

### 2023 Periodic Review Report

Location:

Former Roblin Steel Site 320 South Roberts Road, Dunkirk, New York NYSDEC Site No. B00173-9

Prepared for:

Chautauqua County Department of Public Facilities 454 North Work Street Falconer, New York

LaBella Project No. 2200014

March 8, 2024

#### **Table of Contents**

| 1.0        | EXEC  | CUTIVE SUMMARY                                               | 1  |
|------------|-------|--------------------------------------------------------------|----|
| 1.1        |       | e Summary                                                    |    |
| 1.2        | Ef    | ectiveness of Remedial Program                               | 1  |
| 1.3        | No    | n-Compliance                                                 | 2  |
| 1.4        | Re    | commendations                                                | 2  |
| 2.0        | SITE  | OVERVIEW                                                     | 2  |
| 2.1        |       | e Background                                                 |    |
| 2.2        | Re    | medial Program Overview                                      | 3  |
| 3.0        |       | CTIVENESS OF THE REMEDIAL PROGRAM                            |    |
| 4.0<br>4.1 |       | ITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT |    |
|            | - /   | /EC Requirements and Compliance                              |    |
|            | 1.1.1 | IC Requirements-Site Restrictions                            |    |
| 2          | 1.1.2 | Engineering Control-Soil Cover System                        | 6  |
| 2          | 1.1.3 | Engineering Control-Sub-Slab Vapor Venting System            | 7  |
| 4.2        | IC,   | EC Certification                                             | 7  |
| 5.0        |       | ITORING PLAN COMPLIANCE REPORT                               |    |
| 5.1        | Re    | quirementsquirements                                         | 7  |
| 5.2        | Gr    | oundwater Monitoring                                         | 8  |
| 5          | 5.2.1 | Sampling Procedure                                           | 9  |
| 5          | 5.2.2 | Sample Preservation and Handling                             | 9  |
| 5          | 5.2.3 | Quality Assurance/Quality Control Samples                    | 10 |
| 5          | 5.2.4 | Analytical Results                                           | 10 |
| 5.3        | Co    | mparisons with Remedial Objectives                           | 10 |
| 5.4        |       | onitoring Deficiencies                                       |    |
| 5.5        | Gr    | oundwater Monitoring Conclusions and Recommendations         | 11 |
| 6.0        |       | CLUSIONS AND RECOMMENDATIONS                                 |    |
| 7.0        |       | TATIONS                                                      |    |
| 8.0        | REFE  | RENCES                                                       | 13 |

#### **TABLE OF CONTENTS**

Continued

Figures Figure 1 – Site Location Map

Figure 2 - Site Plan

Figure 3 – Groundwater Elevations

 Table
 Table 1 – Summary of Analytical Results - Groundwater Samples

**Appendix 1** Corrective Measures Summary Report **Appendix 2** Survey – Former Roblin Steel Site Boundary

**Appendix 3** Cover Inspection Form

Appendix 4 Photographs

Appendix 5 Site Management Periodic Review Report -

Institutional and Engineering Controls Certification Form

Appendix 6 Groundwater Sampling Logs
Appendix 7 Laboratory Analytical Results

Appendix 8 Historical Monitoring Well Data and Trendlines

#### 1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the approved Site Management Plan (SMP) (June 2021 revision) for the former Roblin Steel Site in Dunkirk, New York. The Site was remediated in accordance with State Assistance Contract (SAC) No. C302808, Site No. B00173-9, which was executed on December 12, 2005.

#### 1.1 Site Summary

The former Roblin Steel Site (hereafter referred to as the "Site") occupies approximately 12 acres of a former industrial park in the City of Dunkirk, Chautauqua County, New York. Historically, the Site contained numerous buildings, the last of which was demolished as part of remedial activities conducted in 2010. The Site is located in an area zoned for industrial use. An environmental investigation conducted at the Site revealed that contamination associated with historical operations had impacted the Site, necessitating remedial activities. The remedial activities were completed pursuant to the Environmental Restoration Program component of Title 5 of the Clean Water/Clean Air Bond Act of 1996, which was administered by the New York State Department of Environmental Conservation (NYSDEC). Following completion of the remedial work described in the Remedial Action Work Plan (RAWP), some contamination was left in the subsurface of the Site, which is hereafter referred to as "remaining contamination." The remedial efforts also included development of a SMP to manage the remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement that was placed on the Site, in accordance with Environmental Conservation Law (ECL) Article 71, Title 36.

#### 1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the Site soil cover system is intact and functioning as designed on the Site.

As a result of increases in total VOC concentrations in laboratory groundwater analytical results associated with the sampling of MW-07R and EX-MW-11R, in December 2021 and March 2022, the NYSDEC requested a Corrective Measures Work Plan (CMWP). Such was submitted to the NYSDEC in September 2022 and included a scope of work for the installation of one new permanent groundwater monitoring well (MW-13) between MW-07R and the north property boundary and an injection event proximate both MW-07R and EX-MW-11R. A new well was requested in order to assess total VOC concentrations proximate the north property boundary and to determine whether VOCs appeared to be migrating off-site to the north. Monitoring well MW-13 was installed on December 6, 2022 and subsequently sampled on December 13, 2022. In addition, injection events were proposed in an effort to further breakdown the VOC concentrations proximate MW-07R and EX-MW-11R. An injection permit was submitted to the United States Environmental Protection Agency (USEPA) in late November 2022 and injections were completed in April 2023. A Corrective Measures Summary (CMS) Report is attached in Appendix 1.

Total VOC concentrations have decreased or remained consistent in MW-13, MW-09R, MW-07R, EX-MW-11R, MW-04 and EX-MW-12 since the December 2021, March 2022, and/or December 2022 sampling events. Total VOC concentrations in MW-02R have increased since the December 2021, March 2022, and/or December 2022 sampling events.

Injections were completed in April 2023 as part of a NYSDEC-approved CMWP in an effort to mitigate an increase in total VOC concentrations identified proximate both MW-07R and EX-MW-11R during the December 2021 and March 2022 sampling events. An increase in total VOC concentrations may occur proximate these well locations over time as the remedial measures take effect, prior to a presumed decreasing trend in overall VOC concentrations, as constituents begin to break down. As a result, continued monitoring of contaminant levels at these wells, in addition to the remaining onsite well locations, is recommended at this time. Furthermore, based on limited laboratory analytical data collected to date from MW-13, it does not appear that contaminant migration is occurring toward the north adjacent property from the area proximate MW-07R. Contaminant concentrations in MW-07R and MW-13 should continue to be monitored to assure that off-site migration of VOCs is not occurring as a result of the impact identified proximate MW-07R.

#### 1.3 Non-Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this PRR. No change of use, groundwater use, excavations or imports occurred during the certifying period.

#### 1.4 Recommendations

Overall, the remedial program is viewed to be effective in achieving the remedial objectives for the Site.

No changes to the SMP or the frequency of PRR submissions are recommended at this time with the exception of the proper decommissioning of MW-01, at the discretion of the established remedial party.

Injections were completed in April 2023 as part of a NYSDEC-approved CMWP in an effort to mitigate an increase in total VOC concentrations identified proximate both MW-07R and EX-MW-11R during the December 2021 and March 2022 sampling events. An increase in total VOC concentrations may occur proximate these well locations over time as the remedial measures take effect, prior to a presumed decreasing trend in overall VOC concentrations, as constituents begin to break down. As a result, continued monitoring of contaminant levels at these wells, in addition to the remaining onsite well locations, is recommended at this time. Furthermore, based on limited laboratory analytical data collected to date from MW-13, it does not appear that contaminant migration is occurring toward the north adjacent property from the area proximate MW-07R. Contaminant concentrations in MW-07R and MW-13 should continue to be monitored to assure that off-site migration of VOCs is not occurring as a result of the impact identified proximate MW-07R.

#### 2.0 SITE OVERVIEW

The Site is located at 320 South Roberts Road in the City of Dunkirk, New York. Figure 1 shows the location of the Site and Figure 2 is the Site plan that depicts the Site configuration and location of the groundwater monitoring well network. Progress Drive transects the eastern portion of the Site in a northeast-southwest direction. As a result, a portion of the Site is located east of the roadway and separated from the remainder of the Site. The Site is located in an area zoned for industrial use. A mixture of commercial, industrial and residential properties comprises the land use in the Site's vicinity.

The Site is bounded to the north by an active CSX rail yard; to the east by active Norfolk Southern railroad tracks; to the south by the Former Alumax extrusions property; and to the west by a recently constructed freezer warehouse facility.

Residential properties are located to the northwest and south of the Site beyond the adjoining properties. Lake Erie is situated approximately 3,400 feet to the northwest of the Site. Hyde Creek is located approximately 100 feet from the northeast corner of the Site.

#### 2.1 Site Background

The Site occupies approximately 12 acres of a former industrial park. Historically, the Site contained a large complex of industrial buildings. The last remaining building was demolished as part of the 2010 remedial activities. The adjoining properties located in the former industrial park include the Former Alumax Extrusions property located to the south and the recently redeveloped Former Edgewood Warehouse property located to the west. In 1910, all three of these properties were developed as part of a larger industrial complex operated by the American Locomotive Company. The Site was later used for steel reclamation; however, operations ceased in 1987. Following this closure, salvage operations dismantled and partially demolished a majority of the Site structures throughout the late 1980s and early 1990s. Since that time, the Site has been vacant.

Following acquisition of the Site by Chautauqua County in December 2001, the site was investigated and remediated pursuant to the SAC executed between the County and NYSDEC. The remediation of the site was completed in September 2010 and rendered the site suitable for commercial or industrial use. Details pertaining to the remedial investigation and remedial construction program completed at the Site are summarized in Section 2.2 below.

In May 2013, the construction of a new public roadway through a portion of the site was initiated. The soil cover system established as part of the previous remediation of the Site was disturbed in conjunction with the construction of the new roadway in the Summer/Fall of 2014. Disturbance of the soil cover was completed in accordance with the provisions of the Excavation Work Plan (EWP) contained in the SMP. The cover system was restored by the end of 2014 in accordance with the Record of Decision (ROD) and the SMP upon completion of the new roadway.

#### 2.2 Remedial Program Overview

As indicated above, a remedial investigation was conducted at the Site between 2002 and 2003. Such revealed that contamination associated with historical operations had impacted the Site, necessitating remedial activities. The NYSDEC issued a ROD in March 2005. The ROD identified seven impacted Media Groups (MGs) associated with the Site. The MGs included:

- Surface soil/fill debris piles;
- Subsurface soil/fill impacted with chlorinated volatile organic compounds (VOCs);
- Subsurface soil/fill impacted with polyaromatic hydrocarbons and metals, and/or petroleum nuisance characteristics;
- Drainage features and contents:
- Building components;
- Concrete and surface soil impacted with polychlorinated biphenyls (PCBs); and,
- Groundwater impacted with VOCs.

The RAWP prepared in February 2006 described the specific remedial activities that would be implemented at the Site to complete the remediation in accordance with the ROD. The remediation program included two distinct types of activities; those that were related to the removal or treatment of contaminated material (Phase I) and those that were directly related to the redevelopment and reuse of the Site (Phase II). The Phase I components included:

- Excavation and off-site disposal of surface soil/fill that exceeded the Site-Specific Cleanup Levels (SSCLs);
- Excavation and off-site disposal of subsurface soil/fill that exceeded SSCLs;
- Cleaning and filling of Site drainage features;
- Removal and disposal of PCB-containing electrical equipment;
- · Removal and disposal of miscellaneous Site debris;
- Decommissioning of monitoring wells that were not part of the long-term monitoring program;
   and.
- Enhanced natural attenuation of Site groundwater.

The Phase II activities included the following:

- Removal of asbestos-containing materials (ACMs);
- Demolition of the building;
- Removal and crushing of the concrete slabs and top 12 inches of the foundations followed by the placement and grading of the crushed concrete on the Site;
- Placement of a demarcation layer (orange fencing) on top of the original Site surface covered by 12 inches of clean NYSDEC Division of Environmental Remediation (DER)-10 approved soil across the entirety of the Site; and
- Establishment of vegetative cover

Following completion of the remedial work described in the RAWP, some contamination may have been left in the subsurface of the Site. The remedial efforts also included development of the SMP (revised June 2021) to manage remaining contamination at the Site in perpetuity or until extinguishment of the Environmental Easement in accordance with ECL Article 71, Title 36.

As a result of increases in total VOC concentrations in laboratory groundwater analytical results associated with the sampling of MW-07R and EX-MW-11R, in December 2021 and March 2022, the NYSDEC requested a CMWP. Such was submitted to the NYSDEC in September 2022 and included a scope of work for the installation of one new permanent groundwater monitoring well (MW-13) between MW-07R and the north property boundary and an injection event proximate both MW-07R and EX-MW-11R. A new well was requested in order to assess total VOC concentrations proximate the north property boundary and to determine whether VOCs appeared to be migrating off-site to the north. In addition, the injection events were proposed in an effort to further breakdown the VOC concentrations proximate MW-07R and EX-MW-11R. An injection permit was submitted to the USEPA in late November 2022 and in-situ direct push injections were conducted between April 11 and April 17, 2023. The injections were performed using a direct hydraulic push rig around each well, over an approximately 1,600 square-foot area, with approximately 10-foot spacing, totaling 32 injection points. The target depths for treatment were 5 to 10 feet below ground surface. Provectus-IR was injected to address the chlorinated VOCs (cVOCs) proximate MW-07R and EX-MW-11R. Provectus is a unique mixture of reagents, including zero valent iron (ZVI) and organic carbon substrate, combined into a single technology that optimized in-situ reductive dechlorination.

In addition, approximately three liters of Dehalococcoides (DHC) was also injected as a bioaugmentation process, to assist in overall cVOC destruction. The DHC was spread over four injection points, approximate to each well area. The product vendor (Provectus) recommended a three-to-six-month lead time of supplemental sampling of MW-07R and EX-MW-11R, in order to allow the materials to perform properly to breakdown the cVOCs proximate each of the two wells. Figure 3 of the CMS Report (Appendix 1) depicts the injection point locations proximate MW-07R and EX-MW-11R. Literature associated with the Provectus-IR and DHC are provided in Appendix E of the CMS report.

#### 3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

All remedial actions described in the RAWP were completed during Phase I and Phase II of the remedial program. Remedial goals were accomplished through the removal and off-site disposal of contaminated media exceeding the SSCLs; removal of PCB equipment; enhanced natural attenuation of the Site groundwater; removal of ACMs; demolition of the Site building; and the installation of the Site-wide cover system to prevent exposure to remaining contamination in the subsurface.

As detailed below in Section 4.1.2, the Site Soil Cover System was inspected on December 12, 2023. Based on this inspection, the cover system is intact and functioning effectively throughout the Site.

As a result of increases in total VOC concentrations in laboratory groundwater analytical results associated with the sampling of MW-07R and EX-MW-11R, in December 2021 and March 2022, the NYSDEC requested a CMWP. Such was submitted to the NYSDEC in September 2022 and included a scope of work for the installation of one new permanent groundwater monitoring well (MW-13) between MW-07R and the north property boundary and an injection event proximate both MW-07R and EX-MW-11R. A new well was requested in order to assess total VOC concentrations proximate the north property boundary and to determine whether VOCs appeared to be migrating off-site to the north. In addition, the injection events were proposed in an effort to further breakdown the VOC concentrations proximate MW-07R and EX-MW-11R. An injection permit was submitted to the United States Environmental Protection Agency in late November 2022 and the injections were completed in April 2023.

Total VOC concentrations have decreased or remained consistent in MW-13, MW-09R, MW-07R, EX-MW-11R, MW-04 and EX-MW-12 since the December 2021, March 2022, and/or December 2022 sampling events. Total VOC concentrations in MW-02R have increased since the December 2021, March 2022, and/or December 2022 sampling events. Injections were completed in April 2023 as part of a NYSDEC-approved CMWP in an effort to mitigate an increase in total VOC concentrations identified proximate both MW-07R and EX-MW-11R during the December 2021 and March 2022 sampling events. A CMS Report was submitted to the NYSDEC and is included in Appendix 1. An increase in total VOC concentrations may occur proximate these well locations over time as the remedial measures take effect, prior to a presumed decreasing trend in overall VOC concentrations, as constituents begin to break down. As a result, continued monitoring of contaminant levels at these wells, in addition to the remaining on-site well locations, is recommended at this time. Furthermore, based on limited laboratory analytical data collected to date from MW-13, it does not appear that contaminant migration is occurring toward the north adjacent property from the area proximate MW-07R.

Contaminant concentrations in MW-07R and MW-13 should continue to be monitored to assure that off-site migration of VOCs is not occurring as a result of the impact identified proximate MW-07R.

#### 4.0 INSTITUTIONAL/ENGINEERING CONTROL (IC/EC) PLAN COMPLIANCE REPORT

#### 4.1 IC/EC Requirements and Compliance

#### 4.1.1 IC Requirements-Site Restrictions

In accordance with the SMP, the Site has a series of Institutional Controls (ICs) in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement. The Environmental Easement is described on the Boundary Survey of the Former Roblin Steel Site, included within Appendix 2. Site restrictions that apply are as follows:

- The Site may only be used for commercial or industrial use provided that the long-term ICs/Engineering Controls (ECs) included in the SMP are employed;
- The Site may not be used for a higher level of use, such as unrestricted, residential or restricted-residential use without additional remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities at the Site that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- The use of groundwater underlying the Site is restricted as a source of potable or process water, without necessary water quality treatment, as determined by the Chautauqua County Department of Health;
- The potential for vapor intrusion must be evaluated for any buildings developed on the Site, and any potential impacts that are identified must be monitored and mitigated;
- The SMP will provide for the operation and maintenance of the components of the remedy;
- Vegetable gardens and farming on the Site are prohibited; and,
- The Site owner is required to provide an IC/EC certification, prepared and submitted by a professional engineer or environmental professional acceptable to the NYSDEC annually or for a period to be approved by the NYSDEC, which will certify that the ICs and ECs put in place are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.

#### 4.1.2 Engineering Control-Soil Cover System

Exposure to the remaining contamination in soil/fill at the Site is prevented by a soil cover system that was previously placed over the Site. This cover system is comprised of a minimum of 12 inches of clean soil overlaying a demarcation layer (orange plastic mesh material) over the entire surface of the Site. The EWP, which appears in Appendix A of the SMP, outlines the procedures that are required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. The cover system is a permanent control, and the quality and integrity of this system will be inspected at defined, regular intervals in perpetuity.

On December 12, 2023, Mr. Andrew Koons of LaBella Associates, D.P.C. (LaBella) conducted the annual Site inspection, which included traversing the Site on foot to observe the current conditions. The Cover Inspection Form is included herein as Appendix 3. Appendix 4 includes photographs taken during the Site inspection.

With the exception of the Progress Drive corridor that crosses the Site, the Site is generally vacant and undeveloped, with vegetated soil cover occurring at the ground surface. The soil cover at the time of the Site inspection was observed to be intact and functioning as intended. The floor and walls of the storm water ditches associated with Progress Drive were covered with a coarse, low-lying vegetation. No evidence of erosion or exposed synthetic erosion control fabric was observed within or adjacent to the ditches. Furthermore, the asphalt road surface was observed to be in good condition.

As mentioned above, one new permanent groundwater monitoring well (MW-13) was installed at the Site on December 6, 2022. Soil cuttings beneath the demarcation layer were drummed for proper off-site disposal by Environmental Services Group, Inc. of Tonawanda, New York, and transported off-site to American Recyclers Company in Tonawanda, New York, as a non-hazardous waste, on April 27, 2023. Air monitoring was performed during intrusive activities as stated in the department approved CMWP. Air monitoring data did not identify exceedances of applicable regulatory guidance. The location of MW-13 can be identified in Figures 2 and 3. The waste manifest for the soil cuttings is included in Appendix 1.

#### 4.1.3 Engineering Control-Sub-Slab Vapor Venting System

No sub-slab vapor venting system (SSVVS) was installed as part of the Site remedy. However, any potential new structures constructed on the Site as part of Site redevelopment may be equipped with a SSVVS, if warranted. The design and sampling of the SSVVS will be performed in accordance with NYSDEC and New York State Department of Health (NYSDOH) guidance at the time the system is installed. The ultimate design of the SSVS will be dependent upon the size and configuration of any newly constructed buildings. Therefore, the specific components of the SSVVS have not been determined.

#### 4.2 IC/EC Certification

The IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. No change of use, groundwater use, excavations or imports occurred during the certifying period. Appendix 5 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

#### 5.0 MONITORING PLAN COMPLIANCE REPORT

#### 5.1 Requirements

Sections 3.0 and 5.0 of the SMP describe the measures for evaluating: (1) the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site; (2) the soil cover system; and (3) all affected Site Media.

Such Sections describe the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards;
- Monitoring the cover system;
- Assessing achievement of the remedial performance criteria:
- Evaluating Site information periodically to confirm that the remedy continues to be effective
  in protecting public health and the environment; and,
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, these Sections provide information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells:
- Monitoring well decommissioning procedures; and,
- Annual inspection and periodic certification.

#### 5.2 Groundwater Monitoring

The groundwater monitoring program is to be conducted on an annual basis for 30 years. Groundwater samples are analyzed for VOCs appearing on the USEPA Target Compound List (TCL). Trends in contaminant levels in groundwater are evaluated to determine if the remedy continues to be effective in achieving remedial goals.

The groundwater monitoring network prescribed in the SMP consists of six monitoring wells, which includes MW-02R, MW-04, MW-07R, MW-09R, EX-MW11R and EX-MW-12. As noted in the 2021 PRR and observed during the annual site inspection and monitoring event conducted on December 12, 2023, MW-01 was previously damaged during construction of the freezer warehouse on the northwest adjacent property and is no longer part of the groundwater monitoring network. While MW-12 was removed from the groundwater monitoring network following completion of the December 2020 groundwater sampling event, depth to water was collected from MW-12 during the December 12, 2023, groundwater sampling event in order to assist in determining overall groundwater flow patterns at the Site. The NYSDEC authorized the omission of MW-01 and MW-12 from the groundwater monitoring network in the 2020 PRR response letter submitted by the NYSDEC on February 2, 2021.

A summary of the monitoring well data and groundwater elevations are presented below:

| Well ID # | Top of Casing (in feet) | Depth to Water (in feet) | Groundwater Elevation (in feet) |
|-----------|-------------------------|--------------------------|---------------------------------|
| MW-02R    | 616.96                  | 6.45                     | 610.51                          |
| MW-04     | 612.06                  | 3.3                      | 608.76                          |
| MW-07R    | 614.5                   | 3.66                     | 610.84                          |
| MW-09R    | 619.79                  | 2.44                     | 617.35                          |
| EX-MW-11R | 616.87                  | 5.77                     | 611.1                           |
| EX-MW-12  | 615.86                  | 5.3                      | 610.56                          |
| MW-12     | 618.72                  | 5.92                     | 612.8                           |
| MW-13     | 615.82                  | 4.61                     | 611.21                          |

As discussed above, one new permanent groundwater monitoring well (MW-13) was installed at the Site on December 6, 2022, and is anticipated to be included in future PRRs for the Site.

