

2020 Periodic Review Report

Location:

Former Roblin Steel Site 320 South Roberts Road, Dunkirk, New York NYSDEC Site No. B00173-9

Prepared for:

Chautauqua County Department of Public Facilities 454 North Work Street Falconer, New York

LaBella Project No. 2200014

January 22, 2021

Table of Contents

1.0 EXECU	JTIVE SUMMARY	1
1.1 Site	Summary	1
1.2 Effe	ectiveness of Remedial Program	1
1.3 Nor	n-Compliance	1
1.4 Red	commendations	1
2.0 SITE (OVERVIEW	2
2.1 Site	Background	2
2.2 Rer	nedial Program Overview	2
	CTIVENESS OF THE REMEDIAL PROGRAM	
	TUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT	
•	EC Requirements and Compliance	
4.1.1	IC Requirements-Site Restrictions	
4.1.2	Engineering Control-Soil Cover System	4
4.1.3	Engineering Control-Sub-Slab Vapor Venting System	5
4.2 IC/I	EC Certification	5
	TORING PLAN COMPLIANCE REPORT	
5.1 Red	quirements	5
5.2 Gro	undwater Monitoring	6
5.2.1	Sampling Procedure	6
5.2.2	Sample Preservation and Handling	7
5.2.3	Quality Assurance/Quality Control Samples	7
5.2.4	Analytical Results	7
5.3 Cor	nparisons with Remedial Objectives	7
5.4 Mo	nitoring Deficiencies	8
5.5 Gro	undwater Monitoring Conclusions and Recommendations	8
6.0 CONC	LUSIONS AND RECOMMENDATIONS	8
	ATIONS	
8.0 REFER	RENCES	9

TABLE OF CONTENTS

Continued

Figure 1 – Site Location Map

Figure 2 – Site Plan Map

Figure 3 – Groundwater Elevation Map

 Table
 Table 1 – Summary of Analytical Results-Groundwater Samples

Appendix 1 Survey – Former Roblin Steel Site Boundary

Appendix 2 Cover Inspection Form

Appendix 3 Photographs

Appendix 4 Site Management Periodic Review Report-Institutional and Engineering Controls

Certification Form

Appendix 5 Groundwater Sampling Logs
Appendix 6 Laboratory Analytical Results

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the approved Site Management Plan (SMP) for the former Roblin Steel Site in Dunkirk, New York. The Site was remediated in accordance with State Assistance Contract (SAC) No. C302808, Site No. B00173-9, which was executed on December 12, 2005.

1.1 Site Summary

The former Roblin Steel Site (hereafter referred to as the "Site") occupies approximately 12 acres of a former industrial park in the City of Dunkirk, Chautauqua County, New York. Historically, the Site contained numerous buildings, the last of which was demolished as part of remedial activities conducted in 2010. The Site is located in an area zoned for industrial use. An environmental investigation conducted at the Site revealed that contamination associated with historical operations had impacted the Site, necessitating remedial activities. The remedial activities were completed pursuant to the Environmental Restoration Program component of Title 5 of the Clean Water/Clean Air Bond Act of 1996, which was administered by the New York State Department of Environmental Conservation (NYSDEC). Following completion of the remedial work described in the Remedial Action Work Plan (RAWP), some contamination was left in the subsurface of the Site, which is hereafter referred to as "remaining contamination." The remedial efforts also included development of a SMP to manage the remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement that was placed on the Site, in accordance with Environmental Conservation Law (ECL) Article 71, Title 36.

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the Site soil cover system is intact and functioning as designed on the Site. Additionally, recent groundwater sampling results indicate that total volatile organic compound (VOC) concentrations at the Site have generally decreased over time.

1.3 Non-Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this PRR. However, as reported in the 2019 PRR and observed during the 2020 annual site inspection, one of the monitoring wells (MW-01) is damaged and can no longer function as a groundwater sampling point. This is further discussed in Section 5 of this report.

1.4 Recommendations

Overall, the remedial program is viewed to be effective in achieving the remedial objectives for the Site. No changes to the SMP or the frequency of PRR submissions are recommended at this time with the exception of the proper decommissioning of MW-01 and the permanent removal of MW-01, MW-04, MW-12 and EX-MW12 from the groundwater monitoring program. Continued monitoring and evaluation of Site wells MW-02R, MW-07R, MW-09R and EX-MW11R is warranted.

2.0 SITE OVERVIEW

The Site is located at 320 South Roberts Road in the City of Dunkirk, New York. Figure 1 shows the location of the Site and Figure 2 is the Site plan that depicts the Site configuration and location of the groundwater monitoring well network. Progress Drive transects the eastern portion of the Site in a northeast-southwest direction. As a result, a portion of the Site is located east of the roadway and separated from the remainder of the Site. The Site is located in an area zoned for industrial use. A mixture of commercial, industrial and residential properties comprise the land use in the Site's vicinity. The Site is bounded to the north by an active CSX rail yard; to the east by active Norfolk Southern railroad tracks; to the south by the Former Alumax extrusions property; and to the west by a recently constructed freezer warehouse facility. Residential properties are located to the northwest and south of the Site beyond the adjoining properties. Lake Erie is situated approximately 4,000 feet to the northwest of the Site. Hyde Creek is located approximately 100 feet from the northeast corner of the Site.

2.1 Site Background

The Site occupies approximately 12 acres of a former industrial park. Historically, the Site contained a large complex of industrial buildings. The last remaining building was demolished as part of the 2010 remedial activities. The adjoining properties located in the former industrial park include the Former Alumax Extrusions property located to the south and the recently redeveloped Former Edgewood Warehouse property located to the west. In 1910, all three of these properties were developed as part of a larger industrial complex operated by the American Locomotive Company. The Site was later used for steel reclamation; however, operations ceased in 1987. Following this closure, salvage operations dismantled and partially demolished a majority of the Site structures throughout the late 1980s and early 1990s. Since that time, the Site has been vacant.

Following acquisition of the Site by Chautauqua County in December 2001, the site was investigated and remediated pursuant to the SAC executed between the County and NYSDEC. The remediation of the site was completed in September 2010, and rendered the site suitable for commercial or industrial use. Details pertaining to the remedial investigation and remedial construction program completed at the Site are summarized in Section 2.2 below.

In May 2013, the construction of a new public roadway through a portion of the site was initiated. The soil cover system established as part of the previous remediation of the Site was disturbed in conjunction with the construction of the new roadway in the Summer/Fall of 2014. Disturbance of the soil cover was completed in accordance with the provisions of the Excavation Work Plan (EWP) contained in the SMP. The cover system was restored by the end of 2014 in accordance with the Record of Decision (ROD) and the SMP upon completion of the new roadway.

2.2 Remedial Program Overview

As indicated above, a remedial investigation was conducted at the Site between 2002 and 2003. Such revealed that contamination associated with historical operations had impacted the Site, necessitating remedial activities. The NYSDEC issued a ROD in March 2005. The ROD identified seven impacted Media Groups (MGs) associated with the Site. The MGs included:

- Surface soil/fill debris piles;
- Subsurface soil/fill impacted with chlorinated VOCs;
- Subsurface soil/fill impacted with polyaromatic hydrocarbons and metals, and/or petroleum

nuisance characteristics:

- Drainage features and contents;
- Building components;
- Concrete and surface soil impacted with polychlorinated biphenyls (PCBs); and,
- Groundwater impacted with VOCs.

The RAWP prepared in February 2006 described the specific remedial activities that would be implemented at the Site to complete the remediation in accordance with the ROD. The remediation program included two distinct types of activities; those that were related to the removal or treatment of contaminated material (Phase I) and those that were directly related to the redevelopment and reuse of the Site (Phase II). The Phase I components included:

- Excavation and off-site disposal of surface soil/fill that exceeded the Site-Specific Cleanup Levels (SSCLs);
- Excavation and off-site disposal of subsurface soil/fill that exceeded SSCLs;
- Cleaning and filling of Site drainage features;
- Removal and disposal of PCB-containing electrical equipment;
- Removal and disposal of miscellaneous Site debris;
- Decommissioning of monitoring wells that were not part of the long-term monitoring program; and,
- Enhanced natural attenuation of Site groundwater.

The Phase II activities included the following:

- Removal of asbestos-containing materials (ACMs);
- Demolition of the building;
- Removal and crushing of the concrete slabs and top 12 inches of the foundations followed by the placement and grading of the crushed concrete on the Site;
- Placement of a demarcation layer (orange fencing) on top of the original Site surface covered by 12 inches of clean NYSDEC Division of Environmental Remediation (DER)-10 approved soil across the entirety of the Site; and
- Establishment of vegetative cover

Following completion of the remedial work described in the RAWP, some contamination may have been left in the subsurface of the Site. The remedial efforts also included development of the SMP to manage remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement in accordance with ECL Article 71, Title 36.

3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

All remedial actions described in the RAWP were completed during Phase I and Phase II of the remedial program. Remedial goals were accomplished through the removal and off-site disposal of contaminated media exceeding the SSCLs; removal of PCB equipment; enhanced natural attenuation of the Site groundwater; removal of ACMs; demolition of the Site building; and the installation of the Site-wide cover system to prevent exposure to remaining contamination in the subsurface.

As detailed below in Section 4.1.2, the Site Soil Cover System was inspected on December 3, 2020. Based on this inspection, the cover system is intact and functioning effectively throughout the Site.

The results of the December 2020 groundwater sampling event revealed that total VOC concentrations appear to be generally decreasing when compared to results from historical sampling events.

4.0 INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

4.1 IC/EC Requirements and Compliance

4.1.1 IC Requirements-Site Restrictions

In accordance with the SMP, the Site has a series of Institutional Controls (ICs) in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. The Environmental Easement is described on the Boundary Survey of the Former Roblin Steel Site, included within Appendix 1. Site restrictions that apply are as follows:

- The Site may only be used for commercial or industrial use provided that the long-term ICs/Engineering Controls (ECs) included in the SMP are employed:
- The Site may not be used for a higher level of use, such as unrestricted, residential or restricted-residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities at the Site that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of groundwater underlying the Site is restricted as a source of potable or process water, without necessary water quality treatment, as determined by the Chautauqua County Department of Health;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be monitored and mitigated;
- The SMP will provide for the operation and maintenance of the components of the remedy;
- Vegetable gardens and farming on the Site are prohibited; and,
- The Site owner is required to provide an IC/EC certification, prepared and submitted by a
 professional engineer or environmental professional acceptable to the NYSEC annually or for
 a period to be approved by the NYSDEC, which will certify that the ICs and ECs put in place
 are unchanged from the previous certification or that any changes to the controls were
 approved by the NYSDEC; and, nothing has occurred that impairs the ability of the controls to
 protect public health and environment or that constitute a violation or failure to comply with
 the SMP.

4.1.2 Engineering Control-Soil Cover System

Exposure to the remaining contamination in soil/fill at the Site is prevented by a soil cover system that was previously placed over the Site. This cover system is comprised of a minimum of 12 inches of clean soil overlaying a demarcation layer (orange plastic mesh material) over the entire surface of the Site. The EWP, which appears in Appendix A of the SMP, outlines the procedures that are required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. The cover system is a

permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

On December 3, 2020, Mr. Chris Kibler of LaBella Associates, D.P.C. (LaBella) conducted the annual Site inspection, which included traversing the Site on foot to observe the current conditions. The Cover Inspection Form is included herein as Appendix 2. Appendix 3 includes photographs taken during the Site inspection.

With the exception of the Progress Drive corridor that crosses the Site, the Site is generally vacant and undeveloped, with vegetated soil cover occurring at the ground surface. The soil cover at the time of the Site inspection was observed to be intact and functioning as intended. The floor and walls of the storm water ditches associated with Progress Drive were covered with a coarse, low-lying vegetation. No evidence of erosion or exposed synthetic erosion control fabric was observed within or adjacent to the ditches. Furthermore, the asphalt road surface was observed to be in very good condition.

4.1.3 Engineering Control-Sub-Slab Vapor Venting System

No sub-slab vapor venting system (SSVVS) was installed as part of the Site remedy. However, any potential new structures constructed on the Site as part of Site redevelopment may be equipped with a SSVVS, if warranted. The design and sampling of the SSVVS will be performed in accordance with NYSDEC and New York State Department of Health (NYSDOH) guidance at the time the system is installed. The ultimate design of the SSVS will be dependent upon the size and configuration of any newly constructed buildings. Therefore, the specific components of the SSVVS have not been determined.

4.2 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. Appendix 4 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

5.0 MONITORING PLAN COMPLIANCE REPORT

5.1 Requirements

The Monitoring Plan is included in Section 3.0 of the SMP and describes the measures for evaluating: (1) the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site; (2) the soil cover system; and (3) all affected Site Media.

The Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards;
- Monitoring the cover system;
- Assessing achievement of the remedial performance criteria;

- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and,
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, the Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g. well logs);
- Analytical sampling program requirements;
- · Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and,
- Annual inspection and periodic certification.

5.2 Groundwater Monitoring

The groundwater monitoring program is to be conducted on an annual basis for 30 years. Groundwater samples are analyzed for VOCs appearing on the United States Environmental Protection Agency (USEPA) Target Compound List (TCL). Trends in contaminant levels in groundwater are evaluated to determine if the remedy continues to be effective in achieving remedial goals.

The groundwater monitoring network prescribed in the SMP consists of eight monitoring wells. As noted in the 2019 PRR and observed during the annual site inspection and monitoring event conducted on December 3, 2020, one of the eight groundwater monitoring wells (MW-01) is damaged. The protective casing and riser of MW-01 were observed to be significantly bent toward the ground surface and LaBella was unable to pass tubing downward into the well for purging and sample collection.

5.2.1 Sampling Procedure

Seven of the eight groundwater monitoring wells were purged and sampled in general accordance with the procedures detailed in the November 2010 SMP. This included four out of the five downgradient wells (MW-02R, MW-04, MW-12 and EX-MW12) and the three wells located within areas of groundwater impacted with chlorinated VOCs (MW-09R, MW-07R and EX-MW11R). Downgradient well MW-01 could not be sampled due to the damaged riser described above. All monitoring well sampling activities were recorded on groundwater sampling logs, which are included as Appendix 5. Other observations (e.g. well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the ground surface elevation. The groundwater levels were used to determine the volume of standing water in the wells.

Well purging consisted of the evacuation of a minimum of three well volumes using NYSDEC-approved low-flow purging procedures via a Geotech Geopump II Pump. After completion of development, the wells were allowed to recharge. The samples were collected within three hours of completion of well purging using the low-flow method previously identified. Sample volumes were collected into clean sample bottles containing hydrochloric acid preservative provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs via USEPA Method 8260.

5.2.2 Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples to document each person that handled the samples. The samples were transported to Test America Laboratories, Inc., a NYSDOH Environmental Laboratory Accreditation Program certified laboratory for analysis. The COC records established for the collected samples were maintained throughout the laboratory handling. Copies of the COC and complete analytical laboratory report are included in Appendix 6.

5.2.3 Quality Assurance/Quality Control Samples

In addition to field samples, QA/QC samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC samples included a blind field duplicate and a trip blank that were also analyzed for TCL VOCs. Well sampling at the Site and adjoining, former Alumax Extrusions Site were conducted in conjunction with one another on December 3, 2020, and the samples from both sites were submitted to the laboratory together in one batch and recorded on one COC. As such, the blind field duplicate collected from the former Roblin Steel Site (collected from MW-12) and trip blank associated with the samples from both sites were utilized to evaluate the effectiveness of the QA/QC procedures for the Site.

5.2.4 Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, this data is compared with the Standards Criteria and Guidance Values applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Table 1 summarizes the groundwater pre- and post-remedial sampling results and compares the results to applicable water quality standards. Figure 2 depicts the locations of the monitoring wells while Figure 3 depicts apparent groundwater flow direction at the Site.

5.3 Comparisons with Remedial Objectives

As shown in Table 1, VOC concentrations were not detected in monitoring wells MW-04, MW-12 and EX-MW12.

Two VOCs were detected at concentrations above NYSDEC TOGS Standards in the sample collected from EX-MW-11R. Total VOC concentrations in this well have slightly increased since the December 2019 sampling event but are still substantially lower than the initial concentration detected at this location during the October 2002 sampling event.

Three VOCs (Cis-1, 2-Dichloroethene, vinyl chloride and benzene) were detected at concentrations above NYSDEC TOGS Standards in the sample collected from MW-02R. Total VOC concentrations in this well have slightly decreased since the December 2019 sampling event and are substantially lower than the maximum concentration detected at this location during the August 2010 sampling event.

Two VOCs (Cis-1, 2-Dichloroethene and vinyl chloride) were detected within MW-07R at concentrations above NYSDEC TOGS Standards. Total VOC concentrations in this well remained consistent with the December 2019 sampling event and are substantially lower than the maximum concentration detected at this location during the May 2009 sampling event.

Three VOCs were detected at concentrations above NYSDEC TOGS Standards in the sample collected from MW-09R. However, total VOC concentrations in MW-09R are at their lowest since sampling efforts began in October 2002.

A comparison of the results from MW-12 with the blind field duplicate indicates that the data coincide. In addition, no VOC detections were identified within the trip blank analysis.

5.4 Monitoring Deficiencies

As indicated above, damage to downgradient well MW-01 prevented LaBella from collecting a groundwater sample from this well during the 2020 annual monitoring event. However, the lack of monitoring data from this location is not considered to be significant given that no contraventions of the water quality standards have been detected in this well since monitoring began in 2002.

