethylhexyl)phthalate in the samples reported in SDG S5116, S5072, S5931, S5952, and S5996, and the detected results for di-n-butylphthalate in samples reported in SDG S5842 are considered external contamination (they are also present in associated blanks), and are edited

P.6

pg. 5/7

to reflect nondetection at the CRDL. Other detections of this compound should be used with caution. Low level detected results for naphthalene and 2-methylnaphthalene are also edited to reflect nondetection due to Equipment Blank constituency.

Results for sample analytes initially reported with the "E" flag are to be derived from the dilution ("-DL") analyses of the samples. All other target analyte results can be derived from the initial analyses.

Calibrations standard responses were generally within protocol guidelines (although continuing standards were analyzed at the less strict, non-compliant, highest concentration level), but some exceed validation criteria. Results for these analytes (primarily phenolics and hexachlorocyclopentadiene) have been qualified as estimated on the associated sample report forms. The following exceedences were also observed:

- For some samples, the reporting limit of hexachlorocyclopentadiene is raised by 2.5X due to very poor response in the low concentration initial calibration standard.
- The result for 4-bromomphenylphenyl ether is not usable in the Equipment Blank #4 due to poor instrument response (RRF=0.023). Two other compound results are qualified as estimated in that blank.
- Caprolactum results are not usable in SB-1, SB-7, DUP#3, and Equipment Blanks #5 and #6 due to poor continuing calibration response (RRF=0.011).
- The results for 4-nitrophenol in the samples reported in SDG S4885 are not usable ("R" qualifier) due to calibration standard evaluation. The response utilized for that compound is not resolved from a contributing response from dibenzofuran (see the above comment on temperature ramping).

Matrix spike evaluations were performed on project samples Trench 7 Lower, Trench 5 Upper, Trench 3 Lower, Trench 2 SS-2, Trench 1 Upper, SB-11, SB-1, SB-8, Surface Soil#17, SS#23, and CTM-1. Results fall within laboratory guidelines, with the following exceptions, results for which are qualified as estimated in the parent sample:

- Acenaphthene, 4-nitrophenol, benzo(a)anthracene, indeno(1,2,3-cd)pyrene, dibenz(a,h)anthracene, benzo(g,h,i)perylene in Trench 7 Lower (the matrix spikes (MS/MSD) exhibited low internal standard responses not shown by the parent sample)
- Four compounds show low recoveries in one of the matrix spikes of Trench 5 Upper. This MS also showed low response of the associated internal standard (not shown in the parent or MSD). An extract specific anomaly is suspected.
- The matrix spikes of Trench 3 Lower show very poor recovery for 4,6-dinitro-3-methylphenol (below 10%) and 2,4-dinitrophenol (10% and 11%), and low recoveries for indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene. The result for the 4,6-dinitro-3-methylphenol is not usable in the parent sample, and the results for the other three compounds are qualified as estimated in that sample. Those matrix spikes show outlying low responses for two internal standards not exhibited by the parent sample.
- The matrix spikes of SB-11 show four outlying low recoveries in the MS. No qualification is made because the MSs exhibited low internal standard responses not shown in the parent sample. The same instrument response was evaluated as both phenanthrene and anthracene in those spikes.

рд. 6/7

- The matrix spikes of SB-8 show very poor recovery for 4,6-dinitro-3-methylphenol (below 29%) and 2,4-dinitrophenol (8% and 11%). The result for 4,6-dinitro-3-methylphenol is not usable in the parent sample, and the result for the other compound is qualified as estimated in that sample.
- Matrix spikes of Trench 1 Upper show recoveries below 10% for hexachlorocyclopentadiene, 2,4-dinitrophenol, and 4,6-dinitro-3-methylphenol, and low recoveries for indeno(1,2,3-cd)pyrene and n-nitrosodiphenyl amine. Results for the first three are not usable, and those for the latter two are qualified as estimated, in the parent sample. These matrix spikes were reported as having twofold high surrogate standard recoveries. Inspection of the raw data (response ratios of d5-phenol to phenol and d5-nitrobenzene to nitrobenzene) shows that the surrogate standards were likely spiked twice into those matrix spikes. The parent sample is unaffected.
- The MS of SB-1 shows low response for four of the six surrogate standards, none of which were outlying in the sample or MSD. That extract also reports 23 elevated target compound spike recoveries, not elevated in the MSD. No qualification is made to the parent sample results.
  The result for hexachlorocyclopentadiene is not usable ("R" qualifier) in Surface Soil#17 due to
- The result for hexachlorocyclopentadiene is not usable ( K qualifier) in Surface Soli#17 due to recoveries below 30% in the matrix spikes.
- The matrix spikes of CTM-1 show target analyte recoveries about twice of those expected. Inspection of the raw data (recovery ratios of d5-phenol to phenol and d5-nitrobenzene to nitrobenzene) shows that the targets analytes were likely spiked twice into those matrix spikes. The parent sample is therefore not qualified for the elevated MS recoveries.
- Matrix spikes of SS#23 show recoveries below 10% for hexachlorocyclopentadiene, 2,4dinitrophenol, and 4,6-dinitro-3-methylphenol, and low recoveries for about forty-five other compounds. Results for the first three are not usable. All other results for that sample are qualified as estimated. The spikes show low recoveries for internal standards that are not observed in the parent sample, so it is not known if the recoveries are low due to sample matrix.

Tentatively Identified Compounds (TICs) flagged as "B" or "A" by the laboratory are considered external contamination (indicated by presence in associated blanks), and results should be rejected as sample components.

TICs reported with a CAS number should also have been flagged as "N" (indicating tentative ID) by the laboratory. See the discussion above regarding characterization. Target analytes and surrogate standards should not have been reported as TICs, and are removed. Some of the TIC retention times are not reported correctly on the sample report forms.

#### TAL Metals/CN by CLP

The results for sodium and silver in TestPit 1 Upper are derived from the dilution analysis (therefore tenfold higher reporting limits) due to large negative response in the undiluted analysis.

Due to low level detection in the associated Equipment Blank, detections of zinc in the samples reported in SDG S5952 are considered external contamination, and are edited to nondetection.

Matrix spike recoveries and duplicate correlations were performed on samples Trench 5 Upper, Trench 1 Upper-1, Test Pit 4 Upper, SB-1, Surface Soil#13, Surface Soil#17, CTM-1S, CTM-1, and SS-23. Those for SB-1, Surface Soil#13, Surface Soil#17, CTM-1S, and SS-23 show acceptable accuracy and precision. The following table outlines the outlying values, and the affected samples, results for

pg. 7/7

which are qualified a Parent Sample	s estimated: Element	Recovery	Dupl. Correlation	Affected Samples
Trench 5 Upper	Cadmium	66% and 67%		S4821,S4885,Trench3Lower,
The opposite of the opposite o	Silver		>2X±CRDL	and Trench 3 Upper
Trench 1 Upper-1	Silver Thallium	47% 73%		6 from S4964, S4989, S5072
TestPit 4 Upper	Silver Sodium Thallium	-11% and -14% 50% and 60% 71% and 71%	· .	\$5116

The ICP serial dilution evaluations of Trench 5 Upper, and Surface Soil#17 were acceptable.

The ICP serial dilution evaluation of Trench 1 Upper-1 shows outlying correlations for barium, copper, lead, nickel, potassium, and zinc (correlations between 12%D and 32%D). Detected results for those elements in the samples reported in SDGs S4964, S4989, and S5072 are therefore qualified as estimated.

The ICP serial dilution evaluation of TestPit 4 Upper shows outlying correlations for copper and potassium (correlations of 12%D and 20%D). Detected results for those elements in the samples reported in SDG S5116 are therefore qualified as estimated.

The ICP serial dilution evaluation of SB-1 shows outlying correlations for cobalt, copper, lead, potassium, and vanadium (correlations between 11%D and 22%D). Detected results for those elements in the samples reported in SDGs S5301, S5366, S5443, and S5560 (all SBs) are therefore qualified as estimated.

The ICP serial dilution evaluation of Surface Soil#13 shows outlying correlations for calcium, chromium, iron, lead, magnesium, and potassium (correlations between 11%D and 17%D). Detected results for those elements in ten of the samples reported in SDG 5842 are therefore qualified as estimated.

The ICP serial dilution evaluation of CTM-1S shows outlying correlations for calcium and sodium (correlations of 11%D and 12%D). Detected results for those elements in the samples reported in SDG S5931 and S5952 are therefore qualified as estimated.

The ICP serial dilution evaluation of CTM-1 shows outlying correlations for calcium, magnesium, sodium, and potassium (correlations between 23%D and 73%D). Detected results for those elements in the samples reported in SDG 5996 are therefore qualified as estimated.

The ICP serial dilution evaluation of SS-23 shows outlying correlations for aluminum, barium, calcium, chromium, iron, lead, magnesium, manganese, potassium, and zinc (correlations between 13%D and 29%D). Detected results for those elements in the samples reported in SDG T1092 are therefore qualified as estimated.

Please do not hesitate to contact me if you have comments or questions regarding this report.

Very truly yours,

Judy Harry

### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T4315 C.T. Male Project No.: 04.9138

DATE: December 1, 2005

On August 15, 17, and 18, 2005, C.T. Male Associates P.C. (C. T. Male) collected five (5) soil samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with an equipment blank and a trip blank, for the following analyses:

	Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
	Sample Ids			
Л	SB-100 (14-16)	8/15/2005	. 1	· 1
V	SB-101S (15-17)	8/17/2005	1	1
V	SB-102 (16-18)	8/17/2005	1	· 1
V	SB-103 (14-16)	8/18/2005	1	1
V	SB-103 (22-24)	8/18/2005	1	1
$\checkmark$	Equipment Blank	8/18/2005	1	1
	Trip Blank	-	1	0
	Total Samples		7	6

VOC - Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample results are presented in the laboratory summary forms, which are located in Attachment C.

DUSR December 1, 2005 Page 2 of 4

Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

#### **Data Completeness**

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

#### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on August 19, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

#### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial calibrations on August 1 and 15, 2005 and the continuing calibrations on August 22, 2005. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration average RRF and continuing calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except bromomethane (40.4%D), chloroethane (36.2%D), carbon disulfide (49.6%D), tetrachloroethene (27.4%D), and 1,2-dibromo-3-chloropropane (30.9%D) for the continuing calibration of August 22 associated with the analysis of the trip and equipment blanks, therefore the associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards. Dichlorodifluoromethane (31.4%D) and tetrachloroethene (46%D) exceeded 25%D for the continuing calibration of August 22 associated with all soil samples. The associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for 1,1-dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene.

A method blank was reported for each analytical batch and equipment and trip blanks were also submitted to the laboratory for VOA. Target analytes were not detected during the VOA of the trip blank. However, methylene chloride (a common laboratory contaminant) was detected during the VOA of method blank VBK0822S4, and toluene was detected during the VOA of the equipment blank, at concentrations of 15  $\mu$ g/Kg and 1.1  $\mu$ g/L, respectively. Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 10 for common laboratory contaminants and a factor of 5 for all other contaminants, and adjusted for dry weight comparison to soil

DUSR

December 1, 2005 Page 3 of 4

results when necessary. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial calibration on August 19, 2005 and the continuing calibrations of August 23, 24, and 28, 2005. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The %RSD between RRF was less than or equal to 30% during the initial calibrations, and the %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except 3-nitroaniline (30.7%D) during the continuing calibration associated with the analysis of all soils except SB-100(14-16), 4-chloroaniline (28%D) during the continuing calibration associated with the analysis of the equipment blank, and bis(2-chloroethyl)ether (33.1%D), 2-nitrophenol (26.9%D), hexachlorocyclopentadiene (65.3%D), 2,4-dinitrophenol (138.5%D), and 4-nitroaniline (30.8%D) during the continuing calibration specified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples except the surrogate recovery for terphenyl-d14 (2%R) during the analysis of SB-103(14-16). Qualification of base/neutral (B/N) results is not required, as all other B/N surrogates were within specifications.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except bis(2-chloroethyl)ether and carbazole exceeded laboratory specifications, and caprolactam was below laboratory specifications, during the analysis of blank spike PB07114BS, associated with the analysis of the equipment blank. Associated results in the equipment blank have been qualified as estimated (J/UJ) for caprolactam, and detected results have been qualified as estimated (J) for bis(2-chloroethyl)ether and carbazole.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except 4,6-dinitro-2-methylphenol exceeded laboratory specifications, and caprolactam was below laboratory specifications, during the analysis of blank spike PB07116BS, associated with the analysis of all soil samples. Associated results have been qualified as estimated (J/UJ) for caprolactam, and detected results have been qualified as estimated (J) for 4,6-dinitro-2-methylphenol.

A method blank was reported for each analytical batch. An equipment blank was also submitted to the laboratory for SVOA. Bis(2-ethylhexyl)phthalate, pentafluoropropionic acid octadecyl (a tentatively identified compound (TIC)), and 2,6,10,14,18,22-tetracosahexaene (TIC) were detected during the analysis of method blank PB07114B at concentrations of 7.6, 3.4, and 5.7  $\mu$ g/L, respectively. Dibenzyllidene 4,4-biphenylenedia (TIC) was detected during the analysis of method blank PB07116B at a concentration of 230  $\mu$ g/Kg. Bis(2-ethylhexyl)phthalate, 2-pentanone 4-hydroxy-4-methyl (TIC), and trichloroacetic acid hexadecyl est (TIC) were detected during the analysis of the equipment blank at concentration of 10, 8.4, and 2.6  $\mu$ g/L. Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 5, and adjusting the value for comparison to soil results when necessary. Samples with results reported below the action level have

DUSR December 1, 2005 Page 4 of 4

been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Decelu

Megan Drosky Environmental Scientist

ATTACHMENT A Case Narrative



### CASE NARRATIVE

C.T. Male & Associates Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T4315

# A. Number of Samples and Date of Receipt:

5 Solid samples were received on 8/19/05.

2 Water samples were received on 8/19/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

### C. Analytical Techniques:

The analysis of Semi-Volatile Organic is based on Method 8270. The samples were analyzed on instrument BNA E using GC Column RTX-5 which is 30 meters, 0.32mm ID, 0. 5um DF., Catalog # 12739.

### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for SB-103(14-16).

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for 4,6-Dinitro-2methylphenol and Carbazole.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except for 4,6-Dinitro-2-methylphenol, Carbazole, bis(2-Chloroethyl)ether and Caprolactam.

The Blank analysis indicated presence of bis(2-Ethylhexyl)phthalate due to possible lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	Mal	Name: Krupa Dubey
Date:	912/05	Title: QA/QC

### CASE NARRATIVE

### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T4315

### A. Number of Samples and Date of Receipt:

5 Solid samples were received on 8/19/05.

2 Water samples were received on 8/19/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

### C. Analytical Techniques:

The analysis performed on instrument MSVOA H were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator. The analysis performed on instrument MSVOA K were done using GC column DB624, which is 20 meters, 0.18 ID, 1.0 df, J&W Cat. #1211324. The Trap was supplied by OI Analytical, OI #10 Trap, OI 4560 Concentrator.

#### D. OA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis indicated presence of Methylene Chloride due to possible lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Date:

Name: Krupa Dubey Title: QA/QC

### ATTACHMENT B Data Evaluation Checklist

•

### Data Evaluation Checklist Organic Analyses

Project:South Troy Industrial ParkWork Order:T4315Laboratory:CHEMTECH	Project No:         04.9138           Method:         SW-846 Methods 8260B (VOA), 8270C (SVOA           Associated Sample IDs:         SB-100(14-16), SB-101S(15-17), SB-10           SB-103(14-16), SB-103(22-24), Equipment Blar           Blank	02(16-18),
Reviewer: <u>Megan Drosky</u>	Sample Date:         08/15, 17, and 18/05           Date:         12/01/05	
Review Questions	Yes No N/A Samples (Analytes) Affected/Comments	Flag
1. Were holding times met?	<ul> <li>✓</li> <li>VOA: ≤14 days</li> <li>SVOA: ≤14/40 days (soil), ≤7/40 days (water</li> </ul>	)
2. Were sample storage and preservation requirements met?	$\checkmark$ $6^{\circ}C$ (2-6°C). The trip blank and equipment blank were preserved with HCl for VOA analysis.	
3. Was a method blank analyzed with each batch?	<ul> <li>✓</li> <li>✓</li> <li>VOA: VBH0822W4, VBK0822S4</li> <li>SVOA: PB07114B, PB07116B</li> </ul>	
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?	<ul> <li>VOA – VBK0822S4: Methylene chloride @1 μg/Kg (1.8 μg/Kg)</li> <li>SVOA – PB07116B: Dibenzyllidene4,4- biphenylenedia (TIC) @230 μg/Kg (RT=14.3</li> <li>SVOA – PB07114B: bis(2-ethylhexyl)phthal @7.6 μg/L (1.5 μg/L)</li> <li>SVOA – PB07114B: Pentafluoropropionic ac octadecyl (TIC) @3.4 μg/L (RT=8.54)</li> <li>SVOA – PB07114B: 2,6,10,14,18,22- Tetracosahexaene (TIC) @5.7 μg/L (RT=9.8)</li> </ul>	32) ate cid,
5. Were target analytes reported in field blank analyses (e.g., trip, <del>ambient, field,</del> or equipment) above the DL?	<ul> <li>✓</li> <li>Equipment Blank:</li> <li>VOA – Toluene @1.1 µg/L (0.36 µg/L)</li> <li>SVOA – bis(2-ethylhexyl)phthalate @10 µg/I (1.6 µg/L)</li> <li>SVOA – 2-Pentanone, 4-hydroxy-4-methyl- (TIC) @8.4 µg/L (RT=3.02)</li> <li>SVOA – Trichloroacetic acid, hexadecyl est (TIC) @2.6 µg/L (RT=8.54)</li> </ul>	
6. Were contaminants detected in samples below the blank contamination action level?	<ul> <li>✓</li> <li>✓</li> <li>Blank Contamination Action Levels:</li> <li>VOA – Toluene @55 µg/Kg (1.1 x 5 x 10)</li> <li>VOA – Methylene chloride @150 µg/Kg (15 10)</li> </ul>	x ND, U

K:\Projects\049138\Admin\DUSR\T4315\STIP DUSR T4315 Organic DE Checklist.doc 1 of 5

#### WO # <u>T4315</u>

## Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
Review Questions	<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>	2 A <b>KU ( X</b> Ko	<ul> <li>SVOA – bis(2-ethylhexyl)phthalate @500 µg/L (10 x 5 x 10)</li> <li>SVOA – 2-Pentanone, 4-hydroxy-4-methyl- (TIC) @420 µg/Kg (8.4 x 5 x 10)</li> <li>SVOA – Trichloroacetic acid, hexadecyl est (TIC) @130 µg/Kg (2.6 x 5 x 10)</li> <li>SVOA – Dibenzyllidene4,4-biphenylenedia (TIC) @1150 µg/Kg (230 x 5)</li> <li>SVOA – Pentafluoropropionic acid, octadecyl</li> </ul>	
				<ul> <li>(TIC) @170 μg/Kg (3.4 x 5 x 10)</li> <li>SVOA - 2,6,10,14,18,22-Tetracosahexaene (TIC) @285 μg/Kg (5.7 x 5 x 10)</li> <li>Sample results that were not significantly greater (5x</li> </ul>	
				and 10x for common laboratory contaminants) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.	
7. Were initial and continuing calibration standards analyzed at the lab-specified frequency for each instrument?				<ul> <li>VOA         <ul> <li>Initial calibration: 08/15/05 (Associated samples: Trip Blank and Equipment Blank) and 08/01/05 (Associated samples: all soil samples)</li> <li>Continuing calibration: 08/22/05 @22:27 (Trip Blank and Equip Blank) and 08/22/05 @23:28 (all soils)</li> </ul> </li> <li>SVOA         <ul> <li>Initial calibration: 08/19/05</li> </ul> </li> </ul>	
				<ul> <li>Continuing calibration: 08/24/05 @18:06 (Equip Blank), 08/23/05 @04:08 (all soils except SB-100(14-16)), and 08/28/05 @06:27 (SB-100(14-16))</li> </ul>	
8. Were these results within lab or project specifications?		✓		<ul> <li>VOA –</li> <li>Initial Calibration of 08/15/05 and 08/01/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes.</li> <li>Continuing calibrations of 08/22/05. The RF&gt;0.05 and %D &lt;25% for all target analytes,</li> </ul>	J/UJ

K:\Projects\049138\Admin\DUSR\T4315\STIP DUSR T4315 Organic DE Checklist.doc 2 of 5

WO # <u>T4315</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
Review Questions	1.05			<ul> <li>except as follows:</li> <li>08/22/05 @22:27 - bromomethane (40.4%D), chloroethane (36.2%D), carbon disulfide (49.6%D), tetrachloroethene (27.4%D), and 1,2-dibromo-3- chloropropane (30.9%D). J/UJ associated samples.</li> <li>08/22/05 @23:28 - dichlorodifluoromethane (31.4%D) and tetrachloroethene (46%D). J/UJ associated samples.</li> <li>SVOA -</li> <li>Initial Calibration of 08/19/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes.</li> <li>Continuing calibrations of 08/23/05, 08/24/05, and 08/28/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows:</li> <li>08/23/05 - 3-nitroaniline (30.7%D). J/UJ associated samples.</li> <li>08/24/05 - 4-chloroaniline (28%D). J/UJ associated samples.</li> </ul>	
				<ul> <li>08/28/05 – bis(2-Chloroethyl)ether</li> <li>(33.1%D), 2-nitrophenol (26.9%D),</li> <li>hexachlorocyclopentadiene (65.3%D), 2,4-</li> <li>dinitrophenol (138.5%D), and 4-nitroaniline</li> <li>(30.8%D). J/UJ associated samples.</li> </ul>	
9. Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?			~		
10. Was a CRDL Standard analyzed for metals?		-	<ul> <li>✓</li> </ul>		
<ul> <li>11. Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?</li> </ul>			✓ 		
12. Was a LCS analyzed with each batch?		<b>v</b>		<ul> <li>VOA: BSK0822S1</li> <li>SVOA: PB07116BS, PB07114BS</li> </ul>	

WO # <u>T4315</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
13. Were LCS' recoveries within lab specifications?	· · · · · · · · · · · · · · · · · · ·			<ul> <li>SVOA, PB07116BS (Associated samples: all soils):</li> <li>4,6-Dinitro-2-methylphenol @106%R (40-105). J</li> <li>Carbazole @118%R (54-117). J</li> <li>SVOA, PB07114BS (Associated sample: equipment blank):</li> <li>Bis(2-Chloroethyl)ether @96%R (47-94). J</li> <li>Caprolactam @15%R (20-150). J/UJ</li> <li>Carbazole @132%R (57-115). J</li> </ul>	1\frac{1}{1}
14. Were LCS/LCSD RPD within lab specifications?			~	LCS only	
15. Was a MS/MSD pair analyzed with each batch?	1			<ul> <li>VOA: T4292-01 (batch)</li> <li>SVOA: T4289-01 (batch)</li> </ul>	
16. Is the MS/MSD parent sample a project-specific sample?		<ul> <li>✓</li> </ul>			
17. Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.			<b>√</b>		· · ·
<ol> <li>Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.</li> </ol>			<b>√</b>		
19. Was a serial dilution conducted on each inorganic batch?			<ul> <li>✓</li> </ul>		
20. Is the serial dilution parent sample a project-specific sample?			✓		
21. Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.					
22. Was a laboratory duplicate analyzed with each batch?		✓	<u> </u>		
23. Is the laboratory duplicate sample a project-specific sample?			1		
24. Does laboratory duplicate results meet lab specifications? Only OC results for project samples are evaluated.			1		
25. Were surrogate recoveries within lab specifications during organic analysis?		V		<ul> <li>SVOA - SB-103(14-16)</li> <li>Terphenyl-d14 @2%R (18-137)</li> <li>No action warranted as remaining B/N surrogates are within specifications.</li> </ul>	
26. Were internal standard results within lab specifications during the VOA and SVOA?	~				

	Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
27.	Were TIC reported and were reported results qualified as estimated concentrations?	~				JN
28.	Were field duplicate samples submitted to the laboratory for analysis?		×			
29.	Was precision deemed acceptable as defined by DV Guidelines?			✓ 		
30.	Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.		<b>~</b>			
31.	Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.			 	Refer to Case Narratives	

#### Comments:

The data review process was modeled after the EPA Region 2 Data Validation Guidelines for unusable data and Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of Draft DER-10 Technical Guidance for Site Investigation and Remediation (NY DEC, December 2002).

Key:

J Positive sample result is considered estimated

R Unusable data

- R+ Positive sample result is considered unusable
- U Not present above the associated level; blank contamination exists
- UJ Sample result is not detected and the detection limit is considered estimated

ND Sample result is not detected

N A "tentative identification" has been made of the presence of an analyte

#### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T4378 C.T. Male Project No.: 04.9138

DATE: December 1, 2005

On August 19, 22, and 23, 2005, C.T. Male Associates P.C. (C. T. Male) collected eight (8) soil samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with an equipment blank and a trip blank, for the following analyses:

Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
Sample Ids			
//SB-105 (26-28)	8/19/2005	1	1
SB-105S (17-19)	8/19/2005	1	1
SB-200 (20-24)	8/22/2005	1	1
SB-201 (26-28)	8/22/2005	1	1
(,SB-202 (20-22)	8/22/2005	1	1
SB-203 (16-18)	8/22/2005	1	1
/SB-205 (26-28)	8/23/2005	1	1
Duplicate ¹	8/23/2005	1	1
V Equipment Blank	8/23/2005	1	1
Trip Blank	-	1	0
Total Samples		10	9

VOC - Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in

¹ Field duplicate of SB-205 (26-28).

DUSR December 1, 2005 Page 2 of 4

Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample results are presented in the laboratory summary forms, which are located in Attachment C. Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

#### **Data Completeness**

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

#### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on August 24, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

#### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial calibrations on August 15 and 26, 2005 and the continuing calibrations on August 26, 27, and 29, 2005. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except carbon disulfide (57.4%D), MTBE (25.6%D), methyl acetate (31.5%D), methylene chloride (25.7%D), 1,2dibromo-3-chloropropane (41.4%D), and 1,2,4-trichlorobenzene (34.5%D) for the continuing calibration of August 26, which was associated with the analysis of the trip and equipment blanks, therefore the associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards. Methyl acetate (44.3%D) and methylene chloride (77.8%D) exceeded 25%D for the continuing calibrations of August 27 and 29, respectively. The calibration on August 27 was associated with all soil samples except SB-202 (20-22) and the calibration on August 29 was associated with the analysis of sample SB-202 (20-22). The associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for 1,1dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene.

A method blank was reported for each analytical batch and equipment and trip blanks were also submitted to the laboratory for VOA. Target analytes were not detected during the VOA of the trip or equipment

DUSR December 1, 2005 Page 3 of 4

blanks. However, methylene chloride (a common laboratory contaminant) was detected during the VOA of method blanks VBK0826S4 and VBK0829S2, at concentrations of 6.3 and 25  $\mu$ g/Kg, respectively. Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 10 for common laboratory contaminants. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Criteria for precision was achieved during the field duplicate evaluation of samples DUPLICATE and SB-205 (26-28).

#### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial calibration on August 19, 2005 and the continuing calibrations of August 27, 28, and 29, 2005. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The %RSD between RRF was less than or equal to 30% during the initial calibrations, and the %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except 4-chloroaniline (26.3%D), hexachlorocyclopentadiene (55.1%D), 2,4-dinitrophenol (152.6%D), carbazole (26.2%D), 3,3-dichlorobenzidine (29.1%D) during the continuing calibration associated with the analysis of samples SB-105 (26-28) and SB-105S (17-19), bis(2-Chloroethyl)ether (33.1%D), 2-nitrophenol (26.9%D), hexachlorocyclopentadiene (65.3%D), 2,4-dinitrophenol (138.5%D), and 4-nitroaniline (30.8%D) during the continuing calibration associated with the analysis of the remaining soils, and 3+4methylphenols (29.5%D), hexachlorocyclopentadiene (68.8%D), 2,4-dinitrophenol (151.3%D), and 4nitroaniline (35.9%D) during the continuing calibration associated with the analysis of the equipment blank. The associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples except the surrogate recovery for 2-fluorophenol (19%R) during the analysis of the equipment blank. Qualification of acid results is not required, as all other acid surrogates were within specifications.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except carbazole exceeded laboratory specifications, and 3+4-methylphenols and 4-nitrophenol were below laboratory specifications, during the analysis of blank spike PB07229BS, associated with the analysis of the equipment blank. The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except 2,4-dinitrophenol exceeded laboratory specifications during the analysis of blank spike PB07230BS, associated with the analysis of the analysis of blank spike PB07230BS, associated with the analysis of the all soil samples. Associated results in the equipment blank have been qualified as estimated (J/UJ) for 3+4-methylphenols and 4-nitrophenol, and detected results have been qualified as estimated (J) for carbazole, and the associated detected results in the soil samples have been qualified as estimated (J) for 2,4-dinitrophenol.

A method blank was reported for each analytical batch. An equipment blank was also submitted to the laboratory for SVOA. Target analytes were not detected during the analysis of the method or equipment blanks, tentatively identified compounds (TIC) were also not detected during the analysis of the equipment blank. Squalene (TIC) and 1,5,9-Decatriene, 2,3,5,8-tetramet (TIC) were detected during the

DUSR December 1, 2005 Page 4 of 4

analysis of method blanks PB07229B and PB07230B, respectively at concentrations of 2.1  $\mu$ g/L and 98  $\mu$ g/Kg, respectively. Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 5, and adjusting the value for comparison to soil results where necessary. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Criteria for accuracy and precision were met during the matrix spike (MS)/MS duplicate (MSD) analysis of sample SB-105S (17-19) for all target analytes.

A field duplicate evaluation was performed on samples DUPLICATE and SB-205 (26-28). Criteria for precision was achieved, as target analytes were not detected in the associated samples.

Migan Drasky) Megan Drosky

Environmental Scientist

## ATTACHMENT A Case Narrative

.

# CHEINTECH

### CASE NARRATIVE

#### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T4378

#### A. Number of Samples and Date of Receipt:

8 Solid samples were received on 8/24/05.2 Water samples were received on 8/24/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

#### C. Analytical Techniques:

The samples were analyzed on instrument BNA E using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739-125.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for EQUIPMENTBLANK. The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except for 2,4-Dinitrophenol, 3+4-Methylphenols, Caprolactam, 4-Nitrophenol and Carbazole. These compounds are not present in the samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

#### **E.** Additional Comments:

Recovery did not meet requirements for 2-Nitrophenol for CCC File ID BE024849.D, BE024868.D and BE024896.D but this compound is not present in the samples.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Â

Signature	WQ	Name: Krupa Dubey
Date:	9/7/05	Title: QA/QC

....

# CEMTECH

### CASE NARRATIVE

C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T4378

### A. Number of Samples and Date of Receipt:

8 Solid samples were received on 8/24/05.

2 Water samples were received on 8/24/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

#### C. Analytical Techniques:

The analysis performed on instrument MSVOA H were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator. The analysis performed on instrument MSVOA K were done using GC column DB624, which is 20 meters, 0.18 ID, 1.0 df, J&W Cat. #1211324. The Trap was supplied by OI Analytical, OI #10 Trap, OI 4560 Concentrator.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis indicated presence of Methylene Chloride due to possible lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_	Ung
Date:	9/2/05

Name: Krupa Dubey

Title: QA/QC

3

## ATTACHMENT B Data Evaluation Checklist

## Data Evaluation Checklist Organic Analyses

Project: <u>South Troy Industrial Park</u> Work Order: <u>T4378</u> Laboratory: <u>CHEMTECH</u>		Metho Assoc	Project No:         04.9138           Method:         SW-846 Methods 8260B (VOA), 8270C (SVOA)           Associated Sample IDs:         SB-105(26-28), SB-105S(17-19), SB-200(20-24)           SB-201(26-28), SB-202(20-22), SB-203(16-18), SB-205           28), Duplicate, Equipment Blank, and Trip Blank				
Reviewer: <u>Megan Drosky</u>		Date:	e Date:	<u>08/19, 22, and 23/05</u> <u>12/01/05</u>			
Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments F	lag		
1. Were holding times met?	1			<ul> <li>VOA: ≤14 days</li> <li>SVOA: ≤14/40 days (soil), ≤7/40 days (water)</li> </ul>			
2. Were sample storage and preservation requirements met?	~			5°C (2-6°C). The trip blank and equipment blank were preserved with HCl for VOA analysis.			
3. Was a method blank analyzed with each batch?	~			<ul> <li>VOA: VBH0826W2, VBK0826S4, VBK0829S2</li> <li>SVOA: PB07230B, PB07229B</li> </ul>			
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?				<ul> <li>VOA - VBK0826S4: Methylene chloride @6.3 μg/Kg (1.8 μg/Kg)</li> <li>VOA - VBK0829S2: Methylene chloride @25 μg/Kg (1.8 μg/Kg)</li> <li>SVOA - PB07230B: 1,5,9-Decatriene, 2,3,5,8-tetramet (TIC) @98 μg/Kg (RT=7.38)</li> <li>SVOA - PB07229B: Squalene (TIC) @2.1 μg/L (RT=9.81)</li> </ul>			
<ol> <li>Were target analytes reported in field blank analyses (e.g., trip, ambient, field, or equipment) above the DL?</li> </ol>		$\checkmark$					
<ul> <li>6. Were contaminants detected in samples below the blank contamination action level?</li> </ul>				<ul> <li>Blank Contamination Action Levels: NI</li> <li>VOA – Methylene chloride @250 μg/Kg (25 x 10)</li> <li>SVOA – 1,5,9-Decatriene, 2,3,5,8-tetramet (TIC) @490 μg/Kg (98 x 5)</li> <li>SVOA – Squalene (TIC) @105 μg/Kg (2.1 x 5 x 10)</li> <li>Sample results that were not significantly greater (5x and 10x for common laboratory contaminants) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.</li> </ul>	D, U		

K:\Projects\049138\Admin\DUSR\T4378\STIP DUSR T4378 Organic DE Checklist.doc 1 of 5

and the second

WO # <u>T4378</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
Were initial and continuing calibration standards analyzed at the lab-specified frequency for each instrument?				<ul> <li>VOA         <ul> <li>Initial calibration: 08/15/05 (Associated samples: Trip Blank and Equipment Blank) and 08/26/05 (Associated samples: all soil samples)</li> <li>Continuing calibration: 08/26/05 @14:51 (Trip Blank and Equip Blank), 08/27/05 @02:51 (All soils except SB-202(20-22)), and 08/29/05 @10:59 (SB-202(20-22))</li> </ul> </li> <li>SVOA         <ul> <li>Initial calibration: 08/19/05</li> <li>Continuing calibration: 08/27/05 @21:32 (Associated samples: SB-105(26-28) and SB-105S(17-19)), 08/28/05 @06:27 (Associated samples: all soils except SB-105(26-28) and SB-105S(17-19)), and 08/29/05 @17:32 (Associated sample: Equipment Blank)</li> </ul> </li> </ul>	
Were these results within lab or project specifications?				<ul> <li>VOA –</li> <li>Initial Calibration of 08/15/05 and 08/26/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes.</li> <li>Continuing calibrations of 08/26, 27, and 29/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows: <ul> <li>08/26/05 – carbon disulfide (57.4%D), MTBE (25.6%D), methyl acetate (31.5%D), methylene chloride (25.7%D), 1,2-dibromo-3-chloropropane (41.4%D), and 1,2,4-trichlorobenzene (34.5%D). J/UJ associated samples.</li> <li>08/27/05 – methyl acetate (44.3%D). J/UJ associated samples.</li> <li>08/29/05 – methylene chloride (77.8%D)</li> </ul> </li> <li>SVOA – <ul> <li>Initial Calibration of 08/19/05. The RF &gt;0.05</li> </ul> </li> </ul>	J/UJ

K:\Projects\049138\Admin\DUSR\T4378\STIP DUSR T4378 Organic DE Checklist.doc 2 of 5

بر با بر مر

## Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>Continuing calibrations of 08/27/05, 08/28/05, and 08/29/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows:         <ul> <li>08/27/05 – 4-chloroaniline (26.3%D), hexachlorocyclopentadiene (55.1%D), 2,4-dinitrophenol (152.6%D), carbazole (26.2%D), 3,3-dichlorobenzidine (29.1%D). J/UJ associated samples.</li> <li>08/28/05 – bis(2-Chloroethyl)ether (33.1%D), 2-nitrophenol (26.9%D), hexachlorocyclopentadiene (65.3%D), 2,4-dinitrophenol (138.5%D), and 4-nitroaniline (30.8%D). J/UJ associated samples.</li> <li>08/29/05 – 3+4-methylphenols (29.5%D), hexachlorocyclopentadiene (68.8%D), 2,4-dinitrophenol (151.3%D), and 4-nitroaniline (35.9%D). J/UJ associated samples.</li> </ul> </li> </ul>	
<ol> <li>Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?</li> </ol>			~		
10. Was a CRDL Standard analyzed for metals?			✓		ļ
11. Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?			~		
12. Was a LCS analyzed with each batch?		-		<ul><li>VOA: BSK0826S2</li><li>SVOA: PB07230BS</li></ul>	
13. Were LCS' recoveries within lab specifications?				<ul> <li>SVOA, PB07230BS (Associated samples: all soils):</li> <li>2,4-Dinitrophenol @133%R (26-131). J</li> <li>SVOA, PB07229BS (Associated sample: equipment blank):</li> <li>3+4-Methylphenols @34%R (35-110). J/UJ</li> <li>4-Nitrophenol @13%R (20-115). J/UJ</li> <li>Carbazole @128%R (57-115). J</li> </ul>	J/UJ
14. Were LCS/LCSD RPD within lab specifications?			<ul> <li>✓</li> </ul>	LCS only	· · · · · ·
15. Was a MS/MSD pair analyzed with each batch?	×			<ul> <li>VOA: T4387-01 (batch)</li> <li>SVOA: T4378-02 (SB-105S(17-19))</li> </ul>	
16. Is the MS/MSD parent sample a project-specific sample?	<ul> <li>✓</li> </ul>				

#### WO # <u>T4378</u>

## Data Evaluation Checklist (Continued)

	Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
17.	Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.	✓ 				
18.	Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.	~				
19.	Was a serial dilution conducted on each inorganic batch?			~		
20.	Is the serial dilution parent sample a project-specific sample?					
21.	Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.					
22.	Was a laboratory duplicate analyzed with each batch?		×			
23.	Is the laboratory duplicate sample a project-specific sample?			<ul> <li>✓</li> </ul>		
24.	Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.			~		
25.	Were surrogate recoveries within lab specifications during organic analysis?	A	<b>√</b>		<ul> <li>SVOA – Equipment Blank</li> <li>2-Fluorophenol @19%R (21-100)</li> <li>No action warranted as remaining acid surrogates are within specifications.</li> </ul>	
26.	Were internal standard results within lab specifications during the VOA and SVOA?	×				
27.	Were TIC reported and were reported results qualified as estimated concentrations?	~				JN
28.	Were field duplicate samples submitted to the laboratory for analysis?	$\checkmark$			Duplicate is the field duplicate of SB-205 (26-28)	·
29.	Was precision deemed acceptable as defined by DV Guidelines?				Refer to Attachment A for duplicate evaluation.	
30.	Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.		<b>√</b>			
31.	Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.				Refer to Case Narratives	



	Review Questions Yes No N/A Samples (Analytes) Affected/Comments	Flag
Comments:		1

The data review process was modeled after the EPA Region 2 Data Validation Guidelines for unusable data and Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of Draft DER-10 Technical Guidance for Site Investigation and Remediation (NY DEC, December 2002).

Key:

J Positive sample result is considered estimated

R Unusable data

- R+ Positive sample result is considered unusable
- U Not present above the associated level; blank contamination exists
- UJ Sample result is not detected and the detection limit is considered estimated

ND Sample result is not detected

N A "tentative identification" has been made of the presence of an analyte

## ATTACHMENT A

#### **Evaluation of Field Duplicate Results**

sosensismentetrocerati }	олиникананан 1	***************************************	1077622400224002210	***************************************					Absolute	
Anal	yte	SB-205 (20	5-28)	DUPLICATE	CRDL	CRDLx5	Criteria	RPD	difference	Action
121321-101312439-6184239-6184		1928-2918-2019-2019-2019-2019-2019-2019-2019-2019	9-10-10-10-10-10-10-10-10-10-10-10-10-10-	**************************************						
Aceton	e		16	. 14	4.2	21	Abs Diff	13.33	2	None, Absolute difference is <crdl< td=""></crdl<>

Note: If the analyte was not detected, then the cell is left blank.

DL - Detection limit

RPD - Relative percent difference

*Results are presented on a dry weight basis (ug/Kg).

Precision is based on either the absolute difference between sample results or RPD. If the sample results are less than or equal to 5x's the CRDL, then precision is based on the absolute difference between duplicate results. If sample results >5x's CRDL, then precision is evaluated using RPD. J sample results whenever the absolute difference is greater than CRDL or RPD >20%. If the analyte is detected in one sample but not the other, then J/UJ sample results. Above table presents results for detected analytes only. Blank cells indicates that the analyte was not detected.



#### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T4434 C.T. Male Project No.: 04.9138

DATE: December 2, 2005

On August 23 and 24, 2005, C.T. Male Associates P.C. (C. T. Male) collected four (4) soil samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with an equipment blank and a trip blank, for the following analyses:

Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
Sample Ids			
. SB-206 (10-12)	8/23/2005	1	1
, SB-208 (6-8)	8/24/2005	1	1
SB-209 (6-8)	8/24/2005	1	1
SB-210 (22-24)	8/24/2005	1	1
Trip Blank		1	0
Total Samples		5	4

VOC – Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample results are presented in the laboratory summary forms, which are located in Attachment C. Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

DUSR December 2, 2005 Page 2 of 3

#### **Data Completeness**

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

#### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on August 27, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

#### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial calibrations on August 15 and 26, 2005 and the continuing calibrations on August 29 and 30, 2005. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except methyl acetate (30.4%D) and methylene chloride (85.5%D) for the continuing calibration associated with the analysis of samples SB-208 (6-8) and SB-210 (22-24), methylene chloride (80.9%D) for the continuing calibration associated with the analysis of samples SB-206 (10-12) and SB-209 (6-8), and dichlorodifluoromethane (34.1%D), 1,1,2-trichlorotrifluoroethane (25.7%D), carbon disulfide (46.4%D), methyl acetate (27.4%D), 1,3-dichlorobenzene (29.6%D), 1,2-dibromo-3-chloropropane (35.7%D), 1,2,4trichlorobenzene (38.8%D) for the continuing calibration associated with the analysis of the trip blank. The associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for 1,1dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene.

A method blank was reported for each analytical batch and equipment and a trip blank was also submitted to the laboratory for VOA. Methylene chloride (a common laboratory contaminant) was detected during the VOA of method blanks VBK0829S4, VBK0830S2, and VBH0830W2 as well as in the trip blank, at concentrations of 42  $\mu$ g/Kg, 71  $\mu$ g/Kg, 1.1  $\mu$ g/L, and 1.6  $\mu$ g/L, respectively. Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 10 for common laboratory contaminants and adjusted for dry weight comparison to soil samples. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

DUSR December 2, 2005 Page 3 of 3

Criteria for accuracy was met during the matrix spike (MS)/MS duplicate (MSD) analysis of sample SB-206 (10-12) for 1,1-dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene as percent recoveries (%R) were within laboratory specifications. However, the criteria for precision was not achieved as the %RSD between MS and MSD %R exceeded laboratory specifications for these analytes. The associated results for SB-206 (10-12) have been qualified as estimated (J/UJ), due to analytical imprecision.

#### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial and continuing calibrations on August 19 and 30, 2005, respectively. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The %RSD between RRF was less than or equal to 30% during the initial calibrations, and the %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except 2-nitrophenol (25.7%D), hexachlorocyclopentadiene (68.2%D), 2,4-dinitrophenol (169.2%D), 4-nitroaniline (27.1%D), 4,6-dinitro-2-methylphenol (40.6%D), pentachlorophenol (37.4%D), carbazole (43.9%D), 3,3-dichlorobenzidine (27.1%D). The associated results have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, and carbazole exceeded laboratory specifications during the analysis of blank spike PB07283BS. Detected sample results have been qualified as estimated (J) for these analytes.

A method blank was reported for each analytical batch. Target analytes and tentatively identified compounds were not detected during the analysis of the method blank.

Criteria for accuracy and precision were met during the MS/MSD of sample SB-206 (10-12) for all target analytes except bis(2-chloroethyl)ether, acenaphthene, 2,4-dinitrophenol, 4,6-dinitro-2-methylphenol, and carbazole. The %R exceeded laboratory specifications during the MSD analysis for acenaphthene and 2,4-dinitrophenol. Qualification was not warranted, as the %R for the MS was within laboratory specifications. The MS and MSD %R exceeded laboratory specifications for bis(2-chloroethyl)ether, 4,6-dinitro-2-methylphenol, and carbazole. Qualification was not warranted, as the %R for the MS was within laboratory specifications for bis(2-chloroethyl)ether, 4,6-dinitro-2-methylphenol, and carbazole. Qualification was not warranted, as these analytes were not detected in the associated sample.

-Dially

Megan Drosky Environmental Scientist

ATTACHMENT A Case Narrative

é

5

# GEMTECH

### **CASE NARRATIVE**

#### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # 04.9138 Chemtech Project # T4434

#### A. Number of Samples and Date of Receipt:

6 Solid samples were received on 8/27/05.

1 Water sample was received on 8/27/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

#### C. Analytical Techniques:

The samples were analyzed on instrument BNA E using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739-125.

#### **D.** QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for Acenaphthene and 2,4-Dinitrophenol.

The MSD recoveries met the acceptable requirements except for bis(2-Chloroethyl)ether, Acenaphthene, 2,4-Dinitrophenol, 4,6-Dinitro-2-methylphenol and Carbazole.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except for 2,4-Dinitrophenol, 4,6-Dinitro-2methylphenol and Carbazole.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

#### **E.** Additional Comments:

BE024923.D has max %D for 2-Nitrophenol and Pentachlorophenol out of acceptance criteria. As per method requirements two compounds can be out of acceptance limits.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	Ung	Name: Krupa Dubey
Date:	9112/05	_ Title: QA/QC

# CHEMIECH

### CASE NARRATIVE

#### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # 04-9138 Chemtech Project # T4434

#### A. Number of Samples and Date of Receipt:

6 Solid samples were received on 8/27/05. 1 Water sample was received on 8/27/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

#### C. Analytical Techniques:

The analysis performed on instrument MSVOA H were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator. The analysis performed on instrument MSVOA K were done using GC column DB624, which is 20 meters, 0.18 ID, 1.0 df, J&W Cat. #1211324. The Trap was supplied by OI Analytical, OI #10 Trap, OI 4560 Concentrator.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria except for 1,1-Dichloroethene, Benzene, Trichloroethene,

Toluene and Chlorobenzene.

The Blank Spike met requirements for all samples.

