PERIODIC REVIEW REPORT

FORMER ROBLIN STEEL FACILITY 320 SOUTH ROBERTS ROAD, DUNKIRK NEW YORK

NYSDEC SITE NO. B00173-9

Prepared for:

Chautauqua County Department of Public Facilities 454 North Work Street Falconer, New York

Prepared by:

ENGINEERING · LAND SURVEY · MAPPING · ENVIRONMENTAL

WE DESIGN WITH CONSCIENCE. WE ACT WITH PURPOSE.

October 2013

2010.0128.07

PERIODIC REVIEW REPORT FORMER ROBLIN STEEL FACILITY 320 SOUTH ROBERTS ROAD, DUNKIRK NEW YORK

TABLE OF CONTENTS

	TABLE OF CONTENTS	i
I.	EXECUTIVE SUMMARY A. Site Summary B. Effectiveness of Remedial Program C. Compliance D. Recommendations	1 1 1 1
II.	SITE OVERVIEW A. Site Background B. Remedial Program Overview	1 1 3
III.	EFFECTIVENESS OF THE REMEDIAL PROGRAM	4
IV.	IC/EC PLAN COMPLIANCE REPORT A. Institutional Controls B. Engineering Controls 1. Soil Cover System 2. Soil Vapor Intrusion Evaluation	4 4 5 6
V.	 MONITORING PLAN COMPLIANCE REPORT A. Requirements B. Groundwater Monitoring C. Comparisons with Remedial Objectives D. Monitoring Deficiencies E. Conclusions and Recommendations 	6 7 9 10 10
VI.	CONCLUSIONS AND RECOMMENDATIONS	10
VII.	LIMITATIONS	11

FIGURES

Figure 1: Site Location Map Figure 2: Site Plan

TABLES

Table 1: Summary of Analytical Results

APPENDICES

Appendix A: Boundary Survey Former Roblin Steel Site Appendix B: Photographs Appendix C: NYSDEC Institutional and Engineering Controls Certification Form Appendix D: Groundwater Sampling Logs Appendix E: Analytical Laboratory Report and Chain of Custody Appendix F: Millennium Parkway Environmental Construction Plans

I. EXECUTIVE SUMMARY

A. Site Summary

The former Roblin Steel site (hereinafter referred to as the "Site") occupies approximately 12 acres of an inactive industrial park. The Site formerly contained the shell of a former 88,500-square-foot facility building that was demolished as part of the 2010 remedial activities. The Site is located in an area zoned for industrial use. An environmental investigation conducted at the site revealed that contamination associated with historical operations had impacted the property, necessitating remedial activities. Following completion of the remedial work described in the February 2006 Remedial Action Work Plan (RAWP), some contamination was left in the subsurface at this Site, which is hereafter referred to as 'remaining contamination'. The remedial efforts also included development of a November 2010 Site Management Plan (SMP) to manage remaining contamination at the site in perpetuity or until extinguishment of the Environmental Easement in accordance with ECL Article 71, Title 36.

B. Effectiveness of Remedial Program

The soil cover system constructed as part of the remediation of the site is currently in good condition and operating as designed. Additionally, the results of the groundwater monitoring revealed that total VOC concentrations have generally decreased during the recent sampling event performed in August, 2013. The remedial program is viewed to be effective in achieving the remedial objectives of the site. TVGA will continue to monitor the site based on the SMP.

C. Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during this Periodic Review Report (PRR).

D. Recommendations

No recommended changes to the SMP were identified during this PRR.

II. SITE OVERVIEW

A. Site Background

The Site occupies approximately 12 acres of an inactive industrial park. The Site formerly contained the shell of a former 88,500-square-foot facility building. The building was demolished as part of the 2010 remedial activities. Figure 1 shows the location of the Site and Figure 2 is the site plan map. The adjoining properties located in

the industrial park include the former Alumax Extrusions site located to the south and the Edgewood Warehouse site located to the west. In 1910, all three of these properties were developed as part of a larger industrial complex operated by the American Locomotive Company (ALCO). The Site was later used for steel reclamation; however, operations ceased in 1987. Following this closure, salvage operations dismantled and partially demolished the majority of the on-site structures in the late 1980s and early 1990s. Since that time, the Site has been vacant.

In May 2013, a new highway construction project was initiated within the City called the Millennium Parkway Talcott Street Extension project. The alignment of the new roadway passes through the Site. Enclosed as Appendix F are three plan sheets from the roadway construction project (sheets ED-1, ED-2 and ED-3) which show the road alignment along with the environmental procedures that the construction contractor is required to follow during construction activities. The plans were developed in accordance with the SMP. To date, the only construction activities that have occurred on-site is digging for drainage and grading for the future roadway to the northeast.

The Site is located in an area zoned for industrial use. A mixture of commercial, industrial and residential properties comprise the land use in the Site's vicinity. The Site is bounded to the north by an active CSX rail yard; to the east by active Norfolk Southern railroad tracks; to the south by the former Alumax Extrusions site; and to the west by the Edgewood Warehouse site. Residential properties are situated to the northwest and south of the Site beyond the adjoining properties. Additionally, mixed commercial and light industrial properties are located to the north and west of the Site, while an undeveloped wooded area and Hyde Creek are located to the east.

The March 2005 Record of Decision (ROD) issued by the New York State Department of Environmental Conservation (NYSDEC) identified seven (7) impacted Media Groups (MGs) associated with the site. The MGs include:

- Surface soil/fill debris piles
- Subsurface soil/fill impacted with chlorinated VOCs
- Subsurface soil/fill with PAH and metals impacts and/or petroleum nuisance characteristics
- Drainage features and contents
- Building components
- Concrete and surface soil impacted with polychlorinated biphenyls (PCBs)
- Groundwater impacted with VOCs
- B. Remedial Program Overview

The site investigation for the Site Investigation/Remedial Alternatives Report (SI/RAR) was conducted at the site from 2002 to 2003, and revealed that contamination associated with historical operations had impacted the property, necessitating remedial activities. The NYSDEC issued a ROD in March 2005. A Remedial Action Work Plan (RAWP) was prepared in February 2006 to describe the specific remedial activities that would be implemented at the Site to complete the remediation in accordance with the ROD. The remediation program included two distinct types of activities: those that are related to the removal or treatment of contaminated material (Phase I) and those that are directly related to the redevelopment and reuse of the Site (Phase II). The Phase I components included:

- Excavation and off-site disposal of surface soil/fill that exceeds the Site-Specific Cleanup Levels (SSCLs)
- Excavation and off-site disposal of subsurface soils that exceed SSCLs
- Cleaning and filling of site drainage features
- Removal and disposal of PCB containing electrical equipment
- Removal and disposal of miscellaneous site debris
- Decommissioning of monitoring wells that are not part of the long-term monitoring program
- Enhanced natural attenuation of site groundwater

The Phase II activities included the following:

- Removal of asbestos-containing materials (ACMs)
- Demolition of the building
- Removal and crushing of the of concrete slabs and top 12 inches of the foundations followed by the placement of the crushed concrete across the site
- Installation of a site-wide soil cover system
- Establishment of vegetative cover

Following completion of the remedial work described in the RAWP, some contamination may have been left in the subsurface at this Site. The remedial efforts also included development of a November 2010 Site Management Plan (SMP) to manage remaining contamination at the site in perpetuity or until extinguishment of the Environmental Easement in accordance with ECL Article 71, Title 36.

III. EFFECTIVENESS OF THE REMDIAL PROGRAM

All remedial actions described in the RAWP were completed during the Phase I and Phase II remedial activities. Remedial goals were accomplished through the removal and offsite disposal of contaminated media exceeding the site-specific contaminate levels (SSCLs); removal of PCB equipment; enhanced natural attenuation of the site groundwater; removal of ACMs; demolition of the on-site structure; and the installation of the site-wide soil cover system to prevent exposure to remaining contamination in the subsurface.

As indicated in the October 2010 Post-Remedial Groundwater Monitoring Event Letter to the NYSDEC the remedial goals for on-site groundwater are being achieved. Based on the comparison of the pre-remedial and the post-remedial analytical results, the enhanced natural attenuation appears to be achieving the goal of reducing the concentrations of chlorinated solvents in the groundwater.

IV. IC/EC PLAN COMPLIANCE REPORT

A. Institutional Controls

In accordance with the SMP, the Site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

- The property may only be used for commercial or industrial use provided that the long-term Engineering and Institutional Controls included in the SMP are employed;
- The property may not be used for a higher level of use, such as unrestricted, residential or restricted residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of the groundwater underlying the property is restricted as a source of potable or process water, without necessary water quality treatment, as determined by the Chautauqua County Department of Health;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be monitored and mitigated;
- The SMP will provide for the operation and maintenance of the components of the remedy;
- Vegetable gardens and farming on the property are prohibited; and
- The property owner is required to provide an Institutional Control/Engineering Control (IC/EC) certification, prepared and submitted by

a professional engineer or environmental professional acceptable to the NYSDEC annually or for a period to be approved by the NYSDEC, which will certify that the institutional controls and engineering controls put in place are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.

The Environmental Easement is described on the Boundary Survey of the Former Roblin Steel Site, included as Appendix A. The site remains vacant, however the construction of a new roadway (The Millennium Parkway Project) has commenced and when completed the road will traverse the site from the southwest to the northeast. The project will conform to all requirements listed in the SMP. TVGA has been contracted by the County to perform the environmental oversight for the project. TVGA personnel will be present for all intrusive work completed on the site.

- B. Engineering Controls
 - 1. Soil Cover System

Exposure to remaining contamination in soil/fill at the Site is prevented by a soil cover system previously placed over the Site. This cover system is comprised of a minimum of 12 inches of clean soil overlaying a demarcation layer (orange plastic mesh material) over the entire surface of the site. The Excavation Work Plan (EWP), which appears in Appendix A of the SMP, outlines the procedures that are required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. The cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

On August 15, 2013, Ms. Jessica Gostomski conducted the annual site inspection, which included traversing the site on-foot to observe the current conditions throughout site. The site is currently vacant and undeveloped consisting of shrubs and grasses. Ponding is occurring south of the northern property line boundary extending from approximately MW-04 and MW-07R. Construction of the Millennium Parkway is currently underway. The construction extends from South Roberts Road across the former Roblin Steel and Alumax sites to the western terminus of the reconstructed Progress Drive. The construction area is surrounded by silt fence. Some debris (such as logs, old railroad tracks, scrap metal, etc.) is located on the western portion of the site along both sides of the proposed roadway. Construction and site grading for the proposed roadway and associated drainage. The roadway was designed and is

being constructed in accordance with the SMP. All disturbed portions of the site cover system will be reestablished. Any materials removed below the cover system will be inspected for visual or olfactory evidence of contamination. If contamination is observed, the material will be stockpiled and later disposed of off-site in accordance with the SMP. A TVGA representative will be on-site and equipped with a photoionization detector (PID) during all intrusive activities.

Remaining portions of the site cover systems are in place and performing as designed.

Appendix B includes photographs taken during the site inspection. Appendix C includes the NYSDEC "Site Management Periodic Review Report Notice – Institutional and Engineering Controls Certification Form."

2. Sub-Slab Vapor Venting System

No SSVVS has been installed as part of the site remedy. However, any potentially new structures constructed on the Site as part of site redevelopment may be equipped with a SSVVS, if warranted. The design and sampling of the SSVVS will be performed in accordance NYSDEC and NYSDOH guidance at the time the system is installed. The ultimate deign of the SSVVS will be dependent upon the size and configuration of any newly constructed buildings. Therefore, the specific components of the SSVVS have not been determined.

V. MONITORING PLAN COMPLIANCE REPORT

A. Requirements

The Monitoring Plan is included in Section 3.0 of the SMP and describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media.

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards;
- Monitoring of the Cover System;
- Assessing achievement of the remedial performance criteria;
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and

• Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

B. Groundwater Monitoring

The groundwater monitoring program will be conducted on an annual basis for 30 years. Groundwater samples will be analyzed for volatile organic compounds (VOCs) appearing on the USEPA Target Compound List (TCL). Trends in contaminant levels in groundwater will be evaluated to determine if the remedy continues to be effective in achieving remedial goals.

Sampling Procedure

The eight groundwater monitoring wells (five downgradient monitoring wells (MW-01, MW-02, MW-04, MW-12 and EX-MW-12) and the three areas of groundwater with elevated chlorinated VOCs (MW-09R, MW-07 and EX-MW11) were purged and sampled in general accordance with the procedures detailed in the November 2010 SMP. All monitoring well sampling activities were recorded on groundwater sampling logs, which are included in Appendix D. Other observations (e.g., well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the top of the riser. The groundwater levels were used to determine the volume of standing water in the wells.

Well purging consisted of the evacuation of a minimum of three well volumes or, in the case of wells with slow recharge rates, until the well was evacuated to dryness using dedicated polyethylene bailers. After the completion of development, the monitoring wells were allowed to recharge. The samples were collected within three hours of completion of well development using dedicated bailers and clean sample bottles containing preservatives provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs.

Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples to document each person that handled the samples. The samples were transported to Paradigm Environmental Services, Inc., which is a New York State Department of Health Environmental Laboratory Approval Program (ELAP) certified environmental laboratory, for analytical testing. The COC records established for the collected samples were maintained throughout laboratory handling. Copies of the COCs and complete analytical laboratory report are included as Appendix E.

Quality Assurance/Quality Control Samples

In addition to field samples, Quality Assurance/Quality Control (QA/QC) samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC sample included blind field duplicate (collected from MW-9R) and trip blank samples that were analyzed for TCL VOCs.

Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, this data is compared with the Standards Criteria and Guidance values (SCGs) applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Table 1 summarizes the groundwater pre- and post-remedial sampling results and compares the results to the applicable water quality standards. Figure 2 depicts the locations of the monitoring wells as well as the post-remedial analytical results from this sampling event.

As shown in Table 1, no VOCs were detected in monitoring wells MW-01 and MW-12 during this sampling event.

One or more VOCs were detected at concentrations above standards in the samples collected from monitoring wells MW-02R, MW-04, MW-07R, MW-09R, EX-MW-11R, and EX-MW-12.

C. Comparisons with Remedial Objectives

No VOCs were detected in monitoring wells MW-01, MW-04 and MW-12 during this sampling event or the previous post-remediation sampling event; therefore, these wells are meeting the remedial objectives set in place for the site.

One or more VOCs were detected at concentrations above standards in the samples collected from monitoring wells MW-02R, MW-04, MW-07R, MW-09R, EX-MW-11R, and EX-MW-12. However the total VOC concentrations in all of these locations have decreased since the last sampling event performed in August 2010 with the exception of acetone in MW-04.

The VOC parameter concentrations in MW-02R have generally decreased or were reported as non-detect since the last sampling event. Chloroethane, cyclohexane, isopropylbenzene, methyl cyclohexane and vinyl choride were detected for the first time or at a concentration slightly higher than the previous event. Chloroethane, cyclohexane, isopropylbenzene and methyl cyclohexane were detected in MW-02R for the first time. Cyclohexane and methyl cyclohexane do not have a regulatory standard associated with them, while isopropylbenzene was detected below the regulatory value and chloroethane was detected only slightly above the regulatory value. The detection of vinyl chloride has increased slightly since the last sampling event; however, the concentration is lower than the pre-remedial concentration from October 2002.

The VOC concentrations in MW-04 were all non-detect, with the exception of acetone. This is the first detection of acetone at this location and the total VOC concentration has increased overall. However; the concentration of acetone in MW-04 is below the regulatory value and no indications of a trend was identified. TVGA will continue to monitor acetone in MW-04 during future monitoring events.

The VOC parameter concentrations in MW-07R and EX-MW-12 have all decreased or were reported as non-detect during this sampling event when compared to the previous event.

The VOC concentrations in MW-09R have generally decreased or were reported as nondetect since the last sampling event with the exception of a few parameters which include: cyclohexane, methylcyclohexane and vinyl chloride. Cyclohexane, and methyl cyclohexane were detected in MW-09R for the first time. Cyclohexane and methyl cyclohexane do not have a regulatory standard associated with them. The detection of vinyl chloride has increased since the previous sampling event. The total VOC concentration in MW-09R has decreased from the previous sampling event; however, TVGA will continue to monitor these parameters at this location during future sampling events for indications of a trend.

The VOC concentrations in EX-MW-11R have decreased or were reported as non-detect since the last sampling event with the exception of vinyl chloride. The detection of vinyl chloride has increased slightly since the last sampling event performed in August 2010; however, the concentration is significantly lower than the pre-remedial concentration from October 2002.

A comparison of the results from MW-09R with the blind field duplicate indicates that the data generally coincide (i.e. all concentrations for the duplicate were within 1.5 times of the detected concentrations of the original sample) with the exception of cis-1,2-dichloroethene. The concentration of cis-1,2-dichloroethene was 1.6 times greater in the duplicate than in MW-09R.

D. Monitoring Deficiencies

It should be noted that groundwater monitoring well MW-04 was not sampled on the original sampling date of 8/15/2013. MW-04 was sampled the following week, 8/21/13 due to the fact that the well could not be located during the original sampling date. Well MW-07R was originally mistaken for MW-4. When TVGA personnel went back out to the site, MW-04 was found and sampled. The wells that were difficult to locate due to high grasses and shrubs (MW-1, MW-4 and MW-7) were spray painted orange to make them more visible. The laboratory was contacted regarding the mix-up of MW-04 and MW-07R and the COC was updated to reflect the change.

E. Conclusions and Recommendations

Based on the information provided in the SMP, the groundwater monitoring program for this site is conducted on an annual basis for 30 years. The sampling frequency may be modified with the approval of the NYSDEC. The SMP would then be modified to reflect any changes in sampling plans approved by NYSDEC.