5.5 Groundwater Monitoring Conclusions and Recommendations

Total VOC concentrations in MW-09R were detected at their lowest levels since sampling efforts began in October 2002 and have decreased slightly or remained consistent in MW-02R and MW-07R since the December 2019 sampling event. Although total VOC concentrations in EX-MW-11R have increased slightly since the December 2019 sampling event, such are well below the maximum concentration detected at this location. The continued monitoring of contaminant levels at these well locations is recommended.

Meanwhile, no VOCs have been detected in MW-04, MW-12 or EX-MW-12 during the last four to five annual monitoring events, and no contraventions of NYSDEC TOGS standards have been detected in these wells during the last five annual monitoring events dating back to 2014. As a result, it is recommended that these wells be permanently removed from the monitoring program.

It is also recommended that MW-01 be properly decommissioned due to its damaged condition and permanently removed from the monitoring program considering the absence of contraventions of the water quality standards in this well since monitoring began in 2002.

In consideration of the information above, no changes to the SMP or the frequency of PRR submissions are recommended at this time with the exception of the permanent removal of MW-01, MW-04, MW-12 and EX-MW12 from the groundwater monitoring program.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The Site Soil Cover System was inspected on December 3, 2020 and was observed to be intact and functioning as designed throughout the Site.

Total VOC concentrations in the majority of the Site wells have decreased over time. Continued evaluation of Site wells MW-02R, MW-07R, MW-09R, and EX-MW11R is warranted. No changes to the Monitoring Plan or the SMP are recommended with the exception of the proper decommissioning

of MW-01 and the permanent removal of MW-01, MW-04, MW-12 and EX-MW12 from the groundwater monitoring program.

7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's' intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action expect where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not be construed as legal advice.

This assessment and report have been completed and prepared on behalf of and for the exclusive use of Chautauqua County. Any reliance on this report by a third party is at such party's sole risk.

8.0 REFERENCES

DER10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010

Environmental Easement for 320 South Roberts Road, Chautauqua County Clerk, June 2011

Environmental Remediation of the Former Roblin Steel Site, NYSDEC Site No. B00173-9, Final Engineering Report, TVGA Consultants, November 2010

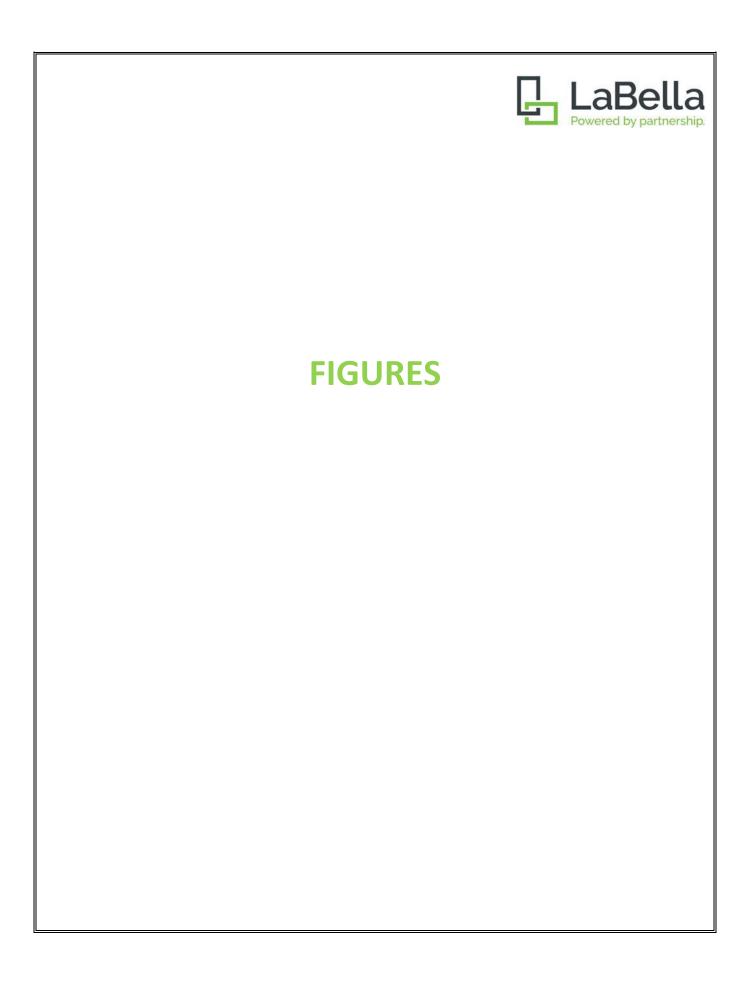
Environmental Restoration Record of Decision, Former Roblin Steel Site, Site Number B-00173, NYSDEC Division of Environmental Remediation, March 2005

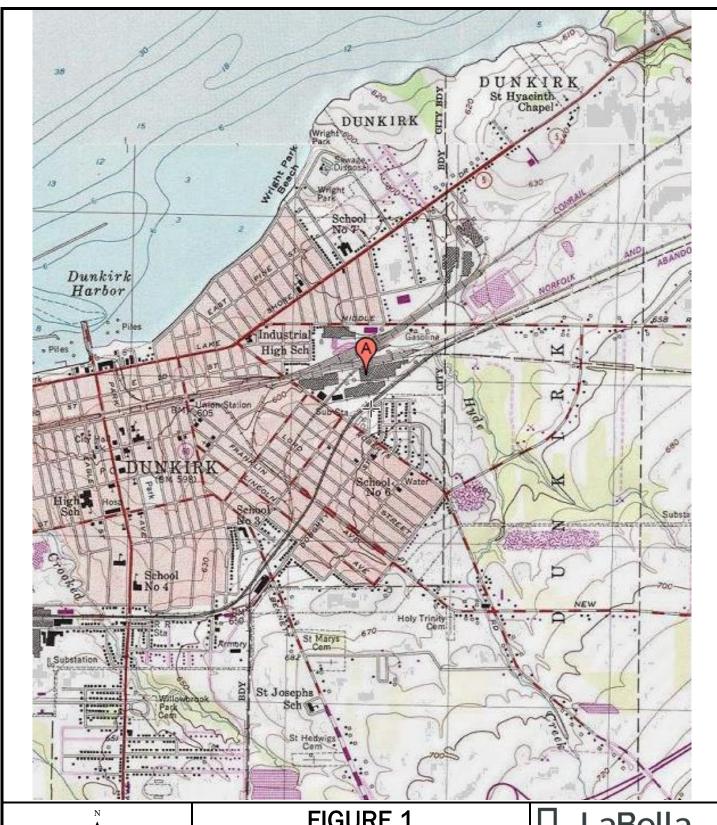
Excavation Work Plan, Former Roblin Steel Site, TVGA Consultants, November 2010

Master Erosion Control Plan, Former Roblin Steel Site, TVGA Consultants, November 2010

Remedial Action Work Plan, TVGA Consultants, February 2006

Site Investigation/Remedial Alternatives Report, Former Roblin Steel Site, TVGA Consultants, December 2004

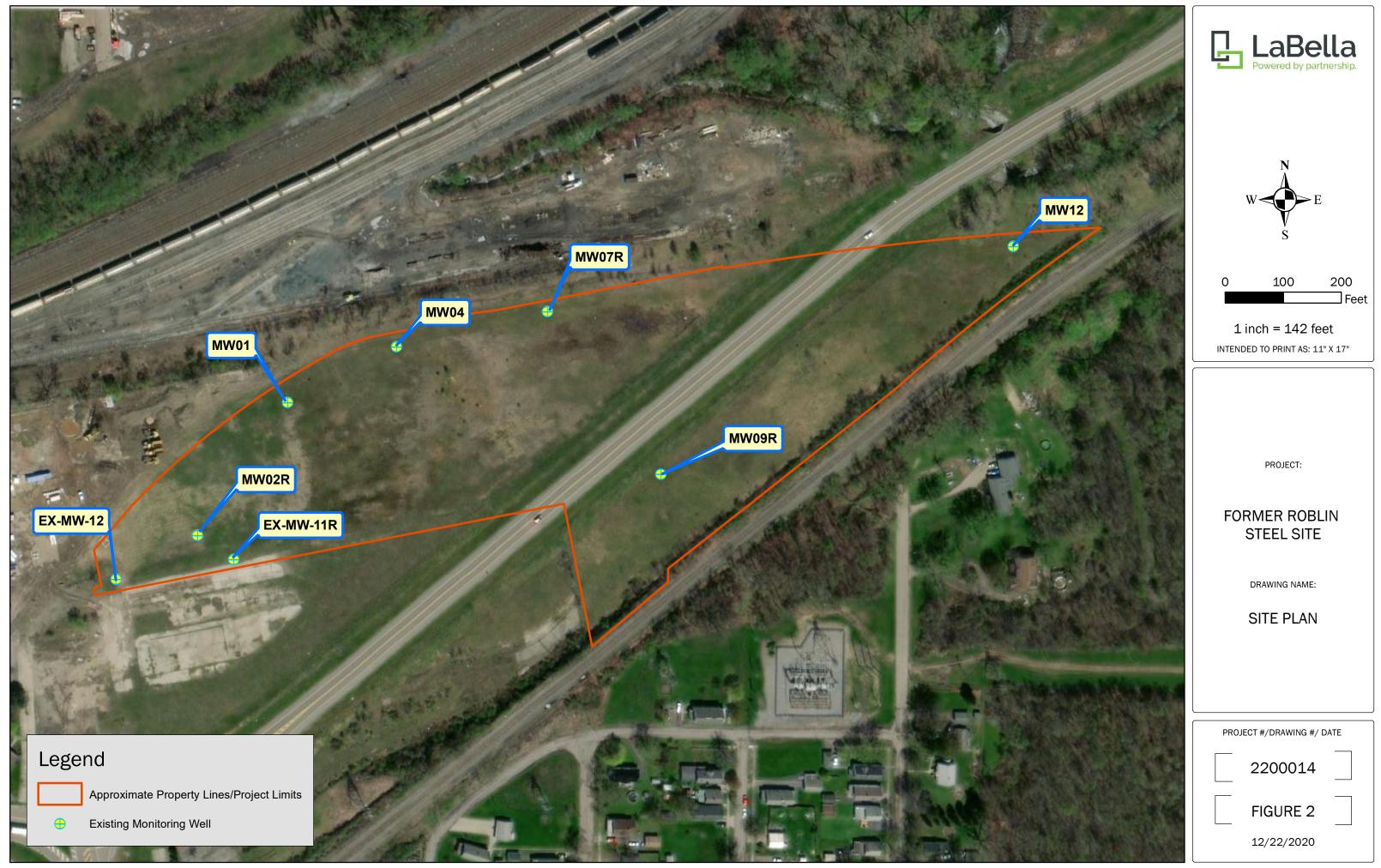

Site Management Plan, Former Roblin Steel Site, TVGA Consultants, November 2010

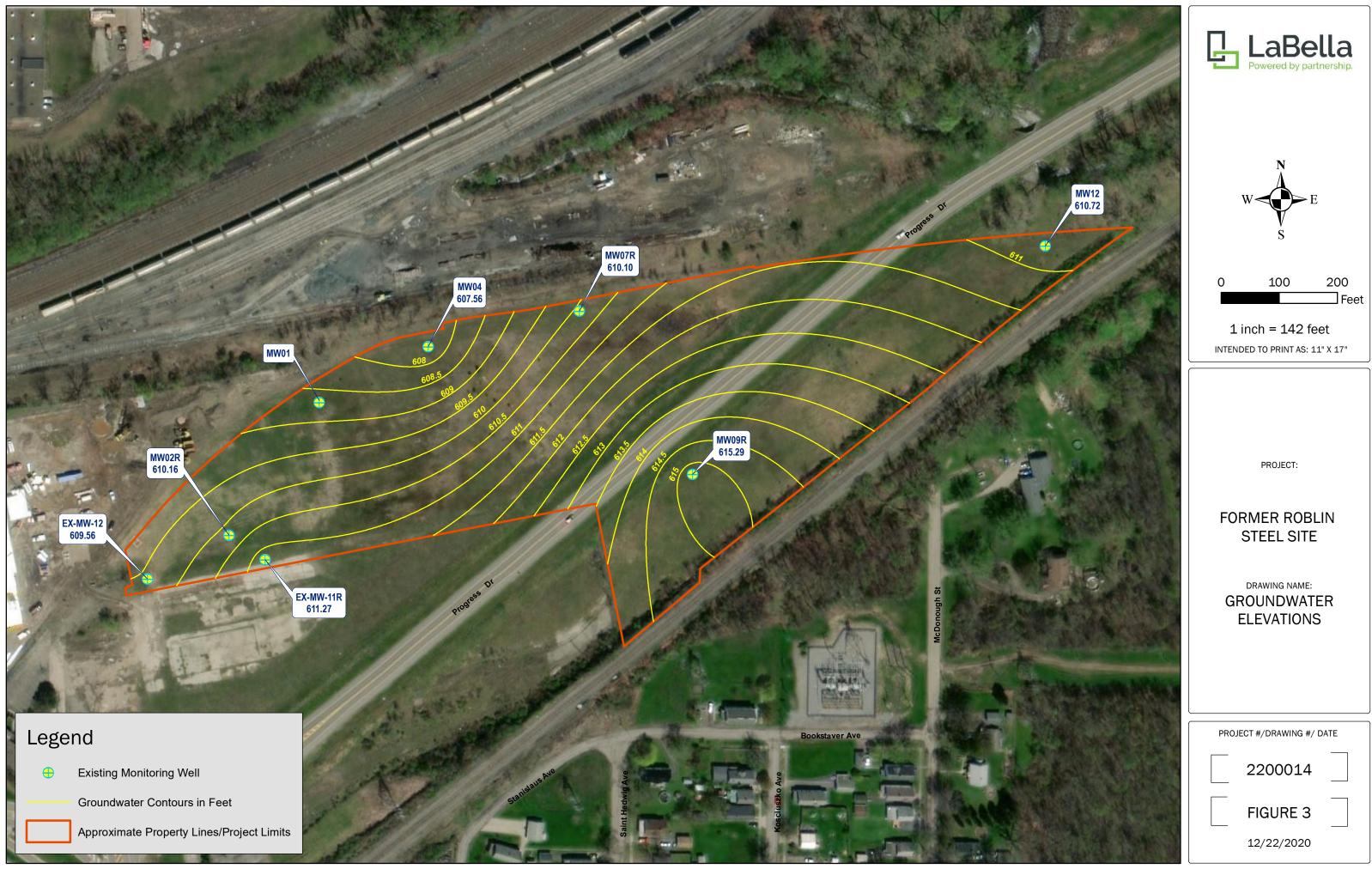

Revised Corrective Action Work Plan, Former Roblin Steel Site, KHEOPS Architecture, Engineering and Survey, DPC, April 3, 2015

Correction Action Report, Former Roblin Steel Site, LaBella Associates, D.P.C., March 2017

Periodic Review Report, Former Roblin Steel Site, LaBella Associates, D.P.C., January 2020

I:\CHAUTAUQUA COUNTY\2200014 - DUNKIRK BROWNFIELD MONITORING\REPORTS\EVENT_DECEMBER 2020\ROBLIN DECEMBER 2020\FINAL ROBLIN.2020 PRR REV. $\#1_1.22.21.DOCX$




FIGURE 1 SITE LOCATION MAP

Former Roblin Steel Site 320 South Roberts Road Dunkirk, New York

PROJECT NO. 2200014

Table 1 Former Roblin Steel Site Summary of Analytical Results Groundwater Samples