The Blank analysis indicated presence of Methylene Chloride due to possible lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Name: Krupa Dubey Signature Title: QA/QC Date:

## ATTACHMENT B Data Evaluation Checklist

•

## Data Evaluation Checklist Organic Analyses

Project: South Troy Industrial Park		Project	t No:	04.9138	
Vork Order: T4434		Metho	đ:	SW-846 Methods 8260B (VOA), 8270C (SVOA)	
aboratory: <u>CHEMTECH</u>		Associ	ated Sam	ple IDs: <u>SB-206(10-12)</u> , SB-208(6-8), SB-209(6-8),	<u>SB-</u>
				210(22-24), and Trip Blank	
		Sample	e Date:	08/23 and 24/05	
Reviewer: Megan Drosky		Date:		12/02/05	
<u>riogun brosk</u>					
Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
1. Were holding times met?	~			<ul> <li>VOA: ≤14 days</li> <li>SVOA: ≤14/40 days</li> </ul>	
2. Were sample storage and preservation requirements met?	~			5°C (2-6°C). The trip blank was preserved with HCl for VOA analysis.	
3. Was a method blank analyzed with each batch?				<ul> <li>VOA: VBK0829S4, VBK0830S2, VBH0830W2</li> <li>SVOA: PB07283B</li> </ul>	
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?	~			<ul> <li>VOA - VBK0829S4: Methylene chloride @42 μg/Kg (1.8 μg/Kg)</li> <li>VOA - VBK0830S2: Methylene chloride @71 μg/Kg (1.8 μg/Kg)</li> <li>VOA - VBH0830W2: Methylene chloride @1.1 μg/L (0.43 μg/L)</li> </ul>	
<ol> <li>Were target analytes reported in field blank analyses (e.g., trip, ambient, field, or equipment) above the DL?</li> </ol>	~			Trip Blank: Methylene chloride @1.6 $\mu$ g/L (0.43 $\mu$ g/L)	
<ul> <li>6. Were contaminants detected in samples below the blank contamination action level?</li> </ul>	~			<ul> <li>Blank Contamination Action Levels:</li> <li>VOA – Methylene chloride @710 μg/Kg (71 x 10)</li> <li>Sample results that were not significantly greater (5x</li> </ul>	ND, U
				and 10x for common laboratory contaminants) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.	
7. Were initial and continuing calibration standards analyzed a the lab-specified frequency for each instrument?	at 🗸			<ul> <li>VOA         <ul> <li>Initial calibration: 08/15/05 (Associated samples: Trip Blank) and 08/26/05 (Associated samples: all soil samples)</li> <li>Continuing calibration: 08/29/05 @22:56 (SB-208(6-8) and SB-210(22-24)), 08/30/05 @12:46 (SB-206(10-12) and SB-</li> </ul> </li> </ul>	

K:\Projects\049138\Admin\DUSR\T4434\STIP DUSR T4434 Organic DE Checklist.doc 1 of 5

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				209(6-8)), and 08/30/05 @10:11 (Trip Blank) • SVOA • Initial calibration: 08/19/05 • Continuing calibration: 08/30/05 @18:25	
8. Were these results within lab or project specifications?				<ul> <li>VOA –</li> <li>Initial Calibration of 08/15/05 and 08/26/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes.</li> <li>Continuing calibrations of 08/29 and 30/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows: <ul> <li>08/29/05 – methyl acetate (30.4%D) and methylene chloride (85.5%D). J/UJ associated samples.</li> <li>08/30/05 @12:46 – methylene chloride (80.9%D). J/UJ associated samples.</li> <li>08/30/05 @10:11 – dichlorodifluoromethane (34.1%D), 1,1,2- trichlorotrifluoroethane (25.7%D), carbon disulfide (46.4%D), methyl acetate (27.4%D), 1,3-dichlorobenzene (29.6%D), 1,2-dibromo-3-chloropropane (35.7%D), 1,2,4-trichlorobenzene (38.8%D). J/UJ</li> </ul> </li> <li>SVOA – <ul> <li>Initial Calibration of 08/19/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes.</li> <li>Continuing calibration of 08/30/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except 2-nitrophenol (25.7%D), hexachlorocyclopentadiene (68.2%D), 2,4- dinitrophenol (169.2%D), 4-nitroaniline (27.1%D), 4,6-dinitro-2-methylphenol (40.6%D), pentachlorophenol (37.4%D), carbazole (43.9%D), 3,3-dichlorobenzidine (27.1%D). J/UJ associated samples.</li> </ul> </li> </ul>	1/U1

K:\Projects\049138\Admin\DUSR\T4434\STIP DUSR T4434 Organic DE Checklist.doc 2 of 5

WO # <u>T4434</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?			√ 		
0. Was a CRDL Standard analyzed for metals?			~	·	
11. Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?			~		
2. Was a LCS analyzed with each batch?		~		<ul><li>VOA: BSK0829S2</li><li>SVOA: PB07283BS</li></ul>	
3. Were LCS' recoveries within lab specifications?		<b>√</b>	•	<ul> <li>SVOA, PB07283BS:</li> <li>2,4-Dinitrophenol @138%R (26-131). J</li> <li>4,6-Dinitro-2-methylphenol @113%R (40-105). J</li> <li>Carbazole @119%R (54-117). J</li> </ul>	J/UJ
14. Were LCS/LCSD RPD within lab specifications?			~	LCS only	
15. Was a MS/MSD pair analyzed with each batch?	~			<ul> <li>VOA: T4434-01 (SB-206 (10-12))</li> <li>SVOA: T4434-01 (SB-206 (10-12))</li> </ul>	
16. Is the MS/MSD parent sample a project-specific sample?	$\checkmark$				
17. Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.				<ul> <li>SB-206 (10-12), SVOA:</li> <li>Bis(2-Chloroethyl)ether @87 and 135%R (37-114). No action as MS is within project specifications.</li> <li>Acenaphthene @104 and 104%R (65-100). No action as acenaphthene was not detected in the associated sample.</li> <li>2,4-Dinitrophenol @160 and 151%R (26-131). No action as acenaphthene was not detected in the associated sample.</li> <li>4,6-Dinitro-2-methylphenol @104 and 113%R (40-105). No action as MS is within project specifications.</li> <li>Carbazole @117 and 126%R (54-117). No action as MS is within project specifications.</li> </ul>	

WO # <u>T4434</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
18. Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.		~		<ul> <li>SB-206 (10-12), VOA:</li> <li>1,1-Dichloroethene @25%RPD (&lt;22). J/UJ</li> <li>Benzene @23%RPD (&lt;21). J/UJ</li> <li>Trichloroethene @27%RPD (&lt;24). J/UJ</li> <li>Toluene @25%RPD (&lt;21). J/UJ</li> <li>Chlorobenzene @25%RPD (&lt;21). J/UJ</li> </ul>	J/UJ
19. Was a serial dilution conducted on each inorganic batch?					
20. Is the serial dilution parent sample a project-specific sample?			✓		
21. Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.					
22. Was a laboratory duplicate analyzed with each batch?		×			_
23. Is the laboratory duplicate sample a project-specific sample?					
24. Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.					
25. Were surrogate recoveries within lab specifications during organic analysis?	~				
26. Were internal standard results within lab specifications during the VOA and SVOA?	~				
27. Were TIC reported and were reported results qualified as estimated concentrations?	1				JN
28. Were field duplicate samples submitted to the laboratory for analysis?					· · ·
29. Was precision deemed acceptable as defined by DV Guidelines?			✓ 		
30. Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.		✓ 			
31. Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.	✓			Refer to Case Narratives	

	Review Questions Yes No N/A Samples (Analytes) Affected/Comments	Flag	
0			

#### Comments:

The data review process was modeled after the EPA Region 2 Data Validation Guidelines for unusable data and Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of Draft DER-10 Technical Guidance for Site Investigation and Remediation (NY DEC, December 2002).

Key:

J Positive sample result is considered estimated

R Unusable data

- R+ Positive sample result is considered unusable
- U Not present above the associated level; blank contamination exists
- UJ Sample result is not detected and the detection limit is considered estimated

ND Sample result is not detected

N A "tentative identification" has been made of the presence of an analyte

#### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T5040 C.T. Male Project No.: 04.9138

DATE: December 6, 2005

On September 29 and 30, 2005 and October 3, 2005, C.T. Male Associates P.C. (C. T. Male) collected five (5) soil samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with an equipment blank and a transport blank, for the following analyses:

Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
Sample Ids			
CTM-212 (10-12)	9/29/2005	1	1
CTM-214 (2-4) 😪	9/30/2005	1.	1
CTM-215 (20-22) v	9/30/2005	1	1
CTM-216 (18-20) V	10/3/2005	1	1
FD-1 V	9/30/2005	1 .	1
Equipment Blank √	9/30/2005	1	1
Transport Blank 😢	-	1	0
Total Samples		7	6

VOC - Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample results are presented in the laboratory summary forms, which are located in Attachment C. Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

DUSR December 6, 2005 Page 2 of 4

#### **Data Completeness**

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

#### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on October 5, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

#### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial calibrations on October 6, 12, and 13, 2005 and the continuing calibrations on October 11, 13, and 14, 2005. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except bromomethane (46.6%RSD), chloroethane (62.6%RSD), acetone (47.5%RSD), carbon disulfide (39%RSD), methyl acetate (35%RSD and 102.7%D), and methylene chloride (32.8%RSD) for the initial and continuing calibrations associated with the analysis and reanalysis of CTM-212 (10-12), therefore the associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards. Carbon disulfide (26.3%D) and 1,2-dibromo-3-chloropropane (26.2%D) exceeded 25%D for the continuing calibration associated with the analysis of the transport and equipment blanks. Chloroethane (37.1%D), 1,1,2-trichlorotrifluoroethane (37.5%D), carbon disulfide (32.3%D), trans-1,2dichloroethene (26.9%D), 1,1-dichloroethane (25.6%D), cyclohexane (29.4%D), and 1,1,1trichloroethane (30.8%D) exceeded 25%D for the continuing calibration associated with the analysis of all soil samples except the initial and reanalysis of CTM-212 (10-12). The associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples except during the analysis of CTM-212 (10-12). Surrogate recoveries for 4-BFB during the initial and reanalysis of CTM-212 (10-12) were below laboratory specifications. The surrogate recovery for 1,2-dichloroethane-d4 exceeded laboratory specifications during the reanalysis of CTM-212 (10-12). Internal standards results for pentafluorobenzene, 1,4-difluorobenzene, chlorobenzene-d5, and 1,4-dichlorobenzene-d4 fell extremely below laboratory specifications during the initial analysis. Initial internal standard results were confirmed upon reanalysis of CTM-212 (10-12), as the internal standards were below laboratory specifications, however results during the reanalysis were not as extreme. All non-detect results from the initial analysis of CTM-212 (10-12) have been qualified as unusable (R), due to the severe loss of instrument sensitivity. Results from the reanalysis of CTM-212 (10-12) have been qualified as estimated (J/UJ). It is recommended that the results from CTM-212 (10-12)RE be reported as

DUSR December 6, 2005 Page 3 of 4

the representative results of the analysis of CTM-212 (10-12), as the instrument showed greater sensitivity during the reanalysis of the sample.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except acetone (69%R) during the analysis of BSK1014S, associated with the analysis of all soil samples, as well as chloroethane (60%R) and 1,1,2-trichlorotrifluoroethane (65%R) during the analysis of BSH1010W2, associated with the analysis of the transport and equipment blanks. Associated samples have been qualified as estimated (J/UJ) due to analytical inaccuracy.

A method blank was reported for each analytical batch and equipment and transport blanks were also submitted to the laboratory for VOA. Target analytes were not detected during the VOA of the transport, equipment, or method blanks.

Criteria for accuracy were met during the matrix spike (MS)/MS duplicate (MSD) analysis of sample CTM-216 (18-20) for all target analytes except 1,1,2-trichlorofluoroethane, carbon disulfide, methylene chloride,1,2-dichloroethane, 4-methyl-2-pentanone, t-1,3-dichloropropene, 1,1,2-trichloroethane, 2-hexanone, and 1,2-dibromoethane. Both the MS and MSD were below laboratory specifications for these analytes, therefore the associated results have been qualified as estimated (UJ) in CTM-216 (18-20) due to analytical inaccuracy. Criteria for precision was not met during the MS/MSD analysis of CTM-216 (18-20) for methyl acetate and acetone, as the relative percent difference (%RPD) between the MS and MSD exceeded laboratory specifications. Methyl acetate and acetone results have been qualified as estimated (UJ) due to analytical imprecision.

A field duplicate evaluation was performed on samples FD-1 and CTM-215 (20-22). Criteria for precision was achieved, as target analytes were not detected in the associated samples.

#### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial calibrations on September 23, 2005 and October 7, 2005 and the continuing calibrations of October 9, 10 and 11, 2005. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The %RSD between RRF was less than or equal to 30% during the initial calibrations for all target analytes except benzo(k)fluoranthene (39.1%RSD) during the initial calibration associated with the analysis of the equipment blank, and the %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except benzaldehyde (27.5%D) and 3,3dichlorobenzidine (28.7%D) during the continuing calibration associated with the analysis of samples CTM-212 (10-12), CTM-214 (2-4), and CTM-216 (18-20), benzaldehyde (37.6%D) and 2-nitroaniline (30.7%D) during the continuing calibration associated with the analysis of FD-1, and benzaldehyde (39.1%D) and 2,4-dinitrophenol (29.1%D) during the continuing calibration associated with the analysis of CTM-215 (20-22) and the reanalysis of samples CTM-212 (10-12) and CTM-214 (2-4). The associated results in these samples have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries met laboratory specifications for all project samples except the surrogate recovery for terphenyl-d14 and 2-fluorophenol during the analysis of CTM-212 (10-12) and the equipment blank, respectively. Qualification of base/neutral (B/N) results in CTM-212 (10-12) is not required as all

DUSR December 6, 2005 Page 4 of 4

remaining B/N surrogates were within specifications. Qualification of acid results in the equipment blank is not required, as all other acid surrogates were within specifications.

Internal standard results met laboratory specifications for all project samples except during the analysis of CTM-212 (10-12) and CTM-214 (2-4). Internal standard results for phenanthrene-d10 and perylene-d12 were below laboratory specifications during the analysis of CTM-212 (10-12). Results for phenanthrene-d10 were confirmed during reanalysis of CTM-212 (10-12). Associated analytes for the initial and reanalysis of CTM-212 (10-12) have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from CTM-212 (10-12)RE be reported as the representative results of the analysis of CTM-212 (10-12), as the instrument showed greater sensitivity during the reanalysis of the sample. Internal standard results for acenaphthene-d10, phenanthrene-d10, and perylene-d12 were below laboratory specifications during the analysis of CTM-214 (2-4). Results for phenanthrene-d10 were confirmed during reanalysis of CTM-214 (2-4). Associated analytes for the initial and reanalysis of CTM-214 (2-4) have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from CTM-214 (2-4). Associated analytes for the initial and reanalysis of CTM-214 (2-4) have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from CTM-214 (2-4). Associated analytes for the initial and reanalysis of CTM-214 (2-4) have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from CTM-214 (2-4)RE be reported as the representative results of the analysis of CTM-214 (2-4), as the instrument showed greater sensitivity during the reanalysis of the sample.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except phenol exceeded laboratory specifications, and indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene were below laboratory specifications, during the analysis of blank spike PB08030BS, associated with the analysis of the equipment blank. Associated results in the equipment blank have been qualified as estimated (J/UJ) for indeno(1,2,3-cd)pyrene and dibenz(a,h)anthracene, and detected results have been qualified as estimated (J) for phenol.

A method blank was reported for each analytical batch. An equipment blank was also submitted to the laboratory for SVOA. 1,1-Biphenyl was detected during the analysis of method blank PB08005B at a concentration of 210  $\mu$ g/Kg. Di-n-butylphthalate, 2-hexanol (a tentatively identified compound (TIC)), and 13-docosenamide (Z) (TIC), were detected during the analysis of method blank PB08030B at concentrations of 7.0, 2.6, and 4.0  $\mu$ g/L, respectively. Di-n-butylphthalate, bis(2-ethylhexyl)phthalate, n-hexadecanoic acid (TIC), octadecanoic acid (TIC), 13-docosenamide (Z) (TIC), and 2,6,10,14,18,22-tetracosahexaene (TIC) were detected during the analysis of the equipment blank at concentrations of 6.8, 13, 2.4, 8.6, 2.6, 5.6, and 3.6  $\mu$ g/L, respectively. Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 5, and adjusting the value for comparison to soil results where necessary. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Criteria for accuracy and precision were met during the MS/MSD analysis of sample CTM-216 (18-20) for all target analytes.

A field duplicate evaluation was performed on samples FD-1 and CTM-215 (20-22). Criteria for precision was achieved, as target analytes were not detected in the associated samples.

Megan Drosky

Environmental Scientist

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040.doc

ATTACHMENT A Case Narrative

# CHEMTECH

## CASE NARRATIVE

C.T. Male & Associates Project Name: Rensselaer Cty Indust. Dev. Agency Project # 04.9138 Chemtech Project # T5040

### A. Number of Samples and Date of Receipt:

7 Solid samples were received on 10/5/05.

2 Water samples were received on 10/5/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

#### C. Analytical Techniques:

The samples were analyzed on instrument BNA A using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739. The samples were analyzed on instrument BNA F using GC Column PH-5 MS, which is 30 meters, 0.25 mm ID, 0.25 um df, Catalog # 19091S-433.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for CTM-212(10-12) and EQUIPMENTBLANK.

The Internal Standards Areas met the acceptable requirements except for CTM-214(2-4), CTM-212(10-12), CTM-212(10-12)RE and CTM-214(2-4)RE.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except for Phenol, Indeno(1,2,3-cd)pyrene and Dibenz(a,h)anthracene.

The Blank analysis indicated presence of 1,1-Biphenyl and Di-n-butylphthalate due to possible lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature Date: 101.20105 Title: QA/QC

Name: Krupa Dubey

2

# GEMTECH

### CASE NARRATIVE

### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # 04.9138 Chemtech Project # T5040

### A. Number of Samples and Date of Receipt:

7 Solid samples were received on 10/5/05.

2 Water samples were received on 10/5/05.

### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

### C. Analytical Techniques:

The analysis performed on instrument MSVOA H were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator. The analysis performed on instrument MSVOA I were done using GC column RTXVMS, which is 20 meters, 0.18 ID, 1.0 df, Restek Cat. #49914. The Trap was supplied by OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator. The analysis performed on instrument MSVOA K were done using GC column DB624, which is 20 meters, 0.18 ID, 1.0 df, J&W Cat. #1211324. The Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI #10 Trap was supplied by OI Analytical, OI #10 Trap, OI

### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for CTM-212(10-12) and CTM-212(10-12)RE.

The Internal Standards Areas met the acceptable requirements except for CTM-212(10-12) and CTM-212(10-12)RE.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for 1,1,2-Trichlorotrifluoroethane, Carbon Disulfide, Methylene Chloride, 1,2-Dichloroethane, 4-Methyl-2-Pentanone, t-1,3-Dichloropropene, 1,1,2-Trichloroethane and 1,2-Dibromoethane.

The MSD recoveries met the acceptable requirements except for 1,1,2-

Trichlorotrifluoroethane, 1,1-Dichloroethene, Methyl Acetate, Acetone, Carbon

Disulfide, Methylene Chloride, 1,2-Dichloroethane, 1,2-Dichloropropane, 4-Methyl-2-

Pentanone, Toluene, t-1,3-Dichloropropene, cis-1,3-Dichloropropene, 1,1,2-

Trichloroethane, 2-Hexanone and 1,2-Dibromoethane.

The RPD recoveries met criteria except for Methyl Acetate and Acetone.

The Blank Spike met requirements for all samples except for Acetone, Chloroethane and 1,1,2-Trichlorotrifluoroethane.

The Blank analysis did not indicate the presence of lab contamination. The Calibration met the requirements. The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signatu	re Khi	PCD	Whent-	
U		Tala	10120185	
Date:	oe o	5		

Name: Krupa Dubey

Title: QA/QC

# ATTACHMENT B Data Evaluation Checklist

# Data Evaluation Checklist Organic Analyses

Project:       South Troy Industrial Park         Work Order:       T5040         Laboratory:       CHEMTECH         Reviewer:       Megan Drosky	·	Project No: Method: Associated Sar Sample Date: Date:	04.9138 <u>SW-846 Methods 8260B (VOA) and 8270C (SVOA)</u> nple IDs: <u>CTM-212 (10-12), CTM-214 (2-4), CTM-2</u> 22), CTM-216 (18-20), FD-1, Equipment Blank, and Transport Blank 09/29, 30, and 10/03/05 12/05/05	<u>15 (20-</u>
Review Questions	Yes	No N/A	Samples (Analytes) Affected/Comments	Flag
1. Were holding times met?	×		<ul> <li>VOA: ≤14 days</li> <li>SVOA: ≤14/40 days (soil), ≤7/40 days (water)</li> </ul>	
2. Were sample storage and preservation requirements met?	×		4°C (2-6°C). The transport blank and equipment blank were preserved with HCl for VOA.	
3. Was a method blank analyzed with each batch?	~		<ul> <li>VOA: VBH1010W4, VBH1011W2, VBI1013S2, VBK1014S2, VBK1017S2</li> <li>SVOA: PB08005B, PB08030B</li> </ul>	
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?			<ul> <li>SVOA – PB08005B: 1,1-Biphenyl @210 μg/Kg (54 μg/Kg)</li> <li>SVOA – PB08030B:         <ul> <li>Di-n-butylphthalate @7.0 μg/L (1.3 μg/L)</li> <li>2-Hexanol (TIC) @2.6 μg/L (RT=3.23)</li> <li>13-Docosenamide, (Z) (TIC) @4.0 μg/L (RT=15.17)</li> </ul> </li> </ul>	
5. Were target analytes reported in field blank analyses (e.g., trip, ambient, field, or equipment) above the DL?			<ul> <li>SVOA - Equipment Blank:</li> <li>Di-n-butylphthalate @6.8 μg/L (1.2 μg/L)</li> <li>Bis(2-ethylhexyl)phthalate @13 μg/L (1.5 μg/L)</li> <li>N-Hexadecanoic acid (TIC) @2.4 μg/L (RT=11.52)</li> <li>Octadec-9-enoic acid (TIC) @8.6 μg/L (RT=12.4)</li> <li>Octadecanoic acid (TIC) @2.6 μg/L (RT=12.48)</li> <li>13-Docosenamide,(Z) (TIC) @5.6 μg/L (RT=15.17)</li> <li>2,6,10,14,18,22-Tetracosahexaene (TIC) @ 3.6 μg/L (RT=15.41)</li> </ul>	
6. Were contaminants detected in samples below the blank contamination action level?			Blank Contamination Action Levels: • SVOA –	ND, U

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040 Organic DE Checklist.doc 1 of 7

1.1

WO # <u>T5040</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>1,1-Biphenyl @1050 μg/Kg (210 x 5)</li> <li>Di-n-butylphthalate @350 μg/Kg (7 x 5 x10)</li> <li>Bis(2-ethylhexyl)phthalate @650 μg/Kg (13 x 5 x 10)</li> <li>2-Hexanol (TIC) @130 μg/Kg (2.6 x 5 x 10)</li> <li>13-Docosenamide, (Z) (TIC) @280 μg/Kg (5.6 x 5 x 10)</li> <li>N-Hexadecanoic acid (TIC) @120 μg/Kg (2.4 x 5 x 10)</li> <li>Octadec-9-enoic acid (TIC) @430 μg/Kg (8.6 x 5 x 10)</li> <li>Octadecanoic acid (TIC) @130 μg/Kg (2.6 x 5 x 10)</li> <li>Octadecanoic acid (TIC) @130 μg/Kg (8.6 x 5 x 10)</li> <li>Octadecanoic acid (TIC) @130 μg/Kg (8.6 x 5 x 10)</li> <li>Octadecanoic acid (TIC) @130 μg/Kg (2.6 x 5 x 10)</li> <li>Octadecanoic acid (TIC) @130 μg/Kg (2.6 x 5 x 10)</li> <li>Sample results that were not significantly greater (5x</li> </ul>	
				and) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.	
7. Were initial and continuing calibration standards analyzed at the lab-specified frequency for each instrument?	~			<ul> <li>VOA         <ul> <li>Initial calibration: 10/06/05 (Associated samples: Transport Blank and Equipment Blank), 10/12/05 (Associated samples: CTM-212(10-12) and CTM-212(10-12)RE), and 10/13/05 (Associated samples: All soils except CTM-212(10-12) and RE)</li> <li>Continuing calibration: 10/11/05 @12:24 (Transport Blank and Equip Blank), 10/13/05 @09:00 (CTM-212(10-12) and CTM-212(10-12)RE), and 10/14/05 @16:52 (All soils except CTM-212(10-12))</li> </ul> </li> <li>SVOA</li> </ul>	

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040 Organic DE Checklist.doc 2 of 7

WO # <u>T5040</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>Initial calibration: 09/23/05 (Associated samples: all soils) and 10/07/05 (Associated sample: Equipment Blank)</li> <li>Continuing calibration: 10/09/05 @09:34 (Associated samples: CTM-212(10-12), CTM-214(2-4), CTM-216(18-20)), 10/10/05 @13:22 (Associated sample: Equipment Blank), 10/10/05 @16:14 (Associated sample: FD-1), and 10/11/05 @04:08 (Associated samples: CTM-212(10-12)RE, CTM-214(2-4)RE, and CTM-215(20-22))</li> </ul>	
8. Were these results within lab or project specifications?		✓		<ul> <li>VOA –</li> <li>Initial Calibration of 10/06/05, 10/12/05 and 10/13/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except during the initial calibration of 10/12/05 for bromomethane (46.6%RSD), chloroethane (62.6%RSD), acetone (47.5%RSD), carbon disulfide (39%RSD), methyl acetate (35%RSD), and methylene chloride (32.8%RSD). J/UJ associated samples.</li> <li>Continuing calibrations of 10/11, 10/13, and 10/14. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows: <ul> <li>10/11/05 @12:24 - carbon disulfide (26.3%D) and 1,2-dibromo-3-chloropropane (26.2%D). J/UJ associated samples.</li> <li>10/13/05 @09:00 - methyl acetate (102.7%D). J/UJ associated samples.</li> <li>10/14/05 @16:52 - chloroethane (37.1%D), 1,1,2-trichlorotrifluoroethane (37.5%D), carbon disulfide (32.3%D), trans-1,2-dichloroethene (26.9%D), 1,1-dichloroethene (26.9%D), 1,1-dichloroethane (25.6%D), cyclohexane (29.4%D), and 1,1,1-trichloroethane (30.8%D). J/UJ associated samples.</li> </ul></li></ul>	J/UJ

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040 Organic DE Checklist.doc 3 of 7

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>SVOA –</li> <li>Initial Calibrations of 09/23/05 and 10/07/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except benzo(k)fluoranthene (39.1%RSD) during the initial calibration of 10/07/05. J/UJ associated samples.</li> <li>Continuing calibrations of 10/09, 10/10, and 10/11. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows:</li> <li>10/09/05 @09:34 – benzaldehyde (27.5%D) and 3,3-dichlorobenzidine (28.7%D). J/UJ associated samples.</li> <li>10/10/05 @16:14 – benzaldehyde (37.6%D) and 2-nitroaniline (30.7%D). J/UJ associated samples.</li> <li>10/11/05 @04:08 – benzaldehyde (39.1%D) and 2,4-dinitrophenol (29.1%D). J/UJ associated samples.</li> </ul>	
<ol> <li>Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?</li> </ol>			~		
10. Was a CRDL Standard analyzed for metals?			✓		
11. Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?			~		
12. Was a LCS analyzed with each batch?		1		<ul> <li>VOA: BSK1014S1, BSH1010W2</li> <li>SVOA: PB08005BS, PB08030BS</li> </ul>	
13. Were LCS' recoveries within lab specifications?				<ul> <li>VOA, BSK1014S1 (Associated samples: all soils): Acetone @69%R (70-130). J/UJ</li> <li>VOA, BSH1010W2 (Associated samples: equipment and transport blanks):</li> <li>Chloroethane @60%R (70-130). J/UJ</li> <li>1,1,2-Trichlorotrifluoroethane @65%R (70- 130). J/UJ</li> </ul>	J/UJ
				<ul> <li>SVOA, PB08030BS (Associated sample: equipment blank):</li> <li>Phenol @58%R (18-37). J</li> </ul>	

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040 Organic DE Checklist.doc 4 of 7

12 .....

# Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
	7			<ul> <li>Indeno(1,2,3-cd)pyrene @32%R (35-127). J/UJ</li> <li>Dibenz(a,h)anthracene @50%R (53-127). J/UJ</li> </ul>	
14. Were LCS/LCSD RPD within lab specifications?			1	LCS only	
15. Was a MS/MSD pair analyzed with each batch?	~			<ul> <li>VOA: T5040-04 (CTM-216 (18-20))</li> <li>SVOA: T5040-04 (CTM-216 (18-20))</li> </ul>	
16. Is the MS/MSD parent sample a project-specific sample?	1				
17. Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.				VOA – Refer to attached Matrix Spike/Matrix Spike Duplicate Summary for %R values. Both the MS and MSD %R fell below the laboratory specifications for 1,1,2-trichlorofluoroethane, carbon disulfide, methylene chloride,1,2-dichloroethane, 4-methyl-2- pentanone, t-1,3-dichloropropene, 1,1,2- trichloroethane, 2-hexanone, and 1,2-dibromoethane. UJ associated results.	UJ
18. Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.		~		<ul> <li>VOA - CTM-216(18-20):</li> <li>Methyl acetate @104%RPD (&lt;37). UJ</li> <li>Acetone @104%RPD (&lt;56). UJ</li> </ul>	UJ
19. Was a serial dilution conducted on each inorganic batch?			<ul> <li>✓</li> </ul>		
20. Is the serial dilution parent sample a project-specific sample?			~		
21. Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.					
22. Was a laboratory duplicate analyzed with each batch?		~			
23. Is the laboratory duplicate sample a project-specific sample?			~		
24. Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.			~		
25. Were surrogate recoveries within lab specifications during organic analysis?		✓		<ul> <li>VOA - CTM-212 (10-12) and CTM-212 (10-12)RE</li> <li>4-BFB @74 and 68%R (75-125).</li> <li>1,2-Dichloroethane-d4 @171%R during the reanalysis (75-125).</li> <li>J/UJ all results for CTM-212(10-12) and CTM-212(10-12)RE.</li> <li>SVOA - CTM-212 (10-12): Terphenyl-d14</li> </ul>	J/UJ

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040 Organic DE Checklist.doc 5 of 7

WO # <u>T5040</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
	-			<ul> <li>@153%R (18-137). No action, as remaining B/N surrogates were within laboratory specifications.</li> <li>SVOA - Equipment Blank: 2-Fluorophenol @19%R (21-100). No action, as remaining acid</li> </ul>	
				surrogates were within specifications. VOA – CTM-212 (10-12) and CTM-212 (10-12)RE	R/J/UJ
26. Were internal standard results within lab specifications during the VOA and SVOA?				<ul> <li>Pentafluorobenzene @4830 and 87459 (175092-700366)</li> <li>1,4-Difluorobenzene @10342 and 204285 (286038-1144152)</li> <li>Chlorobenzene-d5 @9286 and 147789 (259716-1038862)</li> </ul>	103/03
				<ul> <li>1,4-Dichlorobenzene-d4 @2930 and 32523 (136480 - 545918)</li> <li>ND and detected results for CTM-212 (10-12) are considered unusable (R) and estimated (J), all results for CTM-212 (10-12)RE are considered estimated (J/UJ).</li> <li>SVOA - CTM-212(10-12) and CTM-212(10-12)RE</li> <li>Phenanthrene-d10 @208727 and 129197 (236041-944162 and 132066-528262). J/UJ associated analytes in the results.</li> <li>Perylene-d12 @194674 and within specifications during the RE (280651 -1122602). J/UJ associated analytes in CTM-212(10-12).</li> <li>SVOA - CTM-214(2-4) and CTM-214(2-4)RE</li> <li>Acenaphthene-d10 @108104 and within</li> </ul>	
				<ul> <li>specifications during the RE (112254-449016).</li> <li>J/UJ associated analytes in CTM-214(2-4).</li> <li>Phenanthrene-d10 @164850 and 1111325 (236041-944162 and 132066-528262). J/UJ associated analytes in the results.</li> <li>Perylene-d12 @241587 and within specifications during the RE (280651 -1122602). J/UJ associated analytes in CTM-214(2-4).</li> </ul>	

K:\Projects\049138\Admin\DUSR\T5040\STIP DUSR T5040 Organic DE Checklist.doc 6 of 7

	Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
27.	Were TIC reported and were reported results qualified as estimated concentrations?	1				JN
28.	Were field duplicate samples submitted to the laboratory for analysis?	~			Duplicate is the field duplicate of SB-215 (20-22)	
29.	Was precision deemed acceptable as defined by DV Guidelines?	1			Target analytes were not detected in the associated sample.	
30.	Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.		~			
31.	Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.	✓			Refer to Case Narratives	

#### Comments:

The data review process was modeled after the EPA Region 2 Data Validation Guidelines for unusable data and Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002).

Key:

J Positive sample result is considered estimated

R Unusable data

R+ Positive sample result is considered unusable

U Not present above the associated level; blank contamination exists

UJ Sample result is not detected and the detection limit is considered estimated

ND Sample result is not detected

N A "tentative identification" has been made of the presence of an analyte

### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T4702 C.T. Male Project No.: 04.9138

DATE: December 5, 2005

On September 13, 2005, C.T. Male Associates P.C. (C. T. Male) collected four (4) groundwater samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with an equipment blank and a trip blank, for the following analyses:

	Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
	Sample Ids		•	
V	CTM-100	9/13/2005	1	1
V	CTM-101	9/13/2005	1	1
v	CTM-105	9/13/2005	1	1
V	FD-1 ¹	9/13/2005	1	1
v	EB-01	9/13/2005	1	0
۴	Transport Blank	-	1	0
	Total Samples		6	4

VOC - Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All required documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample results are presented in the laboratory summary forms, which are located in Attachment C.

¹ Field duplicate of CTM-100.

DUSR December 5, 2005 Page 2 of 4

Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

### **Data Completeness**

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on September 14, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial and continuing calibrations on August 31 and September 15, 2005, respectively. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except bromoform (35.3%RSD). Bromoform results have been qualified as estimated (J/UJ) due to poor correlation in the initial calibration.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for 1,1dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene.

A method blank was reported for each analytical batch and equipment and trip blanks were also submitted to the laboratory for VOA. Target analytes were not detected during the VOA of the method blank. However, acetone and methylene chloride (common laboratory contaminants) were detected during the VOA of equipment blank, at concentrations of 10 and  $1.7 \mu g/L$ , respectively. Methylene chloride was also detected during the analysis of the transport blank at a concentration of  $3.0 \mu g/L$ . Action levels were developed by multiplying the highest concentration observed among the associated blank by a factor of 10 for common laboratory contaminants. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Criteria for accuracy and precision were met during the matrix spike (MS)/MS duplicate (MSD) analysis of sample CTM-105 for 1,1-dichloroethene, benzene, trichloroethene, toluene, and chlorobenzene.

DUSR December 5, 2005 Page 3 of 4

Criteria for precision was achieved during the field duplicate evaluation of samples FD-1 and CTM-100, as target analytes were not detected in the samples.

### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial calibration on September 9, 2005 and the continuing calibrations of September 15 and 16, 2005. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial calibrations except n-nitroso-di-n-propylamine (37.7%RSD), and the %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except benzaldehyde (28%D) and benzo(g,h,i)perylene (41.8%D) during the continuing calibration associated with the reanalysis of samples FD-1, CTM-101, and CTM-105. The associated results in FD-1RE, CTM-101RE, and CTM-105RE have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples except the surrogate recoveries for 2-fluorophenol, phenol-d5, and terphenyl-d14 during the analysis of CTM-101. These exceedences were confirmed upon reanalysis of the sample. All acid results in CTM-101 and CTM-101RE have been qualified as estimated (J/UJ) due to analytical inaccuracy. Surrogate recoveries for 2-fluorophenol and terphenyl-d14 were below laboratory specifications during the analysis of CTM-105. The inaccuracy of the acid surrogate was confirmed upon reanalysis, however no action was warranted as the remaining acid and base/neutral (B/N) surrogates were within specifications. The surrogate recovery for 2-fluorophenol was below laboratory specifications during the analysis of CTM-100. No action was warranted, as the remaining acid surrogates were within laboratory specifications. The acid surrogates 2-fluorophenol and phenol-d5 were below laboratory specifications during the analysis of FD-1. These exceedences were confirmed upon reanalysis of the sample. All acid results in FD-1 and FD-1RE have been qualified as estimated (J/UJ) due to analytical inaccuracy.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except n-nitroso-di-n-propylamine exceeded laboratory specifications, and caprolactum was below laboratory specifications, during the analysis of blank spike PB07605BS. Associated results have been qualified as estimated (J/UJ) for caprolactum, and detected results have been qualified as estimated (J) for n-nitroso-di-n-propylamine.

A method blank was reported for each analytical batch. Target analytes were not detected during the analysis of the method blank. A tentatively identified compound (TIC), squalene was detected during the analysis of method blank PB07605B at a concentration of 2.5  $\mu$ g/L. An action level was developed by multiplying the concentration observed among the associated blank by a factor of 5. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Criteria for accuracy and precision were met during the matrix spike MS/MSD analysis of sample CTM-105 for all target analytes except phenol, 3+4-methylphenols, n-nitroso-di-n-propylamine, 2,4dimethylphenol, caprolactam, and di-n-octyl phthalate. The %R for the MS/MSD was below laboratory specifications for phenol, 3+4-methylphenols, 2,4-dimethylphenol, and caprolactam. The associated results have been qualified as estimated (UJ) in CTM-105. The %R for the MS/MSD exceeded

DUSR December 5, 2005 Page 4 of 4

laboratory specifications for n-nitroso-di-n-propylamine. Qualification was not warranted as n-nitroso-din-propylamine was not detected in CTM-105. The MSD %R was below laboratory specifications for din-octyl phthalate. Qualification was not warranted, as the MS %R was within laboratory specifications.

Criteria for precision was achieved during the field duplicate evaluation of samples FD-1 and CTM-100.

Megn Droshy

Megan Drosky Environmental Scientist

# ATTACHMENT A Case Narrative



### CASE NARRATIVE

C.T. Male & Associates Project Name: Rensselaer Cty Indust. Dev. Agency Project # 04.9138 Chemtech Project # T4702

**A. Number of Samples and Date of Receipt:** 8 Water samples were received on 9/14/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

#### C. Analytical Techniques:

The samples were analyzed on instrument BNA B using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739-125.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for CTM-101, CTM-101RE, CTM-105, CTM-105RE, CTM-105MS, CTM-100, FD-1 and FD-1RE.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for Phenol, N-Nitroso-di-n-propylamine, 3+4-Methylphenols, 2,4-Dimethylphenol and Caprolactam.

The MSD recoveries met the acceptable requirements except for Phenol, N-Nitroso-di-npropylamine, 3+4-Methylphenols, 2,4-Dimethylphenol, Caprolactam and Di-n-octyl phthalate. The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except for N-Nitroso-di-n-propylamine and Caprolactam.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Name: Krupa Dubey Signature _____ Title: QA/QC Date:

# GEINTECH

### CASE NARRATIVE

### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # 04.9138 Chemtech Project # T4702

#### A. Number of Samples and Date of Receipt:

8 Water samples were received on 9/14/05.

### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

### C. Analytical Techniques:

The analysis performed on instrument MSVOA H were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator.

### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	Un	Name: Krupa Dubey
Date:	962605	Title: QA/QC

# ATTACHMENT B Data Evaluation Checklist

# Data Evaluation Checklist Organic Analyses

Project:South Troy Industrial ParkWork Order:T4702Laboratory:CHEMTECH			Project No:04.9138Method:SW-846 Methods 8260B (VOA), 8270C (SVOA)Associated Sample IDs:CTM-101, CTM-105, CTM-100, FD-1, EBTransport Blank				
Reviewer: <u>Megan Drosky</u>		Samp Date:	e Date:	<u>09/13/05</u> <u>12/05/05</u>			
Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag		
1. Were holding times met?	~			<ul> <li>VOA: ≤14 days</li> <li>SVOA: ≤7/40 days</li> </ul>			
2. Were sample storage and preservation requirements met?	~			4°C (2-6°C). All samples were preserved with HCl for VOA analysis.			
3. Was a method blank analyzed with each batch?	~			<ul><li>VOA: VBH0915W2</li><li>SVOA: PB07605B</li></ul>			
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?	-		·	<ul> <li>SVOA – PB07605B: Squalene (TIC) @2.5 μg/L (RT=22.42)</li> </ul>			
5. Were target analytes reported in field blank analyses (e.g., trip, ambient, field, or equipment) above the DL?	~			<ul> <li>VOA, EB-01:</li> <li>Acetone @10 μg/L (2.3 μg/L)</li> <li>Methylene chloride @1.7 μg/L (0.43 μg/L)</li> <li>VOA, Transport Blank: Methylene chloride @3.0 μg/L (0.43 μg/L)</li> </ul>			
6. Were contaminants detected in samples below the blank contamination action level?	V .			<ul> <li>Blank Contamination Action Levels:</li> <li>VOA – Acetone @100 μg/L (10 x 10)</li> <li>VOA – Methylene chloride @30 μg/L (3.0 x 10)</li> <li>SVOA – Squalene (TIC) @12.5 μg/L (2.5 x 5)</li> <li>Sample results that were not significantly greater (5x and 10x for common laboratory contaminants) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.</li> </ul>	ND, U		
7. Were initial and continuing calibration standards analyzed at the lab-specified frequency for each instrument?	· ·			<ul> <li>VOA         <ul> <li>Initial calibration: 08/31/05</li> <li>Continuing calibration: 09/15/05 @11:29</li> </ul> </li> <li>SVOA         <ul> <li>Initial calibration: 09/09/05</li> <li>Continuing calibration: 09/15/05 @18:08</li></ul></li></ul>			

K:\Projects\049138\Admin\DUSR\T4702\STIP DUSR T4702 Organic DE Checklist.doc 1 of 4

.

### WO # <u>T4702</u>

# Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				@06:17 (Associated samples: CTM-101, CTM-105, CTM-100), and 09/16/05 @17:24 (Associated samples: FD-1RE, CTM-101RE, and CTM-105RE)	
8. Were these results within lab or project specifications?				<ul> <li>VOA –</li> <li>Initial Calibration of 08/31/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except bromoform (35.3%RSD). J/UJ</li> <li>Continuing calibration of 09/15/05. The RF&gt;0.05 and %D &lt;25% for all target analytes.</li> <li>SVOA –</li> <li>Initial Calibration of 09/0009/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except n-nitroso- di-n-propylamine (37.7%RSD). J/UJ</li> <li>Continuing calibrations of 09/15/05 and 09/16/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows:</li> <li>09/16/05 @17:24 – benzaldehyde (28%D) and benzo(g,h,i)perylene (41.8%D). J/UJ associated samples.</li> </ul>	J/UJ
9. Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?					
10. Was a CRDL Standard analyzed for metals?			✓		
11. Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?			-		
12. Was a LCS analyzed with each batch?		~		<ul><li>VOA: BSH0915W1</li><li>SVOA: PB07605BS</li></ul>	
13. Were LCS recoveries within lab specifications?				<ul> <li>SVOA, PB07605BS:</li> <li>n-Nitroso-di-n-propylamine @106%R (48-96). J+</li> <li>Caprolactum @10%R (20-150). J/UJ</li> </ul>	J/UJ
14. Were LCS/LCSD RPD within lab specifications?			~	LCS only	
15. Was a MS/MSD pair analyzed with each batch?	~			<ul> <li>VOA: T4702-02 (CTM-105)</li> <li>SVOA: T4702-02 (CTM-105)</li> </ul>	

K:\Projects\049138\Admin\DUSR\T4702\STIP DUSR T4702 Organic DE Checklist.doc 2 of 4

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
16. Is the MS/MSD parent sample a project-specific sample?	1				
<ul> <li>10. 16 the MS/MSD parent output of project project project samples are evaluated.</li> <li>17. Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.</li> </ul>				<ul> <li>CTM-105, SVOA:</li> <li>Phenol @16 and 17%R (18-37). UJ</li> <li>3+4-Methylphenols @26 and 28%R (35-110). UJ</li> <li>n-Nitroso-di-n-propylamine @112 and 102%R (48-96). No action, as analyte was not detected in the associated sample.</li> <li>2,4-Dimethylphenol @36 and 34%R (44-97). UJ</li> <li>Caprolactum @9 and 11%R (20-150). UJ</li> <li>Di-n-octyl phthalate @66 and 62%R (66-124). No action, as MS is within laboratory specifications.</li> </ul>	UJ
18. Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.	✓				· · · · · · · · · · · · · · · · · · ·
19. Was a serial dilution conducted on each inorganic batch?			×		ļ
20. Is the serial dilution parent sample a project-specific sample?			1		
21. Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.			~		
22. Was a laboratory duplicate analyzed with each batch?		$\checkmark$			4
23. Is the laboratory duplicate sample a project-specific sample?			~		
24. Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.			<b>v</b>		
25. Were surrogate recoveries within lab specifications during organic analysis?		✓ 		<ul> <li>SVOA - CTM-101 and CTM-101RE         <ul> <li>2-Fluorophenol @12 and 12%R (21-100)</li> <li>Phenol-d5 @7 and 7%R (10-94)</li> </ul> </li> <li>All acid results are considered estimated (J/UJ).         <ul> <li>Terphenyl-d14 @28 and 32%R (33-141).</li> <li>No action warranted as remaining B/N surrogates are within specifications.</li> </ul> </li> <li>SVOA - CTM-105 and CTM-105RE         <ul> <li>2-Fluorophenol @17 and 17%R (21-100).</li> </ul> </li> </ul>	] ]/U]

K:\Projects\049138\Admin\DUSR\T4702\STIP DUSR T4702 Organic DE Checklist.doc 3 of 4

WO # T4702

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>No action as remaining acid surrogates are within specifications.</li> <li>Terphenyl-d14 @31%R (33-141). No action warranted as remaining B/N surrogates are within specifications.</li> <li>SVOA - CTM-100</li> <li>2-Fluorophenol @14%R (21-100). No action as remaining acid surrogates are within specifications.</li> <li>SVOA - FD-1 and FD-1RE</li> <li>2-Fluorophenol @15 and 14%R (21-100)</li> <li>Phenol-d5 @9 and 9%R (10-94)</li> <li>All acid results are considered estimated (J/UJ).</li> </ul>	
26. Were internal standard results within lab specifications during the VOA and SVOA?	<b>√</b>				
27. Were TIC reported and were reported results qualified as estimated concentrations?	~				JN
28. Were field duplicate samples submitted to the laboratory for analysis?	$\checkmark$			FD-01 is the field duplicate of CTM-100	
29. Was precision deemed acceptable as defined by DV Guidelines?	~			Diethylphthalate was the only target analyte detected in the samples. No action warranted, as the absolute difference between results is <crdl.< td=""><td></td></crdl.<>	
30. Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.		1			
31. Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.	~			Refer to Case Narratives	

#### **Comments:**

The data review process was modeled after the EPA Region 2 Data Validation Guidelines for unusable data and Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002).

UJ

ND

Ν

#### Key:

J Positive sample result is considered estimated

R Unusable data

Sample result is not detected and the detection limit is considered estimated Sample result is not detected

R+ Positive sample result is considered unusable

U Not present above the associated level; blank contamination exists

K:\Projects\049138\Admin\DUSR\T4702\STIP DUSR T4702 Organic DE Checklist.doc

4 of 4

A "tentative identification" has been made of the presence of an analyte

### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T5305 C.T. Male Project No.: 04.9138

DATE: December 7, 2005

On October 18, 2005, C.T. Male Associates P.C. (C. T. Male) collected five (5) groundwater samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with a trip blank, for the following analyses:

Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
Sample Ids			
r СТМ-203	10/18/2005	1	1
· CTM-208	10/18/2005	1	· 1
√CTM-214	10/18/2005	1	1
VCTM-215	10/18/2005	1	1
$\sqrt[V]{\text{FD-1}^1}$	10/18/2005	1	1
√Trip Blank	-	1	0
Total Samples		6	5

VOC - Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample

¹ Field duplicate of CTM-214.

DUSR December 7, 2005 Page 2 of 4

results are presented in the laboratory summary forms, which are located in Attachment C. Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

### **Data Completeness**

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on October 19, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

#### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial and continuing calibrations on October 13 and 27, 2005, respectively. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except chloroethane (38.4%RSD), acetone (26.5%D), and tetrachloroethene (41.3%D). Chloroethane results have been qualified as estimated (J/UJ) due to poor correlation in the initial calibration, and acetone and tetrachloroethene have been qualified as estimated (J/UJ) due to poor correlation between calibrations.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except chloromethane (135%R), bromomethane (150%R), chloroethane (180%R), and methylcyclohexane (135%R). Associated detections have been qualified as estimated (J) due to analytical inaccuracy.

A method blank was reported for each analytical batch and a trip blank was also submitted to the laboratory for VOA. Acetone (a common laboratory contaminant) was detected in the trip blank as well as method blank VBD1027W1 at concentrations of 39 and 12  $\mu$ g/L, respectively. 2-Butanone (a common laboratory contaminant) was also detected in the trip blank at a concentration of 12  $\mu$ g/L. Action levels were developed by multiplying the highest concentration observed among the associated blanks by a factor of 10 for common laboratory contaminants. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

DUSR December 7, 2005 Page 3 of 4

Criteria for accuracy and precision were met during the matrix spike (MS)/MS duplicate (MSD) analysis of sample CTM-215 for all target analytes except chloroethane. The %R exceeded the laboratory specifications during the MS and MSD analysis, however no action is warranted as chloroethane was not detected in the associated sample.

Criteria for precision was achieved during the field duplicate evaluation of samples FD-1 and CTM-214 for all target analytes except m&p-xylenes and isopropylbenzene. M&p-xylenes were detected during the analysis of CTM-214, but were not detected (ND) during the analysis of FD-1. The absolute difference between results for isopropylbenzene exceeded the contract required detection limit. Results for m&p-xylenes and isopropylbenzene have been qualified as estimated (J/UJ) in the associated samples due to analytical imprecision.

### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial calibrations on October 17 and 27, 2005 and the continuing calibrations of October 23, 24, and 31, 2005. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The %RSD between RRF was less than or equal to 30% during the initial calibrations except hexachloroethane (33.3%RSD), hexachlorocyclopentadiene (52.7%RSD), 1,1-biphenyl (30.9%RSD), 4-chlorophenyl-phenylether (35.5%RSD), and benzo(k)fluoranthene (41.3%RSD) during the initial calibration associated with the analysis of samples FD-1, CTM-215, CTM-208, and CTM-214, as well as hexachlorocyclopentadiene (48.7%RSD) and 2,4-dinitrophenol (50.2%RSD) during the initial calibration associated with the analysis of sample CTM-203. The %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except benzaldehyde (27.9%D) during the continuing calibration associated with the analysis of CTM-214, and bis(2-chloroethoxy)methane (36%D), caprolactam (27.7%D), hexachlorobenzene (28.5%D), 3,3-dichlorobenzidine (32.7%D), and indeno(1,2,3-cd)pyrene (28.4%D) during the continuing calibration associated with the analysis of CTM-203. The associated results have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples except the surrogate recoveries for 2-fluorophenol during the analysis of CTM-203. No action is warranted as the remaining acid surrogates were within laboratory specifications.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except phenol and 4-chlorophenyl-phenylether exceeded laboratory specifications, and benzaldehyde and caprolactum were below laboratory specifications, during the analysis of blank spike PB08293BS. Associated results have been qualified as estimated (J/UJ) for benzaldehyde and caprolactum, and detected results have been qualified as estimated (J) for phenol and 4-chlorophenyl-phenylether.

A method blank was reported for each analytical batch. Target analytes were not detected during the analysis of the method blank. A tentatively identified compound (TIC), squalene was detected during the analysis of method blank PB08293B at a concentration of 40  $\mu$ g/L. An action level was developed by multiplying the concentration observed among the associated blank by a factor of 5. Samples with results

DUSR December 7, 2005 Page 4 of 4

reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Criteria for accuracy and precision were met during the MS/MSD analysis of sample CTM-215 for all target analytes except benzaldehyde, caprolactam, 4-chlorophenyl-phenylether, 3,3-dichlorobenzidine, and benzo(k)fluoranthene. The %R for the MS and MSD was below laboratory specifications for benzaldehyde, caprolactam, and 3,3-dichlorobenzidine. The associated results have been qualified as estimated (UJ) in CTM-215. The MS %R was below laboratory specifications for 4-chlorophenyl-phenylether and benzo(k)fluoranthene. Qualification was not warranted, as the MSD %R was within laboratory specifications.

Criteria for precision was achieved during the field duplicate evaluation of samples FD-1 and CTM-214 for all target analytes except phenanthrene and anthracene. These analytes were detected during the analysis of FD-1, but were ND during the analysis of CTM-214. Results for phenanthrene and anthracene have been qualified as estimated (J/UJ) in the associated samples due to analytical imprecision.

Megn Dusky Megan Drosky

Environmental Scientist

ATTACHMENT A Case Narrative

# GEMTECH

# CASE NARRATIVE

### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T5305

# A. Number of Samples and Date of Receipt:

8 Water samples were received on 10/19/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

### C. Analytical Techniques:

The samples were analyzed on instrument BNA B using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739-125. The samples were analyzed on instrument BNA E using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739-125.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for CTM-203.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for Benzaldehyde,

Caprolactam, 4-Chlorophenyl-phenylether, 3,3-Dichlorobenzidine and

Benzo(k)fluoranthene.

The MSD recoveries met the acceptable requirements except for Benzaldehyde, Caprolactam and 3,3-Dichlorobenzidine.

The RPD recoveries met criteria.

The Blank Spike met requirements for all samples except for Benzaldehyde, Phenol, Caprolactam and 4-Chlorophenyl-phenylether. These compounds are not present in the samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

_____ Name: Krupa Dubey Signature Title: QA/QC Date:

3

# CHEITECH

## CASE NARRATIVE

#### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T5305

# A. Number of Samples and Date of Receipt:

8 Water samples were received on 10/19/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

### C. Analytical Techniques:

The analysis performed on instrument MSVOA D were done using GC column RTX624 which is 20 meters, 0.18 ID, 1.0 df, Restek Cat. #40924. The Trap was supplied by OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator.

### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds except for Chloroethane.

The MSD recoveries met the acceptable requirements except for Chloroethane.

The RPD recoveries met criteria except for Acetone and Cyclohexane.

The Blank Spike met requirements for all samples except for Chloromethane,

Bromomethane, Chloroethane and Methylcyclohexane. These compounds are not present in the samples.

The Blank analysis indicated presence of Acetone due to possible lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	lif	Name: Krupa Dubey
Date:	11/2/05.	Title: QA/QC

# ATTACHMENT B Data Evaluation Checklist

# Data Evaluation Checklist Organic Analyses

Project:	South Troy Industrial Park		Projec Metho		04.9138 SW-846 Methods 8260B (VOA), 8270C (SVOA)	
Work Orde Laboratory			Associ	ated Sarr	ple IDs: <u>CTM-203, CTM-208, CTM-215, CTM-214,</u> and Trip Blank	FD-1,
Reviewer:	Megan Drosky		Sample Date:	e Date:	10/18/05 12/06/05	
[	Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
1. Were	holding times met?	~			<ul> <li>VOA: ≤14 days</li> <li>SVOA: ≤7/40 days</li> </ul>	
2. Were	sample storage and preservation requirements met?	$\checkmark$			4°C (2-6°C). All samples were preserved with HCl for VOA analysis.	
3. Was a	a method blank analyzed with each batch?	. 1			<ul><li>VOA: VBD1027W1</li><li>SVOA: PB08293B</li></ul>	
	target analytes reported in the method or calibration above the Detection Limit?				<ul> <li>VOA – VBD1027W1: Acetone @12 μg/L (2.3 μg/L)</li> <li>SVOA – PB08293B: Squalene (TIC) @8.0 μg/L (RT=22.34)</li> </ul>	
5. Were trip, a	target analytes reported in field blank analyses (e.g., ambient, field, or equipment) above the DL?	1			<ul> <li>VOA, Trip Blank:</li> <li>Acetone @39 μg/L (2.3 μg/L)</li> <li>2-Butanone @12 μg/L (1.1 μg/L)</li> </ul>	
	contaminants detected in samples below the blank amination action level?				<ul> <li>Blank Contamination Action Levels:</li> <li>VOA – Acetone @390 µg/L (39 x 10)</li> <li>VOA – 2-Butanone @120 µg/L (12 x 10)</li> <li>SVOA – Squalene (TIC) @40 µg/L (8.0 x 5)</li> <li>Sample results that were not significantly greater (5x and 10x for common laboratory contaminants) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.</li> </ul>	ND, U
	e initial and continuing calibration standards analyzed at ab-specified frequency for each instrument?				<ul> <li>VOA         <ul> <li>Initial calibration: 10/13/05</li> <li>Continuing calibration: 10/27/05 @12:06</li> </ul> </li> <li>SVOA         <ul> <li>Initial calibration: 10/17/05 (Associated samples: FD-1, CTM-215, CTM-208, CTM-214) and 10/27/05 (Associated</li> </ul> </li> </ul>	

K:\Projects\049138\Admin\DUSR\T5305\STIP DUSR T5305 Organic DE Checklist.doc 1 of 5

WO # <u>T5305</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>samples: CTM-203)</li> <li>Continuing calibration: 10/23/05 @18:01 (Associated samples: FD-1, CTM-215, CTM-208), 10/24/05 @06:00 (Associated samples: CTM-214), and 10/31/05 @20:25 (Associated samples: CTM-203)</li> </ul>	
8. Were these results within lab or project specifications?				<ul> <li>VOA –</li> <li>Initial Calibration of 10/13/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except chloroethane (38.4%RSD). J/UJ</li> <li>Continuing calibration of 10/27/05. The RF&gt;0.05 and %D &lt;25% for all target analytes except acetone (26.5%D) and tetrachloroethene (41.3%D).</li> <li>SVOA –</li> <li>Initial Calibrations of 10/17/05 and 10/27/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except as follows:</li> <li>0 10/17/05 – hexachloroethane (33.3%RSD), hexachlorocyclopentadiene (52.7%RSD), 1,1-biphenyl (30.9%RSD), 4-chlorophenyl- phenylether (35.5%RSD), and benzo(k)fluoranthene (41.3%RSD). J/UJ associated samples.</li> </ul>	, , ,
				<ul> <li>0 10/27/05 - hexachlorocyclopentadiene (48.7%RSD) and 2,4-dinitrophenol (50.2%RSD). J/UJ associated samples.</li> <li>Continuing calibrations of 10/23/05, 10/24/05, and 10/31/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows:</li> </ul>	
				<ul> <li>an unget unitytes, encopy in Proceeding of the Proceeding</li></ul>	

K:\Projects\049138\Admin\DUSR\T5305\STIP DUSR T5305 Organic DE Checklist.doc 2 of 5

WO # <u>T5305</u>

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				indeno(1,2,3-cd)pyrene (28.4%D). J/UJ associated samples.	
<ol> <li>Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?</li> </ol>					
10. Was a CRDL Standard analyzed for metals?	<u> </u>				
11. Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?			4		
12. Was a LCS analyzed with each batch?		~		<ul><li>VOA: BSD1027W1</li><li>SVOA: PB08293BS</li></ul>	
13. Were LCS recoveries within lab specifications?		~		<ul> <li>VOA, BSD1027W1:</li> <li>Chloromethane @135%R (70-130). J+</li> <li>Bromomethane @150%R (70-130). J+</li> <li>Chloroethane @180%R (70-130). J+</li> <li>Methylcyclohexane @135%R (70-130). J+</li> <li>SVOA, PB08293BS:</li> <li>Benzaldehyde @4%R (20-150). J/UJ</li> <li>Phenol @40%R (18-37). J+</li> <li>Caprolactum @12%R (20-150). J/UJ</li> <li>4-Chlorophenyl-phenylether @110%R (45-105). J+</li> </ul>	J/UJ
14. Were LCS/LCSD RPD within lab specifications?			~	LCS only	
15. Was a MS/MSD pair analyzed with each batch?	×			<ul> <li>VOA: T5305-03 (CTM-215)</li> <li>SVOA: T5305-03 (CTM-215)</li> </ul>	
16. Is the MS/MSD parent sample a project-specific sample?				CTM-215, VOA: Chloroethane @152 and 154%R	UJ
17. Were MS/MSD recoveries within lab specifications? Only QC results for project samples are evaluated.				<ul> <li>(71-150). No action as chloroethane (a) 152 and 154 vice (71-150). No action as chloroethane was not detected in the associated sample.</li> <li>CTM-215, SVOA: <ul> <li>Benzaldehyde @0 and 0%R (20-150). UJ</li> <li>Caprolactum @11 and 11%R (20-150). UJ</li> <li>4-Chlorophenyl-phenylether @108 and 98%R (45-105). No action, as MSD is within laboratory specifications.</li> <li>3,3-Dichlorobenzidine @12 and 8%R (33-121). UJ</li> </ul> </li> </ul>	

K:\Projects\049138\Admin\DUSR\T5305\STIP DUSR T5305 Organic DE Checklist.doc 3 of 5

### WO # <u>T5305</u>

# Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>Benzo(k)fluoranthene @132 and 84%R (52- 111). No action, as MSD is within laboratory specifications.</li> </ul>	
18. Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.		~		CTM-215, VOA: • Acetone @32%RPD (<20). UJ • Cyclohexane @23%RPD (<20). UJ	UJ
19. Was a serial dilution conducted on each inorganic batch?			~		
20. Is the serial dilution parent sample a project-specific sample?			✓		
21. Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.			✓ 		
22. Was a laboratory duplicate analyzed with each batch?		×			
23. Is the laboratory duplicate sample a project-specific sample?			✓		
24. Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.			✓		
25. Were surrogate recoveries within lab specifications during organic analysis?		✓	-	<ul> <li>SVOA - CTM-203</li> <li>2-Fluorophenol @20%R (21-100). No action as remaining acid surrogates are within specifications.</li> </ul>	
26. Were internal standard results within lab specifications during the VOA and SVOA?	1				
27. Were TIC reported and were reported results qualified as estimated concentrations?	<b>`</b>				JN
28. Were field duplicate samples submitted to the laboratory for analysis?				FD-1 is the field duplicate of CTM-214	
29. Was precision deemed acceptable as defined by DV Guidelines?		~		Refer to Attachment A for a duplicate evaluation.	J/UJ
30. Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.					
31. Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.	<b>√</b>			Refer to Case Narratives	

#### WO # <u>T5305</u>

## Data Evaluation Checklist (Continued)

Review Questions Ves No N/	A Samples (Analytes) Affected/Comments Flag
Action Questions	

#### **Comments:**

The data review process was modeled after the EPA Region 2 Data Validation Guidelines for unusable data and Appendix 2B, Guidance for the Development of Data Usability Summary Reports, of Draft DER-10 Technical Guidance for Site Investigation and Remediation (NY DEC, December 2002).

Key:

J Positive sample result is considered estimated

R Unusable data

R+ Positive sample result is considered unusable

U Not present above the associated level; blank contamination exists

UJ Sample result is not detected and the detection limit is considered estimated

ND Sample result is not detected

N A "tentative identification" has been made of the presence of an analyte

### ATTACHMENT A

### STIP Evaluation of Field Duplicate Results

				Management and a second second second				
							Absolute	
Analyte	CTM-214	FD-1	CRDL	CRDLx5	Criteria	RPD	difference	Action
Benzene	23	20	0.39	1.95	RPD	14		None, RPD <50%
Toluene	1.2	0.98	0.36	1.8	Abs Diff	20	0.22	None, Absolute Difference is <crdl< td=""></crdl<>
Ethylbenzene	15	12	0.45	2.25	RPD	22	3	None, RPD <50%
m&p-Xylenes	1.3		1.2	6		200	1.3	J/UJ
o-Xylene	0.69	0.61	0.46	2.3	Abs Diff	12	0.08	None, Absolute Difference is <crdl< td=""></crdl<>
Isopropylbenzene	2.2	1.6	0.44	2.2	Abs Diff	32	0.6	J, Absolute Difference >CRDL
Naphthalene	7.3	8	1.4	7	RPD	9	0.7	None, RPD <50%
Contraction Communication of the International Contraction of the International Contractional Co	16	. 17	1 1	5.5	RPD	6		None, RPD <50%
2-Methylnaphthalene	2.1	2.1	1.1		Abs Diff			None, Absolute Difference is <crdl< td=""></crdl<>
Acenaphthene			4	7	<u>- 100 Ditt</u>	200		J/UJ
Phenanthrene		1.5		7		200		J/UJ
Anthracene		1.5	1.4	/		200	1.5	5/03

Note: If the analyte was not detected, then the cell is left blank.

DL - Detection limit

RPD - Relative percent difference

Precision is based on either the absolute difference between sample results or RPD. If the sample results are less than or equal to 5x's the CRDL, then precision is based on the absolute difference between duplicate results. If sample results >5x's CRDL, then precision is evaluated using RPD. J sample results whenever the absolute difference is greater than CRDL or RPD >50%. If the analyte is detected in one sample but not the other, then J/UJ sample results. Above table presents results for detected analytes only. Blank cells indicate that the analyte was not detected.

### SUBJECT: Data Usability Summary Report (DUSR) South Troy Industrial Park Chemtech SDG No.: T5327 C.T. Male Project No.: 04.9138

DATE: December 7, 2005

On October 19, 2005, C.T. Male Associates P.C. (C. T. Male) collected six (6) groundwater samples from the South Troy Industrial Park (STIP) Site. The samples were submitted to CHEMTECH in Mountainside, NJ along with an equipment blank and a transport blank, for the following analyses:

Parameter	Sample Date	VOC, SW-846 8260B	SVOC, SW-846 8270C
Sample Ids			
CTM-212	10/19/2005	1	1
CTM-213	10/19/2005	1	1
CTM-216	10/19/2005	i	1
CTM-8	10/19/2005	1	1
CTM-9	10/19/2005	1	1
CTM-1	10/19/2005	1	1
EB-1	10/19/2005	1 .	1
Trip Blank		1	0
Total Samples		8	7

VOC - Volatile organic compounds

SVOC - Semi-volatile organic compounds

C. T. Male evaluated the data reported by the laboratory to determine usability per Appendix B of the *Draft DER-10 Technical Guidance for Site Investigation and Remediation* (NY DEC, December 2002). The following criteria were reviewed:

- Completeness of data package as defined under the requirements for the NYSDEC ASP Category B or USEPA CLP deliverables;
- Holding time compliance for chemical analysis;
- Protocol required limits and specification compliance for quality control (QC) data (e.g., instrument tuning, calibration standards, blank results, spike results, duplicate results, etc);
- Contract compliance for analytical protocols;
- Omissions and Transcription errors; and
- Data qualification

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms. The laboratory Case Narrative (Attachment A) identified all deviations from laboratory analytical specifications. C. T. Male reviewed these QC results to determine if sample results should be qualified based on the criteria provided in Appendix B of the *Technical Guidance for Site Investigation and Remediation*. QC exceedances and data qualification recommendations are presented in the Data Evaluation Checklist (Attachment B). Qualified sample

DUSR December 7, 2005 Page 2 of 4

results are presented in the laboratory summary forms, which are located in Attachment C. Overall, data quality objectives for the STIP project were met, as there were not any data deficiencies that would indicate the need for re-sampling.

#### **Data Completeness**

All documentation required by the project was included in the data package. There were no discrepancies found between the raw data and summary forms for the validated samples. The laboratory Case Narrative identified all deviations from laboratory analytical specifications, and is attached along with the qualified sample results. QC exceedences and data qualification recommendations are presented below.

### Sample Condition upon Receipt and Holding Times

Chemtech received all the samples listed on the COC records intact and in good condition on October 20, 2005. The temperature of samples was within laboratory specification limits of 2 to 6°C upon receipt.

All samples were prepared and analyzed within EPA-established holding times.

### Volatile Organic Analyses (VOA) by SW-846 8260B

All samples were analyzed within 12 hours of the performance check standard, BFB. Percent relative abundance of all ions met the criteria specified in Table 4 of the EPA SW-846 Method 8260B. Laboratory specifications were met during the initial calibration on October 16, 2005 and continuing calibrations on October 23 and 24, 2005 and November 2, 2005. In addition the average relative response factor (RRF) was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The percent relative standard deviation (%RSD) between RRF was less than or equal to 30% during the initial calibration, and the percent difference (%D) between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes, except dichlorodifluoromethane (26.5%D), chloroethane (37.1%D), and trichlorofluoromethane (28.7%D) during the continuing calibration associated with the analysis of CTM-212, CTM-213, CTM-216, and CTM-8, dichlorodifluoromethane (36.9%D), chloroethane (38.3%D), carbon disulfide (29%D), and methyl acetate (32.5%D) during the continuing calibration associated with the analysis of CTM-9, CTM-1, EB-1 and the transport blank, as well as chloroethane (34.5%D), trichlorofluoromethane (28.9%D), and carbon disulfide (30.7%D) during the continuing calibration associated with the diluted analysis of EB-1. The associated results have been qualified as estimated (J/UJ) due to poor correlation between calibrations.

Surrogate recoveries and internal standard results met laboratory specifications for all project samples.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes.

A method blank was reported for each analytical batch and an equipment blank and a transport blank were also submitted to the laboratory for VOA. Target analytes were not detected during analysis of the method blanks. Acetone and 2-butanone (common laboratory contaminants) were detected in the transport blank at concentrations of 3.9 and 7.9  $\mu$ g/L, respectively. Methylene chloride (a common laboratory contaminant) and hexane (a tentatively identified compound (TIC)) were detected in the equipment blank at concentrations of 250 and 11  $\mu$ g/L, respectively. Action levels were developed by

DUSR December 7, 2005 Page 3 of 4

multiplying the highest concentration observed among the associated blanks by a factor of 10 for common laboratory contaminants and 5 for all other contaminants. Samples with results reported below the action level have been have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

### Semivolatile Organic Analysis (SVOA) by SW-846 8270C

All samples were analyzed within 12 hours of the performance check standard, DFTPP. Percent relative abundance of all ions met the criteria specified in Table 3 of the EPA SW-846 Method 8270C. Laboratory specifications were met during the initial calibration on November 1, 2005 and the continuing calibrations of November 2, 3, and 7, 2005. In addition the average RRF was greater than or equal to 0.05 for all target analytes during the initial and continuing calibrations. The %RSD between RRF was less than or equal to 30% during the initial calibration, and the %D between the initial calibration average RRF and continuing calibration RRF was less than or equal to 25% for all target analytes except 2,4-dinitrophenol (50.5%D) and indeno(1,2,3-cd)pyrene (31.1%D) during the continuing calibration associated with the analysis of CTM-212, CTM-213, CTM-216, CTM-8, CTM-9, CTM-1, and EB-1, 2,4-dinitrophenol (36.2%D) and indeno(1,2,3-cd)pyrene (35.4%D) during the continuing calibration associated with the reanalysis of CTM-212, CTM-213, CTM-216, CTM-9, CTM-1, and EB-1, as well as 2,4-dinitrophenol (41.9%D)during the continuing calibration associated with the reanalysis of CTM-212, CTM-213, CTM-216, CTM-9, CTM-1, and EB-1, as well as 2,4-dinitrophenol (41.9%D)during the continuing calibration associated with the reanalysis of CTM-212, CTM-213, CTM-216, CTM-9, CTM-1, and EB-1, as well as 2,4-dinitrophenol (41.9%D)during the continuing calibration associated with the reanalysis of CTM-3. The associated results have been qualified as estimated (J/UJ) due to poor correlation in the calibration standards.

Surrogate recoveries met laboratory specifications for all project samples except the surrogate recovery for 2-fluorophenol during the analysis of CTM-212. No action is warranted as the remaining acid surrogates were within laboratory specifications. Surrogate recoveries were below specifications during the analysis and reanalysis of CTM-8 for 2-fluorophenol and phenol-d5. All acid compounds in CTM-8 have been qualified as estimated (J/UJ) due to analytical inaccuracy.

Internal standard results met laboratory specifications for all project samples except during the analysis of CTM-213, CTM-216, CTM-9, CTM-1, and EB-1. Internal standard results for phenanthrene-d10 were below laboratory specifications during the analysis of CTM-213. Results for phenanthrene-d10 were confirmed during reanalysis of CTM-213. Associated analytes for the initial and reanalysis of CTM-213 have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the initial results from CTM-213 be reported as the representative results of CTM-213.

Internal standard results for naphthalene-d8 and phenanthrene-d10 were below laboratory specifications during the analysis of CTM-216. Results for naphthalene-d8 and phenanthrene-d10 were confirmed during reanalysis of CTM-216, also the results for acenaphthene-d10 and perylene-d12 were below laboratory specifications during the reanalysis. Associated analytes for the initial and reanalysis of CTM-216 have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from initial analysis be reported as the representative results of CTM-216, as the instrument showed greater sensitivity during this analysis of the sample.

Internal standard results for phenanthrene-d10 were below laboratory specifications during the analysis of CTM-9. Results for phenanthrene-d10 were confirmed during reanalysis of CTM-9, also the results for naphthalene-d8, acenaphthene-d10, and perylene-d12 were below laboratory specifications during the reanalysis. Associated analytes for the initial and reanalysis of CTM-9 have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from initial

DUSR December 7, 2005 Page 4 of 4

analysis be reported as the representative results of CTM-9, as the instrument showed greater sensitivity during this analysis of the sample.

Internal standard results for phenanthrene-d10 were below laboratory specifications during the analysis of CTM-1. Results for phenanthrene-d10 were confirmed during reanalysis of CTM-1. Associated analytes for the initial and reanalysis of CTM-1 have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from initial analysis be reported as the representative results of CTM-1, as the instrument showed greater sensitivity during this analysis of the sample.

Internal standard results for phenanthrene-d10 were below laboratory specifications during the analysis of EB-1. Results for phenanthrene-d10 were confirmed during reanalysis of EB-1, also the results for perylene-d12 were below laboratory specifications during the reanalysis. Associated analytes for the initial and reanalysis of EB-1 have been qualified as estimated due to a decrease in instrument sensitivity, however it is recommended that the results from initial analysis be reported as the representative results of EB-1, as the instrument showed greater sensitivity during this analysis of the sample.

The percent recovery results for blank spike analysis were within laboratory specifications for all target analytes except 4,6-dinitro-2-methylphenol exceeded laboratory specifications, and caprolactum was below laboratory specifications, during the analysis of blank spike PB08325BS. Associated results have been qualified as estimated (J/UJ) for caprolactum, and detected results have been qualified as estimated (J) for 4,6-dinitro-2-methylphenol.

A method blank was reported for each analytical batch. An equipment blank was also submitted to the laboratory for SVOA. Target analytes were not detected during the analysis of the method or equipment blanks, however 2,6,10,14,18,22-tetracosahexane (TIC) was detected during the analysis of method blank PB08325B and the equipment blank at concentrations of 3.3 and 6.3  $\mu$ g/L, respectively. 5-Eicosene (E) (TIC) was also detected during the analysis of the equipment blank at a concentration of 2.3  $\mu$ g/L. An action level was developed by multiplying the highest concentration observed among the associated blank by a factor of 5. Samples with results reported below the action level have been edited to reflect non-detection (U) and the detection limit has been elevated to reflect the amount that was detected in the sample.

Mayon Dray

Megan Drosky Environmental Scientist

## ATTACHMENT A Case Narrative

EMIECH

### CASE NARRATIVE

#### C.T. Male & Associates

Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T5327

### A. Number of Samples and Date of Receipt:

8 Water samples were received on 10/20/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: Stars List Semi Volatiles, 8260 Stars List Volatiles, SVOCMS Group1, and VOCMS Group1. This data package contains results for SVOCMS Group1.

### C. Analytical Techniques:

The samples were analyzed on instrument BNA F using GC Column RTX-5 SILMS which is 30 meters, 0.32 mm ID, 0.5 um df, Catalog # 12739-125.

### **D.** QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria except for CTM-212, CTM-8 and CTM-8RE.

The Internal Standards Areas met the acceptable requirements except for CTM-216, CTM-213, CTM-9, CTM-1, EB-1, CTM-216RE, CTM-9RE, CTM-213RE, CTM-1RE and EB-1RE.

The Retention Times were acceptable for all samples.

The Blank Spike met requirements for all samples except for Caprolactam and 4,6-Dinitro-2-methylphenol.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature	Ind	Name: Krupa Dubey
Date:	11/10/05	Title: QA/QC

3



### CASE NARRATIVE

C.T. Male & Associates Project Name: Rensselaer Cty Indust. Dev. Agency Project # N/A Chemtech Project # T5327

A. Number of Samples and Date of Receipt:

8 Water samples were received on 10/20/05.

#### **B.** Parameters

According to the Chain of Custody document, the following analyses were requested: Stars List Semi Volatiles, 8260 Stars List Volatiles, SVOCMS Group1, and VOCMS Group1. This data package contains results for VOCMS Group1.

#### C. Analytical Techniques:

The analysis performed on instrument MSVOA H were done using GC column RTX624, which is 75 meters, 0.53 ID, 3.0 df, Restek Cat. #10974. The Trap was supplied BY OI Analytical, OI #10 Trap, OI Eclipse 4660 Concentrator.

#### D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The MS recoveries met the requirements for all compounds.

The MSD recoveries met the acceptable requirements except for Chloroethane.

The RPD recoveries met criteria except for Chloroethane and Trichlorofluoromethane.

The Blank Spike met requirements for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Tuning criteria met requirements.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature CINNIS Date:

Name: Krupa Dubey

Title: QA/QC

## ATTACHMENT B Data Evaluation Checklist

### Data Evaluation Checklist Organic Analyses

Project: South Troy Industrial Park		Projec		04.9138	
Work Order: <u>T5327</u>		Metho	d:	SW-846 Methods 8260B (VOA), 8270C (SVOA)	TM_0
Laboratory: <u>CHEMTECH</u>		Assoc	iated San	mple IDs: <u>CTM-212, CTM-213, CTM-216, CTM-8, C</u>	1141-9,
Reviewer: <u>Megan Drosky</u>		Sampl Date:	e Date:	<u>CTM-1, EB-1, and Transport Blank</u> <u>10/19/05</u> <u>12/07/05</u>	
Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
1. Were holding times met?	×			<ul> <li>VOA: ≤14 days</li> <li>SVOA: ≤7/40 days</li> </ul>	
2. Were sample storage and preservation requirements met?	~			4°C (2-6°C). All samples were preserved with HCl for VOA analysis.	
3. Was a method blank analyzed with each batch?	~			<ul> <li>VOA: VBH1023W2, VBH1023W4, VBH1102W2</li> <li>SVOA: PB08325B</li> </ul>	
4. Were target analytes reported in the method or calibration blanks above the Detection Limit?	1			<ul> <li>SVOA – PB08325B: 2,6,10,14,18,22- Tetracosahexane (TIC) @3.3 µg/L (RT=15.15)</li> </ul>	
<ol> <li>Were target analytes reported in field blank analyses (e.g., trip, ambient, field, or equipment) above the DL?</li> </ol>				<ul> <li>VOA, EB-1:</li> <li>Methylene chloride @250 μg/L (1.8 μg/L)</li> <li>Hexane (TIC) @11 μg/L (RT=3.26)</li> <li>VOA, Transport Blank:</li> <li>Acetone @3.9 μg/L (3.5 μg/L)</li> <li>2-Butanone @7.9 μg/L (2.3 μg/L)</li> <li>SVOA, EB-1</li> <li>5-Eicosene (E) (TIC) @2.3 μg/L (RT=13.37)</li> <li>2,6,10,14,18,22-Tetracosahexane (TIC) @6.3 μg/L (RT=15.19)</li> </ul>	
6. Were contaminants detected in samples below the blank contamination action level?	~			<ul> <li>Blank Contamination Action Levels:</li> <li>VOA <ul> <li>Acetone @39 μg/L (3.9 x 10)</li> <li>2-Butanone @79 μg/L (7.9 x 10)</li> <li>Methylene chloride @2500 μg/L (310 x 10)</li> <li>Hexane (TIC) @55 μg/L (11 x 5)</li> </ul> </li> <li>SVOA <ul> <li>5-Eicosene (E) (TIC) @11.5 μg/L (2.3 x 5)</li> <li>2,6,10,14,18,22-Tetracosahexane (TIC) @31.5 μg/L (6.3 x 5)</li> </ul> </li> </ul>	ND, U

K:\Projects\049138\Admin\DUSR\T5327\STIP DUSR T5327 Organic DE Checklist.doc 1 of 6

# Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
Review Questions				Sample results that were not significantly greater (5x and 10x for common laboratory contaminants) than that detected in the blanks have been qualified due to the presence of blank contamination as ND (U-flag) and the DL has been elevated to the amount detected.	
Were initial and continuing calibration standards analyzed at the lab-specified frequency for each instrument?				<ul> <li>VOA <ul> <li>Initial calibration: 10/16/05</li> <li>Continuing calibration: 10/23/05 @12:33</li> <li>(Associated samples: CTM-212, CTM-213, CTM-216, CTM-8), 10/24/05 @01:19</li> <li>(Associated samples: EB-1, Transport Blank, CTM-9, CTM-1), and 11/2/05</li> <li>@11:41 (Associated sample: EB-1DL)</li> </ul> </li> <li>SVOA <ul> <li>Initial calibration: 11/01/05</li> <li>Continuing calibrations: 11/02/05 @13:15</li> <li>(Associated samples: CTM-212, CTM-213, CTM-216, CTM-8, CTM-9, CTM-1, EB-1), 11/03/05 @12:38 (Associated samples: CTM-213RE, CTM-216RE, CTM-9RE, CTM-1RE, EB-1RE), and 11/07/05 @15:27</li> <li>(Associated sample: CTM-8RE)</li> </ul> </li> </ul>	
3. Were these results within lab or project specifications?				<ul> <li>VOA –</li> <li>Initial Calibration of 10/16/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes.</li> <li>Continuing calibrations of 10/23, 10/24, and 11/02/05. The RF&gt;0.05 and %D &lt;25% for all target analytes except as follows:</li> <li>10/23/05 – dichlorodifluoromethane (26.5%D), chloroethane (37.1%D), and trichlorofluoromethane (28.7%D). J/UJ associated samples.</li> <li>10/24/05 – dichlorodifluoromethane (36.9%D), chloroethane (38.3%D), carbon disulfide (29%D), and methyl acetate (32.5%D). J/UJ associated samples.</li> <li>11/02/05 – chloroethane (34.5%D),</li> </ul>	J/U.

K:\Projects\049138\Admin\DUSR\T5327\STIP DUSR T5327 Organic DE Checklist.doc 2 of 6

WO # <u>T5327</u>

## Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
				<ul> <li>trichlorofluoromethane (28.9%D), and carbon disulfide (30.7%D). J/UJ associated samples.</li> <li>SVOA –</li> <li>Initial Calibration of 11/01/05. The RF &gt;0.05 and %RSD between response factors was less than 30% for all target analytes except 2,4-dinitrophenol (46.1%RSD). J/UJ associated samples.</li> <li>Continuing calibrations of 11/02, 11/03, and 11/07/05. The RF&gt;0.05 and %D &lt;25% for all target analytes, except as follows:</li> <li>11/02/05 – 2,4-dinitrophenol (50.5%D) and indeno(1,2,3-cd)pyrene (31.1%D). J/UJ associated samples.</li> <li>11/03/05 – 2,4-dinitrophenol (36.2%D) and indeno(1,2,3-cd)pyrene (35.4%D). J/UJ associated samples.</li> <li>11/07/05 – 2,4-dinitrophenol (41.9%D).</li> </ul>	
9. Were the results of the ICS Check Standard analysis within 80-120% of the true value (metals only)?				J/UJ associated samples.	
10. Was a CRDL Standard analyzed for metals?			~		
<ol> <li>Were recoveries within 75-125% of the true value during the CRDL analysis (CRA, CRI)?</li> </ol>			~		
12. Was a LCS analyzed with each batch?	~			<ul><li>VOA: BSH1023W2</li><li>SVOA: PB08325BS</li></ul>	
13. Were LCS recoveries within lab specifications?		✓		<ul> <li>SVOA, PB08325BS:</li> <li>Caprolactum @14%R (20-150). J/UJ</li> <li>4,6-Dinitro-2-methylphenol @106%R (35-105). J+</li> </ul>	J/UJ
14. Were LCS/LCSD RPD within lab specifications?			~	LCS only	
15. Was a MS/MSD pair analyzed with each batch?		<b>√</b>		<ul> <li>VOA: T5315-09 (batch)</li> <li>SVOA: None</li> </ul>	
16. Is the MS/MSD parent sample a project-specific sample?		✓			ļ
17. Were MS/MSD recoveries within lab specifications? Only			~		

K:\Projects\049138\Admin\DUSR\T5327\STIP DUSR T5327 Organic DE Checklist.doc 3 of 6

**

## Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
QC results for project samples are evaluated.					
18. Were MS/MSD RPD within lab specifications? Only QC results for project samples are evaluated.			<i>√</i>		
19. Was a serial dilution conducted on each inorganic batch?				-	
20. Is the serial dilution parent sample a project-specific sample?					
21. Is the percent difference between the serially diluted result and undiluted result less than 10% (for those analytes with native concentrations greater than 50x the DL)? Only QC results for project samples are evaluated.			~		
22. Was a laboratory duplicate analyzed with each batch?		$\checkmark$		·	
23. Is the laboratory duplicate sample a project-specific sample?			✓		
24. Does laboratory duplicate results meet lab specifications? Only QC results for project samples are evaluated.			~		
25. Were surrogate recoveries within lab specifications during organic analysis?				<ul> <li>SVOA - CTM-212</li> <li>2-Fluorophenol @19%R (21-100). No action warranted, as remaining acid surrogates are within specifications.</li> <li>SVOA - CTM-8 and CTM-8RE</li> <li>2-Fluorophenol @9 and 9%R (21-100).</li> <li>Phenol-d5 @8 and 8%R (10-94).</li> <li>J/UJ all acid compounds in associated samples.</li> </ul>	J/UJ
26. Were internal standard results within lab specifications during the VOA and SVOA?				<ul> <li>SVOA - CTM-216:</li> <li>Naphthalene-d8 @2348109 (2391880-9567520)</li> <li>Phenanthrene-d10 @2102371 (2176118- 8704470)</li> <li>SVOA - CTM-216RE:</li> <li>Naphthalene-d8 @2325807 (2389637-9558548)</li> <li>Acenaphthene-d10 @1235030 (1235346- 4941382)</li> <li>Phenanthrene-d10 @2099252 (2168973- 8675890)</li> <li>Perylene-d12 @700643 (744561-2978242)</li> <li>SVOA - CTM-213:</li> <li>Phenanthrene-d10 @2127399 (2176118- 8704470)</li> </ul>	J/UJ

K:\Projects\049138\Admin\DUSR\T5327\STIP DUSR T5327 Organic DE Checklist.doc 4 of 6

WO # <u>T5327</u>

## Data Evaluation Checklist (Continued)

	Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
					<ul> <li>SVOA - CTM-213RE:</li> <li>Phenanthrene-d10 @2162818 (2168973- 8675890)</li> <li>SVOA - CTM-9:</li> <li>Phenanthrene-d10 @2123076 (2176118- 8704470)</li> <li>SVOA - CTM-9RE:</li> <li>Naphthalene-d8 @2339145 (2389637-9558548)</li> <li>Acenaphthene-d10 @1233148 (1235346- 4941382)</li> <li>Phenanthrene-d10 @2126042 (2168973- 8675890)</li> <li>Perylene-d12 @721365 (744561-2978242)</li> <li>SVOA - CTM-1:</li> <li>Phenanthrene-d10 @2101812 (2176118- 8704470)</li> <li>SVOA - CTM-1RE:</li> <li>Phenanthrene-d10 @2154719 (2168973- 8675890)</li> <li>SVOA - EB-1:</li> <li>Phenanthrene-d10 @2090762 (2176118- 8704470)</li> <li>SVOA - EB-1:</li> <li>Phenanthrene-d10 @2105503 (2168973- 8675890)</li> <li>SVOA - EB-1RE:</li> <li>Phenanthrene-d10 @2105503 (2168973- 8675890)</li> </ul>	
27.	Were TIC reported and were reported results qualified as				J/UJ associated analytes in the associated samples.	JN
28.	estimated concentrations? Were field duplicate samples submitted to the laboratory for analysis?		✓			
29.	Was precision deemed acceptable as defined by DV Guidelines?			<b>√</b>		
30.	Were laboratory-generated Corrective Action Reports (i.e., QCER) issued? If yes, summarize contents or attach copy of the report.		✓			

K:\Projects\049138\Admin\DUSR\T5327\STIP DUSR T5327 Organic DE Checklist.doc 5 of 6

### WO # <u>T5327</u>

## Data Evaluation Checklist (Continued)

Review Questions	Yes	No	N/A	Samples (Analytes) Affected/Comments	Flag
31. Were lab comments included in report? If yes, summarize contents or attach a copy of the narrative.	~			Refer to Case Narratives	
Comments:					
Analyte concentrations that are greater than the calibration range, v obtained from a diluted analysis that fall within the calibration rang available.	which are given that the end of t	presented -flagged d	in the lab ata is con	poratory report E-flagged, are not as accurate as those re nsidered unusable (R) since data that are more accurate a	sults are
The data review process was modeled after the EPA Region 2 Data Data Usability Summary Reports, of <i>Draft DER-10 Technical Guid</i>	Validatio	on Guideli Site Invest	nes for un	nusable data and Appendix 2B, Guidance for the Develo and Remediation (NY DEC, December 2002).	opment of

Key:

Positive sample result is considered estimated J

R Unusable data

R+ Positive sample result is considered unusable

U Not present above the associated level; blank contamination exists
 UJ Sample result is not detected and the detection limit is considered estimated

ND Sample result is not detected

N A "tentative identification" has been made of the presence of an analyte

# EXHIBIT 7

# SUMMARY OF IRM ACTIVITIES REPORT

50 Century Hill Drive, P.O. Box 727, Latham, New York 12110-0727 518,786,7400 FAX 518,786,7299 ctmale@ctmale.com



February 16, 2005

Mr. George Heitzman, PE Senior Environmental Engineer NYSDEC Division of Environmental Remediation 625 Broadway Albany, NY 12233 - 7013

Re: Summary of IRM Activities South Troy Industrial Park ERP No. B00163-4 CTMA Project No. 04.9138

Dear Mr. Heitzman:

The purpose of this letter is to summarize the work completed relative to the buried vessel and drums encountered on the northeast end of the above referenced site. The following provides a summary of the site work completed leading up to and during the Interim Remedial Measure (IRM).

### Background

On October 6, 2004 the New York State Department of Environmental Conservation (DEC) was contacted by Erdman & Anthony Engineers (E&A) in regard to drilling activities taking place on-site, and the possibility that a buried vessel was encountered. E&A is working for the City of Troy with regard to the realignment study for East Industrial Park Road. The DEC Project Manager (George Heitzman) was on-site this day conducting oversight of the trenching activities, and visited the drilling location to assess the situation. SJB Services Inc. was the drilling subcontractor conducting the test borings for E&A and explained that while driving the sampling spoon from approximately 12-14 feet slight resistance was encountered followed by the spoon dropping approximately two feet with no resistance. It was SJB's opinion that they encountered a void which could possibly be a buried vessel. When the sampling spoon was removed from the boring location the spoon contained a thick black material with paint like odor. The DEC collected a sample of the material and relinquished it to C. T. Male for submission to the laboratory to be analyzed for VOC's, SVOC's and metals. The sample was submitted to Chemtech Laboratory of Mountainside, NJ and placed on hold. The drilling crew was asked to stop the drilling activity and not advance the

February 16, 2005 George Heitzman Page - 2

boring deeper. C.T. Male Associates, NYSDEC and Rensselaer County IDA (RCIDA) were all in agreement that the suspected buried vessel would be removed as an Interim Remedial Measure (IRM) utilizing the excavator on-site for the Environmental Restoration Program (ERP) site investigation.

### IRM Activity

October 12, 2004 marked the first day of investigating the encountered buried vessel. Precision Environmental Services, Inc. provided the labor and equipment for the site work as a subcontractor to C. T. Male.

An exploratory test pit was conducted to the east of soil boring were the buried vessel was encountered. The location of the exploratory test pit is depicted on the attached site map. Prior to the start of excavation dust monitors were placed in both upwind and downwind locations. Air monitoring for the presence of volatile organic compounds (VOCs) was also conducted utilizing two calibrated Mini Rae 2000 Photo-Ionization Detectors (PID). The excavation was advanced to a depth of twelve feet and then advanced in a westerly direction. A metal drum was encountered at nine feet below the ground surface and was in a vertical upright position. The excavator operator carefully worked to expose the entire drum. A second drum was found lying horizontal under the drum that was standing vertical. Continuing the investigation and working to expose the already encountered buried drums, a metal underground storage tank (UST) was found immediately south of the drums.

The top of the UST was located approximately twelve feet below ground surface. The north end of the UST revealed a hole on the top of the tank created from the advancement of a hollow stem auger. The soils present above the buried vessel and drums consisted of fill material, slag, cinder and ash which appeared to have been previously disturbed, since the fused slag layers typically encountered in the exploratory test pits and trenches were not present. A fill or vent pipe was not connected to the UST. The fill material above the UST and drums exhibited a minor paint thinner type odor. The fill material was removed from the top of the buried vessels and the excavation was appropriately stepped back to allow safe entry to the tank. Donning the appropriate personnel protective equipment (PPE) and conducting continuous air monitoring, the excavation was entered by a two man crew to determine the contents of each vessel. The PID readings in the open excavation ranged from 0.0 to 5.0 ppm. The tank was approximately 80 – 90% full, and contained a thick-black material with a PID reading of 500 ppm. The drum in the vertical position was less than

February 16, 2005 George Heitzman Page - 3

25% full and contained a pink liquid that emitted a PID reading of 300 ppm. The drum in the horizontal position was in poor condition and contained soil and a thick-black tar like material. The liquid in the vertical drum and the tank were sampled and submitted for laboratory analysis for lead, flash point, ignitability, ph, reactivity, PCBs, metals, SVOCs and VOCs.

October 14, 2004 the drum and tank removal activities were completed. NYSDEC, C.T Male Associates, Precision Environmental Services and Environmental Products and Services of Vermont (EPS) represent all parties involved with these activates.

A staging area was set up prior to the removal of any material from the excavation. The staging area was constructed of a wood (2"x10') frame and lined with two layers of 6 mil black polyethylene liner extending up the side walls of the containment. The tank liquids were removed with a vacuum truck. The tank was then cleaned in place. The vacuum truck contents were then off loaded into a 1,500 gallon polyethylene tank within the staging area pending waste characterization results. Approximately 780 gallons were removed from the discovered UST. The drums were removed from the excavation using a drum hook and excavator, then placed in overpack drums within the staging area. The tank was observed to be in fair condition once cleaned and removed from its grave, with some pitting and scaling observed as well as the presence of a few small holes on the tank bottom. The tank measured approximately 10 feet long by 4 feet in diameter, which indicates that the tank is approximately 1,000 gallons in capacity.

Upon the removal of the buried vessel and drums from the excavation, the soils beneath were explored for the presence of contamination and other possible buried objects (none were discovered). Fill material, consisting of slag, cinder and ash, was present to sixteen feet below the ground surface, before encountering native brown silt and fine sand. All soils removed from the excavation were screened with the PID and staged on polyethylene sheeting if contamination was noted with the PID. As the excavation was advanced to eighteen feet, the severity of contamination subjectively increased. The native soils from these depths ( $\pm 18'$  bgs) exhibited heavy paint like odors and appeared to be impregnated with the liquid waste. Soils screened from eighteen feet emitted a PID reading of 400 ppm. Due to the large volume of contaminated soil encountered, it was determined that all the material stockpiled would be placed back in the excavation. A layer of polyethylene sheeting ( $10' \times 22'$ ) was positioned above the contaminated soil. The polyethylene sheeting was placed in the excavation to separate the contaminated from the uncontaminated soil, as well as to create a vapor barrier and a demarcation layer for future work in this area.

February 16, 2005 George Heitzman Page - 4

### **Analytical Results**

The October 15, 2004 analytical results for the liquid pumped from the UST revealed the presence of select VOCs and SVOCs. Analytical results for the sample "S TROY IND PARK TANK" are attached. MtBE, Methylene Chloride and Toluene were the volatile organic compounds detected. Semi-volatile organic compounds present were 2-Methylnaphthalene, 2- Methylphenol, 3&4 Methylphenol, Anthracene, Naphthalene, Phenanthrene and Phenol. MtBE, a gasoline additive used in gasoline from the late 1970's until recently, suggests that the product within the tank may postdate the introduction of MtBE. The compounds detected are indicative of a gasoline grade fuel not a fuel oil grade product.

Liquid sampled from the vertical buried drum (sample "S TROY IND PARK DRUM") revealed failed results for ignitability due to the presence of a number of volatile compounds detected. Two semi-volatile compounds were also found, 2-Methylnaphthalene and Naphthalene.

Soil sampled from the buried horizontal drum (sample "Drummed Soil") contained a wide range of semi volatile compounds and a select few volatile compounds.

The results for all of the analyses performed relative to the discovered containers are present in Exhibit 1.

In order to transport and dispose of the encountered waste, a Material Profile has been prepared on the basis of the known information regarding the material. The information provided on the Cycle Chem, Inc. profile sheets is considered by C.T. Male Associates to be accurate and representative of the liquid and solids within the drums. The Cycle Chem, Inc. profile sheets are attached and present in Exhibit 2.

### Waste Generated

Waste generated during these activates consisted of two 55-gallon overpack drums containing the two buried drums, two 55-gallon drums of tank bottoms and sludges (tank cleaning), one 55-gallon drum of waste polyethylene liner material and approximately 750 to 800 gallons of product and water removed from the tank (temporarily stored in a 1,500 gallon polyethylene tank). All of these materials were staged within the secure staging area.

February 16, 2005 George Heitzman Page - 5

### Waste Disposal

The generated waste from these activates was initially reviewed for hazardous characterization on the basis of analytical results. The water and product (approximately 780 gallons) from the tank were transported as non hazardous waste to Norlite Corporation of Cohoes, NY. The Bill of Lading represents a total quantity of 1,024 gallons shipped, this includes the liquid from the UST as well as four 55-gallon drums of decontamination water produced as a result of the ERP site investigation. A copy of the Straight Bill of Lading for the liquids is present as Exhibit 3. The two 55gallon drums of tank bottoms and sludges and the one 55-gallon drum of waste polyethylene containment liner were transported as non hazardous waste to Cycle Chem Inc. of Elizabeth, NJ. A copy of the waste manifest is present as Exhibit 4. Prior to transportation, all the drummed material was profiled. The pink colored liquid in the 55-gallon drum was determined to be hazardous waste on the basis of the materials Ignitability. A USEPA Hazardous Waste Identification Number was issued to the Rensselaer County Industrial Development Agency (RCIDA) by the USEPA. This number is indicated on the hazardous waste manifest. A copy of the Hazardous Waste Manifest is attached as Exhibit 5. The soil in the horizontal drum was profiled as well and was determined to be non-hazardous. The two buried drums were transported to Cycle Chem Inc. of Lewisberry, PA. The tank carcass was transported to a scrap metal recycling facility.