#### 5.2.1 Sampling Procedure

The seven groundwater monitoring wells were purged and sampled in general accordance with the procedures detailed in the SMP. This included three downgradient wells (MW-02R, MW-04, and EX-MW-12) and the four wells located within areas of groundwater impacted with chlorinated VOCs (MW-09R, MW-07R, MW-13, and EX-MW11R). All monitoring well sampling activities were recorded on groundwater sampling logs, which are included as Appendix 6. Other observations (e.g., well integrity, etc.) were also noted on the well sampling logs. Prior to the initiation of groundwater sampling, groundwater levels were measured with an electronic water level indicator to determine the static water level below the ground surface elevation. The groundwater levels were used to determine the volume of standing water in the wells.

Well purging consisted of the evacuation of a minimum of three well volumes using NYSDEC-approved low-flow purging procedures via a Geotech Geopump II Pump. The samples were collected within three hours of completion of well purging using the low-flow method previously identified. Sample volumes were collected into clean sample bottles containing hydrochloric acid preservative provided by the laboratory. The groundwater samples were submitted for analysis of TCL VOCs via USEPA Method 8260.

#### 5.2.2 Sample Preservation and Handling

Immediately after collection, all samples were placed in a cooler and chilled with ice. To ensure sample integrity, a Chain-of-Custody (COC) sample record was established and kept with the samples to document each person that handled the samples. The samples were transported to Test America Laboratories, Inc., a NYSDOH Environmental Laboratory Accreditation Program certified laboratory for analysis.

The COC records established for the collected samples were maintained throughout the laboratory handling. Copies of the COC and complete analytical laboratory report are included in Appendix 7.

#### 5.2.3 Quality Assurance/Quality Control Samples

In addition to field samples, QA/QC samples were collected to evaluate the effectiveness of the QA/QC procedures implemented during the field and laboratory activities associated with the project. The QA/QC samples included a blind field duplicate and a trip blank that were also analyzed for TCL VOCs. Well sampling at the Site and adjoining, former Alumax Extrusions Site were conducted in conjunction with one another on December 12, 2023, and the samples from both sites were submitted to the laboratory together in one batch and recorded on one COC. As such, the blind field duplicate collected from the former Roblin Steel Site (collected from MW-09R) and trip blank associated with the samples from both sites were utilized to evaluate the effectiveness of the QA/QC procedures for the Site.

#### 5.2.4 Analytical Results

The following section summarizes and discusses the analytical results generated during the aforementioned monitoring event. For discussion purposes, this data is compared with the Standards Criteria and Guidance Values applicable to groundwater: NYSDEC's June 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations in the Technical and Operational Guidance Series (TOGS) 1.1.1.

Table 1 summarizes the groundwater pre- and post-remedial sampling results and compares the results to applicable water quality standards. Figure 2 depicts the locations of the monitoring wells while Figure 3 depicts apparent groundwater flow direction at the Site.

#### 5.3 Comparisons with Remedial Objectives

As shown in Table 1, VOC concentrations were detected in all monitoring wells, with the exception of EX-MW-12 and MW-04, during this sampling event. Historical monitoring well data and trendlines are included in Appendix 8.

Six VOCs were detected in MW-02R including three VOCs (cis-1, 2-dichloroethene at 320 micrograms per liter or ug/L, vinyl chloride at 280 ug/L and benzene at 2.7 ug/L) at concentrations above NYSDEC TOGS Standards. Total VOC concentrations in this well have increased since the December 2022 sampling event however, injections were completed at the Site around EX-MW-11R which is proximate to and hydraulically up-gradient of MW-02R.

Four VOCs were detected in MW-09R including two VOCs (cis-1,2-dichloroethene at 75 ug/L and vinyl chloride at 310 ug/L) at concentrations above NYSDEC TOGS Standards. Total VOC concentrations in this well have decreased since the December 2022 sampling event and are substantially lower than the maximum concentration detected at this location during the August 2010 sampling event.

Five VOCs were detected in EX-MW-11R including three VOCs (cis-1,2-dichloroethene at 1,700 ug/L, trichloroethene at 44 ug/L, and vinyl chloride at 1,100 ug/L) at concentrations above NYSDEC TOGS Standards. Total VOC concentrations in this well have decreased since the December 2022 sampling event. Injections proximate this well were completed as part a NYSDEC-approved CMWP.

Five VOCs (1,1-dichloroethene at 12 ug/L, cis-1,2-dichloroethene at 3,400 ug/L, trans-1,2-dichloroethane at 9.6 ug/L, trichloroethene at 21 ug/L, and vinyl chloride at 780 ug/L) were detected in MW-07R at concentrations above NYSDEC TOGS Standards. Total VOC concentrations in this well have increased since the December 2022 sampling event but remained consistent with the December 2021 and March 2022 sampling events. Injections proximate this well were completed as part of a NYSDEC-approved CMWP.

Five VOCs were detected in MW-13 including one VOC (benzene) at concentrations above the NYSDEC TOGS Standards. Total VOC concentrations in the well have decreased since the December 2022 sampling event.

A comparison of the results from MW-09R with the blind field duplicate indicates that the data coincide.

#### 5.4 Monitoring Deficiencies

No monitoring deficiencies have been identified during the course of this period review.

#### 5.5 Groundwater Monitoring Conclusions and Recommendations

Total VOC concentrations have decreased or remained consistent in MW-13, MW-09R, MW-07R, EX-MW-11R, MW-04 and EX-MW-12 since the December 2021, March 2022, and/or December 2022 sampling events. Total VOC concentrations in MW-02R have increased since the December 2021, March 2022, and/or December 2022 sampling events. Injections were completed in April 2023 as part of a NYSDEC-approved CMWP in an effort to mitigate an increase in total VOC concentrations identified proximate both MW-07R and EX-MW-11R during the December 2021 and March 2022 sampling events. A CMS Report was submitted to the NYSDEC and is included in Appendix 1. An increase in total VOC concentrations may occur proximate these well locations over time as the remedial measures take effect, prior to a presumed decreasing trend in overall VOC concentrations, as constituents begin to break down. As a result, continued monitoring of contaminant levels at these wells, in addition to the remaining on-site well locations, is recommended at this time. Furthermore, based on limited laboratory analytical data collected to date from MW-13, it does not appear that contaminant migration is occurring toward the north adjacent property from the area proximate MW-07R.

It is also recommended that MW-01 be properly decommissioned due to its damaged condition, at the discretion of the established remedial party.

In consideration of the information above, no changes to the SMP or the frequency of PRR submissions are recommended at this time.

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

The Site Soil Cover System was inspected on December 12, 2023, and was observed to be intact and functioning as designed throughout the Site.

Total VOC concentrations have decreased or remained consistent in MW-13, MW-09R, MW-07R, EX-MW-11R, MW-04 and EX-MW-12 since the December 2021, March 2022, and/or December 2022 sampling events. Total VOC concentrations in MW-02R have increased since the December 2021, March 2022, and/or December 2022 sampling events. Injections were completed in April 2023 as part of a NYSDEC-approved CMWP in an effort to mitigate an increase in total VOC concentrations identified proximate both MW-07R and EX-MW-11R during the December 2021 and March 2022 sampling events. A CMS Report was submitted to the NYSDEC and is included in Appendix 1. An increase in total VOC concentrations may occur proximate these well locations over time as the remedial measures take effect, prior to a presumed decreasing trend in overall VOC concentrations, as constituents begin to break down. As a result, continued monitoring of contaminant levels at these wells, in addition to the remaining on-site well locations, is recommended at this time. Furthermore, based on limited laboratory analytical data collected to date from MW-13, it does not appear that contaminant migration is occurring toward the north adjacent property from the area proximate MW-07R. Contaminant concentrations in MW-07R and MW-13 should continue to be monitored to assure that off-site migration of VOCs is not occurring as a result of the impact identified proximate MW-07R.

#### 7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations.

Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's' intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action expect where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not construed as legal advice.

This assessment and report have been completed and prepared on behalf of and for the exclusive use of Chautauqua County. Any reliance on this report by a third party is at such party's sole risk.

#### 8.0 REFERENCES

DER10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010

Environmental Easement for 320 South Roberts Road, Chautauqua County Clerk, June 2011

Environmental Remediation of the Former Roblin Steel Site, NYSDEC Site No. B00173-9, Final Engineering Report, TVGA Consultants, November 2010

Environmental Restoration Record of Decision, Former Roblin Steel Site, Site Number B-00173, NYSDEC Division of Environmental Remediation, March 2005

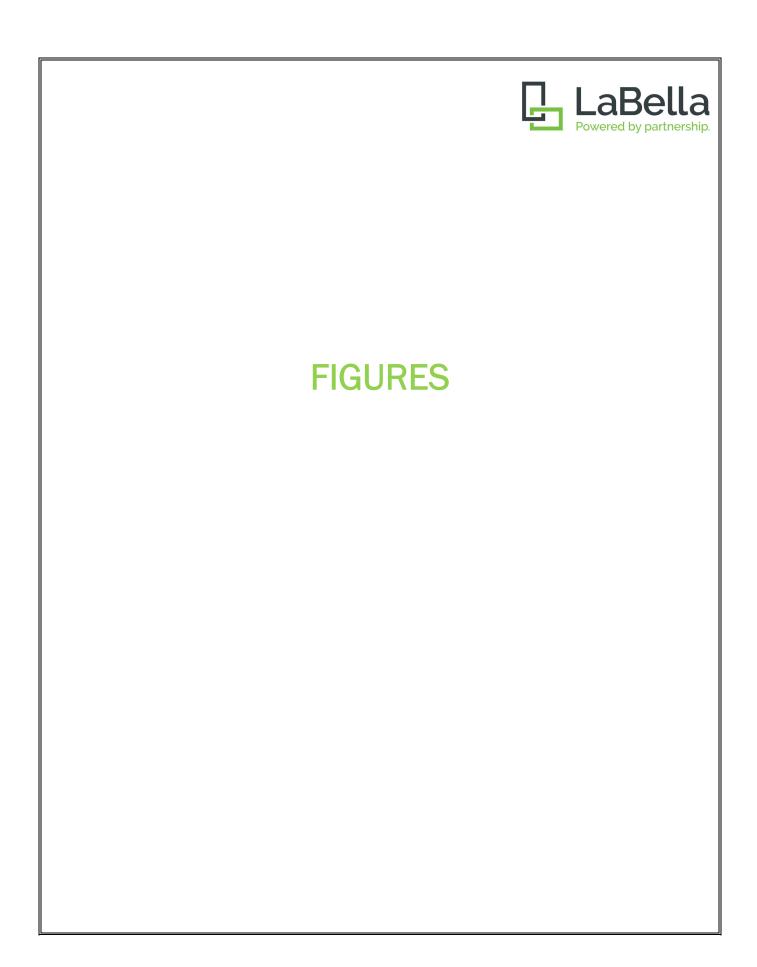
Excavation Work Plan, Former Roblin Steel Site, TVGA Consultants, November 2010

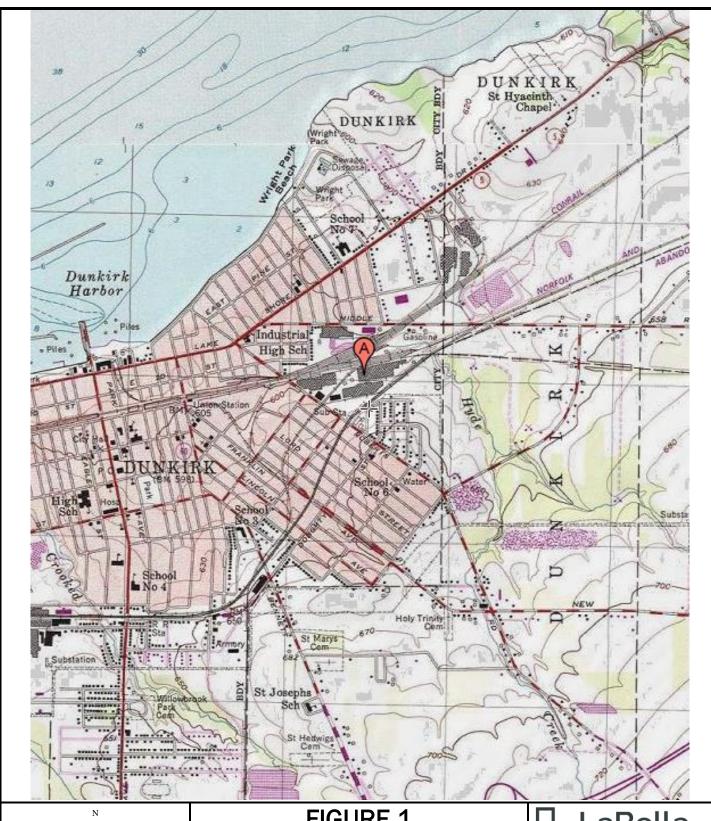
Master Erosion Control Plan, Former Roblin Steel Site, TVGA Consultants, November 2010

Remedial Action Work Plan, TVGA Consultants, February 2006

Site Investigation/Remedial Alternatives Report, Former Roblin Steel Site, TVGA Consultants, December 2004

Revised Corrective Action Work Plan, Former Roblin Steel Site, KHEOPS Architecture, Engineering and Survey, DPC, April 3, 2015


Correction Action Report, Former Roblin Steel Site, LaBella Associates, D.P.C., March 2017


Periodic Review Report, Former Roblin Steel Site, LaBella Associates, D.P.C., February 2023

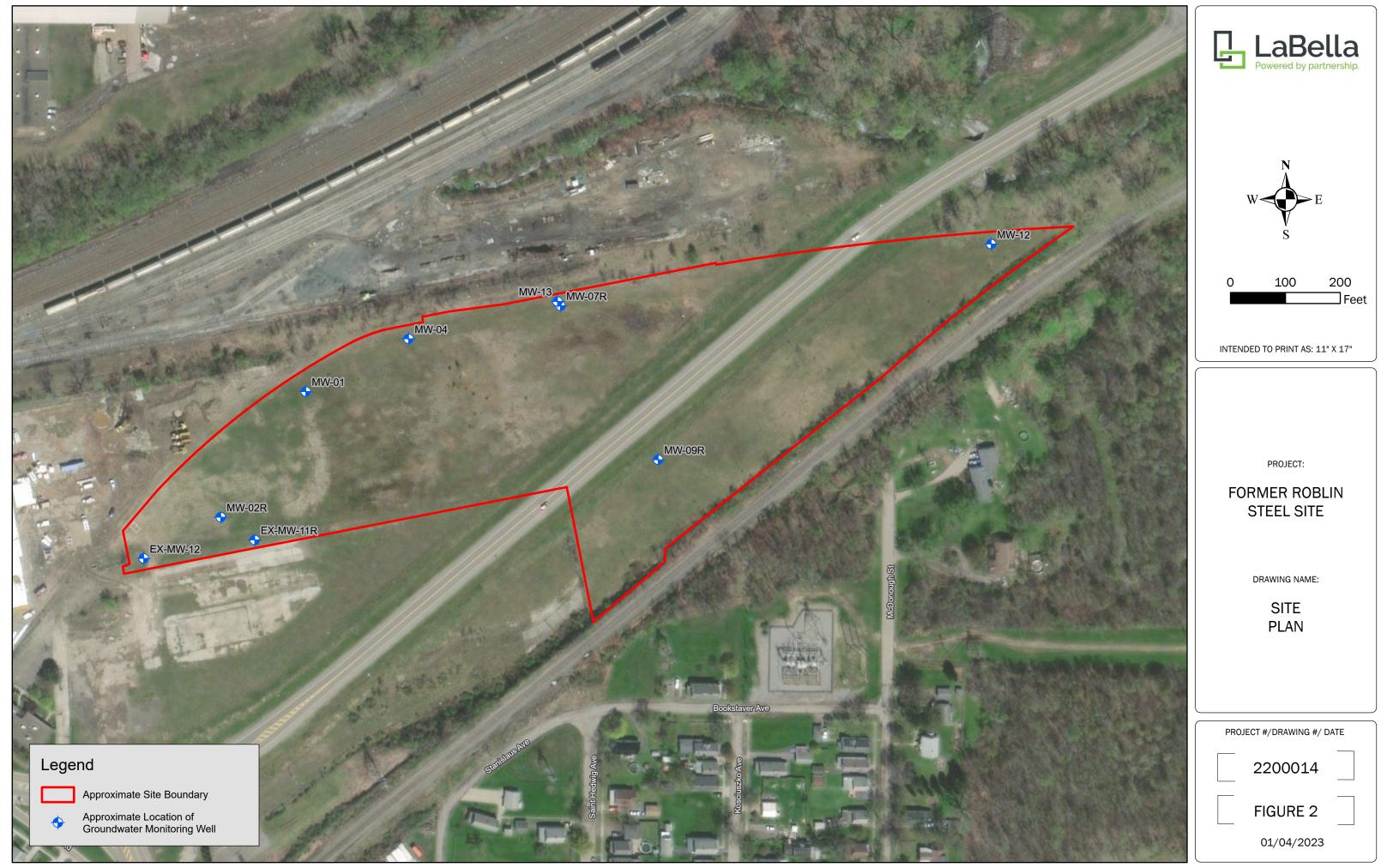

Site Management Plan, Former Roblin Steel Site, TVGA Consultants, November 2010 (updated by LaBella Associates, D.P.C., June 2021)

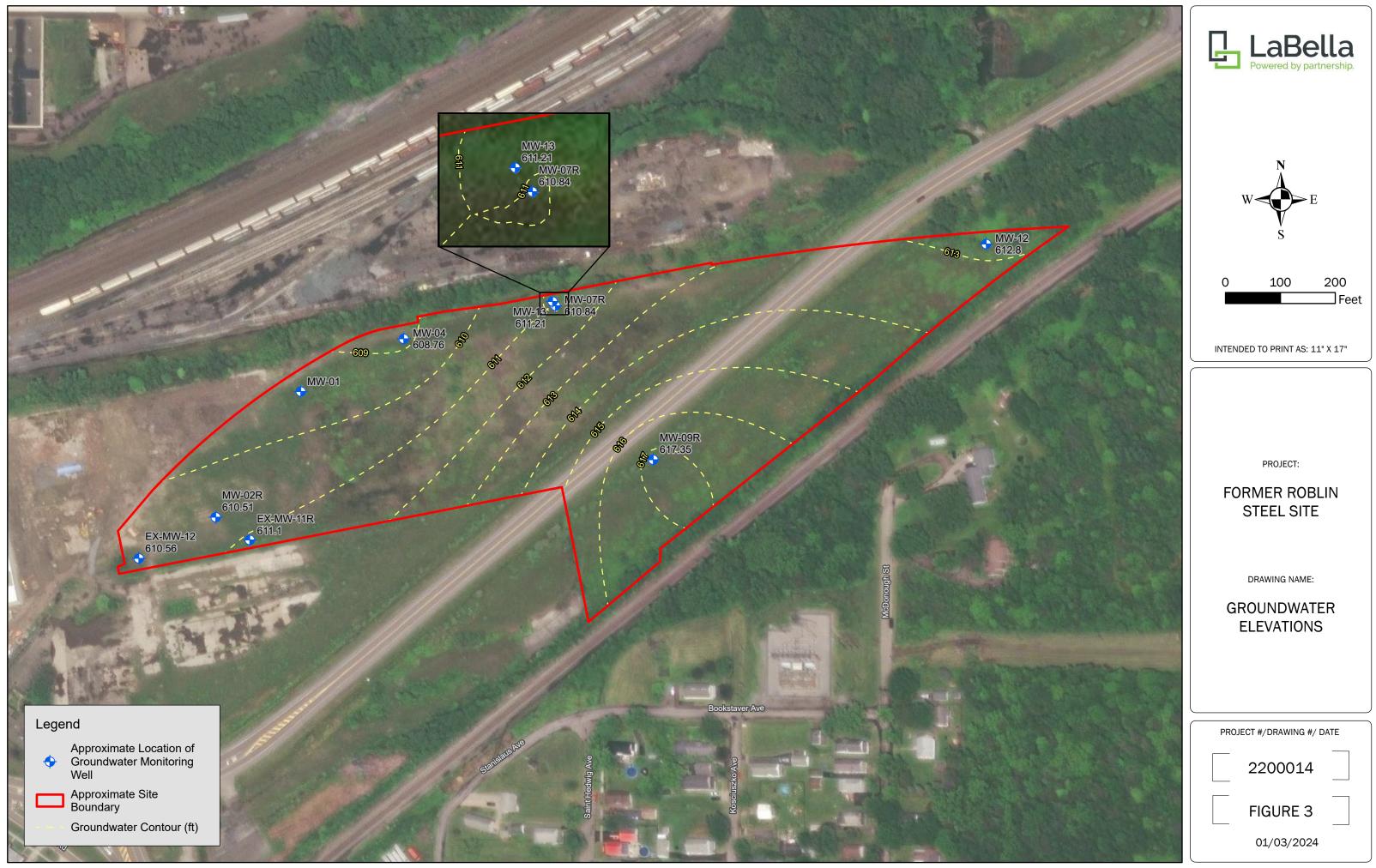
Corrective Measures Work Plan, Former Roblin Steel Site, LaBella Associates, D.P.C., August 2022

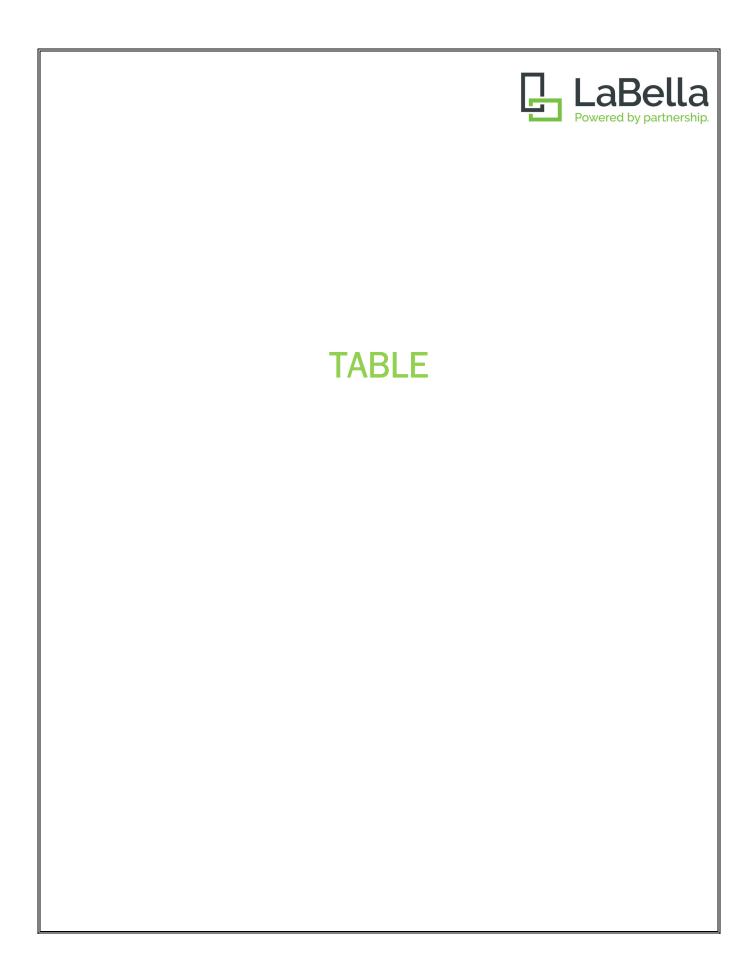
Corrective Measures Summary Report, Former Roblin Steel Site, LaBella Associates, D.P.C., June 2023