	REGULATORY																																																				
PARAMETER	VALUE			MW-0	1								MW-0	R.									MW-04									MW-07R									MW-09R								EX-M	W-11R			
Collection Date	10/1	11/02 2/10/09	8/10/10 8/15/13	7/15/14 12/15	/15 12/14	1/16 2/2/18 12/12/1	18 12/5/19	12/3/20	10/11/02	/02 2/10/09	8/10/10 8	/15/13 7/15	/14 12/15	15 12/14/1	6 2/2/18	12/12/18	12/5/19	2/3/20 10/	11/02 2/10/	09 8/10/10	8/21/13	7/15/14	12/15/15 1	2/14/16 2/	2/18 12/1	2/18 12/5/19	12/3/20	10/11/02	/4/09 8/10	10 8/15/1	7/15/14	12/15/15 1	12/14/16 2/2	2/18 12/13	2/18 12/5/19	12/3/20	0/11/02 2/1	0/09 8/10,	/10 8/15/13	7/15/14 1	2/15/15 12/	14/16 2/2/10	12/12/18	12/5/19 12	2/3/20 10	/11/02 2/10	J/09 8/10/	10 8/15/13	7/15/14 12/1	5/15 12/14/16	. 2/2/18 12	/12/18 12/	5/19 12/3/20
Volatile Organic Compoun	nds (µg/L)																																																				
1,1-Dichloroethene	5																											15									3 2	02			2.3	1.2							4	.6 11	5.8		
1,1-Dichloroethane	5			0.2	6		TI .	I [
cis-1,2-Dichloroethene	5			0.4	6				NA		21.3	10.1 6.	27 18	11	13	20	21	10	NA				2.6	1.2				NA	90	1 128	584	17	5.9 1	190 3.	.2 16	23		10 27		55.7	1,200 5	00 410	290	180	180	NA 3	54 5,37	0 1,950	5,400 9	90 1,000	1,500	960 9	50 1,400
trans-1,2-Dichloroethene	5							1 -	NA										NA									NA									NA 4	48 17.	.3		2.9	4.2				NA.			- 1	.3	4.4		
1,2-Dichloroethene (Total)	5							1	88		21.3																	1,500	90	1							380 2	14 29	4							1,000 3	.54 5,37	0					
1,2,4-Trimethylbenzene	5							I [10																											1	2.9															
2-Butanone	50									33.5	129	_																										30	S														
Acetone	50						TI .	I [21.7	12.3									43.8																	56	9														
Benzene		1 Z					□ Z	Z [18	7.92	37.3	18.2 22	.7 3.9	3.5	5.6	3.2	1.2	1.6	6									10	65 14			0.34					35 1	.5 44	5 87.7	46.3	0.97	2.2		3.5	5.5				- 2	.5	3.7		
Carbon Disulfide	60			5.6	0.1	9		O L																																													
Chloroethane	5							I - L				6.2																																									
Cyclohexane	NL	S					S	S				32.8 42	.3 6.3	5	7.9	3.6	3.4	4.2														0.72							208	155	15	9.4		9.3	8.5					6 24	22	19	22 9.6
cis-1,3-Dichloropropene	0.4						_ =	=																					1,500																								
Ethylbenzene	5						_ ≥	l ≥ L		9.81	18.9	16.9 22	.6 1.9						2									4									12 5	66 69.	.6 33.7	17.3	0.23									.4	1.6		
	5						~	1 P L				2.53 3.	12 0.6																												0.28								0	68			
Methyl Cyclohexane	NL			1				_ m				13.8 22	.4 2.3	1.3	2	0.7	0.99	1.2											99			0.76							121	101	13	7.5		7.3	7					5 20	23	7.3	11 8
Methyl Cyclohexane Methylene Chloride n-Propylbenzene	5							1 0 1																																		4.8								12	4		
n-Propylbenzene	5							I L		2.57																																											
Tetrachloroethene	5						_	I L																					160			0.25									4.5												
Toluene	S						_		24	7.19	101	2.45									_							12	69 29	7							74 2	3.3 58	1								-			.7	0.81		
m,p-Xylene	5 N	NA.					_	1 L	NA.	7.62	73.2	2.45 9.7	51						NA									NA .	67 33	3							NA 2	0.5 23	9							NA.			- 0	.73			
o-Xylene	5 N	NA.					_	I L	NA.	2.61	37.2	2.	10						NA									NA									NA 1	.5 12	8		0.23					NA.			- 4	.9			
Total Xylenes	5 4	4					_	l	11	10.23	110.4								10		_							23	67 33	3							75	2 36	7									_			2.6		
Trichloroethene	5				0.5	3	_	1 4	32		3.31 5.34	125 91	0.2	42			37				1	+	1	1.91				56	49	2	55.9		2 3	3.7			75 450 1	35 58	5		- 2	30 39		110	3.3 1	50,000 1	18 4,63	0	4,510 1,110 5	6 91	4	10	
Vinyl chloride	2								31		5.34	12.5 9.	13 26	42	27	49	37	27					0.49		_			330	770 40	2 56.1	205	6.2	3.7	75 3.	.6 19	12	34	3	991	287	310	93	23	110	202 2	9,800 2	.7 638	881			950	510 3	30 430
Total VOCs	1	5 0	0 0	0 7	0.7.	2 0 0	0	0	204	4 91	580	128 1/	1 59	63	56	77	64	44	18 0	0	44	0	3	3	0 (0	0	1,950	2,797 2,3	r0 184	845	25	12 1	194 6.	.8 35	35	1,063 7	16 3,8	77 1,658	662	1,549	35 567	313	310	303 2	00,800 9	J3 15,90	08 2,831	11,020 1,	598 1,518	2,514 1	1,506 1,	,313 1,848

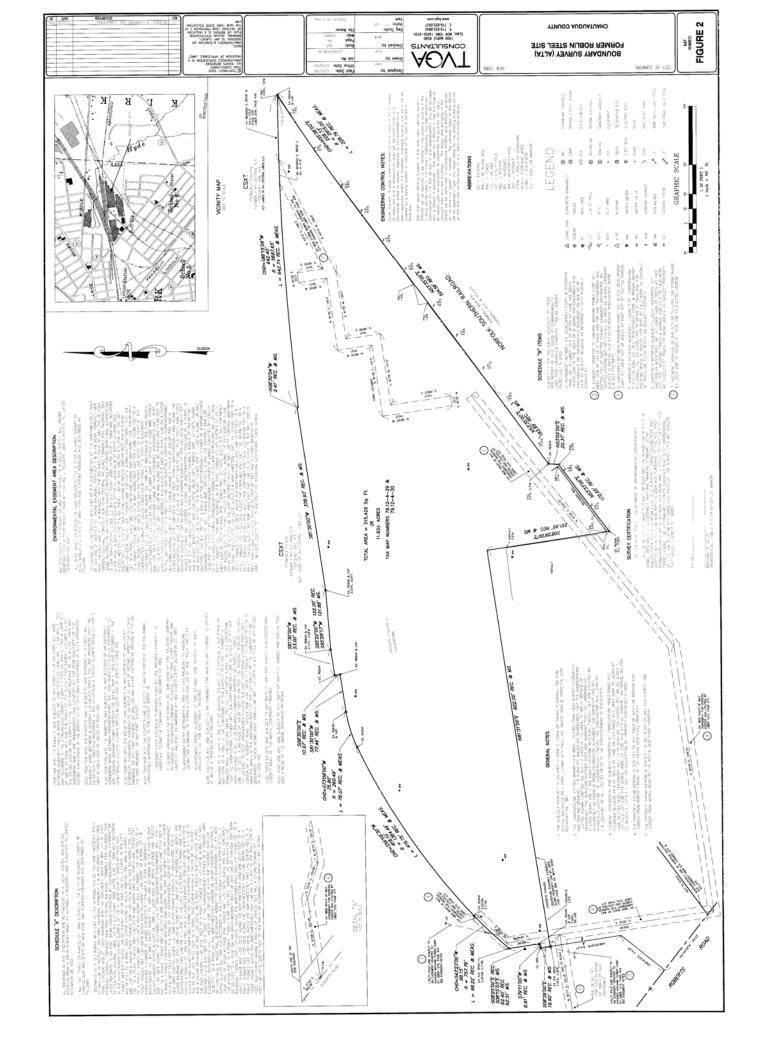
•																							
	REGULATORY																						
PARAMETER	VALUE						MW-12											EX-MW-12					
Collection Date		10/11/02	2/10/09	8/10/10	8/15/13	7/15/14	12/15/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20	10/11/02	2/10/09	8/10/10	8/15/13	7/15/14	12/15/15	12/14/16	2/2/18	12/12/18	12/5/19	12/3/20
Volatile Organic Compour	ids (µg/L)																						
cis-1,2-Dichloroethene	5	NA					0.53						NA.		7.6			0.73					
trans-1,2-Dichloroethene	5	NA											NA.										
1,2-Dichloroethene (Total)	5	150	-										150		7.6								
2-Butanone	50		~												31.3								
2-Hexanone	50		2												5.23								
Acetone	50		S												73.8								
Benzene	1	1	ν.										1		24.0	1.9	2.14	0.47					
Ethylbenzene	5	1	-										1		18.5								
Toluene	5		₹												48.7								
m,p-Xylene	5		_										NA.		74.7								
o-Xylene	5		E										NA.		40.4								
Total Xvienes	5		_												115.1								
Trichloroethene	5														8.96								
Vinvl chloride	2	200											200		27.2								
Total VOCs		352	Ó	0	0	0	0.53	0	0	0	Ó	0	352	0	483	19	214	1	0	0	0	Û	0

Regulatory values are derived from NYS Ambient Water Quality Standards TOGS 1.1.1 (Source of Drinking Water, groundwater

haded values represent exceedances of the regulatory value.

2/L = micrograms per Liter (equivalent to parts per billion)

g/L = micrograms per Liter (equivalent to parts per billio nbc compounds with one or more detections are shown


Only compounds with one or more detections are show

[&]quot;NL" = Regulatory value not listed for parame

APPENDIX 1

Boundary Survey-Former Roblin Steel Site

APPENDIX 2

Cover Inspection Form

COVER INSPECTION FORM Former Roblin Steel Site

Property Name:	Former Roblin Steel	Site			Inspection	Date: 12-3
Property Address:	320 South Rober	ts Road				
<u>City</u> : Dunkirk 14048			<u>State</u> :	NY		Zip Code:
Property ID: (Tax A	ssessment Map)					
<u>Section</u> : 79.12	Block:	4	Lot(s):	29 and	30	
Total Acreage: 1	6.5 acres					
Weather (during in	spection): Tempera	ture: <u>\UB</u> F0	onditions	Sun	ry, Uh	dy
SIGNATURE.	1.11.					
The findings of th	is inspection were implementation was	discussed with as mutually ag	appropried upon	iate per DPC	sonnel, cori	2000
	<u>SE</u>	CURITY AND A	ACCESS			
					Yes	Ng
1. Access controlle	d by perimeter fend	ing?				-X-
	ctions of the fence		_	_		
Are the fend	e or gate post foun	dations structi	urally sou	nd?		
2. "No Trespass" si	igns posted in appro	opriate langua	ges?			X
	s securely attached	- '	_	•		7-1-
	ıfficient signs; are tl		ately spac	ced		
around the	perimeter of the pro	perty?				1
3. Is there evidence	of trespassing?					X
	lence of illegal dum	pina?				\
	-					
	<u>C</u> (OVER & VEGET	ATION			*
Is there evid Is there evid	ceptable condition? ence of sloughing, ence of unintended ence of distressed v	traffic; rutting	?	lement?	<u>X</u>	X-

	Yes	No
5. Final cover sufficiently covers soil/fill material? Are there cracks visible in the soil or pavement? Is there evidence of erosion in the stormwater channels or swale is there damage to the synthetic erosion control fabric in the channels or swales?		X
ACTIVITY ON SITE		
6. Any activity on site that mechanically disturbed soil cover?		X
ADDITIONAL FACILITY INFORMATION		
Development on or near the site? (Specify size and type: e.g., residential septic)	al, 40 acres,	well and
COMMENTS		
Item #		
	•0)	
ATTACHMENTS		
I. Site Sketch 2. Photographs		
B. Laboratory Report (s)		

APPENDIX 3

Photographs

North side of Site ditch

North side of Site

North side of Site

South side of Site

South side of Site ditch

2020 Periodic Review Report
Former Roblin Steel Site
320 S. Roberts Road, Dunkirk, New York

APPENDIX 4

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

. Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	te No.	B00173	Site Details	Box 1		
Sit	te Name Fo	rmer Roblin Steel Site (Du	unkirk)			
City	te Address: 3 ty/Town: Du bunty: Chauta te Acreage:	auqua	Zip Code: 14048			
Re	porting Peric	od: December 15, 2019 to D	December 15, 2020			
		1		YES	NO	
1.	Is the inforr	mation above correct?				
	If NO, inclu	de handwritten above or on	a separate sheet.	_		
2.		or all of the site property been nendment during this Report	en sold, subdivided, merged, or undergone a ting Period?			
3.		peen any change of use at th RR 375-1.11(d))?	he site during this Reporting Period			
4.		ederal, state, and/or local pe property during this Reporti	ermits (e.g., building, discharge) been issued ting Period?			
			thru 4, include documentation or evidence			
5.	Is the site c	currently undergoing develop	oment?			
		ones green experience is since give to	egelakere a sas	Box 2		
			,	YES	NO	
6.		nt site use consistent with that and Industrial	ne use(s) listed below?			
7.	Are all ICs i	in place and functioning as c	designed?			
			JESTION 6 OR 7 IS NO, sign and date below a REST OF THIS FORM. Otherwise continue.	and		
A C	orrective Me	easures Work Plan must be	submitted along with this form to address the	hese issı	ues.	
_		_				
Sig	nature of Ow	ner, Remedial Party or Design	nated Representative Date			

SITE NO. B00173 Box 3

Description of Institutional Controls

Parcel

Owner

79.12-4-29

Chautaugua County

Institutional Control

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

The Site Management Plan includes:

- An Engineering and Institutional Controls Plan. Engineering controls include a one-foot thick soil cover system and provisions for evaluating the potential for soil vapor intrusion to any new buildings constructed and the installation of soil vapor mitigation systems if warranted. Institutional controls at the site will include groundwater use restrictions and use restrictions of the Site to restricted use (i.e. commercial/industrial purposes).
- An Excavation Work Plan to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner.
- A Site Monitoring Plan that includes: provisions for groundwater monitoring; and,
- A Site-wide Inspection program to assure that the Institutional controls have not been altered and remain effective.

79.12-4-30

Chautauqua County

Ground Water Use Restriction Soil Management Plan Monitoring Plan Site Management Plan IC/EC Plan

Landuse Restriction

The Site Management Plan includes:

- An Engineering and Institutional Controls Plan. Engineering controls include a one-foot thick soil cover system and provisions for evaluating the potential for soil vapor intrusion to any new buildings constructed and the installation of soil vapor mitigation systems if warranted. Institutional controls at the site will include groundwater use restrictions and use restrictions of the Site to restricted use (i.e. commercial/industrial purposes).
- An Excavation Work Plan to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner.
- A Site Monitoring Plan that includes: provisions for groundwater monitoring; and,
- A Site-wide Inspection program to assure that the Institutional controls have not been altered and remain effective.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

79.12-4-29

Cover System Vapor Mitigation

79.12-4-30

Vapor Mitigation Cover System

	Box	5
--	-----	---

	Periodic Review Report (PRR) Certification Statements	
	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, a reviewed by, the party making the Engineering Control certification;	and
	 b) to the best of my knowledge and belief, the work and conclusions described in this cer are in accordance with the requirements of the site remedial program, and generally acce engineering practices; and the information presented is accurate and compete. 	
		NO
	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public heat the environment;	alth and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
*	(e) if a financial assurance mechanism is required by the oversight document for the site, mechanism remains valid and sufficient for its intended purpose established in the document	
	YES I	NO
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
Α	Corrective Measures Work Plan must be submitted along with this form to address these issue	es.
	ignature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. B00173

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Brad Bentley at	454 N. WORK St. FALCONER NY 14733 print business address
am certifying as Owner	(Owner or Remedial Party)
for the Site named in the Site Details Section	of this form.
Signature of Owner, Remedial Party, or Designature Certification	gnated Representative 12/17/20 Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LaBella Associates, D.P.C.

at 300 State Street, Rochester, NY

print name print business address

am certifying as a Professional Engineer for the Owner

(Owner or Remedial Party)

DJ P. 711

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

Stamp

(Required for PE)

Date

1/12/2021

APPENDIX 5

Groundwater Sampling Logs

LABELLA ASSOCIATE	S, D.P.C						
Environmental Engine	ering Co	nsultant				Well I.D.	MU-12
Site Location:	Roblin	Steels	re, Dol	LIN N	7.	Job No.	2200014
Sample Date:	12-3-	20	1	1			
LaBella Representative:	0					=	
	Initial	1 Well	2 Well	3 Well		Post	
Well I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	845	870	855	900	905		
Depth of well	23941						
Depth to water	8.0						
Well diameter	211	1.					
Well volume (gallons)	2.6						
Purging device	P.P.						
Containment device	Backet	/					
Purge time							
Gallons purged		2.6	2.6	2.6			
Sample device			3				
Field Parameters							
Temperature	74	7.1	7.2	7.1	7.3		
pH measurement	6.75	6,71	6,77	601	613	57	
Conductivity (mS/cm)	1.101	1211	1.224	1,313	1,297		
ORP/Eh (mV)	129.1	129.1	129.3	1297	1588		
Turbidity (NTUs)	1.7	2.3	10.8	6.8	6.3		
WEATHER: NOTES/FIELD OBSERVATI	ONIC						
NOTES/FIELD OBSERVATI		(0 11 1	, \			
	(Field	Ouplication	e here)		
Well Volume Purge: 1 Well Volu					X Well Capa	city	
(only if applicable) Well Capacity (Gallons per Foot): 0.7			l/ft = 0.3056 '=0.092 2"=	gallons =0.16 3"=0	37		
	12"=5.88	-v.v 4 1.5	—V.U∋Z <u>Z</u> =	0.10 3 -0			
1. Stabilization Crite	ria for range	of variation	of last three	consecutive I	Readings		

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

LABELLA ASSOCIATE							
Environmental Engine	ering Co	nsultant	S	ent ve d	La	Well I.D.	MURPH
Site Location:	Koblin	Steels	ite, Dr	JKIKK A	Y.	Job No.	2200014
Sample Date:	12-	3-20) :	960			
LaBella Representative:							
Well I.D.	Initial Readings	1 Well Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details
Time	915	920	925	938	935		
Depth of well	167						
Depth to water	4.5'						
Well diameter	2"						
Well volume (gallons)	20						
Purging device	P.P.						
Containment device	Bucket						
Purge time							
Gallons purged		2.0	2.0	2.0		,	
Sample device							
Field Parameters							
Temperature	6.6	6.7	67	6.8	6.9		
pH measurement	7.06	7.11	7.09	212	7,14		
Conductivity (mS/cm)	0.983	0.90	0.981	0.926	0.94		
ORP/Eh (mV)	1249	121.6	123.3	1236	1244		
Turbidity (NTUs)	299	13.1	17.2	8.6	7.1		
WEATHER: NOTES/FIELD OBSERVATI	ONS:						
NO ILONIALID OBOLI (VIII)	0,10.						
Well Volume Purge: 1 Well Volu	ime = (Total	Well Depth -	- Static Dept	h To Water)	X Well Capa	city	
(only if applicable)			1/ft = 0.3056				
Well Capacity (Gallons per Foot): 0.7 4"=0.65 5"=1.02 6"=1.47	5"=0.02 1" 12"=5.88	'=0.04 1.5 "	=0.092 2" =	=0.16 3" =0	.37		
1. Stabilization Crite		of variation	of last three	consecuti <mark>v</mark> e F	Readings		