The detected VOC concentrations in the samples collected during this sampling event were lower than those from the previous sampling events. Based on the fact that the concentrations of VOCs have generally decreased, the enhanced natural attenuation appears to be achieving the goal of reducing the concentrations of VOCs in the groundwater. No changes to the Monitoring Plan or the SMP are recommended at this time.

VI. CONCLUSIONS AND RECOMMENDATIONS

At the time of the site inspection, the Former Roblin Steel Facility was in compliance with the SMP. The cap is functioning as designed and all disturbances to the cap during construction activities at the site are being monitored as described in the Excavation Work Plan (EWP), Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP). All disturbed portions of the site cover system will be reestablished. Based on the analytical results from this sampling event, total VOC concentrations in all of the sampling locations have decreased since the last sampling event performed in August 2010. Based on the fact that total VOC concentrations have generally decreased, it appears that natural attenuation is occurring at the site and the remedial objectives are being achieved. No changes to the SMP or the PRR frequency are recommended at this time. The next groundwater monitoring event and PRR will be completed in 2014.

VII. LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance generally accepted professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.), as cited herein, was used in the assessment of the site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, TVGA is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available within the limits of the existing data, scope of services, budget, and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically TVGA's intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action except where explicitly stated as such. TVGA makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not to be construed as legal advice.

This assessment and report have been completed and prepared on behalf of and for the exclusive use of Chautauqua County. Any reliance on this report by a third party is at such party's sole risk. Furthermore, nothing contained in this report shall be construed as a warranty or affirmation by TVGA that the subject property described in this report are suitable collateral for any loan or that acquisition of such property by any lender through foreclosure proceedings or otherwise will pose no risk of potential environmental liability on the part of such lender.

N:\2010 Projects\2010.0128.07 Alumax and Roblin\5 - Project Deliverables\Roblin\Periodic Review Report - 2013_Roblin.docx

FIGURES

TABLES

Table 1 Former Roblin Steel Site Summary of Analytical Results Groundwater Samples

	REGULATORY	[_			070			B4\4/ /	ODR			EY-M	V-11P	
PARAMETER	VALUE "		MW	/-01			MW	02R		_	MW-04			IVIW-U/R						10/11/02	2 /1 0 /00	0/10/10	0/15/12		
Collection Date		10/11/02	2/10/09	8/10/10	8/15/13	10/11/02	2/10/09	8/10/10	8/15/13	10/11/02	2/10/09	8/10/10	8/21/13	10/11/02	5/4/09	8/10/10	8/15/13	10/11/02	2/10/09	8/10/10	8/15/13	10/11/02	2/10/09	8/10/10	8/15/13
Volatile Organic Compour	nds (ug/L)			17.17. M	ALCO LINE	DECKAD.	201 2 2 2 1	AMERICAN.	- 14, 181, 142	TO RECENT	NE PANEN		त हैं। जीव दि		NO EVELSE	7.6 8 18 - 5		And Aller I.			t Xii - Arr	and a real from	(200 / 200 /	1. 30 miles	N
1,1-Dichloroethene	5													15				3	2.02				10. 00 (A	5 3 3 6	1 050
cis-1,2-Dichloroethene	5]			NA		21.3	10.1	NA				NA		904	128	NA	210	277	217	NA	354	5,320	1,950
trans-1,2-Dichloroethene	5		1			NA				NA				NA				NA	4.48	17.3		NA			()
1,2-Dichloroethene (Total)	5		1			88		21.3					1	1,500		904		380	214	294		41,000	354	5,320	[]
1,2,4-Trimethylbenzene	5		1				10												12.9				<u> </u>		
2-Butanone	50		1				33.5	129]]			305					
Acetone	50							21.7	12.3				43.8							569					
Benzene	1	1				18	7.92	37.3	18.2	6				10	65	14		35	11.5	445	87.7				L
Chloroethane	5		1 9						6.2																L
Cyclohexane			1 7						32.8												208				
cis-1,3-Dichloropropene	0														1,500										<u> </u>
Ethylbenzene	5						9.81	18.9	16.9	2				4				12	5.66	69.6	33.7				l
Isopropylbenzene	5		1 🗎						2.53															()	<u> </u>
Methyl Cyclohexane			1 –						13.8						99						121		·		
n-Propylbenzene	5						2.57						1												<u> </u>
Tetrachloroethene	5														160										
Toluene	5		1			24	7.19	101						12	69	29.7		74	23.3	581					
m,p-Xylene	5	NA	1			NA	7.62	73.2	2.45	NA				NA	67	33.3		NA	20.5	239		NA			L
o-Xylene	5	NA	1			NA	2.61	37.2		NA				NA			l	NA	11.5	128		NA		l	
Total Xylenes	5	4	1			11	10.23	110.4		10				23	67	33.3		75	32	367					
Trichloroethene	5		1			32	1	3.31	ii					56		49.2		450	135	585		150,000	168	4,630	
Vinyl chloride	2		1			31		5.34	12.5				[]	330	770	402	56.1	34	33		991	9,800	27	638	881
Total VOCs	341	5	0	0	0	204	91.45	579.95	127.78	18	0	0	43.8	1950	2797	2369.5	184.1	1063	716.34	3877.2	1658.4	200,800	903	15,908	2,831

	REGULATORY								
PARAMETER	VALUE ⁽¹⁾		MW	-12		· · · · · · · · · · · · · · · · · · ·	EX-M	N-12	
Collection Date		10/11/02	2/10/09	8/10/10	8/15/13	10/11/02	2/10/09	8/10/10	8/15/13
Volatile Organic Compour	nds (ug/L)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	102.137.01	10 14 15			TOM ST.		
cis-1,2-Dichloroethene	5	NA				NA		7.6	
trans-1,2-Dichloroethene	5	NA				NA			
1,2-Dichloroethene (Total)	5	150				150		7.6	
1,2-Dichloropropane	5	ļ]]]			
1,2,4-Trimethylbenzene	5								
2-Butanone	50							31.3	
2-Hexanone	50							5.23	
4-Methyl-2-pentanone									
Acetone	50							73.8	
Benzene	1	1	1			1		24.0	1.9
Ethylbenzene	5	1				1		18.5	
Toluene	5							48.7	
m,p-Xylene	5					NA		74.7	
o-Xylene	5					NA		40.4	
Total Xylenes	5							115.1	
trans-1,3-Dichloropropene	5]						
Trichloroethene	5							8.96	
Vinyl chloride	2	200				200		27.2	
Total VOCs		352	0	0	0	352	0	483.1	1.9

Notes:

1. Regulatory values are derived from NYS Ambient Water Quality Standards TOCS 1.1.1 (Source of Drinking Water, groundwater),

2. Guidance value was used when standard was not available.

3. (-) = No regulatory value is associated with this compound.

4. Shaded values represent exceedances of the regulatory value.

5. ug/L = micrograms per Liter (equivalent to parts per billion (ppb)).

6. Only compounds with one or more detections are shown.

7. Blank spaces indicate that the analyte was not detected.

8, "NA" = parameter was not analyzed

APPENDIX A

BOUNDARY SURVEY: FORMER ROBLIN STEEL SITE

ENVIRONMENTAL EASEMENT AREA DESCRIPTION ALL BEARINGS IN THIS DESCRIPTION ARE REFERENCED TO A LOCAL SYSTEM AND DEEDED BEARINGS FROM A PRIOR SURVEY MADE BY MICHAEL J. RODGERS LAND SURVEYOR, PC, DATED NOVEMBER 28, 2001. ALL THAT TRACT OR PARCEL OF LAND SITUATE IN THE CITY OF DUNKIRK, COUNTY OF CHAUTAUQUA AND STATE OF NEW YORK AND FURTHER BOUNDED AND DESCRIBED AS FOLLOWS: BEGINNING AT A SET REBAR WITH CAP AT THE INTERSECTION OF THE NORTHWESTERLY RIGHT OF WAY LINE OF NORFOLK SOUTHERN RAILROAD, FORMERLY N & W RAILROAD, FORMERLY NEW YORK, CHICAGO AND ST. LOUIS RAILROAD WITH THE SOUTHERLY RIGHT OF WAY LINE OF CSXT, FORMERLY CONRAIL, FORMERLY NEW YORK CENTRAL RAILROAD, FORMERLY ERIE RAILROAD, SAID LANDS REFERRED TO AS CSXT BEING LANDS CONVEYED BY CONSOLIDATED RAIL CORPORATION TO NEW YORK CENTRAL LINES, LLC BY QUIT CLAIM DEED DATED JUNE 1, 1999 AND RECORDED IN THE CHAUTAUQUA COUNTY CLERK'S OFFICE IN LIBER 2418 OF DEEDS AT PAGE 623; THENCE WESTERLY ALONG THE SOUTHERLY LINE OF SAID LINE ON A CURVE TO THE LEFT 642.74 FEET TO A POINT, SAID CURVE HAVING A RADIUS 5687.65 FEET AND A CHORD S86° -15'-29"W. 642.40 FEET; THENCE NO8° -30'-04"W ALONG SAID SOUTHERLY LINE, 2.41 FEET TO A POINT: THENCE S81° - 30'-00"W AND ALONG SAID SOUTHERLY LINE, 378.93 FEET TO A POINT; THENCE S85" -22'-00"W AND ALONG SAID SOUTHERLY LINE 121.88 FEET TO A POINT: THENCE S81" - 30'-00"W ALONG SAID SOUTHERLY LINE 53.00' TO A POINT AT THE NORTHEASTERLY CORNER OF LANDS CONVEYED BY STANLEY A. STAR TO EDGEWOOD INVESTMENTS, INC. BY DEED DATED AUGUST 23, 1985 AND RECORDED IN THE CHAUTAUQUA COUNTY CLERK'S OFFICE AUGUST 26, 1985 IN LIBER 2063 OF DEEDS AT PAGE 488; THENCE S08° - 30'-00"E ALONG THE SOUTHERLY LINE OF SAID EDGEWOOD INVESTMENTS, INC., 10.97 FEET TO A POINT; THENCE S81° - 30'-00"W AND ALONG SAID SOUTHERLY LINE 77.46 FEET TO A POINT: THENCE CONTINUING WESTERLY AND ALONG THE SAID SOUTHERLY LINE ON A CURVE TO THE LEFT 76.07 FEET TO A POINT AT THE NORTHEASTERLY CORNER OF AFOREMENTIONED NEW YORK CENTRAL LINES, LLC, SAID CURVE HAVING A RADIUS OF 260.49 FEET AND A CHORD BEARING OF S73" -08'-00"W, 75.80 FEET; THENCE SOUTHWESTERLY AND ALONG THE SOUTHEASTERLY SAID LINE ON A CURVE TO THE LEFT, 419.75 FEET TO A POINT, SAID CURVE HAVING A RADIUS OF 1364.49 FEET AND A CHORD BEARING OF S56-09'-30"W, 418.10 FEET; THENCE CONTINUING SOUTHWESTERLY ALONG THE SOUTHEASTERLY SAID LINE ON A CURVE TO THE TO THE LEFT 98.22 FEET TO A POINT, SAID CURVE HAVING A RADIUS OF 757.76 FEET AND A CHORD BEARING OF S43° -23'-00"W, 98.15 FEET; THENCE S08° -25'-00"E, ALONG THE SAID EASTERLY LINE 62.51 FEET TO A POINT; THENCE S79° -11'-00"W, ALONG THE SAID SOUTHERLY LINE 8.91 FEET TO A POINT AT THE NORTHEASTERLY CORNER OF AFOREMENTIONED EDGEWOOD INVESTMENTS, INC .; THENCE SO8" - 39'-00"E. ALONG THE EASTERLY SAID LINE. 19.90 FEET TO A POINT AT THE NORTHWESTERLY CORNER OF LANDS CONVEYED BY COUNTY OF CHAUTAUQUA INDUSTRIAL DEVELOPMENT AGENCY TO ALUMAX EXTRUSIONS, INC. BY DEED DATED AUGUST 25, 1995 AND RECORDED IN THE CHAUTAUQUA COUNTY CLERK'S OFFICE IN LIBER 2351 OF DEEDS AT PAGE 874: THENCE N81" -31'-00"E, ALONG THE SAID NORTHERLY LINE 822.00 FEET TO A POINT; THENCE S 08° -29'-00"E, ALONG THE SAID EASTERLY LINE 251.95 FEET TO A POINT ON THE NORTHWESTERLY RIGHT OF WAY LINE OF NORFOLK SOUTHERN RAILROAD: THENCE N53" -33'-00"E, ALONG THE NORTHWESTERLY SAID LINE 172.65 FEET TO A POINT: THENCE NO3" -05'-00"E. ALONG THE NORTHWESTERLY SAID LINE 20.37 FEET TO A POINT: THENCE N53" -33'-00"E ALONG THE NORTHWESTERLY SAID LINE 183.89 FEET TO A POINT: THENCE N53" - 35'-00"E, ALONG THE NORTHWESTERLY SAID LINE 524.58 FEET TO A POINT; THENCE ALONG THE NORTHWESTERLY SAID LINE ON A CURVE TO THE RIGHT 228.79 FEET, SAID CURVE HAVING A RADIUS OF 2915.00 FEET AND A CHORD BEARING OF N55° - 38'-00"E, 228.73 FEET TO THE POINT OF BEGINNING CONTAINING 11.83± ACRES. N08'30'04"W 2.41' REC. & MS. CSXT FORMERLY CONRAIL S81*30'00*W FORMERLY NY CENTRAL R.R. - 53.00' REC. & MS. FORMERLY ERIE R.R. S81°30'00"W 378.93' REC. & MS. N/F LANDS OF NY CENTRAL LINES LLC - EX. REBAR & CAP 0.10'N., 0.08'W. S85°22'00"W 122.00' REC. S85'28'17"W 121.88' MS. EX. REBAR \varTheta MW -EX. REBAR & CAP 0.23'N., 0.24'E. EX. REBAR & CAP TOTAL AREA = 515,429 Sq. Ft. OR 11.83± ACRES BROKEN CONCRETE TAX MAP NUMBERS 79.12-4-29 & 79.12-4-30 OVERGROWN 20.0' S. 81°35' W. \varTheta MW ASPHALT 🖲 MW 0.9'W. 0.1'N., 0.3'W. SCHEDULE "B" ITEMS SUBJECT TO THE FOLLOWING SCHEDULE "B" ITEMS ASPHALT PER REPORT OF TITLE ISSUED BY COMMONWEALTH LAND TITLE INSURANCE COMPANY TITLE NO. 292765 N0305'00"E DATED JULY 9, 2009 20.37' REC. & MS. 2. AGREEMENT BETWEEN R.S. DEVELOPMENT CORP. & PROGRESS PARK, INC. BY LIBER 1215 OF DEEDS AT PAGE 462 BEING PARTICULAR TO THE RIGHT OF BUILDING ENCROACHMENT AND MAINTENANCE NO ENCROACHING BUILDINGS ON SITE AS OF DATE OF SURVEY. BUILDING AS REFERRED IN DEED POSSIBLY DEMOLISHED. 3. EASEMENT GRANTED TO NIAGARA MOHAWK POWER CORP. BY BER 1215 OF DEEDS AT PAGE 453 FOR THE TRANSMISSION AND DISTRIBUTION OF ELECTRIC ENERGY. EASEMENT INFORMATION AS PLOTTED HEREON, BUT NOT LIMITED TO AREA AS SHOWN, EASEMENT BLANKET IN NATURE AND EXTENDS RIGHTS THROUGHOUT ENTIRE SUBJECT PROPERTY. (4) 4. Agreement between progress park, inc. & r.s. development CORP. BY LIBER 1215 OF DEEDS AT PAGE 477 AS PLOTTED HEREON. SURVEY CERTIFICATION 5. AGREEMENT BETWEEN ALLEGHENY LUDLUM STEEL CORPORATION, PLYMOUTH TUBE CO., R.S. DEVELOPMENT CORP. & ROBLIN-SEAWAY TO NEW YORK STATE - DEPARTMENT OF ENVIRONMENTAL CONSERVATION. INDUSTRIES, INC. BY LIBER 1370 OF DEEDS AT PAGE 456. FOR RAILROAD TRACK & SIDINGS. PER DATE OF FIELD WORK NO EVIDENCE THIS IS TO CERTIFY THAT THIS MAP OR PLAT AND THE SURVEY ON WHICH IT IS OF TRACK OR SIDING REMAIN ON SUBJECT PROPERTY. BASED WERE MADE IN ACCORDANCE WITH THE "MINIMUM STANDARD DETAIL REQUIREMENTS FOR ALTA/ACSM LAND TITLE SURVEYS." JOINTLY ESTABLISHED AND 6. AGREEMENT BETWEEN ALLEGHENY LUDLUM INDUSTRIES, INC. ADOPTED BY ALTA, ACSM AND NSPS IN 2005 AND PURSUANT TO THE ACCURACY AND ROBLIN INDUSTRIES, INC. BY LIBER 1426 OF DEEDS AT PAGE STANDARDS (AS ADOPTED BY ALTA AND ACSM AND IN EFFECT ON THE DATE OF THIS 277. FOR RAILROAD TRACK & SIDINGS. PER DATE OF FIELD WORK CERTIFICATION), THE UNDERSIGNED FURTHER CERTIFIES THAT IN MY PROFESSIONAL NO EVIDENCE OF TRACK OR SIDING REMAIN ON SUBJECT PROPERTY. OPINION, THE RELATIVE POSITIONAL ACCURACY OF THIS SURVEY DOES NOT EXCEED THAT WHICH IS SPECIFIED THEREIN. . EASEMENT GRANTED TO THE CITY OF DUNKIRK FOR STORM SEWER BY LIBER 2081 OF DEEDS AT PAGE 438 AS PLOTTED HEREON. DATED: BERNARD E. WELLS