## FIGURE 1 SITE LOCATION MAP


Former Roblin Steel Site 320 South Roberts Road Dunkirk, New York



PROJECT NO. 2200014







#### Table 1 Former Roblin Steel Site Summary of Analytical Results Groundwater Samples

| PARAMETER VAL                   |      |                |              |             |             | MW 02       | 0          |              |             |                |             |             |           |             |              |             |           | MW.O.       |            |           |         |            |              |              |            |             |                                         |               | MW-079      |                       |                |              |             |          |               |             |                |                  | MW 00       | 0.0          |                |         |              |                                         |            |           |                 |            |               | EV-MW-119    |               |             |                                                            |
|---------------------------------|------|----------------|--------------|-------------|-------------|-------------|------------|--------------|-------------|----------------|-------------|-------------|-----------|-------------|--------------|-------------|-----------|-------------|------------|-----------|---------|------------|--------------|--------------|------------|-------------|-----------------------------------------|---------------|-------------|-----------------------|----------------|--------------|-------------|----------|---------------|-------------|----------------|------------------|-------------|--------------|----------------|---------|--------------|-----------------------------------------|------------|-----------|-----------------|------------|---------------|--------------|---------------|-------------|------------------------------------------------------------|
| Collection Date                 | 10/  | /11/02 2/10/09 | 8/10/10 8/15 | /13 7/15/14 | 12/15/15 12 | /14/16 2/2/ | 8 12/12/18 | 12/5/19 12/3 | 3/20 12/2/2 | 1 3/23/22 12/  | 13/22 12/12 | /23 10/11/0 | 2/10/09   | 8/10/10 8/2 | 1/13 7/15/14 | 12/15/15    | 2/14/16 2 | /2/18 12/1  | 2/18 12/5/ | 9 12/3/20 | 12/2/21 | 3/23/22 13 | 2/13/22 12/  | 2/23 10/11/0 | 2 5/4/09 8 | /10/10 8/19 | /13 7/15/14                             | 2/15/15 12/14 | 16 2/2/18 1 | 2/12/18 12/5          | 5/19 12/3/20 1 | 2/2/21 3/23/ | 22 12/13/22 | 12/12/23 | 0/11/02 2/10/ | /09 8/10/10 | 8/15/13 7/15/1 | 14 12/15/15 12/1 | 74/16 2/2/1 | 8 12/12/18 1 | 2/5/19 12/3/20 | 12/2/21 | 3/23/22 12/1 | /22 12/12/23                            | 10/11/02 2 | 2/10/09 8 | 8/10/10 8/15/13 | 7/15/14 12 | 5/15 12/14/16 | 16 2/2/18 12 | 12/18 12/5/19 | 12/3/20 12/ | 0/21 3/23/22 12/13/22 12/                                  |
| Volatile Organic Compounds (µg/ | n/L) | ,              | 4,14,14      | ,           | 10,10,10    |             | 10,10,10   | 12/3/10 12/1 | 1,20        | 1,000,000 1.07 | 19,00       | ,,.         | 27.107.00 | 6,14,15     | .,           | 1.07.107.10 | .,.,      | 72710 12711 | .,         | 10,0,00   | 12,2,21 | 3,23,22    | 27 19722 127 | 2,22         | 3,,,25     |             | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |               |             | , , , , , , , , , , , | 3,10 10,3,00   | 3,23,        | 10,10,00    | 10,10,00 | 27.17         |             | 4,14,15        |                  | ,           | ,,           | -,-,           | ,.,.    | 3,23,22      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |            | 2,10,00   |                 | 4          | ,             |              | 10,10         | 10,0,00     |                                                            |
| 1.1-Dichloroethane 5            | 5    |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                | 4            |             |          |               |             |                |                  |             |              |                |         |              |                                         |            |           |                 | -          |               |              |               |             |                                                            |
| 1.1-Dichloroethene S            | 5    |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              | 15           |            |             |                                         |               |             |                       |                | 15           |             | 12       | 3 2.07        | 12          |                | 2.3              | 1.2         |              |                | 1 1     |              |                                         |            |           |                 |            | 4.6 11        | 5.8          |               |             | 63                                                         |
| cis-1.2-Dichloroethene 5        | 5    | NA.            | 21.3 10      | .1 6.27     | 18          | 11 13       | 20         | 21 1         | 10 5.1      | 27             | 130 320     | NA.         |           |             |              | 2.6         | 1.2       |             |            |           | 1.3     |            |              | NA.          |            | 904 12      | 8 584                                   | 17 5.9        | 190         | 3.2 16                | 16 23          | 3600 3400    | 400         | 3,400    | NA 210        | 0 277       | 217 55.7       | 1,200 5          | 500 410     | 290          | 180 180        | 4       | 170 18       | 75                                      | NA NA      | 354       | 5.320 1.950     | 5.400      | 90 1.000      | 0 1.500      | 960 950       | 1.400 7.    | 400 6.200 3.600 1                                          |
| trans-1.2-Dichloroethene 5      | 5    | NA NA          |              |             |             |             |            |              |             |                |             | NA.         |           |             |              |             |           |             |            |           |         |            |              | NA           |            |             |                                         |               |             |                       |                | 14           |             | 9.6 J    | NA 4.41       | 8 17.3      |                | 2.9              | 4.2         |              |                |         |              |                                         | NA.        |           |                 |            | 3.3           | 4.4          |               |             | 37                                                         |
| 1,2-Dichloroethene (Total) 5    | 5    | 88             | 21.3         |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              | 1,500        |            | 904         |                                         |               |             |                       |                |              |             |          | 380 214       | 4 294       |                |                  |             |              |                |         |              |                                         | 41,000     | 354       | 5,320           |            |               |              |               |             |                                                            |
| 1,2,4-Trimethylbenzene 5        | 5    | 10             |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          | 12.9          | .9          |                |                  |             |              |                |         |              |                                         |            |           |                 | -          |               |              |               |             |                                                            |
| 2-Butanone 50                   | 50   | 33.5           | 129          |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               | 305         |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
| Acetone 50                      | 50   |                | 21.7 12      | .3          |             |             |            |              |             |                |             |             |           | 4           | 3.8          |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               | 569         |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
| Benzene 1                       | 1    | 18 7.92        | 37.3 18      | .2 22.7     | 3.5         | 3.5 5.6     | 3.2        | 1.2 1.       | 1.6 5.4     | 6.9            | 2.5 ] 2.7   | J 6         |           |             |              |             |           |             |            |           |         |            |              | 10           | 65         | 14          |                                         | 0.34          |             |                       |                |              |             |          | 35 11.5       | .5 445      | 87.7 46.3      | 0.97             | 2.2         |              | 3.5 5.5        | 13      | 15           |                                         |            |           |                 |            | 2.5           | 3.7          |               |             |                                                            |
|                                 |      |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               |             |                |                  |             |              |                | 0.57 J  |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
| Chloroethane 5                  | 5    |                | 6.           | 2           |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               |             |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
|                                 | NL.  |                | 32           | .8 43.3     | 6.3         | 5 7.9       | 3.6        | 3.4 4.       | 1.2 4.3     | 5.5            | 1.5 J 7.7   |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         | 0.72          |             |                       |                |              |             |          |               |             | 208 155        | 15               | 9.4         |              | 9.3 8.5        | 28      | 26 2         | 37                                      |            |           |                 |            | 16 24         | 22           | 19 22         | 9.6         | 37 33 J                                                    |
| cis-1,3-Dichloropropene 0.      | 0.4  |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              | 1,500      |             |                                         |               |             |                       |                |              |             |          |               |             |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
|                                 | 5    | 9.81           | 18.9 16      | .9 22.6     | 1.9         |             |            |              |             |                |             | 2           |           |             |              |             |           |             |            |           |         |            |              | 4            |            |             |                                         |               |             |                       |                |              |             |          | 12 5.66       | 69.6        | 33.7 17.3      | 0.23             |             |              |                |         |              |                                         |            |           |                 |            | 2.4           | 1.6          |               |             |                                                            |
| sopropylbenzene 5               | 5    |                | 2.9          | 3.12        | 0.61        |             |            |              | 1.2         | 1.3            |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               |             |                | 0.28             |             |              |                |         | 0.85 J       |                                         |            |           |                 |            | .68           |              |               |             |                                                            |
| Methyl chloride 5               | 5    |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            | 0.51 J       |              |            |             |                                         |               |             |                       |                |              |             |          |               |             |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
| dethyl Cyclohexane NI           | NL.  |                | 13           | .8 22.4     | 2.3         | 1.3 2       | 0.7        | 0.99 1.      | 1.2         | 0.89 J         | 3.2 J 7.7   |             |           |             |              |             |           |             |            |           |         |            |              |              | 99         |             |                                         | 0.76          |             |                       |                |              |             |          |               |             | 121 101        | 13               | 7.5         |              | 7.3 7          | 9.4     | 9.9 2        | 34                                      |            |           |                 |            | 15 20         | 23           | 7.3 11        | 8           | 35 38J 16J                                                 |
| Methylene Chloride 5            | 5    |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               |             |                | 4                | 4.8         |              |                |         |              |                                         |            |           |                 |            | 12            |              |               |             |                                                            |
| n-Propylbenzene 5               | 5    | 2.57           |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              |            |             |                                         |               |             |                       |                |              |             |          |               |             |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
| Tetrachloroethene 5             | 5    |                |              |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              |              | 160        |             |                                         | 0.25          |             |                       |                |              |             |          |               |             |                | 4.5              |             |              |                |         |              |                                         |            |           |                 |            |               |              |               |             |                                                            |
| Toluene 5                       | 5    | 24 7.19        | 101          |             |             |             |            |              |             |                |             |             |           |             |              |             |           |             |            |           |         |            |              | 12           | 69         | 29.7        |                                         |               |             |                       |                |              |             |          | 74 23.3       | .3 581      |                |                  |             |              |                |         |              |                                         |            |           |                 |            | 1.7           | 0.81         |               |             |                                                            |
| m_p-Xylene S                    | 5    | NA 7.62        | 73.2 2.4     | 45 9.81     |             |             |            |              |             |                |             | NA.         |           |             |              |             |           |             |            |           |         |            |              | NA.          |            | 33.3        |                                         |               |             |                       |                |              |             |          | NA 20.5       | .5 239      |                |                  |             |              |                |         |              |                                         | NA.        |           |                 |            | .73           |              |               |             |                                                            |
| o-Xylene 5                      | 5    | NA 2.61        | 37.2         | 2.10        |             |             |            |              |             |                |             | NA.         |           |             |              |             |           |             |            |           |         |            |              | NA.          |            |             |                                         |               |             |                       |                |              |             |          | NA 11.5       | .5 128      |                | 0.23             |             |              |                |         |              |                                         | NA.        |           |                 |            | 4.9           |              |               |             |                                                            |
| Total Xylenes 5                 | 5    | 11 10.23       | 110.4        |             |             |             |            |              |             |                |             | 10          |           |             |              |             |           |             |            |           |         |            |              | 23           | 67         | 33.3        |                                         |               |             |                       |                |              |             |          | 75 32         | 367         |                |                  |             |              |                |         |              |                                         |            |           |                 |            |               | 2.6          |               |             |                                                            |
| Trichloroethene 5               | 5    | 32             | 3.31         |             | 0.25        |             |            |              |             | 0.78 J         | 3.6         | J           |           |             |              |             | 1.91      |             |            |           |         |            |              | 56           |            | 49.2        | 55.9                                    | 2             | 3.7         |                       |                | 120 110      |             | 21       | 450 135       | 5 585       |                | 2                | 230 39      |              | 3.3            |         | 1.9          |                                         | 150,000    | 168       | 4,630           | 4,510      | 36 91         |              | 10            | 1,4         | 00 F1 1500 600 4<br>00 F1 750 1,100 1<br>572 8,521 5,316 2 |
| Vinyl chloride 2                | 2    | 31             | 5.34 12      | .5 9.13     | 26          | 42 27       | 49         | 37 2         | 27 6.1      | 21             | 150 280     |             |           |             |              | 0.49        |           |             |            |           |         |            |              | 330          | 770        | 402 56      | .1 205                                  | 6.2 3.7       | 75          | 3.6                   | 19 12          | 740 650      | 140         | 780      | 34 33         |             | 991 287        | 310              | 93          | 23           | 110 99         | 17      | 110 43       | 310                                     | 9,800      | 27        | 638 881         | 1,110      | 20 360        | 950          | 510 330       | 430 1,3     | 00 F1 750 1,100 1.                                         |
| Total VOCs                      |      | 204 91         | 580 12       | 8 141       | 59          | 63 56       | 77         | 64 4         | 44 23.8     | 42.4 2         | 90.2 621.   | 7 18        | 0         | 0 4         | 14 0         | 3           | 3         | 0 (         | 0          | 0         | 1.3     | 0          | 0.51         | 1 1 950      | 2 797      | 2 3 7 0 18  | 4 845                                   | 25 12         | 194         | 68 31                 | 35 35          | 4492 4160    | 540         | 4 2 2 3  | 1.063 716     | 6 3.877     | 1.658 662      | 1549 7           | 735 567     | 7 313        | 310 303        | 72      | 224 69       | 2 456                                   | 200.800    | 903       | 15 908 2 831    | 11.020 2   | 598 1.518     | 8 2,514      | .506 1.313    | 1.848 7.    | 572 8.521 5.316 2                                          |

| Total VUCs                 |                     | 204      | 91      | 580     | 128     | 141     | 29       | 63       | 36       | - 77     | 64      | 44      | 23.8    | 42.4    | 290.2    | 621.7    | 18       | - 0      |
|----------------------------|---------------------|----------|---------|---------|---------|---------|----------|----------|----------|----------|---------|---------|---------|---------|----------|----------|----------|----------|
|                            |                     |          |         |         |         |         |          |          |          |          |         |         |         |         |          |          |          |          |
| PARAMETER                  | REGULATORY<br>VALUE |          |         |         |         |         |          |          | EX-MW-12 |          |         |         |         |         |          |          |          | F-13     |
| Collection Date            |                     | 10/11/02 | 2/10/09 | 8/10/10 | 8/15/13 | 7/15/14 | 12/15/15 | 12/14/16 | 2/2/18   | 12/12/18 | 12/5/19 | 12/3/20 | 12/2/21 | 3/23/22 | 12/13/22 | 12/12/23 | 12/13/22 | 12/12/23 |
| Volatile Organic Compoun   | ds (µg/L)           |          |         |         |         |         |          |          |          |          |         |         |         |         |          |          |          |          |
| cis-1,2-Dichloroethene     | 5                   | NA.      |         | 7.6     |         |         | 0.73     |          |          |          |         |         |         |         |          |          | 19       | l        |
| trans-1,2-Dichloroethene   | 5                   | NA.      |         |         |         |         |          |          |          |          |         |         |         |         |          |          | 1.0      |          |
| 1,2-Dichloroethene (Total) | 5                   | 150      |         | 7.6     |         |         |          |          |          |          |         |         |         |         |          |          |          |          |
| 2-Butanone                 | 50                  |          |         | 31.3    |         |         |          |          |          |          |         |         |         |         |          |          | 5.8 J    |          |
| 2-Hexanone                 | 50                  |          |         | 5.23    |         |         |          |          |          |          |         |         |         |         |          |          |          |          |
| Acetone                    | 50                  |          |         | 73.8    |         |         |          |          |          |          |         |         |         |         |          |          | 23       |          |
| Benzene                    | 1                   | _        |         | 24.0    | 1.9     | 2.14    | 0.47     |          |          |          |         |         |         |         |          |          | 6.4      | 2.1 J    |
| Carbon Disulfide           | 60                  |          |         |         |         |         |          |          |          |          |         |         | 1.1     |         |          |          | 1.1      |          |
| Chloromethane              | 5                   |          |         |         |         |         |          |          |          |          |         |         |         |         |          |          | 0.37 J   |          |
| Cyclohexane                | NL                  |          |         |         |         |         |          |          |          |          |         |         |         |         |          |          | 9.9      | 6.1      |
| Ethylbenzene               | 5                   | _        |         | 18.5    |         |         |          |          |          |          |         |         |         |         |          |          | 2.6      |          |
| Methyl Cyclohexane         | NL.                 |          |         |         |         |         |          |          |          |          |         |         |         |         |          |          | 11.0     | 6.8      |
| Toluene                    | 5                   |          |         | 48.7    |         |         |          |          |          |          |         |         |         |         |          |          | 10.0     | 3 J      |
| m.p-Xylene                 | 5                   | NA.      |         | 74.7    |         |         |          |          |          |          |         |         |         |         |          |          |          |          |
| o-Xylene                   | 5                   | NA.      |         | 40.4    |         |         |          |          |          |          |         |         |         |         |          |          |          |          |
| Total Xvienes              | 5                   |          |         | 115.1   |         |         |          |          |          |          |         |         |         |         |          |          | 14       | 51       |
| Trichloroethene            | 5                   |          |         | 8.96    |         |         |          |          |          |          |         |         |         |         |          |          | 1.9      |          |
| Vinyl chloride             | 2                   | 200      |         | 27.2    |         |         |          |          |          |          |         |         |         |         |          |          | - 11     |          |
| Total VOCs                 |                     | 352      | 0       | 483     | 1.9     | 2.14    | 1        | 0        | 0        | 0        | 0       | 0       | 1.1     | 0.0     | 0.0      | 0.0      | 117.09   | 23       |

Notes: Regulatory values are derived from NYS Ambient Water Quality Standards TOCS 1.1.1 (Source of Drinking Water, grounds

haded values represent exceedances of the regulatory value g/L = micrograms per Liter (equivalent to parts per billion (p

L = micrograms per Liter (equivalent to parts per billion y compounds with one or more detections are shown.

Reported concentration is an estimate.

Slank spaces indicate that the analyte was not detected.



## **APPENDIX 1**

**Corrective Measures Summary Report** 

## **Corrective Measures Summary Report**

#### Location:

Former Roblin Steel Site 320 South Roberts Road Dunkirk, New York NYSDEC Site No. B00173-9

#### Prepared for:

Chautauqua County Department of Public Affairs 454 North Work Street Falconer, New York 14773

LaBella Project No. 2210039.05

June 22, 2023



#### **CERTIFICATIONS**

 Mr. Mr.
 6/22/2023

 Signature
 Date



#### **Table of Contents**

| 1.0 | <b>BACK</b> | GROUND AND SITE DESCRIPTION               | . 1 |
|-----|-------------|-------------------------------------------|-----|
|     |             | RNING DOCUMENTS                           |     |
|     |             | RECTIVE MEASURES                          |     |
|     |             | ntractors and Consultants                 |     |
| 3.2 | Site        | e Controls & Monitoring                   | . 2 |
|     |             | rective Measures Work Plan Tasks          |     |
| 3   | 3.3.1       | Monitoring Well Installation and Sampling | . 3 |
|     |             | In-Situ Direct Push Injections            |     |
|     |             | terial Management                         |     |
|     |             | Auger Spoils and Decontamination Solids   |     |
|     |             | MARY AND CONCLUSIONS                      |     |
|     |             |                                           |     |

#### **Figures**

Figure 1 – Site Location Map

Figure 2 - Well Location Map

Figure 3 – Injection Locations Around MW-07R and EX-MW-11R

#### **Appendices**

Appendix A – CAMP Air Monitoring Data

Appendix B - Daily Field Reports

Appendix C - Project Photos

Appendix D - Monitoring Well Installation Report

Appendix E – In-Situ Groundwater Treatment Documentation

Appendix F – Waste Disposal Documentation

#### 1.0 BACKGROUND AND SITE DESCRIPTION

The Site is located at 320 South Roberts Road in the City of Dunkirk, New York. Figure 1 shows the location of the Site and Figure 2 is the Site plan that depicts the Site configuration and location of the groundwater monitoring well network. Progress Drive transects the eastern portion of the Site in a northeast-southwest direction. As a result, a portion of the Site is located east of the roadway and separated from the remainder of the Site. The Site is located in an area zoned for industrial use. A mixture of commercial, industrial, and residential properties comprises the land use in the Site's vicinity. The Site is bounded to the north by an active CSX rail yard; to the east by active Norfolk Southern railroad tracks; to the south by the Former Alumax extrusions property; and to the west by a recently constructed freezer warehouse facility. Residential properties are located to the northwest and south of the Site beyond the adjoining properties. Lake Erie is situated approximately 3,400 feet to the northwest of the Site. Hyde Creek is located approximately 100 feet from the northeast corner of the Site.

This Corrective Measures Summary Report details activities related to the monitoring well installation and in-situ direct push injections consistent with the New York State Department of Environmental Conservation (NYSDEC)-approved Notification of Planned Intrusive Activities (Corrective Measures Work Plan) dated September 2022.

#### 2.0 GOVERNING DOCUMENTS

The Corrective Measures work completed at the Site was generally completed in accordance with NYSDEC DER-10, the Excavation Work Plan (EWP) contained within the Site Management Plan (SMP) dated November 2010 and revised June 2021, and the Corrective Measures Work Plan (CMWP) dated September 2022.

#### 3.0 CORRECTIVE MEASURES

The objective of the Corrective Measures work was to address the department's request to address increases in total volatile organic compound (VOC) concentrations associated with groundwater monitoring wells MW-07R and EX-MW-11R during the December 2021 and March 2022 groundwater sampling events. In addition, one (bedrock) groundwater monitoring well (MW-13) was installed north of MW-07R and immediately south of the north Site boundary to establish groundwater conditions on-site proximate the Site boundary to evaluate if any contaminants previously identified on-site may be migrated off-site to the north. In addition, direct push injections were performed proximate both MW-07R and EX-MW-11R.

#### 3.1 Contractors and Consultants

The following details the consultants and contractors involved with the work associated with the Predesign Investigation activities:

| Contractor/ Consultant           | Role                                                                                                                                                                                                |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LaBella Associates, D.P.C.       | Environmental consultant responsible for correspondence with NYSDEC, ensuring compliance with applicable SMP documents, environmental oversight, reporting, sample collection, and CAMP monitoring. |
| LaBella Environmental, LLC       | Monitoring well installation and performance of in-situ direct push injection work.                                                                                                                 |
| Provectus Environmental Products | Provided consulting and injection products                                                                                                                                                          |
| Environmental Service Group      | Waste hauler for auger spoils and decontamination solids.                                                                                                                                           |
| Eurofins Environment Testing     | Laboratory for testing and analysis of auger soils and decontamination solids, and groundwater associated with MW-13.                                                                               |

#### 3.2 Site Controls & Monitoring

Site controls utilized during implementation of the Corrective Measures Work Plan generally consisted of the following:

- One upwind and one downwind Community Air Monitoring Program (CAMP) station was
  utilized during ground intrusive work. Although locations varied by day due to location of
  work, the upwind CAMP station was generally located to the west of the work being
  performed, while the downwind CAMP station was generally located to the east of the work
  being performed. Each CAMP station consisted of a particulate monitor (DustTrak II Model
  8530) which recorded measurements on a 15-minute average.
- Disturbed subsurface soil was continuously screened for evidence of impairment (i.e., visual, olfactory, or photoionization (PID) detector readings).
- Spoils created from monitoring well installation were placed in a drum and characterized for disposal.

CAMP thresholds were not exceeded throughout the project duration, when compared to applicable state guidance. Hourly checks of the handheld PID did not identify any VOC readings above 0.0 parts per million in the ambient air within the work area.

Odors associated with known contaminants of concern at the Site were not encountered during the Corrective Measures work, and as such, corrective actions associated with odor control were not required.

Copies of all field data sheets relating to the CAMP are provided in electronic format in Appendix A. Daily field notes documenting observed daily activities and tasks are included in electronic format in Appendix B. A digital photo log is included in Appendix C.