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

LABELLA ASSOCIATE							~ ~
Environmental Engine	ering Co	nsultant	s ∼ ∩	er e V. T	. 1 .	Well I.D.	mudi
Site Location:	Roblin	Steels	SITE ID	nink	W.	Job No.	2200014
Sample Date:	12-3	20_	:	23 8 0			
_aBella Representative:							
	Initial	1 Well	2 Well	3 Well		Post	.
Well I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	945	950	955	1000	1005		
Depth of well	1757						
Depth to water	44'						
Well diameter	3,,,						
Well volume (gallons)	2.1						
Purging device	PP.						
Containment device	Bucket						
Purge time							
Gallons purged		2.1	2.1	2.			
Sample device							
Field Parameters	-						
Temperature	8.0	7.9	8.2	81	7.9		
pH measurement	7.36	7.12	724	7.33	<u> 7,31</u>		
Conductivity (mS/cm)	18,18	1891	1779	11/63	1.811		
ORP/Eh (mV)	51.1	2771	55.6	-	547		
Turbidity (NTUs)	5.01	24.2	26.2	181	MH		
WEATHER: NOTES/FIELD OBSERVATI	ONS:						
NOTES/FILED OBSERVATI	0110.						
Well Volume Purge: 1 Well Vol					X Well Capa	ıcity	
(only if applicable) Well Capacity (Gallons per Foot): 0.7		:-ft.) X . ga '=0.04 1.5"		gallons =0.16 3"=0	.37		
	12"=5.88	J.V. X.D	3.072				
1 C4-1-111-41 C 14	Con warran	of variation	of last three	consecutive I	Poodings		

1. Stabilization Criteria for range of variation of last three consecutive Readings

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

LABELLA ASSOCIATE							M/1
Environmental Engine				-11/41/	1.13	Well I.D.	2200044
Site Location: Sample Date:	KODIN	Steel	THE TE	DKYK!	03	JOD NO.	2200014
Sample Date. LaBella Representative:	12.3	00	•				
Edbolid Hoprobottativo.		4 187 11	0.147 11	0.144 11		Б. (
Well I.D.	Initial Readings	1 Well Volume	2 Well Volumes	3 Well Volume	Sample	Post Sample	Details
Time	1015	المحردا	1025	1830	1035		
Depth of well	16.04						
Depth to water	45						
Well diameter	2"						
Well volume (gallons)	1,9					8	
Purging device	6.0'						
Containment device	Gulot	2					
Purge time							
Gallons purged		19	1,9	1,9			
Sample device							140
Field Parameters							
Temperature	8.4	8.1	8.2	79	8.1		
pH measurement	7,21	7.19	733	7.31	72		
Conductivity (mS/cm)	1.099	1/21	1418	1942	1,334		
ORP/Eh (mV)	99	9.7	9.6	9,4	813		
Turbidity (NTUs)	9.61	10.11	11.24	10.31	10,29		
WEATHER:	0110						
NOTES/FIELD OBSERVATI	ONS:						
Well Volume Purge: 1 Well Volu	ıme = (Totel)	Wall Danth	- Static Dont	n Ta Watar)	X Well Cana	city	
only if applicable)			/ft = 0.3056		A. Well Capa		
Well Capacity (Gallons per Foot): 0.7		=0.04 1.5"	=0.092 2" =	=0.16 3"= 0.	37		
1"=0.65 5"=1.02 6"=1.47 1 1. Stabilization Criter	12"=5.88 ria for range	of variation	of last three	consecutive F	Readings		
	-						

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

LABELLA ASSOCIATE	S, D.P.C						-45
Environmental Engine				seems name say		Well I.D.	10-01
Site Location:	Hablir	Steel	Site, Our	JKINK, K	<i>Y</i> .	Job No.	2200014
Sample Date:	12-3	20					
LaBella Representative:							
Well I.D.	Initial Readings	1 Well Volume	2 Weil Volumes	3 Well Volume	Sample	Post Sample	Details
Time							
Depth of well							
Depth to water							
Well diameter							
Well volume (gallons)							
Purging device			*				
Containment device							
Purge time		-					
Gallons purged							
Sample device							
Field Parameters							
Temperature							
pH measurement		14					
Conductivity (mS/cm)							
ORP/Eh (mV)							
Turbidity (NTUs)							
WEATHER: NOTES/FIELD OBSERVATI	ONS:						,
NOTES/FIELD OBSERVATI	well a	Constinue	domo	cald of to Water)	nt (see Not som X Well Capa	picture ple liny	5)
(only if applicable)			1/ft = 0.3056				
Well Capacity (Gallons per Foot): 0.7		2=0.04 1.5 °	'= 0.092 2'' =	=0.16 3"= 0	.37		
	12"=5.88	of variation	of last thus	consequative 1	Dandings		
1. Stabilization Crite	ria for range	or variation	of fast three	consecutive I	caumgs		

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

LABELLA ASSOCIATE							
Environmental Engine				Walter No.		Well I.D.	EX-M
Site Location:	HoHin	Steels	Site, De	nKirk.	W.	Job No.	2200014
Sample Date:	12-3	120			,		
LaBella Representative:							
	Initial	1 Well	2 Well	3 Well		Post	
Weil I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	1050	1055	1100	1105	1110		
Depth of well	23,1	,,		5 1 2			
Depth to water	6.31						
Well diameter	2"						
Well volume (gallons)	2.7						
Purging device	1.P.						_
Containment device	Bullet						
Purge time		0 =		0.0			
Gallons purged		2.7	3.	5.7			
Sample device							
Field Parameters							
Temperature	90	9.8	99	9.6	9.4		
pH measurement	6.75	601	6.64	6,70	6,73		
Conductivity (mS/cm)	1563	1554	IHD	11215	1.611		
ORP/Eh (mV)	54.7	55.8	55.3	53.4	549		
Turbidity (NTUs)	18.30	27.6	349	28.7	244		
WEATHER: NOTES/FIELD OBSERVATI	ONS:						
10 120/11225 0502111/11	0,101,						
Well Volume Purge: 1 Well Volu	ıme = (Total	Well Denth -	- Static Dent	h To Water)	X Well Capa	city	
(only if applicable)	= (ft	. –ft.) X . ga	1/ft = 0.3056				
Well Capacity (Gallons per Foot): 0.7		'=0.04 1.5 "	'=0.092 2'' =	= 0.16 3" =0	.37		
1"=0.65 5"=1.02 6"=1.47 1 1. Stabilization Crite	12"=5.88 ria for range	of variation	of last three	consecutive I	Readings		

pH: ± 0.2 units; Temperature: $\pm 0.5^{\circ}$ C; Specific Conductance: $\pm 10\%$; Turbidity: ≤ 50 NTU

LABELLA ASSOCIATE						3	M
Environmental Engine	ering Co	nsultant	S	(1)		Well I.D.	"IVOS
Site Location:	Roplio	Steels	teilen	-145 M	L	Job No.	2200014
Sample Date:	12/3	00_	R.	5)			
_aBella Representative:							
	Initial	1 Well	2 Well	3 Well		Post	
Well I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	1130	1190	150	1200	1210		
Depth of well	23.75						
Depth to water	6.8						
Well diameter	2,,						
Well volume (gallons)	2.6						
Purging device	66						
Containment device	Bullet						
Purge time				0.4			
Gallons purged		2.6	2.6	2.6			
Sample device							
Field Parameters							
Temperature	79	8.1	8.1	7.9	7.7		
pH measurement	TIT	7,11	7.23	7,24	7.18		
Conductivity (mS/cm)	0.960	0,991	0948	0992	0963		
ORP/Eh (mV)	608	649	62.1	63.)	622		
Turbidity (NTUs)	5,35	10.33	10.41	1343	11.46		
WEATHER: NOTES/FIELD OBSERVAT	ONS:						
NOTEON ILLE OBOLINA							
Well Volume Purge: 1 Well Vol	ume = (Total	Well Depth -	– Static Dept	h To Water)	X Well Capa	acity	
(only if applicable)	= (fi	t. –ft.) X . ga	1/ft = 0.3056	gallons			
Well Capacity (Gallons per Foot): 0.		'=0.04 1.5 '	'= 0.092 2''	= 0.16 3"= 0	.37		
4"=0.65 5"=1.02 6"=1.47 1. Stabilization Crite	12"=5.88 ria for range	of variation	of last three	consecutive l	Readings		
I. DIADITIZATION CITIC			50	* -	J		

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

LABELLA ASSOCIATE	S, D.P.C	•					<i>i</i> ~
Environmental Engine	ering Co	nsultant	s	te sact likings	I Iv	Well I.D.	EX-1
Site Location:	Kohlin	Steel	Site, D	allirk,	M	Job No.	2200014
Sample Date:	1230	0		,			
LaBella Representative:							
	Initial	1 Well	2 Well	3 Well		Post	
Well I.D.	Readings	Volume	Volumes	Volume	Sample	Sample	Details
Time	1220	1230	1240	1250	1300		
Depth of well	18,65						
Depth to water	3.6'						
Well diameter	21						
Well volume (gallons)	21						
Purging device	P.P.						
Containment device	Becket						
Purge time			- //-				
Gallons purged		2.1	2.1	2.1			
Sample device							
Field Parameters							
Temperature	8.6	8.7	8.7	8.4	813		
oH measurement	7.49	7,41	7.36	7.37	7.31		
Conductivity (mS/cm)	0.66	0,414	0.418	<u>0525</u>	01566		
ORP/Eh (mV)	40.6	41.1	91,3	417	41.0		
Turbidity (NTUs)	8.46	1244	1239	13.12	12.10		
WEATHER: NOTES/FIELD OBSERVATI	ONS:						
NOTES/FILLD OBSERVATI	OI4O.						
Well Volume Purge: 1 Well Volu	me = (Total	Well Depth -	- Static Deptl	1 To Water)	X Well Capa	city	
(only if applicable)			l/ft = 0.3056		<u>-</u>	-	
Well Capacity (Gallons per Foot): 0.7	5"= 0.02 1"	=0.04 1.5"	=0.092 2"=	=0.16 3"= 0.	.37		
	2"=5.88	of war! - 4!	of last there	nongoga-Alass T	andin ==		
1. Stabilization Crite	ria for range	or variation	oi last three (consecutive F	keadings		

pH: ± 0.2 units; Temperature: ± 0.5°C; Specific Conductance: ± 10%; Turbidity: ≤ 50 NTU

APPENDIX 6

Laboratory Analytical Results

ANALYTICAL REPORT

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-178974-1

Client Project/Site: Alumax & Roblin Periodic Review Reports

For:

eurofins 🙀

LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Attn: Chris Kibler

Authorized for release by: 12/15/2020 12:39:06 PM

Rebecca Jones, Project Management Assistant I Rebecca.Jones@Eurofinset.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.eurofinsus.com/Env The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

_

3

4

5

7

8

1 በ

12

14

┰ 。	I _ I	I _		^ -	1 -	nts
12	n		$\mathbf{O}\mathbf{I}$		nto	nte
ı a	U		VI.	UU		\mathbf{IILO}

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Surrogate Summary	22
QC Sample Results	23
QC Association Summary	28
Lab Chronicle	29
Certification Summary	31
Method Summary	32
Sample Summary	33
Chain of Custody	34
Receipt Checklists	35

Definitions/Glossary

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Qualifiers

GC/MS VOA

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)
EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Buffalo

12/15/2020

Page 3 of 35

•

4

Ę

3

7

8

10

11

13

14

Case Narrative

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-178974-1

Laboratory: Eurofins TestAmerica, Buffalo

Narrative

Job Narrative 480-178974-1

Comments

No additional comments.

Receipt

The samples were received on 12/3/2020 4:30 PM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: MW-12 (480-178974-1), MW-07R (480-178974-4), MW-04 (480-178974-5) and EX-MW-12 (480-178974-6). Elevated reporting limits (RLs) are provided.

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-09R (480-178974-3), EX-MW11R (480-178974-8) and AL-1 (480-178974-10). Elevated reporting limits (RLs) are provided.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-562109 recovered above the upper control limit for Carbon tetrachloride. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: FIELD DUPLICATE (480-178974-2) and AL-2 (480-178974-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-178974-1

2

0

8

4.6

13

14

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-12 Lab Sample ID: 480-178974-1

No Detections.

Client Sample ID: FIELD DUPLICATE Lab Sample ID: 480-178974-2

No Detections.

Client Sample ID: MW-09R Lab Sample ID: 480-178974-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	5.5		4.0	1.6	ug/L	4	_	8260C	Total/NA
cis-1,2-Dichloroethene	180		4.0	3.2	ug/L	4		8260C	Total/NA
Cyclohexane	8.5		4.0	0.72	ug/L	4		8260C	Total/NA
Methylcyclohexane	7.0		4.0	0.64	ug/L	4		8260C	Total/NA
Trichloroethene	3.3	J	4.0	1.8	ug/L	4		8260C	Total/NA
Vinyl chloride	99		4.0	3.6	ug/L	4		8260C	Total/NA

Client Sample ID: MW-07R Lab Sample ID: 480-178974-4

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	23	4.0	3.2 ug/L	4	8260C	Total/NA
Vinyl chloride	12	4.0	3.6 ug/L	4	8260C	Total/NA

Client Sample ID: MW-04 Lab Sample ID: 480-178974-5

No Detections.

Client Sample ID: EX-MW-12 Lab Sample ID: 480-178974-6

No Detections.

Client Sample ID: MW-02R Lab Sample ID: 480-178974-7

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac I	O Method	Prep Type
Benzene	1.6	1.0	0.41 ug/L	1	8260C	Total/NA
cis-1,2-Dichloroethene	10	1.0	0.81 ug/L	1	8260C	Total/NA
Cyclohexane	4.2	1.0	0.18 ug/L	1	8260C	Total/NA
Methylcyclohexane	1.2	1.0	0.16 ug/L	1	8260C	Total/NA
Vinyl chloride	27	1.0	0.90 ug/L	1	8260C	Total/NA

Client Sample ID: EX-MW11R Lab Sample ID: 480-178974-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	1400		20	16	ug/L	20		8260C	Total/NA
Cyclohexane	9.6	J	20	3.6	ug/L	20		8260C	Total/NA
Methylcyclohexane	8.0	J	20	3.2	ug/L	20		8260C	Total/NA
Vinyl chloride	430		20	18	ug/L	20		8260C	Total/NA

Client Sample ID: AL-2 Lab Sample ID: 480-178974-9

 Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	8.6	1.0	0.41	ug/L	1	_	8260C	Total/NA
cis-1,2-Dichloroethene	25	1.0	0.81	ug/L	1		8260C	Total/NA
Cyclohexane	1.4	1.0	0.18	ug/L	1		8260C	Total/NA
Vinyl chloride	7.0	1.0	0.90	ug/L	1		8260C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Buffalo

12/15/2020

Job ID: 480-178974-1

Detection Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID: 480-178974-10

Lab Sample ID: 480-178974-11

Lab Sample ID: 480-178974-12

Client Sample ID: AL-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	6.8		4.0	1.6	ug/L	4	_	8260C	Total/NA
cis-1,2-Dichloroethene	240		4.0	3.2	ug/L	4		8260C	Total/NA
Cyclohexane	4.0		4.0	0.72	ug/L	4		8260C	Total/NA
Methylcyclohexane	1.3	J	4.0	0.64	ug/L	4		8260C	Total/NA
Vinyl chloride	230		4.0	3.6	ug/L	4		8260C	Total/NA

Client Sample ID: AL-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.4		1.0	0.81	ug/L	1		8260C	Total/NA
Vinyl chloride	1.3		1.0	0.90	ug/L	1		8260C	Total/NA

Client Sample ID: Trip Blank

No Detections.