PROFESSIONAL LAND SURVEYOR N.Y.S.P.L.S. #49408

APPENDIX B PHOTOGRAPHS

Photograph 1: Western portion of the site facing north/northeast

Photograph 2: Middle of the site facing northwest

Photograph 3: Eastern portion of the site depicting the proposed Millennium Parkway

Photograph 4: Eastern portion of the site facing west

APPENDIX C

SITE MANAGEMENT PERIODIC REVIEW REPORT NOTICE – INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORM

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Site Details	Box 1						
Sit	e No.	B00173								
Sit	te Name For	rmer Roblin Steel Site (D	unkirk)							
Sit Cit Co Sit	Site Address: 320 South Roberts Road Zip Code: 14048 City/Town: Dunkirk County: Chautauqua Site Acreage: 11.8									
Re	porting Peric	od: April 23, 2012 to July 23	3, 2013							
				YES	NO					
1.	Is the inforr	nation above correct?		×						
	If NO, inclu	de handwritten above or or	n a separate sheet.							
2.	Has some o tax map an	or all of the site property be nendment during this Repo	en sold, subdivided, merged, or undergone a rting Period?		×					
3.	Has there b (see 6NYC	peen any change of use at t RR 375-1.11(d))?	the site during this Reporting Period		×					
4.	Have any fe for or at the	ederal, state, and/or local p property during this Repor	ermits (e.g., building, discharge) been issued rting Period?		×					
	If you answ that docum	wered YES to questions 2 nentation has been previo	thru 4, include documentation or evidence outly submitted with this certification form							
5.	Is the site o	currently undergoing develo	ppment?	×						
				Box 2						
				YES	NO					
6.	Is the curre Commercia	nt site use consistent with a	the use(s) listed below?	×						
7.	Are all ICs/	ECs in place and functionir	ng as designed?	\times	Q					
	IF TH	IE ANSWER TO EITHER Q DO NOT COMPLETE THE	UESTION 6 OR 7 IS NO, sign and date below a REST OF THIS FORM. Otherwise continue.	and						
A	Corrective M	easures Work Plan must b	e submitted along with this form to address t	hese iss	sues.					
Sig	nature of Ow	ner, Remedial Party or Desi	gnated Representative Date							

Description of	Institutional Controls	
Parcel	Owner	Institutional Control
79.12-4-29	Chautauqua Co.	Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan
The Site Managemer - An Engineering and cover system and pro- constructed and the it the site will include g commercial/industria - An Excavation Wor completed in a safe a - A Site Monitoring F - A Site-wide Inspec	nt Plan includes: d Institutional Controls Plan. Engined ovisions for evaluating the potential f installation of soil vapor mitigation sy roundwater use restrictions and use purposes). & Plan to assure that future intrusive and environmentally responsible man Plan that includes: provisions for groution tion program to assure that the Instit	ering controls include a one-foot thick soil for soil vapor intrusion to any new buildings ystems if warranted. Institutional controls at restrictions of the Site to restricted use (i.e. e activities and soil/fill handling at the Site ar nner. undwater monitoring; and, tutional controls have not been altered and
remain effective.		
79.12-4-30	Chaulauqua County	Ground Water Use Restriction Soil Management Plan Monitoring Plan Site Management Plan IC/EC Plan
		Landuse Restriction
The Site Management - An Engineering and cover system and pro- constructed and the the site will include g commercial/industria - An Excavation Work completed in a safe at - A Site Monitoring F - A Site-wide Inspect remain effective.	nt Plan includes: d Institutional Controls Plan. Engine ovisions for evaluating the potential installation of soil vapor mitigation sy roundwater use restrictions and use l purposes). rk Plan to assure that future intrusive and environmentally responsible ma Plan that includes: provisions for gro tion program to assure that the Insti	ering controls include a one-foot thick soil for soil vapor intrusion to any new buildings ystems if warranted. Institutional controls at e restrictions of the Site to restricted use (i.e. e activities and soil/fill handling at the Site ar inner. undwater monitoring; and, tutional controls have not been altered and
		В
Description of	Engineering Controls	
Parcel	Engineering Co	ontrol
	Cover System	
79.12-4-29	Vapor Mitigatio	n
79.12-4-29	Vapor Mitigatio	on

	Box 5
	Periodic Review Report (PRR) Certification Statements
1.	I certify by checking "YES" below that:
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted
	engineering practices; and the information presented is accurate and compete. YES NO
	\varkappa \Box
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.
	YES NO
	X 🗆
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.
	Signature of Owner, Remedial Party or Designated Representative Date

 $\langle \varphi \rangle$

IC CERTIFICATIONS SITE NO B00173	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATED REPRESENTATIVE SIGNATED I certify that all information and statements in Boxes 1,2, and 3 are true. I under statement made herein is punishable as a Class "A" misdemeanor, pursuant to Penal Law.	TURE erstand that a false 9 Section 210.45 of the
I EDWARD SCHILLER at 620 MAIN ST BURY print name print business address	FALO, NY 14262
am certifying as Owner Representative (1	Owner or Remedial Party)
for the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative	10/2/13 Date

IC/EC CERTIFICATIONS	
Professional Engineer Signature	Box 7
l certify that all information in Boxes 4 and 5 are true. I understand that a false statemer punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.	nt made herein is
I EDWARD SCHHLLER at 630 MAIN ST, BUFFALO, M print name print business address	NY 14202.
am certifying as a Professional Engineer for the CHAUTHUGUA COUNTY	Party)
Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification	<u>0 62 [13</u> Date

APPENDIX D

GROUNDWATER SAMPLING LOGS

	GA JITANTS	W	ELL S		IG L	.0G	WELL ID:	MW-1			
Project Name: Project Locatio	Former Robli n: South Rob	in Steel Site G erts Road, Du	roundwate	er Monitoring		Project No: Date: 8 /	15/2013				
Purge Informa	tion: [Well Ri	ser=Casing (0	C); all mea	surements to	TOC]	Casing	Diameter (in):	2 [Volume Conversion = 0.16]			
Visible Well Da	mage/Comm	ents: NONE_									
Well Depth (ft):	18.11	Wa	ater Level	(ft): <u>4.</u>	-	Height	of Water Colum	n (ft): <u>[4.D]</u>			
1 Well Volume [WV] (gal): 2.2. 3 Well Volumes (gal): 10.7											
Method of Purging: Bailer / Submersible / Peristaltic w/ dedicated tubing / Other:											
Purge Field Parameters Purge Start Time: 1400											
Volume (gal)	ORP/Eh	рН	Temp.	Cond.	Turt	b. [Total	izer Start=	gal]			
/ ٧٧ ٧	(mV)	(SU)	(°C)	(mS/cm)	(NTI	U)	Char	acteristics			
Initial / 0	-108	7.37	21.0	0.767	22	3 Clear					
2.2 11	-107	7.58	17.76	0.751	181	9	Turbid				
4.412-116 7.62 7.26 0.743 468								ł			
6.613	-140	-1.108	16.89	0731	41-	7		u			
Total Volume F	Purged (gal): _	6.6	Pu	rge Complete	Time:	1.415	[Water	Level (ft.):]			
Sampling Info	rmation: Da	ite:									
Sample Time:	1500	Wa	ter Level(f	t):	\$	Sample Ana	alysis: TCL VOC	S No. of Bottles: 2			
Sampling Meth Sample Field P	od: Bailer- Submers Parameters	VOCs ; All i ble- Rema	// inder; /	Peristaltic w/	/dedica lanual	nted tubing grab w/-	- Remainder ; S/S Pitcher ;	; All // Sample Cont's			
ORP/Eh	pН	Temp.	Con	d. Turl	b.		Charact	eristics			
(mV)	(SU)	(°C)	(mS/o	cm) (NT	U)						
-105	7.92	1831	Г О	32 37	3		Turbid)			
Other Commer	nts: ature: Jessic	a Gostomski									

	GA JLTANTS	w	ELL S		NG LO	OG	WELL ID: MW-2R				
Project Name: Project Locatio	Former Robli n: South Rob	n Steel Site G erts Road, Du	roundwate nkirk NY	er Monitoring	P	Project No: Date: 8/ \	5 /2013				
Purge Informa	tion: [Well Ri	ser=Casing (C	c); all mea	surements to	TOC]	Casing E	Diameter (in): 2 [Volume Conversion = 0.16				
Visible Well Da	mage/Comm	ents: NONE_									
Well Depth (ft):	23.2	U Wa	ter Level ((ft): <u>7.[(</u>	0	Height of	f Water Column (ft):(
1 Well Volume	[WV] (gal):	2.10	3	Well Volumes	(gal):	7.7					
Method of Purging: Bailer / Submersible / Peristaltic w/ dedicated tubing / Other:											
Purge Field Parameters Purge Start Time: 1550											
Volume (gal)	ORP/Eh	рН	Temp.	Cond.	Turb.	. [Totalize	er Start= gal]				
/ WV	(mV)	(SU)	(°C)	(mS/cm)	(NTU)	Characteristics				
Initial / 0	Initial/0_91 7.37 18.28 1.14 38.0 Clear										
2.16 /1	0110	-7.59	16.75	1.16	91.	91.0 Turbid					
5.2 12	-123 7.73 15.59 1.02 36.4 Clear										
77 13	-95	7.59	15.05	1.11	180	>	Therbid				
Total Volume F	Purged (gal): _	1.7	_ Pu	rge Complete	Time:	1600	[Water Level (ft.):				
Sampling Info	rmation: Da	ate: 8115	5/13								
Sample Time:	1600	Wat	ter Level(f	t):	S	ample Analy	ysis: TCL VOCs No. of Bottles: 2				
Sampling Meth Sample Field F	od: Bailer- Submers Parameters	VOCs ; All s ible- Remai	II inder ; A	Peristaltic w	/dedicat Manual g	ed tubing- grab w/- S	Remainder ; All <i>II</i> S/S Pitcher ; Sample Cont's				
ORP/Eh	рН	Temp.	Con	d. Tur	ъ.		Characteristics				
(mV)	(SU)	(°C)	(mS/c	cm) (NT	·U)		Characteristics				
-96	7.31	18.24	Lit	1 10	8		Turbid				
Other Commer	nts:	a Gostomski									
Sumpler a Gigi		a costoniski									

	JA	WE	ELL S		IG I	_0(3	WELL ID: MW-4			
Project Name: Project Locatior	Former Roblin: South Rob	n Steel Site Gr erts Road, Dui	roundwate nkirk NY	er Monitoring		Proje Date	ect No: : 8/ プ	\ /2013			
Purge Informa	tion: [Well Ri	ser=Casing (C	;); all mea	surements to	FOC]	(Casing D	iameter (in): 2 [Volume Conversion = 0.16]			
Visible Well Da	mage/Comm	ents: NONE_									
Well Depth (ft):	16.0	4 Wa	ter Level	(ft):		H	leight of	Water Column (ft):			
1 Well Volume [WV] (gal): 3 Well Volumes (gal):											
Method of Purging: Bailer / Submersible / Peristaltic w/ dedicated tubing / Other:											
Purge Field Parameters Purge Start Time:											
Volume (gal)	ORP/Eh	рН	Temp.	Cond.	Tur	rb.	[Totalize	r Start= gal]			
/ WV	(mV)	(SU)	(°C)	(mS/cm)	(NT	⁻ U)		Characteristics			
Initial/O DON'T FLAVE Equipment											
11 to record 1											
(/2											
/ 3								£			
Total Volume P	urged (gal): _		_ Pu	rge Complete	Time:_			[Water Level (ft.):]			
Sampling Info	rmation: Da	ite: 8/21	113								
Sample Time: _	1230	Wat	er Level(f	it):		Samp	ole Analy	sis: TCL VOCs No. of Bottles: 2			
Sampling Meth	od: Bailer- Submers arameters	VOCs ; All i ible- Remai	// nder;/	Peristaltic w/ All // N	dedic Ianua	ated t I grab	w/- S	Remainder ; All <i>II</i> S Pitcher ; Sample Cont's			
ORP/Eh	pН	Temp.	Con	nd. Turl	b.						
(mV)	(SU)	(°C)	(mS/d	cm) (NT	U)			Characteristics			
Do	UT	HAU	S	EDU	P	M	én	T TO RECORD			
Other Commer	Other Comments: Courd not find well on original sample date of 8/15/13.										
Sampler's Sign	ature: Jessic	a GUSLUMISKI									

	GA	w	ELL S		LING	LO	G	WELL II	D: MW-7R		
Project Name: Project Location	Former Robli n: South Rob	n Steel Site G erts Road, Du	roundwate nkirk NY	er Monitori	ing	Proje Date	ect No: :: 8 / (5/2013			
Purge Informa	tion: [Well Ri	ser=Casing (C	C); all mea	surement	s to TOC		Casing D)iameter (in)	: 2 [Volume Conv	ersion = 0.16]	
Visible Well Da	mage/Comm	ents: NONE_									
Well Depth (ft):	17.5	<u> </u>	iter Level	(ft):	3.9		Height of	Water Colu	mn (ft): <u> 2, -</u>	17	
1 Well Volume [WV] (gal): 2.54 3 Well Volumes (gal): 12.13											
Method of Purging: Bailer / Submersible / Peristaltic w/ dedicated tubing / Other:											
Purge Field Parameters Purge Start Time: 1225											
Volume (gal)	ORP/Eh	рН	Temp.	Cond.	. Т	urb.	[Totalize	er Start=	gal]	c.	
/ ///	(mV)	(SU)	(°C)	(mS/cm	n) (N	ITU)		Ch	aracteristics		
Initial / 0	15	7.59	90.19	1.8-	7 11	(C	lar		
2.04/1	.041-43 7.66 17.14 2.					000		T	erbid		
4.08 12	4.0812-53 -1.6615.80 2.04 466 11										
6.13	-66	7.65	1515	203	3 71	000			ι.		
Total Volume F	ourged (gal): _	6.13	Pu	rge Comp	lete Time	12	40	[Wate	er Level (ft.):	1	
Sampling Info	rmation: Da	ite: 8 15	13								
Sample Time:	1245	Wat	ter Level(f	t):		Sam	ple Analy	sis: TCL V	DCs No. of Bo	ttles: 2	
Sampling Meth Sample Field P	od: Bailer- Submers arameters	VOCs ; All i ible- Remai	// inder; /	Peristalti \ //	ic w/dedi Manu	cated al grai	tubing- ow/- S/	Remainder S Pitcher;	r; All // Sample Cont's		
ORP/Eh	pН	Temp.	Con	d.	Turb.			Chore	otoriation		
(mV)	(SU)	(°C)	(mS/d	cm)	(NTU)			Chara			
-57	7.62	15.23	2.0	,4 >	1000		-	Terbio	4		
Other Commer	Other Comments:										

	JA	w	ELL S	AMPLI	NG	LO	G	WELL ID: MW-9R	
Project Name: Project Locatior	Former Roblin: South Rob	n Steel Site G erts Road, Du	Froundwate	er Monitoring		Proje Date	ect No: e: 8/≀≦	5 /2013	
Purge Informa	tion: [Well Ri	ser=Casing (C); all mea	surements to	TOC]		Casing D	Diameter (in): 2 [Volume Conversion	= 0.16]
Visible Well Da	mage/Comme	ents: NONE_							
Well Depth (ft): 16.67 Water Level (ft): 4.87 Height of Water Column (ft): 11.8									
1 Well Volume [WV] (gal): 3 Well Volumes (gal):									
Method of Purg	ing: Bailer / S	ubmersible /	Peristaltic	w/ dedicated I	ubing	/ Othe	r:		
Purge Field Pa	rameters	Purge Start	Time: 13	310					
Volume (gal)	ORP/Eh	рН	Temp.	Cond.	Tu	ırb.	[Totalize	r Start= gal]	
/ WV	(mV)	(SU)	(°C)	(mS/cm)	(N	TU)		Characteristics	
Initial / 0	-63	7,77	20.83	1.29	1.29 29.			Cluer	
L.9 1	-88	7.48	18.53	1.31	1.31 16		Turbid		
3,8 12	-87	7.38	17.02	1.35	1.35 40			Clear	
5.7 13	-85	7.33	15.106	1.50	2	22-		Terbid	
Total Volume P	Purged (gal): _	5.7	Pu	rge Complete	Time:	13	30	[Water Level (ft.):]
Sampling Info	rmation: Da	ite: 8115	13						
Sample Time:	1330	Wa	iter Level(1	ft):		Sam	ple Analy	sis: TCL VOCs No. of Bottles:	2
Sampling Meth Sample Field P	od: Bailer- Submers arameters	VOCs ; All i ble- Rema	// iinder;/	Peristaltic w All //	//dedio Manua	cated al grat	tubing- bw/-S/	Remainder ; All <i>II</i> 'S Pitcher ; Sample Cont's	
ORP/Eh	рН	Temp.	Cor	nd. Tu	rb.			Characteristics	
(mV)	(SU)	(°C)	(mS/	cm) (N1	TU)				
-86	7.32	16.41	1.5	1 23	51		T	urbid	
Other Commer	nts:	Dup T	Her	1340		20	inp	lesj	