### Follow-up Work

C.T. Male has completed an investigation on the subject site for the presence of suspect buried vessels. The suspect location was assessed through the advancement of an exploratory test pit. The investigation revealed the presence of two buried drums as well a 1,000 gallon UST.

The soils beneath the buried drums and tank were explored and found to be contaminated. Due to the larger than anticipated volume of contaminated soil, the material was left in the excavation. The excavation was backfilled to grade. Two monitoring wells were installed in the excavation area to monitor the groundwater quality. The soil boring activity was conducted utilizing 4 ¼" hollow stem augers and continuous sampling with a 2" slit spoon. CTM-1S was set to a total depth of 17' below the ground surface with a five foot screened section. The second well, CTM-1 was set to a total depth of 29' with five foot of screened section. The shallow and deep well cluster was installed to help define the vertical extent of the contamination in soil and groundwater, as well as to possibly be used for a vapor extraction pilot study.

February 16, 2005 George Heitzman Page - 6

The residual contamination present within this area will be evaluated within the Site Investigation/Remedial Alternatives Report (SI/RAR) which is currently in preparation. Further remedial action to address residual soil and groundwater contamination will be recommended as part of the overall site remedy.

If you have any questions, please contact the undersigned at (518) 786-7586.

Sincerely,

C.T. MALE ASSOCIATES, P.C.

Nåthan Freeman Environmental Scientist

Kirk Moline Managing Geologist

Attachments:

Exhibit 1: Laboratory Report
Exhibit 2: Cycle Chem, Inc. Profile sheets
Exhibit 3: Bill of Lading
Exhibit 4: Waste Manifest
Exhibit 5: Waste Manifest
Photographs
Site Map

Cc: Daniel Pollay, RCIDA

FROM : PRECISION ENVIRONMENTAL

PHONE NO. : 518 885 4416





Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

October 15, 2004

FOR: Attn: Mr. John Johnson Precision Env. Services, Inc. LOT 28C Curtis Lumber Ind. Park 831 Route 67 Ballston Spa, NY 12020

Sample Information Matrix: WATER

Location Code: PRECISIN Rush Request: RUSH24HR P.O.#: <u>Custody Information</u> Collected by: Received by: KJB Analyzed by: see "By" below 
 Date
 Time

 10/12/04
 17:10

 10/13/04
 12:00

## Laboratory Data

SDG I.D.: GAF93397 Phoenix I.D.: AF93397

Client ID: S TROY IND PARK DRUM
---------------------------------

Parameter	Result	RL	Units	Date	Time	Ву	Reference
Lead	BDL.	0.002	nıg/L	10/14/04		EK	200.7/6010
Flash Point	75	200	degree F	10/14/04		C/G	SW846 - 1010
Ignitability	Failed	140	deg F	10/14/04		C/G	SW846 - 1010
pH	6 Charles	0.10	pH Units	10/13/04	23:00	$^{\rm CD}$	E150.1/SW9045
Reactivity Cyanide	BDL,	1.0	mg/Kg	10/14/04		ME	SW 846-7.3
Reactivity Sulfide	BDL	20	mg/Kg	10/14/04		ME	SW846-7.3
Reactivity	Negative			10/14/04		ME	SW 846-7.3
PCB Extraction	Completed			10/13/04		M/R	SW3510/3520
Semi Volatile Extraction	Completed			10/13/04		M/R	SW3510/3520
Total Metals Digestion	Completed			10/13/04		AG	
Extraction of TPH MOD 8100	Completed			10/13/04		M/R	3550/5030
Polychlorinated Biphe	nyls						
PCB-1016	ND	0.5	ug/L	10/14/04		HL	608/ 8082
PCB-1221	ND	0.5	ug/L	10/14/04		JH	608/ 8082
PCB-1232	ND	0.5	ug/L	10/14/04		JH	608/ 8082
PCB-1242	ND	0.5	ug/L	10/14/04		JH	608/ 8082
PCB-1248	ND	0.5	11g/L_	10/14/04	ŧ	JH	608/ 8082
PCB-1254	ND	0.5	ug/L	10/14/04	l	JH	608/ 8082
PCB-1260	ND	0.5	11g/L,	10/14/04	ŧ	JH	608/8082
PCB-1262	NĎ	0.5	ug/L	10/14/04	1	JH	608/ 8082
PCB-1268	ND	0.5	ug/L	10/14/04	1	JH	608/8082
OA/OC Surrogates				1011-110		<b>TT T</b>	000/0000
% DCBP (Surrogate Rec)	53		%	10/14/0		JH	608/8082
% TCMX (Surrogate Rec)	92		%	10/14/04	1	-IH	608/8082

Page 1 of 10

Parameter	Result	RL	Units	Date Time	By	Referenc
		and and a second second second second	anna a contanta de contant			
<u> TPH by GC (Extractable</u>	Products)				JRB	8100Modifie
Aviation Fuel/Kerosene	ND	0.5	nıg/L	10/14/04	JRB	8100Modific
Fuel Oil #2/ Diesel Fuel	ND	0,5	mg/L	10/14/04		8100Modifie
Fuel Oil #4	ND	0,5	mg/L	10/14/04	JRB	8100Modifi
Fuel Oil #6	ND	0.5	mg/L	10/14/04	JRB	8100Modifi 8100Modifi
vlotor Oil	ND	0.5	mg/L	10/14/04	JRB	8100Modifi
Other Oil (Cutting & Lubricating)	**	0.5	mg/L	10/14/04	JRB	8100Modifi
Inidentified	250	0.5	mg/L	10/14/04	JRB	BIUDIVIOUII.
OA/OC Surrogates % n-Pentacosane	Diluted out		%	10/14/04	JRB	8100Modif
Volatiles						5110260
1,1,1,2-Tetrachloroethane	ND	100	ug/L	10/13/04	RM	SW8260
1,1,1 Trichloroethane	ND	100	ug/L	10/13/04	RM	SW8260
1,1,2,2-Tetrachloroethane	ND	100	ug/L	10/13/04	RM	SW8260
1,1,2-Trichloroethane	ND	100	ug/L	10/13/04	RM	SW8260
1.1-Dichloroethane	ND	100	ug/L	10/13/04	RM	SW8260
1.1-Dichloroethene	ND	100	ug/L	10/13/04	RM	SW8260
1.1-Dichloropropene	ND	100	ug/L	10/13/04	RM	SW8260
1.2.3 Trichlorobenzene	ND	100	ug/L	10/13/04	RM	SW8260
1.2.3 Trichloropropane	ND	100	ug/L	10/13/04	RM	SW8260
1,2,4 Trichlorobenzene	ND	100	ug/L	10/13/04	RM	SW8260
1,2,4-Trimethylbenzene	2400	100	ug/L	10/13/04	RM	SW8260
1,2-Dibromo-3-chloropropane	ND	100	ug/L	10/13/04	RM	SW8260
1,2-Dichlorobenzene	ND	100	ug/L	10/13/04	RM	SW8260
1,2-Dichloroethane	ND	100	ug/L	10/13/04	RM	
1,2-Dichloropropane	ND	100	ug/L	10/13/04	RM	SW8260
1,3,5-Trimethylbenzene	800 📖	100	ug/L	10/13/04	RM	
1.3-Dichlorobenzene	ND	100	ug/L	10/13/04	RM	SW8260
1,3-Dichloropropane	ND	100	ug/L	10/13/04	RM	
1,4-Dichlorobenzene	ND	100	ug/L	10/13/04	RM	SW8260
2,2-Dichloropropane	ND	1.00	ug/L	10/13/04	RM	I SW8260
2.Chlorotoluene	ND	100	ug/L	10/13/04	RM	1 SW8260
4-Chlorotoluene	ND	100	ug/L	10/13/04	RM	I SW8260
Benzene	110	100	ug/L	10/13/04	RM	1 SW8260
Bromobenzerie	ND	100	_	10/13/04	RM	1 SW8260
Bromobenzene Bromochloromethane	ND	100	-	10/13/04	RN	4 SW8260
Bromodichloromethane	ND	100	_	10/13/04	RN	4 SW8260
Bromotorm	ND	100		10/13/04	RA	4 SW8260
Bromomethane	ND	100		10/13/04	RN	A SW8260
Carbon tetrachloride	ND	100		10/13/04	RN	A SW8260
Chlorobenzene	ND	1.00		10/13/04	FN	A SW8260
Chloroethane	ND	100	. –	10/13/04	RN	A SW8260

Page 2 of 10

Phoenix I.D.: AF93397 Client ID: S TROY IND PARK DRUM Reference By Time Date Units RL Result Parameter SW8260 RM 10/13/04 ug/L 100 ND Chloroform RМ SW8260 10/13/04 ug/L 100 ND Chloromethane RM SW8260 10/13/04 ug/L 100 ND cis-1,2-Dichloroethene SW8260 RM 10/13/04 ug/L 1.00 ND cis-1,3-Dichloropropene RM SW8260 10/13/04 ug/L 100 ND Dibromochloromethane RMSW8260 10/13/04 100 ug/L ND Dibromoethane RM SW8260 10/13/04 100 ug/L NĎ Dibromomethane SW8260 RM 10/13/04 ug/L 100 ND Dichlorodifluoromethane SW8260 RM 10/13/04 ug/L 100 420 Ethylbenzene SW8260 RM 10/13/04 100ug/L ND Hexachlorobutadiene SW8260 RM 10/13/04 100 ug/L 150Isopropylbenzene RM SW8260 10/13/04 ug/L 100 1000 m&p-Xylene RM SW8260 10/13/04 ug/L 1200 ND Methyl Ethyl Ketone RM SW8260 10/13/04 ug/L 200 ND Methyl t-butyl ether (MTBE) RM SW8260 10/13/04 ug/L 100 ND Methylene chloride  $\{ i_j \} \in \{ j_{j,j}^{(j)} \}$ RM SW8260 10/13/04 ug/L 100 430 n-Butylbenzene SW8260 tsie RM 10/13/04 ug/L 100 250n-Propylbenzene RM SW8260 810 0000 10/13/04 ug/L 100 Naphthalene RM SW8260 10/13/04 680 👾 ug/L 100 o-Xylene RM SW8260 10/13/04  $\{\zeta_{i,j}^{k}\}_{i=1}^{k} \{\zeta_{i,j}^{k}\}_{i=1}^{k} \{\zeta_{i,j}^{k}\}_{i=1}^{k} \}$ ug/L 100 230p-Isopropyltoluene RM SW8260 State State 10/13/04 ug/L 100 190 sec-Butylbenzene SW8260 RM 130 %形成的 10/13/04 ug/L 100 Styrene RΜ SW8260 10/13/04 ug/L 100 ND tert-Butylbenzene RM SW8260 10/13/04 100 ug/L ND Tetrachlorocthene RM SW8260 10/13/04 ug/L 520 100 Toluene SW8260 RM ug/L 10/13/04 100 1700 Total Xylenes RM SW8260 10/13/04 100 ug/L ND trans-1,2-Dichloroethene SW8260 RM 10/13/04 ND 100 ug/L trans-1,3-Dichloropropene RM SW8260 10/13/04 ug/L 100 Trichloroethene ND SW8260 RM ug/L 10/13/04 100 ND Trichlorofluoromethane RMSW8260 10/13/04 100 ug/L ND Vinyl chloride **OA/OC** Surrogates SW8260 RM 10/13/04 % 100 % 1.2 dichlorobenzene-d4 RM SW8260 % 10/13/04 112 % Bromofluorobenzene SW8260 RM 10/13/04 96 104 % Dibromofluoromethane RM SW8260 10/13/04 % 98 % Toluene-d8 Semivolatiles KCA SW 8270 10/14/04 ug/L ND 330 1,2,4-Trichlorobenzene KCA SW 8270 10/14/04 ug/L 330 ND 1.2-Dichlorobenzene KCA SW 8270 10/14/04 330 ug/L ND 1,2-Diphenylhydrazine KCA SW 8270 10/14/04 ug/L 330 1,3-Dichlorobenzene ND SW 8270 10/14/04 KCA 330 ug/L ND 1.4-Dichlorobenzene KCA SW 8270 10/14/04 2,4,5-Trichlorophenol ND 330 ug/L

Page 3 of 10

arameter	Result	RL	Units	Date Time	By Reference
	ND	330	ug/L	1.0/14/04	KCA SW 8270
,4,6-Trichlorophenol 2,4-Dichlorophenol	ND	330	ug/L	10/14/04	KCA SW 8270
•	ND	330	ug/L	10/14/04	KCA SW 8270
4 Dimethylphenol	ND	1650	ug/L	10/14/04	KCA SW 8270
2,4-Dinitrophenol	ND	330	ug/L	10/14/04	KCA SW 8270
2,4 Dinitrotoluene	ND	330	பத/ட	10/14/04	KCA SW 8270
2,6-Dichlorophenol	ND	330	ug/L	10/14/04	KCA SW 8270
2,6-Dinitrotoluene	ND	330	ug/L	10/14/04	KCA SW 8270
2-Chloronaphthalene	ND	330	ug/L	10/14/04	KCA SW 8270
2-Chlorophenol	380 just.	330	ug/L	10/14/04	KCA SW 8270
2-Methylnaphthalene	ND	330	ugЛ	10/14/04	KCA SW 8270
2 Methylphenol (o-cresol)	ND	1650	ug/L	10/14/04	KCA SW 8270
2-Nitroaniline	ND	330	ug/L	10/14/04	KCA SW 8270
2-Nitrophenol	ND	330	ug/L	10/14/04	KCA SW 8270
3&4-Methylphenol (m&p-cresol)	ND	660	ug/L	10/14/04	KCA SW 8270
3.3'-Dichlorobenzidine	ND	1650	ug/L	10/14/04	KCA SW 8270
3-Nitroaniline	ND	1650	ug/L	10/14/04	KCA SW 8270
4,6-Dinitro-2-methylphenol	ND	330	ug/L	10/14/04	KCA SW 8270
4 Bromophenyl phenyl ether	ND	660	ug/L	10/14/04	KCA SW 8270
4-Chloro-3-methylphenol	ND	660	ug/L	10/14/04	KCA SW 8270
4-Chloroaniline	ND	330	ug/L	10/14/04	KCA SW 8270
4-Chlorophenyl phenyl ether	ND	1650	ug/L	10/14/04	KCA SW 8270
4-Nitroanilime		1650	ug/L	10/14/04	KCA SW 8270
4-Nitrophenol	ND	330	ug/L	10/14/04	KCA SW 8270
Acenaphthene	ND		ug/L	10/14/04	KCA SW 8270
Acenaphthylène	ND	330 330	ug/L	10/14/04	KCA SW 8270
Anthracene	ND		_	10/14/04	KCA SW 8270
Benzidine	ND	330	ug/L	10/14/04	KCA SW 8270
Benzo(a)anthracene	ND	330	ug/L	10/14/04	KCA SW 8270
Benzo(a)pyrene	ND	330	ug/L	10/14/04	KCA SW 8270
Benzo(b)fluoranthene	ND	330	11g/L,	10/14/04	KCA SW 8270
Benzo(g.h.i)perylene	ND	330	ug/L	10/14/04	KCA SW 8270
Benzo(k)fluoranthene	ND	330	ug/L	1.0/14/04	KCA SW 8270
Benzolc acid	ND	1650		10/14/04	KCA SW 8270
Benzyl alcohol	ND	660	ug/L		KCA SW 8270
Benzyl butyl phthalate	ND	330	ug/L	10/1 <b>4/04</b> 10/1 <b>4/</b> 04	KCA SW 8270
Bis(2-chloroethoxy)methane	ND	330	ug/L		KCA SW 8270
Bis(2-chloroethyl)ether	ND	330	ug/L	10/14/04	KCA SW 8270
Bis(2-chlorolsopropyl)ether	ND	330	ug/L	10/14/04	KCA SW 8270
Bis(2 ethylhexyl)phthalate	ND	330	ug/L	10/14/04	KCA SW 8270
Chrysene	ND	330		10/14/04	KCA SW 8270
Di-n-butylphthalate	ND	330		10/14/04	KCA 5W 8270
Di-n-octylphthalate	ND	330	-	10/14/04	KCA SW 8270
Dibenz(a.h)anthracene	ND ND	330 330		10/14/04 10/14/04	KCA SW 8270

Page 4 of 10

ALL TE ETDOVININ PAPK	DRIM			Phoenix	(I.D.: Al	
Client ID: S TROY IND PARK Parameter	Result	RL	Units	Date Time	By I	Reference
in a second and a second	ND	330	ug/L	10/14/04		SW 8270
Diethyl phthalate	ND	330	ug/L	10/14/04	KCA	SW 8270
Dimethylphthalate	ND	330	ug/L	10/14/04	KCA	SW 8270
Fluoranthene	ND	330	ug/L	10/14/04	KÇA	SW 8270
Fluorene	ND	330	ug/L	10/14/04		SW 8270
Hexachlorohenzene	ND	330	ug/L	10/14/04		SW 8270
Hexachlorobutadiene	ND	330	ug/L	10/14/04	KCA	SW 8270
Hexachlorocyclopentadiene	ND	330	ug/L	10/14/04	KCA	SW 8270
Hexachloroethane	ND	330	ug/L	10/14/04	KCA	SW 8270
Indeno(1,2,3-c.d)pyrene	ND	330	ug/L	10/14/04	KÇA	SW 8270
Isophorone	ND	330	ug/L	10/14/04	KCA	SW 8270
N-Nitrosodi-n-propylamine		330	ug/L	10/14/04	KCA	SW 8270
N-Nitrosodimethylamine	ND	330	ug/L	10/14/04	KCA	SW 8270
N-Nitrosodiphenylamine	ND	330 330	ug/L	10/14/04	KCA	SW 8270
Naphthalene	2200			10/14/04		SW 8270
Nitrobenzene	ND	330	ug/L	10/14/04		SW 8270
Pentachlorophenol	ND	330	ug/L	10/14/04	KCA	
Phenanthrene	ND	330	ug/L	10/14/04		SW 8270
Phenol	ND	330	ug/L	10/14/04	KCA	
Pyrene	ND	330	ug/L	10/14/04		SW 8270
Pyridine	ND	330	ug/L	10/14/04	1.071	011 01110
OA/OC Surrogates			%	10/14/04	KCA	SW 8270
% 2.4,6-Tribromophenol (Surrog Rec)	Diluted Out		% %	10/14/04	КСА	SW 8270
% 2-Fluorobiphenyl (Surrogate Rec)	Diluted Out		70 %	10/14/04	КСА	
% 2-Fluorophenol (Surrogate Rec)	Diluted Out		%	10/14/04	KĊA	SW 8270
% Nitrobenzene-d5 (Surrogate Rec)	Diluted Out		%	10/14/04	KCA	
% Phenol-d5 (Surrogate Rec)	Diluted Out			10/14/04		SW 8270
% Terphenyl-d14 (Surrogate Rec)	Diluted Out		%	10/14/04	10000	

ND=Not detected BDL = Below Detection Limit RL+Reporting Limit

Comments:

"*Petroleum hydrocarbon chromatogram was not a perfect match with any of the standards, but contains discreet peaks in the C9 to C16 range. The sample was quantitated against a C9-C36 standard. If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

Phyllis Shiller, Laboratory Director October 15, 2004

PHONE NO. : 518 885 4416





Time

16:45

12:00

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

FOR:

Analysis Report October 15, 2004 Attn: Mr. John Johnson Precision Env. Services, Inc. LOT 28C Curtis Lumber Ind. Park 831 Route 67 Ballston Spa, NY 12020

Sample Information Matrix: WATER Location Code: PRECISIN Rush Request: RUSH24HR P.O.#: <u>Custody Information</u> Collected by: Received by: KJB Analyzed by: see "By" below

> SDG I.D.: GAF93397 Phoenix I.D.: AF93398

Date

10/12/04

10/13/04

## Laboratory Data

Client ID: S TROY IND PARK TANK

Parameter	Result	RL	Units	Date	Time	By	Reference
Lead Flash Point Ignitability pH Reactivity Cyanide	0.073 >200 Passed 6 BDL	0.002 200 140 0.10 1.0	mg/L degree F deg F pH Units mg/Kg	10/14/04 10/14/04 10/14/04 10/13/04 10/14/04	23:00	EK C/G C/G CD ME	200.7/6010 SW846 · 1010 SW846 · 1010 E150.1/SW9045 SW 846-7.3
Reactivity Sulfide Reactivity PCB Extraction Semi-Volatile Extraction Total Metals Digestion Extraction of TPH MOD 8100	BDL Negative Completed Completed Completed	20	mg/Kg	10/14/04 10/13/04 10/13/04 10/13/04 10/13/04 10/13/04		ME ME M/R AC M/R	SW846 7.3 SW 846-7.3 SW3510/3520 SW3510/3520 3550/5030
Polychlorinated Biphe PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1248 PCB-1254 PCB-1254 PCB-1260 PCB-1262 PCB-1268	ND ND ND ND ND ND ND ND ND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10/14/04 10/14/04 10/14/04 10/14/04 10/14/04 10/14/04 10/14/04 10/14/04	i L L	HI HI HI HI HI HI HI HI	608/ 8082 608/ 8082 608/ 8082 608/ 8082 608/ 8082 608/ 8082 608/ 8082 608/ 8082 608/ 8082
<u>QA/QC Surrogates</u> % DCBP (Surrogate Rec) % TCMX (Surrogate Rec)	26 49	:#:	96 96	10/14/04 10/14/04		HL JH	608/ 8082 608/ 8082

Page 6 of 10

Client ID: S TROY IND PAF	Result	RL	Units	Date Time	e By	Reference
'arameter	ICESLIC					
<u> </u>	Products)					8100Modified
viation Fuel/Kerosene	ND	0.5	mg/Ľ	10/14/04	_IRB	8100Modified
Fuel Oil #2/ Diesel Fuel	ND	0.5	mg/L	10/14/04	JRB	8100Modified
Fuel Oil #4	ND	0.5	mg/L	10/14/04	JRB	8100Modified
Fuel Oil #6	ND	0.5	mg/L	10/14/04	JRB	8100Modified
viotor Oil	ND	0.5	mg/L	10/14/04	JRB	8100Modified
Other Oil (Cutting & Lubricating)	**	0.5	mg/L	10/14/04	JRB	8100Modifie
Unldentified	1.30	0.5	mg/L	10/14/04	JRB	8 IOOMOCITIE
<u>OA/OC Surrogates</u> % n-Pentacosane	Diluted out		%	10/14/04	JRB	8100Modifie
Volatil <u>es</u>					mark de	SW8260
1.1,1,2-Tetrachloroethane	ND	1300	ug/L	10/13/04	RM	
1.1.1-Trichloroethane	ND	1300	ug/L	10/13/04	RM	SW8260
1,1,2,2-Tetrachloroethane	ND	1300	ug/L	10/13/04	RM	SW8260
1,1,2-Trichloroethane	ND	1300	ugЛ	10/13/04	RM	SW8260
1.1-Dichloroethane	ND	1300	ug/L	10/13/04	RM	SW8260
1,1-Dichloroethene	ND	1300	ug/L	10/13/04	RM	SW8260
1,1-Dichloropropene	ND	1300	ug/L	10/13/04	RM	SW8260
1.2.3-Trichlorobenzene	ND	1300	ug/L	10/13/04	RM	SW8260
1.2.3-Trichloropropane	ND	1300	ug/L	10/13/04	RM	SW8260
1,2,4-Trichlorobenzene	ND	1300	ug/L	10/13/04	RM	SW8260
1,2,4-Trimethylbenzene	ND	1300	ug/L	10/13/04	RM	SW8260
1,2-Dibromo-3-chloropropane	ND	1300	ug/L	10/13/04	RM	SW8260
1,2-Dichlorobenzene	ND	1300	ug/L	10/13/04	RM	SW8260
1,2-Dichloroethane	ND	1300	ug/L	10/13/04	RM	SW8260
1,2-Dichloropropane	ND	1300	ug/L	10/13/04	RM	SW8260
1,3,5-Trimethylbenzene	ND	1300	ug/L	10/13/04	RM	SW8260
1.3-Dichlorobenzene	ND	1300		10/13/04	RM	SW8260
1,3-Dichloropropane	ND	1300	ug/L	10/13/04	RM	SW8260
1,3-Dichlorobenzene	ND	1300		10/13/04	RM	SW8260
2,2-Dichloropropane	ND	1300		10/13/04	RM	SW8260
2-Chlorotoluene	ND	1300	-	10/13/04	RM	SW8260
2-Chlorotoluene	ND	1300		10/13/04	RM	SW8260
4-cinorotomene Benzene	ND	1300		10/13/04	RM	SW8260
	ND	1300	_	10/13/04	RM	SW826D
Bromobenzene Bromochloromethane	ND	1300		10/13/04	RM	
Bromochloromethane	ND	1300		10/13/04	RN	
Bromodictiloromethane Bromoform	ND	130		10/13/04	RN	
Bromotorm Bromomethane	ND	1300	-	10/13/04	RN	
Carbon tetrachloride	ND	130		10/13/04	RN	
Carbon tetrachion de	ND	130	-	10/13/04	RN	1 SW8260
Chloroethane	ND	130	-	10/13/04	RN	

Page 7 of 10

Parameter	Result	RL I	Jnits	Date Time		eferenc
Chloroform	ND	1300	ug/L	10/13/04	–	W8260
Chloromethane	ND	1300	ug/L	10/13/04		W8260
cis-1,2-Dichloroethene	ND	1300	ug/L	10/13/04		W8260
cis-1,3-Dichloropropene	ND	1300	ug/L	10/13/04		SW8260
Dibromochloromethane	ND	1300	ug/L	10/13/04		SW8260
Dibromoethane	ND	1300	ng/L	10/13/04		SWS260
Dibromomethane	ND	1300	ug/L	10/13/04	10.00	SW8260
Dichlorodifluoromethane	NĎ	1300	ug/L	10/13/04		SW8260
Ethylbenzene	ND	1300	ug/L	10/13/04		SW8260
Hexachlorobutadiene	ND	1300	ug/L	10/13/04		SW8260
Isopropylbenzene	ND	1300	ug/L	10/13/04		SW8260
	ND	1300	ug/Ľ	10/13/04	RM	SW8260
m&p-Xylene Methyl Ethyl Ketone	ND	15000	ug/Ľ.	10/13/04		SW8260
J 1	8800	2500	ug/L	10/13/04	RM	SW8260
Methyl t butyl ether (MTBE)	9600	1300	ug/L	10/13/04	RM	SW8260
Methylene chloride	NĎ	1300	ug/L	10/13/04	RM	SW8260
n-Butylberizene	ND	1300	ug/L	10/13/04	RM	SW8260
n-Propylbenzene	ND	1300	ug/L	10/13/04	RM	SW8260
Naphthalene	ND	1300	ug/L	10/13/04	RM	SW8260
o-Xylene	ND	1300	ug/L	10/13/04	RM	SW8260
p-Isopropyltoluene		1300	ug/L	10/13/04	RM	SW8260
sec-Butylbenzene	ND	1300	ug/L	10/13/04	RM	SW8260
Styrene	ND	1300	ug/L	10/13/04	RM	SW8260
tert-Butylbenzene	ND	1300	ug/L	10/13/04	RM	SW8260
Tetrachloroethene	ND	1300	ug/L	10/13/04	RM	SW8260
Toluene	1600	1300	ug/L	10/13/04	RM	SW8260
Total Xylenes	ND		-	10/13/04	RM	SW8260
trans-1,2-Dichloroethene	ND	1300	ug/L	10/13/04	RM	SW8260
trans-1,3-Dichloropropene	ND	1300	ug/L	10/13/04	RM	SW8260
Trichloroethene	ND	1300	ug/L	10/13/04	RM	SW8260
Trichlorofluoromethane	ND	1300	ug/L.	10/13/04	RM	SW8260
Vinyl chloride	ND	1300	ug/L	10/12/04	1 4171	
OA/OC Surrogates			<b>6</b> /	10/13/04	RM	SW8260
% 1,2-dichlorobenzene-d4	106		%	10/13/04	RM	SW8260
% Bromofluorobenzene	93		%	10/13/04	RM	SW8260
% Dibromofluoromethane	110		%	10/13/04	RM	SW8260
% Toluene-d8	99		%	10/13/04	100	13440200
Semivolatiles						
1,2,4-Trichlorobenzene	ND	100	ug/L	10/14/04		SW 827
1,2-Dichlorobenzene	ND	100	ug/L	10/14/04	KCA	
1,2-Diphenylhydrazine	ND	100	ug/L	10/14/04	KCA	
1.3-Dichlorobenzene	ND	100	ug/L	10/14/04	KCA	
1.4-Dichlorobenzenc	ND	100	ug/L	10/14/04	KCA	
2,4,5-Trichlorophenol	ND	100	ug/L	10/14/04	KCA	SW 827

Page 8 of 10

5

Client ID: S TROY IND PAF	Result	RL	Units	Date Time	By Referen
°arameter	a and a substant of the substant	100	ug/L	10/14/04	KCA SW 8270
4,6-Trichlorophenol	ND	100	ug/L.	10/14/04	KCA SW 8270
4.4 Dichlorophenol	ND		ug/L	10/14/04	KCA SW 8270
2,4-Dimethylphenol	ND	100	ug/L	10/14/04	KCA SW 8270
2,4-Dinitrophenol	ND	500 100	ug/L	10/14/04	KCA SW 8270
2,4-Dinitrotoluene	ND		ug/L	10/14/04	KCA SW 8270
2.6-Dichlorophenol	ND	100 100	ug/L	10/14/04	KCA SW 8270
2.6-Dinitrotoluene	ND	100	ug/L ug/L	10/14/04	KCA SW 8270
2-Chloronaphthalene	ND		ug/L	10/14/04	KCA SW 8270
2-Chlorophenol	ND	100	-	10/14/04	KCA SW 8270
2 Methylnaphthalene	350	. 100	ug/L	10/14/04	KCA SW 8270
2-Methylphenol (o-cresol)	1700	1000	ug/L	10/14/04	KCA SW 8270
Z-Nitroaniline	ND	500	ug/L	10/14/04	KCA SW 8270
2-Nitrophenol	ND	100	ug/L	10/14/04	KCA SW 8270
3&4 Methylphenol (m&p-cresol)	1100	1000	ug/L		KCA SW 8270
3,3'-Dichlorobenzidine	ND	200	ug/L	10/14/04	KCA SW 8270
3-Nitroaniline	ND	500	ug/L	10/14/04	KCA SW 8270
4,6-Dimitro-2-methylphenol	ND	500	ug/L	10/14/04	
4-Bromophenyl phenyl ether	ND	1,00	ug/L	10/14/04	
4-Chloro-3-methylphenol	ND	200	ug/L	10/14/04	
4-Chloroaniline	ND	200	ug/L	10/14/04	
4-Chlorophenyl phenyl ether	ND	100	ug/L	10/14/04	KCA SW 8270
4-Nitroaniline	ND	500	ug/L	10/14/04	KCA SW 8270
4-Nitrophenol	ND	500	ug/L	10/14/04	KCA SW 8270
Acenaphthene	ND	100	11g/L	10/14/04	KCA SW 8270
Acenaphthylene	ND	100	ug/L	10/14/04	KCA SW 8270
Anthracene	130	100	ug/L	10/14/04	KCA SW 8270
Benzidine	ND	100	ug/L	10/14/04	KCA SW 8270
Benzo(a)anthracene	ND	100	ug/L	10/14/04	KCA SW 8270
Benzo(a)pyrene	ND	100	ug/L	10/14/04	KCA SW 8270
Benzo(b)fluoranthene	ND	100	ug/L	10/14/04	KCA SW 8270
Benzo(g,h,i)perylene	ND	100	ug/L	10/14/04	KCA SW 8270
Benzo(k)fluoranthene	ND	100	ug/Ľ	10/14/04	KCA SW 8270
Benzoic acid	ND	500	ug/L	10/14/04	KCA SW 827
Benzyl alcohol	ND	200	ug/L	10/14/04	KCA SW 827
Benzyl butyl phthalate	ND	100	ug/L	10/14/04	KCA SW 827
Bis(2-chloroethoxy)methane	ND	100	ug/L	10/14/04	KCA SW 827
Bis(2-chloroethyl)ether	ND	100	ug/L	10/14/04	KCA SW 827
Bis(2-chloroisopropyl)ether	ND	1.00	ug/L	10/14/04	KCA SW 827
Bis(2-cthylhexyl)phthalate	ND	100	-	10/14/04	KCA SW 827
Chrysene	ND	100		10/14/04	KCA SW 827
Di-n-butylphthalate	ND	100	-	10/14/04	KCA SW 827
Di-n-octylphthalate	ND	100		10/14/04	KCA SW 827
Dibenz(a,h)anthracene	ND	100	-	10/14/04	KCA SW 827
Dibenzofuran	ND	100	-	10/14/04	KCA SW 827

Page 9 of 10

Client ID: S TROY IND PARK	Result	RL	Units	Date Tir	ne By	R	leferenc
Parameter	ND	100	ug/L	10/14/04	KCA	, s	W 8270
Diethyl phthalate		100	ug/L	10/14/04	KCA		W 8270
Dimethylphthalate	ND	100	ug/L	10/14/04	KCA		W 8270
Fluoranthene	ND	· 100	ug/L	10/14/04	KCA		W 8270
Fluorene	ND	100	ug/L	10/14/04	KĊA	1 5	SW 8270
Hexachlorobenzene	ND	100	ug/L	10/14/04	KC	7 2	SW 8270
Hexachlorobutadiene	ND	100	ug/L	10/14/04	KC	4 5	SW 8270
Hexachlorocyclopentadiene	ND	100	ug/L	10/14/04	KC	<u>A</u> 8	SW 8270
Hexachloroethane	ND	100	ug/L	10/14/04	KC.	A S	5W 8270
Indeno(1,2,3-c,d)pyrene	ND		ug/L	10/14/04	KC	A :	SW 8270
Tsophorone	ND	100	-	10/14/04	KC	A. S	SW 8270
N-Nitrosodi-n-propylamine	ND	100	ug/L	10/14/04	KC	A '	SW 8270
N-Nitrosodimethylamine	ND	100	ug/L	10/14/04	KC		SW 8270
N-Nitrosodiphenylamine	ND	100	ug/L	10/14/04	KC		SW 8270
Naphthalene	340	100	ug/L	10/14/04	KC		SW 8270
Nitrobenzene	ND	100	ug/L	10/14/04			SW 8270
Pentachlorophenol	ND	100	ug/L				SW 8270
Phenanthrene	290	1.00	ug/L	10/14/04	ĸc		SW 8270
Phenol	2500	1000	-	10/14/04			SW 8270
Pyrene	ND	100	ug/L	10/14/04			SW 8270
Pyridine	ND	1.00	ug/L	10/14/04	KU	CA.	341 0410
OA/OC Surrogates			%	10/14/04	K	CA	SW 8370
% 2,4,6-Tribromophenol (Surrog Rec)				10/14/04		CA	SW 8270
% 2-Fluorobiphenyl (Surrogate Rec)	Diluted Out		%	10/14/04		CA	SW 8270
% 2-Fluorophenol (Surrogate Rec)	Diluted Out		%	10/14/04		CA	SW 8270
% Nitrobenzene-d5 (Surrogate Rec)	Diluted Out		%	10/14/04		CA	SW 8270
% Phenol-d5 (Surrogate Rec)	Diluted Out		%			CA	SW 8270
% Terphenyl-d14 (Surrogate Rec)	Diluted Out		%	10/14/04	ĸ	UN	GAX OF 10

ND=Not detected BDL = Below Detection Limit RL=Reporting Limit

Comments: **Petroleum hydrocarbon chromatogram was not a perfect match with any of the standards.

but contains discreet, peaks in the C9 to C36 range. The sample was quantitated against a C9-C36 standard.

*Surrogate recovery out of control limits. Insufficient sample for re-extraction.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

Phyllis/Shiller, Laboratory Director October 15, 2004

FROM : PRECISION ENVIRONMENTAL

.





Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report October 15, 2004	QA/Q	C Data		SDG	ID: GAF93:	397
Parameter	Blank	LCS %	Dup RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch Sample No: AF93106 (AF93	397, AF93398)					
ICP <u>Metals - Aqueous</u>					93.5	20.6
Aluminum	BDL	93.8	2.80	115		6.5
Antimony	BDL	94.2	NC	104	97.5	5.6
Arsenic	BDL	95.1	NC	111	105	
Barium	BDL	99.1	NC	103	94.8	8.3
Beryllium	BDL	97.6	NC	100	93.8	6.4
Boron	BDL		1.10			
Cachnium	BDL	96.8	NÇ	99.2	92.8	6.7
Calcium	BDL		2.90			
Chromium	BDL	95.9	NC	101	93.8	7.4
Cobalt	BDL	96.9	NC	97.5	90.8	7.1
Copper	BDL	99.7	NC	112	103	8.4
Iron	0.007	98.5	2,30	101	92.3	9.0
Lead	BDL	98.7	NC	96.8	90,4	6.8
Magnesium	BDL		2.80			
Magnesium Manganese	BDL	97.4	NC	101	94.0	7.2
Molybelenum	BDL		2.90			
Nickel	BDL	97.0	NC	95.2	89.0	6.7
	BDL		4.30			
Phosphorus	BDL	95.4	NC	112	105	6.5
Selenium	BDL	98.2	NC	113	106	6.4
Silver	BDL	96.6	NC	92.9	87.6	5.9
Thallium		50.0	NC			
Tìn	BDL	98.5	NC	105	98.2	6.7
Vanadium	BDL		NC	106	98.0	7.8
Zinc	BDL	95.7	INC	100	00.0	
QA/QC Batch Sample No: AF93106 (AF						NC
Lead Analysis by Furnace	BDL	98.9	NC	76_2		140

(there are any questions regarding this data, please call Phoenix Client Services at extension 200.

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate RPD - Relative Percent Difference LCS - Laboratory Control Sample

Phyllis Shiller, Laboratory Director October 15, 2004 FROM : PRECISION ENVIRONMENTAL

PHONE NO. : 518 885 4416





Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC	Report
-------	--------

October 15, 2004

OA/QC Data

SDG I.D.: GAF93397

Parameter	Blank	LCS Rec %	MS Rec %	RPD
QA/QC Batch Sample No: AF93 pH	3395 (AF93397)	99.6	NR	0.0
QA/QC Batch Sample No: AF93 Flash Point	3397 (AF93397, AF93398)	100		NC
QA/QC Batch Sample No: AF9: pH		99.6	NR	0.0
QA/QC Batch Sample No: AF9 Reactivity Cyanide	3537 (AF93397, AF93398) BDL	100		NR
QA/QC Batch Sample No: AF9 Reactivity Sulfide	3537 (AF93397, AF93398) BDL		and for the state of the state	NR

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

LCS - Laboratory Control Sample

MS - Matrix Spike

RPD - Relative Percent Difference Between Sample and Sample Duplicate

Phyllis/Shiller, Laboratory Director October 15, 2004





Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report			0001	.D.: GAF933	207
October 15, 2004	OA/Q	<u>C Data</u>	2061		
	Des and All an			MS Dup Rec %	RPD
Parameter	Blank	LCS %	MS Rec %		
QA/QC Batch Sample No: AF77602 (AF933	97, AF93398)				
Polychlorinated Biphenyls					
PCE-1016	ND				
PCB-1221	ND				
PCB-1232	ND				
PCB-1242	ND				
PCB-1248	ND				
PCB-1254	ND			<b>∜ 0</b> D	6.8
PCB-1260	ND		107	100	0.0
PCB-1262	ND				
PCB-1263	ND				
% DCBP (Surrogate Rec)	77		69	70	1.4
W TCXXX (Surrogate Rec)	85		143	95	40.3
Comment: A LCS and LCS Duplicate were p	erformed instea	ad of a matrix spike	and matrix spike duplicat	e,	
QA/QC Batch Sample No: AF90551 (AF93	397, AF93398)	)			
TPH by GC (Extractable Produ					
Aviation Fuel/Kerosene	ND				
Fuel Oil #2/ Diesel Fuel	ND		100	89	11.6
Fuel Oil #1	ND				
Fuel Cil #6	ND				
Motor Oil	ND				
Other Oil (Cutting & Lubricating)	ND				
Unidentified	ND				
Comment: A LCS and LCS Duplicate were	performed insta	ad of a matrix spik	e and matrix spike duplica	ite.	
QA/QC Batch Sample No: AF90552 (AF9				3	
Polynuclear Aromatic HC		- ,			
<u></u>	ND				
2-Methylnaphthalene	ND		87	91	4.5
Acenaphthene	ND				
Acenaphthylene Anthracene	ND				
Anthracene Benzo(a) anthracene	ND				
Benzo(a) anthracene Benzo(a) pyrene	ND				
Benzo(a) pyrene Benzo(a)anthracene	1322				
Benzo(a)pyrene					Gebenhausenseren anderen State

	QA/QC	<u>Data</u>		SDG I	.D.: GAF933	97
Parameter	Blank	LCS %		MS Rec %	MS Dup Rec %	RPD
	ND	iganni deli pri den ne pri de della propri e contra della di dificia				
Benzo(b) fluoranthene Benzo(b)fluoranthene						
	ND					
Benzo(g.h.i) perylene						
Benzo(g,h,i)perylene Benzo(k) fluoranthene	ND					
Benzo(k) fluoranthene						
	ND					
Chrysene Dibenzo(a,h) anthracene	ND					
Fluoranthene	ND					
Fluorene	ND					
	ND					
Indeno(1,2,3-cd) pyrene Naphthalenc	ND					
Phenanthrene	ND					
Рлепанын ене Ругеле	ND			108	116	7.1
r yrene % 2-Fluorobiphenyl (Surrogate Rec)						
% Nitrobenzene-d5 (Surrogate Rec)						
% Terphenyl-d14 (Surrogate Rec)						
	74 %			71 %	74 %	NĊ
%2-Fluorobiphenyl (Surrogate)	84 %			73 %	76 %	NC
%Nitrobenzene-d5 (Surrogate)	91 %			85 %	88 %	NC
%Terphenyl-d14 (Surrogate) Comment: A LCS and LCS Duplicate we		ad of a matrix :	soike and	l matrix spike duplica	ate.	
Comment: A LCS and LCS Duplicate we	a e pector med more		1.			

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

MS - Matrix Spike MS Dup - Matrix Spike Duplicate

RPD - Relative Percent Difference LCS - Laboratory Control Sample

Phyllis Shiller, Laboratory Director October 15, 2004

PHONE NO. : 518 885 4416



Experience is the solution 314 North Pearl Street + Albany, New York 12207 (800) 846-4983 + (518) 434-4646 + Fex (518) 434-0891

December 15, 2004

John Favreau Precision Environmental 2144 Saratoga Avenue Ballston Spa, NY 12020

Work Order No: 041213018

TEL: (518) 885-4399 FAX: (518) 885-4416

Reference No: B001634

ELAP#: 10709

ATHA#; 100307

RE: Soil Analysis So, Troy Industrial Park

Dear John Favreau:

Adirondack Environmental Services, Inc received 1 sample on 12/13/2004 for the analyses presented in the following report.