Job ID: 480-178974-1

3

4

J

7

8

9

11

12

14

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-12 Date Collected: 12/03/20 09:05

Chloromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Isopropylbenzene

Methyl acetate

Styrene

Toluene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Lab Sample ID: 480-178974-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			12/05/20 12:39	2
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			12/05/20 12:39	2
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			12/05/20 12:39	2
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			12/05/20 12:39	2
1,1-Dichloroethane	ND		2.0	0.76	ug/L			12/05/20 12:39	2
1,1-Dichloroethene	ND		2.0	0.58	ug/L			12/05/20 12:39	2
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L			12/05/20 12:39	2
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L			12/05/20 12:39	2
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L			12/05/20 12:39	2
1,2-Dichloroethane	ND		2.0	0.42	ug/L			12/05/20 12:39	2
1,2-Dichloropropane	ND		2.0	1.4	ug/L			12/05/20 12:39	2
1,3-Dichlorobenzene	ND		2.0	1.6	ug/L			12/05/20 12:39	2
1,4-Dichlorobenzene	ND		2.0	1.7	ug/L			12/05/20 12:39	2
2-Butanone (MEK)	ND		20	2.6	ug/L			12/05/20 12:39	2
2-Hexanone	ND		10	2.5	ug/L			12/05/20 12:39	2
4-Methyl-2-pentanone (MIBK)	ND		10	4.2	ug/L			12/05/20 12:39	2
Acetone	ND		20	6.0	ug/L			12/05/20 12:39	2
Benzene	ND		2.0	0.82	ug/L			12/05/20 12:39	2
Bromodichloromethane	ND		2.0	0.78	ug/L			12/05/20 12:39	2
Bromoform	ND		2.0	0.52	ug/L			12/05/20 12:39	2
Bromomethane	ND		2.0	1.4	ug/L			12/05/20 12:39	2
Carbon disulfide	ND		2.0	0.38	ug/L			12/05/20 12:39	2
Carbon tetrachloride	ND		2.0	0.54	ug/L			12/05/20 12:39	2
Chlorobenzene	ND		2.0	1.5	ug/L			12/05/20 12:39	2
Dibromochloromethane	ND		2.0	0.64	ug/L			12/05/20 12:39	2
Chloroethane	ND		2.0	0.64	ug/L			12/05/20 12:39	2
Chloroform	ND		2.0	0.68	ug/L			12/05/20 12:39	2

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

5.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

4.0

0.70 ug/L

1.6 ug/L

0.72 ug/L 0.36 ug/L

1.4 ug/L

1.5 ug/L

1.5 ug/L

1.6 ug/L

2.6 ug/L

0.32 ug/L

0.32 ug/L

0.88 ug/L

1.5 ug/L

0.72 ug/L

1.0 ug/L

1.8 ug/L

0.74 ug/L

0.92 ug/L

1.8 ug/L

1.8 ug/L

1.3 ug/L

ND

12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	
12/05/20 12:39	2	

Eurofins TestAmerica, Buffalo

Page 7 of 35

3

5

7

Q

10

12

14

II to

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-12

Lab Sample ID: 480-178974-1

Date Collected: 12/03/20 09:05 Matrix: Water Date Received: 12/03/20 16:30

Surrogate	%Recovery C	Qualifier Limits	Prepared Analy	zed Dil Fac
Toluene-d8 (Surr)	95	80 - 120	12/05/20) 12:39 2
1,2-Dichloroethane-d4 (Surr)	119	77 - 120	12/05/20) 12:39 2
4-Bromofluorobenzene (Surr)	102	73 - 120	12/05/20) 12:39 2
Dibromofluoromethane (Surr)	108	75 - 123	12/05/20) 12:39 2

Client Sample ID: FIELD DUPLICATE

Lab Sample ID: 480-178974-2

Date Collected: 12/03/20 09:05 Matrix: Water

Date Received: 12/03/20 16:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND —	1.0	0.82	ug/L			12/06/20 15:44	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/06/20 15:44	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/06/20 15:44	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/06/20 15:44	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/06/20 15:44	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/06/20 15:44	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/06/20 15:44	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/06/20 15:44	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/06/20 15:44	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/06/20 15:44	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/06/20 15:44	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/06/20 15:44	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/06/20 15:44	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/06/20 15:44	1
2-Hexanone	ND	5.0	1.2	ug/L			12/06/20 15:44	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/06/20 15:44	1
Acetone	ND	10	3.0	ug/L			12/06/20 15:44	1
Benzene	ND	1.0	0.41	ug/L			12/06/20 15:44	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/06/20 15:44	1
Bromoform	ND	1.0	0.26	ug/L			12/06/20 15:44	1
Bromomethane	ND	1.0	0.69	ug/L			12/06/20 15:44	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/06/20 15:44	
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/06/20 15:44	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/06/20 15:44	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/06/20 15:44	1
Chloroethane	ND	1.0	0.32	ug/L			12/06/20 15:44	1
Chloroform	ND	1.0	0.34	ug/L			12/06/20 15:44	1
Chloromethane	ND	1.0	0.35	ug/L			12/06/20 15:44	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/06/20 15:44	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/06/20 15:44	1
Cyclohexane	ND	1.0	0.18	ug/L			12/06/20 15:44	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/06/20 15:44	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/06/20 15:44	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/06/20 15:44	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/06/20 15:44	1
Methyl acetate	ND	2.5		ug/L			12/06/20 15:44	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/06/20 15:44	1
Methylcyclohexane	ND	1.0	0.16	_			12/06/20 15:44	1
Methylene Chloride	ND	1.0	0.44	-			12/06/20 15:44	1

Eurofins TestAmerica, Buffalo

Page 8 of 35 12/15/2020

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: FIELD DUPLICATE

Date Collected: 12/03/20 09:05 Date Received: 12/03/20 16:30

Lab Sample ID: 480-178974-2

12/06/20 15:44

12/06/20 15:44

12/06/20 15:44

Job ID: 480-178974-1

Matrix: Water

Method: 8260C - Volatile Orga	anic Compounds b	by GC/MS (Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			12/06/20 15:44	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/06/20 15:44	1
Toluene	ND		1.0	0.51	ug/L			12/06/20 15:44	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/06/20 15:44	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/06/20 15:44	1
Trichloroethene	ND		1.0	0.46	ug/L			12/06/20 15:44	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/06/20 15:44	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/06/20 15:44	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/06/20 15:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	104		80 - 120			-		12/06/20 15:44	1

Client Sample ID: MW-09R Lab Sample ID: 480-178974-3 Date Collected: 12/03/20 09:35 **Matrix: Water**

77 - 120

73 - 120

75 - 123

Date Received: 12/03/20 16:30

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

118

113

109

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			12/05/20 13:25	4
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			12/05/20 13:25	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			12/05/20 13:25	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			12/05/20 13:25	4
1,1-Dichloroethane	ND		4.0	1.5	ug/L			12/05/20 13:25	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			12/05/20 13:25	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			12/05/20 13:25	4
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			12/05/20 13:25	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			12/05/20 13:25	4
1,2-Dichloroethane	ND		4.0	0.84	ug/L			12/05/20 13:25	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			12/05/20 13:25	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			12/05/20 13:25	4
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			12/05/20 13:25	4
2-Butanone (MEK)	ND		40	5.3	ug/L			12/05/20 13:25	4
2-Hexanone	ND		20	5.0	ug/L			12/05/20 13:25	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			12/05/20 13:25	4
Acetone	ND		40	12	ug/L			12/05/20 13:25	4
Benzene	5.5		4.0	1.6	ug/L			12/05/20 13:25	4
Bromodichloromethane	ND		4.0	1.6	ug/L			12/05/20 13:25	4
Bromoform	ND		4.0	1.0	ug/L			12/05/20 13:25	4
Bromomethane	ND		4.0	2.8	ug/L			12/05/20 13:25	4
Carbon disulfide	ND		4.0	0.76	ug/L			12/05/20 13:25	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			12/05/20 13:25	4
Chlorobenzene	ND		4.0	3.0	ug/L			12/05/20 13:25	4
Dibromochloromethane	ND		4.0	1.3	ug/L			12/05/20 13:25	4
Chloroethane	ND		4.0	1.3	ug/L			12/05/20 13:25	4
Chloroform	ND		4.0	1.4	ug/L			12/05/20 13:25	4
Chloromethane	ND		4.0	1.4	ug/L			12/05/20 13:25	4

Eurofins TestAmerica, Buffalo

Page 9 of 35

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-09R

Lab Sample ID: 480-178974-3 Matrix: Water

Date Collected: 12/03/20 09:35 Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	180		4.0	3.2	ug/L			12/05/20 13:25	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			12/05/20 13:25	4
Cyclohexane	8.5		4.0	0.72	ug/L			12/05/20 13:25	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			12/05/20 13:25	4
Ethylbenzene	ND		4.0	3.0	ug/L			12/05/20 13:25	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			12/05/20 13:25	4
Isopropylbenzene	ND		4.0	3.2	ug/L			12/05/20 13:25	4
Methyl acetate	ND		10	5.2	ug/L			12/05/20 13:25	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			12/05/20 13:25	4
Methylcyclohexane	7.0		4.0	0.64	ug/L			12/05/20 13:25	4
Methylene Chloride	ND		4.0	1.8	ug/L			12/05/20 13:25	4
Styrene	ND		4.0	2.9	ug/L			12/05/20 13:25	4
Tetrachloroethene	ND		4.0	1.4	ug/L			12/05/20 13:25	4
Toluene	ND		4.0	2.0	ug/L			12/05/20 13:25	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			12/05/20 13:25	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			12/05/20 13:25	4
Trichloroethene	3.3	J	4.0	1.8	ug/L			12/05/20 13:25	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			12/05/20 13:25	4
Vinyl chloride	99		4.0	3.6	ug/L			12/05/20 13:25	4
Xylenes, Total	ND		8.0	2.6	ug/L			12/05/20 13:25	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	98		80 - 120			-		12/05/20 13:25	4
1,2-Dichloroethane-d4 (Surr)	120		77 - 120					12/05/20 13:25	4
4-Bromofluorobenzene (Surr)	104		73 - 120					12/05/20 13:25	4
Dibromofluoromethane (Surr)	111		75 - 123					12/05/20 13:25	4

Client Sample ID: MW-07R Lab Sample ID: 480-178974-4 Date Collected: 12/03/20 10:05 **Matrix: Water**

Date Received: 12/03/20 16:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	4.0	3.3	ug/L			12/05/20 13:48	4
1,1,2,2-Tetrachloroethane	ND	4.0	0.84	ug/L			12/05/20 13:48	4
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			12/05/20 13:48	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			12/05/20 13:48	4
1,1-Dichloroethane	ND	4.0	1.5	ug/L			12/05/20 13:48	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			12/05/20 13:48	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			12/05/20 13:48	4
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			12/05/20 13:48	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			12/05/20 13:48	4
1,2-Dichloroethane	ND	4.0	0.84	ug/L			12/05/20 13:48	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			12/05/20 13:48	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			12/05/20 13:48	4
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L			12/05/20 13:48	4
2-Butanone (MEK)	ND	40	5.3	ug/L			12/05/20 13:48	4
2-Hexanone	ND	20	5.0	ug/L			12/05/20 13:48	4
4-Methyl-2-pentanone (MIBK)	ND	20	8.4	ug/L			12/05/20 13:48	4
Acetone	ND	40	12	ug/L			12/05/20 13:48	4

Page 10 of 35

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-07R

Lab Sample ID: 480-178974-4

Date Collected: 12/03/20 10:05 Matrix: Water Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		4.0	1.6	ug/L			12/05/20 13:48	4
Bromodichloromethane	ND		4.0	1.6	ug/L			12/05/20 13:48	4
Bromoform	ND		4.0	1.0	ug/L			12/05/20 13:48	4
Bromomethane	ND		4.0	2.8	ug/L			12/05/20 13:48	4
Carbon disulfide	ND		4.0	0.76	ug/L			12/05/20 13:48	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			12/05/20 13:48	4
Chlorobenzene	ND		4.0	3.0	ug/L			12/05/20 13:48	4
Dibromochloromethane	ND		4.0	1.3	ug/L			12/05/20 13:48	4
Chloroethane	ND		4.0	1.3	ug/L			12/05/20 13:48	4
Chloroform	ND		4.0	1.4	ug/L			12/05/20 13:48	4
Chloromethane	ND		4.0	1.4	ug/L			12/05/20 13:48	4
cis-1,2-Dichloroethene	23		4.0	3.2	ug/L			12/05/20 13:48	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			12/05/20 13:48	4
Cyclohexane	ND		4.0	0.72	ug/L			12/05/20 13:48	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			12/05/20 13:48	4
Ethylbenzene	ND		4.0	3.0	ug/L			12/05/20 13:48	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			12/05/20 13:48	4
Isopropylbenzene	ND		4.0	3.2	ug/L			12/05/20 13:48	4
Methyl acetate	ND		10	5.2	ug/L			12/05/20 13:48	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			12/05/20 13:48	4
Methylcyclohexane	ND		4.0	0.64	ug/L			12/05/20 13:48	4
Methylene Chloride	ND		4.0	1.8	ug/L			12/05/20 13:48	4
Styrene	ND		4.0	2.9	ug/L			12/05/20 13:48	4
Tetrachloroethene	ND		4.0	1.4	ug/L			12/05/20 13:48	4
Toluene	ND		4.0	2.0	ug/L			12/05/20 13:48	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			12/05/20 13:48	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			12/05/20 13:48	4
Trichloroethene	ND		4.0	1.8	ug/L			12/05/20 13:48	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			12/05/20 13:48	4
Vinyl chloride	12		4.0	3.6	ug/L			12/05/20 13:48	4
Xylenes, Total	ND		8.0	2.6	ug/L			12/05/20 13:48	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene de (Surr)			80 120			-		12/05/20 13:48	

Surrogate	%Recovery Qual	alifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97	80 - 120		12/05/20 13:48	4
1,2-Dichloroethane-d4 (Surr)	117	77 - 120		12/05/20 13:48	4
4-Bromofluorobenzene (Surr)	99	73 - 120		12/05/20 13:48	4
Dibromofluoromethane (Surr)	110	75 - 123		12/05/20 13:48	4

Client Sample ID: MW-04

Date Collected: 12/03/20 10:35

Date Received: 12/03/20 16:30

Lab Sample ID: 480-178974-5

Matrix: Water

Method: 8260C	- Volatile	Organic (Compounds	by GC/MS
moniou. ozooo	TOIGHIO	Organio v	Compound	, by coming

Method: 8260C - Volatile Organic C	ompounds t	by GC/MS							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			12/05/20 14:12	4
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			12/05/20 14:12	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			12/05/20 14:12	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			12/05/20 14:12	4
1,1-Dichloroethane	ND		4.0	1.5	ug/L			12/05/20 14:12	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			12/05/20 14:12	4

Eurofins TestAmerica, Buffalo

Page 11 of 35

Job ID: 480-178974-1

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-04

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-178974-5

Matrix: Water

Date Collected: 12/03/20 10:35 Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			12/05/20 14:12	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			12/05/20 14:12	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			12/05/20 14:12	4
1,2-Dichloroethane	ND		4.0	0.84	ug/L			12/05/20 14:12	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			12/05/20 14:12	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			12/05/20 14:12	4
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			12/05/20 14:12	4
2-Butanone (MEK)	ND		40	5.3	ug/L			12/05/20 14:12	4
2-Hexanone	ND		20	5.0	ug/L			12/05/20 14:12	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			12/05/20 14:12	4
Acetone	ND		40	12	ug/L			12/05/20 14:12	4
Benzene	ND		4.0	1.6	ug/L			12/05/20 14:12	4
Bromodichloromethane	ND		4.0	1.6	ug/L			12/05/20 14:12	4
Bromoform	ND		4.0	1.0	ug/L			12/05/20 14:12	4
Bromomethane	ND		4.0	2.8	ug/L			12/05/20 14:12	
Carbon disulfide	ND		4.0	0.76	ug/L			12/05/20 14:12	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			12/05/20 14:12	4
Chlorobenzene	ND		4.0	3.0	ug/L			12/05/20 14:12	4
Dibromochloromethane	ND		4.0	1.3	ug/L			12/05/20 14:12	4
Chloroethane	ND		4.0	1.3	ug/L			12/05/20 14:12	4
Chloroform	ND		4.0	1.4	ug/L			12/05/20 14:12	
Chloromethane	ND		4.0	1.4	ug/L			12/05/20 14:12	4
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			12/05/20 14:12	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			12/05/20 14:12	4
Cyclohexane	ND		4.0	0.72	ug/L			12/05/20 14:12	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			12/05/20 14:12	4
Ethylbenzene	ND		4.0	3.0	ug/L			12/05/20 14:12	
1,2-Dibromoethane	ND		4.0	2.9	ug/L			12/05/20 14:12	4
Isopropylbenzene	ND		4.0	3.2	ug/L			12/05/20 14:12	4
Methyl acetate	ND		10	5.2	ug/L			12/05/20 14:12	
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			12/05/20 14:12	4
Methylcyclohexane	ND		4.0	0.64	ug/L			12/05/20 14:12	4
Methylene Chloride	ND		4.0	1.8	ug/L			12/05/20 14:12	
Styrene	ND		4.0	2.9	ug/L			12/05/20 14:12	4
Tetrachloroethene	ND		4.0	1.4	ug/L			12/05/20 14:12	4
Toluene	ND		4.0	2.0	ug/L			12/05/20 14:12	
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			12/05/20 14:12	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			12/05/20 14:12	4
Trichloroethene	ND		4.0	1.8	ug/L			12/05/20 14:12	
Trichlorofluoromethane	ND		4.0	3.5	ug/L			12/05/20 14:12	4
Vinyl chloride	ND		4.0	3.6	ug/L			12/05/20 14:12	4
Xylenes, Total	ND		8.0	2.6	ug/L			12/05/20 14:12	4
Surrogate	%Recovery	Qualifier	Limits			_	Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	97		80 - 120					12/05/20 14:12	4
1,2-Dichloroethane-d4 (Surr)	108		77 - 120					12/05/20 14:12	4