	GA JILTANTS	W	ELL S		IG L	_00	3	WELL ID:	EX MW-11R
Project Name: Project Location	Former Roblin: South Rob	n Steel Site G erts Road, Du	roundwate nkirk NY	er Monitoring		Proje Date	ect No: : 8/ ו∱	5 /2013	
Purge Information: [Well Riser=Casing (C); all measurements to TOC] Casing Diameter (in): 2 [Volume Conversion = 0.16]									
Visible Well Damage/Comments: NONE									
Well Depth (ft): 18.64 Water Level (ft): 6.81 Height of Water Column (ft): 11.83									
1 Well Volume [WV] (gal): 3 Well Volumes (gal):									
Method of Purg	jing: Bailer / S	ubmersible / F	Peristaltic v	w/ dedicated tu	ibing /	Other	:		
Purge Field Pa	arameters	Purge Start T	"ime:\	630					
Volume (gal)	ORP/Eh	рН	Temp.	Cond.	ond. Turb. [To		[Totalize	r Start=	gal]
/ WV	(mV)	(SU)	(°C)	(mS/cm)	(NT	U)		Chara	acteristics
Initial / 0	-127	7.83	19.55	0760	14.	7		chec	ar
1.9 11	-108	1.68	17.05	0.759	12	4	4 Turbid Surfr		oid Suifur odor
3.8 12	-107	7.61	16.78	०.४५३	4(63			
5.7 13	- 85	7.78	16.47	0.923	72	15			11
Total Volume F	Purged (gal): _	5.7	_ Pu	rge Complete	Time:_	16	,35	[Water	Level (ft.):]
Sampling Info	rmation: Da	ate: 81151	13						
Sample Time:	1640	Wat	ter Level(f	t):		Samp	ole Analy	sis: TCL VOC	s No. of Bottles: 2
Sampling Meth Sample Field F	od: Bailer- Submers Parameters	VOCs ; All s ible- Remai	// inder;/	Peristaltic w/ All // M	dedica Ianual	ated (I grab	wing- wi-S/	Remainder; S Pitcher; S	All <i>II</i> Sample Cont's
ORP/Eh	pН	Temp.	Con	d. Turt	D .			Charact	eristics
(mV)	(SU)	(°C)	(mS/d	cm) (NTI	J)				
-87	7.76	16.04	0.9	18 741	٥			TURB	d
Other Comments:									

	JA	w	ELL S	AMF	PLIN	IG L	. O G	;	WELL ID: MW-12
Project Name: Former Roblin Steel Site Groundwater Monitoring Project No: Project Location: South Roberts Road, Dunkirk NY Date: 8/ 15/2013									
Purge Informa	tion: [Well Ri	ser=Casing (0	C); all mea	sureme	nts to T	OC]	C	asing D	iameter (in): 2 [Volume Conversion = 0.16]
Visible Well Da	mage/Comm	ents: NONE_							d
Well Depth (ft):23.94 Water Level (ft):(),54 Height of Water Column (ft):3,4									
1 Well Volume	1 Well Volume [WV] (gal): 3 Well Volumes (gal): 43								
Method of Purg	ing: Bailer / S	ubmersible / I	Peristaltic	w/ dedic	ated tul	bing / C	Other:	_	
Purge Field Pa	rameters	Purge Start	Fime:	15					
Volume (gal)	ORP/Eh	рН	H Temp. Cond. Turb.		b.	[Totalize	r Start= gal]		
/ WV	(mV)	(SU)	(°C)	(mS/	cm)	(NTI	U)		Characteristics
Initial / 0	99	7.26	16.39	210	51	9.0	2-	turbid wlordange Uner perces	
2,14/1	37	6.92	16.32	1.81	ŝ	סיל	CC		Terbid
4.28 12	32	7.00	15.71	1.8	5	912	2		(1
6.43/3	06	7.05	15,12	1.82)	70	57		γt
Total Volume P	urged (gal): _	10.43	Pu	rge Con	nplete T	Fime:	114	0	[Water Level (ft.):]
Sampling Info	rmation: Da	te: 81151	13						
Sample Time:	1145	Wa	ter Level(f	t):			Sampl	le Analy:	sis: TCL VOCs No. of Bottles: 2
Sampling Meth	od: Bailer- Submers arameters	VOCs ; All ible- Rema	// inder; /	Perista	altic w/d / M	dedica anual	ated tu grab	u bing- w/- S/3	Remainder; All // S Pitcher; Sample Cont's
ORP/Eh	pН	Temp.	Con	d.	Turb).			
(mV)	(SU)	(°C)	(mS/c	cm)	(NTL	J)			Characteristics
33	7.03	15.83	1.9	5	263	3			Ter bid
Other Commer	Other Comments: Other Comments:								

	GA JILTANTS	W	ELL S	SAMPLIN	NG L	.OG	WELL ID:	EX MW-12
Project Name: Project Location	Former Robl n: South Rob	in Steel Site G erts Road, Du	iroundwate	er Monitoring	F C	Project No: Date: 8/ (5/2013	
Purge Informa	tion: [Well R	iser=Casing (0	C); all mea	surements to	TOC]	Casing	Diameter (in): 2	[Volume Conversion = 0.16]
Visible Well Damage/Comments: NONE								
Well Depth (ft): <u>23.0 (</u> Water Level (ft): <u>9, 10</u> Height of Water Column (ft): <u>13.8 2</u>								
1 Well Volume [WV] (gal): 3 Well Volumes (gal):								
Method of Purg	ing: Bailer / S	Submersible / F	Peristaltic	w/ dedicated to	ubing / C	Other:		
Purge Field Pa	arameters	Purge Start 7	Fime: <u>1</u> 5	515				
Volume (gal)	ORP/Eh	pН	Temp.	Cond.	ond. Turb. [Tot		er Start=	gal]
/ WV	(mV)	(SU)	(°C)	(mS/cm)	(NTU	(r	Charac	teristics
Initial / 0	-78	7,35	17.68	1.49	471	8	Turk	bid
2.2-11	-80	7.28	18.23	1.48	8 400		1)	
4.4 12	-82	-7.82	16.48	1.59 >1000 11				
6.613	-82	7.55	16.60	1.54	>10	900	11	
Total Volume P	ourged (gal):	6.6	Pu	rge Complete	Time:	1535	[Water Le	vel (ft.):]
Sampling Info	rmation: Da	ate: 81151	13					
Sample Time:	1540	Wa	ter Level(f	t):	s	Sample Analy	sis: TCL VOCs	No. of Bottles: 2
Sampling Meth	od: Bailer- Submers Parameters	VOCs ; All sible- Rema	// inder; /	Peristaltic w All // N	/dedicat Ianual g	ted tubing- grab w/- S	Remainder; /S Pitcher; Sa	All // mple Cont's
ORP/Eh	pН	Temp.	Con	id. Tur	b.			
(mV)	(SU)	(°C)	(mS/o	cm) (NT	U)		Character	stics
-80	7.50	16.58	1.5	5 7100	- 00	Turb	d-sure	er Odor
Other Comments:								
Sampler's Sign	aure. Jessic	a Gustomski						

APPENDIX E

LABORATORY ANALYTICAL RESULTS/ CHAIN- OF- CUSTODY

Analytical Report For

TVGA Engineering, Surveying

For Lab Project ID

133181

Referencing

Roblin, 2013.0128.07

Prepared Monday, August 26, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client:	TVGA Engineering, Surv	veying						
Project Reference:	Roblin, 2013.0128.07							
Sample Identifier: Lab Sample ID: Matrix:	MW-12 133181-01 Groundwater	Dat Dat	Date/Time Sampled: 8/15/2013 11:45 Date Received: 8/19/2013					
Volatile Organic	S							
Analyte		<u>Result</u>	<u>Units</u> Qualifie	r <u>Date/Time Analyzed</u>				
1,1,1 - Trichlo	proethane	< 2.00	ug/L	8/21/2013 18:10				
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L	8/21/2013 18:10				
1,1,2-Trichlo	proethane	< 2.00	ug/L	8/21/2013 18:10				
1,1-Dichloro	oethane	< 2.00	ug/L	8/21/2013 18:10				
1,1-Dichloro	oethene	< 2.00	ug/L	8/21/2013 18:10				
1,2,3-Trichlo	orobenzene	< 5.00	ug/L	8/21/2013 18:10				
1,2,4-Trichlo	orobenzene	< 5.00	ug/L	8/21/2013 18:10				
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L	8/21/2013 18:10				
1,2-Dibromo	bethane	< 2.00	ug/L	8/21/2013 18:10				
1,2-Dichloro	benzene	< 2.00	ug/L	8/21/2013 18:10				
1,2-Dichloro	oethane	< 2.00	ug/L	8/21/2013 18:10				
1,2-Dichloro	propane	< 2.00	ug/L	8/21/2013 18:10				
1,3-Dichloro	benzene	< 2.00	ug/L	8/21/2013 18:10				
1,4-Dichloro	benzene	< 2.00	ug/L	8/21/2013 18:10				
1,4-dioxane		< 20.0	ug/L	8/21/2013 18:10				
2-Butanone		< 10.0	ug/L	8/21/2013 18:10				
2-Hexanone		< 5.00	ug/L	8/21/2013 18:10				
4-Methyl-2-	pentanone	< 5.00	ug/L	8/21/2013 18:10				
Acetone		< 10.0	ug/L	8/21/2013 18:10				
Benzene		< 0.700	ug/L	8/21/2013 18:10				
Bromochlor	omethane	< 5.00	ug/L	8/21/2013 18:10				
Bromodichle	oromethane	< 2.00	ug/L	8/21/2013 18:10				
Bromoform		< 5.00	ug/L	8/21/2013 18:10				
Bromometha	ane	< 2.00	ug/L	8/21/2013 18:10				
Carbon disu	lfide	< 2.00	ug/L	8/21/2013 18:10				
Carbon Tetra	achloride	< 2.00	ug/L	8/21/2013 18:10				
Chlorobenze	ene	< 2.00	ug/L	8/21/2013 18:10				
Chloroethan	e	< 2.00	ug/L	8/21/2013 18:10				

Client:	TVGA E	ngineering, Su	rveying						
Project Reference:	Roblin,	oblin, 2013.0128.07							
Sample Identifier: Lab Sample ID: Matrix:	MW-12 133181-01 Groundwater			Date/Time Sampled: 8/15/201311:45Date Received:8/19/2013					
Chloroform	Chloroform		< 2.00	ug/L	8/21/2013 18:10				
Chloromethane			< 2.00	ug/L	8/21/2013 18:10				
cis-1,2-Dichlo	oroethene		< 2.00	ug/L	8/21/2013 18:10				
cis-1,3-Dichlo	oropropene	2	< 2.00	ug/L	8/21/2013 18:10				
Cyclohexane			< 10.0	ug/L	8/21/2013 18:10				
Dibromochlo	romethane		< 2.00	ug/L	8/21/2013 18:10				
Dichlorodiflu	e	< 2.00	ug/L	8/21/2013 18:10					
Ethylbenzene		< 2.00	ug/L	8/21/2013 18:10					
Freon 113		< 2.00	ug/L	8/21/2013 18:10					
Isopropylbenzene			< 2.00	ug/L	8/21/2013 18:10				
m,p-Xylene			< 2.00	ug/L	8/21/2013 18:10				
Methyl acetat	e		< 2.00	ug/L	8/21/2013 18:10				
Methyl tert-b	utyl Ether		< 2.00	ug/L	8/21/2013 18:10				
Methylcycloh	exane		< 2.00	ug/L	8/21/2013 18:10				
Methylene ch	loride		< 5.00	ug/L	8/21/2013 18:10				
o-Xylene			< 2.00	ug/L	8/21/2013 18:10				
Styrene			< 5.00	ug/L	8/21/2013 18:10				
Tetrachloroet	thene		< 2.00	ug/L	8/21/2013 18:10				
Toluene			< 2.00	ug/L	8/21/2013 18:10				
trans-1,2-Dic	hloroethen	e	< 2.00	ug/L	8/21/2013 18:10				
trans-1,3-Dic	hloroprope	ene	< 2.00	ug/L	8/21/2013 18:10				
Trichloroethe	ene		< 2.00	ug/L	8/21/2013 18:10				
Trichlorofluo	romethane		< 2.00	ug/L	8/21/2013 18:10				
Vinyl chloride	9		< 2.00	ug/L	8/21/2013 18:10				
Method Referer Data Fi	nce(s): le:	EPA 8260B EPA 5030 x07758.D							

Client:	<u>TVGA Engineering, Surv</u>	<u>veying</u>				
Project Reference:	Roblin, 2013.0128.07					
Sample Identifier: Lab Sample ID: Matrix:	MW-4 133181-02 Groundwater	Dat Dat	Date/Time Sampled: 8/15/2013 12:45 Date Received: 8/19/2013			
Volatile Organic	S					
Analyte		<u>Result</u>	<u>Units</u> Qualifier	Date/Time Analyzed		
1,1,1 - Trichlo	proethane	< 20.0	ug/L	8/21/2013 18:33		
1,1,2,2-Tetra	achloroethane	< 20.0	ug/L	8/21/2013 18:33		
1,1,2-Trichlo	proethane	< 20.0	ug/L	8/21/2013 18:33		
1,1-Dichloro	oethane	< 20.0	ug/L	8/21/2013 18:33		
1,1-Dichloro	oethene	< 20.0	ug/L	8/21/2013 18:33		
1,2,3-Trichlo	orobenzene	< 50.0	ug/L	8/21/2013 18:33		
1,2,4-Trichlo	orobenzene	< 50.0	ug/L	8/21/2013 18:33		
1,2-Dibromo	o-3-Chloropropane	< 100	ug/L	8/21/2013 18:33		
1,2-Dibromo	bethane	< 20.0	ug/L	8/21/2013 18:33		
1,2-Dichloro	benzene	< 20.0	ug/L	8/21/2013 18:33		
1,2-Dichloro	oethane	< 20.0	ug/L	8/21/2013 18:33		
1,2-Dichloro	propane	< 20.0	ug/L	8/21/2013 18:33		
1,3-Dichloro	obenzene	< 20.0	ug/L	8/21/2013 18:33		
1,4-Dichloro	obenzene	< 20.0	ug/L	8/21/2013 18:33		
1,4-dioxane		< 200	ug/L	8/21/2013 18:33		
2-Butanone		< 100	ug/L	8/21/2013 18:33		
2-Hexanone		< 50.0	ug/L	8/21/2013 18:33		
4-Methyl-2-	pentanone	< 50.0	ug/L	8/21/2013 18:33		
Acetone		< 100	ug/L	8/21/2013 18:33		
Benzene		< 7.00	ug/L	8/21/2013 18:33		
Bromochlor	omethane	< 50.0	ug/L	8/21/2013 18:33		
Bromodichle	oromethane	< 20.0	ug/L	8/21/2013 18:33		
Bromoform		< 50.0	ug/L	8/21/2013 18:33		
Bromometh	ane	< 20.0	ug/L	8/21/2013 18:33		
Carbon disu	lfide	< 20.0	ug/L	8/21/2013 18:33		
Carbon Tetra	achloride	< 20.0	ug/L	8/21/2013 18:33		
Chlorobenze	ene	< 20.0	ug/L	8/21/2013 18:33		
Chloroethan	e	< 20.0	ug/L	8/21/2013 18:33		

Client:	<u>TVGA</u>	<u>Engineering, Sur</u>	veying						
Project Reference:	Roblin	Roblin, 2013.0128.07							
Sample Identifier: Lab Sample ID: Matrix:	MW-4 133181-02 Groundwater			Date/Time Sampled: 8/15/2013 12:45 Date Received: 8/19/2013					
Chloroform	Chloroform		< 20.0	ug/L	8/21/2013 18:33				
Chlorometha		< 20.0	ug/L	8/21/2013 18:33					
cis-1,2-Dichle	oroethene		128	ug/L	8/21/2013 18:33				
cis-1,3-Dichle	oroproper	ie	< 20.0	ug/L	8/21/2013 18:33				
Cyclohexane			< 100	ug/L	8/21/2013 18:33				
Dibromochlo	romethan	e	< 20.0	ug/L	8/21/2013 18:33				
Dichlorodiflu	orometha	ine	< 20.0	ug/L	8/21/2013 18:33				
Ethylbenzen	9		< 20.0	ug/L	8/21/2013 18:33				
Freon 113			< 20.0	ug/L	8/21/2013 18:33				
Isopropylbenzene			< 20.0	ug/L	8/21/2013 18:33				
m,p-Xylene			< 20.0	ug/L	8/21/2013 18:33				
Methyl aceta	te		< 20.0	ug/L	8/21/2013 18:33				
Methyl tert-b	utyl Ethe	r	< 20.0	ug/L	8/21/2013 18:33				
Methylcycloł	iexane		< 20.0	ug/L	8/21/2013 18:33				
Methylene ch	loride		< 50.0	ug/L	8/21/2013 18:33				
o-Xylene			< 20.0	ug/L	8/21/2013 18:33				
Styrene			< 50.0	ug/L	8/21/2013 18:33				
Tetrachloroe	thene		< 20.0	ug/L	8/21/2013 18:33				
Toluene			< 20.0	ug/L	8/21/2013 18:33				
trans-1,2-Dic	hloroethe	ene	< 20.0	ug/L	8/21/2013 18:33				
trans-1,3-Dic	hloroprop	pene	< 20.0	ug/L	8/21/2013 18:33				
Trichloroeth	ene		< 20.0	ug/L	8/21/2013 18:33				
Trichlorofluc	romethar	ie	< 20.0	ug/L	8/21/2013 18:33				
Vinyl chlorid	e		56.1	ug/L	8/21/2013 18:33				
Method Refere Data F	nce(s): ile:	EPA 8260B EPA 5030 x07759.D							