#### 3.3 Corrective Measures Work Plan Tasks

#### 3.3.1 Monitoring Well Installation and Sampling

On December 6, 2022, a track mounted drill rig equipped with  $4\frac{1}{2}$  inch hollow stem augers, was used to install one 2-inch PVC monitoring well (MW-13). The monitoring well was sampled and a Monitoring Well Installation Report with results was issued. The Monitoring Well Installation Report detailing the field activities and sampling results is provided in Appendix D.

#### 3.3.2 In-Situ Direct Push Injections

LaBella Environmental, LLC submitted an Underground Injection Control (UIC) request to the United States Environmental Protection Agency (USEPA) in November 2022, for approval to perform the insitu direct push injections at the Site. Thereafter, such was "authorized by rule" by Harper Stanfield of the USEPA (UIC ID 19NY01399019).

In-situ direct push injections were conducted between April 11 and April 17, 2023. The injections were performed using a direct hydraulic push rig around each well, over an approximately 1,600 square-foot area, with approximately 10-foot spacing, totaling 32 injection points. The target depths for treatment were 5 to 10 feet below ground surface. Provectus-IR was injected to address the chlorinated VOCs (cVOCs) proximate MW-07R and EX-MW-11R. Provectus is a unique mixture of reagents, including zero valent iron (ZVI) and organic carbon substrate, combined into a single technology that optimized in-situ reductive dechlorination. In addition, approximately three liters of Dehalococcoides (DHC) was also injected as a bioaugmentation process, to assist in overall cVOC destruction. The DHC was spread over approximately four injection points proximate each well area. The product vendor (Provectus) recommended a three-to-six-month lead time of supplemental sampling of MW-07R and EX-MW-11R, in order to allow the materials to perform properly to breakdown the cVOCs proximate each of the two wells. Figure 3 depicts the injection point locations proximate MW-07R and EX-MW-11R. Literature associated with the Provectus-IR and DHC are provided in Appendix E.

#### 3.4 Material Management

Corrective Measures tasks resulted in the need to manage the following materials:

1. Auger Spoils and decontamination solids requiring landfill disposal.

#### 3.4.1 Auger Spoils and Decontamination Solids

Auger spoils and decontamination solids generated as a result of activities associated with the Corrective Measures tasks detailed within Section 3.4 above were drummed and staged on-site, and a soil sample was collected and submitted for characterization. The drum was transported by Environmental Service Group (ESG) to American Recyclers Company in Tonawanda, New York, as a non-hazardous waste. Details including waste characterization, laboratory reports, and waste disposal documentation are included within Appendix F.

#### 4.0 SUMMARY AND CONCLUSIONS

While contraventions of select constituents were identified in MW-13, total VOC concentrations in this well were substantially lower than the concentrations identified in MW-07R during the December 2021 and March 2022 sampling events. The continued monitoring of contaminant levels is recommended at MW-13 as part of the overall groundwater monitoring network at the Site and should be closely examined during future annual monitoring events to determine if an increasing trend materializes.

Given the timing of the injection event proximate MW-07R and EX-MW-11R (April 2023) and the recommended processing time of the applied materials, it is recommended that post-remedial sampling of MW-07R and EX-MW-11R be completed during the next annual Periodic Review Report sampling event slated to take place at the Site in December 2023, to evaluate the effectiveness of the injection event.

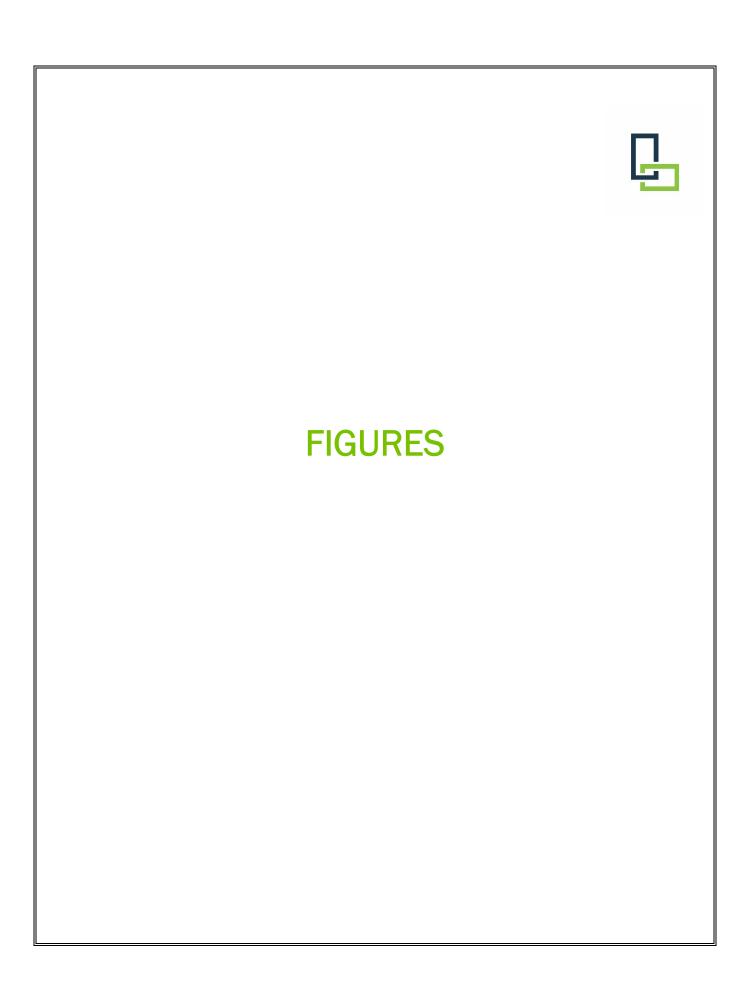



Figure 1 5/4/2023

Site Location Мар

STEEL SITE

Roblin CM Site Dunkirk, NY

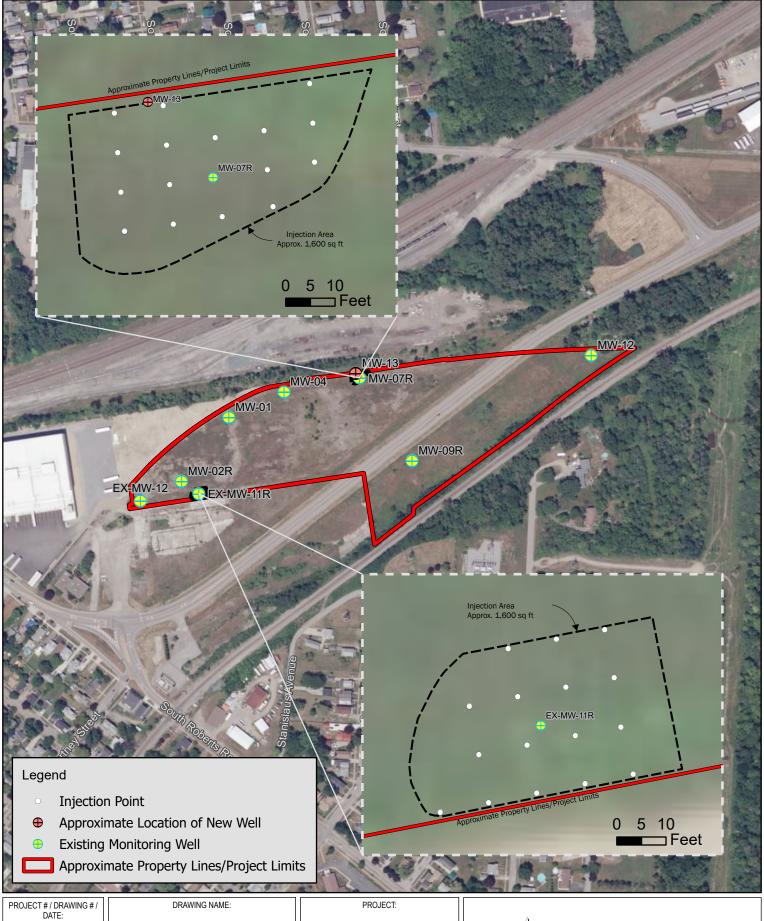




PROJECT # / DRAWING # / DATE:

2210039.05

Figure 2 5/4/2023


Well Location Мар

FORMER ROBLIN STEEL SITE

> Roblin CM Site Dunkirk, NY







2210039.05

Figure 3

5/4/2023

**INJECTION** LOCATIONS AROUND WELLS MW-07R AND EX-MW-11R

FORMER ROBLIN STEEL SITE

> Roblin CM Site Dunkirk, NY







# APPENDIX A – CAMP AIR MONITORING DATA

TrackPro Report Page 1 of 1

## **Test 003**

#### Downwind

| Instru         | ment        | Data Prop        | erties      |
|----------------|-------------|------------------|-------------|
| Model          | DustTrak II | Start Date       | 04/11/2023  |
| Instrument S/N | 8530171404  | Start Time       | 11:25:08    |
|                |             | Stop Date        | 04/11/2023  |
|                |             | Stop Time        | 14:10:08    |
|                |             | Total Time       | 0:02:45:00  |
|                |             | Logging Interval | 900 seconds |

|            |            | <b>Test Data</b> |                |
|------------|------------|------------------|----------------|
| Data Point | Date       | Time             | AEROSOL mg/m^3 |
| 1          | 04/11/2023 | 11:40:08         | 0.055          |
| 2          | 04/11/2023 | 11:55:08         | 0.019          |
| 3          | 04/11/2023 | 12:10:08         | 0.018          |
| 4          | 04/11/2023 | 12:25:08         | 0.023          |
| 5          | 04/11/2023 | 12:40:08         | 0.017          |
| 6          | 04/11/2023 | 12:55:08         | 0.020          |
| 7          | 04/11/2023 | 13:10:08         | 0.013          |
| 8          | 04/11/2023 | 13:25:08         | 0.017          |
| 9          | 04/11/2023 | 13:40:08         | 0.024          |
| 10         | 04/11/2023 | 13:55:08         | 0.024          |
| 11         | 04/11/2023 | 14:10:08         | 0.022          |

about:blank 4/18/2023

## **Test 003**

Upwind

| - p            |             |                  |             |
|----------------|-------------|------------------|-------------|
| Instrument     |             | Data Properties  |             |
| Model          | DustTrak II | Start Date       | 04/11/2023  |
| Instrument S/N | 8530123203  | Start Time       | 11:26:23    |
|                |             | Stop Date        | 04/11/2023  |
|                |             | Stop Time        | 14:11:23    |
|                |             | Total Time       | 0:02:30:00  |
|                |             | Logging Interval | 900 seconds |

| Test Data  |            |          |                |
|------------|------------|----------|----------------|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |
| 1          | 04/11/2023 | 11:40:36 | 0.000          |
| 2          | 04/11/2023 | 11:41:23 | 0.036          |
| 3          | 04/11/2023 | 11:56:23 | 0.027          |
| 4          | 04/11/2023 | 12:11:23 | 0.020          |
| 5          | 04/11/2023 | 12:26:23 | 0.024          |
| 6          | 04/11/2023 | 12:41:23 | 0.018          |
| 7          | 04/11/2023 | 12:56:23 | 0.021          |
| 8          | 04/11/2023 | 13:11:23 | 0.012          |
| 9          | 04/11/2023 | 13:26:23 | 0.012          |
| 10         | 04/11/2023 | 13:41:23 | 0.026          |
| 11         | 04/11/2023 | 13:56:23 | 0.027          |

## **Test 004**

### Downwind

| Instrument     |             | Data Properties  |             |
|----------------|-------------|------------------|-------------|
| Model          | DustTrak II | Start Date       | 04/12/2023  |
| Instrument S/N | 8530171404  | Start Time       | 08:36:15    |
|                |             | Stop Date        | 04/12/2023  |
|                |             | Stop Time        | 15:51:15    |
|                |             | Total Time       | 0:07:15:00  |
|                |             | Logging Interval | 900 seconds |

|            | Test Data  |          |                |  |  |
|------------|------------|----------|----------------|--|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |  |
| 1          | 04/12/2023 | 08:51:15 | 0.029          |  |  |
| 2          | 04/12/2023 | 09:06:15 | 0.018          |  |  |
| 3          | 04/12/2023 | 09:21:15 | 0.018          |  |  |
| 4          | 04/12/2023 | 09:36:15 | 0.017          |  |  |
| 5          | 04/12/2023 | 09:51:15 | 0.018          |  |  |
| 6          | 04/12/2023 | 10:06:15 | 0.019          |  |  |
| 7          | 04/12/2023 | 10:21:15 | 0.018          |  |  |
| 8          | 04/12/2023 | 10:36:15 | 0.018          |  |  |
| 9          | 04/12/2023 | 10:51:15 | 0.019          |  |  |
| 10         | 04/12/2023 | 11:06:15 | 0.019          |  |  |
| 11         | 04/12/2023 | 11:21:15 | 0.020          |  |  |
| 12         | 04/12/2023 | 11:36:15 | 0.022          |  |  |
| 13         | 04/12/2023 | 11:51:15 | 0.021          |  |  |
| 14         | 04/12/2023 | 12:06:15 | 0.020          |  |  |
| 15         | 04/12/2023 | 12:21:15 | 0.021          |  |  |
| 16         | 04/12/2023 | 12:36:15 | 0.021          |  |  |
| 17         | 04/12/2023 | 12:51:15 | 0.027          |  |  |
| 18         | 04/12/2023 | 13:06:15 | 0.029          |  |  |
| 19         | 04/12/2023 | 13:21:15 | 0.026          |  |  |
| 20         | 04/12/2023 | 13:36:15 | 0.022          |  |  |
| 21         | 04/12/2023 | 13:51:15 | 0.022          |  |  |
| 22         | 04/12/2023 | 14:06:15 | 0.021          |  |  |
| 23         | 04/12/2023 | 14:21:15 | 0.023          |  |  |
| 24         | 04/12/2023 | 14:36:15 | 0.021          |  |  |
| 25         | 04/12/2023 | 14:51:15 | 0.021          |  |  |
| 26         | 04/12/2023 | 15:06:15 | 0.022          |  |  |
| 27         | 04/12/2023 | 15:21:15 | 0.021          |  |  |
| 28         | 04/12/2023 | 15:36:15 | 0.019          |  |  |
| 29         | 04/12/2023 | 15:51:15 | 0.019          |  |  |

## **Test 004**

Upwind

| Instrument     |             | Data Properties       |             |
|----------------|-------------|-----------------------|-------------|
| Model          | DustTrak II | Start Date 04/12/2023 |             |
| Instrument S/N | 8530123203  | Start Time            | 08:35:07    |
|                |             | Stop Date             | 04/12/2023  |
|                |             | Stop Time             | 15:50:07    |
|                |             | Total Time            | 0:07:15:00  |
|                |             | Logging Interval      | 900 seconds |

|            | Test Data  |          |                |  |
|------------|------------|----------|----------------|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |
| 1          | 04/12/2023 | 08:50:07 | 0.020          |  |
| 2          | 04/12/2023 | 09:05:07 | 0.019          |  |
| 3          | 04/12/2023 | 09:20:07 | 0.018          |  |
| 4          | 04/12/2023 | 09:35:07 | 0.019          |  |
| 5          | 04/12/2023 | 09:50:07 | 0.018          |  |
| 6          | 04/12/2023 | 10:05:07 | 0.019          |  |
| 7          | 04/12/2023 | 10:20:07 | 0.018          |  |
| 8          | 04/12/2023 | 10:35:07 | 0.017          |  |
| 9          | 04/12/2023 | 10:50:07 | 0.018          |  |
| 10         | 04/12/2023 | 11:05:07 | 0.019          |  |
| 11         | 04/12/2023 | 11:20:07 | 0.019          |  |
| 12         | 04/12/2023 | 11:35:07 | 0.021          |  |
| 13         | 04/12/2023 | 11:50:07 | 0.020          |  |
| 14         | 04/12/2023 | 12:05:07 | 0.018          |  |
| 15         | 04/12/2023 | 12:20:07 | 0.019          |  |
| 16         | 04/12/2023 | 12:35:07 | 0.019          |  |
| 17         | 04/12/2023 | 12:50:07 | 0.023          |  |
| 18         | 04/12/2023 | 13:05:07 | 0.027          |  |
| 19         | 04/12/2023 | 13:20:07 | 0.021          |  |
| 20         | 04/12/2023 | 13:35:07 | 0.020          |  |
| 21         | 04/12/2023 | 13:50:07 | 0.021          |  |
| 22         | 04/12/2023 | 14:05:07 | 0.019          |  |
| 23         | 04/12/2023 | 14:20:07 | 0.020          |  |
| 24         | 04/12/2023 | 14:35:07 | 0.020          |  |
| 25         | 04/12/2023 | 14:50:07 | 0.019          |  |
| 26         | 04/12/2023 | 15:05:07 | 0.019          |  |
| 27         | 04/12/2023 | 15:20:07 | 0.018          |  |
| 28         | 04/12/2023 | 15:35:07 | 0.016          |  |
| 29         | 04/12/2023 | 15:50:07 | 0.016          |  |

## **Test 005**

### Downwind

| Instrument     |             | Data Properties  |             |
|----------------|-------------|------------------|-------------|
| Model          | DustTrak II | Start Date       | 04/13/2023  |
| Instrument S/N | 8530171404  | Start Time       | 08:44:03    |
|                |             | Stop Date        | 04/13/2023  |
|                |             | Stop Time        | 15:29:03    |
|                |             | Total Time       | 0:06:45:00  |
|                |             | Logging Interval | 900 seconds |

|            | Test Data  |          |                |  |
|------------|------------|----------|----------------|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |
| 1          | 04/13/2023 | 08:59:03 | 0.016          |  |
| 2          | 04/13/2023 | 09:14:03 | 0.014          |  |
| 3          | 04/13/2023 | 09:29:03 | 0.015          |  |
| 4          | 04/13/2023 | 09:44:03 | 0.013          |  |
| 5          | 04/13/2023 | 09:59:03 | 0.017          |  |
| 6          | 04/13/2023 | 10:14:03 | 0.012          |  |
| 7          | 04/13/2023 | 10:29:03 | 0.012          |  |
| 8          | 04/13/2023 | 10:44:03 | 0.015          |  |
| 9          | 04/13/2023 | 10:59:03 | 0.013          |  |
| 10         | 04/13/2023 | 11:14:03 | 0.013          |  |
| 11         | 04/13/2023 | 11:29:03 | 0.013          |  |
| 12         | 04/13/2023 | 11:44:03 | 0.012          |  |
| 13         | 04/13/2023 | 11:59:03 | 0.013          |  |
| 14         | 04/13/2023 | 12:14:03 | 0.016          |  |
| 15         | 04/13/2023 | 12:29:03 | 0.013          |  |
| 16         | 04/13/2023 | 12:44:03 | 0.015          |  |
| 17         | 04/13/2023 | 12:59:03 | 0.018          |  |
| 18         | 04/13/2023 | 13:14:03 | 0.017          |  |
| 19         | 04/13/2023 | 13:29:03 | 0.017          |  |
| 20         | 04/13/2023 | 13:44:03 | 0.020          |  |
| 21         | 04/13/2023 | 13:59:03 | 0.017          |  |
| 22         | 04/13/2023 | 14:14:03 | 0.018          |  |
| 23         | 04/13/2023 | 14:29:03 | 0.018          |  |
| 24         | 04/13/2023 | 14:44:03 | 0.019          |  |
| 25         | 04/13/2023 | 14:59:03 | 0.020          |  |
| 26         | 04/13/2023 | 15:14:03 | 0.020          |  |
| 27         | 04/13/2023 | 15:29:03 | 0.020          |  |

## **Test 005**

Upwind

| Орини          |             |                  |             |
|----------------|-------------|------------------|-------------|
| Instrument     |             | Data Properties  |             |
| Model          | DustTrak II | Start Date       | 04/13/2023  |
| Instrument S/N | 8530123203  | Start Time       | 08:43:18    |
|                |             | Stop Date        | 04/13/2023  |
|                |             | Stop Time        | 15:28:18    |
|                |             | Total Time       | 0:06:45:00  |
|                |             | Logging Interval | 900 seconds |

|            | Test Data  |          |                |  |
|------------|------------|----------|----------------|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |
| 1          | 04/13/2023 | 08:58:18 | 0.022          |  |
| 2          | 04/13/2023 | 09:13:18 | 0.020          |  |
| 3          | 04/13/2023 | 09:28:18 | 0.020          |  |
| 4          | 04/13/2023 | 09:43:18 | 0.019          |  |
| 5          | 04/13/2023 | 09:58:18 | 0.022          |  |
| 6          | 04/13/2023 | 10:13:18 | 0.020          |  |
| 7          | 04/13/2023 | 10:28:18 | 0.017          |  |
| 8          | 04/13/2023 | 10:43:18 | 0.019          |  |
| 9          | 04/13/2023 | 10:58:18 | 0.019          |  |
| 10         | 04/13/2023 | 11:13:18 | 0.021          |  |
| 11         | 04/13/2023 | 11:28:18 | 0.018          |  |
| 12         | 04/13/2023 | 11:43:18 | 0.017          |  |
| 13         | 04/13/2023 | 11:58:18 | 0.018          |  |
| 14         | 04/13/2023 | 12:13:18 | 0.018          |  |
| 15         | 04/13/2023 | 12:28:18 | 0.019          |  |
| 16         | 04/13/2023 | 12:43:18 | 0.020          |  |
| 17         | 04/13/2023 | 12:58:18 | 0.020          |  |
| 18         | 04/13/2023 | 13:13:18 | 0.023          |  |
| 19         | 04/13/2023 | 13:28:18 | 0.023          |  |
| 20         | 04/13/2023 | 13:43:18 | 0.025          |  |
| 21         | 04/13/2023 | 13:58:18 | 0.023          |  |
| 22         | 04/13/2023 | 14:13:18 | 0.025          |  |
| 23         | 04/13/2023 | 14:28:18 | 0.024          |  |
| 24         | 04/13/2023 | 14:43:18 | 0.024          |  |
| 25         | 04/13/2023 | 14:58:18 | 0.025          |  |
| 26         | 04/13/2023 | 15:13:18 | 0.024          |  |
| 27         | 04/13/2023 | 15:28:18 | 0.024          |  |

## **Test 006**

### Downwind

| Instrument     |             | Data Properties  |             |
|----------------|-------------|------------------|-------------|
| Model          | DustTrak II | Start Date       | 04/14/2023  |
| Instrument S/N | 8530171404  | Start Time       | 08:53:50    |
|                |             | Stop Date        | 04/14/2023  |
|                |             | Stop Time        | 13:53:50    |
|                |             | Total Time       | 0:05:00:00  |
|                |             | Logging Interval | 900 seconds |

|            | Test Data  |          |                |  |
|------------|------------|----------|----------------|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |
| 1          | 04/14/2023 | 09:08:50 | 0.030          |  |
| 2          | 04/14/2023 | 09:23:50 | 0.028          |  |
| 3          | 04/14/2023 | 09:38:50 | 0.027          |  |
| 4          | 04/14/2023 | 09:53:50 | 0.026          |  |
| 5          | 04/14/2023 | 10:08:50 | 0.029          |  |
| 6          | 04/14/2023 | 10:23:50 | 0.030          |  |
| 7          | 04/14/2023 | 10:38:50 | 0.030          |  |
| 8          | 04/14/2023 | 10:53:50 | 0.028          |  |
| 9          | 04/14/2023 | 11:08:50 | 0.026          |  |
| 10         | 04/14/2023 | 11:23:50 | 0.025          |  |
| 11         | 04/14/2023 | 11:38:50 | 0.026          |  |
| 12         | 04/14/2023 | 11:53:50 | 0.027          |  |
| 13         | 04/14/2023 | 12:08:50 | 0.026          |  |
| 14         | 04/14/2023 | 12:23:50 | 0.025          |  |
| 15         | 04/14/2023 | 12:38:50 | 0.026          |  |
| 16         | 04/14/2023 | 12:53:50 | 0.026          |  |
| 17         | 04/14/2023 | 13:08:50 | 0.027          |  |
| 18         | 04/14/2023 | 13:23:50 | 0.027          |  |
| 19         | 04/14/2023 | 13:38:50 | 0.027          |  |
| 20         | 04/14/2023 | 13:53:50 | 0.030          |  |