Eurofins TestAmerica, Buffalo

12/05/20 14:12

12/05/20 14:12

73 - 120

75 - 123

103

104

_

3

6

8

10

12

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12

Lab Sample ID: 480-178974-6

Matrix: Water

Date Collected: 12/03/20 11:10 Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		2.0	1.6	ug/L			12/05/20 14:34	
1,1,2,2-Tetrachloroethane	ND		2.0	0.42	ug/L			12/05/20 14:34	:
1,1,2-Trichloroethane	ND		2.0	0.46	ug/L			12/05/20 14:34	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		2.0	0.62	ug/L			12/05/20 14:34	
1,1-Dichloroethane	ND		2.0	0.76	ug/L			12/05/20 14:34	
1,1-Dichloroethene	ND		2.0	0.58	ug/L			12/05/20 14:34	
1,2,4-Trichlorobenzene	ND		2.0	0.82	ug/L			12/05/20 14:34	
1,2-Dibromo-3-Chloropropane	ND		2.0	0.78	ug/L			12/05/20 14:34	
1,2-Dichlorobenzene	ND		2.0	1.6	ug/L			12/05/20 14:34	
1,2-Dichloroethane	ND		2.0	0.42	ug/L			12/05/20 14:34	
1,2-Dichloropropane	ND		2.0		ug/L			12/05/20 14:34	
1,3-Dichlorobenzene	ND		2.0		ug/L			12/05/20 14:34	
1,4-Dichlorobenzene	ND		2.0		ug/L			12/05/20 14:34	
2-Butanone (MEK)	ND		20		ug/L			12/05/20 14:34	
2-Hexanone	ND		10		ug/L			12/05/20 14:34	
4-Methyl-2-pentanone (MIBK)	ND		10		ug/L			12/05/20 14:34	
Acetone	ND		20		ug/L			12/05/20 14:34	
Benzene	ND		2.0		ug/L			12/05/20 14:34	
Bromodichloromethane	ND		2.0		ug/L			12/05/20 14:34	
Bromoform	ND		2.0		ug/L ug/L			12/05/20 14:34	
Bromomethane	ND		2.0		ug/L			12/05/20 14:34	
Carbon disulfide	ND		2.0		ug/L ug/L			12/05/20 14:34	
Carbon tetrachloride	ND ND		2.0		ug/L ug/L			12/05/20 14:34	
Chlorobenzene Dibromochloromethane	ND ND		2.0		ug/L			12/05/20 14:34	
	ND		2.0		ug/L			12/05/20 14:34	
Chloroethane	ND		2.0		ug/L			12/05/20 14:34	
Chloroform	ND		2.0		ug/L			12/05/20 14:34	
Chloromethane	ND		2.0		ug/L			12/05/20 14:34	
cis-1,2-Dichloroethene	ND		2.0		ug/L			12/05/20 14:34	
cis-1,3-Dichloropropene	ND		2.0		ug/L			12/05/20 14:34	
Cyclohexane	ND		2.0		ug/L			12/05/20 14:34	
Dichlorodifluoromethane	ND		2.0		ug/L			12/05/20 14:34	
Ethylbenzene	ND		2.0		ug/L			12/05/20 14:34	
1,2-Dibromoethane	ND		2.0		ug/L			12/05/20 14:34	
sopropylbenzene	ND		2.0		ug/L			12/05/20 14:34	
Methyl acetate	ND		5.0		ug/L			12/05/20 14:34	
Methyl tert-butyl ether	ND		2.0	0.32	ug/L			12/05/20 14:34	
Methylcyclohexane	ND		2.0		ug/L			12/05/20 14:34	
Methylene Chloride	ND		2.0		ug/L			12/05/20 14:34	
Styrene	ND		2.0	1.5	ug/L			12/05/20 14:34	
Tetrachloroethene	ND		2.0	0.72	ug/L			12/05/20 14:34	
Toluene	ND		2.0	1.0	ug/L			12/05/20 14:34	
rans-1,2-Dichloroethene	ND		2.0	1.8	ug/L			12/05/20 14:34	
rans-1,3-Dichloropropene	ND		2.0	0.74	ug/L			12/05/20 14:34	
Trichloroethene	ND		2.0	0.92	ug/L			12/05/20 14:34	
Trichlorofluoromethane	ND		2.0	1.8	ug/L			12/05/20 14:34	
Vinyl chloride	ND		2.0		ug/L			12/05/20 14:34	
Xylenes, Total	ND		4.0		ug/L			12/05/20 14:34	

Eurofins TestAmerica, Buffalo

_

1

6

ا

11

11

13

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12

Date Received: 12/03/20 16:30

Lab Sample ID: 480-178974-6 Date Collected: 12/03/20 11:10

Matrix: Water

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120	_		12/05/20 14:34	2
1,2-Dichloroethane-d4 (Surr)	114		77 - 120			12/05/20 14:34	2
4-Bromofluorobenzene (Surr)	102		73 - 120			12/05/20 14:34	2
Dibromofluoromethane (Surr)	110		75 - 123			12/05/20 14:34	2

Lab Sample ID: 480-178974-7 Client Sample ID: MW-02R

Date Collected: 12/03/20 12:10 Matrix: Water

Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/05/20 14:57	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/05/20 14:57	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/05/20 14:57	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/05/20 14:57	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/05/20 14:57	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/05/20 14:57	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/05/20 14:57	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/05/20 14:57	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/05/20 14:57	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/05/20 14:57	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/05/20 14:57	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/05/20 14:57	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/05/20 14:57	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/05/20 14:57	1
2-Hexanone	ND		5.0	1.2	ug/L			12/05/20 14:57	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/05/20 14:57	1
Acetone	ND		10	3.0	ug/L			12/05/20 14:57	1
Benzene	1.6		1.0	0.41	ug/L			12/05/20 14:57	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/05/20 14:57	1
Bromoform	ND		1.0	0.26	ug/L			12/05/20 14:57	1
Bromomethane	ND		1.0	0.69	ug/L			12/05/20 14:57	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/05/20 14:57	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/05/20 14:57	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/05/20 14:57	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/05/20 14:57	1
Chloroethane	ND		1.0	0.32	ug/L			12/05/20 14:57	1
Chloroform	ND		1.0	0.34	ug/L			12/05/20 14:57	1
Chloromethane	ND		1.0	0.35	ug/L			12/05/20 14:57	1
cis-1,2-Dichloroethene	10		1.0	0.81	ug/L			12/05/20 14:57	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			12/05/20 14:57	1
Cyclohexane	4.2		1.0	0.18	ug/L			12/05/20 14:57	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			12/05/20 14:57	1
Ethylbenzene	ND		1.0	0.74	ug/L			12/05/20 14:57	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			12/05/20 14:57	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/05/20 14:57	1
Methyl acetate	ND		2.5	1.3	ug/L			12/05/20 14:57	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			12/05/20 14:57	1
Methylcyclohexane	1.2		1.0		ug/L			12/05/20 14:57	1
Methylene Chloride	ND		1.0	0.44	ug/L			12/05/20 14:57	1

Eurofins TestAmerica, Buffalo

Page 14 of 35

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-02R

Lab Sample ID: 480-178974-7 Date Collected: 12/03/20 12:10

Matrix: Water

Job ID: 480-178974-1

Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			12/05/20 14:57	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/05/20 14:57	1
Toluene	ND		1.0	0.51	ug/L			12/05/20 14:57	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/05/20 14:57	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/05/20 14:57	1
Trichloroethene	ND		1.0	0.46	ug/L			12/05/20 14:57	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/05/20 14:57	1
Vinyl chloride	27		1.0	0.90	ug/L			12/05/20 14:57	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/05/20 14:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	95		80 - 120			_		12/05/20 14:57	1
1,2-Dichloroethane-d4 (Surr)	114		77 - 120					12/05/20 14:57	1
4-Bromofluorobenzene (Surr)	96		73 - 120					12/05/20 14:57	1
Dibromofluoromethane (Surr)	106		75 ₋ 123					12/05/20 14:57	1

Client Sample ID: EX-MW11R

Lab Sample ID: 480-178974-8 Date Collected: 12/03/20 13:00

Matrix: Water

Method: 8260C - Volatile Organic (Analyte		oy GC/MS Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		20		ug/L	<u>-</u> -		12/05/20 15:20	20
1,1,2,2-Tetrachloroethane	ND		20		ug/L			12/05/20 15:20	20
1,1,2-Trichloroethane	ND		20		ug/L			12/05/20 15:20	20
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		20		ug/L			12/05/20 15:20	20
1,1-Dichloroethane	ND		20		ug/L			12/05/20 15:20	20
1,1-Dichloroethene	ND		20		ug/L			12/05/20 15:20	20
1,2,4-Trichlorobenzene	ND		20	8.2	ug/L			12/05/20 15:20	20
1,2-Dibromo-3-Chloropropane	ND		20	7.8	ug/L			12/05/20 15:20	20
1,2-Dichlorobenzene	ND		20	16	ug/L			12/05/20 15:20	20
1,2-Dichloroethane	ND		20	4.2	ug/L			12/05/20 15:20	20
1,2-Dichloropropane	ND		20	14	ug/L			12/05/20 15:20	20
1,3-Dichlorobenzene	ND		20	16	ug/L			12/05/20 15:20	20
1,4-Dichlorobenzene	ND		20	17	ug/L			12/05/20 15:20	20
2-Butanone (MEK)	ND		200	26	ug/L			12/05/20 15:20	20
2-Hexanone	ND		100	25	ug/L			12/05/20 15:20	20
4-Methyl-2-pentanone (MIBK)	ND		100	42	ug/L			12/05/20 15:20	20
Acetone	ND		200	60	ug/L			12/05/20 15:20	20
Benzene	ND		20	8.2	ug/L			12/05/20 15:20	20
Bromodichloromethane	ND		20	7.8	ug/L			12/05/20 15:20	20
Bromoform	ND		20	5.2	ug/L			12/05/20 15:20	20
Bromomethane	ND		20	14	ug/L			12/05/20 15:20	20
Carbon disulfide	ND		20	3.8	ug/L			12/05/20 15:20	20
Carbon tetrachloride	ND		20	5.4	ug/L			12/05/20 15:20	20
Chlorobenzene	ND		20	15	ug/L			12/05/20 15:20	20
Dibromochloromethane	ND		20	6.4	ug/L			12/05/20 15:20	20
Chloroethane	ND		20	6.4	ug/L			12/05/20 15:20	20
Chloroform	ND		20	6.8	ug/L			12/05/20 15:20	20
Chloromethane	ND		20	7.0	ug/L			12/05/20 15:20	20

Eurofins TestAmerica, Buffalo

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW11R

Lab Sample ID: 480-178974-8 Date Collected: 12/03/20 13:00 Matrix: Water

Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	1400		20	16	ug/L			12/05/20 15:20	20
cis-1,3-Dichloropropene	ND		20	7.2	ug/L			12/05/20 15:20	20
Cyclohexane	9.6	J	20	3.6	ug/L			12/05/20 15:20	20
Dichlorodifluoromethane	ND		20	14	ug/L			12/05/20 15:20	20
Ethylbenzene	ND		20	15	ug/L			12/05/20 15:20	20
1,2-Dibromoethane	ND		20	15	ug/L			12/05/20 15:20	20
Isopropylbenzene	ND		20	16	ug/L			12/05/20 15:20	20
Methyl acetate	ND		50	26	ug/L			12/05/20 15:20	20
Methyl tert-butyl ether	ND		20	3.2	ug/L			12/05/20 15:20	20
Methylcyclohexane	8.0	J	20	3.2	ug/L			12/05/20 15:20	20
Methylene Chloride	ND		20	8.8	ug/L			12/05/20 15:20	20
Styrene	ND		20	15	ug/L			12/05/20 15:20	20
Tetrachloroethene	ND		20	7.2	ug/L			12/05/20 15:20	20
Toluene	ND		20	10	ug/L			12/05/20 15:20	20
trans-1,2-Dichloroethene	ND		20	18	ug/L			12/05/20 15:20	20
trans-1,3-Dichloropropene	ND		20	7.4	ug/L			12/05/20 15:20	20
Trichloroethene	ND		20	9.2	ug/L			12/05/20 15:20	20
Trichlorofluoromethane	ND		20	18	ug/L			12/05/20 15:20	20
Vinyl chloride	430		20	18	ug/L			12/05/20 15:20	20
Xylenes, Total	ND		40	13	ug/L			12/05/20 15:20	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	100		80 - 120			-		12/05/20 15:20	20
1,2-Dichloroethane-d4 (Surr)	115		77 - 120					12/05/20 15:20	20
4-Bromofluorobenzene (Surr)	105		73 - 120					12/05/20 15:20	20
Dibromofluoromethane (Surr)	101		75 - 123					12/05/20 15:20	20

Client Sample ID: AL-2 Lab Sample ID: 480-178974-9 Date Collected: 12/03/20 13:40 **Matrix: Water**

Date Received: 12/03/20 16:30

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/06/20 16:08	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/06/20 16:08	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/06/20 16:08	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/06/20 16:08	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/06/20 16:08	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/06/20 16:08	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/06/20 16:08	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/06/20 16:08	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/06/20 16:08	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/06/20 16:08	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/06/20 16:08	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/06/20 16:08	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/06/20 16:08	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/06/20 16:08	1
2-Hexanone	ND		5.0	1.2	ug/L			12/06/20 16:08	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/06/20 16:08	1
Acetone	ND		10	3.0	ug/L			12/06/20 16:08	1

Page 16 of 35

Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-2

Lab Sample ID: 480-178974-9

Matrix: Water

Date Collected: 12/03/20 13:40 Date Received: 12/03/20 16:30

Client: LaBella Associates DPC

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	8.6	1.0	0.41	ug/L			12/06/20 16:08	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/06/20 16:08	1
Bromoform	ND	1.0	0.26	ug/L			12/06/20 16:08	1
Bromomethane	ND	1.0	0.69	ug/L			12/06/20 16:08	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/06/20 16:08	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/06/20 16:08	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/06/20 16:08	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/06/20 16:08	1
Chloroethane	ND	1.0	0.32	ug/L			12/06/20 16:08	1
Chloroform	ND	1.0	0.34	ug/L			12/06/20 16:08	1
Chloromethane	ND	1.0	0.35	ug/L			12/06/20 16:08	1
cis-1,2-Dichloroethene	25	1.0	0.81	ug/L			12/06/20 16:08	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/06/20 16:08	1
Cyclohexane	1.4	1.0	0.18	ug/L			12/06/20 16:08	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/06/20 16:08	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/06/20 16:08	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/06/20 16:08	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/06/20 16:08	1
Methyl acetate	ND	2.5	1.3	ug/L			12/06/20 16:08	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/06/20 16:08	1
Methylcyclohexane	ND	1.0	0.16	ug/L			12/06/20 16:08	1
Methylene Chloride	ND	1.0	0.44	ug/L			12/06/20 16:08	1
Styrene	ND	1.0	0.73	ug/L			12/06/20 16:08	1
Tetrachloroethene	ND	1.0	0.36	ug/L			12/06/20 16:08	1
Toluene	ND	1.0	0.51	ug/L			12/06/20 16:08	1
trans-1,2-Dichloroethene	ND	1.0	0.90	ug/L			12/06/20 16:08	1
trans-1,3-Dichloropropene	ND	1.0	0.37	ug/L			12/06/20 16:08	1
Trichloroethene	ND	1.0	0.46	ug/L			12/06/20 16:08	1
Trichlorofluoromethane	ND	1.0	0.88	ug/L			12/06/20 16:08	1
Vinyl chloride	7.0	1.0	0.90	ug/L			12/06/20 16:08	1
Xylenes, Total	ND	2.0	0.66	ug/L			12/06/20 16:08	1
Surrogate	%Recovery Qua	lifier Limits				Prepared	Analyzed	Dil Fac

Client Sample ID: AL-1

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Date Collected: 12/03/20 14:30

Date Received: 12/03/20 16:30

Lab	Sampl	e ID:	480-1	78974-10)
-----	-------	-------	-------	----------	---

12/06/20 16:08

12/06/20 16:08

12/06/20 16:08

12/06/20 16:08

Matrix: Water

Method:	8260C - Volati	le Organic	Compounds	by GC/MS

102

115

109

108

Method: 8260C - Volatile Organic C	by GC/MS								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			12/05/20 16:07	4
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			12/05/20 16:07	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			12/05/20 16:07	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			12/05/20 16:07	4
1,1-Dichloroethane	ND		4.0	1.5	ug/L			12/05/20 16:07	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			12/05/20 16:07	4

80 - 120

77 - 120

73 - 120

75 - 123

Eurofins TestAmerica, Buffalo

Page 17 of 35

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Lab Sample ID: 480-178974-10

Matrix: Water

Date Collected: 12/03/20 14:30 Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			12/05/20 16:07	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			12/05/20 16:07	
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			12/05/20 16:07	
1,2-Dichloroethane	ND		4.0	0.84	ug/L			12/05/20 16:07	
1,2-Dichloropropane	ND		4.0	2.9	ug/L			12/05/20 16:07	
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			12/05/20 16:07	
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			12/05/20 16:07	
2-Butanone (MEK)	ND		40	5.3	ug/L			12/05/20 16:07	
2-Hexanone	ND		20	5.0	ug/L			12/05/20 16:07	
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			12/05/20 16:07	
Acetone	ND		40	12	ug/L			12/05/20 16:07	
Benzene	6.8		4.0	1.6	ug/L			12/05/20 16:07	
Bromodichloromethane	ND		4.0	1.6	ug/L			12/05/20 16:07	
Bromoform	ND		4.0	1.0	ug/L			12/05/20 16:07	
Bromomethane	ND		4.0	2.8	ug/L			12/05/20 16:07	
Carbon disulfide	ND		4.0	0.76	ug/L			12/05/20 16:07	
Carbon tetrachloride	ND		4.0	1.1	ug/L			12/05/20 16:07	
Chlorobenzene	ND		4.0	3.0	ug/L			12/05/20 16:07	
Dibromochloromethane	ND		4.0	1.3	ug/L			12/05/20 16:07	
Chloroethane	ND		4.0	1.3	ug/L			12/05/20 16:07	
Chloroform	ND		4.0	1.4	ug/L			12/05/20 16:07	
Chloromethane	ND		4.0	1.4	ug/L			12/05/20 16:07	
cis-1,2-Dichloroethene	240		4.0	3.2	ug/L			12/05/20 16:07	
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			12/05/20 16:07	
Cyclohexane	4.0		4.0	0.72	ug/L			12/05/20 16:07	
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			12/05/20 16:07	
Ethylbenzene	ND		4.0	3.0	ug/L			12/05/20 16:07	
1,2-Dibromoethane	ND		4.0	2.9	ug/L			12/05/20 16:07	
Isopropylbenzene	ND		4.0	3.2	ug/L			12/05/20 16:07	
Methyl acetate	ND		10	5.2	ug/L			12/05/20 16:07	
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			12/05/20 16:07	
Methylcyclohexane	1.3	J	4.0	0.64	ug/L			12/05/20 16:07	
Methylene Chloride	ND		4.0	1.8	ug/L			12/05/20 16:07	
Styrene	ND		4.0	2.9	ug/L			12/05/20 16:07	
Tetrachloroethene	ND		4.0	1.4	ug/L			12/05/20 16:07	
Toluene	ND		4.0	2.0	ug/L			12/05/20 16:07	
rans-1,2-Dichloroethene	ND		4.0		ug/L			12/05/20 16:07	
trans-1,3-Dichloropropene	ND		4.0		ug/L			12/05/20 16:07	
Trichloroethene	ND		4.0	1.8	ug/L			12/05/20 16:07	
Trichlorofluoromethane	ND		4.0		ug/L			12/05/20 16:07	
Vinyl chloride	230		4.0		ug/L			12/05/20 16:07	
Xylenes, Total	ND		8.0	2.6	ug/L			12/05/20 16:07	
Surrogate	%Recovery	Qualifier	Limits			<u>-</u>	Prepared	Analyzed	Dil Fa
Toluene-d8 (Surr)	97		80 - 120			·-		12/05/20 16:07	