Client:	<u>TVGA Engineering, St</u>	urveying						
Project Reference:	Roblin, 2013.0128.07							
Sample Identifier: Lab Sample ID: Matrix:	MW-9R 133181-03 Groundwater	Dat Dat	Date/Time Sampled: 8/15/2013 13:30 Date Received: 8/19/2013					
Volatile Organic	3							
Analyte		<u>Result</u>	<u>Units</u> Qualifie	er Date/Time Analyzed				
1,1,1-Trichl	oroethane	< 10.0	ug/L	8/21/2013 18:56				
1,1,2,2-Tetr	achloroethane	< 10.0	ug/L	8/21/2013 18:56				
1,1,2-Trichl	oroethane	< 10.0	ug/L	8/21/2013 18:56				
1,1-Dichloro	bethane	< 10.0	ug/L	8/21/2013 18:56				
1,1-Dichloro	bethene	< 10.0	ug/L	8/21/2013 18:56				
1,2,3-Trichl	orobenzene	< 25.0	ug/L	8/21/2013 18:56				
1,2,4-Trichl	orobenzene	< 25.0	ug/L	8/21/2013 18:56				
1,2-Dibrom	o-3-Chloropropane	< 50.0	ug/L	8/21/2013 18:56				
1,2-Dibrom	oethane	< 10.0	ug/L	8/21/2013 18:56				
1,2-Dichloro	obenzene	< 10.0	ug/L	8/21/2013 18:56				
1,2-Dichloro	bethane	< 10.0	ug/L	8/21/2013 18:56				
1,2-Dichloro	opropane	< 10.0	ug/L	8/21/2013 18:56				
1,3-Dichloro	obenzene	< 10.0	ug/L	8/21/2013 18:56				
1,4-Dichloro	obenzene	< 10.0	ug/L	8/21/2013 18:56				
1,4-dioxane		< 100	ug/L	8/21/2013 18:56				
2-Butanone		< 50.0	ug/L	8/21/2013 18:56				
2-Hexanone	2	< 25.0	ug/L	8/21/2013 18:56				
4-Methyl-2-	pentanone	< 25.0	ug/L	8/21/2013 18:56				
Acetone		< 50.0	ug/L	8/21/2013 18:56				
Benzene		87.7	ug/L	8/21/2013 18:56				
Bromochlor	omethane	< 25.0	ug/L	8/21/2013 18:56				
Bromodichl	oromethane	< 10.0	ug/L	8/21/2013 18:56				
Bromoform		< 25.0	ug/L	8/21/2013 18:56				
Bromometh	ane	< 10.0	ug/L	8/21/2013 18:56				
Carbon disu	lfide	< 10.0	ug/L	8/21/2013 18:56				
Carbon Tetr	achloride	< 10.0	ug/L	8/21/2013 18:56				
Chlorobenze	ene	< 10.0	ug/L	8/21/2013 18:56				
Chloroethar	ıe	< 10.0	ug/L	8/21/2013 18:56				

Client:	TVGA	<u>Engineering, Sur</u>	veying					
Project Reference:	Roblin	Roblin, 2013.0128.07						
Sample Identifier: Lab Sample ID: Matrix:	MW-9R 133181-03 Groundwater			Date/Time Sampled:8/15/201313:30Date Received:8/19/2013				
Chloroform			< 10.0	ug/L	8/21/2013 18:56			
Chlorometha	ne		< 10.0	ug/L	8/21/2013 18:56			
cis-1,2-Dichl	oroethene		217	ug/L	8/21/2013 18:56			
cis-1,3-Dichl	oroproper	ie	< 10.0	ug/L	8/21/2013 18:56			
Cyclohexane			208	ug/L	8/21/2013 18:56			
Dibromochloromethane			< 10.0	ug/L	8/21/2013 18:56			
Dichlorodiflu	iorometha	ne	< 10.0	ug/L	8/21/2013 18:56			
Ethylbenzen	e		33.7	ug/L	8/21/2013 18:56			
Freon 113			< 10.0	ug/L	8/21/2013 18:56			
Isopropylbenzene			< 10.0	ug/L	8/21/2013 18:56			
m,p-Xylene	m,p-Xylene		< 10.0	ug/L	8/21/2013 18:56			
Methyl aceta	te		< 10.0	ug/L	8/21/2013 18:56			
Methyl tert-l	outyl Ether		< 10.0	ug/L	8/21/2013 18:56			
Methylcyclol	nexane		121	ug/L	8/21/2013 18:56			
Methylene cl	nloride		< 25.0	ug/L	8/21/2013 18:56			
o-Xylene			< 10.0	ug/L	8/21/2013 18:56			
Styrene			< 25.0	ug/L	8/21/2013 18:56			
Tetrachloroe	thene		< 10.0	ug/L	8/21/2013 18:56			
Toluene			< 10.0	ug/L	8/21/2013 18:56			
trans-1,2-Die	chloroethe	ne	< 10.0	ug/L	8/21/2013 18:56			
trans-1,3-Die	hloroprop	oene	< 10.0	ug/L	8/21/2013 18:56			
Trichloroeth	ene		< 10.0	ug/L	8/21/2013 18:56			
Trichlorofluc	oromethan	e	< 10.0	ug/L	8/21/2013 18:56			
Vinyl chlorid	e		991	ug/L	8/21/2013 18:56			
Method Refere Data F	nce(s): ile:	EPA 8260B EPA 5030 x07760.D						

Client:	<u>TVGA Engineering, Surv</u>	veying						
Project Reference:	Roblin, 2013.0128.07							
Sample Identifier: Lab Sample ID: Matrix:	MW-1 133181-04 Groundwater	Dat Dat	Date/Time Sampled:8/15/201315:00Date Received:8/19/2013					
Volatile Organic	<u></u>							
Analyte		<u>Result</u>	<u>Units</u> Qualifie	er Date/Time Analyzed				
1,1,1-Trichle	oroethane	< 2.00	ug/L	8/22/2013 14:06				
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L	8/22/2013 14:06				
1,1,2-Trichle	oroethane	< 2.00	ug/L	8/22/2013 14:06				
1,1-Dichloro	bethane	< 2.00	ug/L	8/22/2013 14:06				
1,1-Dichloro	oethene	< 2.00	ug/L	8/22/2013 14:06				
1,2,3-Trichle	orobenzene	< 5.00	ug/L	8/22/2013 14:06				
1,2,4-Trichle	orobenzene	< 5.00	ug/L	8/22/2013 14:06				
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L	8/22/2013 14:06				
1,2-Dibromo	oethane	< 2.00	ug/L	8/22/2013 14:06				
1,2-Dichloro	obenzene	< 2.00	ug/L	8/22/2013 14:06				
1,2-Dichloro	bethane	< 2.00	ug/L	8/22/2013 14:06				
1,2-Dichloro	opropane	< 2.00	ug/L	8/22/2013 14:06				
1,3-Dichloro	obenzene	< 2.00	ug/L	8/22/2013 14:06				
1,4-Dichloro	obenzene	< 2.00	ug/L	8/22/2013 14:06				
1,4-dioxane		< 20.0	ug/L	8/22/2013 14:06				
2-Butanone		< 10.0	ug/L	8/22/2013 14:06				
2-Hexanone	9	< 5.00	ug/L	8/22/2013 14:06				
4-Methyl-2-	pentanone	< 5.00	ug/L	8/22/2013 14:06				
Acetone		< 10.0	ug/L	8/22/2013 14:06				
Benzene		< 0.700	ug/L	8/22/2013 14:06				
Bromochlor	omethane	< 5.00	ug/L	8/22/2013 14:06				
Bromodichl	oromethane	< 2.00	ug/L	8/22/2013 14:06				
Bromoform		< 5.00	ug/L	8/22/2013 14:06				
Bromometh	ane	< 2.00	ug/L	8/22/2013 14:06				
Carbon disu	lfide	< 2.00	ug/L	8/22/2013 14:06				
Carbon Tetr	achloride	< 2.00	ug/L	8/22/2013 14:06				
Chlorobenze	ene	< 2.00	ug/L	8/22/2013 14:06				
Chloroethar	16	< 2.00	ug/L	8/22/2013 14:06				

Client:	TVGA	Engineering, Su	rveying							
Project Reference:	Roblin	, 2013.0128.07								
Sample Identifier: Lab Sample ID: Matrix:	MW-1 133181-04 Groundwater			Date/Time Sampled:8/15/201315:00Date Received:8/19/2013						
Chloroform			< 2.00	ug/L	8/22/2013 14:06					
Chlorometha		< 2.00	ug/L	8/22/2013 14:06						
cis-1,2-Dichle	oroethene		< 2.00	ug/L	8/22/2013 14:06					
cis-1,3-Dichle	oropropen	ie	< 2.00	ug/L	8/22/2013 14:06					
Cyclohexane			< 10.0	ug/L	8/22/2013 14:06					
Dibromochlo	e	< 2.00	ug/L	8/22/2013 14:06						
Dichlorodiflu	ne	< 2.00	ug/L	8/22/2013 14:06						
Ethylbenzene		< 2.00	ug/L	8/22/2013 14:06						
Freon 113		< 2.00	ug/L	8/22/2013 14:06						
Isopropylbenzene			< 2.00	ug/L	8/22/2013 14:06					
m,p-Xylene			< 2.00	ug/L	8/22/2013 14:06					
Methyl aceta	te		< 2.00	ug/L	8/22/2013 14:06					
Methyl tert-b	utyl Ether		< 2.00	ug/L	8/22/2013 14:06					
Methylcycloh	iexane		< 2.00	ug/L	8/22/2013 14:06					
Methylene ch	loride		< 5.00	ug/L	8/22/2013 14:06					
o-Xylene			< 2.00	ug/L	8/22/2013 14:06					
Styrene			< 5.00	ug/L	8/22/2013 14:06					
Tetrachloroe	thene		< 2.00	ug/L	8/22/2013 14:06					
Toluene			< 2.00	ug/L	8/22/2013 14:06					
trans-1,2-Dic	hloroethe	ne	< 2.00	ug/L	8/22/2013 14:06					
trans-1,3-Dic	hloroprop	oene	< 2.00	ug/L	8/22/2013 14:06					
Trichloroeth	ene		< 2.00	ug/L	8/22/2013 14:06					
Trichlorofluc	romethan	ie	< 2.00	ug/L	8/22/2013 14:06					
Vinyl chlorid	e		< 2.00	ug/L	8/22/2013 14:06					
Method Referen	nce(s): lle:	EPA 8260B EPA 5030 x07782.D								

Client:	<u>TVGA Engineering, Surv</u>	<u>veying</u>				
Project Reference:	Roblin, 2013.0128.07					
Sample Identifier: Lab Sample ID: Matrix:	DUP 133181-05 Groundwater	Dat Dat	Date/Time Sampled:8/15/201313:40Date Received:8/19/2013			
Volatile Organic	S					
Analyte		<u>Result</u>	<u>Units</u> Qualifier	Date/Time Analyzed		
1,1,1 - Trichlo	proethane	< 20.0	ug/L	8/21/2013 19:42		
1,1,2,2-Tetra	achloroethane	< 20.0	ug/L	8/21/2013 19:42		
1,1,2-Trichlo	proethane	< 20.0	ug/L	8/21/2013 19:42		
1,1-Dichloro	oethane	< 20.0	ug/L	8/21/2013 19:42		
1,1-Dichloro	oethene	< 20.0	ug/L	8/21/2013 19:42		
1,2,3-Trichlo	orobenzene	< 50.0	ug/L	8/21/2013 19:42		
1,2,4 - Trichlo	orobenzene	< 50.0	ug/L	8/21/2013 19:42		
1,2-Dibromo	o-3-Chloropropane	< 100	ug/L	8/21/2013 19:42		
1,2-Dibromo	bethane	< 20.0	ug/L	8/21/2013 19:42		
1,2-Dichloro	obenzene	< 20.0	ug/L	8/21/2013 19:42		
1,2-Dichloro	oethane	< 20.0	ug/L	8/21/2013 19:42		
1,2-Dichloro	propane	< 20.0	ug/L	8/21/2013 19:42		
1,3-Dichloro	benzene	< 20.0	ug/L	8/21/2013 19:42		
1,4-Dichloro	benzene	< 20.0	ug/L	8/21/2013 19:42		
1,4-dioxane		< 200	ug/L	8/21/2013 19:42		
2-Butanone		< 100	ug/L	8/21/2013 19:42		
2-Hexanone		< 50.0	ug/L	8/21/2013 19:42		
4-Methyl-2-	pentanone	< 50.0	ug/L	8/21/2013 19:42		
Acetone		< 100	ug/L	8/21/2013 19:42		
Benzene		69.6	ug/L	8/21/2013 19:42		
Bromochlor	omethane	< 50.0	ug/L	8/21/2013 19:42		
Bromodichle	oromethane	< 20.0	ug/L	8/21/2013 19:42		
Bromoform		< 50.0	ug/L	8/21/2013 19:42		
Bromometha	ane	< 20.0	ug/L	8/21/2013 19:42		
Carbon disu	lfide	< 20.0	ug/L	8/21/2013 19:42		
Carbon Tetra	achloride	< 20.0	ug/L	8/21/2013 19:42		
Chlorobenze	ene	< 20.0	ug/L	8/21/2013 19:42		
Chloroethan	e	< 20.0	ug/L	8/21/2013 19:42		

Client:	TVGA	Engineering, Su	rveying			
Project Reference:	Roblin, 2013.0128.07					
Sample Identifier: Lab Sample ID: Matrix:	DUP 133181-05 Groundwater]	Date/Time Sampled: 8/15/2013 13:40 Date Received: 8/19/2013		
Chloroform			< 20.0	ug/L	8/21/2013 19:42	
Chlorometha	ne		< 20.0	ug/L	8/21/2013 19:42	
cis-1,2-Dichle	oroethene		342	ug/L	8/21/2013 19:42	
cis-1,3-Dichlo	oroproper	ie	< 20.0	ug/L	8/21/2013 19:42	
Cyclohexane			170	ug/L	8/21/2013 19:42	
Dibromochlo	romethan	e	< 20.0	ug/L	8/21/2013 19:42	
Dichlorodiflu	orometha	ine	< 20.0	ug/L	8/21/2013 19:42	
Ethylbenzene	è		27.8	ug/L	8/21/2013 19:42	
Freon 113			< 20.0	ug/L	8/21/2013 19:42	
Isopropylben	zene		< 20.0	ug/L	8/21/2013 19:42	
m,p-Xylene			< 20.0	ug/L	8/21/2013 19:42	
Methyl aceta	te		< 20.0	ug/L	8/21/2013 19:42	
Methyl tert-b	utyl Ether	-	< 20.0	ug/L	8/21/2013 19:42	
Methylcycloh	exane		92.4	ug/L	8/21/2013 19:42	
Methylene ch	loride		< 50.0	ug/L	8/21/2013 19:42	
o-Xylene			< 20.0	ug/L	8/21/2013 19:42	
Styrene			< 50.0	ug/L	8/21/2013 19:42	
Tetrachloroe	thene		< 20.0	ug/L	8/21/2013 19:42	
Toluene			< 20.0	ug/L	8/21/2013 19:42	
trans-1,2-Dic	hloroethe	ne	< 20.0	ug/L	8/21/2013 19:42	
trans-1,3-Dic	hloroprop	bene	< 20.0	ug/L	8/21/2013 19:42	
Trichloroeth	ene		< 20.0	ug/L	8/21/2013 19:42	
Trichlorofluo	romethan	ie	< 20.0	ug/L	8/21/2013 19:42	
Vinyl chlorid	е		1080	ug/L	8/21/2013 19:42	
Method Referen Data Fi	nce(s): le:	EPA 8260B EPA 5030 x07762.D				

Client:	<u>TVGA Engineering, Surv</u>	eying					
Project Reference:	Roblin, 2013.0128.07						
Sample Identifier: Lab Sample ID: Matrix:	EX MW-12 133181-06 Groundwater	Dat Dat	Date/Time Sampled: 8/15/2013 Date Received: 8/19/2013				
Volatile Organic	2						
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qualifie	r <u>Date/Time Analyzed</u>			
1,1,1-Trichle	proethane	< 2.00	ug/L	8/21/2013 20:06			
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L	8/21/2013 20:06			
1,1,2-Trichle	proethane	< 2.00	ug/L	8/21/2013 20:06			
1,1-Dichloro	ethane	< 2.00	ug/L	8/21/2013 20:06			
1,1-Dichloro	ethene	< 2.00	ug/L	8/21/2013 20:06			
1,2,3-Trichlo	orobenzene	< 5.00	ug/L	8/21/2013 20:06			
1,2,4-Trichle	orobenzene	< 5.00	ug/L	8/21/2013 20:06			
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L	8/21/2013 20:06			
1,2-Dibromo	oethane	< 2.00	ug/L	8/21/2013 20:06			
1,2-Dichloro	benzene	< 2.00	ug/L	8/21/2013 20:06			
1,2-Dichloro	ethane	< 2.00	ug/L	8/21/2013 20:06			
1,2-Dichloro	propane	< 2.00	ug/L	8/21/2013 20:06			
1,3-Dichloro	benzene	< 2.00	ug/L	8/21/2013 20:06			
1,4-Dichloro	benzene	< 2.00	ug/L	8/21/2013 20:06			
1,4-dioxane		< 20.0	ug/L	8/21/2013 20:06			
2-Butanone		< 10.0	ug/L	8/21/2013 20:06			
2-Hexanone		< 5.00	ug/L	8/21/2013 20:06			
4-Methyl-2-	pentanone	< 5.00	ug/L	8/21/2013 20:06			
Acetone		< 10.0	ug/L	8/21/2013 20:06			
Benzene		1.87	ug/L	8/21/2013 20:06			
Bromochlor	omethane	< 5.00	ug/L	8/21/2013 20:06			
Bromodichle	oromethane	< 2.00	ug/L	8/21/2013 20:06			
Bromoform		< 5.00	ug/L	8/21/2013 20:06			
Bromometh	ane	< 2.00	ug/L	8/21/2013 20:06			
Carbon disu	lfide	< 2.00	ug/L	8/21/2013 20:06			
Carbon Tetra	achloride	< 2.00	ug/L	8/21/2013 20:06			
Chlorobenze	ene	< 2.00	ug/L	8/21/2013 20:06			
Chloroethan	e	< 2.00	ug/L	8/21/2013 20:06			