## **Test 006**

Upwind

| ориша          |                           |                        |             |  |
|----------------|---------------------------|------------------------|-------------|--|
| Instru         | ment                      | Data Properties        |             |  |
| Model          | DustTrak II               | II Start Date 04/14/20 |             |  |
| Instrument S/N | Instrument S/N 8530123203 |                        | 08:51:46    |  |
|                |                           | Stop Date              | 04/14/2023  |  |
|                |                           | Stop Time              | 14:06:46    |  |
|                |                           | Total Time             | 0:05:15:00  |  |
|                |                           | Logging Interval       | 900 seconds |  |

|            |            | Test Data |                |
|------------|------------|-----------|----------------|
| Data Point | Date       | Time      | AEROSOL mg/m^3 |
| 1          | 04/14/2023 | 09:06:46  | 0.032          |
| 2          | 04/14/2023 | 09:21:46  | 0.025          |
| 3          | 04/14/2023 | 09:36:46  | 0.023          |
| 4          | 04/14/2023 | 09:51:46  | 0.021          |
| 5          | 04/14/2023 | 10:06:46  | 0.023          |
| 6          | 04/14/2023 | 10:21:46  | 0.022          |
| 7          | 04/14/2023 | 10:36:46  | 0.023          |
| 8          | 04/14/2023 | 10:51:46  | 0.019          |
| 9          | 04/14/2023 | 11:06:46  | 0.016          |
| 10         | 04/14/2023 | 11:21:46  | 0.013          |
| 11         | 04/14/2023 | 11:36:46  | 0.014          |
| 12         | 04/14/2023 | 11:51:46  | 0.017          |
| 13         | 04/14/2023 | 12:06:46  | 0.017          |
| 14         | 04/14/2023 | 12:21:46  | 0.016          |
| 15         | 04/14/2023 | 12:36:46  | 0.017          |
| 16         | 04/14/2023 | 12:51:46  | 0.017          |
| 17         | 04/14/2023 | 13:06:46  | 0.017          |
| 18         | 04/14/2023 | 13:21:46  | 0.018          |
| 19         | 04/14/2023 | 13:36:46  | 0.018          |
| 20         | 04/14/2023 | 13:51:46  | 0.019          |
| 21         | 04/14/2023 | 14:06:46  | 0.020          |

## **Test 007**

### Downwind

| Instrui        | ment        | Data Properties  |             |  |
|----------------|-------------|------------------|-------------|--|
| Model          | DustTrak II | Start Date       | 04/17/2023  |  |
| Instrument S/N | 8530171404  | Start Time       | 09:03:36    |  |
|                |             |                  | 04/17/2023  |  |
|                |             | Stop Time        | 14:18:36    |  |
|                |             | Total Time       | 0:05:15:00  |  |
|                |             | Logging Interval | 900 seconds |  |

|            | Test Data  |          |                |  |  |  |  |  |
|------------|------------|----------|----------------|--|--|--|--|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |  |  |  |  |
| 1          | 04/17/2023 | 09:18:36 | 0.005          |  |  |  |  |  |
| 2          | 04/17/2023 | 09:33:36 | 0.005          |  |  |  |  |  |
| 3          | 04/17/2023 | 09:48:36 | 0.004          |  |  |  |  |  |
| 4          | 04/17/2023 | 10:03:36 | 0.003          |  |  |  |  |  |
| 5          | 04/17/2023 | 10:18:36 | 0.004          |  |  |  |  |  |
| 6          | 04/17/2023 | 10:33:36 | 0.005          |  |  |  |  |  |
| 7          | 04/17/2023 | 10:48:36 | 0.006          |  |  |  |  |  |
| 8          | 04/17/2023 | 11:03:36 | 0.006          |  |  |  |  |  |
| 9          | 04/17/2023 | 11:18:36 | 0.007          |  |  |  |  |  |
| 10         | 04/17/2023 | 11:33:36 | 0.007          |  |  |  |  |  |
| 11         | 04/17/2023 | 11:48:36 | 0.008          |  |  |  |  |  |
| 12         | 04/17/2023 | 12:03:36 | 0.009          |  |  |  |  |  |
| 13         | 04/17/2023 | 12:18:36 | 0.009          |  |  |  |  |  |
| 14         | 04/17/2023 | 12:33:36 | 0.011          |  |  |  |  |  |
| 15         | 04/17/2023 | 12:48:36 | 0.009          |  |  |  |  |  |
| 16         | 04/17/2023 | 13:03:36 | 0.006          |  |  |  |  |  |
| 17         | 04/17/2023 | 13:18:36 | 0.005          |  |  |  |  |  |
| 18         | 04/17/2023 | 13:33:36 | 0.004          |  |  |  |  |  |
| 19         | 04/17/2023 | 13:48:36 | 0.004          |  |  |  |  |  |
| 20         | 04/17/2023 | 14:03:36 | 0.004          |  |  |  |  |  |
| 21         | 04/17/2023 | 14:18:36 | 0.003          |  |  |  |  |  |

## **Test 007**

8530123203

04/17/2023

04/17/2023

**Data Properties** 

04/17/2023

09:01:54 04/17/2023

14:16:54

0:05:15:00

0.003

0.002

Start Date

Start Time

Stop Date Stop Time

**Total Time** 

| Upwind |         |             |
|--------|---------|-------------|
|        | Instrui | ment        |
| N      | /lodel  | DustTrak II |

Instrument S/N

20

21

|            |            | Logging   | Interval | 900 seconds |
|------------|------------|-----------|----------|-------------|
|            |            |           |          |             |
|            |            | Test Data |          |             |
| Data Point | Date       | Time      | AEROS    | OL mg/m^3   |
| 1          | 04/17/2023 | 09:16:54  | (        | 0.006       |
| 2          | 04/17/2023 | 09:31:54  | (        | 0.006       |
| 3          | 04/17/2023 | 09:46:54  | (        | 0.004       |
| 4          | 04/17/2023 | 10:01:54  | (        | 0.003       |
| 5          | 04/17/2023 | 10:16:54  | (        | 0.003       |
| 6          | 04/17/2023 | 10:31:54  | (        | 0.005       |
| 7          | 04/17/2023 | 10:46:54  | (        | 0.005       |
| 8          | 04/17/2023 | 11:01:54  | (        | 0.006       |
| 9          | 04/17/2023 | 11:16:54  | (        | 0.006       |
| 10         | 04/17/2023 | 11:31:54  | (        | 0.006       |
| 11         | 04/17/2023 | 11:46:54  | (        | 0.008       |
| 12         | 04/17/2023 | 12:01:54  | (        | 0.008       |
| 13         | 04/17/2023 | 12:16:54  | (        | 0.009       |
| 14         | 04/17/2023 | 12:31:54  | (        | 0.009       |
| 15         | 04/17/2023 | 12:46:54  | (        | 0.009       |
| 16         | 04/17/2023 | 13:01:54  | (        | 0.006       |
| 17         | 04/17/2023 | 13:16:54  | (        | 0.004       |
| 18         | 04/17/2023 | 13:31:54  | (        | 0.003       |
| 19         | 04/17/2023 | 13:46:54  | (        | 0.003       |
|            |            |           |          |             |

14:01:54

14:16:54





300 Pearl Street Buffalo, New York 14202

Phone: (716) 551-6281 (716) 551-6282

## FIELD INSPECTION REPORT NO: 1

| Date: | 4/11/23       |
|-------|---------------|
|       | (Project No.) |

mph

%

Time

| Re: | Former | Roblin | Steel | Inj | cetions |
|-----|--------|--------|-------|-----|---------|
|-----|--------|--------|-------|-----|---------|

hrs. Weather: 41-24 Temperature: 530 °F WSW Wind: mph Humidity: 49% % Time: 500 hrs. Weather: windy Temperature: ٥F 65

W500

53

Representing

10:30

Time:

Wind:

Visitors:

Humidity:

Contractor A is: La Bella LLC Contractor B is: Contractor C is: Contractor D is:

Contractor, Equipment & Personnel:

Contractor E is: Contractor F is:

| Equipment on-site               | Α  | В | С | D | E | F |
|---------------------------------|----|---|---|---|---|---|
| Geo-Probe                       | K  |   |   |   |   |   |
| Skid stew                       | k  |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
| Personnel                       | Α  | В | С | D | E | F |
| M Real                          | DR |   |   |   |   |   |
| M Peal<br>K. Terry<br>X. Medley | 19 |   |   |   |   |   |
| In medley                       | R  |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   |   |   |
|                                 |    |   |   |   | _ |   |
|                                 |    | - | 5 |   |   |   |

| Daily Log                            |        |
|--------------------------------------|--------|
| Daily Log:                           |        |
| · Crew arrives on site. Staging      |        |
| equipment will Stert injection       | مل     |
| es Ex-Mu-118_ location.              |        |
| . Nijo: A. Koons starts dust monite. | rs fer |
| the day workers will stant           | prundi |
| injection sads.                      |        |
| Air compressor will not Start, one   | ww     |
| member will go is rental place       |        |
| piere one up.                        | 10     |
| piece one op                         |        |
| briller pend rengining injection     | -      |
| heads into ground and set up t       | 4      |
| tomorrow                             |        |
| offsike                              |        |
|                                      |        |



300 Pearl Street Buffalo, New York 14202

Phone: (716) 551-6281 Fax: (716) 551-6282

| FIELD INSPECTION REPORT NO: | 2 |  |
|-----------------------------|---|--|
|-----------------------------|---|--|

| FIE                                                                                                                         | ELD I  | NSP  | ECTI | ON F     | REPO | RT NO |                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------|--------|------|------|----------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Re: Forms                                                                                                                   | باطادة | ´n S | teel | <u> </u> | je H | ion9  | Date: 4/12/23  (Project No.)  Time:                                                                                                                                                                            |
| Contractor, Equipment Contractor A is: Contractor B is: Contractor C is: Contractor D is: Contractor E is: Contractor F is: |        |      | 3    |          |      |       | Time: Weather: Temperature: Wind: Humidity:  hrs.  F mph %                                                                                                                                                     |
| Equipment on-site                                                                                                           | Α      | В    | С    | D        | ΙE   | F     | Visitors: Representing Time                                                                                                                                                                                    |
| air compressor                                                                                                              | X      |      |      |          | 1 -  | 1     | notore. Representing fille                                                                                                                                                                                     |
|                                                                                                                             |        |      |      |          |      |       |                                                                                                                                                                                                                |
|                                                                                                                             |        |      |      |          |      |       | Daily Log:                                                                                                                                                                                                     |
|                                                                                                                             |        |      |      |          |      |       | up ar injections. All sets up dust                                                                                                                                                                             |
| Personnel                                                                                                                   | Α      | В    | С    | D        | E    | F     | osus. Con begins injections at                                                                                                                                                                                 |
| M Repe                                                                                                                      | V      |      |      |          |      |       | For locations                                                                                                                                                                                                  |
| K. Terry                                                                                                                    | ×      |      |      |          |      |       | . 1100: Still injecting at Litt 4 location                                                                                                                                                                     |
| K. Medley                                                                                                                   |        |      |      |          |      |       | 1360: Injection points 1-4 completed.  Setting up on the next 4 points 130: injection points 5-8 begin 1600: injection points 5-5 are finished and cross begins deening up for one day. Dist tracker come down |

17001 off site!



Re: Former Roblin Steel Injections

300 Pearl Street Buffalo, New York 14202

Phone: (716) 551-6281 Fax: (716) 551-6282

| FIELD INSPECTION REPORT NO: | 3 |
|-----------------------------|---|
|                             |   |

Time:

Visitors:

Weather: Temperature:

(Project No.)

G965 hrs.

windy

S7' °F

mph

Time

Contractor, Equipment & Personnel:

Contractor A is: La Bella LLC

Contractor B is: Contractor C is: Contractor D is: Contractor E is: Contractor F is:

| Wind:<br>Humidity: | 62 at 15     | mph<br>% |
|--------------------|--------------|----------|
| Time:              | 1600         | _ hrs.   |
| Weather:           | Sunny + Bree | 24       |
| Temperature:       | 61           | °F       |
| Wind:              | wsw at 14    | mph      |
| Humidity:          | 53           | _<br>_ % |
|                    |              |          |

Representing

| Equipment on-site                     | Α        | В | С | D | E | F |
|---------------------------------------|----------|---|---|---|---|---|
| aircamprissis                         | *        |   |   |   |   |   |
| Geo-pose<br>Generation<br>Fleid Steer | >0<br>** |   |   |   |   |   |
| Generation                            | 改        |   |   |   |   |   |
| Steid Sheer                           | **       |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
| Personnel                             | Α        | В | С | D | E | F |
| K. Terry                              | ×        |   |   |   |   |   |
| MiRege                                | K        |   |   |   |   |   |
| K. Terry<br>M. Repe<br>K. Medley      | $\alpha$ |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |
|                                       |          |   |   |   |   |   |

| Daily Log:                       |            |
|----------------------------------|------------|
| -0830: Assive on site. Crew      | is setting |
| up for the dow. Dust tracker     | GO UP.     |
| 0900 : Coen begins installing in | jection_   |
| pa: 1-12.                        |            |
| 1235: Crew begins intelling 1    | njection   |
| points 13-16.                    |            |
| 245: crew begins pumping in      | jections_  |
| Jos: Injections 13-16 are        |            |
| Worker pack up as                | d head     |
| to rext injection so             | 101        |
| 1630: OFF site                   |            |
| 1630 . 017 31 45                 |            |
|                                  |            |
|                                  |            |



300 Pearl Street Buffalo, New York 14202

Phone: (716) 551-6281 Fax: (716) 551-6282

FIELD INSPECTION REPORT NO:

| Date: | 4/14/23       |
|-------|---------------|
|       | (Project No.) |

Time

1200-1230

| Re:  | Former    | Roblin | Steel | Injection |
|------|-----------|--------|-------|-----------|
| IIC. | 1-01-10-0 |        |       |           |

Time: 0900 hrs. Weather: SUNAY °F Temperature: 55 Wind: SW mph Humidity: % 69 1600 Time: hrs.

Contractor A is: LaBella LLC

Contractor, Equipment & Personnel:

Contractor B is: Contractor C is: Contractor D is: Contractor E is: Contractor F is: Weather:
Temperature:
Wind:
Humidity:

Temperature:

Tempe

Representing

Megan Koczka NYSDEC

Visitors:

| Equipment on-site                                     | Α    | В                                                | С            | D  | E                                                | F  |
|-------------------------------------------------------|------|--------------------------------------------------|--------------|----|--------------------------------------------------|----|
| ar compresser<br>age probe<br>skidsteer<br>agenerator | K    |                                                  |              |    |                                                  |    |
| geo probe                                             | ×    |                                                  |              |    |                                                  |    |
| skid Stees                                            | 355  |                                                  |              |    |                                                  |    |
| generator                                             | 4    |                                                  |              | 1  |                                                  |    |
| 1973                                                  |      |                                                  |              |    |                                                  |    |
|                                                       | -    |                                                  |              |    |                                                  |    |
|                                                       |      |                                                  |              |    |                                                  |    |
|                                                       |      | -                                                |              |    | -                                                | -  |
|                                                       | -    | -                                                | -            |    |                                                  |    |
|                                                       | -    |                                                  | -            | -  |                                                  | -  |
|                                                       | -    | -                                                | -            |    |                                                  | -  |
|                                                       | -    |                                                  | +            | -  | +                                                | -  |
| Personnel                                             | A    | В                                                | С            | D  | E                                                | F  |
| M C . A                                               |      | l D                                              | 10           | 10 | +=-                                              | +- |
| M. Pepe<br>K. Terry<br>K. Medley                      | A SE | <del>                                     </del> | +            |    | _                                                | -  |
| V M. J.                                               | 4    |                                                  | -            | +  | -                                                |    |
| B. Menten                                             |      |                                                  |              | _  | _                                                | 1  |
|                                                       |      |                                                  | 1            |    | +                                                |    |
|                                                       | -    |                                                  | <del> </del> | 1  |                                                  | 1  |
|                                                       |      |                                                  | 1            | 1  | 1                                                |    |
|                                                       |      |                                                  | -            |    | +                                                |    |
|                                                       |      |                                                  |              |    |                                                  |    |
|                                                       |      | -                                                |              |    | 1                                                |    |
|                                                       |      |                                                  |              |    | <del>                                     </del> |    |
|                                                       |      |                                                  | 1            |    | 1                                                |    |

| Daily Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Arrive ansite. Dust trackers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| gest 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | events and the second s |
| COL ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | injections 1-4 Started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1045 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Injections I-4 are sinsued,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | installing points 5-8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| and the same of th | Engeotins 5-8 begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (200' N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | legan Kuczka w/ DEC Stups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| aut. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sork centinues.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1400:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | agechies 5-8 are finished.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w sets up for injections 9-12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | njection 9-12 complebed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Crew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | deans up for the day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



300 Pearl Street Buffalo, New York 14202

Phone: (716) 551-6281 Fax: (716) 551-6282

| FIELD INSPECTION REPORT NO: | A |
|-----------------------------|---|
|-----------------------------|---|

|                                                                                                                   |                                                         | Date: 4/17/23 (Project     | t No.)         |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|----------------|
| Re: Former Roblin Steel Injections                                                                                | Time:<br>Weather:<br>Temperature:<br>Wind:<br>Humidity: | mostly Cloudy  Y  Sw at 11 | hrs. °F mph %  |
| Contractor, Equipment & Personnel:                                                                                | Time:<br>Weather:                                       | 1500                       | hrs.           |
| Contractor A is: Casella LLC Contractor B is: Contractor C is: Contractor D is: Contractor E is: Contractor F is: | Temperature:<br>Wind:<br>Humidity:                      | 453<br>5w at 18            | °F<br>mph<br>% |
|                                                                                                                   |                                                         |                            |                |

Visitors:

| Equipment on-site                    | Α   | В | С | D | E | F |
|--------------------------------------|-----|---|---|---|---|---|
| gio probe<br>Skid stell<br>generales | ×   |   |   |   |   |   |
| ges probe                            | 9   |   |   |   |   |   |
| skid stee                            | O.  |   |   |   |   |   |
| generated                            | 10  |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
| Personnel                            | Α   | В | C | D | E | F |
| M. Pege<br>K. Terry<br>K. Medley     | X   |   |   |   |   |   |
| K. Terry                             | B   |   |   |   |   |   |
| K. Medley                            | احا |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |
|                                      |     |   |   |   |   |   |

| Daily Log:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The state of the s |
| 2900: Cores arrives on site. Dust time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| are set up. Crew begins setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| up and installing injection points                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3-17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0930: Injections 9-12 begin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1145: Injections 9-12 are completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Crew begins to set up and cost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| insteal injection points 13-16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1400: Injections 13-16 are completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Crew Will pack up.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1600: off sike.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Off Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Representing

Time





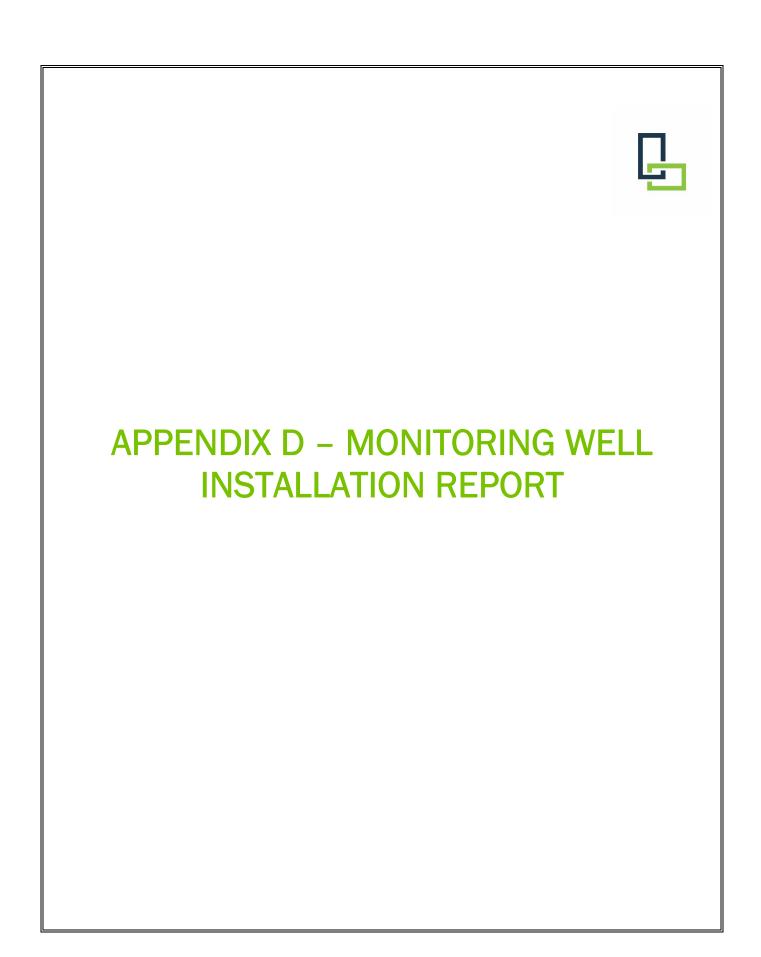
Typical injection set up around EX-MW-11R



Typical injection set up around EX-MW-11R



Typical injection set up around EX-MW-11R




Typical injection set up around MW-07R



Typical injection set up around MW-07R







February 14, 2023

Mr. Drew E. Rodgers, PE Chautauqua County Department of Public Facilities 454 North Works Street Falconer, New York 14733

RE: Monitoring Well Installation (MW-13)

Former Roblin Steel Site - 320 South Roberts Road, Dunkirk, New York

NYSDEC Site No. B00173-9

Dear Mr. Rodgers:

As a result of increases in total Volatile Organic Compound (VOC) concentrations in laboratory groundwater analytical results associated with the sampling of MW-07R and EX-MW-11R, in December 2021 and March 2022, the New York State Department of Environmental Conservation (NYSDEC) requested a Corrective Measures Work Plan (CMWP). Such was submitted to the NYSDEC in September 2022, serving also as a notice of planned intrusive activities, and included a scope of work for the installation of one new permanent groundwater monitoring well (MW-13) between MW-07R and the north property boundary and an injection event proximate both MW-07R and EX-MW-11R. The new well was requested in order to assess total VOC concentrations proximate the north property boundary. In addition, the injection events were proposed in an effort to further breakdown the VOC concentrations proximate MW-07R and EX-MW-11R. The monitoring well installation was performed on December 6, 2022, and in conformance with the scope of work outlined in the NYSEC-approved Notification of Planned Intrusive Activities/ CMWP, dated September 13, 2022. The following summarizes the construction and sampling of MW-13.