12/05/20 16:07

12/05/20 16:07

12/05/20 16:07

77 - 120

73 - 120

75 - 123

117

103

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-7 Date Collected: 12/03/20 15:00

Date Received: 12/03/20 16:30

Lab Sample ID: 480-178974-11

Matrix: Water

Method: 8260C - Volatile Organ	ic Compounds by GC/MS
	B 11 6 115

Analyte	Result Qualifie	r RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			12/05/20 16:30	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/05/20 16:30	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/05/20 16:30	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/05/20 16:30	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/05/20 16:30	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/05/20 16:30	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/05/20 16:30	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/05/20 16:30	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/05/20 16:30	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/05/20 16:30	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/05/20 16:30	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/05/20 16:30	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/05/20 16:30	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/05/20 16:30	1
2-Hexanone	ND	5.0	1.2	ug/L			12/05/20 16:30	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/05/20 16:30	1
Acetone	ND	10	3.0	ug/L			12/05/20 16:30	1
Benzene	ND	1.0	0.41	ug/L			12/05/20 16:30	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/05/20 16:30	1
Bromoform	ND	1.0	0.26	ug/L			12/05/20 16:30	1
Bromomethane	ND	1.0	0.69	ug/L			12/05/20 16:30	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/05/20 16:30	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/05/20 16:30	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/05/20 16:30	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/05/20 16:30	1
Chloroethane	ND	1.0	0.32	ug/L			12/05/20 16:30	1
Chloroform	ND	1.0	0.34	ug/L			12/05/20 16:30	1
Chloromethane	ND	1.0	0.35	ug/L			12/05/20 16:30	1
cis-1,2-Dichloroethene	3.4	1.0	0.81	ug/L			12/05/20 16:30	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/05/20 16:30	1
Cyclohexane	ND	1.0	0.18	ug/L			12/05/20 16:30	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/05/20 16:30	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/05/20 16:30	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/05/20 16:30	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/05/20 16:30	1
Methyl acetate	ND	2.5	1.3	ug/L			12/05/20 16:30	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/05/20 16:30	1
Methylcyclohexane	ND	1.0		ug/L			12/05/20 16:30	1
Methylene Chloride	ND	1.0		ug/L			12/05/20 16:30	1
Styrene	ND	1.0	0.73	ug/L			12/05/20 16:30	1
Tetrachloroethene	ND	1.0		ug/L			12/05/20 16:30	1
Toluene	ND	1.0		ug/L			12/05/20 16:30	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			12/05/20 16:30	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			12/05/20 16:30	1
Trichloroethene	ND	1.0	0.46	•			12/05/20 16:30	1
Trichlorofluoromethane	ND	1.0	0.88				12/05/20 16:30	
Vinyl chloride	1.3	1.0		ug/L			12/05/20 16:30	1
Xylenes, Total	ND	2.0		ug/L			12/05/20 16:30	1

Eurofins TestAmerica, Buffalo

12/15/2020

Page 19 of 35

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-7

Lab Sample ID: 480-178974-11

Matrix: Water

Date Collected: 12/03/20 15:00 Date Received: 12/03/20 16:30

Surrogate	%Recovery Qua	lifier Limits	Prepared Analyzed	Dil Fac
Toluene-d8 (Surr)	100	80 - 120	12/05/20 16:30	1
1,2-Dichloroethane-d4 (Surr)	120	77 - 120	12/05/20 16:30	1
4-Bromofluorobenzene (Surr)	103	73 - 120	12/05/20 16:30	1
Dibromofluoromethane (Surr)	112	75 - 123	12/05/20 16:30	1

Client Sample ID: Trip Blank

Lab Sample ID: 480-178974-12

Date Collected: 12/03/20 00:00 Matrix: Water

Date Received: 12/03/20 16:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND -	1.0	0.82	ug/L			12/05/20 16:53	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			12/05/20 16:53	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			12/05/20 16:53	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			12/05/20 16:53	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			12/05/20 16:53	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			12/05/20 16:53	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			12/05/20 16:53	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			12/05/20 16:53	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			12/05/20 16:53	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			12/05/20 16:53	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			12/05/20 16:53	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			12/05/20 16:53	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			12/05/20 16:53	1
2-Butanone (MEK)	ND	10	1.3	ug/L			12/05/20 16:53	1
2-Hexanone	ND	5.0	1.2	ug/L			12/05/20 16:53	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			12/05/20 16:53	1
Acetone	ND	10	3.0	ug/L			12/05/20 16:53	1
Benzene	ND	1.0	0.41	ug/L			12/05/20 16:53	1
Bromodichloromethane	ND	1.0	0.39	ug/L			12/05/20 16:53	1
Bromoform	ND	1.0	0.26	ug/L			12/05/20 16:53	1
Bromomethane	ND	1.0	0.69	ug/L			12/05/20 16:53	1
Carbon disulfide	ND	1.0	0.19	ug/L			12/05/20 16:53	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			12/05/20 16:53	1
Chlorobenzene	ND	1.0	0.75	ug/L			12/05/20 16:53	1
Dibromochloromethane	ND	1.0	0.32	ug/L			12/05/20 16:53	1
Chloroethane	ND	1.0	0.32	ug/L			12/05/20 16:53	1
Chloroform	ND	1.0	0.34	ug/L			12/05/20 16:53	1
Chloromethane	ND	1.0	0.35	ug/L			12/05/20 16:53	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			12/05/20 16:53	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			12/05/20 16:53	1
Cyclohexane	ND	1.0	0.18	ug/L			12/05/20 16:53	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			12/05/20 16:53	1
Ethylbenzene	ND	1.0	0.74	ug/L			12/05/20 16:53	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			12/05/20 16:53	1
Isopropylbenzene	ND	1.0	0.79	ug/L			12/05/20 16:53	1
Methyl acetate	ND	2.5	1.3	ug/L			12/05/20 16:53	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			12/05/20 16:53	1
Methylcyclohexane	ND	1.0	0.16	ug/L			12/05/20 16:53	1
Methylene Chloride	ND	1.0	0 44	ug/L			12/05/20 16:53	1

Eurofins TestAmerica, Buffalo

Page 20 of 35

2

3

5

6

8

10

12

14

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: Trip Blank

Lab Sample ID: 480-178974-12

Matrix: Water

Date Collected: 12/03/20 00:00 Date Received: 12/03/20 16:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	ND		1.0	0.73	ug/L			12/05/20 16:53	1
Tetrachloroethene	ND		1.0	0.36	ug/L			12/05/20 16:53	1
Toluene	ND		1.0	0.51	ug/L			12/05/20 16:53	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			12/05/20 16:53	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			12/05/20 16:53	1
Trichloroethene	ND		1.0	0.46	ug/L			12/05/20 16:53	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			12/05/20 16:53	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/05/20 16:53	1
Xylenes, Total	ND		2.0	0.66	ug/L			12/05/20 16:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		80 - 120			_		12/05/20 16:53	1
1,2-Dichloroethane-d4 (Surr)	118		77 - 120					12/05/20 16:53	1
4-Bromofluorobenzene (Surr)	97		73 - 120					12/05/20 16:53	1
Dibromofluoromethane (Surr)	113		75 - 123					12/05/20 16:53	1

Surrogate Summary

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

				Percent Su	rrogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(80-120)	(77-120)	(73-120)	(75-123)
480-178974-1	MW-12	95	119	102	108
480-178974-2	FIELD DUPLICATE	104	118	113	109
480-178974-3	MW-09R	98	120	104	111
480-178974-4	MW-07R	97	117	99	110
480-178974-5	MW-04	97	108	103	104
480-178974-6	EX-MW-12	96	114	102	110
480-178974-7	MW-02R	95	114	96	106
480-178974-8	EX-MW11R	100	115	105	101
480-178974-9	AL-2	102	115	109	108
480-178974-10	AL-1	97	117	103	104
480-178974-11	AL-7	100	120	103	112
480-178974-12	Trip Blank	97	118	97	113
LCS 480-562071/5	Lab Control Sample	99	112	101	104
LCS 480-562109/4	Lab Control Sample	102	117	112	111
MB 480-562071/7	Method Blank	96	117	100	113
MB 480-562109/6	Method Blank	97	111	104	106

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

400 170074 1

5

7

8

10

11

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-178974-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-562071/7

Matrix: Water

Analysis Batch: 562071

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	Qualifier	1.0	0.82			Frepareu	12/05/20 10:02	1
1,1,2,2-Tetrachloroethane	ND		1.0		ug/L			12/05/20 10:02	1
1,1,2-Trichloroethane	ND		1.0	0.23	_			12/05/20 10:02	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31				12/05/20 10:02	1
1,1-Dichloroethane	ND		1.0	0.38				12/05/20 10:02	1
1,1-Dichloroethene	ND		1.0	0.29				12/05/20 10:02	1
1,2,4-Trichlorobenzene	ND		1.0		ug/L			12/05/20 10:02	
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/05/20 10:02	1
1,2-Dichlorobenzene	ND		1.0		ug/L			12/05/20 10:02	1
1,2-Dichloroethane	ND		1.0		ug/L			12/05/20 10:02	· · · · · · · · · · · · · · · · · · ·
1,2-Dichloropropane	ND		1.0	0.72	-			12/05/20 10:02	1
1,3-Dichlorobenzene	ND		1.0	0.72				12/05/20 10:02	1
1,4-Dichlorobenzene	ND		1.0		ug/L			12/05/20 10:02	
2-Butanone (MEK)	ND		10		ug/L			12/05/20 10:02	1
2-Hexanone	ND		5.0		ug/L			12/05/20 10:02	1
4-Methyl-2-pentanone (MIBK)	ND		5.0		ug/L			12/05/20 10:02	
Acetone	ND		10		ug/L			12/05/20 10:02	1
Benzene	ND		1.0		ug/L			12/05/20 10:02	1
Bromodichloromethane	ND		1.0					12/05/20 10:02	
Bromoform	ND ND		1.0		ug/L			12/05/20 10:02	1
	ND ND				ug/L				
Bromomethane Carbon disulfide	ND		1.0		ug/L			12/05/20 10:02 12/05/20 10:02	1
	ND ND		1.0		ug/L				
Carbon tetrachloride Chlorobenzene	ND ND		1.0	0.27				12/05/20 10:02	1
Dibromochloromethane	ND		1.0	0.75				12/05/20 10:02 12/05/20 10:02	1
			1.0	0.32					1
Chloroform	ND ND		1.0		ug/L			12/05/20 10:02	1
Chloroform			1.0		ug/L			12/05/20 10:02	
Chloromethane	ND ND		1.0		ug/L			12/05/20 10:02	1
cis-1,2-Dichloroethene			1.0		ug/L			12/05/20 10:02	1
cis-1,3-Dichloropropene	ND		1.0		ug/L			12/05/20 10:02	
Cyclohexane	ND		1.0		ug/L			12/05/20 10:02	1
Dichlorodifluoromethane	ND		1.0	0.68				12/05/20 10:02	1
Ethylbenzene	ND		1.0		ug/L			12/05/20 10:02	
1,2-Dibromoethane	ND		1.0		ug/L			12/05/20 10:02	1
Isopropylbenzene	ND		1.0	0.79	ug/L			12/05/20 10:02	1
Methyl acetate	ND		2.5		ug/L			12/05/20 10:02	
Methyl tert-butyl ether	ND		1.0	0.16				12/05/20 10:02	1
Methylcyclohexane	ND		1.0	0.16	-			12/05/20 10:02	1
Methylene Chloride	ND		1.0	0.44				12/05/20 10:02	1
Styrene	ND		1.0	0.73				12/05/20 10:02	1
Tetrachloroethene	ND		1.0	0.36	-			12/05/20 10:02	1
Toluene	ND		1.0		ug/L			12/05/20 10:02	1
trans-1,2-Dichloroethene	ND		1.0	0.90				12/05/20 10:02	1
trans-1,3-Dichloropropene	ND		1.0	0.37	_			12/05/20 10:02	1
Trichloroethene	ND		1.0		ug/L			12/05/20 10:02	
Trichlorofluoromethane	ND		1.0	0.88				12/05/20 10:02	1
Vinyl chloride	ND		1.0	0.90	ug/L			12/05/20 10:02	1

Eurofins TestAmerica, Buffalo

Page 23 of 35

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-562071/7

Matrix: Water

Analysis Batch: 562071

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-178974-1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96		80 - 120		12/05/20 10:02	1
1,2-Dichloroethane-d4 (Surr)	117		77 - 120		12/05/20 10:02	1
4-Bromofluorobenzene (Surr)	100		73 - 120		12/05/20 10:02	1
Dibromofluoromethane (Surr)	113		75 - 123		12/05/20 10:02	1

Lab Sample ID: LCS 480-562071/5 **Client Sample ID: Lab Control Sample**

Prep Type: Total/NA **Matrix: Water**

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	25.0	26.2		ug/L		105	73 - 126
1,1,2,2-Tetrachloroethane	25.0	20.8		ug/L		83	76 ₋ 120
1,1,2-Trichloroethane	25.0	21.1		ug/L		84	76 ₋ 122
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	23.6		ug/L		94	61 - 148
ne							
1,1-Dichloroethane	25.0	24.0		ug/L		96	77 - 120
1,1-Dichloroethene	25.0	22.2		ug/L		89	66 - 127
1,2,4-Trichlorobenzene	25.0	21.7		ug/L		87	79 - 122
1,2-Dibromo-3-Chloropropane	25.0	22.4		ug/L		90	56 - 134
1,2-Dichlorobenzene	25.0	22.9		ug/L		92	80 - 124
1,2-Dichloroethane	25.0	26.6		ug/L		106	75 - 120
1,2-Dichloropropane	25.0	22.5		ug/L		90	76 - 120
1,3-Dichlorobenzene	25.0	22.5		ug/L		90	77 _ 120
1,4-Dichlorobenzene	25.0	22.4		ug/L		90	80 _ 120
2-Butanone (MEK)	125	156		ug/L		125	57 ₋ 140
2-Hexanone	125	134		ug/L		108	65 - 127
4-Methyl-2-pentanone (MIBK)	125	130		ug/L		104	71 ₋ 125
Acetone	125	155		ug/L		124	56 - 142
Benzene	25.0	22.3		ug/L		89	71 - 124
Bromodichloromethane	25.0	24.0		ug/L		96	80 - 122
Bromoform	25.0	24.9		ug/L		100	61 - 132
Bromomethane	25.0	22.2		ug/L		89	55 ₋ 144
Carbon disulfide	25.0	24.2		ug/L		97	59 - 134
Carbon tetrachloride	25.0	26.3		ug/L		105	72 - 134
Chlorobenzene	25.0	22.5		ug/L		90	80 - 120
Dibromochloromethane	25.0	24.7		ug/L		99	75 ₋ 125
Chloroethane	25.0	23.2		ug/L		93	69 - 136
Chloroform	25.0	22.9		ug/L		91	73 - 127
Chloromethane	25.0	26.1		ug/L		104	68 - 124
cis-1,2-Dichloroethene	25.0	21.5		ug/L		86	74 - 124
cis-1,3-Dichloropropene	25.0	24.0		ug/L		96	74 - 124
Cyclohexane	25.0	24.4		ug/L		98	59 - 135
Dichlorodifluoromethane	25.0	28.6		ug/L		114	59 - 135
Ethylbenzene	25.0	22.8		ug/L		91	77 ₋ 123
1,2-Dibromoethane	25.0	21.4		ug/L		86	77 _ 120
Isopropylbenzene	25.0	22.3		ug/L		89	77 - 122
Methyl acetate	50.0	50.8		ug/L		102	74 - 133
Methyl tert-butyl ether	25.0	23.7		ug/L		95	77 - 120
Methylcyclohexane	25.0	23.3		ug/L		93	68 - 134

Eurofins TestAmerica, Buffalo

Page 24 of 35

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-562071/5

Matrix: Water

Analysis Batch: 562071

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-178974-1

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits Methylene Chloride 25.0 22.5 ug/L 90 75 - 124 Styrene ug/L 25.0 22.9 92 80 - 120 Tetrachloroethene 25.0 74 - 122 24.0 ug/L 96 Toluene 25.0 22.8 ug/L 91 80 - 122 25.0 ug/L 86 73 - 127 trans-1,2-Dichloroethene 21.6 trans-1,3-Dichloropropene 25.0 23.3 ug/L 93 80 - 120 Trichloroethene 25.0 22.6 ug/L 91 74 - 123 Trichlorofluoromethane 25.0 28.2 ug/L 113 62 _ 150 Vinyl chloride 25.0 24.2 ug/L 97 65 - 133

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	99		80 - 120
1,2-Dichloroethane-d4 (Surr)	112		77 - 120
4-Bromofluorobenzene (Surr)	101		73 - 120
Dibromofluoromethane (Surr)	104		75 - 123