There were no problems with the analyses and all associated QC met EPA or laboratory specifications, except if noted.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Christopher Hess QA Manager

> FAX: John Favreau

Qualifiers: ND - Not Detected at the Reporting Limit

- J Analyte detected below quantitation limits
- B . Analyte detected in the associated Method Blank
- * . Value expeeds Maximum Contaminant Level
- 5 Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- B . Value above quantization mage

Page 1 of 5

Dec. 17 2004 02:10PM P3

Date: 15-Dec-04 Adirondack Environmental Services, Inc Client Sample ID: Drummed Soil(Over Pack) Precision Environmental CLIENT: Collection Date: 12/13/2004 Work Order: 041213018 Lab Sample ID: 041213015-001 Soil Aualysis Project: Matrix: SOIL PO#: Reference No: B001634 DF Date Analyzed PQL Qual Units Result Analyses Analyst: KF POLYCHLORINATED BIPHENYLS SW8052(CLP4_PEST) 12/13/2004 7:24:45 PM 10 420 µg/Kg-dry < 420 Aroclor 1016 12/13/2004 7:24:45 PM ug/Kg-diy 10 < 420 420Aroclor 1221 12/13/2004 7:24:45 PM µg/Kg-dry < 420 420 10 Aroclor 1252 12/13/2004 7:24:45 PM 10 < 4,20 420 µg/Kg-dry Aroclor 1242 12/13/2004 7:24:45 PM 10 µg/Kg-dry < 420 420 Arodor 1248 12/13/2004 7:24:45 PM 10 420 µg/Kg-dry < 420 Aroclor 1284 12/13/2004 7:24:45 PM µg/Kg-dry 10 420 < 420 Arcctor 1260 Analyst: TN TOTAL PETROLEUM HYDROCARBONS NYSDOH 310,13 12/13/2004 1 K Total Petroleum Hydrocarbons 45.0 1.0 Analyst SM ICP METALS SW6010B(BW3050A) 12/18/2004 2:38:00 PM 1 0.25 ps/s < 0.25 Arsenic 12/15/2004 2:38:00 PM 1 0.60 11.0 µg/g មិនព័រពា 12/15/2004 2:38:00 PM 4 < 0.25 0.25 hð\ð Cadmlum 12/15/2004 2:38:00 PM 1 0.25 µg/g 6,14 Chromium 12/15/2004 2:38:00 PM ź hð/ð 0.280.25 Lead 12/15/2004 2:38:00 PM 1 0.25µg/g < 0.75 Selenium 12/18/2004 2:38:00 PM 4 μø/g 1.00 < 1.00 Silver Analyst: SM MERCURY SW7471A(SW7471A) 12/14/2004 1 0.020 าวอ/อ < 0.020 Mercury Analyst: MT SEMI VOLATILE ORGANICS SW8270C(SW3550) 12/15/2004 10:22:00 AM 60 μ<u>c</u>/Kg 5000000 < 5000000 Phonol 12/16/2004 10:22:00 AM 50 5000000 µg/Kg < 5000000 Bis(2-chloroelhyl)sther 12/15/2004 10:22:00 AM 5000000 µg/Kg 50 < 5000000 2-Chlorophenol 12/15/2004 10:22:00 AM 50 < 60000000 5000000 μο/Κφ 1.8-Dichlorobanzane 12/15/2004 10:22:00 AM **5**0 < 5000000 5000000 µg/Kg 1,4-Dichlorobenzene 12/15/2004 10:22:00 AM 5Q 5000000 µg/Kg < 5000000 1,2-Dichlorobanzana 12/16/2004 10:22:00 AM 50 50000000 µg/Kg < 30000000 2-Methylphenol 12/15/2004 10:22:00 AM 60 5000000 hô/Kô < 5000000 Bis(2-ohloroisopropy1)+ther 12/15/2004 10:22:00 AM 50 ug/Kg 5000000 < 6000000 4-Methylphanol 12/15/2004 10:22:00 AM ĢQ µg/Kg 6000000 < 5000000 N-Nitrosodi-n-propylamine 12/15/2004 10:22:00 AM 50 µg/Kg < 5000000 5000000 Hexachloroethane 12/15/2004 10:22:00 AM 50 hā\Kö 5000000 < 5000000 Nitrobenzene 12/15/2004 10:22:00 AM 50 5000000 µg/Kg < 5000000 Isopharone 12/15/2004 10:22:00 AM 50 < 5000000 6000000 µg/Kg 2-Nitrophenol 12/15/2004 10:22:00 AM 50 µg/Kg < 5000000 5000000 2,4-Dimethylphenol 50 12/16/2004 10:22:00 AM µд/Кд 5000000 < 5000000 Bla(2-chloroethoxy)methane 12/15/2004 10:22:00 AM 60 µg/Kg 5000000 < 5000000 2,4-Dichlorophenol

Qualifierat

ND - Not Driccted at the Reporting Limit

S - Spiks Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

B - Analyte detocted in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

R . RPD outside accepted recovery limits

E - Value above quantitation range

Page 2 of 5

······································		mental Services,		منطقة ويرور مسالية منطقة معالية ويرورو مريد أو الق			ned Soil(Over Pack)
CLIENT:	Precision Er				-		
Work Order:	04121301	8			Collection Date:		
Project:	Soil Analysi	5		]	ab Sample ID!	04121;	3018-001
PO#:					Matrix:	SOIL	
L OFT	Reference	No: E001634					
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
SEMI VOLATILI	E ORGANICS	SW8270C(SW3550)					Analyst: MT
1,2,4-Triohlorob		< 5000000	5000000		hâ\Kâ	50	12/15/2004 10:22:00 AM
Naphthalene		35000000	5000000		µg/Kg	50	12/15/2004 10:22:00 AM
4-Chloroaniline		< 500000	500000		ug/Kg	50	12/15/2004 10:22:00 AM
Hexaphlorobute	diane	< 5000000	600000		µg/Kg	50	12/15/2004 10:22:00 AM
4-Chloro-3-meti		< 5000000	5000000		ug/Kg	50	12/16/2004 10:22:00 AM
2-Methylnaphth		15000000	5000000		pgiKg	50	12/15/2004 10:22:00 AN
Hexachlorocycle		< 500000ô	5000000		µg/Kg	<b>\$</b> 0	12/15/2004 10:32:00 AN
2,4,6-Trichlorep		< 5000000	5000000		µg/Kg	50	12/15/2004 10:22:00 AM
2,4,5-Trichlorop		< 5000000	5000000		µg/Kg	50	12/15/2004 10:22:00 AM
2-Chloronaphth		< 5000000	5000000		µø/Kg	5 <b>0</b>	12/15/2004 10:22:00 AM
2-Niboaniline	initiation.	< 25000000	25000000		µg/Kg	50	12/15/2004 10:22:00 Al
Dimethyl priha	ale	< 5000000	5000000		µg/Kg	60	12/15/2004 10:22:00 A
Acenaphinylen		< 5000000	5000000		µg/Kġ	50	12/15/2004 10:22:00 A
2.6-Dinitrotolue		< 5000000	5000000		из/Ка	50	12/15/2004 10:22:00 A
Z-0-Dimitotolue 3-Nitroaniline	110	< 2500000D	25000000		µд/Кд	60	12/15/2004 10:22:00 A
Acenzphthene		18000000	5000000		µg/Kg	50 .	12/15/2004 10:22:00 A
,		< 25000000	25000000		µg/Kg	<b>Ş</b> Q	12/15/2004 10:22:00 A
2.4-Dinitrophen	IVI	< 25000000	25000000		h8\K8	50	12/15/2004 10:22:00 A
4-Nitrophenol		20000000	5000000		ug/Kg	50	12/15/2004 10:22:00 A
Dibenzoluran		< 5000000	5000000		µø/Kg	ē0	13/15/2004 10:22:00 A
2,4-Dinimitolue		< 5000000	5000000		µg/Kg	50	12/15/2004 10;22:00 A
Dielhyl phthala		≪ 5000000	5000000		µ¢/Kg	50	12/16/2004 10:22:00 A
4-Chlorophany	i phanyi etner	42000000	5000000		μο/Κα	50	12/15/2004 10(22:00 A
Fluorene		< 25000000	25000000		ug/Kg	50	12/15/2004 10:22:00 A
4-Nitroaniline		< 25000000	25000000		have	60	12/15/2004 10:22:00 A
4.6-Dinitro-2-π		< 8000000	5000000		µg/Кg	5 <b>0</b>	12/15/2004 10:22:00 A
N-Nitrosodiphe		< 5000000	5000000		µф/Кф	50	12/15/2004 10:22:00 A
4-Bromopheny		< 5000000 < 5000000	5000000		have	50	12/15/2004 10:22:00 A
Hexachlorobe		< 250000D0	25000000		halka harva	80	12/16/2004 10:22:00 A
Pentachloroph			5000000	c	hā\Kā tàiva	50	12/15/2004 10:22:00 4
Phenanthrene					hðykð	50	12/15/2004 10:22:00 /
Anthracene			5000000		µg/Kg	50	12/16/2004 10:22:00 /
Carbazola			5000000		ир/Кр ир/Кр	50 50	12/15/2004 10:22:00 /
Di-n-butyl pht	nalate	< 5000000	5000000		µд/Кд	50	12/15/2004 10:22:00/
Fluoranthene		35000000 () () () () () () () () () () () () ()	5000000 8000000			50	12/15/2004 10:22:00 /
Pyrene		4500000	5000000		µg/Kg .	50 50	12/18/2004 10:22:00
Butyl banzyl p		< 5000000	5000000		ug/Kg vo/Ka	50 50	12/15/2004 10:22:00/
3,3'-Dichlorot		0000022 >	9900000		µg/Kg ug/Kg	50 50	12/15/2004 10:22:00/
Benz(a)anihre	scene	8100000	500000		hð\Kð		12/15/2004 10:22:00/
Chrysene		1400000	5000000	)	µд/Кд	50	1711012004 10,22,001

Qualifierat

ND - Not Detected at the Reporting Limit J - Analyze detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Conteminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E . Value above pupartitation range

Page 3 of 5

JLIENT:	Precision Er	vironmental		Client Sample ID:	Drum	neó Soll(Óver Pack)
Work Order!	04121301	8		Collection Date;	12/13/	2004
Project:	Soil Analysi			Lab Sample ID:		
•	1997 1990 J 93			Matrix:		0010.001
PO#:	Dafaravaa	No: E001634		Inter 174;	ستين تر	
		Result	PQL	Qual Units	DF	Date Analyzed
4nalyses		KC3III.		QUAL 01200		Trans undiversit
SEMI VOLATILE		9W827'0C(SW3550)	******		<i>~</i> *	Analyst: MT
Bis(2-othylhexyl)		< 5000000	4000000	µg/Kg	50 50	12/15/2004 10:22:00 AN
Di-n-octyl pnthal		< 5000000	5000000	hê⁄ka	50	12/15/2004 10:22:00 AM
Bonzo(b)fluorant		< 5000000	8000000	µg/Kg	50	12/15/2004 10:22:00 AM
Benzo(k)fluorant	hen¢	< 500000	5000000	μg/Kg	50	12/15/2004 10:22:00 AM
Benzo(a)pyrene		< 5000000	5000000	H8/1<8	50	12/15/2004 10:22:00 An
Indeno(1,2,3-cd)	, <b>.</b>	< 5000000	5000000	µg/Kg	50	12/15/2004 10:22:00 AN
Diberiz(a,h)anihi		≤ 5000000	5000000	µø/Ka	50	12/15/2004 10:22:00 AM
Benzo(g,h,i)pery	lene	< 5000000	5000000	µg/Kg	50	12/15/2004 10:22:00 AM
Volatile ore	ANICS SWI	260B				Analyst ML
Chloromethane		< 500	500	hâ\Ka	<del>3</del> 0	12/13/2004 5:14:00 PM
Bromomethane		< 500	500	hðıkð	60	12/13/2004 8:14:00 PM
Vinyi chloride		× 500	500	µg/Kg	50	12/13/2004 5:14:00 PM
Chloroothane		< 500	5 <b>0</b> 0	µø/Kg	ŞQ	12/18/2004 5:14:00 PM
Meinylene chlor	ide	< 250	250	μg/Kg	50	12/13/2004 5:14:00 PN
Acatono		< 50D	500	hð\Kā	50	12/13/2004 5:14:00 PN
Carbon disuifide	1	<b>~</b> 250	250	μ¢/Kg	50	12/13/2004 5:14:00 PN
1,1-Dichloroethe	àńe	< 250	250	hā\kē	5D	12/13/2004 5:14:00 PM
1,1-Dichloroeth:	ine.	< 250	250	hâ\Kð	50	12/13/2004 8:14:00 PN
trans-1,2-Diohio	roeinene	< 250	250	hð\kë	50	12/13/2004 5:14:00 PN
cia-1,2-Dichioro	sihene	÷ 250	250	have	90E	12/13/2004 5:14:00 PM
Chloroform		< 250	250	Ke/Kg	<b>\$</b> 0	12/13/2004 5:14:00 PN
1,2-Dichloroetha	制作	< 250	260	µg/Kg	50	12/13/2004 5:14:00 PM
2-Bulanone		< 500	500	μο/Κφ	50	12/13/2004 6:14:00 PN
1,1,1-Trichloroc	lhane	< 250	25Ø	μд/Кд	60	12/18/2004 5:14:00 PM
Carbon tetrachi		< 260	250	NS/Kg	бQ	12/13/2004 5:14:00 PM
Bromodishipror	nothane	< 250	250	hāveð	50	12/13/2004 5:14:00 PM
1,2-Dichloropro	pane	< 250	280	hâ\Kâ	50	12/13/2004 5:14:00 PN
cla-1,3-Dichloro		< 250	250	µg/Kg	50	12/13/2004 6:14:00 PM
Trichloroethene		< 250	250	h6\Ka	50	12/13/2004 5:14:00 PM
Dibromachiorar	nethane	< 250	250	H8/K8	<b>5</b> 0	12/13/2004 5:14:00 PI
1,1,2-Trichlorge	thone	~ 280	250	µg/Кg	50	12/13/2004 5:14:00 PI
Benzana		× 250	230	μα/Κο	30	12/13/2004 5:14:00 Pt
trans-1,3-Dichle	ropropane	< 250	250	µg/Kg	50	12/13/2004 5:14:00 PI
Bromotorm		< 250	250		50	12/13/2004 5:14:00 Pl
4-Methyl-2-pen	ianone	< 500	500		5Q	12/13/2004 6:14:00 P
2-Hexanone		< 500	500		50	12/13/2004 5:14:00 P
Tetrachlomethe	ene	< 250	260		50	12/13/2004 5:14:00 P
1,1,2,2-Tetrach		< 250	250		50	12/19/2004 5:14:00 PI
Toluene		Sales 1600	250	,	50	12/18/2004 6:14:00 PI

Qualifiersi

ND - Not Detented at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

I - Analyte detected below quantitation limits

E - Analyte detected in the associated Method Blank

* - Yalue exceeds Maximum Contaminant Lovel

R - RPD musice accepted recovery limits E - Value above quantitation range

Page 4 of 5

Adirondaci	r Environment	MI DEL VICES, I	<u></u>				
CLIENT: Work Order: Project: PO#:	Precision Environm 041213018 Soil Analysis				liont Sample ID: Collection Date: Lab Sample ID; Matrix:	12/13/ 04121:	
	Reference No: 1	3001634					
Analyses	······································	Result	PQL	Qual	Units	DF	Date Analyzed
VOLATILE ORC Chlorobenzene Ethylbenzene Styrene m.p-Xylene o-Xylene		< 250 Saturn 2200 Saturn 6500 Saturn 11000 Atomic 5600	250 250 250 250 250 250	E	ндугд Ндугд Ндугд Ндугд	50 50 50 50 50	Analyst: ML 12/13/2004 5:14:00 PM 12/13/2004 5:14:00 PM 12/13/2004 5:14:00 PM 12/13/2004 5:14:00 PM 12/13/2004 6:14:00 PM Analyst: L5
CORROSIVITY Corrosivity	SW8040B	Non Corrosive	0			1	12/14/2004
IGNITABILITY Ignitability	SW1030	3	0		mm/sec	1	Analyst: PL 12/13/2004
CYANIDE, REA Reactive Cyan		< 1.0	1.0	1	halp	1	Analyst: PL 12/14/2004
REACTIVE SU Reactive Sulfid		-< 10	10	)	h2/9	7	Analyst: PL 12/14/2004
REACTIVITY	9W846 7.3.3	Non Reactive	¢	)		1	Analyst: PL 12/14/2004

A dirondock Environmental Services, Inc.

S - Spike Recovery autoide accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Page 5 of 5

Qualifiers:

J - Analyte detected below quantitation limits

ND - Not Detected at the Reporting Limit

E - Analyte detected in the associated Method Blank

* - Value exceeds Meximum Contaminant Level

Date: 15-Dec-04

# 01/07/2005 FRI 14:26 FAX 1 518 465 5722 ENV PRODUCTS & SVCS

Lame Law	Fac (908) 355-5800	<ul> <li>ITT, ITTC,</li> <li>550.ledustrial Dr.</li> <li>ewisberry, PA, 17339</li> <li>Hones (717) 935-4700</li> <li>Fact (717) 938-3301</li> </ul>	CC 133-138 Lebend	ral Chemical rporation St. Fismingham, MA 01707 72-5000 Pas (608) 875-5271	Material Profile Sheet Gencode - Straam: Process Code:
A GENERATOR INFOR GENERATOR NAME MAILING ADDRESS GENERATOR CONTA GENERATOR PHONE SITE ADDRESS	Renzeriaer Cty. Ir <u>Renzeriaer Cty. Ir</u> <u>Ileoo 7th Ave</u> <u>Troy NY</u> 15 ct Dariel Pollay	000 128405	BILLING	2011PANY Environment ADDRESS 40 Hamil Gienmont SONTAGT Heather	Rekart 0 FAX (518)4055722
Color/Physical Description: Strong-Incidental Odo	TRUTSSCIAEN REASSCIAEN DERISTICS OF WASTERAT MACK SILLAGC	% Liquid/S % Liquid % Suspended	NAME OF	WASTE: <u>-Flamman</u> D. REGULATORY INFORM In HUSEPA haz waste? B USEPA Haz Codes:	Le IGUICES MATION Yes O'No DCOJ
Specific Gravity Physical Statis: Cris Dis Dis Flash Point: Cris Sar Pi	Rayared Disput Utbuyend Eisenisod Inder Disput State State Point 74 F: O Flash Point 101- Sch Point 74 100 F O Flash Point 141-	ick Pumparke? Pouratke?	O Yes Still O Yes Stillo O Yes Stillo IZ Yos O No O Exact Flash Point	STATE Haz Godes: DOT Hazardous Material? X Proper Shipping Name: <u>WAS</u>	teflammaide liquids.nos
C. CHEMICAL CON ATTACHMENTS: ET MODE Chemical Composition	D CI20150 (SISOLGO O 60 APOSITION attached ) St Gupplemental Analysis	ματοπολογιματατάλλη μησοποίο ματοποίο ματοποίο ματοποίο ματοποίο ματοποίο ματοποίο ματοποίο ματοποίο ματοποίο μ	I LDR Attachment	Hezard Class: <u>3</u> RO: E. SHIPPING INFORM Shipment Method: 0. Built Solid: Tenter: 0. Patients) 0. Built Solid: Tenter: 0. Patients) 0. Built Solid: Tenter: 0. Patients) 0. Built Solid: Solid: Tenter: 0. Cutter Yant	
	<u>LIY515</u>			Anticipated Valuma: Quantity: Price: F. SPECIAL HANDLIN	Per
G. TRANSPORTER O CONGCC Provides To ECCustomer Delivery to O Customer Delivery to	ARRANGEMENTS	PR		Definition Dear	Ruch wants [1] Recycle Dily
H. OTHER HAZARE Directaneactive Directaneactive Directatoactive Directo to Subpart for Biological Liston works the second	OUS CHARACTERIST	Lisivertock sensitive Teof the above		Han-Reg: er-Linet PCDA C D Sor Cyranites C D Sor Preseibles C D Sor Souther C D Sor VOSe D D Son Chiofdan C 1000	201 07 A 511 31 P46 P740 P740 P740 P740 P740
IFYES, placed just the constant SEPIERATOR CENTRICATION (In- and busined relevant bromadion to the confirming the second constant indication to the second confirm for a second minutes of the second confirm for a second confirmed and the second confirm for a second confirmed and the second confirmed and the second confirmed confirmed and the second confirmed and the second confirmed and the confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second confirmed and the second con	By Haranticeur for metalin or organica ( No entra and correentrations) in section C. reby cettay that all information associated by familed between or associated between the the descriptions correspond to the MFS there. Gently used in writing by the Generator, G entry the COMCC during the resolution of the M d antice correct any televaneties of the M	Sea (f) o this and all other stratistic donu- preservations of the generator has Directed shall strategic action there are a strategic and the merator agricult of the strategic action interator agricult and a strategic action (f) which the fold indexisting that PD with the fold indexisting that	ES, plane list the con- nents is complete, coatal sen duclosed if Crific writer and coordinate its	In underlying hazardous constitution for accerding the UTS brithient stan rational and consolitations in acc ne fine and accurate descriptions shill by C discover, after being taken the delive a retire of the new conforming sease in p	Jarda O Yer B No los C. Presentative of the world itstellal, ty of the world, that my world loss on point of engine are at out births
d it is a line of the second se		*1850			Taint Sta

函003/007

# 01/07/2005 FRI 14:27 FAX 1 518 465 5722 ENV PRODUCTS & SYCS

ARE		hern, Inc. 550 Industrial Dr. Lewisberry, PA (17339)	C c	ral Chemical prooration	Material Profile Sheet Gencode - Streem
num and har accor	Phone: (908) 355-5800 Fac: (908) 355-0562	Phone: (717) 938-4700 Fax: (717) 938-3301	133-138 Loland Phone: (508) 8	SL, Framinghain, MA 01701 72-5000 Fact (608) 675-5271	Frocess Gode:
A GENERATOR H	FORMATION EPAID \$ 114	R000128405	BILLING	COMPANY ENVIRONMENT	THEFT ESUS ETVIN
GENERATOR N	ME Kensselaer C	4. Fraustral Trivel	E America 18 1 1 1 1	ADDRESS 40 Hamiltz	
MAILING ADDRI	Salar - Andrew	15-0		Glenmont.	NY 12077
GENERATOR CO	and the second	180	<b>I</b> '	CONTACT HEGETHER A	
GENERATOR OL			BILLING		0 FAX 518 465572
SITE ADDRESS	EIndustria	( PANK Rd.	PROCES	SGENERATING WASTE: DUNZA UNI	
	Traf		80	<u> </u>	
PICKUP COUNT	and a second		NAME OF	WASTE 5011 (CON	taminated).
	RACTERISTICS OF WASTE	(AT 700 F)	Solid/Sludge	D. REGULATORY INFORM	ATION
Color/Physical Description:	Manoris	the Liquid	Scurr Stord [] B	Is It USEPA haz waste?	Yes GANO
	Odor Presont? O Yes St No	% Suspende	ed:Solids	USEPA Haz Codes:	
Wastewater.	O Wastewater O Nort-Wostewater	% Sludge % Solid		EPA Sub Categories:	
Specific Gravity: Praysical State:	and the second	Sasilationsol	Q Yes O No	B R STATE waste?	Yes QTNo
	Historyand History History	Brack Pumpable?	O Yes O No O Yes O No	DOT Hazardous Material?	Van JCX MIN
	El Ponder El Sixige			Propar Shipping Mane 19 DV	ARCIER SOLIDS
Flash Points	ALL REAL LEVELY CULLING COLLECT A STALL ALL AND ALL AN	t 101-140 F O Flinth Polint #200 F t 141-200 F O No Flath Point	Or Exact Flash Point:	<u> </u>	ontaminatrasion
Ignitable Solid?	O Ocen cuo O Chissi con		**************************************	Hazard Class: NONE UNING	
nH:	0 20 0 20 5.0 \$ 501.90 C	2 9.01-1249 O ×12.6 O-Rear	<b>n</b> Hi	RCI NA	ERG# NAA
C. CHEMICAL	COMPOSITION	an and first and the second state of the secon	And the second s	E SHIPPING INFORM	ATION
ATTACHMENTS:	MSDS attacted. TE Supplemental Ani	Thest FT Bettlemin at Institute attain	The second second second second	O Bus Upper Taran O Felicity)	Onini Sast
Section and interview of the section	4000		m Maximum	O Buts (Lound - Tantar O, Palletty) O Bolin Calif - Data Tr. O Tota(s) O Thiel Solid - Boli Off O Culler Yand	Bex(s) O Other Size
eccor	IMADS			Anticipated Volume:	Part
				Quantility: Price:	/ White
	in the second			F. SPECIAL HANDLING	GONSIDERATIONS
		the second states and the se		T Radioactive	RW 600
	an a			D taming CE D Physical Ce	CLANGLAND Fulling CLANGLAND Wester Inconserve Duly CLANGLAND Wester Inconserve Duly
			And the second s		satas 🖸 Otheo
G. TRANSPOPT	AND				
G. TRANSPORT	and the second				
O CCVGCC/Provi	Es Transportation C	). Other:			my of the followinn.
C CCI/GCC/Prove C Cultomer Defini C Customer Defini	Re Transportation C No ICC//CCP ID TO End Facility via CCI//CCC			Indicate if waste contains : for-Sec. in Lond	an <u>or Actor</u>
CCU/GCC Provi CCU/Comer Data CCU/Comer Data CONTINUES Delive H. OTHER HAZ	Per Transportation sy to CCV/CCC to End Facility via COV/CCC ARDOUS CHARACTER	ISTICS	Tana David general Millions at 1	Indicate if waste conteins a Bortisa, erierit rcae 51 51 50 50 Cyastie 12 11 201	an <u>nr Actus</u> Par
CCU/GCC Provi CCUITORIE DEBU CONTONE: DEBU CONTONE: DEBU H. OTHER HAZ	Ses Transportation C analocicity of Collect To End Facility via Collect ARDOUS CHARACTER		North State	Indicate if waste contains : foreface in local richt 51 11 son cynalise 12 11 son Phenolise 13 11 son Phenolise 13 10 son Sefficies 51 10 son	
Cultomer Denv Cultomer Denv Cultomer Denv Cultomer Denv Cultomer Denv H. OTHER HAZ	Per Transportation C an to End Facility via COUGEC ARDOUS CHARACTER D Ethological E Et	ISTICS DEXPLOSIVENTIKX IS SENSITIVE DE NOME OF THE ABOVE		Indicate if waste contains - foreface prime - "Che Si El sur Cyalitée El El sur Phenolice Si El 200 Phenolice Si El 200 Volte Si El sur	an <u>or Actus</u> par 798 **
CCUGCC Provide CCUSTOMER Define CUSTOMER Define CDSTOMER HAZ	Ses Transportation C analocicity of Acciliant Colliged and Security via Colliged ARDOUS CHARACTER Control Colligen FORMERS CONTROLOGICAL Security Colligen FORMERS CONTROL COLLEGE Control Colligen Control Colligen Control Colligen Control Colligen Control Colligen Control Colligen Control Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Colligen Co	ISTICS I EXPLOSIVENIEX.IK SEPSITIVE I. NOME OF THE ABOVE NING (EPA Wanto Codes, DOMA	ALAY AND STORED STORES	Indicate if waste contains. Renform in Level PCAR E 200 PCAR E 200 Prendice 12 11 2201 Prendice 12 11 2001 Prendice 12 11 2001 P	an <u>or Actus</u> PM PM PM PM PPM PPM PPM PPM As defined to 40 CFR 368 Part 2.
COUGCC Production of Country C	Ses Transportation C is locce/acc to to End Facility via COUGEC ARDOUS CHARACTER Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson Enderson E	ISTICS ISTICS ISTOSWERICK SEPSITIVE NOT OF THE ABOVE more (EPA Wante Codes Dobt for C. With this and 20 other straiched on	If YES, please list the c	Indicate if waste contains. Renker, unier in inter- Picke II I son Pisnoke II II 2001 Pisnoke II 2	All OFActured Phar The Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar Phar
CULCU/GCC Prov. Cultomar Define Cultomar Defin	Ses Transportation C any locce//acc to to End Facility via COI/GCC ARDOUS CHARACTER D. EndLock Res D. Trock R	ISTICS ISTICS INOR OF THE ABOVE More CF THE ABOVE More (EPA Wente Codes: DOM Con C. Still In this and all other attached the In Drip possession of the personal of In Drip possession of the personal of the Istra CatCCC shift personal of the personal of the	If YES, please list the c connects is complete, corp as liven disticated. If CCR Generation and coentines	Indicate if waste contains : for a second s	ali or Acting Par PM PM PM PM PM PM PM PM PM PM
COVERCE Providence Constraints of the second second second Constraints of the second second Constraints of the second Constraints of the second Constraints of the second Constraint of second second Second Second Second Constraint of second second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second	Ses Transportation C is locce/acce to to End Facility via COUGEC ARDOUS CHARACTER Enderson Control Control Enderson Control Control Enderson Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro	ISTICS ISTICS INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVES	If YES, please list the content is complete, corport is complete, corport is complete, corport is the displayed of the content is contained in the content of the content o	Indicate if waste contains : Renform university university Picke [] 200 Pisnolice [] 200 Pisnolice [] 21 200 Pisnolice [] 21 200 Pisnolice [] 21 200 Pisnolice [] 200	ati or Actus Par Th Th Th Th Th Th Th Th Th Th
CURCH/GCC Provided Comparison of the comparison	Ses Transportation C is locce/acce to to End Facility via COUGEC ARDOUS CHARACTER Enderson Control Control Enderson Control Control Enderson Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro	ISTICS ISTICS INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVES	If YES, please list the content is complete, corport is complete, corport is complete, corport is the displayed of the content is contained in the content of the content o	Indicate if waste contains. Norice: interest Prain R. 200 Condition Provide P. 11 200 Perceiles P. 11 200 Perceiles R. 17 20 Sufficient R. 19 500 Volu R. 19 500 Cheolet S. 19 1900 Into underlying hazardour constituents ions econoling the UIS treatment stan confluents and concentrations in sect there and second descriptions and is a Construction and second to a second of the	All OF Actual Par Phr Phr Phr Phr Phr As distinged in 40 CFR 260 Part 2, isrde? Of Yes 20, Ho on C. Physical distance instants physical distance instance instants physical distants physical distants physical dist
CUICGUCGCC Provide Cuisticamer Define Cuisticamer D	Ses Transportation C is locce/acce to to End Facility via COUGEC ARDOUS CHARACTER Enderson Control Control Enderson Control Control Enderson Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Control Contro	ISTICS ISTICS INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVESTIGATION INVES	If YES, please list the content is complete, corport is complete, corport is complete, corport is the displayed of the content is contained in the content of the content o	Indicate if waste contains i for Case in Lord in the second secon	All OF Acting Par Th Th Th Th Th Th Th Th Th Th

LA 004/007

Cyclech	emi, livc.
	Recycling Treatment & Disposal of Hazardous Waste
$\bigcirc$	550 Industrial Drive, Lewisberry, PA 17339-9537 * 717-938-4700, Fax 717-936-3301
land e	ISPOSAL RESTRICTION NOTIFICATION AND CERTIFICATION FORM
Generator Name:	Rensselaer County Industrial Development Agency
Generator EPA ID #.	NYR 000128405
Manffest #:	PAG 126606

This land disposal restriction (LDR) notification must be submitted with the initial shipment of all new waste streams. Due to revised LDR notification requirements effective after August 23, 1998, previously approved waste streams will require re-notification on this form with the first shipment after that date. Subsequent notification is not required unless the waste stream changes.

#### (1) WASTE STREAM INFORMATION

- Box A: Check this box if this LDR certification has been supplied with a previous shipment. Additional information and certification is not required on this form.
- Box B: Indicate if waste stream is a wastewater (WW) or non-wastewater (NWW) (aqueous waste streams containing < 1% total organic carbon (TOC) and < 1% total suspended solids (TSS) are wastewaters. All other streams are non-wastewaters).

Box C: List all EPA waste codes and subcategory reference letters (if applicable). Alternatively, attach and reference additional pages (e.g. profiles or lab pack slips) containing required information.

	A	· B	6
Line #	Previously shipped LDR on file	NWW/WW	EPA Waste Codes and subcategory reference letter (If applicable)
A		NWW	DOD
B		NWN	none
C			
D			n

Subcategory Reference Letters (EPA codes not listed here do not have subcategories)

DANDI	A	Ignitable characteristic wastes, except high TOC ignitable liquids subcategory
DOOI	B	High TOC (> 10%) Ignitable liquid subcategory
скиз	А	Reactive sulfide subcategory
DO03	EF .	Reactive cyanide subcategory
0003	C	Water reactive subcategory
D003	D	Other reactive subcategory
D006	A	Cadmium non-battery subcategory
D006	B	Cadmium containing batteries subcategory
DOOB	A	Lead non-battery subcategory
DXXAS	₿	Lead acid batteries subcategory
0009	A	High mercury organic subcategory (>260 PPM Total Mercury)
LODD9	B	High mercury inorganic subcategory (> 260 PPM Total Mercury)
0009	C	Low mercury subcategory (< 260 PPM Total Mercury)
0009	D	Mercury wastewater subcategory

#### (2) SPENT SOLVENT WASTE CONSTITUENTS

Circle applicable waste code(s) and constituent(s) for each manifest line item containing EPA spent solvent wester codes F001-F005.

ABCDFOD1	A B C DF002	A B C D F003	ABCD_FOOT ABCD_F	-005
ABCD	acetone	ABCD	ethyi ather	
ABCD	_benzene	ABCD	-methanol	
ABCD	n-butyi alcohol	ABCD	methylene chloride	
ABCD	-iso-butyi sicohol 🛝	ABED	methyl ethyl ketone	
A B C D	-carbon disulfide	ABCD	methyl isobutyl ketone	
ABCD	-carbon betrachloride	ABCD	nlisobenzene	
ABCD	-chlorobenzene	ABCD	pyridine	
ABCD	-m-cresol	ABCD	-tetrachloroethyiene	
ABCD	-o-areso!	ABCD	toluene	
ABCD		ABCD	I,I,I,-brichloroethane	
ABCD	-crestlic acid	ABCD		
ABCD	-cycloberanone	ABCD	-trichlorosthylene	
ABCD	-o-dichiorabenzene	ABCD	-brichloromonofluoromethane	
ABCD	-othyl acetate	ABCD	1,1,2-trichloro-1,2,2,-trifiuoroethene	ŝ
ABCO	-ethyl benzene	ABCD		

#### (3) UNDERLYING HAZARDOXIS CONSTITUENTS

For characteristically hazardous waste streams (EPA codes D001-D043), please list all underlying hazardous constituents as defined in 40 CFR 268(2)(I) that are present at concentrations exceeding the universal treatment standards listed in 40 CFR 268.48 (F001-F005 constituents identified in section (2) and specific constituents for EPA U-, P-, and D004-D043 codes listed in Section (1) do not need to be listed in this section).

A	<u>X None Present</u>
<i>B</i>	🔀 None Present
C	None Present
D	None Present

#### HOW MUST THESE WASTE STREAMS BE MANAGED?

For each manifest line item, circle applicable treatment/requirement. For contaminated soil, circle applicable choice as indicated.

- A(B)C D_____This waste is non-hazardous per 40 CFR 251, and is not restricted from land disposal under 40 CFR 268 subpart D.
- (A)B C D_____ This is an EPA hazardous waste that is not a contaminated soil or hazardous debris. Waste must be treated to the appropriate treatment standard set forth in 40 CFR subpart D prior to land disposal.
- A B C D_____ This is a hazardous debris and is subject to the alternative treatment standards of 40 CFR 268.45.
- A B C D_____ This is a hazardous waste contaminated soil. This contaminated soil does/does not (circle one) contain listed hazardous wastes and does/does not (circle one) exhibit a characteristic of hazardous waste and is subject to/complies with (circle one) the soil treatment standards as provided by 268,49(c) or the universal treatment standards as provided by 268,49(c) or the universal treatment standards.
- A B C D______This is an EPA hazardous waste that meets all applicable treatment standards set forth in 40 CFR 268 subpart D, and can be landfilled without further treatment. I certify under penalty of law that I have personally examined and am familiar with the waste through analysis and testing or thorough knowledge of the waste to support this certification that the waste complies with the treatment standards specified in 40 CFR Part 268 Subpart D and all applicable prohibitions set forth in 40 CFR 268.32 or RCRA Section 3004(d). I believe that the information 1 submitted is true, accurate and complete, I am aware that there are significant penalties for submitting a false certification, including the possibility of a fine and imprisonment.

#### (5) CERTIFICATION

4)

I certify that all information on this and all associated documents is complete and accurate to the best of my #-~wiedge.

¿Eure: THE Printed Name: ABLE TOP

1 518 465 5722 ENV PRODUCTS & S	WCS
	bhalle
, IF FOUND CONTACT THE NE	AREST POLICE OR PUBLIC SAFETY
AUTHORITY, OR THE U.S. ENVI	RONMENTAL PROTECTION AGENCY.
ACCUMULATION 01/13/2005	E.P.A. D001
D.O.T. PROPER RQ WASTE F1	ammable liquids, n.o.s.
AND 3, U <u>N1993, II</u>	
U.N. OR N.A. NO.	
יערעדער איז גער איז גער איז גערער איז גערער איז גערערער איז גערערער איז גערערער איז גערערערערערערערערערערערערע די גערערערערערערערערערערערערערערערערערערער	Y INDUSTRIAL DEV. AGCY
ADDRESS <u>E. INDUSTRIAL</u>	STATE NY 12180
E.P.A. <u>NYR000128405</u>	MANIFEST DOCUMENT NO. PAG126606
HAZAP	DOUS WASTE
PRINTED BY: G C LABEL / 1-800-997-6966 / P	RINTED IN U.S.A. / ITEM# HWL500 VINYL
	NY POTOLS POL
	MAKA 20
CINDON C	
P3 K4A	
	GENERATOR INFORMATION:
THIS WASTE NOT REGULATED BY THE U.S. ENVIRONMENTAL PROTECTION AGENCY	SHIPPER BATSELAEV Cty. Ind. Q.V.C. AGUY ADDRESS E. Industrial Park Rat CITY, STATE, ZIP TROY NY 12180
ADRIGHTECTION AGENCY 400558(RCRA) BUT MAY 1355 SUBJECTITO DEPT	CITY, STATE, ZIP TIDY NY 12180 NDID PCRA SULVIS
40CF5(RCRA).BUT MAY BE SUBJECT TO DEPT OF THANSPORTATION BEGULATIONS, (49CFR) OR STATE OR LOCAL REGULATIONS	CITY, STATE, ZIP 1104 104 104 10180 PROPER D.O.T. SHIPPING NAME NOIN RCRASULICIS, M.O.S. (Contamunated Soci)
REGULATIONS	UN OR NA NO.; AJDAJE PHONE: (518) 270 3917
MAN_RCRA	RECHLATED MAST

NIIN-HIKA KERILAI  

### NONHAZARDOUS WASTE MANIFEST

,	Please type (or print)	1. Generator's US EPA ID N	o. M	anifest	2. Page	i	-
		. M. 1.2. 46	Docu	ument No.	of	4	
	+ (7) 3. Generator's Name and Mailing Address		<u> </u>				fest Document Number
	RENSSELAER COUNTY IDA				UIS	A 011	L7807
		NY 12180			B. G.S.I.	(Gen. Site Addre	ss)
			RT PASINELLA		SOUTI	I TROY INI	USTRIAL PARK
	<ol> <li>Generator's Phone ( 316 ) 270-296</li> <li>Transporter 1 Company Name</li> </ol>	6.	US EPA ID Number		1 .		L PARK ROAD
	UNITED INDUSTRIAL SERVICES	5   C T	0021816	8.8.S			
	7. Transporter 2 Company Name	8.	US EPA ID Number		C. S.T.I.	(Trans. Lic. Plate	#) 74/6/A F-
					D. Tran.	Phone ( 203	) 238-6745
	9. Designated Facility Name and Site Address	10.	US EPA ID Number		1	(Trans. Lic. Plate	and a state of the
	NORLITE CORPORATION				F. Tran.	Phone (	$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx^{2} dx^{$
	628 SOUTH SARATOGA STREET				1		Required)
	COHCES, NY 12047	M Y	D 0 C 0 4 6 9	9.3.5	H. Facili	ty's Phone 👸	18 235-0401
		ag Nama, Hazard Class and	ID Number)	12. Conta	iners	13. Total	14. Unit Weste No
	11. US DOT Description (Including Proper Shippi			No.	Туре	Quantity	Wt/Vol
G	a.						EPA
EN	NON DOT / NON RCRA REGUL	ATED MATERIAL				1 8 341	SACENE
E	NONE, NONE			0.0.1	T. P	· ( · ( · ck. · f	G NONE/
R	b.						
Т							STATE
O R		a.			· ·	· · · ·	EPA
	c. ()教						
	an a						STATE
	d.						EPA
	u						
and a start of the	· ·						STATE
	J. Additional Descriptions for Materials Listed Above				K. Hand	lling Codes for Wa	astes Listed Above
	WACTE WATED FORM HUNFRED	P11/3771	and a second s		Inter	im Final	Interim Final
	TANK	C.			a.	l P	
	b.	d.		de de la désidencia. General de la definition	b.		<b>d</b> , <b>d</b> , <b>e</b>
	15. Special Handling Instructions and Additional Info	ormation					
	02734FLN EME	RGENCY RESPONSE	S GUIDE # N/A	EHERGE	NCY F	HOME # (2	03)238-6745
				int of Depart		d about but	
	<ol> <li>GENERATOR'S CERTIFICATION: I hereby de proper shipping name and are classified, pack</li> </ol>	ed, marked, and labeled, and	d are in all respects in pro	oper conditio	n for trans	sport by highway	
	according to applicable international and natio	nal government regulations,	and all applicable State I	aws and reg	ulations.		
	an a						,
			۸ v	· D.	)	1 1	
	Printed/Typed Name		Signature	- KUN	CSERT	- 10-277	Month Day Yea
↓	N		Mitte	- A	961	۱۹۰۰ میدومومورو اور اور	10 30 04
Γ _T	17. Transporter 1 Acknowledgement of Receipt of	Materials	1 <u>1 4 4 4 4 5</u>		<u></u>	·····	م منظل المعالمين المنظل المعالم
T R A	Printed/Typed Name		Signature 11		للمتعبية صبيب	Sheet a strate	Month Day Yea
1 A	Hard Hard I & Bard S.	7	Total for	and for the second	The series	and the second s	/.012.910%
	STEVEN THIT	1	A LAN A LAND				
N S P O	18. Transporter 2 Acknowledgement of Receipt of	/ Materials	Lafer Lafer and more and	Ŵ	121		· · ·
N S P O	18. Transporter 2 Acknowledgement of Receipt of Printed/Typed Name	/ Materials	Signature	¥	<u></u>		Month Day Yea
S P	Printed/Typed Name	) Materials	Signature	¥			Month Day Yea
N S P O	18. Transporter 2 Acknowledgement of Receipt of     Printed/Typed Name      19. Discrepancy Indication Space	/ Materials	Signature	· ·	<u> </u>		Month Day Yes
N S P O	Printed/Typed Name	ř Materials	Signature	· ·			Month Day Yes
N S P O	Printed/Typed Name	ř Materials	Signature		[Λ]		Month Day Yee
N S P O	Printed/Typed Name 19. Discrepancy Indication Space					10	Monlh Day Yea
	Printed/Typed Name 19. Discrepancy Indication Space 20. Facility Owner or Operator: Certification of rece		overed by this manifest e:	xcept as note	ed in Item	19.	Month Day Yea
	Printed/Typed Name 19. Discrepancy Indication Space 20. Facility Owner or Operator: Certification of rece			xcept as note	ed in Item	19.	

State of New Jersey Department of Environmental Protection Hazardous Waste Regulation Program Manifest Section P.O. Box 414, Trenton, NJ 08625-0414

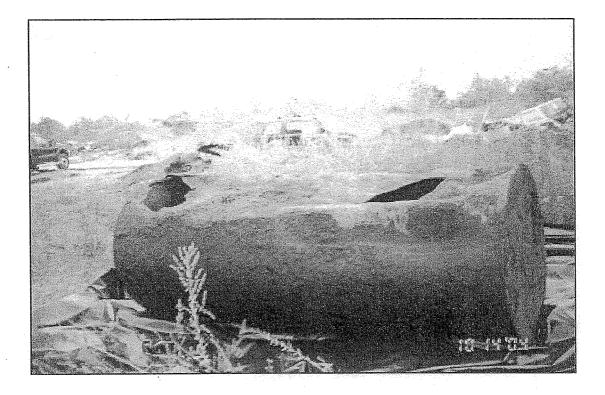


....

. 1910 - 517/1301 - **40**4

4068905

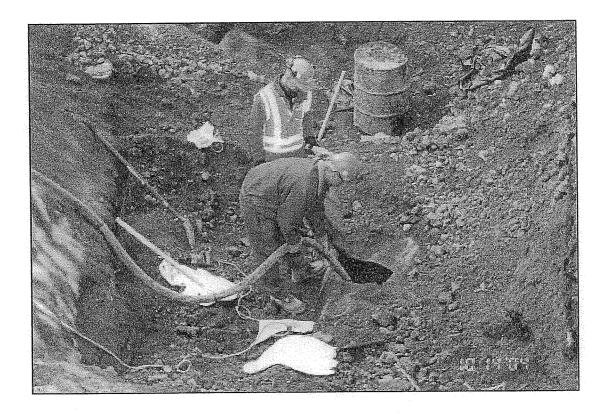
e)رد	lease type or print in block letters. (Form designed for use on elite (12-pitch	) typewriter.) Form Approved. COMB:No. 2050-0039.
Â	UNIFORM HAZARDOUS 1. Generator's US EPA ID WASTE MANIFEST $\vec{X} \mid \vec{Y} \mid \vec{A} \mid \vec{O} \mid \vec{O} \mid \vec{V} \mid \vec{J}$	No.     Manifest Document No.     2. Page 1     Information in the shaded areas       2     3     4     4     5     6     6     0     is not required by Federal law.
	3. Generator's Name and Mailing Address BENSSELLARK GTY 11	DUSTRIAL DEV. AGCY A State Manifest Document Number
	1600 TTN AVE	
	TROY NY 12180	B. State Generators D. (Gen Site Address)
	4. Generator's Phone (518 174-3017 5. Transporter 1 Company Name 6.	US EPA ID Number C. State Trans. ID-NJDEP
	5. Transporter 1 Company Name 6. ENV LIVONMENTAL, PROD & SVUB OF VT, INC, P	
	7. Transporter 2 Company Name	US EPA ID Number D. Transporter's Phone (102) 442 12:22
	INVIRONMETAL PROD & EVOS OF PT, INC, P P	
7	9. Designated Facility Name and Site Address 10.	US EPA ID Number Decal-No.
	OVOLA CHEN, INC.	F. Transporter's Phone (112) 1111-1212
	217 BOUTH FIRST STREET	G. State Facility's Doductors - 11 10 20 (Alberta)
	ELIZABETH MJ 07206	D D D H B D D H B H. Facility's Phone (1/ ●03) 当時時間日
	11. US DOT Description (Including Proper Shipping Name; Hazard Class or D D Number and Packing Group)	Division, 12. Containers 13. 14. L. No. Type Wit/Vol Waste No.
	a	errere and england the second se
	WASTE NON RORA LIQUIDS, N.O.S. (TANK BOTTOMS/SLADGE)	
G	D. WINE, HINE D. WARTE HIN BURA LIQUIDE, R.O.S.	
E	1 Control of the second sec	
E	and the second se	
A 	C RASTE MON MURA LIQUIDE, N.D.S.	ress. (a) a construction of the construction o
(B)	a war en anna ann an Arthur	
	A MASTE NUME NCRA SOLIDE, N.O.S.	and series something in
renser Penser		
-000. 2003 - 5	J. Additional Descriptions of Materials Listed Above	K. Handling Codes for Wastes Listed Above
	<ul> <li>Development of the second state o</li></ul>	- DB ERA IN NUMBER - Area the PLA coordination of the Planting Starting Starting Burgers
	a na transmission and the second state of the second state and second states and the second states an	or 730/800/8758 z 300/8 brit 200/6 Licopathia, antici la ochoani nama (cartoldati tu s r 1690 od re noocas0ina unter viti s et trakana tak vezi al trakatian modulati tu sebonani in teatoriani sebonan
H	Harrison and an electronic and an anti-anti-anti-anti-anti-anti-anti-anti-	auxa, eri liov verit de ci svi, ni erca digenerati del Dine tende distante possi della di anti- dine verit del principali (). Stativa di principali ().
	Purchard and manifest an electron constraints and instantion in the devices in the second s	uioli, in assaint, introniguent vignen juse. Pean er jarotea (mantas, av Gistanni til av Bisti, s.
ot is	15, Special Handling, Instructions and Additional Information, and the second statement of the second se	. ВЕВІФИАТЕО <b>АСИ, В Ана</b> ти <b>ССУ</b> ЕТ АНИ «У 2000 го се становану анича на адолека рекластика и по ВПУКТИТА какетика актор со сланската (СВОА цазараце) (становани се со состани со состани со стан
1. TAN 1.	6,937910 d.037910 EMERG, PHONE \$902-	AND - INTERIORINATION AND AND AND AND AND AND AND AND AND AN
	A CONTRACTOR AND A CONTRACTOR A	-transp-tranpla ##-62C17
i Maa T	16.GENERATOR'S CERTIFICATION: I hereby declare that the contents of the	his consignment are fully and accurately described above by proper shipping name and are
हे। क्राइटि स	hteresclassified, packed, marked, and labeled, and are in all respects in proper	condition for transport by highway according to applicable international and national government of the second sec
HADIN C	the second and a second s	preduce the volume and toxicity of waste generated to the degree thave determined to be
ş 20.	future threat to human health and the environment OB lift am a small ou	of treatment, storage, or disposal currently available to me which minimizes the present and antity generator. I have made a good faith effort to minimize my waste generation and select th
· ·	best waste management method that is available to me and that I can affer	prd:
	Printed/Typed Name	Signature Signature Monthing Day Y
	KIK MANE ROUTINEZ CO. TDA	and the for the formation of the formati
	T 17. Transporter 1 Acknowledgement of Receipt of Materials	-Signature Month Day Y
	N Printed/Typed/Name	A state Manna Day 7
		and the second of the second o
1 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	T T R 	Signature Month Day. Y
n series (die	19. Discrepancy Indication Space	en entre alle de la companya de la compa
	ана ининального из или каконски станование и поледона на рабоната си станование и на станование и на становани По нарим диево полодится са станова станование и полождала добритата си станование станование и танование и стан	್ರಿ ಸಿಂಪರ್ ಭಾರತ ಭಾರತದ ಬೇಕಿಗಳು ಬ್ರಾ. ಪ್ರತಿ ಸರ್ಕಾರಿಗಳು ಮಾಡಲ್ ಬೇಕಿಗಳು ಮಾಡಲ್ ಬ್ರಾ. ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರಾಂಗ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರಾನ್ ಸ್ಟ್ರೀಸ್ ಸ್ಟ್ರೀಸ್ ಸ್
	В спримения или сименальных продаговальной высоконструктика и суме начай с В выб. 120008.008. Насторания продаговалист и обще обще обще обще обще обще собще обще обще обще обще обще обще Общет.	and the second
ens p.7.4 g		ájálu.
	20. Facility Owner or Operator: Certification of receipt of hazardous materia	
	Y Printed/Typed Name	Signature Month Day


	2500-FM-LRWM0051 REV. 7/99	DEPANTIMENT OF ENVIRON of Land Recycling and Waste P.O. Box 8550 Harrisburg, PA 17105-851	: Manageme 50	IOTECTIO ant	V	B-F-M	Form approve OMB No. 205	0-0039
4	UNIFORM HAZARDOUS 1. Generator's US	CIAL PENNSYLVANIA MANIF	EST FORM	2. Page 1	Information with	in the b	old red borde	ris
	WASTE MANIFEST NY ROOOT	2810560		lo l	not required by required by Stat	e law.	law but may t	pe 👔
	3. Generator's Name and Mailing Address RENSSELAER CTY	INDUSTRIAL DEV	•	A. State Mi	$\Delta G 126$	iber	າຣ	
	1600 7TH AVE TROY NY 12180			B. State Gr	AG 12E	UST	nal Ph	Ŕ
	4. Generator's Phone $(518)$ 270-3017			7	my My lo	26	$\mathcal{D}$	
	5. Transporter 1 Company Name	6. US EPA ID Number		. C. State Tr つん				
	ENVIRONMENTAL PROD & SVCS OF T 7. Transporter 2 Company Name		-0-9-0-	PA-	HT Inter's Phone 802	) 0	<u>CO 101</u>	
				E. State Tr	ans. ID	/ 8	04-141	2
787-4343	9. Designated Facility Name and Sile Address CYCLE CHEM-PA	10. US EPA ID Number		PA-				
787.	550 INDUSTRIAL DR			F. Transpo G. State Fa	rter's Phone (	)		
(717)		<u>A D 2 6 7 0 9 8</u>	8.2		s Phone 4 1 7 ) 13.		4700	
EP (	11. US DOT Description (Including Proper Shipping Name, Hazard Class, and	ID Number)	12. Conta	iners	13. Total	14. Unit	₩4-7-0-0 Waste N	0
PA DEP	HM ^a RQ WASTE Flammable liquids,		No.	Туре	Quantity	Wt/Vol		
nd the	X 3, UN1993, II	n.o.s.	001	DМ	30	G	DOO	1
02 al m D	EI I HON MONA BOLLDS, N.U.S.						NONE	
N E	E NONT		001	DM	200	Р		
6 A	R c. NUNE	·····						
08) T								u comana da
anter H	R							
Se C		, i i i i i i i i i i i i i i i i i i i						
LIC .	I. Additional Descriptions for Materials Listed Above			Charles and the second second		1001-1001-000		
	1 a. gasoline			K. Handling (	Codes for Wastes List	ed Abov	/e	
iona				а.	с.			
e Nat								
ll the	15. Special Handling Instructions and Additional Information			b.	d.			nasara
IV Ca			JOB #A PO#A44					
diate	A.APPROVAL #EPS522-A-FW				5 #802-86	2-1	212	
ume	b.APPROVAL #EPS522-B-LD			1 110111		<u> </u>	414	
	Trammertt 1 1 12	-)		.)	·			
or sl	Transponder#1 LIC# 62C17 (VT	) Tran	Sputer-	#2 4	CH			τ
ency	16. GENERATOR'S CERTIFICATION: I hereby declare that the classified, packed, marked and labeled and are in all respects in proper of If 1 am a large quantity generator, I certify that I have a program in practicable and that I have selected the practicable method of treatment.							
Derg	practicable and that have selected the practicable method of treatment, the environment; OR, if I am a small quantity generator, I have made a g to me and that I can afford.	storage, or disposal currently availab ood faith effort to minimizevery waste	le to me which deneration and	nerated to the minimizes the I select the b	e degree I have deter e present and future t est waste manageme	mined I hreat to	to be econom human health	and G.
LI GU	Putitied Lyped Name	Signature	<u> </u>			IONTH S	DAY Y	
5						/		5
แบนสรษาปาสเปลียกราย or spiri immediately call	Printed/Typed Name	Signature	/		 //	IONTH		
E PO	18. Transporter 2 Acknowledgement of Receipt of Materials	- 46	lest	Star	I	/	13 10	5Č
RANSPORTER	Printed/Typed Name	Signature	ALT		 N	10NTH	DAY YE	EAR O
	19. Discrepancy Indication Space		unter a filmente de service de se					
F A C		χ.,						
	I. Facility Owner or Operator: Certification of receipt of hazardous materials of Printed/Tuned Name	covered by this manifest except as not	ed in item 19.					
T	. Inneurypeu Name	Signature			N	IONTH	DAY YE	AR 1
						Contraction of the local division of the loc		
EPA	A Form 8700-22 (Rev. 9/8B) Previous editions are obsolete			•				

### COPV 1 TOD MAIL TO PA DEP

1




Black Poly Placed in Excavation Above Contaminated Soil



UST Removed From Excavation



Drum Removed From Excavation to Holding Area



EP&S Pumping Out UST

A

50 Century Hill Drive, P.O. Box 727, Latham, New York 12110-0727 518,786,7400 FAX 518,786,7299 ctmale@ctmale.com



January 24, 2005

Mr. George Heitzman, PE Senior Environmental Engineer NYSDEC Division of Environmental Remediation 625 Broadway Albany, NY 12233 - 7013

Re: Summary of IRM Activities South Troy Industrial Park ERP No. B00163-4 CTMA Project No. 04.9138

Dear Mr. Heitzman:

The purpose of this letter is to summarize the work completed relative to the buried vessel and drums encountered on the northeast end of the above referenced site. The following provides a summary of the site work completed leading up to and during the Interim Remedial Measure (IRM).