### FIELD INVESTIGATION

#### Monitoring Well Installation and Sampling

On December 6, 2022, a track mounted Diedrich D-50 drill rig equipped with 4 ½ inch hollow stem augers was used to install a 2-inch PVC monitoring well just south of the northern property boundary, proximate to MW-07R, designated as MW-13. The monitoring well was advanced to an approximate depth of 17.5 feet below the ground surface (ft. bgs). The 2-inch PVC well screen/riser was encased in a steel well casing and completed at the surface with a cement curb box. As the cover system changed in this specific location (i.e. a soil cover replaced by concrete), such constituted a modification of the cover element of the remedy and the upper surface of the remaining contamination. Non-native materials at the Site consisted of sand and graveltype fill (cover system), to a depth of approximately one ft. bgs. Native soils at the Site consisted of brown and gray, alluvial and glacial deposits (clays, and till). Bedrock (weathered shale) was encountered at a depth of approximately 12 ft. bgs to the end of boring at approximately 18.5 ft. bgs. Static groundwater levels were observed in the groundwater monitoring well just short of five ft. bgs during purging and sampling. The monitoring well location is depicted on Figure 2. Photoionization detector (PID) readings slightly above background [0.0 parts per million (ppm)] were observed throughout the weathered shale layer at approximately 0.5 ppm, likely indicative of background condition throughout that material. No field evidence of impairment (i.e. staining, odors, sheen) was observed within the soil cuttings or purged groundwater. Field logs are included in Appendix 1.



During drilling activities, Community and Air Monitoring Plan (CAMP) equipment, including two DustTrak monitors, were deployed (upwind and downwind) to monitor dust particulates. No dust particulate exceedances of CAMP requirements were recorded during the groundwater monitoring well installation activities. Camp data logs are included in Appendix 2. Soil auger cuttings generated during the installation of the groundwater monitoring well were placed in one, sealed 55-gallon drum and sampled for off-Site disposal. Environmental Service Group is scheduled to transport the auger cuttings to American Recyclers Company for off-Site disposal. Laboratory results for the soil cuttings are included in Appendix 3.

On December 13, 2022, MW-13 was purged and sampled via low-flow techniques. According to the Excavation Work Plan, located with the Site's Site Management Plan, purge water was allowed to be discharged downgradient of the well location and not allowed to leave the Site limits, as such did not exhibit evidence of impairment. The groundwater sample was collected from MW-13 and submitted for laboratory analysis of Target Compound List VOCs. Based on laboratory analytical groundwater results, fourteen VOCs were identified above laboratory method detection limits (MDLs). All identified concentrations were below applicable NYSDEC guidance [Division of Water Technical and Operational Guidance Series (TOGS)] with the exception of exceedances of benzene (6.4 micrograms per liter [ug/L] with a guidance value of 1 ug/L), cis-1,2-dichloroethene (19 ug/L with a guidance value of 5 ug/L), toluene (10 ug/L with a guidance value of 5 ug/L), vinyl chloride (11 ug/L with a guidance value of 2 ug/L) and total xylenes (14 ug/L with a guidance value of 5 ug/L). Approximate total VOC concentrations in MW-13 were 117 ug/L. Groundwater results are summarized in Table 1 and the laboratory report is included in Appendix 3.

#### **CONCLUSIONS & RECOMMENDATIONS**

While contraventions of select constituents were identified in MW-13, total VOC concentrations in this well were substantially lower than the concentrations identified in MW-07R during the December 2021 and March 2022 sampling events. An injection event is slated to occur proximate MW-07R and MW-13 (as well as EX-MW-11R) in early 2023, as part of the CMWP. The continued monitoring of contaminant levels is recommended at MW-13 as part of the overall groundwater monitoring network at the Site and should be closely examined during future annual monitoring events to determine if an increasing trend materializes.

We appreciate the opportunity to serve your professional environmental engineering needs. If you have any questions, please do not hesitate to contact me at (716) 768-4906.

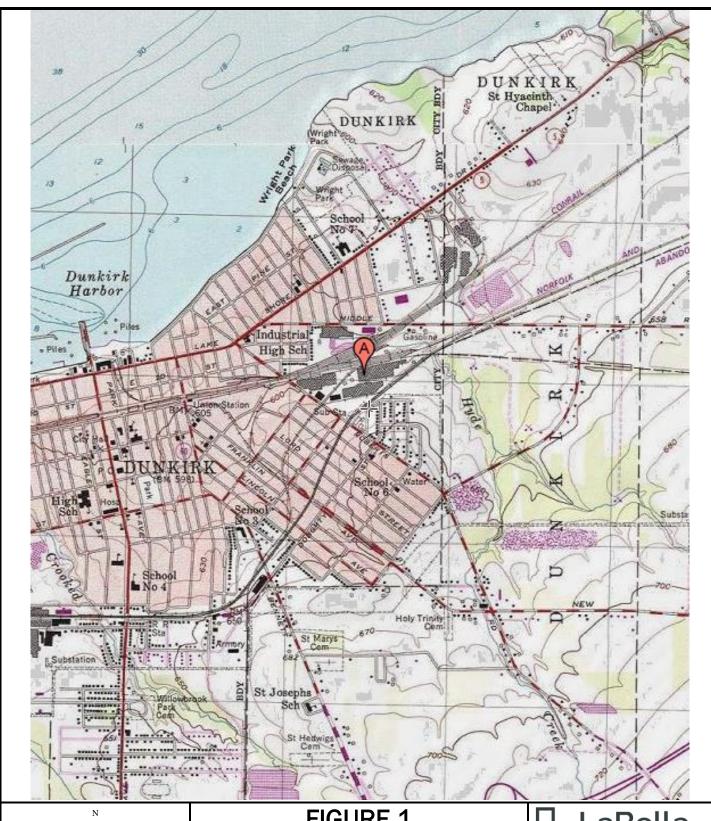
Sincerely,

Chris Kibler Project Manager

**Environmental Professional** 

Andrew Koons

Geologist


**Environmental Professional** 

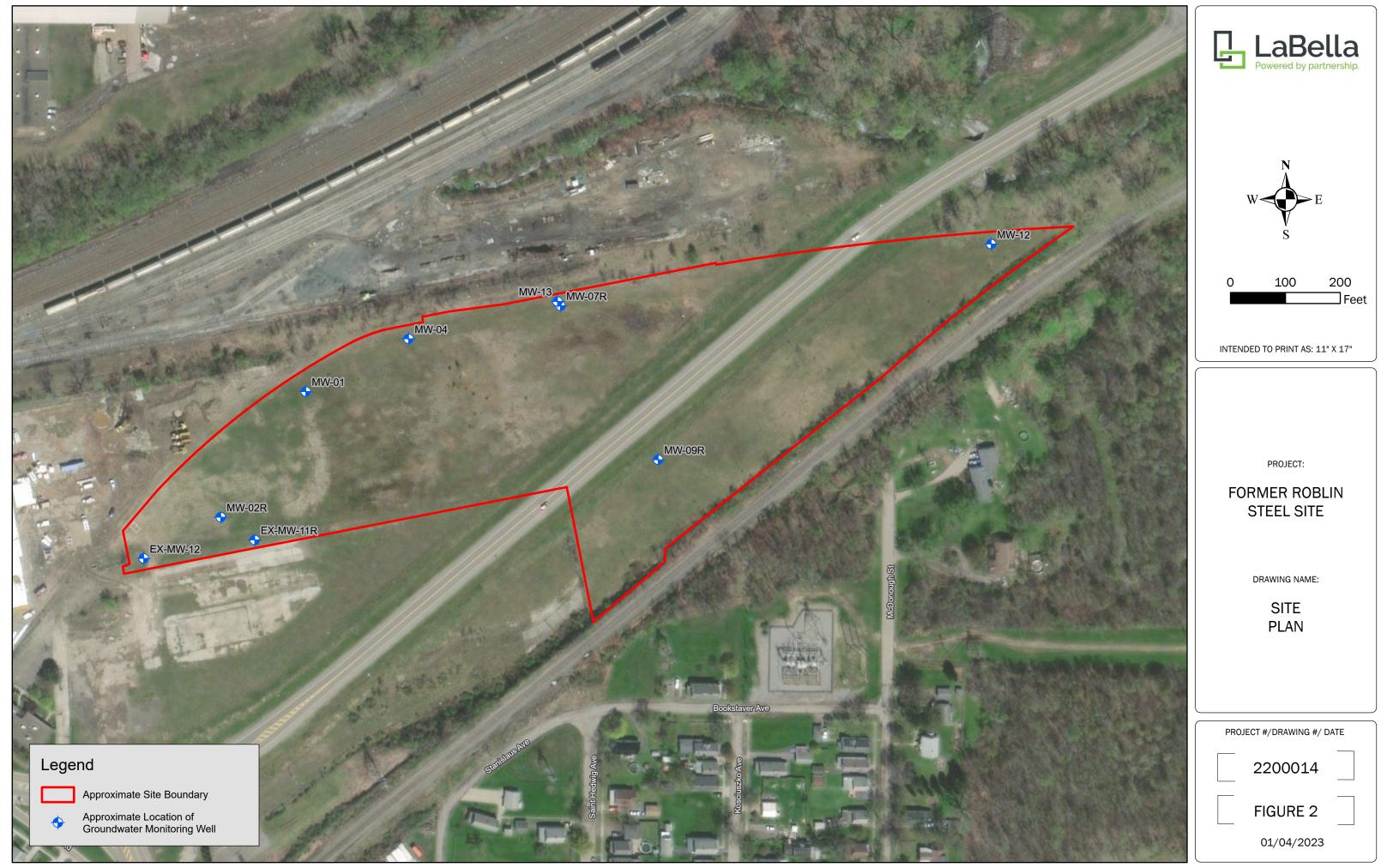

ander Kound



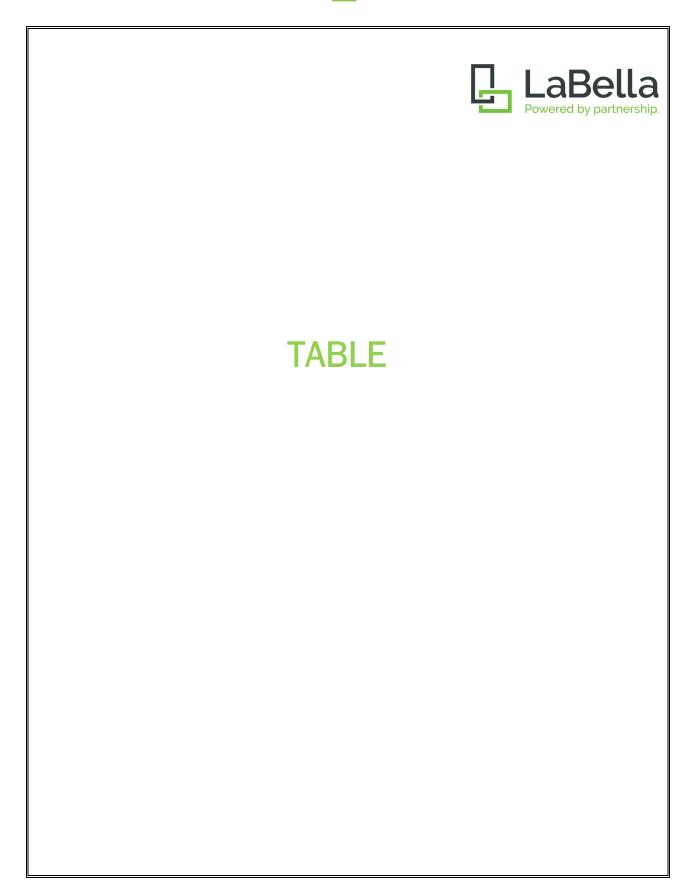


## **FIGURES**






# FIGURE 1 SITE LOCATION MAP


Former Roblin Steel Site 320 South Roberts Road Dunkirk, New York



PROJECT NO. 2200014







# Table 1 Former Roblin Streel Site Dunkirk, New York

### **Monitoring Well Installation**

### Summary of Groundwater Analytical Results

(Detected Analytes Only)

| Sample ID                        | MW-13      |             |
|----------------------------------|------------|-------------|
| Sample Date                      | 12/13/2022 | NYSDEC TOGS |
| Volatile Organic Compounds (µg/L | .)         |             |
| 2-Butanone (MEK)                 | 5.8 J      | 50          |
| Acetone                          | 23         | 50          |
| Benzene                          | 6.4        | 1           |
| Carbon disulfide                 | 1.1        | NL          |
| Chloromethane                    | 0.37 J     | 5           |
| cis-1,2-Dichloroethene           | 19         | 5           |
| Cyclohexane                      | 9.9        | NL          |
| Ethylbenzene                     | 2.5        | 5           |
| Methyl cyclohexane               | 11         | NL          |
| Toluene                          | 10         | 5           |
| trans-1,2-Dichloroethene         | 1          | 5           |
| Trichloroethene                  | 1.9        | 5           |
| Vinyl chloride                   | 11         | 2           |
| Xylenes, total                   | 14         | 5           |
| Approximate Total VOCs           | 117        | NA          |

New York State Department of Environmental Conservation (NYSDEC) Division of Water

**Technical and Operational Guidance Series** 

(TOGS) (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent

Limitations (June 1998)

J = The analyte was positively identified; the associated numerical value is an

approximate concentration of the analyte in the sample

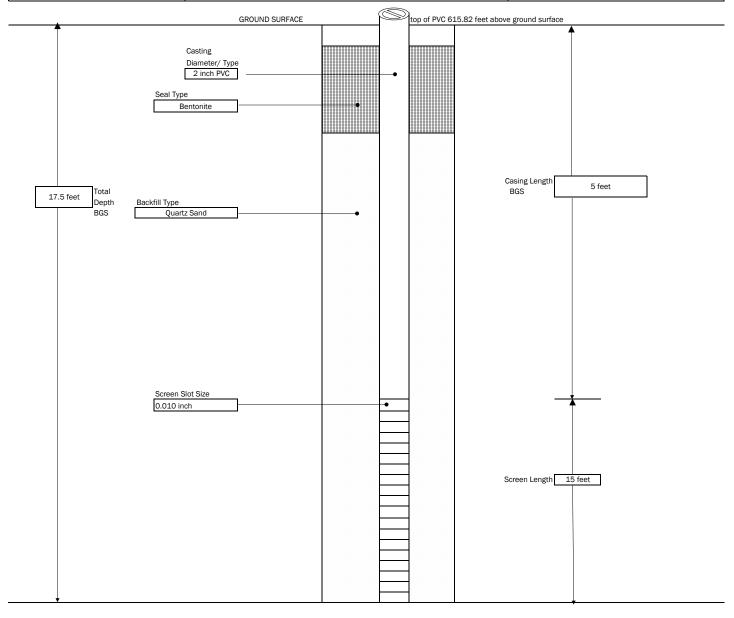
NL = Not listed

NA = Not applicable

μg/L = Micrograms per liter

Concentrations in gray exceed NYSDEC TOGS






## **APPENDIX 1**

Field Logs

|                             |                              |                         | <u> </u>                             |                                                         | DDO IFOT                                               |                                          | PODING:            | M/M/ 12                    |
|-----------------------------|------------------------------|-------------------------|--------------------------------------|---------------------------------------------------------|--------------------------------------------------------|------------------------------------------|--------------------|----------------------------|
| r                           |                              |                         |                                      | PROJECT                                                 |                                                        |                                          | BORING:<br>SHEET   | MW-13<br>1 of 1            |
|                             |                              | Bella                   |                                      | Former Roblin Steel Site Monitoring Well Installation   |                                                        |                                          | JOB:               | 2210039.05                 |
|                             | Powered by                   | y partnership.          |                                      | TOTHICI NOD                                             | iiii Steel Site Monit                                  | ornig Well installation                  | CHKD BY:           | 2210033.03                 |
|                             | 300 PEARL STREET, B          | BUFFALO, NY             |                                      |                                                         |                                                        |                                          | DATE:              | 12/6/2022                  |
| ENVI                        | RONMENTAL ENGINEER           | ING CONSULTANTS         |                                      |                                                         |                                                        |                                          |                    |                            |
|                             |                              | LaBella Env. LLC        |                                      | BORING LOCATIO                                          |                                                        |                                          | TIME:              | TO                         |
|                             | LLER:<br>ELLA REPRESENTATIVI | C. Stone                |                                      | GROUND SURFACE ELEVATION 612.9                          |                                                        |                                          | DATUM:<br>WEATHER: | AMSL                       |
|                             | E OF DRILL RIG: D-50         | E. A. ROUIS             |                                      | START DATE:                                             |                                                        | DRIVE SAMPLER TYPE: NA                   | WEATHER.           |                            |
| AUGER SIZE AND TYPE: 4 1/4" |                              |                         |                                      |                                                         | INSIDE DIAMETER:                                       |                                          |                    |                            |
| OVE                         | RBURDEN SAMPLING             | METHOD: NA              |                                      | 1                                                       |                                                        | OTHER:                                   |                    | Т                          |
| EET                         |                              | SAMPLE                  |                                      |                                                         |                                                        |                                          | PID                |                            |
| гн (F<br>3GS)               |                              |                         | STRATA                               |                                                         | VISUAL C                                               | LASSIFICATION                            | FIELD<br>SCREEN    | REMARKS                    |
| DEPTH (FEET<br>BGS)         | SAMPLE RECOVERY<br>(INCHES)  | SAMPLE NO. AND<br>DEPTH | CHANGE (FEET                         |                                                         |                                                        |                                          | (PPM)              |                            |
| 0                           | (IIVOTIES)                   | DELTIT                  | BGS)                                 | 0-0.2": Topsoil                                         |                                                        |                                          |                    | Soil classifications based |
|                             |                              |                         |                                      | 0.2-1.0': Brown S                                       | AND and GRAVEL, with                                   |                                          | 0 ppm              | on drill cuttings          |
| 1                           |                              |                         |                                      | 1.0-10.0': Brown                                        | Silty Clay with lilttle sar                            | d and gravel                             | 0 ppm              |                            |
| 2                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 3                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
|                             |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 4                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 5                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 6                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
|                             |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 7                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 8                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 9                           |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
|                             |                              |                         |                                      |                                                         | 40.0.40.0k Orac Observe OUT with a case a conductor of |                                          |                    |                            |
| 10                          |                              |                         |                                      | 10.0- 12.0": Gray Cleyey SILT with some sand and gravel |                                                        | 0 ppm                                    |                    |                            |
| 11                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 12                          |                              |                         |                                      | 12.0-18.5': Weath                                       | nered SHALE                                            |                                          | 0.5 ppm            |                            |
| 4.2                         |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 13                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 14                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 15                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 16                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
|                             |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 17                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 18                          |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| 19                          |                              |                         |                                      |                                                         | Boring Ter                                             | minated at 18.5'                         |                    | +                          |
|                             |                              |                         |                                      |                                                         | _                                                      | esfusal at 18.5'                         |                    |                            |
| 20                          |                              |                         |                                      | DEPTH (FT)                                              | 1                                                      | NOTES:                                   |                    | 1                          |
|                             | WATER LEVEL                  | DATA                    | BOTTOM OF                            | BOTTOM OF                                               | GROUNDWATER                                            | MW-13 installed at this location (17.5') |                    |                            |
| DATE                        | TIME                         | ELAPSED TIME            | CASING                               | BORING                                                  | ENCOUNTERED                                            |                                          |                    |                            |
|                             |                              |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| GEN                         | IERAL NOTES                  |                         |                                      |                                                         |                                                        |                                          |                    |                            |
| II                          |                              |                         |                                      |                                                         | IL TYPES, TRANSITIONS                                  |                                          |                    |                            |
|                             | 2) WATER LEVEL REA           | DINGS HAVE BEEN MA      | ADE AT TIMES AND                     | UNDER CONDITIO                                          | ONS STATED, FLUCTUAT                                   | IONS OF GROUNDWATER                      |                    |                            |
|                             | BGS = Below Ground           | Surface                 | and = 35 - 50%                       |                                                         | C = Coarse                                             | R = Rounded                              |                    |                            |
|                             | NA = Not Applicable          |                         | some = 20 - 35%<br>little = 10 - 20% | 6                                                       | M = Medium<br>F = Fine                                 | A = Angular<br>SR = Subrounded           |                    |                            |
|                             |                              |                         | trace = 1 - 10%                      |                                                         | VF = Very Fine                                         | SA = Subangular                          |                    | BORING: MW-13              |
|                             |                              |                         |                                      |                                                         | , ·                                                    | <u> </u>                                 |                    |                            |

|                                                              | PROJECT                          | MONITORING WELL:                                      | MW-13                       |            |
|--------------------------------------------------------------|----------------------------------|-------------------------------------------------------|-----------------------------|------------|
| LaBella                                                      |                                  |                                                       | BORING LOCATION:            | MW-13      |
| Powered by partnership.  300 PEARL STREET, BUFFALO, NEW YORK | Former Roblin Steel Site Monitor | Former Roblin Steel Site Monitoring Well Installation |                             | 1 OF 1     |
| ENVIRONMENTAL ENGINEERING CONSULTANTS                        |                                  |                                                       | JOB #                       | 2210039.05 |
| CONTRACTOR: LaBella Environmental LLC                        |                                  |                                                       | TYPE OF DRILL RIG:          | D-50       |
| DRILLER: C. Stone                                            | START TIME:                      | END TIME:                                             | AUGER SIZE AND TYPE:        | 4 1/4"     |
| LABELLA REPRESENTATIVE: A. Koons                             | GROUND SURFACE ELEVATION: 612.90 | DATUM: AMSL                                           | OVERBURDEN SAMPLING METHOD: | NA         |



GENERAL NOTES:

1) NOT TO SCALE

2) DEPTHS ARE APPROXIMATE

| _ABELLA ASSOCIATES, D.P.C. Environmental Engineering Consultants Well I.D |                            |                      |                  |                      |              |              |         |
|---------------------------------------------------------------------------|----------------------------|----------------------|------------------|----------------------|--------------|--------------|---------|
| Environmental Engine                                                      |                            |                      | ,                |                      |              |              | 2200014 |
| Site Location:<br>Sample Date:                                            | Rablin<br>12/13            |                      |                  |                      | •0           | JUN INU.     | 0014    |
| Sample Date:<br>LaBella Representative:                                   | 112                        |                      | ₹0               |                      |              |              |         |
| ,                                                                         | Initial                    | 3 Well               | ÿWeli            | <b>€</b> Well        |              | Post         |         |
| Well I.D.                                                                 | Initial<br>Readings        | Volume               | Volumes          | Volume               | Sample       | Sample       | Details |
| Time                                                                      | 1250                       |                      | 1362             | 1308                 | 1315         |              |         |
| Depth of well                                                             | 20.10                      |                      |                  |                      |              |              |         |
| Depth to water                                                            | 491                        |                      |                  |                      |              |              |         |
| Well diameter                                                             | 2"                         |                      |                  |                      |              |              |         |
| Well volume (gallons)                                                     | 2.4                        |                      |                  |                      |              |              |         |
| Purging device                                                            |                            |                      |                  |                      |              |              |         |
| Containment device                                                        |                            |                      |                  |                      |              |              |         |
| Purge time                                                                |                            |                      |                  |                      |              |              |         |
| Gallons purged                                                            | #                          | 2.4                  | 4.8              | 7-2                  | _            |              |         |
| Sample device                                                             |                            |                      |                  |                      |              |              |         |
| Field Parameters                                                          |                            |                      |                  |                      | 44 /         |              |         |
| Temperature                                                               | 11.9                       | 10.7                 | 11.2             | 11.7                 | 11.8         |              |         |
| pH measurement                                                            | 7.54                       | 7, 40                | 16,93            | Lo. 88               | 6.83         |              |         |
| Conductivity (mS/cm)                                                      | 1.703                      | いいろう                 | 1.117            | 6,945                |              |              |         |
| ORP/Eh (mV)                                                               | -340                       |                      | -80.3            |                      | -56.4        |              |         |
|                                                                           | 848.6                      | 437,77               | 39644            | 273,46               | 362.24       |              |         |
| WEATHER:<br>NOTES/FIELD OBSERVATI                                         | ONS:                       |                      |                  |                      |              |              |         |
| 0.01                                                                      |                            |                      | <b>₽</b> A1      |                      |              |              |         |
| Yoff potton  Forged ter  Well Volume Purge: 1 Well Volume                 | 100                        |                      | Stasting         | l. ac                |              |              |         |
| Well Volume Purge: 1 Well Volume                                          | ime = (Total )             | Well Denth -         | Static Denth     | To Water) X          | Well Capacit | y            |         |
| (only if applicable)                                                      | = (ft.                     | ft.) X . gal/        | ft = 0.3056 g    | gallons              |              |              |         |
| Well Capacity (Gallons per Foot): 0.7                                     | <b>75"=</b> 0.02 <b>1"</b> | '=0.04 <b>1.5</b> "= | =0.092 2"=(      | 0.16 <b>3"=</b> 0.37 | 7            |              |         |
|                                                                           | 12"=5.88                   | of variation         | of last there    | onsecutive D         | adings       |              |         |
| 1. Stabilization Crite                                                    | tia ior range              | OI VAFIATION (       | VI IASI LIITEE C | опоссинуе КЕ         |              |              |         |
| pH: ± 0.2 units; Temperatur                                               | re: ± 0.5°C; S             | pecific Cond         | uctance: ± 10    | %; Turbidity         | : ≤ 50 NTU   | STATE OF THE |         |

A minimum of three well volumes and a maximum of five well volumes are to be removed from each well prior to sampling. In the event that groundwater recharge is slow, the purging process will continue until the well is purged "dry". After the water level has returned to its pre-purge level (or within a maximum of two hours), samples will be collected. If the water level is slow to recharge and does not reach its pre-purge level within two hours, then samples can be collected after sufficient water has recharged, and the degree of recharge indicated in field notes with time and depth to water noted.