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 562109

Matrix: Water

Lab Sample ID: MB 480-562109/6

		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			12/06/20 11:01	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			12/06/20 11:01	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			12/06/20 11:01	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			12/06/20 11:01	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			12/06/20 11:01	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			12/06/20 11:01	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			12/06/20 11:01	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			12/06/20 11:01	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			12/06/20 11:01	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			12/06/20 11:01	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			12/06/20 11:01	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			12/06/20 11:01	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			12/06/20 11:01	1
2-Butanone (MEK)	ND		10	1.3	ug/L			12/06/20 11:01	1
2-Hexanone	ND		5.0	1.2	ug/L			12/06/20 11:01	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			12/06/20 11:01	1
Acetone	ND		10	3.0	ug/L			12/06/20 11:01	1
Benzene	ND		1.0	0.41	ug/L			12/06/20 11:01	1
Bromodichloromethane	ND		1.0	0.39	ug/L			12/06/20 11:01	1
Bromoform	ND		1.0	0.26	ug/L			12/06/20 11:01	1
Bromomethane	ND		1.0	0.69	ug/L			12/06/20 11:01	1
Carbon disulfide	ND		1.0	0.19	ug/L			12/06/20 11:01	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			12/06/20 11:01	1
Chlorobenzene	ND		1.0	0.75	ug/L			12/06/20 11:01	1
Dibromochloromethane	ND		1.0	0.32	ug/L			12/06/20 11:01	1
Chloroethane	ND		1.0	0.32	ug/L			12/06/20 11:01	1
Chloroform	ND		1.0	0.34	ug/L			12/06/20 11:01	1

Eurofins TestAmerica, Buffalo

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-178974-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-562109/6

Matrix: Water

Analysis Batch: 562109

Client Sample ID: Method Blank

Prep Type: Total/NA

мв мв Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 1.0 Chloromethane 0.35 ug/L 12/06/20 11:01 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 12/06/20 11:01 ND cis-1,3-Dichloropropene 1.0 0.36 ug/L 12/06/20 11:01 Cyclohexane ND 1.0 0.18 ug/L 12/06/20 11:01 Dichlorodifluoromethane ND 1.0 0.68 ug/L 12/06/20 11:01 Ethylbenzene ND 1.0 0.74 ug/L 12/06/20 11:01 1,2-Dibromoethane ND 0.73 ug/L 1.0 12/06/20 11:01 Isopropylbenzene ND 1.0 0.79 ug/L 12/06/20 11:01 Methyl acetate ND 2.5 1.3 ug/L 12/06/20 11:01 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/06/20 11:01 Methylcyclohexane ND 1.0 0.16 ug/L 12/06/20 11:01 ND Methylene Chloride 1.0 0.44 ug/L 12/06/20 11:01 Styrene ND 1.0 0.73 ug/L 12/06/20 11:01 Tetrachloroethene ND 1.0 0.36 ug/L 12/06/20 11:01 ND Toluene 1.0 0.51 ug/L 12/06/20 11:01 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 12/06/20 11:01 trans-1,3-Dichloropropene ND 1.0 12/06/20 11:01 0.37 ug/L Trichloroethene ND 1.0 12/06/20 11:01 0.46 ug/L Trichlorofluoromethane ND 1.0 88.0 ug/L 12/06/20 11:01 Vinyl chloride ND 1.0 0.90 ug/L 12/06/20 11:01 Xylenes, Total ND 2.0 0.66 ug/L 12/06/20 11:01

MB MB

Surrogate	%Recovery	Qualifier Li	mits	Prepared	Analyzed	Dil Fac
				Trepared		
Toluene-d8 (Surr)	97	80	_ 120		12/06/20 11:01	1
1,2-Dichloroethane-d4 (Surr)	111	77	_ 120		12/06/20 11:01	1
4-Bromofluorobenzene (Surr)	104	73	- 120		12/06/20 11:01	1
Dibromofluoromethane (Surr)	106	75	- 123		12/06/20 11:01	1

Lab Sample ID: LCS 480-562109/4

Matrix: Water

Analysis Batch: 562109

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	25.0	29.8		ug/L		119	73 - 126	
1,1,2,2-Tetrachloroethane	25.0	22.9		ug/L		92	76 - 120	
1,1,2-Trichloroethane	25.0	23.7		ug/L		95	76 - 122	
1,1,2-Trichloro-1,2,2-trifluoroetha	25.0	29.2		ug/L		117	61 _ 148	
ne								
1,1-Dichloroethane	25.0	26.6		ug/L		107	77 _ 120	
1,1-Dichloroethene	25.0	27.4		ug/L		110	66 - 127	
1,2,4-Trichlorobenzene	25.0	24.9		ug/L		100	79 - 122	
1,2-Dibromo-3-Chloropropane	25.0	27.2		ug/L		109	56 - 134	
1,2-Dichlorobenzene	25.0	24.8		ug/L		99	80 - 124	
1,2-Dichloroethane	25.0	27.2		ug/L		109	75 ₋ 120	
1,2-Dichloropropane	25.0	26.3		ug/L		105	76 - 120	
1,3-Dichlorobenzene	25.0	24.6		ug/L		99	77 - 120	
1,4-Dichlorobenzene	25.0	24.8		ug/L		99	80 _ 120	
2-Butanone (MEK)	125	141		ug/L		112	57 ₋ 140	
2-Hexanone	125	132		ug/L		105	65 _ 127	

Eurofins TestAmerica, Buffalo

Page 26 of 35

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-178974-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-562109/4

Matrix: Water

Analysis Batch: 562109

Client Sample ID: Lab Control Sample

onent bample ib. Lab control bample	
Prep Type: Total/NA	

	Spike	LCS	LCS		%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
4-Methyl-2-pentanone (MIBK)	125	125	ug/L	100	71 - 125	
Acetone	125	155	ug/L	124	56 - 142	
Benzene	25.0	24.6	ug/L	98	71 - 124	
Bromodichloromethane	25.0	28.1	ug/L	112	80 - 122	
Bromoform	25.0	31.7	ug/L	127	61 - 132	
Bromomethane	25.0	23.0	ug/L	92	55 - 144	
Carbon disulfide	25.0	26.6	ug/L	106	59 - 134	
Carbon tetrachloride	25.0	32.1	ug/L	128	72 - 134	
Chlorobenzene	25.0	24.8	ug/L	99	80 - 120	
Dibromochloromethane	25.0	29.5	ug/L	118	75 _ 125	
Chloroethane	25.0	23.1	ug/L	92	69 _ 136	
Chloroform	25.0	25.1	ug/L	100	73 - 127	
Chloromethane	25.0	25.5	ug/L	102	68 - 124	
cis-1,2-Dichloroethene	25.0	25.8	ug/L	103	74 - 124	
cis-1,3-Dichloropropene	25.0	28.5	ug/L	114	74 - 124	
Cyclohexane	25.0	27.1	ug/L	108	59 - 135	
Dichlorodifluoromethane	25.0	28.6	ug/L	114	59 - 135	
Ethylbenzene	25.0	24.8	ug/L	99	77 - 123	
1,2-Dibromoethane	25.0	25.8	ug/L	103	77 - 120	
Isopropylbenzene	25.0	25.2	ug/L	101	77 - 122	
Methyl acetate	50.0	53.9	ug/L	108	74 - 133	
Methyl tert-butyl ether	25.0	26.5	ug/L	106	77 - 120	
Methylcyclohexane	25.0	27.0	ug/L	108	68 - 134	
Methylene Chloride	25.0	26.3	ug/L	105	75 - 124	
Styrene	25.0	25.1	ug/L	101	80 - 120	
Tetrachloroethene	25.0	26.2	ug/L	105	74 - 122	
Toluene	25.0	24.8	ug/L	99	80 - 122	
trans-1,2-Dichloroethene	25.0	25.6	ug/L	103	73 _ 127	
trans-1,3-Dichloropropene	25.0	28.3	ug/L	113	80 _ 120	
Trichloroethene	25.0	27.9	ug/L	112	74 - 123	
Trichlorofluoromethane	25.0	29.6	ug/L	118	62 _ 150	
Vinyl chloride	25.0	24.3	ug/L	97	65 - 133	

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	102		80 - 120
1,2-Dichloroethane-d4 (Surr)	117		77 - 120
4-Bromofluorobenzene (Surr)	112		73 - 120
Dibromofluoromethane (Surr)	111		75 - 123

Eurofins TestAmerica, Buffalo

QC Association Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

GC/MS VOA

Analysis Batch: 562071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178974-1	MW-12	Total/NA	Water	8260C	
480-178974-3	MW-09R	Total/NA	Water	8260C	
480-178974-4	MW-07R	Total/NA	Water	8260C	
480-178974-5	MW-04	Total/NA	Water	8260C	
480-178974-6	EX-MW-12	Total/NA	Water	8260C	
480-178974-7	MW-02R	Total/NA	Water	8260C	
480-178974-8	EX-MW11R	Total/NA	Water	8260C	
480-178974-10	AL-1	Total/NA	Water	8260C	
480-178974-11	AL-7	Total/NA	Water	8260C	
480-178974-12	Trip Blank	Total/NA	Water	8260C	
MB 480-562071/7	Method Blank	Total/NA	Water	8260C	
LCS 480-562071/5	Lab Control Sample	Total/NA	Water	8260C	

Analysis Batch: 562109

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-178974-2	FIELD DUPLICATE	Total/NA	Water	8260C	
480-178974-9	AL-2	Total/NA	Water	8260C	
MB 480-562109/6	Method Blank	Total/NA	Water	8260C	
LCS 480-562109/4	Lab Control Sample	Total/NA	Water	8260C	

Job ID: 480-178974-1

10

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID: 480-178974-1

Matrix: Water

Client Sample ID: MW-12 Date Collected: 12/03/20 09:05

Date Received: 12/03/20 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		2	562071	12/05/20 12:39	AMM	TAL BUF

Client Sample ID: FIELD DUPLICATE

Lab Sample ID: 480-178974-2 Date Collected: 12/03/20 09:05

Matrix: Water

Date Received: 12/03/20 16:30

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C			562109	12/06/20 15:44	AMM	TAL BUF	_

Client Sample ID: MW-09R

Lab Sample ID: 480-178974-3 Date Collected: 12/03/20 09:35

Matrix: Water

Date Received: 12/03/20 16:30

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C 562071 12/05/20 13:25 AMM TAL BUF Analysis

Client Sample ID: MW-07R Lab Sample ID: 480-178974-4

Date Collected: 12/03/20 10:05 **Matrix: Water**

Date Received: 12/03/20 16:30

Dilution Batch Batch Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab AMM TAL BUF 8260C 562071 12/05/20 13:48 Total/NA Analysis

Lab Sample ID: 480-178974-5 Client Sample ID: MW-04

Date Collected: 12/03/20 10:35

Matrix: Water

Date Received: 12/03/20 16:30 Batch Dilution Batch Batch Prepared

Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 8260C 562071 12/05/20 14:12 AMM TAL BUF

Client Sample ID: EX-MW-12 Lab Sample ID: 480-178974-6

Date Collected: 12/03/20 11:10 **Matrix: Water**

Date Received: 12/03/20 16:30

Dilution Batch Batch Batch Prepared Method Factor Prep Type Туре Run Number or Analyzed Analyst Lab Total/NA 8260C 562071 12/05/20 14:34 AMM TAL BUF Analysis

Client Sample ID: MW-02R Lab Sample ID: 480-178974-7

Date Collected: 12/03/20 12:10 **Matrix: Water**

Date Received: 12/03/20 16:30

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed Prep Type Type Run Analyst Lab Total/NA Analysis 8260C 562071 12/05/20 14:57 AMM TAL BUF Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW11R

Date Collected: 12/03/20 13:00 Date Received: 12/03/20 16:30

Lab Sample ID: 480-178974-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		20	562071	12/05/20 15:20	AMM	TAL BUF

Lab Sample ID: 480-178974-9 Client Sample ID: AL-2

Matrix: Water

Date Collected: 12/03/20 13:40 Date Received: 12/03/20 16:30

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	562109	12/06/20 16:08	AMM	TAL BUF

Client Sample ID: AL-1 Lab Sample ID: 480-178974-10

Matrix: Water

Date Collected: 12/03/20 14:30 Date Received: 12/03/20 16:30

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA 8260C 562071 12/05/20 16:07 AMM TAL BUF Analysis

Client Sample ID: AL-7 Lab Sample ID: 480-178974-11

Date Collected: 12/03/20 15:00 **Matrix: Water**

Date Received: 12/03/20 16:30

Dilution Batch Batch Batch Prepared Method Prep Type Туре Run Factor Number or Analyzed Analyst Lab 8260C TAL BUF 562071 12/05/20 16:30 AMM Total/NA Analysis

Client Sample ID: Trip Blank Lab Sample ID: 480-178974-12

Date Collected: 12/03/20 00:00 **Matrix: Water**

Date Received: 12/03/20 16:30

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260C		1	562071	12/05/20 16:53	AMM	TAL BUF	_

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Accreditation/Certification Summary

Client: LaBella Associates DPC Job ID: 480-178974-1

Project/Site: Alumax & Roblin Periodic Review Reports

Laboratory: Eurofins TestAmerica, Buffalo

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
New York	NELAP	10026	04-01-21

3

4

<u>۾</u>

9

11

14

Method Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846TAL BUF5030CPurge and TrapSW846TAL BUF

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = Eurofins TestAmerica, Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-178974-1

3

4

5

6

0

9

10

111

13

14

Sample Summary

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-178974-1	MW-12	Water	12/03/20 09:05	12/03/20 16:30
480-178974-2	FIELD DUPLICATE	Water	12/03/20 09:05	12/03/20 16:30
480-178974-3	MW-09R	Water	12/03/20 09:35	12/03/20 16:30
180-178974-4	MW-07R	Water	12/03/20 10:05	12/03/20 16:30
80-178974-5	MW-04	Water	12/03/20 10:35	12/03/20 16:30
180-178974-6	EX-MW-12	Water	12/03/20 11:10	12/03/20 16:30
0-178974-7	MW-02R	Water	12/03/20 12:10	12/03/20 16:30
)-178974-8	EX-MW11R	Water	12/03/20 13:00	12/03/20 16:30
80-178974-9	AL-2	Water	12/03/20 13:40	12/03/20 16:30
80-178974-10	AL-1	Water	12/03/20 14:30	12/03/20 16:30
80-178974-11	AL-7	Water	12/03/20 15:00	12/03/20 16:30
180-178974-12	Trip Blank	Water	12/03/20 00:00	12/03/20 16:30

Job ID: 480-178974-1

3

4

5

7

10

11

40

14

eurofins Environment Testing America

Eurofins TestAmerica, Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

Client Information	Sampler	<u>" L</u>	Lab PM: Fischer, Brian J	Carrier Tracking No(s):	COC No: 480-153734-28076,1
Client Contact: Chris Kibler	Phone: 16-168-1	-P06 B	E-Mail: Brian.Fischer@Eurofinset.com	State of Origin:	Page: Page 1 of 1
Сотралу. LaBella Associates DPC		PWSID:	Anal	Analysis Requested	Job # DOOCH , 02
Address: 300 Pearl Street Suite 130	Due Date Requested: Standard S	obac .			e e
Oty: Buffalo	TAT Requested (days):) Ne			
State, Zip: NY, 14202	Compliance Project: A Yes A N	NSQUINOS Pri			
Phone: 7 1678-4906	Po #: Purchase Order Requested		(0		G - Amchlor S - H2SO4 H - Ascorbic Acid T - TSP Dodecahydrate
Email: CKibler@labellapc.com	, MO#.		(on		1 - Ice J - DI Water
Project Name: Former Roblin Steel & Alumax Ext Sites	Project #: 48015183		10 89	thousand to be	L - EDA Z - other (specify)
Forms Radin Steel & Albrax Ext. Sites	SSOW#:		ICE	00-178974 Chair	of col
	olomeo	Sample Matrix Type (W=water, S=solid,	d Filtered Orm MS/N		ıl Mumber
Sample Identification	-	00	Fiel		Special Instructions/Note:
	150	Preservation Code	W >		
	3-3-00 dos	+	×		
Field Dalicare	12-3-20 905		×		0
MU-09/31	12320 035	Water	×		& PIECKE.
ML-OR	2320 1005	Water	×		also any ap
ML-64	12320 1035	Water	×		The Trip Bichy
ならる。	0332110	G Water	×		BY TCL UDGS
MU-02R	12-320 120	G Water	×		KJ60C1
EX-m-118	12-320 1300	C Water	×)
AL-2	12-320 1340	G Water	/		
ALI	12330 H30	G Water	× ×		
BL-1	12320 1500	20	N X		
Possible Hazard Identification Non-Hazard Elammable Skin Irriant Pol	Poison B (Inknown B	Radiological	Sample Disposal (A fe	Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	tained longer than 1 month) Archive For Months
ssted: I, II, III, IV, Other (specify)	RSPCA	6	Special Instructions/QC Requirements:	Requirements: Also roan St	AND FINA BY HILL
Empty Kit Relinquished by:			Time:	Method of Shipmeht:	2000
Relinquished by: M . M -	Date/Time:	S Company	Received by:	Date/Time:	Company
Relinquished by:	Date/Time:	Company	Received by:	Date/Time:	Сотрапу
Relinquished by:	Date/Time:	Company	Received by:	Py Date/Time: /	Le 1620 THOS
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No			Cooler Temperature(s) °C and Other Remarks	C and Other Remarks: 2 7 #	
					Ver: 11/01/2020

Client: LaBella Associates DPC

Job Number: 480-178974-1

Login Number: 178974 List Source: Eurofins TestAmerica, Buffalo

List Number: 1

Creator: Sabuda, Brendan D

ordior. Subdut, Bromain B		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7 #1 ICE
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

Eurofins TestAmerica, Buffalo