Client:	TVGA Engineering, Surveying				
Project Reference:	Roblin, 2	2013.0128.07			
Sample Identifier: Lab Sample ID: Matrix:	EX MW- 133181- Groundy	12 06 vater		Date/Time Sampled Date Received:	: 8/15/2013 15:40 8/19/2013
Chloroform			< 2.00	ug/L	8/21/2013 20:06
Chlorometha	ne		< 2.00	ug/L	8/21/2013 20:06
cis-1,2-Dichlo	roethene		< 2.00	ug/L	8/21/2013 20:06
cis-1,3-Dichlo	ropropene		< 2.00	ug/L	8/21/2013 20:06
Cyclohexane			< 10.0	ug/L	8/21/2013 20:06
Dibromochlo	romethane		< 2.00	ug/L	8/21/2013 20:06
Dichlorodiflu	oromethan	9	< 2.00	ug/L	8/21/2013 20:06
Ethylbenzene			< 2.00	ug/L	8/21/2013 20:06
Freon 113			< 2.00	ug/L	8/21/2013 20:06
Isopropylben	zene		< 2.00	ug/L	8/21/2013 20:06
m,p-Xylene			< 2.00	ug/L	8/21/2013 20:06
Methyl acetat	e		< 2.00	ug/L	8/21/2013 20:06
Methyl tert-b	utyl Ether		< 2.00	ug/L	8/21/2013 20:06
Methylcycloh	exane		< 2.00	ug/L	8/21/2013 20:06
Methylene ch	loride		< 5.00	ug/L	8/21/2013 20:06
o-Xylene			< 2.00	ug/L	8/21/2013 20:06
Styrene			< 5.00	ug/L	8/21/2013 20:06
Tetrachloroet	hene		< 2.00	ug/L	8/21/2013 20:06
Toluene			< 2.00	ug/L	8/21/2013 20:06
trans-1,2-Dicl	nloroethene	2	< 2.00	ug/L	8/21/2013 20:06
trans-1,3-Dicl	nloroprope	ne	< 2.00	ug/L	8/21/2013 20:06
Trichloroethe	ne		< 2.00	ug/L	8/21/2013 20:06
Trichlorofluo	romethane		< 2.00	ug/L	8/21/2013 20:06
Vinyl chloride	9		< 2.00	ug/L	8/21/2013 20:06
Method Referen Data Fil	ice(s): le:	EPA 8260B EPA 5030 x07763.D			

Client:	<u>TVGA Engineering, Su</u>	rveying				
Project Reference:	Roblin, 2013.0128.07					
Sample Identifier: Lab Sample ID: Matrix:	MW-2R 133181-07 Groundwater	Dat Dat	e/Time Sampled: e Received:	8/15/2013 16:00 8/19/2013		
Volatile Organic	S					
<u>Analyte</u>		<u>Result</u>	<u>Units</u> Qualifie	er Date/Time Analyzed		
1,1,1-Trichl	oroethane	< 2.00	ug/L	8/21/2013 20:29		
1,1,2,2-Tetr	achloroethane	< 2.00	ug/L	8/21/2013 20:29		
1,1,2-Trichl	oroethane	< 2.00	ug/L	8/21/2013 20:29		
1,1-Dichloro	bethane	< 2.00	ug/L	8/21/2013 20:29		
1,1-Dichloro	oethene	< 2.00	ug/L	8/21/2013 20:29		
1,2,3-Trichl	orobenzene	< 5.00	ug/L	8/21/2013 20:29		
1,2,4-Trichl	orobenzene	< 5.00	ug/L	8/21/2013 20:29		
1,2-Dibrom	o-3-Chloropropane	< 10.0	ug/L	8/21/2013 20:29		
1,2-Dibrom	oethane	< 2.00	ug/L	8/21/2013 20:29		
1,2-Dichloro	obenzene	< 2.00	ug/L	8/21/2013 20:29		
1,2-Dichloro	bethane	< 2.00	ug/L	8/21/2013 20:29		
1,2-Dichloro	opropane	< 2.00	ug/L	8/21/2013 20:29		
1,3-Dichloro	obenzene	< 2.00	ug/L	8/21/2013 20:29		
1,4-Dichloro	obenzene	< 2.00	ug/L	8/21/2013 20:29		
1,4-dioxane		< 20.0	ug/L	8/21/2013 20:29		
2-Butanone		< 10.0	ug/L	8/21/2013 20:29		
2-Hexanone	2	< 5.00	ug/L	8/21/2013 20:29		
4-Methyl-2-	pentanone	< 5.00	ug/L	8/21/2013 20:29		
Acetone		12.3	ug/L	8/21/2013 20:29		
Benzene		18.2	ug/L	8/21/2013 20:29		
Bromochlor	omethane	< 5.00	ug/L	8/21/2013 20:29		
Bromodichl	oromethane	< 2.00	ug/L	8/21/2013 20:29		
Bromoform		< 5.00	ug/L	8/21/2013 20:29		
Bromometh	ane	< 2.00	ug/L	8/21/2013 20:29		
Carbon disu	lfide	< 2.00	ug/L	8/21/2013 20:29		
Carbon Tetr	achloride	< 2.00	ug/L	8/21/2013 20:29		
Chlorobenze	ene	< 2.00	ug/L	8/21/2013 20:29		
Chloroethar	ie	6.20	ug/L	8/21/2013 20:29		

Client:	Engineering, Sur	veying					
Project Reference:	Roblin, 2013.0128.07						
Sample Identifier: Lab Sample ID: Matrix:	MW-2R 133181-07 Groundwater			Date/Time Sample Date Received:	d: 8/15/2013 16:00 8/19/2013		
Chloroform			< 2.00	ug/L	8/21/2013 20:29		
Chlorometha	ne		< 2.00	ug/L	8/21/2013 20:29		
cis-1,2-Dichle	oroethene		10.1	ug/L	8/21/2013 20:29		
cis-1,3-Dichle	oropropen	e	< 2.00	ug/L	8/21/2013 20:29		
Cyclohexane			32.8	ug/L	8/21/2013 20:29		
Dibromochlo	romethan	9	< 2.00	ug/L	8/21/2013 20:29		
Dichlorodiflu	orometha	ne	< 2.00	ug/L	8/21/2013 20:29		
Ethylbenzene	9		16.9	ug/L	8/21/2013 20:29		
Freon 113			< 2.00	ug/L	8/21/2013 20:29		
Isopropylber	zene		2.53	ug/L	8/21/2013 20:29		
m,p-Xylene			2.45	ug/L	8/21/2013 20:29		
Methyl aceta	te		< 2.00	ug/L	8/21/2013 20:29		
Methyl tert-b	utyl Ether		< 2.00	ug/L	8/21/2013 20:29		
Methylcycloh	iexane		13.8	ug/L	8/21/2013 20:29		
Methylene ch	loride		< 5.00	ug/L	8/21/2013 20:29		
o-Xylene			< 2.00	ug/L	8/21/2013 20:29		
Styrene			< 5.00	ug/L	8/21/2013 20:29		
Tetrachloroe	thene		< 2.00	ug/L	8/21/2013 20:29		
Toluene			< 2.00	ug/L	8/21/2013 20:29		
trans-1,2-Dic	hloroethe	ne	< 2.00	ug/L	8/21/2013 20:29		
trans-1,3-Dic	hloroprop	ene	< 2.00	ug/L	8/21/2013 20:29		
Trichloroeth	ene		< 2.00	ug/L	8/21/2013 20:29		
Trichlorofluc	romethan	e	< 2.00	ug/L	8/21/2013 20:29		
Vinyl chlorid	e		12.5	ug/L	8/21/2013 20:29		
Method Referen Data Fi	nce(s): le:	EPA 8260B EPA 5030 x07764.D					

Client:	<u>TVGA Engineering, Surv</u>	veying					
Project Reference:	Roblin, 2013.0128.07						
Sample Identifier: Lab Sample ID: Matrix:	EX MW-11R 133181-08 Groundwater		Date/Time Sampled: 8/15/2013 16:40 Date Received: 8/19/2013				
Volatile Organic	2						
Analyte		<u>Result</u>	<u>Units</u> Qualifier	Date/Time Analyzed			
1,1,1-Trichlo	oroethane	< 200	ug/L	8/21/2013 20:52			
1,1,2,2-Tetra	achloroethane	< 200	ug/L	8/21/2013 20:52			
1,1,2-Trichlo	oroethane	< 200	ug/L	8/21/2013 20:52			
1,1-Dichloro	bethane	< 200	ug/L	8/21/2013 20:52			
1,1-Dichloro	bethene	< 200	ug/L	8/21/2013 20:52			
1,2,3-Trichlo	orobenzene	< 500	ug/L	8/21/2013 20:52			
1,2,4-Trichlo	orobenzene	< 500	ug/L	8/21/2013 20:52			
1,2-Dibromo	o-3-Chloropropane	< 1000	ug/L	8/21/2013 20:52			
1,2-Dibromo	pethane	< 200	ug/L	8/21/2013 20:52			
1,2-Dichloro	obenzene	< 200	ug/L	8/21/2013 20:52			
1,2-Dichloro	oethane	< 200	ug/L	8/21/2013 20:52			
1,2-Dichloro	opropane	< 200	ug/L	8/21/2013 20:52			
1,3-Dichloro	obenzene	< 200	ug/L	8/21/2013 20:52			
1,4-Dichloro	obenzene	< 200	ug/L	8/21/2013 20:52			
1,4-dioxane		< 2000	ug/L	8/21/2013 20:52			
2-Butanone		< 1000	ug/L	8/21/2013 20:52			
2-Hexanone		< 500	ug/L	8/21/2013 20:52			
4-Methyl-2-	pentanone	< 500	ug/L	8/21/2013 20:52			
Acetone		< 1000	ug/L	8/21/2013 20:52			
Benzene		< 70.0	ug/L	8/21/2013 20:52			
Bromochlor	omethane	< 500	ug/L	8/21/2013 20:52			
Bromodichle	oromethane	< 200	ug/L	8/21/2013 20:52			
Bromoform		< 500	ug/L	8/21/2013 20:52			
Bromometh	ane	< 200	ug/L	8/21/2013 20:52			
Carbon disu	lfide	< 200	ug/L	8/21/2013 20:52			
Carbon Tetr	achloride	< 200	ug/L	8/21/2013 20:52			
Chlorobenze	ene	< 200	ug/L	8/21/2013 20:52			
Chloroethan	ie	< 200	ug/L	8/21/2013 20:52			

lient: <u>TVGA Engineering, Surveying</u>							
Project Reference:	Roblin, 2013.0128.07						
Sample Identifier: Lab Sample ID: Matrix:	EX MV 13318 Groun	V-11R 1-08 dwater	D. D	ate/Time Sample ate Received:	ed: 8/15/2013 16:40 8/19/2013		
Chloroform			< 200	ug/L	8/21/2013 20:52		
Chlorometha	ne		< 200	ug/L	8/21/2013 20:52		
cis-1,2-Dichlo	roethene	2	1950	ug/L	8/21/2013 20:52		
cis-1,3-Dichlo	ropropei	ne	< 200	ug/L	8/21/2013 20:52		
Cyclohexane			< 1000	ug/L	8/21/2013 20:52		
Dibromochloi	omethar	ie	< 200	ug/L	8/21/2013 20:52		
Dichlorodiflue	orometha	ane	< 200	ug/L	8/21/2013 20:52		
Ethylbenzene			< 200	ug/L	8/21/2013 20:52		
Freon 113			< 200	ug/L	8/21/2013 20:52		
Isopropylbenzene			< 200	ug/L	8/21/2013 20:52		
m,p-Xylene			< 200	ug/L	8/21/2013 20:52		
Methyl acetat	e		< 200	ug/L	8/21/2013 20:52		
Methyl tert-b	utyl Ethe	r	< 200	ug/L	8/21/2013 20:52		
Methylcycloh	exane		< 200	ug/L	8/21/2013 20:52		
Methylene ch	loride		< 500	ug/L	8/21/2013 20:52		
o-Xylene			< 200	ug/L	8/21/2013 20:52		
Styrene			< 500	ug/L	8/21/2013 20:52		
Tetrachloroet	hene		< 200	ug/L	8/21/2013 20:52		
Toluene			< 200	ug/L	8/21/2013 20:52		
trans-1,2-Dicl	nloroethe	ene	< 200	ug/L	8/21/2013 20:52		
trans-1,3-Dicl	nloroprop	pene	< 200	ug/L	8/21/2013 20:52		
Trichloroethe	ne		< 200	ug/L	8/21/2013 20:52		
Trichlorofluo	romethar	ie	< 200	ug/L	8/21/2013 20:52		
Vinyl chloride	e		881	ug/L	8/21/2013 20:52		
Method Referen	ce(s):	EPA 8260B EPA 5030 x07765 D					

Client:	<u>TVGA Engineering, S</u>	urveying					
Project Reference:	Roblin, 2013.0128.07						
Sample Identifier: Lab Sample ID: Matrix:	Trip Blank 133181-09 Groundwater	Dat Dat	Date/Time Sampled: 8/15/2013 Date Received: 8/19/2013				
Volatile Organic	S						
Analyte		<u>Result</u>	<u>Units</u>	Qualifier	Date/Time Analyzed		
1,1,1-Trichle	oroethane	< 2.00	ug/L		8/21/2013 21:15		
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L		8/21/2013 21:15		
1,1,2-Trichle	oroethane	< 2.00	ug/L		8/21/2013 21:15		
1,1-Dichloro	bethane	< 2.00	ug/L		8/21/2013 21:15		
1,1-Dichloro	oethene	< 2.00	ug/L		8/21/2013 21:15		
1,2,3-Trichle	orobenzene	< 5.00	ug/L		8/21/2013 21:15		
1,2,4-Trichle	orobenzene	< 5.00	ug/L		8/21/2013 21:15		
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L		8/21/2013 21:15		
1,2-Dibromo	pethane	< 2.00	ug/L		8/21/2013 21:15		
1,2-Dichloro	obenzene	< 2.00	ug/L		8/21/2013 21:15		
1,2-Dichloro	bethane	< 2.00	ug/L		8/21/2013 21:15		
1,2-Dichloro	opropane	< 2.00	ug/L		8/21/2013 21:15		
1,3-Dichloro	obenzene	< 2.00	ug/L		8/21/2013 21:15		
1,4-Dichloro	obenzene	< 2.00	ug/L		8/21/2013 21:15		
1,4-dioxane		< 20.0	ug/L		8/21/2013 21:15		
2-Butanone		< 10.0	ug/L		8/21/2013 21:15		
2-Hexanone		< 5.00	ug/L		8/21/2013 21:15		
4-Methyl-2-	pentanone	< 5.00	ug/L		8/21/2013 21:15		
Acetone		< 10.0	ug/L		8/21/2013 21:15		
Benzene		< 0.700	ug/L		8/21/2013 21:15		
Bromochlor	omethane	< 5.00	ug/L		8/21/2013 21:15		
Bromodichl	oromethane	< 2.00	ug/L		8/21/2013 21:15		
Bromoform		< 5.00	ug/L		8/21/2013 21:15		
Bromometh	ane	< 2.00	ug/L		8/21/2013 21:15		
Carbon disu	lfide	< 2.00	ug/L		8/21/2013 21:15		
Carbon Tetr	achloride	< 2.00	ug/L		8/21/2013 21:15		
Chlorobenze	ene	< 2.00	ug/L		8/21/2013 21:15		
Chloroethan	ie	< 2.00	ug/L		8/21/2013 21:15		

Client:	TVGA	Engineering, Su	veying			
Project Reference:	Roblin	n, 2013.0128.07				
Sample Identifier: Lab Sample ID: Matrix:	Trip Blank 133181-09 Groundwater		Date/Time Sampled: 8/15/2013 Date Received: 8/19/2013			
Chloroform			< 2.00	ug/L	8/21/2013 21:15	
Chlorometha	ne		< 2.00	ug/L	8/21/2013 21:15	
cis-1,2-Dichl	oroethen	e	< 2.00	ug/L	8/21/2013 21:15	
cis-1,3-Dichl	oroprope	ene	< 2.00	ug/L	8/21/2013 21:15	
Cyclohexane			< 10.0	ug/L	8/21/2013 21:15	
Dibromochlo	rometha	ne	< 2.00	ug/L	8/21/2013 21:15	
Dichlorodiflu	orometh	ane	< 2.00	ug/L	8/21/2013 21:15	
Ethylbenzen	е		< 2.00	ug/L	8/21/2013 21:15	
Freon 113			< 2.00	ug/L	8/21/2013 21:15	
Isopropylber	nzene		< 2.00	ug/L	8/21/2013 21:15	
m,p-Xylene			< 2.00	ug/L	8/21/2013 21:15	
Methyl aceta	te		< 2.00	ug/L	8/21/2013 21:15	
Methyl tert-l	outyl Ethe	er	< 2.00	ug/L	8/21/2013 21:15	
Methylcyclol	nexane		< 2.00	ug/L	8/21/2013 21:15	
Methylene cl	nloride		< 5.00	ug/L	8/21/2013 21:15	
o-Xylene			< 2.00	ug/L	8/21/2013 21:15	
Styrene			< 5.00	ug/L	8/21/2013 21:15	
Tetrachloroe	thene		< 2.00	ug/L	8/21/2013 21:15	
Toluene			< 2.00	ug/L	8/21/2013 21:15	
trans-1,2-Dichloroethene		ene	< 2.00	ug/L	8/21/2013 21:15	
trans-1,3-Dichloropropene		pene	< 2.00	ug/L	8/21/2013 21:15	
Trichloroethene			< 2.00	ug/L	8/21/2013 21:15	
Trichlorofluo	orometha	ne	< 2.00	ug/L	8/21/2013 21:15	
Vinyl chlorid	e		< 2.00	ug/L	8/21/2013 21:15	
Method Refere Data F	nce(s): ile:	EPA 8260B EPA 5030 x07766.D				

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

"M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.