Sep. chain





## **APPENDIX 2**

**CAMP Data** 

## **Test 001**

| Downwind       |             |                  |             |  |
|----------------|-------------|------------------|-------------|--|
| Instrui        | ment        | Data Properties  |             |  |
| Model          | DustTrak II | Start Date       | 12/06/2022  |  |
| Instrument S/N | 8530120611  | Start Time       | 10:26:53    |  |
|                |             | Stop Date        | 12/06/2022  |  |
|                |             | Stop Time        | 14:11:53    |  |
|                |             | Total Time       | 0:03:45:00  |  |
|                |             | Logging Interval | 900 seconds |  |

| Test Data  |            |          |                |  |  |
|------------|------------|----------|----------------|--|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |  |
| 1          | 12/06/2022 | 10:41:53 | -0.034         |  |  |
| 2          | 12/06/2022 | 10:56:53 | -0.034         |  |  |
| 3          | 12/06/2022 | 11:11:53 | -0.034         |  |  |
| 4          | 12/06/2022 | 11:26:53 | -0.034         |  |  |
| 5          | 12/06/2022 | 11:41:53 | -0.034         |  |  |
| 6          | 12/06/2022 | 11:56:53 | -0.025         |  |  |
| 7          | 12/06/2022 | 12:11:53 | -0.034         |  |  |
| 8          | 12/06/2022 | 12:26:53 | -0.035         |  |  |
| 9          | 12/06/2022 | 12:41:53 | -0.034         |  |  |
| 10         | 12/06/2022 | 12:56:53 | -0.030         |  |  |
| 11         | 12/06/2022 | 13:11:53 | -0.029         |  |  |
| 12         | 12/06/2022 | 13:26:53 | -0.033         |  |  |
| 13         | 12/06/2022 | 13:41:53 | -0.033         |  |  |
| 14         | 12/06/2022 | 13:56:53 | -0.034         |  |  |
| 15         | 12/06/2022 | 14:11:53 | -0.034         |  |  |

about:blank 12/7/2022

## **Test 002**

| Upwind         |             |                  |             |  |
|----------------|-------------|------------------|-------------|--|
| Instru         | ment        | Data Properties  |             |  |
| Model          | DustTrak II | Start Date       | 12/06/2022  |  |
| Instrument S/N | 8530141504  | Start Time       | 10:22:49    |  |
|                |             | Stop Date        | 12/06/2022  |  |
|                |             | Stop Time        | 14:22:49    |  |
|                |             | Total Time       | 0:04:00:00  |  |
|                |             | Logging Interval | 900 seconds |  |

|            | Test Data  |          |                |  |  |  |  |
|------------|------------|----------|----------------|--|--|--|--|
| Data Point | Date       | Time     | AEROSOL mg/m^3 |  |  |  |  |
| 1          | 12/06/2022 | 10:37:49 | 0.013          |  |  |  |  |
| 2          | 12/06/2022 | 10:52:49 | 0.012          |  |  |  |  |
| 3          | 12/06/2022 | 11:07:49 | 0.013          |  |  |  |  |
| 4          | 12/06/2022 | 11:22:49 | 0.013          |  |  |  |  |
| 5          | 12/06/2022 | 11:37:49 | 0.013          |  |  |  |  |
| 6          | 12/06/2022 | 11:52:49 | 0.015          |  |  |  |  |
| 7          | 12/06/2022 | 12:07:49 | 0.012          |  |  |  |  |
| 8          | 12/06/2022 | 12:22:49 | 0.013          |  |  |  |  |
| 9          | 12/06/2022 | 12:37:49 | 0.013          |  |  |  |  |
| 10         | 12/06/2022 | 12:52:49 | 0.013          |  |  |  |  |
| 11         | 12/06/2022 | 13:07:49 | 0.014          |  |  |  |  |
| 12         | 12/06/2022 | 13:22:49 | 0.014          |  |  |  |  |
| 13         | 12/06/2022 | 13:37:49 | 0.067          |  |  |  |  |
| 14         | 12/06/2022 | 13:52:49 | 0.015          |  |  |  |  |
| 15         | 12/06/2022 | 14:07:49 | 0.014          |  |  |  |  |
| 16         | 12/06/2022 | 14:22:49 | 0.014          |  |  |  |  |

about:blank 12/7/2022





## **APPENDIX 3**

**Laboratory Reports** 

11 12

14

15

# ANALYTICAL REPORT

### PREPARED FOR

Attn: Chris Kibler LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Generated 12/19/2022 4:03:42 PM

## **JOB DESCRIPTION**

Alumax & Roblin Periodic Review Reports

## **JOB NUMBER**

480-204719-2

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298



### **Eurofins Buffalo**

### **Job Notes**

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

### **Authorization**

Generated 12/19/2022 4:03:42 PM

Authorized for release by Brian Fischer, Manager of Project Management Brian.Fischer@et.eurofinsus.com (716)504-9835 3

4

5

6

8

1 N

12

13

14

15

### 

## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 6  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 9  |
| QC Sample Results      | 10 |
| QC Association Summary | 13 |
| Lab Chronicle          | 14 |
| Certification Summary  | 15 |
| Method Summary         | 16 |
| Sample Summary         | 17 |
| Chain of Custody       | 18 |
| Receipt Checklists     | 19 |

### **Definitions/Glossary**

Client: LaBella Associates DPC Job ID: 480-204719-2

Project/Site: Alumax & Roblin Periodic Review Reports

#### **Qualifiers**

### **GC/MS VOA**

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **Glossary**

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

8

46

12

15

40

**Eurofins Buffalo** 

#### **Case Narrative**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-204719-2

**Laboratory: Eurofins Buffalo** 

Narrative

Job Narrative 480-204719-2

#### Comments

No additional comments.

#### Receipt

The samples were received on 12/13/2022 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

#### **Receipt Exceptions**

MW-13 listed on COCs twice. Only included in login once.

AL-2 (480-204719-1), AL-1 (480-204719-2), AL-7 (480-204719-3), MW-9R (480-204719-4), EX-MW-11R (480-204719-5), MW-02R (480-204719-6), EX-MW-12 (480-204719-7), MW-04 (480-204719-8), MW-07R (480-204719-9), MW-13 (480-204719-10), DUP (480-204719-11) and TRIP BLANK (480-204719-12)

#### GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-653342 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: MW-13 (480-204719-10).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 480-204719-2

3

4

\_

0

Q

9

10

12

13

14

# **Detection Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: MW-13** 

Lab Sample ID: 480-204719-10

Job ID: 480-204719-2

| Analyte                  | Result | Qualifier | RL  | MDL  | Unit | Dil Fac D | Method | Prep Type |
|--------------------------|--------|-----------|-----|------|------|-----------|--------|-----------|
| 2-Butanone (MEK)         | 5.8    | J         | 10  | 1.3  | ug/L |           | 8260C  | Total/NA  |
| Acetone                  | 23     |           | 10  | 3.0  | ug/L | 1         | 8260C  | Total/NA  |
| Benzene                  | 6.4    |           | 1.0 | 0.41 | ug/L | 1         | 8260C  | Total/NA  |
| Carbon disulfide         | 1.1    |           | 1.0 | 0.19 | ug/L | 1         | 8260C  | Total/NA  |
| Chloromethane            | 0.37   | J         | 1.0 | 0.35 | ug/L | 1         | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene   | 19     |           | 1.0 | 0.81 | ug/L | 1         | 8260C  | Total/NA  |
| Cyclohexane              | 9.9    |           | 1.0 | 0.18 | ug/L | 1         | 8260C  | Total/NA  |
| Ethylbenzene             | 2.5    |           | 1.0 | 0.74 | ug/L | 1         | 8260C  | Total/NA  |
| Methylcyclohexane        | 11     |           | 1.0 | 0.16 | ug/L | 1         | 8260C  | Total/NA  |
| Toluene                  | 10     |           | 1.0 | 0.51 | ug/L | 1         | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene | 1.0    |           | 1.0 | 0.90 | ug/L | 1         | 8260C  | Total/NA  |
| Trichloroethene          | 1.9    |           | 1.0 | 0.46 | ug/L | 1         | 8260C  | Total/NA  |
| Vinyl chloride           | 11     |           | 1.0 | 0.90 | ug/L | 1         | 8260C  | Total/NA  |
| Xylenes, Total           | 14     |           | 2.0 | 0.66 | ug/L | 1         | 8260C  | Total/NA  |

J

\_

6

10

12

Client: LaBella Associates DPC Job ID: 480-204719-2

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13

Lab Sample ID: 480-204719-10

**Matrix: Water** 

Date Collected: 12/13/22 13:15 Date Received: 12/13/22 14:00

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit         | D | Prepared | Analyzed       | Dil Fa        |
|---------------------------------------|--------|-----------|-----|------|--------------|---|----------|----------------|---------------|
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,2-Dichloropropane                   | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| 2-Butanone (MEK)                      | 5.8    | J         | 10  |      | ug/L         |   |          | 12/14/22 17:16 |               |
| 2-Hexanone                            | ND     |           | 5.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Acetone                               | 23     |           | 10  |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Benzene                               | 6.4    |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Bromodichloromethane                  | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Bromoform                             | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Bromomethane                          | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Carbon disulfide                      | 1.1    |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Carbon tetrachloride                  | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Chlorobenzene                         | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Dibromochloromethane                  | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Chloroethane                          | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Chloroform                            | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Chloromethane                         | 0.37   |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| cis-1,2-Dichloroethene                | 19     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Cyclohexane                           | 9.9    |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Dichlorodifluoromethane               | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Ethylbenzene                          | 2.5    |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| 1,2-Dibromoethane                     | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 | · · · · · · . |
| Isopropylbenzene                      | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Methyl acetate                        | ND     |           | 2.5 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Methyl tert-butyl ether               | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Methylcyclohexane                     | 11     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Methylene Chloride                    | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Styrene                               | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Tetrachloroethene                     | ND     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Toluene                               | 10     |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| trans-1,2-Dichloroethene              | 1.0    |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| trans-1,2-Dichloropropene             | ND     |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/14/22 17:16 |               |
| Trichloroethene                       | 1.9    |           | 1.0 |      | ug/L         |   |          | 12/14/22 17:16 |               |
| Trichlorofluoromethane                | ND     |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/14/22 17:16 | · · · · · .   |
| Vinyl chloride                        | 11     |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/14/22 17:16 |               |
| Xylenes, Total                        | 11     |           | 2.0 |      | ug/L<br>ug/L |   |          | 12/14/22 17:16 |               |

Eurofins Buffalo

\_

8

10

12

1 /

4 E

Client: LaBella Associates DPC Job ID: 480-204719-2

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Lab Sample ID: 480-204719-10

Date Collected: 12/13/22 13:15

Matrix: Water

Date Received: 12/13/22 14:00

| Dil Fac | Fa |
|---------|----|
| 16 1    |    |
| 16 1    |    |
| 16 1    |    |
| 16 1    |    |
| 6       |    |

5

7

8

10

15

13

### **Surrogate Summary**

Client: LaBella Associates DPC Job ID: 480-204719-2

Project/Site: Alumax & Roblin Periodic Review Reports

## Method: 8260C - Volatile Organic Compounds by GC/MS

**Matrix: Water Prep Type: Total/NA** 

|                      |                    |          | Pe       | Percent Surrogate Recovery (Acc |          |  |  |
|----------------------|--------------------|----------|----------|---------------------------------|----------|--|--|
|                      |                    | TOL      | DCA      | BFB                             | DBFM     |  |  |
| Lab Sample ID        | Client Sample ID   | (80-120) | (77-120) | (73-120)                        | (75-123) |  |  |
| 480-204719-10        | MW-13              | 92       | 104      | 89                              | 97       |  |  |
| LCS 480-653342/5     | Lab Control Sample | 94       | 106      | 87                              | 97       |  |  |
| MB 480-653342/7      | Method Blank       | 91       | 106      | 87                              | 100      |  |  |
| Surrogate Legend     |                    |          |          |                                 |          |  |  |
| TOL = Toluene-d8 (Su | rr)                |          |          |                                 |          |  |  |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: LaBella Associates DPC Job ID: 480-204719-2

Project/Site: Alumax & Roblin Periodic Review Reports

## Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB

Lab Sample ID: MB 480-653342/7

**Matrix: Water** 

Vinyl chloride

Xylenes, Total

**Analysis Batch: 653342** 

| Cilent Sample ID | : Method Blank |
|------------------|----------------|
| Prep             | Type: Total/NA |

| Analyte                               | Pagult   | Qualifier | RL  | MDI  | Unit         | D | Droporod | Anglyzad       | Dil Fac                               |
|---------------------------------------|----------|-----------|-----|------|--------------|---|----------|----------------|---------------------------------------|
|                                       | ND       | Qualifier |     |      | ug/L         |   | Prepared | Analyzed       |                                       |
| 1,1,1-Trichloroethane                 |          |           | 1.0 |      | -            |   |          | 12/14/22 11:17 | 1                                     |
| 1,1,2,2-Tetrachloroethane             | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,1,2-Trichloroethane                 | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,1-Dichloroethane                    | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,1-Dichloroethene                    | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,2,4-Trichlorobenzene                | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,2-Dibromo-3-Chloropropane           | ND       |           | 1.0 | 0.39 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,2-Dichlorobenzene                   | ND       |           | 1.0 | 0.79 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,2-Dichloroethane                    | ND       |           | 1.0 | 0.21 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,2-Dichloropropane                   | ND       |           | 1.0 | 0.72 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,3-Dichlorobenzene                   | ND       |           | 1.0 | 0.78 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,4-Dichlorobenzene                   | ND       |           | 1.0 | 0.84 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 2-Butanone (MEK)                      | ND       |           | 10  | 1.3  | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 2-Hexanone                            | ND       |           | 5.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 4-Methyl-2-pentanone (MIBK)           | ND       |           | 5.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Acetone                               | ND       |           | 10  |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Benzene                               | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Bromodichloromethane                  | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | · · · · · · · · · · · · · · · · · · · |
| Bromoform                             | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Bromomethane                          | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Carbon disulfide                      | ND       |           |     |      | ug/L<br>ug/L |   |          | 12/14/22 11:17 |                                       |
|                                       |          |           | 1.0 |      | -            |   |          |                |                                       |
| Carbon tetrachloride                  | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Chlorobenzene                         | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Dibromochloromethane                  | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Chloroethane                          | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Chloroform                            | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Chloromethane                         | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| cis-1,2-Dichloroethene                | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| cis-1,3-Dichloropropene               | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Cyclohexane                           | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Dichlorodifluoromethane               | ND       |           | 1.0 | 0.68 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Ethylbenzene                          | ND       |           | 1.0 | 0.74 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| 1,2-Dibromoethane                     | ND       |           | 1.0 | 0.73 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Isopropylbenzene                      | ND       |           | 1.0 | 0.79 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Methyl acetate                        | ND       |           | 2.5 | 1.3  | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Methyl tert-butyl ether               | ND       |           | 1.0 | 0.16 |              |   |          | 12/14/22 11:17 | 1                                     |
| Methylcyclohexane                     | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Methylene Chloride                    | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Styrene                               | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Tetrachloroethene                     | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| Toluene                               | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 | 1                                     |
| trans-1,2-Dichloroethene              | ND       |           | 1.0 |      | ug/L         |   |          | 12/14/22 11:17 |                                       |
| trans-1,3-Dichloropropene             | ND<br>ND |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/14/22 11:17 | 1                                     |
| Trichloroethene                       | ND<br>ND |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/14/22 11:17 | _                                     |
| Trichlorofluoromethane                |          |           |     |      |              |   |          |                | 1                                     |
| menioromemane                         | ND       |           | 1.0 | 0.88 | ug/L         |   |          | 12/14/22 11:17 | 1                                     |

**Eurofins Buffalo** 

12/14/22 11:17 12/14/22 11:17

1.0

2.0

ND

ND

0.90 ug/L

0.66 ug/L

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-653342/7

**Matrix: Water** 

Analysis Batch: 653342

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

Job ID: 480-204719-2

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 12/14/22 11:17 Toluene-d8 (Surr) 91 80 - 120 1,2-Dichloroethane-d4 (Surr) 106 77 - 120 12/14/22 11:17 4-Bromofluorobenzene (Surr) 87 73 - 120 12/14/22 11:17 Dibromofluoromethane (Surr) 100 75 - 123 12/14/22 11:17

Lab Sample ID: LCS 480-653342/5

An

| <b>Client Sample</b> | <b>ID: Lab Control Sample</b> |
|----------------------|-------------------------------|
|                      | Prop Type: Total/NA           |

| latrix: water         |       |         | Prep Type: Total/NA |
|-----------------------|-------|---------|---------------------|
| nalysis Batch: 653342 |       |         |                     |
|                       | Spike | LCS LCS | %Rec                |

|                                     | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
|-------------------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,1,1-Trichloroethane               | 25.0  | 25.0   |           | ug/L |   | 100  | 73 - 126 |  |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 25.9   |           | ug/L |   | 104  | 76 - 120 |  |
| 1,1,2-Trichloroethane               | 25.0  | 22.8   |           | ug/L |   | 91   | 76 - 122 |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 24.6   |           | ug/L |   | 98   | 61 - 148 |  |
| ne                                  |       |        |           |      |   |      |          |  |
| 1,1-Dichloroethane                  | 25.0  | 23.1   |           | ug/L |   | 92   | 77 - 120 |  |
| 1,1-Dichloroethene                  | 25.0  | 22.2   |           | ug/L |   | 89   | 66 - 127 |  |
| 1,2,4-Trichlorobenzene              | 25.0  | 24.3   |           | ug/L |   | 97   | 79 - 122 |  |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 29.3   |           | ug/L |   | 117  | 56 - 134 |  |
| 1,2-Dichlorobenzene                 | 25.0  | 24.2   |           | ug/L |   | 97   | 80 - 124 |  |
| 1,2-Dichloroethane                  | 25.0  | 24.6   |           | ug/L |   | 98   | 75 - 120 |  |
| 1,2-Dichloropropane                 | 25.0  | 22.0   |           | ug/L |   | 88   | 76 - 120 |  |
| 1,3-Dichlorobenzene                 | 25.0  | 23.2   |           | ug/L |   | 93   | 77 - 120 |  |
| 1,4-Dichlorobenzene                 | 25.0  | 23.0   |           | ug/L |   | 92   | 80 - 120 |  |
| 2-Butanone (MEK)                    | 125   | 132    |           | ug/L |   | 105  | 57 - 140 |  |
| 2-Hexanone                          | 125   | 150    |           | ug/L |   | 120  | 65 - 127 |  |
| 4-Methyl-2-pentanone (MIBK)         | 125   | 144    |           | ug/L |   | 115  | 71 - 125 |  |
| Acetone                             | 125   | 139    |           | ug/L |   | 112  | 56 - 142 |  |
| Benzene                             | 25.0  | 21.8   |           | ug/L |   | 87   | 71 - 124 |  |
| Bromodichloromethane                | 25.0  | 24.8   |           | ug/L |   | 99   | 80 - 122 |  |
| Bromoform                           | 25.0  | 24.8   |           | ug/L |   | 99   | 61 - 132 |  |
| Bromomethane                        | 25.0  | 25.4   |           | ug/L |   | 102  | 55 - 144 |  |
| Carbon disulfide                    | 25.0  | 23.4   |           | ug/L |   | 94   | 59 - 134 |  |
| Carbon tetrachloride                | 25.0  | 25.8   |           | ug/L |   | 103  | 72 - 134 |  |
| Chlorobenzene                       | 25.0  | 21.5   |           | ug/L |   | 86   | 80 - 120 |  |
| Dibromochloromethane                | 25.0  | 25.4   |           | ug/L |   | 102  | 75 - 125 |  |
| Chloroethane                        | 25.0  | 23.9   |           | ug/L |   | 96   | 69 - 136 |  |
| Chloroform                          | 25.0  | 23.3   |           | ug/L |   | 93   | 73 - 127 |  |
| Chloromethane                       | 25.0  | 28.5   |           | ug/L |   | 114  | 68 - 124 |  |
| cis-1,2-Dichloroethene              | 25.0  | 22.1   |           | ug/L |   | 89   | 74 - 124 |  |
| cis-1,3-Dichloropropene             | 25.0  | 23.0   |           | ug/L |   | 92   | 74 - 124 |  |
| Cyclohexane                         | 25.0  | 25.1   |           | ug/L |   | 100  | 59 - 135 |  |
| Dichlorodifluoromethane             | 25.0  | 32.1   |           | ug/L |   | 128  | 59 - 135 |  |
| Ethylbenzene                        | 25.0  | 22.6   |           | ug/L |   | 90   | 77 - 123 |  |
| 1,2-Dibromoethane                   | 25.0  | 23.0   |           | ug/L |   | 92   | 77 - 120 |  |
| Isopropylbenzene                    | 25.0  | 24.4   |           | ug/L |   | 97   | 77 - 122 |  |
| Methyl acetate                      | 50.0  | 55.1   |           | ug/L |   | 110  | 74 - 133 |  |
| Methyl tert-butyl ether             | 25.0  | 23.6   |           | ug/L |   | 95   | 77 - 120 |  |
| Methylcyclohexane                   | 25.0  | 23.0   |           | ug/L |   | 92   | 68 - 134 |  |
|                                     |       |        |           |      |   |      |          |  |