### Background

On October 6, 2004 the New York State Department of Environmental Conservation (DEC) was contacted by Erdman & Anthony Engineers (E&A) in regard to drilling activities taking place on-site, and the possibility that a buried vessel was encountered. E&A is working for the City of Troy with regard to the realignment study for East Industrial Park Road. The DEC Project Manager (George Heitzman) was on-site this day conducting oversight of the trenching activities, and visited the drilling location to assess the situation. SJB Services Inc. was the drilling subcontractor conducting the test borings for E&A and explained that while driving the sampling spoon from approximately 12-14 feet slight resistance was encountered followed by the spoon dropping approximately two feet with no resistance. It was SJB's opinion that they encountered a void which could possibly be a buried vessel. When the sampling spoon was removed from the boring location the spoon contained a thick black material with paint like odor. The DEC collected a sample of the material and relinquished it to C. T. Male for submission to the laboratory to be analyzed for VOC's, SVOC's and metals. The sample was submitted to Chemtech Laboratory of Mountainside, NJ and placed on hold. The drilling crew was asked to stop the drilling activity and not advance the

January 24, 2005 George Heitzman Page - 2

boring deeper. C.T. Male Associates, NYSDEC and Rensselaer County IDA (RCIDA) were all in agreement that the suspected buried vessel would be investigated utilizing the excavator on-site for the Environmental Restoration Program (ERP) site investigation.

### IRM Activity

October 12, 2004 marked the first day of investigating the encountered buried vessel. Precision Environmental Services, Inc. provided the labor and equipment for the site work as a subcontractor to C. T. Male.

An exploratory test pit was conducted to the east of soil boring were the buried vessel was encountered. Prior to the start of excavation dust monitors were placed in both upwind and downwind locations. Air monitoring for the presence of volatile organic compounds (VOCs) was also conducted utilizing two calibrated Mini Rae 2000 Photo-Ionization Detectors (PID). The excavation was advanced to a depth of twelve feet and then advanced in a westerly direction. A metal drum was encountered at nine feet below the ground surface and was in a vertical upright position. The excavator operator carefully worked to expose the entire drum. A second drum was found lying horizontal under the drum that was standing vertical. Continuing the investigation and working to expose the already encountered buried drums, a metal under ground storage tank (UST) was found immediately south of the drums.

The top of the UST was located approximately twelve feet below ground surface. The north end of the UST revealed a hole on the top of the tank created from the advancement of a hollow stem auger. The soils present above the buried vessel and drums consisted of fill material, slag, cinder and ash which appeared to have been previously disturbed as fused slag layers typically encountered in the exploratory test pits and trenches were not present. A fill or vent pipe was not connected to the UST. The fill material above the UST and drums exhibited a minor paint thinner type odor. The fill material was removed from the top of the buried vessels and the excavation was appropriately stepped back to allow safe entry to the tank. Donning the appropriate personnel protective equipment (PPE) and conducting continuous air monitoring the excavation was entered by a two man crew to determine the contents of each vessel. The PID readings in the open excavation ranged from 0.0 to 5.0 ppm. The tank was approximately 80 – 90% full and contained a thick black material with a PID reading of 500 ppm. The drum in the vertical position was less than 25% full and contained a pink liquid that emitted a PID reading of 300 ppm. The drum in the horizontal position was

January 24, 2005 George Heitzman Page - 3

in poor condition and contained soil and a thick black tar like material. The liquid in the vertical drum and the tank were sample and submitted for laboratory analysis for lead, flash point, ignitability, ph, reactivity, PCBs, metals, SVOCs and VOCs.

October 14, 2004 the drum and tank removal activates were completed. NYSDEC, C.T Male Associates, Precision Environmental Services and Environmental Products and Services of Vermont (EPS) represent all parties involved with these activates.

A staging area was set up prior to the removal of any material from the excavation. The staging area was constructed of a wood (2"x10') frame and lined with two layers of 6 mil black poly extending up the side walls of the containment. The tank liquids were removed with a vacuum truck. The tank was then cleaned in place. The vacuum truck contents were then off loaded into a 1,500 gallon poly tank within the staging area pending waste characterization results. Approximately 780 gallons were removed from the discovered UST. The drums were removed from the excavation using a drum hook and excavator then placed in overpack drums within the staging area. The tank was observed to be in fair condition once cleaned and removed from its grave, with some pitting and scaling observed as well as the presence of a few small holes on the tank bottom. The tank measured approximately 10 feet long by 4 feet in diameter which indicates that the tank is approximately 1,000 gallons in capacity.

Upon the removal of the buried vessel and drums from the excavation the soils beneath were explored for the presence of contamination and other possible buried objects (none were discovered). Fill material consisting of slag, cinder and ash was present to sixteen feet below the ground surface before encountering native brown silt and fine sand. All soils removed from the excavation were screened with the PID and staged on poly sheeting if contamination was noted with the PID. As the excavation was advanced to eighteen feet, the severity of contamination subjectively increased. The native soils from these depths ( $\pm 18'$  bgs) exhibited heavy paint like odors and shinny staining. Soils screened from eighteen feet emitted a PID reading of 400 ppm. Due to the large volume of contaminated soil encountered it was determined that all the material stockpiled would be placed back in the excavation. A layer of poly sheeting ( $10' \times 22'$ ) was positioned above the contaminated soil. The poly sheeting was placed in the excavation to separate the contaminated from the uncontaminated as well as creating a vapor barrier and a demarcation layer for future work in this area.

January 24, 2005 George Heitzman Page - 4

### **Analytical Results**

The October 15, 2004 analytical results for the liquid pumped from the UST revealed the presence of select VOCs and SVOCs. Analytical results are attached. MtBE, Methylene chloride and toluene were the volatile organic compounds detected. Semi-volatile organic compounds present were 2-Methylnaphthalene, 2- Methylphenol, 3&4 Methylphenol, Anthracene, Naphthalene, Phenanthrene and Phenol. MtBE, a gasoline additive used in gasoline from the late 1970's until recently, suggests that the product within the tank may postdate the introduction on MtBE. The compounds detected are indicative of a gasoline grade fuel not a fuel oil grade product. No chlorinated compounds were detected in the UST liquid.

Liquid sampled from the vertical buried drum revealed failed results for ignitability due to the presence of a number of volatile compounds detected. Two semi-volatile compounds were also found, 2-Methylnaphthalene and Naphthalene.

Soil sampled from the buried horizontal drum contained a wide range of semi volatile compounds and a select few volatile compounds.

The results for all of the analyses performed relative to the discovered containers are present in Exhibit 1.

In order to transport and dispose of the encountered waste, a Material Profile has been prepared on the basis of the known information regarding the material. The information provided on the Cycle Chem, Inc. profile sheets is considered by C.T. Male Associates to be accurate and representative of the liquid and solids within the drums. The Cycle Chem, Inc. profile sheets are attached and present in Exhibit 2.

### Waste Generated

Waste generated during these activates consisted of two 55 gallon overpack drums containing the two buried drums, two 55 gallon drums of tank bottoms and sludges (tank cleaning), one 55 gallon drum of waste poly and approximately 750 to 800 gallons of product and water removed from the tank (temporarily stored in a 1,500 gallon poly tank). All of these materials were staged within the secure staging area.

January 24, 2005 George Heitzman Page - 5

### Waste Disposal

The generated waste from these activates was initially reviewed for hazardous characterization on the basis of analytical results. The water and product (approximately 780 gallons) from the tank were transported as non hazardous waste to Norlite Corporation of Cohoes, NY. The Bill of Lading represents a total quantity of 1,024 gallons shipped, this includes the liquid from the UST as well as four 55 gallon drums of decontamination water produced as a result of the ERP site investigation. A copy of the Straight Bill of Lading for the liquids is present as Exhibit 3. The two 55 gallon drums of tank bottoms and sludges and the one 55 gallons drum of waste poly were transported as non hazardous waste to Cycle Chem Inc. of Elizabeth, NJ. A copy of the waste manifest is present as Exhibit 4. Prior to transportation, all the drummed material was profiled. The pink colored liquid in the 55 gallon drum was determined to be hazardous waste on the basis of the materials Ignitability. A USEPA Hazardous Waste Identification Number was issued to the Rensselaer County Industrial Development Agency (RCIDA) by the USEPA. This number is indicated on the hazardous waste manifest. A copy of the Hazardous Waste Manifest is attached as Exhibit 5. The soil in the horizontal drum was profiled as well and was determined to be non-hazardous. The two buried drums were transported to Cycle Chem Inc. of Lewisberry, PA. The tank carcass was transported to a scrap metal recycling facility.

#### Follow-up Work

C.T. Male has completed an investigation on the subject site for the presence of suspect buried vessels. The suspect location was assessed through the advancement of an exploratory test pit. The investigation revealed the presence of two buried drums as well a 1,000 gallon UST.

The soils beneath the buried drums and tank were explored and found to be contaminated. Due to the larger that anticipated volume of contaminated soil the material was left in the excavation. The excavation was back filled to grade. Two monitoring wells were installed in the excavation area to monitor the groundwater quality. The soil boring activity was conducted utilizing 4 ¼" hollow stem augers and continuous sampling with a 2" slit spoon. CTM-1S was set to a total depth of 17' below the ground surface with a five foot screened section. The shallow and deep well cluster

January 24, 2005 George Heitzman Page - 6

was installed to help define the vertical extent of the contamination in soil and groundwater, as well as to possibly be used for a vapor extraction pilot study.

The residual contamination present within this area will be evaluated within the Site Investigation/Remedial Alternatives Report (SI/RAR) which is currently in preparation.

If you have any questions, please contact the undersigned at (518) 786-7586.

Sincerely,

C.T. MALE ASSOCIATES, P.C.

Nathan Freeman Environmental Scientist

Kirk Moline Managing Geologist

Exhibit 1: Laboratory Report
Exhibit 2: Cycle Chem, Inc. Profile sheets
Exhibit 3: Bill of Lading
Exhibit 4: Waste Manifest
Exhibit 5: Waste Manifest
Photographs
Site Map

Cc: Daniel Pollay, RCIDA

### EXHIBIT 8

# ANALYTICAL RESULTS FOR SAMPLES COLLECTED OF SLAG MOUNTAIN



Mr. Mark VanValkenburg Chief, Western Section New York State Department of Health Bureau of Environmental Exposure Investigation Flanigan Square 547 River Street-Room 300 Troy, New York 12180-2216

JAN 2004

🖞 СОРУ

#### RE: South Troy Riverfront Bikeway/Walkway(Main Street-Monroe Street)

Dear Mr. VanValkenburg:

On Tuesday, December 2, 2003, Erdman Anthony and Associates, the City of Troy, NYSDEC, and the NYSDOH met at the site of the South Troy Riverfront Bikeway/Walkway. The bikeway route along several properties was walked to provide the NYSDEC and NYSDOH with additional information regarding the bikeway/walkway sites. At that meeting, the NYSDEC requested the collection of two additional samples from the large slag pile near the northern end of the properties in question. Those samples (S-4 and S-5) were collected on December 19, 2003 under the supervision of the NYSDEC. The attached table lists the sampling results. As illustrated these results are consistent with the results obtained from the prior samples taken on September 5, 2003.

At the December 2, 2003 meeting, the NYSDOH stated that their final determination regarding cover material would be contingent on the sample results discussed above and the NYSDEC's opinion. We are requesting the NYSDOH and NYSDEC review the attached sample results and notify us with regard to the cover material required. In addition, slag excavation and grading work is being proposed on the Rensselaer County IDA (RCIDA) - "slag mountain site" and the adjacent Perry portion of the property. The excavated material will be stored on site or used as fill on the RCIDA property. We are requesting the NYSDOH and NYSDEC's opinion regarding the excavation, grading, and use of this material. At this time, additional machine crushing of slag chunks on site is not proposed however, the City would also like comments regarding adding this to the scope of work. A project "Site Environmental Health and Safety Work Plan" will be prepared, addressing the control of dust on the site.

Once you have had the opportunity to review this letter and the enclosed results, please contact Vie Zubkovs at the Troy Planning Department or me with any questions you may have. Thank you in advance for your assistance in this matter.

Sincerely.

Melanie C. Osterhout, PE

Enclosure

 c: George Heitzman, NYSDEC Michael Komoroske, NYSDEC
 V. Zubkovs, City of Troy Frederick Ring, City of Troy file



1/20/04 Called Melance - Told her Called Melance - Told her nothing chomos Irom 12/8/03 nothing chomos Irom 12/8/03 Nothing OK to grade on IDA. Letter OK to grade on IDA. Depth of cover in up to DOH.

Employee Owned - Quality Driven 317 Brick Church Road, Troy, NY 12180-8112 Telephone 518 279 0505 : Facsimile 518 279 0555 www.erdmananthony.com

Parameter	Recommended	<u></u>		Sample ID		
	Soil Cleanup Objective	S-1	S-2	S-3	S-4	S-5
Arsenic	SB	<0.25	<0.25	< 0.25	<0.25	< 0.25
Barium	300 or SB	52.0	251	298	262	180
Cadmium	1 or SB	<0.25	< 0.25	<0.25	<0.25	< 0.25
Chromium	10 or SB*	15.2	<0.25	1.72	4.35	< 0.25
Lead	SB**	0.51	<0.25	<0.25	<0.25	< 0.25
Selenium	2 or SB	<0.25	<0.25	<0.25	2.52	1.93
Silver	SB**	<1.00	<1.00	<1.00	<1.00	1.76
Mercury	0.1	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020

## **TABLES**

### **TABLE 4.3-1**

### BACKGROUND SURFACE SOIL ANALYTICAL SUMMARY RESULTS

#### TABLE 4.3: Background Surface Soil Analytical Results Above SCGs SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	Eastern USA	SURFACE	SOIL # 22	SURF. SOIL	#22 (Duplicate)	SURFACE	E SOIL # 23	SURFACE	E SOIL # 24	EQUIPME	NT BLANK
COMPOUND	TAGM 4046	Background	mg	/kg	n	ng/kg	mg	g/kg	mg	g/kg	m	g/i
	RSCOs (mg/kg)****	(mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SVOC's												
Benzo(a)anthracene	0.224 or MDL	Not Applicable	0.41	J	0.075	J	0.32	J	0.068	J	0.00023	U
Benzo(a)pyrene	0.061 or MDL	Not Applicable	0.29	J	0.075	J	0.29	J	0.063	J	0.00045	U
METALS												
Arsenic	7.5 or SB	3-12	6.010		5.110		5.850		8.540		4.840	U
Barium	300 or SB	15-600	92.2	J	374	J	920	J	83.8	J	11.0	U
Beryllium	0.16 or SB	0-1.75	0.651		1.480		0.550	J	0.676	J	1.060	U
Copper	25 or SB	1-50	30.0		29.3		50.0		52.3		0.739	U
Iron	2,000 or SB	2,000-550,000	19200	J	18000	J	14300	J	25300	J	29.0	U
Lead	SB	***	86.3	J	89.0	J	3240	J	213	J	2.730	J
Magnesium	SB	100-5,000	4050	J	5310	J	4140	J	3950	J	254	U
Mercury	0.1	0.001-0.2	0.149	J	0.007	UJ	1.1		0.314		0.0300	U
Nickel	13 or SB	0.5-25	16.1		13.7		19.8		23.2		5.550	U
Selenium	2 or SB	0.1-3.9	0.387	U	0.386	U	0.375	U	0.476	U	5.240	U
Zinc	20 or SB	9-50	95.1	J	98.0	J	620	J	200	J	8.110	U

Notes:

U indicates that the compound was analyzed for but not detected

J indicates an estimated value

E indicates compounds whose concentrations exceed the calibration range of the instrument for the specific analysis

mg/kg indicates mlligram per kilogram or parts per million (ppm)

mg/l indicates milligram per liter or parts per million (ppm)

SB indicates Site Background

N/A indicates that the value is not available

MDL indicates the laboratory's minimum detection limit

* TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium. However, recent DEC Records of Decision (ROD) specify 10 ppm as the SCG.

** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium. However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.

*** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm

**** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum #4046 - Recommended Soil Cleanup Objectives Bolded numbers indicate values that have exceeded SCGs

### **TABLE 4.4-1**

### SURFACE SOIL ANALYTICAL SUMMARY RESULTS

### TABLE 4.4-1: Surface Soil Analytical Summary Results SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	Eastern USA	SURFAC	E SOIL#1	SURFAC	E SOIL#2	SURFAC	E SOIL#3	SURFAC	E SOIL#4	SURFAC	E SOIL#5	SURFAC	E SOIL#6
	TAGM 4046	Background	ma	ı/kq	ma	a/kg	ma	a/kg	ma	a/kg	m	a/kg	ma	g/kg
COMPOUND	RSCO's (mg/kg)****	(mg/kg)	Result	Qualifier	Result	Qualifier								
SVOC's														
Naphthalene	13.0	Not Applicable	0.170	J	0.0085	U	0.091	J	0.0081	U	0.11	J	0.09	U
2-Methylnaphthalene	36.4	Not Applicable	0.170	J	0.0067	U	0.13	J	0.0064	U	0.0078	U	0.071	U
Acenaphthylene	41.0	Not Applicable	0.500	J	0.012	U	0.097	J	0.011	U	0.22	J	0.54	J
Acenaphthene	50.0	Not Applicable	0.270	J	0.0086	U	0.0087	U	0.0082	U	0.0099	U	0.091	U
Dibenzofuran	6.2	Not Applicable	0.240	J	0.013	U	0.013	U	0.012	U	0.072	J	0.14	U
Fluorene	50.0	Not Applicable	0.330	J	0.011	U	0.011	U	0.011	U	0.11	J	0.12	U
Phenanthrene	50.0	Not Applicable	2.90		0.0087	U	0.21	J	0.0083	U	0.93	-	1.70	J
Anthracene	50.0	Not Applicable	0.860		0.0093	U	0.092	J.	0.0089	U	0.31	Ŀ	0.45	J.
Carbazole	No Standard	Not Applicable	0.340	J	0.0086	U	0.0087	U	0.0082	U	0.053	J	0.091	U U
Di-n-butylphthalate	8.1	Not Applicable	0.590	JB	0.0052	U	0.0053	U	0.0049	U	0.006	Ŭ	0.055	U
Fluoranthene	50.0	Not Applicable	5.20	02	0.0054	U	0.86	Ū.	0.054	J	2.4	Ŭ	3.70	J
Pyrene	50.0	Not Applicable	9.40	E	3.6	D	1		0.052	J	2.4		5.30	, ,
Butylbenzylphthalate	50.0	Not Applicable	0.180	J	0.013	U	0.013	U	0.012	Ŭ	0.015	U	0.00	U
Benzo(a)anthracene	0.224 or MDL	Not Applicable	3.00		0.0059	U	0.59		0.04	J	1.5		2.3	J
Chrysene	0.4	Not Applicable	3.20		0.012	U	0.66		0.045	J	1.2		3.4	J
bis(2-Ethylhexyl)phthalate	50.0	Not Applicable	0.250	J	0.0089	U	0.067	J	0.0085	U	0.06	J	1.2	J
Benzo(b)fluoranthene	1.1	Not Applicable	4.00		0.021	U	0.97		0.067	J	1.8	-	4.7	
Benzo(k)fluoranthene	1.1	Not Applicable	2.30		0.013	U	0.45		0.013	U	1.3		2.8	J
Benzo(a)pyrene	0.061 or MDL	Not Applicable	2.50		0.0067	U	0.64		0.0064	U	1.3		2.8	J
Indeno(1,2,3-cd)pyrene	3.2	Not Applicable	0.57	J	0.0094	U	0.33	J	0.009	U	0.37	J	0.9	J
Dibenz(a,h)anthracene	0.014 or MDL	Not Applicable	0.023	U	0.011	U	0.11	J	0.011	U	0.079	J	0.12	U
Benzo(g,h,i)perylene	50.0	Not Applicable	1.20		0.017	U	0.46		0.016	U	0.49	-	1.7	J
Metals						-								
Aluminum	SB	33,000	6880		10900		15000		10800		8540		6380	
Antimony	SB	N/A	4.840	·I	0.660	U	0.680	U	0.631	U	0.773	U	22.5	
Arsenic	7.5 or SB	3-12	17.1	Ű	37.5	<u> </u>	19.5	Ű	6.240	<u> </u>	32.8	Ű	24.8	
Barium	300 or SB	15-600	235		121		341		97.7		110		696	
Beryllium	0.16 or SB	0-1.75	0.851		1.720		2.740		0.584		0.833		0.264	J
Cadmium	10 or SB*	0.1-1	7.220		4.350		2.880		0.703		4.860		17.2	ů
Calcium	SB	130-35,000	71400		48700		53500		14700		32400		37300	
Chromium	50 or SB**	1.5-40	89.9		16.1		25.4		12.8		18.6		309	
Cobalt	30 or SB	2.5-60	17.1		6.930		9.380		9.830	1 1	17.3	<u>                                     </u>	17.9	
Copper	25 or SB	1-50	405	1	25.7	1 1	48.1	† 1	28.2	1 1	54.1	<u>†                                    </u>	1020	† 1
Iron	2,000 or SB	2,000-550,000	80000		144000		77500		26100		132000		135000	
Lead	SB	***	380		62.1		103		27.0		192		1550	
Magnesium	SB	100-5,000	5500		2450		5700		6140		4250		7030	
Mercury	0.1	0.001-0.2	0.084		0.007	U	0.007	U	0.059		0.084		3.6	
Manganese	SB	50-5,000	4450		1950	-	2800		956		3480		8260	
Nickel	13 or SB	0.5-25	107		7.660		29.8		20.7		29.5		124	
Potassium	SB	8,500-43,000	1350		1830		1950		1100		1720		1010	
Selenium	2 or SB	0.1-3.9	3.020		2.220		2.420		1.010	J	5.660		6.110	
Silver	SB	N/A	6.710		0.123	U	0.127	U	0.118	Ŭ	4.010		6.140	
Sodium	SB	6,000-8,000	611		687	-	1270		60.5	J	463	J	973	
Thallium	SB	N/A	0.394	U	0.387	U	0.399	U	0.370	Ŭ	0.453	Ŭ	0.414	U
Vanadium	150 or SB	1-300	30.9	-	54.8	-	61.0		16.3		108	<u>† ⁻</u>	189	-
Zinc	20 or SB	9-50	804		157		192		125		143		5290	

### TABLE 4.4-1: Surface Soil Analytical Summary Results SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	Eastern USA	SURFAC	E SOIL#7	SURFAC	E SOIL#8	SURFAC	E SOIL#9	SURFAC	E SOIL#10	SURFAC	E SOIL#11	SURFAC	E SOIL#12	SURFACE	E SOIL#13	SURFAC	E SOIL#14	SURFACE S	SOIL #14 DUP
	TAGM 4046	Background	mg	/Kq	ma	/Kq	ma	/Kg	mg	/Kq	mg	q/Kq	mg	/Kq	mg	/Kq	m	g/Kg	ma	q/Kq
COMPOUND	RSCO's (mg/kg)****	(mg/Kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
SVOC's																				
2-Methylnaphthalene	36.4	Not Applicable	0.0067	U	0.0065	U	0.043	J	0.0064	U	0.0064	U	0.0065	U	0.0066	U	0.0065	U	0.013	U
Acenaphthylene	41.0	Not Applicable	0.012	U	0.011	U	0.012	Ŭ	0.011	U	0.011	U	0.011	U	0.069	J.	0.076	L.	0.11	J L
Fluorene	50.0	Not Applicable	0.011	U	0.011	U	0.011	Ŭ	0.011	U	0.01	Ŭ	0.011	U	0.011	Ŭ	0.039	J	0.021	Ŭ
Phenanthrene	50.0	Not Applicable	0.088	J	0.0084	U	0.12	J L	0.0083	U	0.084	J	0.048	J	0.15	J.	0.32	J.	0.48	J
Anthracene	50.0	Not Applicable	0.0093	U	0.009	U	0.0094	Ŭ	0.0088	U	0.0088	Ŭ	0.009	U	0.078	J	0.09	J	0.14	J
Fluoranthene	50.0	Not Applicable	0.073	J	0.04	J	0.066	J	0.052	J	0.21	J	0.13	J	0.48		0.63		0.92	
Pyrene	50.0	Not Applicable	0.071	J	0.0067	U	0.071	J	0.046	J	0.2	J	0.12	J	0.6		0.62		0.97	
Benzo(a)anthracene	0.224 or MDL	Not Applicable	0.0059	U	0.0057	U	0.0059	U	0.0056	U	0.14	J	0.085	J	0.39		0.44		0.67	J
Chrysene	0.4	Not Applicable	0.075	J	0.012	U	0.071	J	0.012	U	0.14	J	0.085	J	0.45		0.42		0.62	J
bis(2-Ethylhexyl)phthalate	50.0	Not Applicable	0.041	J	0.079	J	0.009	U	0.0085	U	0.0085	U	0.0087	U	0.0088	U	0.072	J	0.017	U
Benzo(b)fluoranthene	1.1	Not Applicable	0.021	U	0.02	U	0.021	U	0.049	J	0.22	J	0.15	J	0.77		0.67		0.95	
Benzo(k)fluoranthene	1.1	Not Applicable	0.071	J	0.013	U	0.013	U	0.013	U	0.061	J	0.05	J	0.27	J	0.19	J	0.33	J
Benzo(a)pyrene	0.061 or MDL	Not Applicable	0.0067	U	0.0065	U	0.0068	U	0.0064	U	0.14	J	0.086	J	0.45		0.45		0.65	J
Indeno(1,2,3-cd)pyrene	3.2	Not Applicable	0.0095	U	0.0091	U	0.0095	U	0.009	U	0.066	J	0.043	J	0.26	J	0.23	J	0.29	J
Dibenz(a,h)anthracene	0.014 or MDL	Not Applicable	0.011	U	0.011	U	0.012	U	0.011	U	0.011	U	0.011	U	0.011	U	0.086	J	0.1	J
Benzo(g,h,i)perylene	50.0	Not Applicable	0.017	U	0.016	U	0.017	U	0.016	U	0.083	J	0.057	J	0.34	J	0.28	J	0.35	J
Metals																				
Aluminum	SB	33,000	4590		13700		6300		16400		18900		11000		11300		13800		15800	
Antimony	SB	N/A	0.668	U	0.648	U	0.677	U	0.641	U	0.633	U	0.652	U	0.868	J	1.980	J	0.642	U
Arsenic	7.5 or SB	3-12	4.420		6.300		8.900		15.8		13.9		8.640		21.2		16.5		18.4	
Barium	300 or SB	15-600	73.9		148		73.5		191		601		153		157		230		253	
Beryllium	0.16 or SB	0-1.75	0.446	J	0.736		0.718		3.400		3.890		1.500		1.990		2.410		2.870	
Cadmium	10 or SB*	0.1-1	2.270		0.872		3.650		1.370		3.410		1.260		2.760		1.520		2.520	
Calcium	SB	130-35,000	31100		3590		39500		91900		95200		33000		34500		55800		55900	
Chromium	50 or SB**	1.5-40	19.1		17.2		18.9		7.590		21.2		14.8		18.1		13.0		32.4	
Cobalt	30 or SB	2.5-60	8.230		12.0		9.830		6.310		7.830		8.880		12.8		7.820		9.590	
Copper	25 or SB	1-50	18.5		25.6		39.6		17.7		20.2		31.3		60.0		31.0		31.0	
Iron	2,000 or SB	2,000-550,000	57100		27000		71700		36000		88500		34300		74900		39100		69400	
Lead	SB	***	71.4		28.0		124		46.1		50.0		58.0		104		95.7		84.2	<b>↓</b> ∥
Magnesium	SB	100-5,000	5980		5000		5410		5210		8930		5360		3690		5420		5720	<u> </u>
Mercury	0.1	0.001-0.2	0.035		0.046	ļ	0.103	ļ	0.006	U	0.006		0.007	U	0.214	U	0.007	U	0.007	U
Manganese	SB	50-5,000	4320		946	ļ	3420		1810	<b> </b>	3680	ļ	2070	ļ	1940		1720		3760	┦────┦
Nickel	13 or SB	0.5-25	13.0		22.7	ļ	14.4		7.480	<b> </b>	7.200	ļ	13.1	ļ	19.9		12.4		13.1	₊∥
Potassium	SB	8,500-43,000	1490		1130	<u>↓                                     </u>	1380	┨─────┨	3240	<b> </b>	3360	Į	1520	ļ	3240		2530		2920	┫┨
Selenium	2 or SB	0.1-3.9	2.800		0.998	J	3.240	┨─────┨	2.300	<u> </u>	2.220	<u>↓ </u>	1.600	L	3.090		2.010	<u> </u>	2.780	┥────┨
Silver	SB	N/A	5.460		1.370	<u> </u>	2.330		0.120	U	0.118	U	0.122	U	0.913	J	0.119	U	0.120	U
Sodium	SB	6,000-8,000	668		42.8	U	832	<u> </u>	1320		2590		575	J	453	J	1170	<u> </u>	1460	┥────┨
Thallium Van a diver	SB	N/A	0.391	U	0.380	U	1.000	J	0.376	U	0.371	U	0.382	U	0.390	U	0.374	U	0.376	U
Vanadium Zin e	150 or SB	1-300	101		18.8		68.9	┨─────┨	26.7		140		40.2		40.5		32.8	+	103	<b>↓∥</b>
Zinc	20 or SB	9-50	732		78.3		1200		199		168		292		280		321		208	

#### TABLE 4.4-1: Surface Soil Analytical Summary Results SVOCs and Metals (Validated Results) **South Troy Industrial Park** C.T. Male Project No. 04.9138

[	NYSDEC	Eastern USA	SUPEAC	E SOIL#15	DIL#15 SURFACE SOIL#16		SURFACE SOIL#17		SUPEAC	E SOIL#19	SUPEAC	E SOIL#20	SUPEAC	E SOIL#21	SUPEACE	SOIL #SS-21	EOUIR	BLANK
	TAGM 4046	Background		/kg		/kg		/kg		g/kg		g/kg		g/kg		/kg		ig/l
COMPOUND	RSCO's (mg/kg)****	(mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qual;ifier	Result	Qualifier
SVOC's		(																
Naphthalene	13.0	Not Applicable	0.0089	U	0.048	J	0.32	J	0.077	U	0.54		0.0082	U	0.043		0.00027	U
Caprolactam	No Standard	Not Applicable	0.015	U	0.014	Ŭ	0.094	J	0.13	U	0.016	U	0.014	U	0.014	Ŭ	0.00051	U
2-Methylnaphthalene	36.4	Not Applicable	0.007	U	0.0064	U	0.093	U U	0.061	U	0.62	Ŭ	0.0065	U	0.0067	U	0.0005	U
1,1-Biphenyl	No Standard	Not Applicable	0.007	U	0.0004	U	0.033	U U	0.001	U	0.02	J	0.0003	U	0.0007	U	0.0003	U
Acenaphthylene	41.0	Not Applicable	0.012	U	0.077	J	1.6	0	0.43	J	0.66	5	0.011	U	0.012	0	0.00027	U
	6.2	Not Applicable	0.012	U	0.017	J U	0.089	J	0.43	J U	0.00	J	0.011	U	0.23	U	0.00044	U
Dibenzofuran				U		-		J	-			J		U		0		-
Fluorene	50.0	Not Applicable	0.012	-	0.011	U	0.082	J	0.1	U	0.3	J	0.011	-	0.26	J	0.00017	U
Phenanthrene	50.0	Not Applicable	0.079	J	0.23	J	2.1		1.5	J	2.8		0.064	J	3.1		0.00028	U
Anthracene	50.0	Not Applicable	0.0097	U	0.085	J	0.91		0.39	J	0.61		0.009	U	0.37	J	0.00016	U
Carbazole	No Standard	Not Applicable	0.009	U	0.0082	U	0.016	U	0.078	U	0.3	J	0.0083	U	0.051	J	0.00031	U
Fluoranthene	50.0	Not Applicable	0.086	J	0.72		13	E	2.3	J	3.9	E	0.19	J	2.6		0.00021	U
Pyrene	50.0	Not Applicable	0.065	J	0.92		13	E	2.7	J	2.6	J	0.18	J	3.5		0.00025	U
Benzo(a)anthracene	0.224 or MDL	Not Applicable	0.048	J	0.74		11	E	1.3	J	2.6		0.13	J	0.96		0.00023	U
Chrysene	0.4	Not Applicable	0.013	U	0.78		11	E	1.6	J	2.5		0.13	J	0.76		0.00039	U
bis(2-Ethylhexyl)phthalate	50.0	Not Applicable	0.0093	U	0.0085	U	0.11	J	0.081	U	0.047	J	0.0086	U	0.061	J	0.00035	U
Benzo(b)fluoranthene	1.1	Not Applicable	0.06	J	1.4		14	E	1.1	J	3.5		0.19	J	1.1	J	0.00023	U
Benzo(k)fluoranthene	1.1	Not Applicable	0.014	U	0.47		7.2	E	1.5	J	1.8		0.058	J	0.54	J	0.00039	U
Benzo(a)pyrene	0.061 or MDL	Not Applicable	0.007	U	0.83		8.8	E	1	J	2		0.11	J	0.85	J	0.00045	U
Indeno(1,2,3-cd)pyrene	3.2	Not Applicable	0.0098	U	0.32	J	2.2		0.085	U	0.41	J	0.049	J	0.15	J	0.00029	U
Dibenz(a,h)anthracene	0.014 or MDL	Not Applicable	0.012	U	0.011	U	0.7	J	0.1	U	0.013	U	0.011	U	0.084	J	0.00029	U
Benzo(g,h,i)perylene	50.0	Not Applicable	0.018	U	0.38		3		0.75	J	0.82		0.064	J	0.27	J	0.00043	U
Metals				-			-											
Aluminum	SB	33,000	26000		9930		2200		10100		3510		16400		9020	J	0.18	U
Antimony	SB	N/A	0.690	U	0.638	U	0.832	J	0.612	U	1.580	J	0.641	U	0.670	U	0.0066	U
Arsenic	7.5 or SB	3-12	4.810		14.6		16.6		8.270		11.8		15.8		7.970		0.00484	U
Barium	300 or SB	15-600	893		119		43.2		130		160		191		257	J	0.011	U
Beryllium	0.16 (HEAST) or SB	0-1.75	5.490		0.683		0.361	J	0.789		0.669		3.400		1.570		0.00106	U
Cadmium	10 or SB*	0.1-1	0.594	J	2.440		0.321	J	0.957		0.948		1.370		2.910	-	0.000994	U
Calcium	SB	130-35,000	160000		13900		2020		27300		11500		91900		34,400	J	1.74	U
Chromium Cobalt	50 or SB** 30 or SB	1.5-40 2.5-60	8.740 3.880		28.8 11.8		5.520 5.270		18.8 8.070	╂─────┤	23.5 6.170	J	7.590 6.310		11.6 6.560	J	0.00122	UU
Copper	25 or SB	2.5-60	7.780	J	44.4		23.8	J	24.8	╂────┤	<b>25.1</b>	J	17.7		6.560 34.5		0.00238	J
Iron	2,000 or SB	2,000-550,000	22400		59900		11300		24.0 26700		27400	╂────┨	36000		32,300		0.0384	
Lead	2,000 01 3B SB	2,000-550,000	22400		92.1		32.6		40.2		98.2	╂────┨	46.1		87.4	.	0.00384	U
Magnesium	SB	100-5.000	12700		4870		546	J	15100		1260		5210		4140	J	0.361	1
Mercury	0.1	0.001-0.2	0.007	U	0.14		0.113		0.006	U	0.222		0.006	U	0.036		0.00003	Ŭ
Manganese	SB	50-5,000	2200		2000		149		982	-	781		1810		1780	J	0.0019	J
Nickel	13 or SB	0.5-25	5.170		23.5		12.7		20.9		24.6		7.480		13.5		0.00555	U
Potassium	SB	8,500-43,000	4640		1790		311	J	1310		695		3240		1980	J	0.051	U
Selenium	2 or SB	0.1-3.9	2.310		1.910		0.934	J	0.945	J	2.160		2.300		0.373	U	0.00367	U
Silver	SB	N/A	0.129	U	0.119	U	0.119	U	0.409	J	0.278	J	0.120	U	2.990		0.00338	U
Sodium	SB	6,000-8,000	4020		42.1	U	66.3	J	236	J	249	J	1320	<u> </u>	1130		0.189	U
Thallium	SB	N/A	0.404	U	0.374	U	0.374	U	0.359	U	0.438	U	0.376	U	0.393	U	0.00578	U
Vanadium	150 or SB	1-300	63.3		62.4		14.7		29.6	╂────┤	35.8	┟────┨	26.7		31.1		0.00186	U
Zinc Qualifiers	20 or SB	9-50	43.2		265		40.2		77.8		162		199		251	J	0.0199	J

#### Qualifiers

U - The compound was not detected at the indicated concentration

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than However, recent DEC Records of Decision (ROD) specify 10 ppm as the SCG. The concentration given is an approximate value

E - indicates compounds whose concentrations exceed the calibration range of the instrument for the specific analysis

MDL indicates the laboratory's minimum detection limit

mg/kg (milligram per kilogram) indicates parts per million or ppm. mg/l (milligram per liter) indicates parts per million or ppm NA - Not Applicable

Background range consists of the low and high concentration values obtained from background surface soil samples 22 through 24 collected at **** New York State Department of Environmental Conservation Technical and Administrative Guidance vacant grassy lot west of Mr. Sub (22), northwest corner of the intersection of VanBuren and First Street (23) and southwest corner of Tyler and First Street (24). All background samples were collected within the City of Troy Right-of-Way.

* TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium.

** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium. However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.

*** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm

Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs) Bolded numbers indicate values that have exceeded TAGM RSCOs

### **TABLE 4.5-1**

### TRENCH AND TEST PIT ANALYTICAL SUMMARY RESULTS

### TABLE 4.5-1: Trench and Test Pit Analytical Summary Results VOCs, SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	NYSDEC	TRENCH-1	UPPER (2.5')	TRENCH-11	OWER (15.5')	TRENCH-1	UPPER-1 (6')	TRENCH-1	LOWER-1 (20')		ench-1 Lower-1)	TRENCH-11	OWER-2 (17')	TRENCH-11	JPPER-2 (6')
	TAGM 4046	TAGM 4046		/kg		g/kg		g/kg		g/kg		ng/kg		g/kg	mg	
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's		(				444			rooun	444110				5.00	Hoodin	
Acetone	0.2	NA	0.0083	U	0.0084	U	0.0086	U	0.0081	U	0.0079	U	0.022	J	0.011	U
Carbon Disulfide	2.7	NA	0.00011	U	0.00011	U	0.00012	U	0.00011	U	0.00011	U	0.00012	U	0.00014	U
Methylene Chloride	0.1	NA	0.0012	UJ	0.002	UJ	0.0018	UJ	0.0025	UJ	0.0023	UJ	0.0028	UJ	0.0019	UJ
2-Butanone (MEK)	0.3	NA	0.0025	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0026	U	0.0032	U
Chloroform	0.3	NA	0.00026	U	0.00027	U	0.00027	U	0.00026	U	0.00025	U	0.00028	U	0.00034	U
SVOC's																
Acetophenone	No Standard	NA	0.019	U	0.019	U	0.02	U	0.019	U	0.018	U	0.02	U	0.025	U
Naphthalene	13.0	NA	0.048	J	0.008	U	0.068	J	0.43		0.0075	U	0.0083	U	0.01	U
2-Methylnaphthalene	36.4	NA	0.051	J	0.0063	UJ	0.075	J	0.0061	UJ	0.0059	UJ	0.19	J	0.0081	UJ
Dimethylphthalate	2.0	NA	0.0087	U	0.0088	U	0.009	U	0.0085	U	0.0082	U	0.0091	U	0.011	U
Acenaphthylene	41.0	NA	0.011	U	0.011	U	0.011	U	0.011	U	0.01	U	0.011	U	0.014	U
Acenaphthene	50.0	NA	0.008	U	0.0081	U	0.0083	U	0.0078	U	0.0076	U	0.0084	U	0.01	U
Dibenzofuran	6.2	NA	0.012	U	0.012	U	0.012	U	0.012	U	0.011	U	0.012	U	0.015	U
Fluorene	50.0	NA	0.01	U	0.01	U	0.011	U	0.01	U	0.0098	U	0.011	U	0.013	U
Phenanthrene	50.0	NA	0.18	J	0.11	J	0.27	J	0.0079	U	0.0077	U	0.13	J	0.011	U
Anthracene	50.0	NA	0.053	J	0.065	J	0.065	J	0.0085	U	0.0082	U	0.054	J	0.011	U
Carbazole	No Standard	NA	0.008	U	0.0081	U	0.0083	U	0.0078	U	0.0076	U	0.0084	U	0.01	U
Di-n-butylphthalate	8.1	NA	0.0048	U	0.0049	U	0.005	U	0.0047	U	0.0046	U	0.005	U	0.0063	U
Fluoranthene	50.0	NA	0.46		0.52		0.52		0.0049	U	0.0048	U	0.041	J	0.0065	U
Pyrene	50.0	NA	0.46		0.47		0.44		0.0063	U	0.0061	U	0.041	J	0.0084	U
Butylbenzylphthalate	50.0	NA	0.012	U	0.012	U	0.013	U	0.012	U	0.012	U	0.013	U	0.016	U
Benzo(a)anthracene	0.224 or MDL	NA	0.35	J	0.39		0.35	J	0.0053	U	0.0052	U	0.0057	U	0.0071	U
Chrysene	0.4	NA	0.29	J	0.28	J	0.44		0.011	U	0.011	U	0.012	U	0.015	U
bis(2-Ethylhexyl)phthalate	50.0	NA	0.047	U	0.0085	U	0.075	U	0.053	U	0.08	U	0.09	U	0.061	U
Benzo(b)fluoranthene	1.1	NA	0.49	J	0.35	J	0.64	J	0.019	U	0.018	U	0.02	U	0.025	U
Benzo(k)fluoranthene	1.1	NA	0.19	J	0.14	J	0.28	J	0.012	U	0.012	U	0.013	U	0.016	U
Benzo(a)pyrene	0.061 or MDL	NA	0.34	J	0.28	J	0.39		0.0061	U	0.0059	U	0.0065	U	0.0081	U
Indeno(1,2,3-cd)pyrene	3.2	NA	0.17	J	0.11	J	0.28	J	0.0086	U	0.0083	U	0.0092	U	0.011	U
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.011	U	0.011	U	0.043	J	0.01	U	0.01	U	0.011	U	0.014	U
Benzo(g,h,i)perylene	50.0	NA	0.21	J	0.13	J	0.31	J	0.015	U	0.015	U	0.017	U	0.02	U
Metals				-				-				_			-	
Aluminum	SB	33,000	10600		5020		7070		10500		9640		15200		2560	
Antimony	SB	NA	1.030	J	0.630	U	0.651	U	0.615	U	0.587	U	0.658	U	0.791	U
Arsenic	7.5 or SB	3-12	25.6		2.580		17.6		6.240		5.970		25.9		8.290	
Barium	300 or SB	15-600	203	J	20.1	J	77.2	J	47.5	J	47.3	J	173	J	37.2	J
Beryllium	0.16 (HEAST) or SB	0-1.75	1.510		0.201	J	0.846		0.428	J	0.449	J	3.120		0.731	
Cadmium	10 or SB*	0.1-1	0.051	U	0.141	J	0.053	U	0.050	U	0.048	U	0.054	U	0.065	U
Calcium	SB	130-35,000	35100		1810		16900		1970		1740		85800		11300	
Chromium	50 or SB**	1.5-40	15.2		6.280		31.3		11.6	ļ	11.6		7.920		14.8	
Cobalt	30 or SB	2.5-60	7.290		5.180	J	8.990		9.220		8.400		10.0		5.690	J
Copper	25 or SB	1-50	31.4	J	8.920	J	71.7	J	18.5	J	22.1	J	18.6	J	20.2	J
Iron	2,000 or SB	2,000-550,000	41800		11100		79500		22400		21400		61400	1	47300	
Lead	SB		102	J	14.0	J	101	J	12.1	J	8.810	J	86.0	J	11.4	J
Magnesium Manganaga	SB	100-5,000	4140		2410		2660		4620		4330		3690		683 657	J
Manganese	SB	50-5,000	1490		200		2150		535		568		1100		657	
Mercury Niekol	0.1	0.001-0.2	0.068 23.5	1	0.366	I	0.165		0.025	1	0.027	1	0.036	1	0.008	U
Nickel	13 or SB	0.5-25		J	9.780	J	16.4	J	18.9	J	19.5	J	10.3	J	8.710	-
Potassium Selenium	SB 2 or SB	8,500-43,000 0.1-3.9	1330 2.440	J	587 0.350	J U	1060 4.330	J	1100	J	1060	J	3310 2.990	J	493	J
Silver	2 or SB SB	0.1-3.9 NA	0.116	UJ	0.350	UUU	<b>4.330</b> 0.313	J	0.744 0.115	J UJ	0.973	J U <b>J</b>	0.123	UJ	1.920 0.589	J
Silver Sodium	SB	NA 6,000-8,000	0.116 638	UJ	0.117 87.8	J	250	J	40.6	U	0.110 38.8	U	0.123 922	UJ	0.589	J
Thallium	SB	6,000-8,000 NA	0.365	UJ	0.369	J UJ	0.382	J UJ	40.6 0.361	UJ	0.344	UJ	922 0.386	UJ	0.959	J
Vanadium	150 or SB	1-300	38.0	00	0.369 8.430	00	66.9	00	12.1	00	15.3	00	37.1	00	0.959 165	J
Zinc	20 or SB	9-50	38.0 114	1	8.430 34.1	I I I	185	1	<b>49.8</b>	1	48.6	1	50.8	1	57.9	J
	20 01 3D	9-00	114	J	34.1	J	100	J	43.0	J	40.0	J	50.6	J	57.9	J

### TABLE 4.5-1: Trench and Test Pit Analytical Summary Results VOCs, SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