"B" = Method blank contained trace levels of analyte. Refer to included method blank report.

"V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"C" = Concentration differs by more than 40% between the primary and secondary analytical columns.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Page 21 of 22

PARADIGM	<u>Chain</u>	of Custody Suppl	ement
Client:	TUGA	Completed by:	556
Lab Project ID:	13318	Date:	8/19/13
	Sample Condition Per NELAC/ELAP 210	n Requirements)/241/242/243/244	
N Condition	ELAC compliance with the sample c Yes	ondition requirements upor No	n receipt N/A
Container Type	2N X		
Comments			
Transferred to method- compliant container			
Headspace (<1 mL)	Ξ <u></u>		
Comments			
Preservation	Ξ.X		
Comments			
Chlorine Absent (<0,10 ppm per test strip)	A A General		×
Comments	Naulieunallalla		
Holding Time			
Comments			
Temperature			
Comments	3° Lemp Blank		
Sufficient Sample Quantity	X		
Comments	<i>r</i>		

Analytical Report For

TVGA Engineering, Surveying

For Lab Project ID

133231

Referencing

Roblin

Prepared

Wednesday, August 28, 2013

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client:	<u>TVGA Engineering, S</u>	Surveying				
Project Reference:	Roblin					
Sample Identifier: Lab Sample ID: Matrix:	MW - 4 133231-01 Groundwater	Dat Dat	Date/Time Sampled: 8/21/2013 12:30 Date Received: 8/22/2013			
<u>Volatile Organic</u>	S					
Analyte		<u>Result</u>	<u>Units Quali</u>	fier Date/Time Analyzed		
1,1,1-Trichle	oroethane	< 2.00	ug/L	8/27/2013 15:20		
1,1,2,2-Tetra	achloroethane	< 2.00	ug/L	8/27/2013 15:20		
1,1,2-Trichle	oroethane	< 2.00	ug/L	8/27/2013 15:20		
1,1-Dichloro	bethane	< 2.00	ug/L	8/27/2013 15:20		
1,1-Dichloro	bethene	< 2.00	ug/L	8/27/2013 15:20		
1,2,3-Trichle	orobenzene	< 5.00	ug/L	8/27/2013 15:20		
1,2,4-Trichle	orobenzene	< 5.00	ug/L	8/27/2013 15:20		
1,2-Dibromo	o-3-Chloropropane	< 10.0	ug/L	8/27/2013 15:20		
1,2-Dibromo	pethane	< 2.00	ug/L	8/27/2013 15:20		
1,2-Dichloro	obenzene	< 2.00	ug/L	8/27/2013 15:20		
1,2-Dichloro	bethane	< 2.00	ug/L	8/27/2013 15:20		
1,2-Dichloro	opropane	< 2.00	ug/L	8/27/2013 15:20		
1,3-Dichloro	obenzene	< 2.00	ug/L	8/27/2013 15:20		
1,4-Dichloro	obenzene	< 2.00	ug/L	8/27/2013 15:20		
1,4-dioxane		< 20.0	ug/L	8/27/2013 15:20		
2-Butanone		< 10.0	ug/L	8/27/2013 15:20		
2-Hexanone		< 5.00	ug/L	8/27/2013 15:20		
4-Methyl-2-	pentanone	< 5.00	ug/L	8/27/2013 15:20		
Acetone		43.8	ug/L	8/27/2013 15:20		
Benzene		< 0.700	ug/L	8/27/2013 15:20		
Bromochlor	omethane	< 5.00	ug/L	8/27/2013 15:20		
Bromodichl	oromethane	< 2.00	ug/L	8/27/2013 15:20		
Bromoform		< 5.00	ug/L	8/27/2013 15:20		
Bromometh	ane	< 2.00	ug/L	8/27/2013 15:20		
Carbon disu	lfide	< 2.00	ug/L	8/27/2013 15:20		
Carbon Tetr	achloride	< 2.00	ug/L	8/27/2013 15:20		
Chlorobenze	ene	< 2.00	ug/L	8/27/2013 15:20		
Chloroethar	ne	< 2.00	ug/L	8/27/2013 15:20		

Client:	TVGA Engineering, Surveying					
Project Reference:	Roblin					
Sample Identifier: Lab Sample ID: Matrix:	MW - 4 13323 Ground	l 1-01 dwater		Date/Time Samp Date Received:	led: 8/21/2013 12:30 8/22/2013	
Chloroform			< 2.00	ug/L	8/27/2013 15:20	
Chlorometha	ne		< 2.00	ug/L	8/27/2013 15:20	
cis-1,2-Dichle	oroethene		< 2.00	ug/L	8/27/2013 15:20	
cis-1,3-Dichle	oroproper	ie	< 2.00	ug/L	8/27/2013 15:20	
Cyclohexane			< 10.0	ug/L	8/27/2013 15:20	
Dibromochlo	romethan	e	< 2.00	ug/L	8/27/2013 15:20	
Dichlorodiflu	orometha	ne	< 2.00	ug/L	8/27/2013 15:20	
Ethylbenzene	9		< 2.00	ug/L	8/27/2013 15:20	
Freon 113			< 2.00	ug/L	8/27/2013 15:20	
Isopropylber	zene		< 2.00	ug/L	8/27/2013 15:20	
m,p-Xylene			< 2.00	ug/L	8/27/2013 15:20	
Methyl aceta	te		< 2.00	ug/L	8/27/2013 15:20	
Methyl tert-b	utyl Ether	-	< 2.00	ug/L	8/27/2013 15:20	
Methylcycloł	iexane		< 2.00	ug/L	8/27/2013 15:20	
Methylene ch	loride		< 5.00	ug/L	8/27/2013 15:20	
o-Xylene			< 2.00	ug/L	8/27/2013 15:20	
Styrene			< 5.00	ug/L	8/27/2013 15:20	
Tetrachloroe	thene		< 2.00	ug/L	8/27/2013 15:20	
Toluene			< 2.00	ug/L	8/27/2013 15:20	
trans-1,2-Dic	hloroethe	ne	< 2.00	ug/L	8/27/2013 15:20	
trans-1,3-Dic	hloroprop	oene	< 2.00	ug/L	8/27/2013 15:20	
Trichloroeth	ene		< 2.00	ug/L	8/27/2013 15:20	
Trichlorofluc	romethan	ie	< 2.00	ug/L	8/27/2013 15:20	
Vinyl chlorid	e		< 2.00	ug/L	8/27/2013 15:20	
Method Refere	nce(s): ile:	EPA 8260B EPA 5030 x07874.D				

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

"<" = Analyzed for but not detected at or above the quantitation limit.

"E" = Result has been estimated, calibration limit exceeded.

"Z" = See case narrative.

"D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.

- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "V" = Sample concentration is >10 times the spike. No meaningful Spike Recovery can be calculated.

"J" = Result estimated between the quantitation limit and half the quantitation limit.

"L" = Laboratory Control Sample recovery outside accepted QC limits.

"C" = Concentration differs by more than 40% between the primary and secondary analytical columns.

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Page 5 of 6

PARADIGM	<u>Chai</u>	<u>n of Custody Supple</u>	ZoFZ ment
Client:	TNGA	Completed by:	552
Lab Project ID:	133231	Date:	8/22/13
	Sample Condit Per NELAC/ELAP	t ion Requirements 210/241/242/243/244	
NJ Condition	ELAC compliance with the sampl Yes	le condition requirements upon No	receipt N/A
Container Type	X		
Comments	21		
Transferred to method- compliant container			Σ.
Headspace (<1 mL) Comments			
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments	NOR:		
Holding Time Comments			
Temperature Comments	14°(iced		
Sufficient Sample Quantity Comments			

APPENDIX F

MILLENNIUM PARKWAY ENVIRONMENTAL CONSTRUCTION PLANS

ENVIRONMENTAL NOTES

GENERAL

- 1. THIS CONTRACT IS DESIGNED IN GENERAL ACCORDANCE WITH THE SITE MANAGEMENT PLAN AND COMBINED INSTITUTIONAL CONTROL PLAN / OPERATIONS AND MAINTENANCE PLANS FOR THE FORMER ROBLIN STEEL AND ALUMAX SITES RESPECTIVELY, HOWEVER, IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO COMPLY WITH THE REQUIREMENTS OF EACH OF THESE PLANS. ADDITIONAL GUIDANCE IS PROVIDED IN THE NOTES THAT FOLLOW, WITH REFERENCE TO WHERE COPIES OF THE MANAGEMENT PLANS AND ASSOCIATED GUIDANCE MATERIALS CAN BE OBTAINED.
- 2. CHAUTAUQUA COUNTY DEPARTMENT OF PUBLIC FACILITIES (CCDPF) WILL HAVE A DESGINATED ENVIRONMENTAL INSPECTOR ON-SITE TO ASSIST, MONITOR, AND APPROVE ALL ACTIVITIES ON BOTH OF THE BROWNFIELD SITES. THE CONTRACTOR SHALL PROVIDE WEEKLY SCHEDULES OF ANTICIPATED ACTIVITIES ON THESE SITES. ANY CHANGES TO THIS SCHEDULE SHALL BE MADE WITH PROPER ADVANCE NOTICE TO THE CCDPF.
- 3. WORK SHALL NOT BE PERFORMED ON THESE BROWNFIELD SITES WITHOUT PROPER NOTIFICATION.
- FORMER ROBLIN STEEL INYSDEC SITE "B-00173-9);
- 1. ALL WORK CONDUCTED AT THE FORMER ROBLIN STEEL SITE SHALL BE CONDUCTED IN CONFORMANCE WITH THE NOVEMBER 2010 SITE MANAGEMENT PLAN (SMP) A COPY OF WHICH CAN BE OBTAINED FROM THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (MYSDEC) DIVISION OF ENVIRONMENTAL REMEDIATION REGION 9 AT 270 NICHIGAN AVENUE, BUFFALO, NY 14203, (716)-851-7220.
- 2. THE NYSDEC REQUIRES A 60 DAY CHANGE OF USE NOTIFICATION PRIOR TO ANY WORK AT THIS SITE. NOTIFICATION PROCEDURES ARE CONTAINED IN SECTION 1.4 OF NYSDEC'S DER-10 MAY 3, 2010 AVAILABLE AT: <u>HTTP://WWW.DEC.NY.GOV/REGULATIONS/2393,HTML</u>. ADDITIONAL NOTIFICATION PROCEDURES ARE INCLUDED IN THE EXCAVATION WORK PLAN WHICH IS INCLUDED IN THE SITE MANAGEMENT PLAN.
- 3. A COVER SYSTEM CONSISTING OF A VEGETATED SOIL LAYER (12-INCH) WITH AN UNDERLYING DEMARCATION LAYER (AN ORANGE PLASTIC MESH) HAS PREVIOSLY BEEN INSTALLED ACROSS THE ENTIRE FORMER ROBLIN STEEL SITE. SOIL LOCATED ABOVE THE EXISTING DEMARCATION LAYER CAN REUSED WITHOUT SAMPLING.
- 4. FOLLOWING ANY SOIL COVER REMOVAL AND/OR OTHER INVASIVE ACTIVITIES, THIS COVER SYSTEM MUST BE REPLACED. THE COVER SYSTEM SHALL CONSIST OF A MINIMUM OF 12-INCHES OF SOIL COVER (CAPABLE OF SUPPORTING VEGETATION) WITH AN UNDERLYING DEMARCATION LAYER. NON-VEGETATED AREAS (I.E. BUILDINGS ROADWAYS, PARKING LOTS, ETC.) MUST BE COVERED BY A PAVING SYSTEM OR CONCRETE OF AT LEAST 6-INCHES IN THICKNESS.
- 5. ANY INTRUSIVE WORK THAT WILL PENETRATE THE SOIL COVER SYSTEM, OR ENCOUNTER OR DISTURB THE REMAINING CONTAMINATION, INCLUDING ANY MODIFICATIONS OR REPAIRS TO THE EXISTING SOIL COVER, SHALL BE PERFORMED IN COMPLIANCE WITH THE EXCAVATION WORK PLAN.
- 6. THE EXCAVATION WORK PLAN DETAILS INCLUDE; SOIL SCREENING (INITIAL FIELD TESTING), STOCKPILING, EXCAVATION/LOAD OUT, OFF SITE TRANSPORT AND DISPOSAL, POTENTIAL MATERIAL REUSE, FLUIDS MANAGEMENT, COVER RESTORATION, AND PROCEDURES FOR USE OF OFF-SITE BACKFILL. THE EXCAVATION WORK PLAN ALSO IDENTIFIES THE STORNWATER, COMMUNITY AIR MONITORING, ODOR AND DUST CONTROL REQUIREMENTS, AND THE CONTINGENCY PLAN THAT MUST BE FOLLOWED.
- 7. STORMWATER MANAGEMENT MUST FOLLOW THE PROJECT STORMWATER POLLUTION PREVENTION PLAN (SWPPP).

FORMER ALUMAX SITE (NYSDEC VCP V00589-9);

- 1. ALL WORK CONDUCTED AT THE FORMER ALUMAX SITE SHALL BE CONDUCTED IN CONFORMANCE WITH THE JUNE 23, 2004 COMBINED INSTITUTIONAL CONTROL PLAN / OPERATIONS AND MAINTENANCE PLAN, A COPY OF WHICH CAN BE OBTAINED FROM THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION (NYSDEC) DIVISION OF ENVIRONMENTAL REMEDIATION REGION 9 AT 270 MICHIGAN AVENUE, BUFFALO, NY 14203, (716)-851-7220.
- 2. THE NYSDEC REQUIRES A 60 DAY CHANGE OF USE NOTIFICATION PRIOR TO ANY WORK ON THIS SITE. NOTIFICATION PROCEDURES ARE CONTAINED IN SECTION 1.4 OF NYSDEC'S DER-10 MAY 3, 2010 AVAILABLE AT: HTTP://WWW.DEC.NY.GOV/REGULATIONS/2393.HTML.
- 3. CURRENTLY THERE IS NO COVER SYSTEM ACROSS THE FORMER ALLUMAX SITE.
- 4. ALL PROJECT DISTURBANCE AREAS WITHIN THIS SITE MUST HAVE A COVER SYSTEM INSTALLED IN ACCORDANCE WITH THE SITE MANAGEMENT PLAN. THE COVER SYSTEM SHALL CONSIST OF ONE OF THE FOLLOWING: a) SOIL: 12-INCHES OF VECETATED SOIL UNDERLAIN BY A DEMARCATION LAYER IN
 - OUTDOOR AREAS: PAYMENT ITEM 207.21 PER SECTION 737.0101
 - b) ASPHALT: A MINIMUM OF 6 INCHES OF MATERIAL (ASPHALT AND SUBBASE MATERIAL) IN AREAS THAT WILL BECOME ROADS SIDEWALKS AND PARKING LOTS.
 - C) CONCRETE: A MINIMUM OF 6 INCHES OF WATERIAL (CONCRETE AND SUBBASE MATERIAL IN AREAS THAT WILL BECOME SLAB-ON-GRADE STRUCTURES, ROADS SIDEWALKS AND PARKING LOTS IN LIEU OF ASPHALT.
- 100 123 RUGGLES STREET (TALCOTT STREET RIGHT-OF-WAY (ROW) NORTH OF RUGGLES STREET AND EAST OF TALCOTT STREET) NYSDEC SPILL NO. 0901423
- 1. PETROLEUM-DISPENSING FACILITIES (EG: A DISPENSING PUMP, FILL PORT AND VENT PIPES) WERE FORMERLY LOCATED IN THIS PORTION OF THE TALCOTT ROW. THESE FACILITIES WERE REMOVED IN 2011, HOWEVER, PETROLEUM CONTAMINATION MAY STILL BE LOCATED UNDER THE ADJACENT PAVEMENT AT DEPTHS GREATER THAN 4 TO 5 FEET.
- 2. IF PETROLEUM CONTAMINATION IS ENCOUNTERED DURING CONSTRUCTION, NOTIFY THE NEW YORK STATE SPILL HOTLINE IMMEDIATELY (WITHIN 2 HOURS OF DISCOVERY) AT (800) 457-7362. NEW YORK STATE DEPARTMENT OF CONSERVATION REGION 9 SPILLS DIVISION CAN BE REACHED AT (716) 851-7220. REFERENCE NYSDEC SPILL NO. 0901423.
- 3. LABORATORY ANALYSIS REQUIRED BY THE NYSDEC SHALL BE PAID UNDER ITEM 205.0401.