		NYSDEC			TRENCH-2 UPPER (1.5')		IRENCH-2	2 SS-1 (9.5')	IRENCH-	2 SS-2 (7')	IRENCH-2	SS-3 (8.5')	TRENCH-2 L	.OWER-1 (8')	TRENCH-2 L	OWER-2 (8')
	TAGM 4046	TAGM 4046	m	g/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg	mg	/kg
	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's										<u> </u>						
Acetone	0.2	NA	0.046		0.0088	U	0.34		0.0085	U	0.0091	U	0.018	J	0.0088	U
Carbon Disulfide	2.7	NA	0.00013	U	0.00012	U	0.0068		0.00011	U	0.00012	U	0.00012	U	0.00012	U
Methylene Chloride	0.1	NA	0.0017	UJ	0.0021	J	0.00089	U	0.0016	J	0.0019	J	0.012		0.0016	J
2-Butanone (MEK)	0.3	NA	0.0029	U	0.0027	U	0.043		0.0026	U	0.0028	U	0.0028	U	0.0027	U
Chloroform	0.3	NA	0.0003	U	0.00028	U	0.00031	U	0.00027	U	0.00029	U	0.0014	J	0.00028	U
SVOC's																
Acetophenone	No Standard	NA	0.022	U	0.02	U	0.022	U	0.019	U	0.021	U	0.021	U	0.02	U
Naphthalene	13.0	NA	0.009	U	0.0084	U	0.0093	U	0.0081	U	0.0087	U	0.0089	U	0.0084	U
2-Methylnaphthalene	36.4	NA	0.0071	UJ	0.0066	U	0.0073	U	0.0064	U	0.0069	U	0.007	U	0.0067	U
Dimethylphthalate	2.0	NA	0.0099	U	0.0092	U	0.01	U	0.0089	U	0.0095	U	0.0097	U	0.11	U
Acenaphthylene	41.0	NA	0.012	U	0.012	U	0.013	U	0.011	U	0.012	U	0.012	U	0.012	U
Acenaphthene	50.0	NA	0.0091	U	0.0085	U	0.0094	U	0.0082	U	0.0088	U	0.009	U	0.0085	U
Dibenzofuran	6.2	NA	0.014	U	0.013	U	0.014	U	0.012	U	0.013	U	0.013	U	0.013	U
Fluorene	50.0	NA	0.053	J	0.011	U	0.012	U	0.011	U	0.011	U	0.012	U	0.011	U
Phenanthrene	50.0	NA	0.74		0.055	J	0.0095	U	0.0083	U	0.0089	U	0.0091	U	0.25	J
Anthracene	50.0	NA	0.43		0.0092	U	0.01	U	0.0089	U	0.0095	U	0.0097	U	0.15	J
Carbazole	No Standard	NA	0.0091	U	0.0085	U	0.0094	U	0.0082	U	0.0088	U	0.009	U	0.0085	U
Di-n-butylphthalate	8.1	NA	0.0055	U	0.0051	U	0.0057	U	0.0049	U	0.0053	U	0.0054	U	0.0051	U
Fluoranthene	50.0	NA	2.3		0.085	J	0.0059	U	0.0052	U	0.0055	U	0.054	J	1.7	
Pyrene	50.0	NA	1.7		0.089	J	0.0076	U	0.0066	U	0.0071	U	0.07	J	2.4	
Butylbenzylphthalate	50.0	NA	0.014	U	0.013	U	0.014	U	0.012	U	0.013	U	0.014	U	0.013	U
Benzo(a)anthracene	0.224 or MDL	NA	1.4		0.082	J	0.0064	U	0.0056	U	0.006	U	0.044	J	1.2	
Chrysene	0.4	NA	1.1		0.084	J	0.014	U	0.012	U	0.013	U	0.047	J	1.2	
bis(2-Ethylhexyl)phthalate	50.0	NA	0.095	U	0.21	J	0.15	J	0.0085	U	0.055	J	0.057	J	0.23	J
Benzo(b)fluoranthene	1.1	NA	1.2	J	0.076	J	0.023	U	0.02	U	0.021	U	0.022	U	1.1	J
Benzo(k)fluoranthene	1.1	NA	0.67	J	0.075	J	0.015	U	0.013	U	0.014	U	0.014	U	0.4	J
Benzo(a)pyrene	0.061 or MDL	NA	1.1		0.07	J	0.0073	U	0.0064	U	0.0069	U	0.007	U	0.98	
Indeno(1,2,3-cd)pyrene	3.2	NA	0.38	J	0.045	J	0.01	U	0.009	U	0.0096	U	0.0098	U	0.0093	U
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.077	J	0.011	U	0.012	U	0.011	U	0.012	U	0.012	U	0.19	J
Benzo(g,h,i)perylene	50.0	NA	0.44		0.063	J	0.019	U	0.016	U	0.017	U	0.018	U	0.017	U
Metals																
Aluminum	SB	33,000	8570		11800		9030		30600		8290		9050		7390	
Antimony	SB	NA 3-12	0.709 4.080	U	0.655 <b>22.5</b>	U	0.736	U	0.642 <b>42.7</b>	U	0.686	U	0.685	U	0.660	U
Arsenic	7.5 or SB						3.090				3.880		4.310		4.700	
Barium Bondlium	300 or SB 0.16 (HEAST) or SB	15-600 0-1.75	68.6 <b>0.364</b>	J	130 3.630	J	104 <b>0.437</b>	J	350 7.640	J	83.5 <b>0.391</b>	J	85.4 <b>0.577</b>	J	58.4 0.080	J
	10 or SB*		0.058	J U	0.054	U	0.437	J U	0.052	U	0.056	U	0.056	J U	0.054	J U
Cadmium Calcium	SB	0.1-1 130-35,000	3700	U	0.054 56400	U	3080	U	181000	U	3040	0	7160	U	4200	U
Chromium	50 or SB**	1.5-40	10.3		5.530		10.4		5.840		9.460		9.740		4200 8.420	
Cobalt	30 or SB	2.5-60	8.690		5.870		8.620		11.3		9.400 8.500		7.910		6.880	
Copper	25 or SB	1-50	16.1		20.3	.l	15.8	J	8.780	.1	14.3	.l	15.0	J	9.650	J
Iron	2,000 or SB	2,000-550,000	16500	Ť	40200	~	16800	, v	36700	Ť	15600		15400		16700	~
Lead	SB	***	26.0	J	30.6	J	7.080	J	15.7	J	12.4	J	10.9	J	14.7	J
Magnesium	SB	100-5,000	4290		2370	-	3340		4880		3270		3340		3600	
Manganese	SB	50-5,000	200		972		232		2310		737		537		436	
Mercury	0.1	0.001-0.2	0.213		0.011	J	0.023		0.009	J	0.045		0.040		0.124	
Nickel	13 or SB	0.5-25	15.5	J	8.440	J	15.5	J	9.960	J	15.6	J	14.5	J	12.8	J
Potassium	SB	8,500-43,000	911	J	1610	J	1010	J	38300	J	1540	J	2410	J	1550	J
Selenium	2 or SB	0.1-3.9	0.537	J	2.180		0.620	J	4.830		1.270		1.160	J	0.954	J
Silver	SB	NA	0.132	UJ	0.122	UJ	0.137	UJ	0.120	UJ	0.128	UJ	0.128	UJ	0.123	UJ
Sodium	SB	6,000-8,000	46.8	U	448	J	48.6	U	11500		264	J	733		43.6	U
Thallium	SB	NA	0.416	U <mark>J</mark>	0.384	U <mark>J</mark>	0.431	UJ	0.376	UJ	1.290	J	0.915	J	0.804	J
Vanadium	150 or SB	1-300	11.5		24.1		13.8		22.0		12.1		13.3		11.2	
Zinc	20 or SB	9-50	54.7	J	439	J	60.6	J	314	J	58.0	J	58.2	J	59.2	J

### TABLE 4.5-1: Trench and Test Pit Analytical Summary Results VOCs, SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	NYSDEC			TRENCH-2 UPPER-2 (3')		TRENCH-3	LOWER (13')	TRENCH-3	UPPER (3')	TRENCH-3 L	OWER-1 (10')	TRENCH-3	UPPER-1 (4')	TRENCH-3	LOWER-2 (10')
	TAGM 4046	TAGM 4046	mg	j/kg	mg	/kg	mg	g/kg	mg	g/kg	m	g/kg	mg	/kg	m	g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's																-
Acetone	0.2	NA	0.022	J	0.009	U	0.0093	U	0.0093	U	0.0091	U	0.0087	UJ	0.0093	U
Carbon Disulfide	2.7	NA	0.00012	U	0.00012	U	0.00013	U	0.00013	U	0.00012	U	0.00012	UJ	0.00013	U
Methylene Chloride	0.1	NA	0.0019	J	0.0015	J	0.003	U	0.00085	UJ	0.002	U	0.00079	UJ	0.0023	U
2-Butanone (MEK)	0.3	NA	0.0026	U	0.0027	U	0.0028	U	0.0028	U	0.0028	U	0.0026	UJ	0.0028	U
Chloroform	0.3	NA	0.00027	U	0.00029	U	0.0003	U	0.0003	U	0.00029	U	0.00028	UJ	0.0003	U
SVOC's			• 		·		·		-		• 				• 	
Acetophenone	No Standard	NA	0.02	U	0.021	U	0.022	U	0.021	U	0.021	U	0.02	U	0.021	U
Naphthalene	13.0	NA	0.0082	U	0.0086	U	0.009	U	0.0089	U	0.0088	U	0.15	J	0.0088	U
2-Methylnaphthalene	36.4	NA	0.0065	U	0.0068	U	0.0071	U	0.051	J	0.0069	U	0.19	J	0.007	U
Dimethylphthalate	2.0	NA	0.0089	U	0.0094	U	0.0098	U	0.0098	U	0.0096	U	0.009	U	0.0097	U
Acenaphthylene	41.0	NA	0.011	U	0.012	U	0.012	U	0.012	U	0.012	U	0.043	J	0.012	U
Acenaphthene	50.0	NA	0.0083	U	0.0087	U	0.0091	U	0.009	U	0.0089	U	0.0084	U	0.009	U
Dibenzofuran	6.2	NA	0.012	U	0.013	U	0.014	U	0.013	U	0.013	U	0.088	J	0.013	U
Fluorene	50.0	NA	0.011	U	0.011	U	0.012	U	0.012	U	0.011	U	0.011	U	0.012	U
Phenanthrene	50.0	NA	0.0084	U	0.042	J	0.0092	U	0.12	J	0.078	J	0.34	J	0.14	J
Anthracene	50.0	NA	0.0089	U	0.0094	U	0.0098	U	0.0098	U	0.0096	U	0.084	J	0.074	J
Carbazole	No Standard	NA	0.0083	U	0.0087	U	0.0091	U	0.009	U	0.0089	U	0.0084	U	0.009	U
Di-n-butylphthalate	8.1	NA	0.005	U	0.0052	U	0.0055	U	0.0054	U	0.0054	U	0.005	U	0.0054	U
Fluoranthene	50.0	NA	0.058	J	0.0055	U	0.0057	U	0.19	J	0.27	J	0.39		0.56	
Pyrene	50.0	NA	0.11	J	0.007	U	0.0074	U	0.2	J	0.26	J	0.39		0.51	
Butylbenzylphthalate	50.0	NA	0.013	U	0.013	U	0.014	U	0.014	U	0.014	U	0.013	U	0.014	U
Benzo(a)anthracene	0.224 or MDL	NA	0.065	J	0.006	U	0.0062	U	0.13	J	0.2	J	0.3	J	0.39	J
Chrysene	0.4	NA	0.1	J	0.098	J	0.013	U	0.15	J	0.16	J	0.29	J	0.29	J
bis(2-Ethylhexyl)phthalate	50.0	NA	0.091	J	0.2	J	0.13	J	0.093	J	0.12	J	0.19	J	0.28	J
Benzo(b)fluoranthene	1.1	NA	0.13	J	0.048	J	0.022	U	0.16	J	0.15	J	0.42	J	0.32	J
Benzo(k)fluoranthene	1.1	NA	0.076	J	0.013	U	0.014	U	0.09	J	0.1	J	0.15	J	0.17	J
Benzo(a)pyrene	0.061 or MDL	NA	0.092	J	0.0068	U	0.0071	U	0.14	J	0.15	J	0.25	J	0.28	J
Indeno(1,2,3-cd)pyrene	3.2	NA	0.077	J	0.0095	U	0.01	UJ	0.077	J	0.063	J	0.14	J	0.12	J
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.011	U	0.012	U	0.012	U UJ	0.012	U	0.012	U	0.011	U	0.012	U
Benzo(g,h,i)perylene	50.0	NA	0.083	J	0.064	J	0.018	00	0.088	J	0.07	J	0.18	J	0.13	J
Metals										, i						
Aluminum	SB	33,000	29600		860		10500		9410		8570		6000		9150	
Antimony	SB	NA 3-12	0.644	U	0.680	U	0.706	U	0.737	J	0.674	U	1.170	J	0.705	U
Arsenic	7.5 or SB		28.6		6.960		4.340		36.0		3.800		13.8		4.620	
Barium	300 or SB 0.16 (HEAST) or SB	15-600	246	J	24.6	J	85.1		126		69.5	J	87.8	J	77.4	J
Beryllium		0-1.75	6.100	U	0.271	J	0.401	J U <b>J</b>	2.140	UJ	0.451	J	0.838	U	0.467	J
Cadmium Calcium	10 or SB* SB	0.1-1 130-35,000	0.053 142000	U	0.056	U	0.058 2940	00	0.058 30700	00	0.055 2490	U	0.053 21800	U	0.058 2960	U
Chromium	50 or SB**	1.5-40	8.590		3.910		2940 11.5		12.9		2490 9.790		19.9		2960	╂─────┨
Cobalt	30 or SB	2.5-60	11.3		2.500	J	6.560		12.9		9.790 7.970		19.9		8.390	┼────┤
Copper	25 or SB	1-50	18.5		13.5	J	16.9		85.1		14.9	1	63.6	1	16.2	<u>                                     </u>
Iron	2,000 or SB	2,000-550,000	34000	J	6010	J	19300		72900		16100	<u> </u>	67500	5	17000	
Lead	SB	***	10.2	, J	12.9	, J	8.340		143		16.3	,J	126	J	13.5	J
Magnesium	SB	100-5,000	5410		147	J	3620		3150		3400	Ť	2620		3480	<u> </u>
Manganese	SB	50-5,000	2150		74.5		264		2210		523				575	<u>†                                    </u>
Mercury	0.1	0.001-0.2	0.007	U	0.007	U	0.016		0.135		0.063		0.008	J	0.078	
Nickel	13 or SB	0.5-25	12.2	J	5.390	J	15.3		15.3		15.1	J	21.5	J	15.8	J
Potassium	SB	8,500-43,000	31200	J	381	J	1200		1810		860	J	2190	J	1150	J
Selenium	2 or SB	0.1-3.9	3.920	_	0.378	Ŭ	1.230	J	3.560		1.290	-	4.440	-	1.190	J
Silver	SB	NA	0.120	UJ	0.127	UJ	0.132	UJ	5.550	J	0.126	UJ	0.120	UJ	0.131	UJ
Sodium	SB	6,000-8,000	11400		204	J	49.0	J	607	J	44.5	U	642		46.5	U
Thallium	SB	NA	0.378	UJ	1.020	J	0.414	U	0.587	J	0.395	UJ	2.920	J	0.413	UJ
Vanadium	150 or SB	1-300	24.9		11.7		15.6	-	59.6		11.6		99.1		13.1	
Zinc	20 or SB	9-50	199	J	9.380	J	52.5		262		56.2	J	949	J	64.7	J
<u> </u>					5.000	Ť			IL			· · ·	L	•	•	~

	NYSDEC	NYSDEC	TRENCH-3	JPPER-2 (4')	TRENCH-4	LOWER (18')	TRENCH-4	UPPER (5')	TRENCH-4 L	.OWER-1 (19')	TRENCH-4 U	UPPER-1 (6')	TRENCH-4	UPPER-2 (6')	TRENCH-4	LOWER-2 (20')
	TAGM 4046	TAGM 4046		/kg	mg	g/kg		/kg		g/kg		j/kg		g/kg		g/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's			-		-		-				_					-
Acetone	0.2	NA	0.0083	UJ	0.0092	U	0.051	J	0.0089	U	0.01	UJ	0.011	U	0.0092	U
Carbon Disulfide	2.7	NA	0.00011	UJ	0.00012	U	0.00014	UJ	0.00012	U	0.00014	UJ	0.00014	U	0.00012	U
Methylene Chloride	0.1	NA	0.0019	UJ	0.0014	U	0.0016	UJ	0.0016	U	0.0014	UJ	0.00096	U	0.0017	U
2-Butanone (MEK)	0.3	NA	0.0025	UJ	0.0028	U	0.0031	UJ	0.0027	U	0.0031	UJ	0.0032	U	0.0028	U
Chloroform	0.3	NA	0.00026	UJ	0.00029	U	0.00032	UJ	0.00028	U	0.00032	UJ	0.00033	U	0.00029	U
SVOC's									-				·		<u>.</u>	
Acetophenone	No Standard	NA	0.019	U	0.021	U	0.024	U	0.02	U	0.024	U	0.024	U	0.021	U
Naphthalene	13.0	NA	0.008	U	0.0089	U	0.0098	U	0.0085	U	0.0098	U	0.12	J	0.0088	U
2-Methylnaphthalene	36.4	NA	0.088	J	0.007	U	0.0078	U	0.0067	U	0.0077	U	0.099	J	0.0069	U
Dimethylphthalate	2.0	NA	0.0087	U	0.0097	U	0.011	U	0.0093	U	0.011	U	0.011	U	0.0096	U
Acenaphthylene	41.0	NA	0.072	J	0.012	U	0.013	U	0.012	U	0.013	U	0.014	U	0.1	J
Acenaphthene	50.0	NA	0.0081	U	0.009	U	0.0099	U	0.0086	U	0.0099	U	0.2	J	0.0089	U
Dibenzofuran	6.2	NA	0.041	J	0.013	U	0.015	U	0.013	U	0.015	U	0.15	J	0.013	U
Fluorene	50.0	NA	0.039	J	0.012	U	0.013	U	0.011	U	0.013	U	0.24	J	0.011	U
Phenanthrene	50.0	NA	0.38		0.0091	U	0.01	U	0.0087	U	0.01	U	1.3	<b></b> '	0.11	J
Anthracene	50.0	NA	0.086	J	0.0097	U	0.011	U	0.0093	U	0.011	U	0.36	J	0.053	J
Carbazole	No Standard	NA	0.044	J	0.009	U	0.0099	U	0.0086	U	0.0099	U	0.19	J	0.0089	U
Di-n-butylphthalate	8.1	NA	0.0049	U	0.0054	U	0.006	U	0.0052	U	0.006	U	0.0062	U	0.0054	U
Fluoranthene	50.0	NA	0.77		0.067	J	0.0063	U	0.0054	U	0.0063	U	0.95	<b></b> '	0.45	
Pyrene	50.0	NA	0.74		0.064	J	0.008	U	0.007	U	0.008	U	0.89	<u> </u>	0.58	
Butylbenzylphthalate	50.0	NA	0.012	U	0.014	U	0.015	U	0.013	U	0.015	U	0.051	J	0.014	U
Benzo(a)anthracene	0.224 or MDL	NA	0.54		0.052	J	0.0068	U	0.0059	U	0.0068	U	0.52	<u> </u>	0.43	
Chrysene	0.4	NA NA	<b>0.45</b> 0.22		0.06	J	0.014	J	0.012	J	0.014 0.15	J	0.36 0.48	J	0.36 0.44	J
bis(2-Ethylhexyl)phthalate	50.0			J	0.26	J	0.31	-	0.3	-		-		<u> </u>		
Benzo(b)fluoranthene	1.1	NA	0.47	J	0.11	J	0.024	U	0.021	U	0.024	UJ UJ	0.39	J	0.67	J
Benzo(k)fluoranthene	1.1	NA	0.5	J	0.044	J	0.015	U	0.013	U	0.015		0.14	J	0.27	J
Benzo(a)pyrene	0.061 or MDL	NA	0.5		0.057	J	0.0078	U	0.0067	U	0.0077	UJ UJ	0.3	J	0.42	
Indeno(1,2,3-cd)pyrene	3.2 0.014 or MDL	NA NA	0.23 0.044	J	0.0099	UU	0.011 0.013	UU	0.0094 0.011	UU	0.011 0.013	UJ	0.05 0.014	J U	0.15 0.012	J U
Dibenz(a,h)anthracene Benzo(g,h,i)perylene	50.0	NA	0.044	J	0.012	0	0.013	U	0.011	U	0.013	UJ	0.014	J	0.012	J
Metals	30.0		0.24	5	0.042	J	0.02	0	0.017	0	0.02		0.073		0.2	5
	<u>CD</u>		6460		10000		11500		20500		0540	,	40000	r	01100	
Aluminum Antimony	SB SB	33,000 NA	6460 0.628	U	10200 2.400	J	11500 0.775	U	<b>39500</b> 0.661	U	9540 0.762	U	19300 0.790	U	21100 0.689	U
Antimony Arsenic	7.5 or SB	3-12	14.1	0	2.400 10.3	J	4.930	0	21.0	0	4.760	0	10.0	0	10.089	0
Barium	300 or SB	15-600	64.2	1	166		144		348		109		142	<b> </b> '	218	
D	0.16 (HEAST) or SB	0-1.75	04.2	J	2.160		0.647	J	5.760		0.639	J	1.100	<u> </u>	2.900	
Beryllium Cadmium	10 or SB*	0.1-1	0.051	U	0.057	UJ	0.063	UJ	0.054	UJ	0.062	UJ	0.065	UJ	0.056	UJ
Calcium	SB	130-35,000	15600		24700		68700		208000		65100		11400		93400	
Chromium	50 or SB**	1.5-40	14.1		106		20.0		2.320		16.9		28.5		4.800	1
Cobalt	30 or SB	2.5-60	8.000		26.7		5.150	J	3.730	J	5.130	J	20.5	'	5.340	J
Copper	25 or SB	1-50	24.3	J	149		18.5		6.470		13.8		43.2		19.7	
Iron	2,000 or SB	2,000-550,000	64700		48200		15500		11800		11400		61600		34700	
Lead	SB	***	59.1	J	92.9		10.3		4.550		7.240		14.4		54.1	
Magnesium	SB	100-5,000	3310		6940		6670		23900		5260		6610		9340	
Manganese	SB	50-5,000	1630		769		379		2670		289		922		1420	
Mercury	0.1	0.001-0.2	0.014		0.210		0.120		0.010	U	0.030		0.030		0.010	U
Nickel	13 or SB	0.5-25	11.8	J	136		15.9		1.440	J	13.6		33.8		6.070	
Potassium	SB	8,500-43,000	1420	J	1900		1560		5770		1300		2770		1960	
Selenium	2 or SB	0.1-3.9	2.910		0.809	J	0.539	J	2.390		0.423	U	3.200		2.300	
Silver	SB	NA	0.117	UJ	0.129	UJ	0.145	UJ	0.123	UJ	0.142	UJ	3.230	J	0.129	UJ
Sodium	SB	6,000-8,000	341	J	268	J	133	J	1690		50.3	U	369	J	1040	
Thallium	SB	NA	0.368	UJ	0.407	U	0.455	U	0.547	J	0.446	U	0.463	U	0.404	U
d	1	1	00.0				4		0.040		40.0	1 7	<b>E40</b>	1	475	
Vanadium Zinc	150 or SB	1-300	60.9		20.0		17.7		9.240		18.3		54.8		17.5	

	NYSDEC	NYSDEC	TRENCH-5	LOWER (9')	TRENCH-5	UPPER (2')	TRENCH-5 L	_OWER-1 (9')	TRENCH-5	UPPER-1 (2')	DUP. (Trer	nch-5 Lower-1)	TRENCH-6	LOWER (8')	TRENCH-6	UPPER (4')
	TAGM 4046	TAGM 4046	mg	/kg	mg	/kg	mg	j/kg	mg	g/kg	n	ng/kg	mg	/kg	mg	/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's																
Acetone	0.2	NA	0.0097	U	0.009	U	0.0096	U	0.0093	U	0.0096	U	0.0099	U	0.0091	U
Carbon Disulfide	2.7	NA	0.00013	U	0.00012	U	0.00013	U	0.00013	U	0.00013	U	0.00013	U	0.00012	U
Methylene Chloride	0.1	NA	0.00088	U	0.0026	J	0.0048	U	0.00085	U	0.0023	U	0.0036	U	0.0014	U
2-Butanone (MEK)	0.3	NA	0.003	U	0.0027	U	0.0029	U	0.0028	U	0.0029	U	0.003	U	0.0028	U
Chloroform	0.3	NA	0.00031	U	0.00029	U	0.0003	U	0.0003	U	0.0003	U	0.00032	U	0.00029	U
SVOC's																
Acetophenone	No Standard	NA	0.022	U	0.021	U	0.022	U	0.022	U	0.022	U	0.023	U	0.021	U
Naphthalene	13.0	NA	0.0093	U	0.0087	U	0.0091	U	0.009	U	0.0092	U	0.0095	U	0.0086	U
2-Methylnaphthalene	36.4	NA	0.0074	U	0.0068	U	0.0072	U	0.0071	U	0.0073	U	0.0075	U	0.0068	U
Dimethylphthalate	2.0	NA	0.01	U	0.0095	U	0.01	U	0.0099	U	0.01	U	0.01	U	0.0095	U
Acenaphthylene	41.0	NA	0.013	U	0.012	U	0.013	U	0.012	U	0.013	U	0.013	U	0.012	U
Acenaphthene	50.0	NA	0.0094	U	0.0088	U	0.0092	U	0.0091	U	0.0094	U	0.0096	U	0.0088	U
Dibenzofuran	6.2	NA	0.014	U	0.013	U	0.014	U	0.014	U	0.014	U	0.014	U	0.013	U
Fluorene	50.0	NA	0.012	U	0.011	U	0.012	U	0.012	U	0.012	U	0.012	U	0.011	U
Phenanthrene	50.0	NA	0.0096	U	0.0089	U	0.0094	U	0.077	J	0.0095	U	0.0098	U	0.0089	U
Anthracene	50.0	NA	0.01	U	0.0095	U	0.01	U	0.0099	U	0.01	U	0.01	U	0.0095	U
Carbazole	No Standard	NA	0.0094	U	0.0088	U	0.0092	U	0.0091	U	0.0094	U	0.0096	U	0.0088	U
Di-n-butylphthalate	8.1	NA	0.0057	U	0.0053	U	0.0056	U	0.0055	U	0.0056	U	0.0058	U	0.0053	U
Fluoranthene	50.0	NA	0.069	J	0.067	J	0.16	J	0.13	J	0.14	J	0.06	J	0.0055	U
Pyrene	50.0	NA	0.058	J	0.063	J	0.14	J	0.11	J	0.12	J	0.052	J	0.0071	U
Butylbenzylphthalate	50.0	NA	0.014	U	0.013	U	0.014	U	0.014	U	0.014	U	0.015	U	0.013	U
Benzo(a)anthracene	0.224 or MDL	NA	0.056	J	0.06	J	0.12	J	0.11	J	0.11	J	0.0066	U	0.006	U
Chrysene	0.4	NA	0.014	U	0.046	J	0.092	J	0.091	J	0.08	J	0.014	U	0.013	U
bis(2-Ethylhexyl)phthalate	50.0	NA	0.18	J	0.27	J	0.14	J	0.15	J	0.16	J	0.28	J	0.73	
Benzo(b)fluoranthene	1.1	NA	0.023	U	0.067	J	0.085	J	0.11	J	0.072	J	0.023	U	0.021	U
Benzo(k)fluoranthene	1.1	NA	0.015	U	0.014	U	0.046	J	0.044	J	0.048	J	0.015	U	0.014	U
Benzo(a)pyrene	0.061 or MDL	NA	0.0074	U	0.054	J	0.078	J	0.094	J	0.072	J	0.0075	U	0.0068	U
Indeno(1,2,3-cd)pyrene	3.2	NA	0.01	U	0.0096	U	0.01	U	0.01	U	0.01	U	0.011	U	0.0096	U
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.013	U	0.012	U	0.012	U	0.012	U	0.012	U	0.013	U	0.012	U
Benzo(g,h,i)perylene	50.0	NA	0.019	U	0.017	U	0.018	U	0.06	J	0.018	U	0.019	U	0.017	U
Metals																
Aluminum	SB	33,000	9580		3830		10500		1920		8920		11600		41700	
Antimony	SB	NA	0.721	U	0.663	U	0.724	U	0.707	U	0.718	U	0.747	U	0.676	U
Arsenic	7.5 or SB	3-12	4.950		44.5		7.41		5.83		6.91		5.410		18.7	
Barium	300 or SB	15-600	102		118		87.7		42.5		62.3		141		255	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.407	J	0.334	J	0.454	J	0.339	J	0.371	J	0.479	J	5.050	
Cadmium	10 or SB*	0.1-1	0.059	UJ	0.054	UJ	0.059	UJ	0.058	UJ	0.059	UJ	0.061	UJ	0.055	UJ
Calcium	SB	130-35,000	3350		15800		4180		2130		4490		3770		158000	
Chromium	50 or SB**	1.5-40	11.1		0.112	U	11.1		6.22		11.7		12.1		1.560	
Cobalt	30 or SB	2.5-60	7.050		3.780	J	9.11		10.2		8.6		14.1		5.840	J
Copper	25 or SB	1-50	25.8		19.1		17.3		34.8		19.4		26.5		9.460	
Iron	2,000 or SB	2,000-550,000	20100		152000		25100		50600		21200		20900		21400	
Lead	SB	***	7.860		71.3		25.1		20.4	ļ	26.8		33.4		1.930	
Magnesium	SB	100-5,000	3610		9540	L	4020		298	J	3630		3960		31400	
Manganese	SB	50-5,000	363		6650		791		137	ļ	557		931		6430	
Mercury	0.1	0.001-0.2	0.100		0.080		0.100		0.02		0.12		0.160		0.010	U
Nickel	13 or SB	0.5-25	14.7		3.170	J	17.5		14.2		16.3		15.3		4.230	J
Potassium	SB	8,500-43,000	944		834		1430		277	J	1140		1540		2740	
Selenium	2 or SB	0.1-3.9	0.401	U	12.0		2.28		4.32		2.23		0.415	U	2.670	
Silver	SB	NA	0.134	UJ	0.124	UJ	0.135	UJ	3.96	J	0.134	UJ	0.139	UJ	0.126	UJ
Sodium	SB	6,000-8,000	47.6	U	174	J	47.8	U	72.9	J	198	J	49.3	U	1340	
Thallium	SB	NA	0.423	U	0.486	J	0.463	J	0.415	U	0.421	U	0.438	U	0.397	U
Vanadium	150 or SB	1-300	13.3		16.3		12.8		18.7	ļ	17.3		14.7		7.190	
Zinc	20 or SB	9-50	59.5		422		119		34.7		157		63.4		108	

	NYSDEC	NYSDEC	TRENCH-6 L	OWER-1 (7')	TRENCH-6	UPPER-1 (3')	TRENCH-7	UPPER (4')	TRENCH-7 L	OWER (12')	TRENCH-7 I	LOWER-1 (16')	TRENCH-7	JPPER-1 (5')	TEST PIT-1	UPPER (2')
	TAGM 4046	TAGM 4046		/kg		/kg		g/kg	mg			g/kg		/kg	mg	j/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's					-		-				-		-			-
Acetone	0.2	NA	0.0092	U	0.0087	U	0.008	U	0.0089	U	0.0091	U	0.0096	U	0.026	U
Carbon Disulfide	2.7	NA	0.00012	U	0.00012	U	0.00011	U	0.00012	U	0.00012	U	0.00013	U	0.00011	U
Methylene Chloride	0.1	NA	0.003	U	0.00079	U	0.00073	U	0.0016	U	0.0016	U	0.0014	U	0.0016	UJ
2-Butanone (MEK)	0.3	NA	0.0028	U	0.0026	U	0.0024	U	0.0027	U	0.0028	U	0.0029	U	0.0025	U
Chloroform	0.3	NA	0.00029	U	0.00028	U	0.00025	U	0.00028	U	0.00029	U	0.0003	U	0.00026	U
SVOC's	_															
Acetophenone	No Standard	NA	0.021	U	0.02	U	0.019	U	0.02	U	0.021	U	0.022	U	0.019	U
Naphthalene	13.0	NA	0.0088	U	0.082	J	0.05	J	0.04	J	0.0087	U	0.0092	U	0.078	J
2-Methylnaphthalene	36.4	NA	0.007	U	0.13	J	0.052	J	0.0067	U	0.0069	U	0.0072	U	0.054	J
Dimethylphthalate	2.0	NA	0.0097	U	0.0091	U	0.0085	U	0.0093	U	0.0095	U	0.01	U	0.0087	U
Acenaphthylene	41.0	NA	0.012	U	0.054	J	0.011	U	0.055	J	0.012	U	0.013	U	0.16	J
Acenaphthene	50.0	NA	0.0089	U	0.0084	U	0.0078	U	0.0086	U	0.0088	U	0.0093	U	0.008	U
Dibenzofuran	6.2	NA	0.013	U	0.061	J	0.012	U	0.013	U	0.013	U	0.014	U	0.012	U
Fluorene	50.0	NA	0.012	U	0.011	U	0.01	U	0.097	J	0.011	U	0.012	U	0.01	U
Phenanthrene	50.0	NA	0.0091	U	0.32	J	0.38		0.86		0.0089	U	0.0094	U	1.0	
Anthracene	50.0	NA	0.0097	U	0.058	J	0.044	J	0.41		0.0095	U	0.01	U	0.08	J
Carbazole	No Standard	NA	0.0089	U	0.0084	U	0.0078	U	0.0086	U	0.0088	U	0.0093	U	0.18	J
Di-n-butylphthalate	8.1	NA	0.0054	U	0.0051	U	0.0047	U	0.0052	U	0.0053	U	0.0056	U	0.0048	U
Fluoranthene	50.0	NA	0.0056	U	0.45		0.28	J	1.8		0.0055	U	0.0058	U	2.9	
Pyrene	50.0	NA	0.0072	U	0.43		0.26	J	1.6		0.0071	U	0.0075	U	2.7	ļļ
Butylbenzylphthalate	50.0	NA	0.054	J	0.18	J	0.012	U	0.013	U	0.013	U	0.014	U	0.012	U
Benzo(a)anthracene	0.224 or MDL	NA	0.0061	U	0.35	J	0.24	J	1.3	J	0.006	U	0.0064	U	1.0	Į
Chrysene	0.4	NA	0.013	U	0.38		0.41		0.94		0.013	U	0.013	U	1.2	ļļ
bis(2-Ethylhexyl)phthalate	50.0	NA	0.29	J	0.55		0.19	J	0.2	J	0.25	J	0.14	J	0.063	U
Benzo(b)fluoranthene	1.1	NA	0.022	U	0.62	J	0.36	J	1.1	J	0.021	U	0.022	U	1.4	J
Benzo(k)fluoranthene	1.1	NA	0.014	U	0.2	J	0.14	J	0.52	J	0.014	U	0.014	U	0.63	J
Benzo(a)pyrene	0.061 or MDL	NA	0.007	U	0.37	J	0.18	J	0.85		0.0069	U	0.0072	U	0.86	ļļ
Indeno(1,2,3-cd)pyrene	3.2	NA	0.0098	U	0.15	J	0.043	J	0.17	J	0.0096	U	0.01	U	0.0088	U
Dibenz(a,h)anthracene	0.014 or MDL	NA	0.012	U	0.011	U	0.01	U	0.045	J	0.012	U	0.012	U	0.048	J
Benzo(g,h,i)perylene	50.0	NA	0.018	U	0.22	J	0.097	J	0.21	J	0.017	U	0.018	U	0.35	J
Metals	1	I			1			1	<del></del>							l
Aluminum	SB	33,000	13800		10200		2330		7630		7900		2880		2440	Į
Antimony	SB	NA	0.694	U	0.656	U	0.603	U	0.664	U	0.683	U	0.721	U	5.41	J
Arsenic	7.5 or SB	3-12	6.040		13.4		13.7		4.040		3.840		8.720		51	<b>┟</b> ─────┦
Barium	300 or SB	15-600	109		185		44.4		57.2		69.9		28.5		43.2	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.775		1.270		0.867		0.358	J	0.380	J	0.689		0.214	J
Cadmium Calaium	10 or SB*	0.1-1	0.057	UJ	0.054	UJ	0.049	UJ	0.054	UJ	0.056	UJ	0.059	UJ	0.05	U
Calcium	SB	130-35,000	2460		39600		6430		3010		1830		4660		1780	
Chromium Cobalt	50 or SB** 30 or SB	1.5-40 2.5-60	14.3 10.7		13.7 10.8		12.0 5.670		9.050 7.290		9.590 7.570		19.0 6.720		21.6 <b>40.4</b>	
		2.5-60	10.7 67.9		10.8 32.9		5.670 51.1		7.290		13.5		20.3		40.4 355	
Copper Iron	25 or SB 2,000 or SB	2,000-550,000	27300		60800		39600		13.1 17200		13.5 15600		20.3 46500		355 375000	J
Lead	SB	2,000-550,000	59.9		34.2		90.8		13.5		12.9		46500 11.5		188	┟────┤
Magnesium	SB	100-5,000	4140		3620		837		3340		3450		834		760	┟────┦
Manganese	SB	50-5,000	522		6740		1080		426		522		1210		700	┟────┦
Mercury	0.1	0.001-0.2	0.130		0.030		0.170		0.120		0.030		0.010	U	0.010	
Nickel	13 or SB	0.5-25	21.5		17.1		9.850		13.2		14.7		11.7		93.5	5
Potassium	SB	8,500-43,000	1810		1780		440	J	1060		1050		507	J	466	J
Selenium	2 or SB	0.1-3.9	1.090	J	5.510		2.810	5	0.369	U	0.411	J	1.460		400 7.1	5
Silver	SB	NA	0.129	UJ	0.122	UJ	0.113	UJ	0.309	UJ	2.220	J	2.490	J	0.115	UJ
Sodium	SB	6,000-8,000	45.8	U	1090	<u> </u>	97.6	J	43.8	U	90.6	J	2.430	J	40.7	U
Thallium	SB	NA	0.407	U	0.385	U	0.354	U	0.389	U	0.400	J U	0.423	U	0.361	UJ
Vanadium	150 or SB	1-300	19.9	5	56.9		58.5	Ŭ	12.3	5	13.7	Ŭ	113		19.3	~~
Zinc	20 or SB	9-50	93.1		109		159		45.4		43.9		26.5		665	
9	200100	3 00	50.1		103	1	100	1			10.0		20.0		000	

VOC's       Acetone       Carbon Disulfide       Methylene Chloride       2-Butanone (MEK)	TAGM 4046 SCO's (mg/kg)**** 0.2 2.7	TAGM 4046 Eastern USA Background (mg/kg)	mg/ Result	/kg Qualifier	mg	/kg	mç	g/kg	mg	g/kg	ma	g/kg	mg			a/ka
VOC's       Acetone       Carbon Disulfide       Methylene Chloride       2-Butanone (MEK)	0.2 2.7		Result	Qualifier								r9	ing	/rg		ng/kg
Acetone Carbon Disulfide Methylene Chloride 2-Butanone (MEK)	2.7			Quaimer	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Carbon Disulfide Methylene Chloride 2-Butanone (MEK)	2.7												-			
Methylene Chloride		NA	0.041	U	0.042	U	0.041	U	0.032	U	0.047	U	0.032	UJ	0.38	U
2-Butanone (MEK)	0.1	NA	0.00011	U	0.00011	U	0.00011	U	0.00013	U	0.00013	U	0.00011	UJ	0.0053	J
	0.1	NA	0.0013	UJ	0.0014	UJ	0.0021	UJ	0.002	UJ	0.0028	UJ	0.00076	UJ	0.0013	UJ
Chilensferm	0.3	NA	0.0024	U	0.0024	U	0.0026	U	0.0029	U	0.003	U	0.0025	UJ	0.043	
Chloroform	0.3	NA	0.002	J	0.002	J	0.0029	J	0.0003	U	0.0043	J	0.0021	J	0.0015	J
SVOC's																
Acetophenone	No Standard	NA	0.018	U	0.018	U	0.019	U	0.42	J	0.023	U	0.38	U	0.023	U
Naphthalene	13.0	NA	0.0075	U	0.0077	U	0.0081	U	0.91		0.0096	U	0.16	U	0.0094	U
2-Methylnaphthalene	36.4	NA	0.0059	U	0.0061	U	0.0064	U	0.083	J	0.0076	U	0.13	U	0.0074	U
Dimethylphthalate	2.0	NA	0.0082	U	0.0084	U	0.0088	U	0.01	U	0.01	U	0.17	U	0.01	U
Acenaphthylene	41.0	NA	0.01	U	0.011	U	0.011	U	0.013	U	0.013	U	0.22	U	0.013	U
Acenaphthene	50.0	NA	0.0076	U	0.0078	U	0.0082	U	0.0092	U	0.0097	U	0.16	U	0.0095	U
Dibenzofuran	6.2	NA	0.011	U	0.012	U	0.012	U	0.014	U	0.014	U	0.24	UJ	0.014	U
Fluorene	50.0	NA	0.0098	U	0.01	U	0.011	U	0.012	U	0.012	U	0.21	U	0.012	U
Phenanthrene	50.0	NA	0.0077	U	0.0079	U	0.0083	U	0.0094	U	0.0098	U	0.16	U	0.0096	U
Anthracene	50.0	NA	0.0082	U	0.0084	U	0.0088	U	0.01	U	0.01	U	0.17	U	0.01	U
Carbazole	No Standard	NA	0.0076	U	0.0078	U	0.0082	U	0.0092	U	0.0097	U	0.16	U	0.0095	U
Di-n-butylphthalate	8.1	NA	0.0046	U	0.0047	U	0.0049	U	0.0056	U	0.0058	U	0.097	U	0.0057	U
Fluoranthene	50.0	NA	0.0048	U	0.061	J	0.0051	U	0.0058	U	0.0061	U	0.1	U	0.006	U
Pyrene	50.0	NA	0.0061	U	0.065	J	0.0066	U	0.0075	U	0.0078	U	0.13	U	0.0077	U
Butylbenzylphthalate	50.0	NA	0.012	U	0.012	U	0.012	U	0.014	U	0.015	U	0.25	U	0.014	U
	0.224 or MDL	NA	0.0052	U	0.052	J	0.0056	U	0.0063	U	0.0066	U	0.11	U	0.0065	U
Chrysene	0.4	NA	0.011	U	0.042	J	0.012	U	0.013	U	0.014	U	0.23	U	0.014	U
bis(2-Ethylhexyl)phthalate	50.0	NA	0.0079	U	0.057	U	0.043	U	0.058	U	0.068	U	0.17	U	0.11	U
Benzo(b)fluoranthene	1.1	NA	0.018	U	0.043	J	0.02	U	0.022	U	0.023	U	0.39	U	0.023	U
Benzo(k)fluoranthene	1.1	NA	0.012	U	0.012	UJ	0.013	U	0.014	U	0.015	U	0.25	U	0.015	U
	0.061 or MDL	NA	0.0059	U	0.0061	UJ	0.0064	U	0.0072	U	0.0076	U	0.13	U	0.0074	U
Indeno(1,2,3-cd)pyrene	3.2	NA	0.0083	U	0.0085	UJ	0.0089	U	0.01	U	0.011	U	0.18	U	0.01	U
	0.014 or MDL 50.0	NA NA	0.01 0.015	UU	0.01 0.015	UJ UJ	0.011 0.016	UU	0.012	UU	0.013 0.019	UU	0.21	UU	0.013	UU
Benzo(g,h,i)perylene	50.0	NA	0.015	0	0.015	00	0.016	U	0.018	U	0.019	U	0.32	U	0.019	0
Metals		00.000	7070		0700		0050		4500	1 1	40000	1	00.40		40000	
Aluminum	SB SB	33,000	7070 0.594	U	8730 0.602		6950		1520	U	19800 0.751		2940 0.626		13200	
Antimony Arsenic	7.5 or SB	NA 3-12	0.594	0	4.600	U	0.868 2.680	J	0.712 9.910	U	6.770	U	0.626 <b>24.1</b>	U	0.732 3.960	U
Barium	300 or SB	15-600	45.0		4.600		35.1		22.1		150		43.7		140	
	.16 (HEAST) or SB	0-1.75	<b>0.292</b>	J	<b>0.339</b>	J	0.297	J	0.439	J	0.962		43.7 0.345	J	0.626	J
Cadmium 0.1	10 or SB*	0.1-1	0.049	U	0.049	U	0.052	U U	0.058	U U	0.061	U	0.051	U	0.060	U
Calcium	SB	130-35,000	1270	0	1390	0	4170	0	2590	0	24800		13400	0	3360	<u>_</u>
Chromium	50 or SB**	1.5-40	7.780		10.9		7.520		11.0		24000		25.2		14.1	
Cobalt	30 or SB	2.5-60	5.810		7.980		6.420		10.9		15.5		9.160		11.3	
Copper	25 or SB	1-50	8.630	J	17.7	J	12.8	J	25.1	J	31.7	J	40.9	J	19.6	J
Iron	2,000 or SB	2,000-550,000	16500		20500	-	16300	_	50300		33500	-	90000		24000	
Lead	SB	***	4.000		5.520		5.650		12.6		8.920		128		9.200	I
Magnesium	SB	100-5,000	3410		4800		3440		307	J	8800		1160		4690	
Manganese	SB	50-5,000	199		547		244		675		878		973		794	
Mercury	0.1	0.001-0.2	0.011		0.089		0.014		0.011	J	0.020		0.020		0.038	
Nickel	13 or SB	0.5-25	12.7		17.7		15.3		17.4		30.3		12.2		20.4	
Potassium	SB	8,500-43,000	836	J	861	J	722	J	207	J	3820	J	538	J	980	J
Selenium	2 or SB	0.1-3.9	0.330	U	0.360	J	0.357	U	2.160		0.539	J	4.530		0.472	J
Silver	SB	NA	0.309	J	0.698	J	0.120	UJ	5.350	J	0.140	UJ	9.190	J	0.137	UJ
Sodium	SB	6,000-8,000	86.9	J	68.6	J	50.2	J	47.0	U	119	J	134	J	48.4	U
Thallium	SB	NA	0.348	UJ	0.353	UJ	0.376	UJ	0.653	J	0.440	UJ	0.408	J	0.429	UJ
Vanadium	150 or SB	1-300	9.820		13.2		11.2		25.4		30.8		72.8		18.7	
Zinc	20 or SB	9-50	40.7		58.4		91.3		12.7		79.2		27.3		70.9	

	NYSDEC	NYSDEC	FOUR	BLANK#1	FOUR	BLANK#2		BLANK #3		3LANK #4
	TAGM 4046									
		TAGM 4046		ig/l		g/l		ig/l		g/l
	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's	<u> </u>		r		n					
Methylene Chloride	0.1	NA	0.00062	UJ	0.0029	J	0.008	J	0.013	J
SVOC's				-		-		-		
bis(2-Ethylhexyl)phthalate	50.0	NA	0.00035	U	0.00034	U	0.0071	JB	0.0057	J
Metals										
Aluminum	SB	33,000	180	U	180	U	180	U	180	U
Arsenic	7.5 or SB	3-12	4.84	U	4.84	U	4.840	U	4.840	U
Barium	300 or SB	15-600	11	U	11	U	11.0	J	11.0	U
Beryllium	0.16 (HEAST) or SB	0-1.75	1.06	U	1.06	U	1.060	U	1.060	U
Calcium	SB	130-35,000	1910	J	1890	J	1740	U	1740	U
Chromium	50 or SB**	1.5-40	1.22	U	1.22	U	1.220	U	1.220	U
Cobalt	30 or SB	2.5-60	2.38	U	2.38	U	2.380	U	2.380	U
Copper	25 or SB	1-50	7.58	J	7.47	J	0.739	U	0.739	U
Iron	2,000 or SB	2,000-550,000	29.6	J	41.2	J	29.0	U	29.0	U
Lead	SB	***	1.79	U	1.79	U	1.790	U	1.790	U
Magnesium	SB	100-5,000	426	J	420	J	254	U	254	U
Manganese	SB	50-5,000	0.195	U	0.195	U	0.195	U	0.195	U
Mercury	0.1	0.001-0.2	0.03	U	0.03	U	0.0300	U	0.0300	U
Nickel	13 or SB	0.5-25	7.67	J	6.4	J	5.550	U	5.550	U
Potassium	SB	8,500-43,000	80.7	J	88.9	J	51.0	U	51.0	U
Selenium	2 or SB	0.1-3.9	5.24	U	5.24	U	5.240	U	5.240	U
Silver	SB	NA	3.38	U	3.38	U	6.930	J	3.380	U
Thallium	SB	NA	5.78	U	5.78	U	5.780	U	5.780	U
Vanadium	150 or SB	1-300	1.86	U	1.86	U	1.860	U	1.860	U
Zinc	20 or SB	9-50	8.11	U	8.11	U	8.110	U	8.110	U

#### **Qualifiers**

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA - Not Applicable

SB - Site Background

HEAST - Health Effects Assessment Summary Tables

MDL indicates the laboratory's minimum detection limit

mg/kg indicates mlligram per kilogram or parts per million (ppm)

mg/l indicates milligram per liter or parts per million (ppm)

(#) indicates number of feet below grade that sample was collected

* TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium.

- ** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium.
   However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.
- *** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm
- **** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs)

Bolded numbers indicates that the parameter is at a concentration that has exceeded its SCG

# **TABLE 4.6-1**

# SOIL BORING ANALYTICAL SUMMARY RESULTS

	NYSDEC	NYSDEC	CTM-1	(15-17')	CTM-	2 (6-8')	CTM-	3 (2-4')	CTM-5	(10-12')	CTM-6	6 (8-10')	CTM-	7 (2-4')	CTM-	8 (4-6')
	TAGM 4046	TAGM 4046	mg			_(00), /kg		g/kg		(:• :_) /kg		g/kg		g/kg		/kg
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's		(														
Acetone	0.2	NA	0.0096	U	0.012	J	0.026	U	0.0220	U	0.014	U	0.008	U	0.0099	UJ
Carbon Disulfide	2.7	NA	0.089		0.0026	J	0.0027	J	0.0001	U	0.00012	U	0.00011	U	0.00013	UJ
Methyl tert-butyl Ether	0.12	NA	0.0028	J	0.00025	U	0.00026	U	0.0003	U	0.00027	U	0.00025	U	0.00031	U
Methylene Chloride	0.1	NA	0.0051	Ŭ	0.00074	U	0.00076	UJ	0.0009	UJ	0.0047	UJ	0.0033	U	0.00091	U
2-Butanone (MEK)	0.3	NA	0.0029	U	0.0025	U	0.0026	U	0.0028	U	0.0027	UJ	0.0024	U	0.003	U
Methylcyclohexane	No Standard	NA	0.012	0	0.00039	U	0.0004	U	0.0004	U	0.00042	U	0.00038	U	0.00047	U
Toluene	1.5	NA	0.00033	U	0.00028	U	0.00029	U	0.0003	U	0.00031	U	0.00028	U	0.00035	U
Isopropylbenzene	5.0	NA	0.00047	U	0.0004	U	0.00042	U	0.0005	U	0.00044	U	0.0004	U	0.00049	U
SVOC's	0.0	10.	0.00011	0	0.0001	0	0.00012	0	0.0000	0	0.00011	0	0.0001	0	0.00010	0
Acenaphthylene	41.0	NA	0.013	U	0.011	U	0.011	11	0.012	U	0.012	U	0.082		0.013	U
Phenanthrene	50.0	NA	0.0094	U	0.001	U	0.069	J	0.0091	U	0.0012	U	0.002	, , , , , , , , , , , , , , , , , , ,	0.0097	U
Anthracene	50.0	NA	0.01	U	0.0085	U	0.0087	Ŭ	0.0098	U	0.0093	U	0.11	J	0.01	U
Di-n-butylphthalate	8.1	NA	0.0056	U	0.0047	U	0.0049	U	0.0054	U	0.0052	U	0.0047	U	0.0058	U
Fluoranthene	50.0	NA	0.0059	U	0.0049	U	0.18	J	0.0057	U	0.0054	U	1.1		0.0061	U
Pyrene	50.0	NA	0.0075	U	0.0063	U	0.19	J	0.0073	U	0.0069	U	0.77		0.0078	U
Benzo(a)anthracene	0.224 or MDL	NA	0.0064	U	0.0054	U	0.13	J	0.0062	U	0.0059	U	0.55		0.0066	U
Chrysene	0.4	NA	0.013	U	0.011	U	0.15	J	0.013	U	0.012	U	0.56		0.014	U
bis(2-Ethylhexyl)phthalate	50.0	NA	0.0097	U	0.0082	U	0.11	J	0.22	J	0.19	J	0.049	U	0.01	U
Benzo(b)fluoranthene	1.1	NA	0.022	U	0.019	U	0.16	J	0.022	U	0.021	U	0.49	J	0.023	U
Benzo(k)fluoranthene	1.1	NA NA	0.014	U U	0.012	UU	0.082	J	0.014	UU	0.013	UU	0.33 0.41	J	0.015	UU
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.061 or MDL 3.2	NA	0.0072	U U	0.0061	U	<b>0.13</b> 0.09	J	0.007	U	0.0067	U	0.41		0.0075 0.011	U
Benzo(g,h,i)perylene	50.0	NA	0.018	U	0.000	U	0.09	J	0.0099	U	0.0094	U	0.14	J	0.011	U
Metals			0.010	J	0.010	J	011	Ĵ	0.010	J	01011	J. J.	0110	, ,	01010	
Aluminum	SB	33,000	8310		16700		11000		10300		11000		4860		18900	
Arsenic	7.5 or SB	3-12	3.060		6.550		23.4		5.690		8.840		14.4		16.9	
Barium	300 or SB	15-600	72.3		107		92.8		96.7		106		35.7		168	
Beryllium	0.16 (HEAST) or SB	0-1.75	0.439	J	0.938		92.0 1.410		0.642		1.070		0.329	J	2.890	
Cadmium	10 or SB*	0.1-1	0.439	J	0.587		0.052	U	0.042	U	0.055	U	0.329	J	1.810	
Calcium	SB	130-35,000	2690	0	5560		46800	0	5370	0	10900	0	3030	J	114000	
	50 or SB**	1.5-40	9.780		16.2		4.440		12.5		10900		12.1		13.6	
Chromium Cobalt	30 or SB	2.5-60	9.780 8.650	J	16.2	J	4.440	1	8.930	J	18.0	J	12.1	J	6.970	J
	25 or SB	1-50	8.650 15.9	J	25.9	J	81.4	J	8.930 14.2	J	32.1	J	37.0	J 1	11.8	J
Copper	25 of SB 2,000 or SB	2,000-550,000	16400	J	25.9 34300	J	81.4 169000	J	32300	J	32.1	J	65600	J	97900	J
Iron Lead	SB	2,000-550,000					10.0	1	7.930	1			35.6	<u> </u>	28.7	
	SB		16.6 3370	J	16.9 <b>5560</b>	J		J	7.930 3580	J	25.1 4430	J		J		J
Magnesium	SB	100-5,000					6110						2320 546	╂────┤	4870 2290	
Manganese		50-5,000	258		337	11	1850		752		609	┨────┤		╂────┤		
Mercury Nickel	0.1	0.001-0.2	0.057 14.9		0.006	U	0.017		0.027		0.017		0.042	┨────┤	0.029	
	13 or SB	0.5-25			29.8		15.3		15.6		21.7		16.6	<u> </u>	6.440	
Potassium	SB	8,500-43,000	1010	J	2730	J	3360	J	1320	J	1240	J	679	J	7650	J
Selenium	2 or SB	0.1-3.9	0.399	U	0.337	U	4.250		0.556	J	2.260		0.337	U	0.420	U
Silver	SB	NA	1.460		0.113	U	0.118	U	0.131	U	3.620	<u> </u>	3.030	<u> </u>	0.141	U
Sodium	SB	6,000-8,000	129	J	165	J	752		46.3	U	326	J	40.1	U	1220	
Vanadium 	150 or SB	1-300	13.1	J	27.1	J	31.5	J	33.9	J	26.9	J	47.3	J	60.7	J
Zinc	20 or SB	9-50	48.9		77.0		245		58.6		81.6		36.4		14.5	

	NYSDEC TAGM 4046	NYSDEC TAGM 4046	CTM-9 mg	( )		0 (2-4') g/kg		l (8-10') /kg		3 (14-16') g/kg		P #3 g/kg		SLANK#5 g/l		BLANK#6 ng/l
COMPOUND	RSCO's (mg/kg)****	Eastern USA Background (mg/kg)	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOC's			u				<b>u</b> .		u.		U.				U	
Acetone	0.2	NA	0.0079	U	0.033	U	0.37	UJ	0.022	J	0.008	U	0.0033	UJ	0.0033	UJ
Carbon Disulfide	2.7	NA	0.00011	U	0.0022	J	0.0044	J	0.0067	J	0.00011	U	0.00039	U	0.00039	U
Methyl tert-butyl Ether	0.12	NA	0.00024	U	0.00026	U	0.00029	J	0.00027	U	0.00025	U	0.00036	U	0.00036	U
Methylene Chloride	0.1	NA	0.0032	U	0.0047	UJ	0.00086	J	0.0008	U	0.0025	U	0.0097		0.0097	
2-Butanone (MEK)	0.3	NA	0.0024	U	0.0026	U	0.023	J	0.0027	U	0.0024	U	0.0028	U	0.0028	U
Methylcyclohexane	No Standard	NA	0.00038	U	0.0004	U	0.00045	J	0.00042	U	0.00038	U	0.00058	U	0.00058	U
Toluene	1.5	NA	0.00028	U	0.00029	U	0.0013	J	0.0003	U	0.00028	U	0.00039	U	0.00039	U
Isopropylbenzene	5.0	NA	0.00039	U	0.00042	U	0.066	J	0.00044	U	0.0004	U	0.00033	U	0.00033	U
SVOC's	0.0		0.00000	0	0.000.2	Ű	0.000	, i i i i i i i i i i i i i i i i i i i	0.00011	Ŭ	0.0001	, , , , , , , , , , , , , , , , , , ,	0.00000	0	0.00000	
Acenaphthylene	41.0	NA	0.01	U	0.011	U	0.012	U	0.012	U	0.011	U	0.00044	U	0.00043	U
Phenanthrene	50.0	NA	0.055	J	0.0083	U	0.53		0.012	J	0.0079	U	0.00028	U	0.00027	U
Anthracene	50.0	NA	0.0084	U	0.0089	U	0.0099	U	0.0092	U	0.0085	U	0.00016	U	0.00016	U
Di-n-butylphthalate	8.1	NA	0.07	J	0.005	U	0.0055	U	0.0051	U	0.0047	U	0.000099	U	0.000098	U
Fluoranthene	50.0	NA	0.12	J	0.0052	U	0.0058	U	0.058	J	0.12	J	0.00021	U	0.00021	U
Pyrene	50.0	NA	0.098	J	0.0066	U	0.11	J	0.0069	U	0.084	J	0.00025	U	0.00025	U
Benzo(a)anthracene	0.224 or MDL	NA	0.068	J	0.0056	U	0.0063	U	0.0058	U	0.063	J	0.00023	U	0.00022	U
Chrysene	0.4	NA	0.068	J	0.012	U	0.013	U	0.012	U	0.07	J	0.00039	U	0.00038	U
bis(2-Ethylhexyl)phthalate	50.0	NA	0.17	J	0.13	J	0.0096	U	0.0089	U	0.13	J	0.00035	U	0.0049	J
Benzo(b)fluoranthene	1.1	NA	0.055	J	0.02	U	0.022	U	0.021	U	0.051	J	0.00023	U	0.00023	U
Benzo(k)fluoranthene Benzo(a)pyrene	1.1 0.061 or MDL	NA NA	0.053 0.048	J	0.013	UU	0.014 0.0072	U U	0.013	UU	0.058	J	0.00039 0.00045	UU	0.00038	UU
Indeno(1,2,3-cd)pyrene	3.2	NA NA	0.048	J U	0.0004	U	0.0072	U	0.0007	U	0.048	U	0.00045	U	0.00043	U
Benzo(g,h,i)perylene	50.0	NA	0.0000	U	0.005	U	0.018	U	0.000	U	0.015	U	0.00023	U	0.00023	U
Metals																
Aluminum	SB	33,000	5090		26000		8960		7080	I	7100		180	U	180	U
Arsenic	7.5 or SB	3-12	4.130		4.830		3.910		5.600	1	4.240		4.840	U	4.840	U
Barium	300 or SB	15-600	38.2		174		90.9		59.5	1	42.2		11.0	U	11.0	U
Beryllium	0.16 (HEAST) or SB	0-1.75	0.246	J	2.130		0.510	1	1.120	1	0.300		1.060	U	1.060	U
Cadmium	10 or SB*	0.1-1	0.048	U	0.052	U	0.058	U	0.453	1	0.050	U	0.994	U	0.994	U
Calcium	SB	130-35,000	2010	0	117000	Ŭ	3700	0	35900	Ŭ	4580	Ű	0.004 1740	U	1740	U
Chromium	50 or SB**	1.5-40	6.920		13.2		9.890		3.300	1	9.950		1.220	U	1.220	U
Cobalt	30 or SB	2.5-60	6.890	J	10.5	J	8.090	.1	1.930	J	7.380		2.380	UJ	2.380	U
Copper	25 or SB	1-50	11.2	J	27.7		14.2	1	2.960	J	12.6	1	0.739	UJ	0.739	U
Iron	2,000 or SB	2,000-550,000	23700	0	48400	<b>.</b>	17600	, J	2.900 25800	, , , , , , , , , , , , , , , , , , ,	27300	, , , , , , , , , , , , , , , , , , ,	29.0	U	29.0	U
Lead	2,000 01 3B	2,000-330,000	15.9	.1	17.1	J	6.880	1	7.820	1	15.0	1	1.790	UJ	1.790	U
Magnesium	SB	100-5,000	2680	0	8950	<b>.</b>	3320	у	2910	J	3810	, , , , , , , , , , , , , , , , , , ,	254	U	254	U
Manganese	SB	50-5,000	2000		3980		617		855		259	1	0.195	U	0.195	U
Mercury	0.1	0.001-0.2	0.013		0.008	J	0.018		0.007	U	0.016		0.195	U	0.0300	U
Nickel	13 or SB	0.5-25	14.0		10.8	J	15.3		1.900	J	17.3		5.550	U	5.550	U
Potassium	SB	8,500-43,000	629	J	7710	J	1410	J	1.900	J	846	J	51.0	UJ	51.0	U
Selenium	2 or SB	0.1-3.9	0.328	J U	3.420	J	0.830	J	0.366	J U	0.338	J U	6.540	J	51.0 5.730	J
Silver	SB	0.1-3.9 NA	1.390	0	0.120	U		J	0.366	U	2.240	0	<b>6.540</b> 3.380	J	3.380	J
Sodium	SB	6,000-8,000	92.2	J	3780	U	0.133 47.2	U U	407	J	2.240	1	3.380 189	U	3.380 189	U
				÷				-	407 14.7			J	1.860	UJ		
Vanadium Zino	150 or SB	1-300	8.180	J	69.1	J	12.8	J		J	11.1	J			1.860	U
Zinc	20 or SB	9-50	50.7		74.6		55.0		24.3		36.1		8.110	U	8.110	U

**Qualifiers** 

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA - Not Applicable

mg/kg indicates miligram per kilogram or parts per million (ppm) and mg/l indicates miligram per liter or parts per million (ppm)

HEAST - Health Effects Assessment Summary Tables

MDL indicates the laboratory's minimum detection limit

- * TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium. However, recent DEC Records of Decision (ROD) specify 10 ppm as the SCG.
- ** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium. However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.
- *** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm
- **** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs)
- SB- Site Background

### **TABLE 4.7-1**

# GROUNDWATER ANALYTICAL SUMMARY RESULTS

# TABLE 4.7-1: Groundwater Analytical Summary Results VOCs, SVOCs and Metals (Validated Results) South Troy Industrial Park C.T. Male Project No. 04.9138

COMPOUND VOC's 1,1-Dichloroethene Acetone	Groundwater Standard ⁽¹⁾ ug/I		M-1 g/l				M-2		M-3		M-5		M-6		M-7		
VOC's 1,1-Dichloroethene Acetone	ug/l			u U	g/l	u	g/l	u	g/l	u	g/l	u	g/l	u u	ıg/l		TM-8 ug/l
VOC's 1,1-Dichloroethene Acetone	-		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetone	-												-,				
	5	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U
	50 (GV)	3.3	U	66	J	3.3	U	3.3	U	3.3	U	3.3	U	3.3	U	3.3	U
Methyl tert-butyl Ether	10	0.36	U	27		0.36	U	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U
Methylene Chloride	5	0.62	U	3.5	J	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U
Cyclohexane	NA	0.37	U	3.6	J	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
2-Butanone (MEK)	50 (GV)	2.8	U	17	J	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U
Chloroform	7	0.58	U	0.58	U	0.58	U	1.8	J	3.2	J	0.58	U	0.58	U	0.58	U
Methylcyclohexane	NA	0.58	U	5.5		0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U
Benzene	1	17	J	9.9		0.24	U	0.24	U	0.24	U	0.24	U	0.24	U	0.24	U
4-Methyl-2-Pentanone	NA	1.3	U	16	J	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
Toluene	5	1.6	J	110		0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U
Tetrachloroethene	5	0.33	U	2.6	J	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U
Ethyl Benzene	5	39		110		0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
m/p-Xylenes	5	1.9	J	250		0.96	U	0.96	U	0.96	U	0.96	U	0.96	U	0.96	U
o-Xylene	5	22		180		0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
Styrene	5	0.34	U	22		0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U
Isopropylbenzene	5	6.9		38		0.33	U	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U
SVOC's							•							41	•		
Naphthalene	10(GV)	6.5	U	83		0.270	U	0.270	U	0.270	U	0.270	U	0.270	U	0.270	U
2-Methylnaphthalene	No Standard	3.0	J	8.9	J	0.510	U	0.500	U	0.500	U	0.510	U	0.500	U	0.500	U
Acenaphthene	20(GV)	0.240	U	0.240	U	0.240	U	0.240	U	0.240	U	0.240	U	0.240	U	0.240	U
Dibenzofuran	No Standard	0.310	U	0.310	U	0.320	U	0.310	U	0.310	U	0.320	U	0.320	U	0.310	U
Fluorene	50(GV)	0.170	U	0.170	U	0.180	U	0.170	U	0.170	U	0.180	U	0.170	U	0.170	U
bis(2-Ethylhexyl)phthalate	50(GV)	7.1	U	1.6	U	1.4	U	4.3	U	1.1	U	1.2	U	0.350	U	1.6	U
Metals			1		·						1						
Aluminum	No Standard	180	U	206		180	U	635		180	U	759		295		180	U
Arsenic	25	4.8	U	5.200	J	4.840	U	4.8	U	4.840	U	4.840	U	4.840	U	4.840	U
Barium	1,000	177	J	54.4	J	28.0	J	68.7	J	50.6	J	52.3	J	51.2	J	75.0	J
Calcium	No Standard	79400	J	171000	J	55400	J	104000	J	66000	J	72100	J	65000	J	62000	J
Chromium	50	1.8	J	1.220	U	1.220	U	1.2	U	1.220	U	1.220	U	1.220	U	1.220	U
Cobalt	5	2.4	U	2.380	U	2.380	U	2.4	U	2.380	U	2.380	U	2.560	J	2.380	U
Copper	200	10.1	J	4.930	J	5.880	J	11.1	J	4.260	J	4.700	J	5.080	J	6.180	J
Iron	300	3690		412		285		2230		477		1480		461		86.1	J
Lead	25	1.8	U	1.790	U	1.790	U	3.7	J	1.790	U	1.790	U	1.790	U	1.790	U
Magnesium	35,000(GV)	9520	J	11400		2930	J	12100	J	10200		22600		29400		16300	_ <b></b> /
Manganese	300	2990		1680		8.060	J	303		478		2560		6870	<u>↓ </u>	6680	ľ
Nickel	100	5.5	U	5.550	U	5.550	U	5.5	U	5.550	U	5.550	U	5.550	U	5.550	U
Potassium	No Standard	22400	J	23400		10200	,	11000	J	20100		1400	J	2290	ő	3350	J
Selenium Sodium	10 20.000	5.2 16800	U	5.240 14500	U	5.240 13900	U	<b>10.8</b> 10200	J	5.900 42900	J	5.240 <b>21200</b>	U	5.240 22400	U	5.240 27300	U J
Zinc	5,000(GV)	27.9	J	20.7	J	31.1	J	32.7	J	<b>42900</b> 27.5	J	11.6	J	8.110	J	8.110	J U

NYSDEC Groundwater Standard ⁽¹⁾ ug/lCOMPOUNDug/lVOC's1,1-Dichloroethene5Acetone50 (GV)Methyl tert-butyl Ether10Methylene Chloride5CyclohexaneNA2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5Naphthalene10(GV)		™-9 Ig/I		M-10	СТІ	M-11	CTM	1 1 2	MW-3							
COMPOUNDug/lVOC's1,1-Dichloroethene5Acetone50 (GV)Methyl tert-butyl Ether10Methylene Chloride5CyclohexaneNA2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene555Ethyl Benzene5m/p-Xylenes5Styrene5Isopropylbenzene5SVOC's		ıg/l	1				011	1-13	141 44-0	(ESI)	MVV-	8(ESI)	EQIUP.	BLANK		BLANK
VOC's         1,1-Dichloroethene       5         Acetone       50 (GV)         Methyl tert-butyl Ether       10         Methylene Chloride       5         Cyclohexane       NA         2-Butanone (MEK)       50 (GV)         Chloroform       7         Methylcyclohexane       NA         Benzene       1         4-Methyl-2-Pentanone       NA         Toluene       5         Tetrachloroethene       5         Ethyl Benzene       5         m/p-Xylenes       5         o-Xylene       5         Styrene       5         SVOC's       5	Result		l u	g/l	u,	g/l	u	g/I	uç	g/I	u	g/I	u	g/l	u,	g/l
1,1-Dichloroethene5Acetone50 (GV)Methyl tert-butyl Ether10Methylene Chloride5CyclohexaneNA2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5SVOC's		Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Acetone50 (GV)Methyl tert-butyl Ether10Methylene Chloride5CyclohexaneNA2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Ethyl Benzene5Ethyl Benzene5o-Xylene5Styrene5Isopropylbenzene5SVOC's			•		•										•	
Methyl tert-butyl Ether10Methylene Chloride5CyclohexaneNA2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Ethyl Benzene5Ethyl Benzene5Stylenes5Styrene5Isopropylbenzene5SVOC's	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	0.32	U	3.1	J	0.32	U
Methylene Chloride       5         Cyclohexane       NA         2-Butanone (MEK)       50 (GV)         Chloroform       7         Methylcyclohexane       NA         Benzene       1         4-Methyl-2-Pentanone       NA         Toluene       5         Tetrachloroethene       5         Ethyl Benzene       5         m/p-Xylenes       5         o-Xylene       5         Styrene       5         Isopropylbenzene       5	3.3	U	3.3	U	3.3	U	3.3	U	3.3	U	3.3	U	3.3	U	3.3	U
CyclohexaneNA2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Tetrachloroethene5Ethyl Benzene5m/p-Xylenes5Styrene5Isopropylbenzene5SVOC's	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U	0.36	U
2-Butanone (MEK)50 (GV)Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Tetrachloroethene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5SVOC's	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	0.62	U	5.9		0.62	U
Chloroform7MethylcyclohexaneNABenzene14-Methyl-2-PentanoneNAToluene5Tetrachloroethene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5SVOC's	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
Methylcyclohexane       NA         Benzene       1         4-Methyl-2-Pentanone       NA         Toluene       5         Tetrachloroethene       5         Ethyl Benzene       5         m/p-Xylenes       5         o-Xylene       5         Styrene       5         SVOC's       5	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U	2.8	U
Benzene       1         4-Methyl-2-Pentanone       NA         Toluene       5         Tetrachloroethene       5         Ethyl Benzene       5         m/p-Xylenes       5         o-Xylene       5         Styrene       5         Isopropylbenzene       5	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U
4-Methyl-2-Pentanone     NA       4-Methyl-2-Pentanone     NA       Toluene     5       Tetrachloroethene     5       Ethyl Benzene     5       m/p-Xylenes     5       o-Xylene     5       Styrene     5       Isopropylbenzene     5       SVOC's     5	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U	0.58	U
Toluene5Tetrachloroethene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5SVOC's	0.24	U	0.24	U	0.24	U	0.24	U	2.0	J	0.24	U	0.24	U	0.24	U
Tetrachloroethene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5SVOC's	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U	1.3	U
Tetrachloroethene5Ethyl Benzene5m/p-Xylenes5o-Xylene5Styrene5Isopropylbenzene5SVOC's	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U	0.39	U
m/p-Xylenes     5       o-Xylene     5       Styrene     5       Isopropylbenzene     5       SVOC's	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U	0.33	U
m/p-Xylenes     5       o-Xylene     5       Styrene     5       Isopropylbenzene     5       SVOC's     5	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U	0.41	U
o-Xylene     5       Styrene     5       Isopropylbenzene     5       SVOC's	0.96	U	0.96	U	0.96	U	0.96	U	0.96	U	0.96	U	0.96	U	0.96	U
Styrene     5       Isopropylbenzene     5       SVOC's	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U	0.37	U
Isopropylbenzene 5 SVOC's	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U	0.34	U
SVOC's	0.33	U	0.33	U	0.33	U	0.33	U	6.6		0.33	U	0.33	U	0.33	U
						•						•		•		•
	0.270	U	0.270	U	3.9	U	0.270	U	0.270	U	0.270	U	1.2	L		
2-Methylnaphthalene No Standard	5.7	J.	0.500	U	0.500	U	0.500	U	13	<u> </u>	0.500	U	1.5	J.		
Acenaphthene 20(GV)	0.240	U	0.240	U	0.240	U	0.240	U	1.1	J	0.240	U	0.240	Ŭ		
Dibenzofuran No Standard	0.320	U	0.310	U	0.310	U	0.320	U	1.3	J	0.320	U	0.320	U		
Fluorene 50(GV)	0.180	U	0.010	U	0.170	U	0.170	U	2.9	J	0.170	U	0.170	U		
bis(2-Ethylhexyl)phthalate 50(GV)	1.1	U	1.2	U	1.6	U	1.1	U	1.5	U	1.3	U	1.3	JB		
Metals		<b>_</b>	1.2	J	1.0	J			1.0	<b>.</b>	1.0	J	1.0	00		
Aluminum No Standard	180	U	180	U	395		180	U	180	U	245	1	180	U		
Arsenic 25	4.840	U	4.840	U	4.8	U	4.840	U	14.7	0	4.840	U	4.8	U		
Barium 1,000	325		32.9	J	81.5	J	33.0	J	275		19.8	J	11.0	U		
Calcium No Standard	53300	J	81500	J	102000	J	131000	J	73500	J	26200	J	1740	U		
Chromium 50	1.220	U	1.680	J	1.2	U	1.760	J	1.2	U	1.220	U	1.2	U		
Cobalt 5	2.380	U	2.380	U	5.4	J	2.380	U	2.4	U	2.380	U	2.4	U		
Copper 200	3.700	J	4.680	J	11.4	J	4.610	J	9.2	J	6.040	J	7.3	J		
Iron 300	2050	<u>↓ ,. </u>	80.5	J	1530		62.4	J	21700		444	, , , , , , , , , , , , , , , , , , ,	38.4	J		
Lead 25 Magnesium 35,000(GV)	1.790 8250	U	1.790 7530	U	1.8 3620	U	1.790 10600	U	1.8 10200	U	1.790 3150	U	1.8 324	U		
Magnesium 35,000(GV) Manganese 300	8250 734		20.3	╂────┤	3620 3670	J	9.820	J	10200 1200		15.8	J	324 1.3	J		
Nickel 100	5.550	U	5.550	U	8.9	,]	5.550	U	5.5	U	5.550	U	5.5	U U		
Potassium No Standard	9400	<u> </u>	11400		23500	, , , , , , , , , , , , , , , , , , ,	40700		8330		2650	J	73.9	J		
Selenium 10	5.240	U	5.240	U	13.9		10.8		5.2	U	5.240	U	5.2	U		
Sodium 20,000	151000	J	26900	J	8300	J	25600	J	39200	J	8640	J	189	U		
Zinc 5,000(GV)	10.4	J	32.2	J	28.2	J	25.6		22.5	U	24.2		20.7			

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, New York State Department of Environmental Conservation, June 1998 and Addendum, April 2000.

Concentrations expressed in ug/l (micrograms per liter) or parts per billion (ppb)

#### <u>Qualifiers</u>

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

GV - denotes Guidance Value

(ESI) Monitoring Well previously installed by Empire Soils Investigations

NA - Not Applicable

### **TABLE 4.8.2**

# SOIL BORING ANALYTICAL SUMMARY RESULTS (IRM INVESTIGATION)

#### TABLE 4.8.2: Soil Boring Analytical Results Summary IRM Investigation VOCs and SVOCs (Validated Data) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	SB-100	(14-16')	SB-1	01S(15-17)	SB	-102(16-18)	SB-	103(14-16)	SB	103(22-24)	SB-	-105(26-28)	SB-1	05S(17-19)	EQUIPME	NTBLANK
COMPOUND	TAGM 4046	mg	/kg	mg	j/kg	mg	g/kg	mg	/kg	mg	/kg	mg	j/kg	mg	J/kg	m	ng/l
	RSCOs (mg/kg)****	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs																	
Acetone	0.2	0.037		0.2		0.1		0.094		0.03		0.026	J	0.16		0.0023	U
Carbon Disulfide	2.7	0.00047	U	0.0019	J	0.00047	U	0.00047	U	0.0019	J	0.0018	J	0.00048	U	0.0004	UJ
Methylene Chloride	0.1	0.0081	U	0.0025	U	0.0023	U	0.0057	JB	0.0043	U	0.0035	U	0.0036	U	0.00043	U
2-Butanone	0.3	0.0036	U	0.04		0.023	J	0.018	J	0.0031	U	0.0032	U	0.021	J	0.0011	U
Toluene	1.5	0.0021	U	0.00055	U	0.00052	U	0.00052	U	0.00045	U	0.00045	U	0.00053	U	0.0011	J
Ethyl Benzene	5.5	0.00046	U	0.00048	U	0.00045	U	0.00045	U	0.00039	U	0.0013	J	0.00047	U	0.00045	U
Isopropylbenzene	5	0.00054	U	0.00056	U	0.00053	U	0.00053	U	0.00046	U	0.0019	J	0.00055	U	0.00044	U
SVOCs																	
Phenanthrene	50	0.068	U	0.17	J	0.24	J	0.067	U	0.058	U	0.059	U	0.069	U	0.0015	U
Anthracene	50	0.064	U	0.067	U	0.13	J	0.064	U	0.055	U	0.055	U	0.065	U	0.0015	U
Fluoranthene	50	0.063	U	0.38	J	0.57		0.063	U	0.055	U	0.055	U	0.064	U	0.0013	U
Pyrene	50	0.075	U	0.26	J	0.38	J	0.075	U	0.065	U	0.065	U	0.077	U	0.0015	U
Benzo(a)anthracene	0.224 or MDL	0.059	U	0.15	J	0.21	J	0.059	U	0.051	U	0.051	U	0.061	U	0.0012	U
Chrysene	0.4	0.076	U	0.14	J	0.21	J	0.076	U	0.066	U	0.066	U	0.078	U	0.0018	U
bis(2-Ethylhexyl)phthalate	50	0.089	U	0.086	Ŭ	0.08	U	0.085	Ŭ	0.07	Ŭ	0.071	Ŭ	0.083	Ū	0.01	JB
Benzo(b)fluoranthene	1.1	0.047	U	0.15	J	0.2	J	0.047	U	0.04	U	0.04	U	0.048	U	0.00079	U
Benzo(a)pyrene	0.061 or MDL	0.068	U	0.12	J	0.16	J	0.068	U	0.059	U	0.059	U	0.069	Ū	0.0012	U
Indeno(1,2,3-cd)pyrene	3.2	0.054	U	0.057	Ŭ	0.078	J	0.054	U	0.047	U	0.047	U	0.055	Ū	0.00087	U
Benzo(g,h,i)perylene	50	0.07	U	0.074	U	0.073	J	0.07	U	0.061	U	0.061	U	0.072	U	0.0011	U

<u>Qualifiers</u>

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limi** TAGM 4046 lists 10 ppm as the Standard, Criteria and Guidance (SCG) for Chromium. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of th *** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA - Not Applicable

mg/kg indicates mlligram per kilogram or parts per million (ppm) and mg/l indicates milligram per liter or parts per million (ppm) HEAST - Health Effects Assessment Summary Tables

MDL indicates the laboratory's minimum detection limit

* TAGM 4046 lists 1 ppm as the Standard, Criteria and Guidance (SCG) for Cadmium. However, recent DEC Records of Decision (ROD) specify 10 ppm as the SCG.

However, recent DEC Records of Decision (ROD) specify 50 ppm as the SCG.

Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm

**** New York State Department of Environmental Conservation Technical and Administrative Guidance Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs) SB- Site Background

### **TABLE 4.8.3-1**

# GROUNDWATER ANALYTICAL SUMMARY RESULTS (IRM INVESTIGATION)

#### TABLE 4.8.3-1: Groundwater Analytical Results Summary IRM Investigation VOCs and SVOCs (Validated Data) South Troy Industrial Park C. T. Male Project No. 04.9138

COMPOUND	NYSDEC Groundwater Standard (1)	-	И-100 q/L		И-101 g/L		1-105 g/L	•	TM-105) g/L		`М-1 g/L		NT BLANK g/L		BLANK g/L
	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs															
Acetone	50 (GV)	2.3	U	2.3	U	2.3	U	2.3	U	3.5	U	10	J	2.3	U
Methylene Chloride	5	0.43	U	0.43	U	0.43	U	0.43	U	1.8	U	1.7	J	3.0	J
Benzene	1	0.39	U	4.0	J	3.4	J	0.39	U	1.7	J	0.39	U	0.39	U
Isopropylbenzene	5 (GV)	0.44	U	2.8	J	1.8	J	0.44	U	1.1	J	0.44	U	0.44	U
SVOCs															
Acenaphthene	20 (GV)	1.4	U	2.7	J	2.6	J	1.4	U	1.4	U	NA		NA	
Diethylphthalate	50 (GV)	1.5	J	3.0	J	1.9	J	1.8	J	1.4	U	NA		NA	
Carbazole	NS	1.3	U	1.3	U	1.5	J	1.3	U	1.3	U	NA		NA	

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, New York State Department of Environmental Conservation, June 1998 and Addendum, April 2000.

Concentrations expressed in ug/l (micrograms per liter) or parts per billion (ppb)

<u>Qualifiers</u>

 ${\sf U}\,$  - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

GV - denotes Guidance Value

(ESI) Monitoring Well previously installed by Empire Soils Investigations

NA - Not Analyzed

NS - No Standard

### **TABLE 4.9.2**

# SOIL BORING ANALYTICAL SUMMARY RESULTS (PARCEL 2 INVESTIGATION)

#### TABLE 4.9.2: Soil Boring Analytical Results Summary Parcel 2 Supplemental Investigation VOCs and SVOCs (Validated Data) South Troy Industrial Park C.T. Male Project No. 04.9138

Compound	NYSDEC TAGM 4046		(20-24') J/kg		(26-28') g/kg		2 (20-22') g/kg		3 (16-18') g/kg	SB-205 mg	(26-28') J/kg	FD (CT mg	,		i (10-12') g/kg	SB-20 mg	8 (6-8') /kg		19 (6-8') g/kg
	RSCOs (mg/kg)*	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifie
VOCs																			
Acetone	0.2	0.027	J	0.0081	J	0.022	J	0.051		0.016	J	0.014	J	0.02	J	0.015	J	0.014	J
Carbon Disulfide	2.7	0.0021	J	0.00044	U	0.00043	U	0.00047	U	0.00046	U	0.00044	U	0.0005	U	0.00047	U	0.00048	U
Methylene Chloride	0.1	0.0034	U	0.0037	U	0.011	UJ	0.0039	U	0.0023	U	0.003	U	0.012	UJ	0.01	UJ	0.0073	UJ
2-Butanone	0.3	0.0033	U	0.0033	U	0.0033	U	0.0089	J	0.0035	U	0.0033	U	0.0038	U	0.0036	U	0.0037	U
Benzene	0.06	0.0015	J	0.00047	U	0.00046	U	0.00051	U	0.0005	U	0.00047	U	0.00054	UJ	0.00051	U	0.00052	U
Toluene	1.5	0.00048	U	0.00048	U	0.00047	U	0.00052	U	0.00051	U	0.00048	U	0.00055	UJ	0.00051	U	0.00052	U
Ethyl Benzene	5.5	0.00042	U	0.00042	U	0.00041	U	0.00045	U	0.00044	U	0.00042	U	0.00048	U	0.00045	U	0.00046	U
m/p-Xylenes	1.2	0.001	U	0.001	U	0.001	U	0.0011	U	0.0011	U	0.001	U	0.0012	U	0.0011	U	0.0011	U
o-Xylene	1.2	0.0015	J	0.00045	U	0.00044	U	0.00049	U	0.00048	U	0.00046	U	0.00052	U	0.00049	U	0.0005	U
Styrene	NS	0.00054	U	0.00054	U	0.00053	U	0.00059	U	0.00057	U	0.00055	U	0.00062	U	0.00058	U	0.0006	U
Isopropylbenzene	5	0.00049	U	0.00049	U	0.00048	U	0.00053	U	0.00052	U	0.00049	U	0.00056	U	0.00053	U	0.00054	U
SVOCs																			
Naphthalene	13	0.066	U	0.066	U	0.065	U	0.072	U	0.067	U	0.067	U	0.076	U	0.071	U	0.073	U
1,1-Biphenyl	NA	0.063	U	0.064	U	0.063	U	0.069	U	0.065	U	0.065	U	0.073	U	0.069	U	0.07	U
Fluorene	50	0.065	U	0.066	U	0.064	U	0.071	U	0.066	U	0.066	U	0.075	U	0.07	U	0.072	U
Phenanthrene	50	0.061	U	0.062	U	0.074	J	0.067	U	0.062	U	0.062	U	0.071	U	0.066	U	0.068	U
Anthracene	50	0.058	U	0.059	U	0.057	U	0.063	U	0.059	U	0.059	U	0.067	U	0.063	U	0.064	U
Di-n-butylphthalate	8.1	0.059	U	0.059	U	0.058	U	0.064	U	0.06	U	0.06	U	0.068	U	0.064	U	0.065	U
Fluoranthene	50	0.057	U	0.058	U	0.18	J	0.063	U	0.058	U	0.058	U	0.066	U	0.062	U	0.064	U
Pyrene	50	0.068	U	0.069	U	0.14	J	0.074	U	0.069	U	0.069	U	0.079	U	0.074	U	0.076	U
Benzo(a)anthracene	0.224 or MDL	0.054	U	0.054	U	0.082	J	0.059	U	0.055	U	0.055	U	0.062	U	0.058	U	0.06	U
Chrysene	0.4	0.069	U	0.07	U	0.077	J	0.076	U	0.07	U	0.07	U	0.08	U	0.075	U	0.077	U
bis(2-Ethylhexyl)phthalate	50	0.074	U	0.075	U	0.26	J	0.081	U	0.075	U	0.075	U	0.085	U	0.08	U	0.082	U
Benzo(b)fluoranthene	1.1	0.042	Ū	0.043	U	0.069	J	0.046	U	0.043	U	0.043	Ű	0.049	U	0.046	U	0.047	U
	NYSDEC	SB-210	(22-24')	CTM-21	2 (10-12')	CTM-2	14 (2-4')	CTM-21	5 (20-22')	CTM-216	6 (18-20')	FD (CT	M-215)	EQUIPME	NT BLANK	EQUIPME	NT BLANK	TRANSPO	
Compound	TAGM 4046				n/ka		a/ka ,		alka		/ka	ma	lka		a/I		a/I		na/l

Compound	TAGM 4046	AGM 4046 mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/l		mg/l		mg/l	
	RSCOs (mg/kg)*	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs																			
Acetone	0.2	0.0039	U	0.0038	UJ	0.0038	UJ	0.004	UJ	0.0043	UJ	0.004	UJ	0.0023	U	0.0023	U	0.0023	U
Carbon Disulfide	2.7	0.00043	U	0.00042	UJ	0.00042	UJ	0.00044	UJ	0.00047	UJ	0.00044	UJ	0.0004	UJ	0.0004	UJ	0.0004	UJ
Methylene Chloride	0.1	0.003	UJ	0.0021	UJ	0.0021	U	0.0022	U	0.0023	UJ	0.0022	U	0.00043	U	0.00043	UJ	0.00043	UJ
2-Butanone	0.3	0.0033	U	0.0032	UJ	0.0032	U	0.0034	U	0.0036	U	0.0034	U	0.0011	U	0.0011	U	0.0011	U
Benzene	0.06	0.00046	U	0.00045	UJ	0.053		0.00048	U	0.00051	U	0.00048	U	0.00039	U	0.00039	U	0.00039	U
Toluene	1.5	0.00047	U	0.00046	UJ	0.094		0.00049	U	0.00051	U	0.00049	U	0.00036	U	0.00036	U	0.00036	U
Ethyl Benzene	5.5	0.00041	U	0.0004	UJ	0.027		0.00043	U	0.00045	U	0.00043	U	0.00045	U	0.00045	U	0.00045	U
m/p-Xylenes	1.2	0.001	U	0.00098	UJ	0.036		0.001	U	0.0011	U	0.001	U	0.0012	U	0.0012	U	0.0012	U
o-Xylene	1.2	0.00044	U	0.00043	UJ	0.018		0.00046	U	0.00049	U	0.00046	U	0.00046	U	0.00046	U	0.00046	U
Styrene	NA	0.00053	U	0.00052	UJ	0.0014	J	0.00055	U	0.00058	U	0.00055	U	0.00041	U	0.00041	U	0.00041	U
Isopropylbenzene	5	0.00048	U	0.00047	UJ	0.0029	J	0.0005	U	0.00053	U	0.0005	U	0.00044	U	0.00044	U	0.00044	U
SVOCs																			
Naphthalene	13	0.066	U	0.063	U	0.28	J	0.067	U	0.3	J	0.066	U	0.0013	U	0.0014	U	NA	
1,1-Biphenyl	NA	0.063	U	0.23	U	0.06	U	0.065	U	0.068	U	0.25	U	0.0013	U	0.0014	U	NA	
Fluorene	50	0.065	U	0.062	U	0.2	J	0.066	U	0.22	J	0.065	U	0.0013	U	0.0014	U	NA	
Phenanthrene	50	0.061	U	0.25	J	0.23	UJ	0.062	U	0.28	J	0.062	U	0.0014	U	0.0014	U	NA	
Anthracene	50	0.058	U	0.22	J	0.055	UJ	0.059	U	0.25	J	0.059	U	0.0013	U	0.0014	U	NA	
Di-n-butylphthalate	8.1	0.058	U	0.19	UJ	0.056	UJ	0.21	U	0.062	U	0.2	U	0.0068	JB	0.0013	U	NA	
Fluoranthene	50	0.057	U	0.28	J	0.055	UJ	0.058	U	0.25	J	0.058	U	0.0011	U	0.0012	U	NA	
Pyrene	50	0.068	U	0.096	J	0.065	U	0.069	U	0.073	U	0.069	U	0.0014	U	0.0015	U	NA	
Benzo(a)anthracene	0.224 or MDL	0.054	U	0.076	J	0.051	U	0.055	U	0.057	U	0.054	U	0.0011	U	0.0011	U	NA	
Chrysene	0.4	0.069	U	0.21	J	0.16	J	0.07	U	0.2	J	0.07	U	0.0016	U	0.0017	U	NA	
bis(2-Ethylhexyl)phthalate	50	0.074	U	0.29	U	0.07	Ŭ	0.32	U	0.079	U	0.074	U	0.013		0.0016	U	NA	
Benzo(b)fluoranthene	1.1	0.042	U	0.088	J	0.04	U	0.043	U	0.045	U	0.043	U	0.00071	U	0.00076	U	NA	

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

NS- Not Sampled

NA - Not Applicable

mg/kg indicates miligram per kilogram or parts per million (ppm) and mg/t indicates milligram per liter or parts per million (ppm) MDL indicates the laboratory's minimum detection limit

* New York State Department of Environmental Conservation Technical and Administrative Guidance

Memorandum (TAGM) #4046 - Recommended Soil Cleanup Objectives (RSCOs)

SB- Site Background

# **TABLE 4.9.3-1**

# GROUNDWATER ANALYTICAL SUMMARY RESULTS (PARCEL 2 SUPPLEMENTAL INVESTIGATION)

#### TABLE 4.9.3-1: Groundwater Analytical Results Summary Parcel 2 Supplemental Investigation VOCs and SVOCs (Validated Data) South Troy Industrial Park C.T. Male Project No. 04.9138

	NYSDEC	CTM-203 ug/L		CTM-208 ug/L		CTM	<b>N-212</b>	CTM	1-213	CTM	<b>N-214</b>	FD (CTM-214)		
COMPOUND	Groundwater Standard (1)					ug/L		ug/L		ug/L		ug/L		
	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	
VOCs														
Acetone	50 (GV)	7.2	UJ	2.3	UJ	3.5	U	3.5	U	12	UJ	13	UJ	
Methylene Chloride	5	4.4	J	18		1.8	U	1.8	U	0.43	U	0.43	U	
2-Butanone	NA	1.1	U	1.1	U	2.3	U	2.3	U	2.3	U	1.1	U	
Chloroform	7	0.33	U	0.33	U	0.61	U	0.61	U	0.33	U	0.33	U	
Benzene	1	0.39	U	0.39	U	0.71	U	0.71	U	23		20		
Bromodichloromethane	50 (GV)	0.33	U	0.33	U	0.73	U	0.73	U	0.33	U	0.33	U	
Toluene	5	0.36	U	0.36	U	0.71	U	0.71	U	1.2	J	0.98	J	
Ethyl Benzene	5	0.45	U	0.45	U	0.76	U	0.76	U	15		12		
m&p-Xylenes	5	1.2	U	1.2	U	1.5	U	1.5	U	1.3	J	1.2	UJ	
o-Xylene	5	0.46	U	0.46	U	0.72	U	0.72	U	0.69	J	0.61	J	
Isopropylbenzene	5	0.44	U	0.44	U	0.75	U	0.75	U	2.2	J	1.6	J	
SVOCs														
Naphthalene	10 (GV)	1.4	U	1.4	U	1.4	U	1.4	U	7.3	J	8.0	J	
Caprolactam	NA	1.3	UJ	1.3	UJ	8.7	J	11		1.3	UJ	1.3	UJ	
2-Methylnaphthalene	NA	1.1	U	1.1	U	1.1	U	1.1	U	16		17		
Acenaphthene	20 (GV)	1.3	U	1.4	U	1.4	U	1.4	U	2.1	J	2.1	J	
Phenanthrene	50 (GV)	1.4	U	1.4	U	1.5	U	1.4	UJ	1.4	UJ	1.5	J	
Anthracene	50 (GV)	1.4	U	1.4	U	1.5	U	1.4	UJ	1.4	UJ	1.5	J	

	NYSDEC	CTM-215 ug/L		CTM-216 ug/L		CTM-8 ug/L		CTM-9 ug/L		EQUIPMENT BLANK ug/L		TRIP BLANK ug/L		TRIP BLANK ug/L	
COMPOUND	Groundwater Standard (1)														
	ug/l	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
VOCs															
Acetone	50 (GV)	2.3	UJ	3.5	U	3.5	U	3.5	U	3.5	U	3.9	J	39	J
Methylene Chloride	5	2.9	J	1.8	U	1.8	U	1.8	U	250	D	1.8	U	0.43	U
2-Butanone	NA	1.1	U	2.3	U	2.3	U	2.3	U	2.3	U	7.9	J	12	J
Chloroform	7	0.33	U	0.61	U	4.7	J	0.61	U	0.61	Ŭ	0.61	Ū	0.33	U
Benzene	1	0.39	U	0.71	U	0.71	U	0.71	U	0.71	U	0.71	U	0.39	U
Bromodichloromethane	50 (GV)	0.33	U	0.73	U	0.82	J	0.73	U	0.73	U	0.73	U	0.33	U
Toluene	5	0.36	U	0.71	U	0.71	U	0.71	U	0.71	U	0.71	U	0.36	U
Ethyl Benzene	5	0.45	U	0.76	U	0.76	U	0.76	U	0.76	U	0.76	U	0.45	U
m&p-Xylenes	5	1.2	U	1.5	U	1.5	U	1.5	U	1.5	U	1.5	U	1.2	U
o-Xylene	5	0.46	U	0.72	U	0.72	U	0.72	U	0.72	U	0.72	U	0.46	U
Isopropylbenzene	5	0.44	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.44	U
SVOCs															
Naphthalene	10 (GV)	1.4	U	1.4	UJ	1.4	U	1.4	U	1.4	U	NS		NS	
Caprolactam	NA	1.3	UJ	1.3	UJ	5.2	J	1.3	UJ	1.3	UJ	NS		NS	
2-Methylnaphthalene	NA	1.1	U	1.1	UJ	1.1	U	1.1	U	1.1	U	NS		NS	1
Acenaphthene	20 (GV)	1.4	U	1.4	U	1.4	U	1.4	U	1.4	U	NS		NS	
Phenanthrene	50 (GV)	1.4	U	1.4	UJ	1.4	U	1.5	UJ	1.5	UJ	NS		NS	
Anthracene	50 (GV)	1.4	U	1.4	UJ	1.4	U	1.4	UJ	1.4	UJ	NS		NS	

(1) TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, New York State Department of Environmental Conservation, June 1998 and Addendum, April 2000.

Concentrations expressed in ug/l (micrograms per liter) or parts per billion (ppb)

Qualifiers

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than zero.

The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

* For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

GV - denotes Guidance Value

(ESI) Monitoring Well previously installed by Empire Soils Investigations

NA - Not Applicable

NS - Not Sampled