BROWNFIELD SITE EXCAVATION PROCEDURES AND GUIDELINES

- 1. PROCEDURES, METHODS, AND PAY ITEMS ASSOCIATED WITH EXCAVATIONS AND RE-USE OF, OR DISPOSAL OF, EXISTING SOILS/MATERIALS ON THE FORMER ROBLIN STEEL AND ALLUMAX SITES ARE PROVIDED HERE FOR GENERAL GUIDANCE AND FOR BIDDING PURPOSES. REFER TO THE NOTED SPECIFICATIONS FOR A FULL UNDERSTANDING OF THE WORK TO BE PERFORMED. NO SEPARATE OR ADDITIONAL PAYMENTS WILL BE MADE FOR OTHER INCIDENTAL WORK REQUIRED TO BE IN COMPLIANCE WITH THE SITE MANAGEMENT PLANS FOR THESE SITES. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO UNDERSTAND, AND TO BE IN FULL COMPLIANCE WITH THESE SITE MANAGEMENT PLANS.
 - O) ALL EXCAVATIONS (ITEM 203.02 OR 206.02) OF EXISTING SOILS/MATERIALS ON THESE SITES SHALL BE INSPECTED BY THE CCOPP ENVIRONMENTAL INSPECTOR DURING THE EXCAVATION. THE CONTRACTOR SHALL PROVIDE THE ENVIRONMENTAL INSPECTOR WITH PROPER ACCESS TO THESE MATERIALS FOR BASIC CONTAMINATION FIELD TESTING. AS DETERMINED BY THE ENVIRONMENTAL INSPECTOR:
 - I. EXCAVATED SOILS/MATERIALS (ITEM 203.02 AND 206.02) THAT ARE NOT VISIBLY STAINED, DISCOLORED, OR THAT PRODUCE ELEVATED PHOTOIONIZATION DETECTOR (PID) READINGS (SUSTAINED READINGS OF 5 PPM OR GREATER) CAN BE IMMEDIATELY REUSED (ITEM 203.03) ON-SITE WITHOUT ANY FURTHER TESTING.
 - ii. EXCAVATED SOILS/MATERIALS (ITEM 203.02 AND 206.02) THAT ARE DETERMINED TO BE STAINED, DISCOLORED, OR THAT PRODUCES ELEVATED PID READINGS (SUSTAINED READINGS OF 5 PPM OR GREATER) SHALL BE STOCKPILED ON-SITE FOR SAMPLING AND LABORATORY TESTING, SEGREGATION AND STOCKPILING SHALL BE PAID FOR UNDER ITEM 205.02NN. LABORATORY ANALYSIS SHALL BE PAID UNDER ITEMS 205.040X. THE RESULTS OF THE LAB TESTING WILL DETERMINE IF THE SOIL/MATERIAL IS:
 - 1. TO BE RELISED ON-SITE UNDER ITEM 205-06NN
 - 2. CONTAMINATED NON-HAZARDOUS WASTE SOIL TO BE DISPOSED OF OFF-SITE UNDER ITEM 205.0502NM
 - 3. CONTAMINATED HAZARDOUS WASTE SOIL TO BE DISPOSED OF OFF-SITE UNDER ITEM 205.0501NN
 - b) ANY EXCAVATIONS DEFINED UNDER SECTION (a) DETERMINED TO BE RE-USABLE ON-SITE SHALL:
 - I. ONLY BE USED ON THE BROWNFIELD SITE FROM WHICH IT WAS EXCAVATED. II. BE PLACED BELOW THE PROPOSED COVER SOIL / DEMARCATION LAYER. III. NOT BE USED WITHIN A COVER SOIL LAYER (TOP 12" OF SOIL), WITHIN LANDSCAPING BERMS, OR AS BACKFILL FOR SUBSURFACE UTILITY LINES.
- 2. THE EXISTING SOIL COVER MATERIAL (TOP 12" +/-) LOCATED ABOVE THE DEMARCATION LAYER ON THE FORMER ROBLIN STEEL SITE, IF EXCAVATED, CAN BE REUSED WITHOUT SAMPLING. HOWEVER, SINCE ALL AREAS ON THIS SITE REQUIRE A MINIMUM OF 12-INCHES OF SOIL COVER, THESE AREAS SHOULD REMAIN UNDISTURBED EXCEPT AS SPECIFICALLY NECESSARY TO CONSTRUCT COMPONENTS OF THIS PROJECT.
- 3. THE FOLLOWING TABLE SUMMARIZES BOTH THE ESTIMATE OF REQUIRED EXCAVATIONS ON EACH OF THE BROWNFIELD SITES. AND BASED UPON PREVIOUSLY PERFORMED TESTS BY CCDPF, QUANTITIES OF SAMPLING AND LABORATORY TESTING, AS WELL AS QUANTITIES OF OFF-SITE DISPOSAL NOTE THAT THESE QUANTITIES ARE ESTIMATES ONLY AND THAT ONLY ACTUAL FIELD VERIFIED QUANTITIES WILL BE PAID.

BROWNFIELD SITE (REFER TO DWG. ED-2 FOR LOCATIONS AND BOUNDARIES)	SERIALIZATION (NN)	REQUIRED EXCAVATIONS (ITEMS 203.02 & 206.02)	ESTIMATE OF MATERIALS PASSING FIELD TEST (IMMEDIATE RE-USE UNDER ITEM 205.06NN)	ESTIMATE OF MATERIALS TO BE STOCKPILED (ITEM 205.02NN)	ESTIMATE OF LABORATORY ANALYSIS 205.040X	ESTIMATE OF MATERIALS THAT WILL PASS LAB TESTS (RE-USE UNDER ITEM 205.06NN)	ESTIMATE OF CONTAMINATED NON- HAZARDOUS MATERIALS THAT WILL REQUIRE OFF-SITE DISPOSAL (ITEM 205,0502NN)	ESTIMATE OF CONTAMINATED HAZARDOUS MATERIALS THAT WILL REQUIRE OFF-SITE DISPOSAL (ITEM 205.0501NN)
FORMER ROBLIN STEEL SITE	01	325 CY	125 CY	200 CY	2	0 CY	255 TONS (180 CY)	30 TONS (20 CY)
FORMER ALUMAX SITE	02	6000 CY	3500 CY	2500 CY	6	500 CY	2100 TONS (1500 CY)	700 TONS (500 CY)

4. THE CONTRACTOR SHOULD TAKE NOTE THAT ALL SOILS/MATERIALS EXCAVATED FROM EITHER OF THESE BROWNFIELD SITES MUST EITHER BE:

O) USED ON-SITE IN AN APPROVED LOCATION PER ITEM 205.06NN. b) PROPERLY DISPOSED OF AS PER ITEM 205.0501NN OR ITEM 205.0502NN

5. IF THE CONTRACTOR ELECTS TO PERFORM ANY WORK/OPERATIONS ON THESE SITES NOT SPECIFICALLY CALLED FOR ON THE PLANS, OR REQUIRED AS DETERMINED BY THE ENGINEER, HE/SHE SHALL BE RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE WORK AND FOR BEING IN COMPLIANCE WITH THE SITE MANAGEMENT PLANS, ANY DEVIATIONS FROM THE CONTRACT PLANS SHOULD BE DISCUSSED AND APPROVED WITH THE ENGINEER AND/OR THE CCDPF ENVIRONMENTAL INSPECTOR BEFOREHAND.

STOCKPILING / SAMPLING / LABORATORY TESTING NOTES

- 1. ANY SOILS/MATERIALS FAILING THE INITIAL FIELD TESTING SHALL BE STOCKPILED ON-SITE. SECREGATION AND STOCKPILING WILL BE DONE ON A TIERED APPROACH, AS IDENTIFIED UNDER ITEM 205.02NN, BUT GENERALLY WILL NOT BE REQUIRED AT A GREATER FREQUENCY THAN ONE (I) SAMPLE LAB TEST FOR EVERY 500 CY.
- STOCKPILES SHALL BE SEPARATED IF THE SOILS/MATERIALS SOURCE/LOCATION, AS DETERMINED BY THE ENVIRONMENTAL INSPECTOR, IF DEEMED TO BE DIFFERENT FROM OTHER STOCKPILES.
- 3. ALL SAMPLING WILL BE DONE BY THE CCDPF ENVIRONMENTAL INSPECTOR WHOM WILL ALSO BE RESPONSIBLE FOR COORDINATING WITH THE LABORATORY FOR TESTING.
- 4. THE CONTRACTOR WILL BE RESPONSIBLE FOR ALL COSTS ASSOCIATED WITH THE LABORATORY TESTING AS IDENTIFIED UNDER ITEM 205.040X.
- 5. THE CONTRACTOR MAY SELECT THE LABORATORY OF HIS CHOICE PROVIDED THEY ARE APPROVED AS PER ITEM 205.040X.

- HIS CONSTRUCTION SCHEDULE.
 - SOME LABS.

STOCKPILING / SAMPLING / LABORATORY TESTING NOTES (CONTINUED)

6. ALL SOILS/MATERIALS SHALL REMAIN IN THEIR STOCKPILES UNTIL THE CCDPF ENVIRONMENTAL INSPECTOR HAS RECEIVED THE RESULTS OF THE LAB TESTING AND DETERMINED IF:

O) THE MATERIALS WILL BE USED AS FILL ON-SITE.
 b) THE MATERIALS MUST BE DISPOSED OFF OFF-SITE.

7. IF THE CCDPF ENVIRONMENTAL INSPECTOR APPROVES ANY SOILS/MATERIALS EITHER THROUGH THE INITIAL FIELD TESTING, OR AFTER LABORATORY TESTING, IT IS EXPECTED THAT THESE MATERIALS WILL BE USED IN AN APPROPRIATE LOCATION ON-SITE.

B. CONTAMINATED NON-HAZARDOUS WASTE SOILS APPROVED FOR OFF-SITE DISPOSAL UNDER ITEM 205,0502NN SHALL BE SENT TO AN APPROVED SOLID WASTE LANDFILL. APPROVAL OF THIS FACILITY SHALL BE COORDINATED WITH THE CCDPF ENVIRONMENTAL INSPECTOR. QUANTITY OF LABORATORY ANALYSIS (ITEMS 205,040X) REQUIRED PRIOR TO DISPOSAL SHALL BE DETERMINED BY THE COLD WASTE ANILYSIS (ITEMS 205,040X) REQUIRED PRIOR TO DISPOSAL SHALL BE DETERMINED BY THE COLD WASTE ANILYSIS (ITEMS 205,040X) REQUIRED PRIOR TO DISPOSAL SHALL BE DETERMINED BY THE SOLID WASTE ANALYST.

9. CONTAMINATED HAZARDOUS WASTE SOILS APPROVED FOR OFF-SITE DISPOSAL UNDER ITEM 205.0501NN SHALL BE SENT TO AN APPROVED PART 360 HAZARDOUS WASTE LANDFILL, APPROVAL OF THIS FACILITY SHALL BE COORDINATED WITH THE CCDPF ENVIRONMENTAL INSPECTOR. PROPER WASTE MANIFESTS SHALL BE SUBMITTED ON ALL WASTE SOIL MATERIAL DISPOSED OF UNDER ITEM 205.0501NN. QUANTITY OF LABORATORY ANALYSIS (ITEMS 205.040X) SHALL BE DETERMINED BY THE HAZARDOUS WASTE LANDFILL PRIOR TO DISPOSAL.

10. IF THE CONTRACTOR ELECTS ON HIS OWN TO DISPOSE OF ANY SOILS/MATERIALS THAT HAVE OTHERWISE BEEN APPROVED OR ARE PENDING APPROVAL, HE SHALL DO SO BOTH AT HIS OWN COSTS, AND IN ACCORDANCE WITH THE SITE MANAGEMENT PLAN.

11. THE CONTRACTOR SHALL INCORPORATE THE NECESSARY STEPS AND TIMEFRAMES INTO

0) ALL FIELD TESTING WILL BE DONE THE DAY OF (DURING) EXCAVATION. b) IT SHALL BE THE CONTRACTORS RESPONSIBILITY TO COORDINATE STOCKPILING SAMPLING, AND LABORATORY TESTING WITH THE CCDPF ENVIRONMENTAL INSPECTOR. c) IT IS ESTIMATED THAT SAMPLING / LAB TESTING WILL TAKE APPROXIMATELY ONE (1) WEEK, THOUGH THIS MAY VARY FROM LAB TO LAB. EXPEDITED TESTING MAY BE AVAILABLE AT

12. THE ESTIMATED QUANTITIES FOR ITEMS 203.03, 205.0501NN, 205.0502NN AND 205.06NN, IN THE TABLE CONTAINED IN THESE NOTES ARE APPROXIMATE AND FOR BIDDING PURPOSES ONLY. THE CONTRACTOR SHALL MAKE NO CLAIM FOR EXTRA PAYMENTS OR DELAYS IF THESE ESTIMATED QUANTITIES ARE LATER DETERMINED TO BE INACCURATE. THE PROCEDURES OUTLINED IN THE PLANS AND CONTRACT BOOK SHALL BE FOLLOWED FOR ALL EXCAVATIONS ON THESE SITES AND COMPENSATION TO THE CONTRACTOR WILL BE MADE ONLY UNDER THE IDENTIFIED SPECIFICATIONS AT THE BID PRICES IN THE CONTRACT.

QUA COUNTY DEPT. OF PUBLIC FACILITIES ORTH WORK STREET - FALCONER, NEW YORK 14733				
DATE 10/201	2 SHEET TITLE	2		
DATE 10/201	2 ENVIRONMENTAL NOTES			
DATE 10/201		DRAWING		
DATE 11/201	2 MILLENNIUM PARKWAY	ED-1		
006.01 SCALE NA	TALCOTT STREET EXTENSION P.I.N. : 5757.55	SHEET 23 OF 141		

QUA C KORTH WO	COUNTY DEP IRK STREET - FA Date 11/2012 Date 11/2012 Date 11/2012 Date 11/2012 Date 11/2012 Date 11/2012	LCONER, NEW YORK 1 SHEET TITLE ENVIRONMEN AND DE MOLECT VILLE CONSTRUC MILLENNIUM TALCOTT STREE PALN + 5	TAL PLANS TAILS TON PARKWAY T EXTENSION 751.55	CARGINE CAUSE CAUS
IQUA C	COUNTY DEP RK STREET - FA P ^{art} 11/2012 Part 11/2012 Part 11/2012 Part 11/2012	LCONER, NEW YORK 1 SHEET TITLE ENVIRONMEN AND DE MOLICE TITLE CONSTRUC MILLENNIUM	TAL PLANS	
IQUA C	COUNTY DEP DRK STREET - FA Date 11/2012 Date 11/2012 Date 11/2012		TAL PLANS	
QUA C	COUNTY DEP ORK STREET - FA Date 11/2012 Date 11/2012	ENVIRONMEN AND DE	TAL PLANS	
IQUA C	DRK STREET - FA	LCONER , NEW YORK 1-	TAL PLANS	
QUA C	OUNTY DEP	LCONER , NEW YORK 1	4133	5-00-
		T. OF PUBLIC F	ACILITIES	(92)
AS APPRO	DING OUTSIDE NOW. (IMATE AND IS REQUI ESTIMATED AND SHA	RED PER THE PROJECT'S SW	RPPP, LAYOUT OF T	THESE AREAS TO BE
N THESE B	ROWNFIELD SITES SH	ALL CONFORM TO THE INFOR	NMATION Shown on	THIS DRAWING AND
	DAMAGICI D SITES SH		DMATION SHOWN ON	THIS DRAWING AND
S THE WOR TRACTORS I	K NECESSARY TO BE RESPONSIBILITY TO U	IN GENERAL CONFORMANCE INDERSTAND THE ENTIRE SIT	WITH THE BROWNFI TE MANAGEMENT PL	IELD SITE ANS AND TO
THE FORMER ANS. SEE E IF THESE S	R ALLUMAX AND ROBL VIRONMENTAL NOTES SITE MANAGEMENT PL	IN STEEL PROPERTIESI SHAI ON DWG. ED-1 AND CONTRA ANS.	LL BE DONE IN CO CT DOCUMENTS FO	NFORMANCE WITH THE R ADDITIONAL
		C13	906473.63	950467.64
		I C12	90,6481.18	920490.21
		511	005404.40	050400 51

10	TABLE OF COORDITIATED				
PNT. NO.	NORTHING	EASTING			
C1	906619.38	950428.13			
CZ	906655.32	950633.34			
3	906902.33	950933.54			
C4	906952.32	951190.9			
C5	906888.67	951202.87			
C6	906666.76	950944.73			
7	906651.51	950855.44			
C8	906631.87	950859.43			
C9	906624.34	950820.93			
C10	906578.9	950829.13			
C11	906512.22	950489.7			
C12	906481.18	950490.51			
C13	906473.63	950467.64			

TÆ	ABLE OF COORDI	NATES		
PNT. NO.	NORTHING	EASTING		
C1	906619.38	950428.1		
C2	906655.32	950633.3		
3	906902.33	950933.5		
C4	906952.32	951190.		
C5	906888.67	951202.		
C6	906666.76	950944.3		
C7	906651.51	950855.4		
C8	906631.87	950859.4		
C9	906624.34	950820.		
C10	906578.9	950829.1		
C11	906512.22	950489.		
C12	906481.18	950490.		
C13	906473.63	950467.		

TABLE OF COORDINATES				
PNT. NO.	NORTHING	EASTING		
C1	906619.38	950428.13		
C2	906655.32	950633.34		
G	906902.33	950933.54		
C4	906952.32	951190.9		
C5	906888.67	951202.87		
C6	906666.76	950944.73		
C7	906651.51	950855.44		
C8	906631.87	950859.43		
C9	906624.34	950820.93		
C10	906578.9	950829.13		
C11	906512.22	950489.7		
C12	906481.18	950490.51		