**Eurofins Buffalo** 

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-653342/5

**Matrix: Water** 

Analysis Batch: 653342

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

Job ID: 480-204719-2

| •                         | Spike | LCS    | LCS       |      |   |      | %Rec     |
|---------------------------|-------|--------|-----------|------|---|------|----------|
| Analyte                   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
| Methylene Chloride        | 25.0  | 22.9   |           | ug/L |   | 92   | 75 - 124 |
| Styrene                   | 25.0  | 22.3   |           | ug/L |   | 89   | 80 - 120 |
| Tetrachloroethene         | 25.0  | 21.9   |           | ug/L |   | 87   | 74 - 122 |
| Toluene                   | 25.0  | 21.8   |           | ug/L |   | 87   | 80 - 122 |
| trans-1,2-Dichloroethene  | 25.0  | 22.4   |           | ug/L |   | 90   | 73 - 127 |
| trans-1,3-Dichloropropene | 25.0  | 24.7   |           | ug/L |   | 99   | 80 - 120 |
| Trichloroethene           | 25.0  | 22.2   |           | ug/L |   | 89   | 74 - 123 |
| Trichlorofluoromethane    | 25.0  | 30.4   |           | ug/L |   | 122  | 62 - 150 |
| Vinyl chloride            | 25.0  | 25.7   |           | ug/L |   | 103  | 65 - 133 |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 94        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 106       |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 87        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 97        |           | 75 - 123 |

## **QC Association Summary**

Client: LaBella Associates DPC

Job ID: 480-204719-2 Project/Site: Alumax & Roblin Periodic Review Reports

### **GC/MS VOA**

### Analysis Batch: 653342

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-204719-10    | MW-13              | Total/NA  | Water  | 8260C  |            |
| MB 480-653342/7  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-653342/5 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

### **Lab Chronicle**

Client: LaBella Associates DPC Job ID: 480-204719-2

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: MW-13** Lab Sample ID: 480-204719-10

Date Collected: 12/13/22 13:15 **Matrix: Water** Date Received: 12/13/22 14:00

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C  |     | 1        | 653342 | AXK     | EET BUF | 12/14/22 17:16 |

#### **Laboratory References:**

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

## **Accreditation/Certification Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

### **Laboratory: Eurofins Buffalo**

The accreditations/certifications listed below are applicable to this report.

| Authority | Program | Identification Number |          |  |  |
|-----------|---------|-----------------------|----------|--|--|
| New York  | NELAP   | 10026                 | 03-31-23 |  |  |

1

Job ID: 480-204719-2

3

4

5

6

8

10

11

13

14

## **Method Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

| Method | Method Description                  | Protocol | Laboratory |
|--------|-------------------------------------|----------|------------|
| 8260C  | Volatile Organic Compounds by GC/MS | SW846    | EET BUF    |
| 5030C  | Purge and Trap                      | SW846    | EET BUF    |

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

S

Job ID: 480-204719-2

3

А

7

10

12

10

## **Sample Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-204719-10 | MW-13            | Water  | 12/13/22 13:15 | 12/13/22 14:00 |

1

Job ID: 480-204719-2

6

3

6

8

9

44

12

13

Ľ

Eurofins Buffalo 10 Hazelwood Drive

Environment Testing
America

| Amherst, NY 14228-2223<br>phone 716.691.2600 fax 716.691.7991                                                                                    | Regulatory Program:                      | DW NPDES                                    | s RCRA Other:                     |                                                                                      | Eurofins Environment Testing America |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                  | Project Manager: Chris Kibler            | bler                                        |                                   |                                                                                      | COC No:                              |
| Client Contact                                                                                                                                   | Email: ckibler@labellapc.com             |                                             | Site Contact:                     | Date: 12/13/22                                                                       | of 1 cocs                            |
| LaBella Associates                                                                                                                               | Tel/Fax:                                 |                                             | Lab Contact:                      | Carrier:                                                                             | TALS Project #:                      |
| 300 Pearl Street Suite 130                                                                                                                       | Analysis Turnaround Time                 | und Time                                    |                                   |                                                                                      | Sampler:                             |
| Buffalo, NY                                                                                                                                      | CALENDAR DAYS                            | WORKING DAYS                                |                                   |                                                                                      | For Lab Use Only:                    |
| (716) 551-6281 Phone                                                                                                                             | TAT if different from Below              | w                                           | (N                                |                                                                                      | Walk-in Client:                      |
|                                                                                                                                                  | 2 weeks                                  |                                             | /人                                |                                                                                      | Lab Sampling:                        |
| Project Name: Former Roblin Steel Site CMWP                                                                                                      |                                          | I week Standard                             |                                   |                                                                                      |                                      |
| P O #                                                                                                                                            | 1 1 2 4 4 5                              |                                             | W/S                               |                                                                                      | 3007 3LG NO.:                        |
| Sample Identification                                                                                                                            | Sample Sample (C=Comp. Date Time G=Grab) | ple so # of # | Filtered Sa<br>M mrorna<br>V Sc S |                                                                                      | Sample Specific Notes:               |
| MW-13                                                                                                                                            | \$181 2                                  | - Hr 3                                      |                                   |                                                                                      |                                      |
|                                                                                                                                                  |                                          |                                             |                                   |                                                                                      |                                      |
| P                                                                                                                                                |                                          |                                             |                                   |                                                                                      |                                      |
| age                                                                                                                                              |                                          |                                             |                                   |                                                                                      |                                      |
| 18                                                                                                                                               |                                          |                                             |                                   |                                                                                      |                                      |
| of 1                                                                                                                                             |                                          |                                             |                                   |                                                                                      |                                      |
| 9                                                                                                                                                |                                          |                                             |                                   |                                                                                      |                                      |
|                                                                                                                                                  |                                          |                                             |                                   |                                                                                      |                                      |
|                                                                                                                                                  |                                          |                                             |                                   |                                                                                      |                                      |
|                                                                                                                                                  |                                          |                                             |                                   |                                                                                      |                                      |
|                                                                                                                                                  |                                          |                                             |                                   |                                                                                      |                                      |
|                                                                                                                                                  |                                          |                                             |                                   |                                                                                      |                                      |
| Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other                                                                            | 5≖NaOH; 6≖ Other                         |                                             |                                   |                                                                                      |                                      |
| Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample. | Please List any EPA Waste Code           | Codes for the sample in the                 |                                   | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) | d longer than 1 month)               |
| Non-Hazard Flammable Skin Irritant                                                                                                               | Poison B                                 | Unknown                                     | Return to Client                  | S Disposal by lab                                                                    | Months                               |
| Special Instructions/QC Requirements & Comments:                                                                                                 |                                          |                                             |                                   |                                                                                      |                                      |
| Custody Seals Intact:                                                                                                                            | Custody Seal No.:                        |                                             | Cooler Temp. (°C): Obs'd          | Obs'd: Corr'd:                                                                       | Therm ID No.:                        |
| Relinquished by:                                                                                                                                 | Company: Calle                           | Date/Time:                                  | Received by:                      | Company:                                                                             | Date/Time:                           |
|                                                                                                                                                  | Company:                                 | Date/Time:                                  | Received by:                      | Company:                                                                             | Date/Time:                           |
| Relinquished by:                                                                                                                                 | Company:                                 | Date/Time:                                  | Received in Laboratory By         | Company                                                                              | Date/Time: 1446                      |
|                                                                                                                                                  |                                          |                                             | 13<br>14<br>15                    | 7<br>8<br>9<br>10                                                                    | 2<br>3<br>4<br>5<br>6                |

## **Login Sample Receipt Checklist**

Client: LaBella Associates DPC Job Number: 480-204719-2

Login Number: 204719 List Source: Eurofins Buffalo

List Number: 1

Creator: Sabuda, Brendan D

| Creator. Sabuda, Brendan D                                                       |        |            |
|----------------------------------------------------------------------------------|--------|------------|
| Question                                                                         | Answer | Comment    |
| Radioactivity either was not measured or, if measured, is at or below background | True   |            |
| The cooler's custody seal, if present, is intact.                                | True   |            |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |            |
| Samples were received on ice.                                                    | True   |            |
| Cooler Temperature is acceptable.                                                | True   |            |
| Cooler Temperature is recorded.                                                  | True   | 3.4 #1 ICE |
| COC is present.                                                                  | True   |            |
| COC is filled out in ink and legible.                                            | True   |            |
| COC is filled out with all pertinent information.                                | True   |            |
| s the Field Sampler's name present on COC?                                       | True   |            |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |            |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |            |
| Sample containers have legible labels.                                           | True   |            |
| Containers are not broken or leaking.                                            | True   |            |
| Sample collection date/times are provided.                                       | True   |            |
| Appropriate sample containers are used.                                          | True   |            |
| Sample bottles are completely filled.                                            | True   |            |
| Sample Preservation Verified                                                     | True   |            |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |            |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |            |
| f necessary, staff have been informed of any short hold time or quick TAT needs  | True   |            |
| Multiphasic samples are not present.                                             | True   |            |
| Samples do not require splitting or compositing.                                 | True   |            |
| Sampling Company provided.                                                       | True   |            |
| Samples received within 48 hours of sampling.                                    | True   |            |
| Samples requiring field filtration have been filtered in the field.              | True   |            |
| Chlorine Residual checked.                                                       | True   |            |
|                                                                                  |        |            |

5

7

9

11

13

14

11

13

4 5

PREPARED FOR

**ANALYTICAL REPORT** 

Attn: Chris Kibler LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Generated 12/16/2022 4:23:45 PM

# **JOB DESCRIPTION**

Roblin Steel site

## **JOB NUMBER**

480-204473-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

## **Eurofins Buffalo**

### **Job Notes**

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

### **Authorization**

Generated 12/16/2022 4:23:45 PM

Authorized for release by Brian Fischer, Manager of Project Management Brian.Fischer@et.eurofinsus.com (716)504-9835 Client: LaBella Associates DPC Project/Site: Roblin Steel site

Laboratory Job ID: 480-204473-1

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 6  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 11 |
| QC Sample Results      | 13 |
| QC Association Summary | 24 |
| Lab Chronicle          | 26 |
| Certification Summary  | 27 |
| Method Summary         | 28 |
| Sample Summary         | 29 |
| Chain of Custody       | 30 |
| Receipt Checklists     | 31 |

### **Definitions/Glossary**

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

### **Qualifiers**

#### **GC/MS VOA**

| Qualifier | Qualifier Description |
|-----------|-----------------------|
|           |                       |

\*3 ISTD response or retention time outside acceptable limits.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

vs Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L

low-level specifications.

#### **GC/MS Semi VOA**

#### 

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.

**Metals** 

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

### **Glossary**

#### Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Buffalo** 

Page 4 of 31 12/16/2022

#### **Case Narrative**

Client: LaBella Associates DPC

Project/Site: Roblin Steel site

Job ID: 480-204473-1

Job ID: 480-204473-1

**Laboratory: Eurofins Buffalo** 

**Narrative** 

Job Narrative 480-204473-1

#### Comments

No additional comments.

#### Receipt

The sample was received on 12/6/2022 3:30 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.8° C.

#### GC/MS VOA

Method 8260C: Internal standard responses were outside of acceptance limits for the following sample: ROBLIN DRUM (480-204473-1). The sample(s) shows evidence of matrix interference.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-652739 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The associated sample is impacted: ROBLIN DRUM (480-204473-1).

Method 8260C: The following samples were diluted due to the nature of the TCLP sample matrix: ROBLIN DRUM (480-204473-1) and (LB 480-652650/1-A). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: ROBLIN DRUM (480-204473-1). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **Organic Prep**

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-652622 and 480-652820.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-652622 and 480-653570.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

6

4

\_

6

\_\_\_\_\_

9

10

12

## **Detection Summary**

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Client Sample ID: ROBLIN DRUM

### Lab Sample ID: 480-204473-1

| Analyte                  | Result | Qualifier | RL     | MDL     | Unit  | Dil Fac | D | Method | Prep Type |
|--------------------------|--------|-----------|--------|---------|-------|---------|---|--------|-----------|
| Acetone                  | 54     | vs        | 31     | 5.2     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Benzene                  | 2.2    | J vs      | 6.2    | 0.30    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Carbon disulfide         | 4.4    | J vs      | 6.2    | 3.1     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Chloroform               | 0.58   | J B vs    | 6.2    | 0.38    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene   | 14     | VS        | 6.2    | 0.79    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Cyclohexane              | 11     | vs        | 6.2    | 0.87    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Ethylbenzene             | 4.7    | J vs      | 6.2    | 0.43    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Isopropylbenzene         | 3.4    | J *3 vs   | 6.2    | 0.93    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Methylcyclohexane        | 53     | vs        | 6.2    | 0.94    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Methylene Chloride       | 5.1    | J vs      | 6.2    | 2.8     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Styrene                  | 0.78   | J vs      | 6.2    | 0.31    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Toluene                  | 7.2    | vs        | 6.2    | 0.47    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene | 1.4    | J vs      | 6.2    | 0.64    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Trichloroethene          | 2.7    | J vs      | 6.2    | 1.4     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Vinyl chloride           | 2.4    | J vs      | 6.2    | 0.75    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Xylenes, Total           | 27     | VS        | 12     | 1.0     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Benzo[a]anthracene       | 57     | J         | 210    | 21      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[a]pyrene           | 66     | J         | 210    | 31      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[b]fluoranthene     | 84     | J         | 210    | 33      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[g,h,i]perylene     | 49     | J         | 210    | 22      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[k]fluoranthene     | 32     | J         | 210    | 27      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Chrysene                 | 79     | J         | 210    | 47      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Fluoranthene             | 140    | J         | 210    | 22      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Indeno[1,2,3-cd]pyrene   | 45     | J         | 210    | 26      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Phenanthrene             | 100    | J         | 210    | 31      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Pyrene                   | 110    | J         | 210    | 25      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Pyridine                 | 0.0021 | J         | 0.10   | 0.0016  | mg/L  | 1       |   | 8270D  | TCLP      |
| Arsenic                  | 0.0076 | J         | 0.020  | 0.0040  | mg/Kg | 1       |   | 6010C  | TCLP      |
| Barium                   | 1.1    |           | 0.0050 | 0.0011  | mg/Kg | 1       |   | 6010C  | TCLP      |
| Cadmium                  | 0.0014 | J         | 0.0020 | 0.00030 | mg/Kg | 1       |   | 6010C  | TCLP      |
| Lead                     | 0.034  |           | 0.010  | 0.0024  | mg/Kg | 1       |   | 6010C  | TCLP      |
| Selenium                 | 0.0042 | JB        | 0.040  | 0.0040  | mg/Kg | 1       |   | 6010C  | TCLP      |

This Detection Summary does not include radiochemical test results.

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Client Sample ID: ROBLIN DRUM

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 Matrix: Solid Date Received: 12/06/22 15:30 Percent Solids: 80.2

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND VS 6.2 0.45 ug/Kg 12/08/22 12:27 12/09/22 06:45 \*3 vs 6.2 1.1.2.2-Tetrachloroethane ND 1.0 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,1,2-Trichloroethane ND vs 6.2 0.80 ug/Kg 12/08/22 12:27 12/09/22 06:45 6.2 12/09/22 06:45 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.4 ug/Kg 12/08/22 12:27 VS 1.1-Dichloroethane 6.2 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND 0.75 1,1-Dichloroethene ND 6.2 0.76 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,2,4-Trichlorobenzene \*3 vs 6.2 0.38 12/08/22 12:27 12/09/22 06:45 ND ug/Kg 1,2-Dibromo-3-Chloropropane 6.2 3.1 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND \*3 vs 1,2-Dichlorobenzene ND \*3 vs 6.2 0.48 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,2-Dichloroethane ND 6.2 0.31 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 1,2-Dichloropropane ND 6.2 ug/Kg 12/08/22 12:27 12/09/22 06:45 ug/Kg 1.3-Dichlorobenzene ND \*3 vs 6.2 0.32 12/08/22 12:27 12/09/22 06:45 1 1,4-Dichlorobenzene ND \*3 vs 6.2 0.87 ug/Kg 12/08/22 12:27 12/09/22 06:45 2-Butanone (MEK) ND 31 2.3 ug/Kg 12/08/22 12:27 12/09/22 06:45 vs 31 12/08/22 12:27 2-Hexanone 3.1 12/09/22 06:45 ND VS ug/Kg 12/08/22 12:27 31 2.0 4-Methyl-2-pentanone (MIBK) ND VS ug/Kg 12/09/22 06:45 12/09/22 06:45 31 5.2 12/08/22 12:27 **Acetone** 54 ug/Kg 6.2 0.30 12/08/22 12:27 12/09/22 06:45 Benzene 2.2 J vs ug/Kg Bromodichloromethane 62 0.83 12/08/22 12:27 12/09/22 06:45 ND VS ug/Kg Bromoform ND 6.2 ug/Kg 12/08/22 12:27 12/09/22 06:45 ug/Kg Bromomethane ND 6.2 0.56 12/08/22 12:27 12/09/22 06:45 VS Carbon disulfide 6.2 3.1 ug/Kg 12/08/22 12:27 12/09/22 06:45 Carbon tetrachloride 6.2 12/08/22 12:27 12/09/22 06:45 ND 0.60 ug/Kg VS Chlorobenzene ND 6.2 0.82 ug/Kg 12/08/22 12:27 12/09/22 06:45 Dibromochloromethane ND 6.2 0.79 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 6.2 12/08/22 12:27 12/09/22 06:45 Chloroethane ND 1.4 ug/Kg Chloroform 0.58 JB vs 6.2 0.38 ug/Kg 12/08/22 12:27 12/09/22 06:45 Chloromethane 12/08/22 12:27 ND vs 6.2 0.37 ug/Kg 12/09/22 06:45 cis-1.2-Dichloroethene 62 0.79 ug/Kg 12/08/22 12:27 12/09/22 06:45 14 VS 6.2 cis-1,3-Dichloropropene ND VS 0.89 ug/Kg 12/08/22 12:27 12/09/22 06:45 Cyclohexane 6.2 0.87 ug/Kg 12/08/22 12:27 12/09/22 06:45 11 VS Dichlorodifluoromethane 6.2 0.51 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND VS 6.2 0.43 12/08/22 12:27 12/09/22 06:45 Ethylbenzene 4.7 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,2-Dibromoethane ND 62 0.79 ug/Kg VS Isopropylbenzene 6.2 0.93 ug/Kg 12/08/22 12:27 12/09/22 06:45 3.4 ND 31 12/08/22 12:27 12/09/22 06:45 Methyl acetate 37 ug/Kg VS Methyl tert-butyl ether ND ٧S 6.2 0.61 ug/Kg 12/08/22 12:27 12/09/22 06:45 Methylcyclohexane 53 6.2 0.94 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 6.2 12/08/22 12:27 12/09/22 06:45 **Methylene Chloride** 2.8 ug/Kg 5.1 6.2 0.31 ug/Kg 12/08/22 12:27 12/09/22 06:45 **Styrene** 0.78 J vs Tetrachloroethene ND vs 6.2 0.83 ug/Kg 12/08/22 12:27 12/09/22 06:45 **Toluene** 7.2 62 0.47 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 12/08/22 12:27 6.2 12/09/22 06:45 0.64 trans-1,2-Dichloroethene 1.4 J vs ug/Kg trans-1,3-Dichloropropene 6.2 12/08/22 12:27 12/09/22 06:45 ND vs 2.7 ug/Kg 6.2 12/08/22 12:27 12/09/22 06:45 **Trichloroethene** 1.4 ug/Kg 2.7 Trichlorofluoromethane 6.2 0.59 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND 6.2 0.75 ug/Kg 12/08/22 12:27 12/09/22 06:45 Vinyl chloride 24 .lvs **Xylenes, Total** 27 12 1.0 ug/Kg 12/08/22 12:27 12/09/22 06:45

**Eurofins Buffalo** 

12/16/2022

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30

**Matrix: Solid** Percent Solids: 80.2

Date Received: 12/06/22 15:30

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------------|----------------|---------|
| Toluene-d8 (Surr)            | 112                 | 71 - 125 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 124                 | 64 - 126 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |
| 4-Bromofluorobenzene (Surr)  | 79                  | 72 - 126 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |
| Dibromofluoromethane (Surr)  | 108                 | 60 - 140 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |

| Ī | Г., .,                       |     |          |                               |   |
|---|------------------------------|-----|----------|-------------------------------|---|
|   | Dibromofluoromethane (Surr)  | 108 | 60 - 140 | 12/08/22 12:27 12/09/22 06:45 | 1 |
|   | 4-Bromofluorobenzene (Surr)  | 79  | 72 - 126 | 12/08/22 12:27 12/09/22 06:45 | 1 |
|   | 1,2-Dichloroethane-d4 (Surr) | 124 | 64 - 126 | 12/08/22 12:27 12/09/22 06:45 | 1 |
|   | Toluene-a8 (Surr)            | 112 | 71 - 125 | 12/08/22 12:27 12/09/22 06:45 | 7 |

| Analyte              | Result Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|------------------|-------|--------|------|---|----------|----------------|---------|
| 1,2-Dichloroethane   | ND ND            | 0.010 | 0.0021 | mg/L |   |          | 12/10/22 12:24 | 10      |
| 2-Butanone (MEK)     | ND               | 0.050 | 0.013  | mg/L |   |          | 12/10/22 12:24 | 10      |
| Benzene              | ND               | 0.010 | 0.0041 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Carbon tetrachloride | ND               | 0.010 | 0.0027 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Chlorobenzene        | ND               | 0.010 | 0.0075 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Chloroform           | ND               | 0.010 | 0.0034 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Tetrachloroethene    | ND               | 0.010 | 0.0036 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Trichloroethene      | ND               | 0.010 | 0.0046 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Vinyl chloride       | ND               | 0.010 | 0.0090 | mg/L |   |          | 12/10/22 12:24 | 10      |
| 1,1-Dichloroethene   | ND               | 0.010 | 0.0029 | mg/L |   |          | 12/10/22 12:24 | 10      |

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 100                 | 77 - 120 |          | 12/10/22 12:24 | 10      |
| 4-Bromofluorobenzene (Surr)  | 89                  | 73 - 120 |          | 12/10/22 12:24 | 10      |
| Toluene-d8 (Surr)            | 88                  | 80 - 120 |          | 12/10/22 12:24 | 10      |
| Dibromofluoromethane (Surr)  | 102                 | 75 - 123 |          | 12/10/22 12:24 | 10      |

| - Dibromonacromemane (Garr)          | 102 |           | 70-720      |     |       |            |                | 12/10/22 12.21 | 70      |
|--------------------------------------|-----|-----------|-------------|-----|-------|------------|----------------|----------------|---------|
| Method: SW846 8270D - Sen<br>Analyte | _   | anic Comp | oounds (GC/ | MS) | Unit  | D          | Prepared       | Analyzed       | Dil Fac |
| Biphenyl                             | ND  | <u> </u>  | 210         | 31  | ug/Kg | — <u>=</u> | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| bis (2-chloroisopropyl) ether        | ND  |           | 210         | 42  |       | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4,5-Trichlorophenol                | ND  |           | 210         | 57  | 0 0   | ☆          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4,6-Trichlorophenol                | ND  |           | 210         | 42  | ug/Kg |            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dichlorophenol                   | ND  |           | 210         | 22  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dimethylphenol                   | ND  |           | 210         | 51  | ug/Kg | ₽          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dinitrophenol                    | ND  |           | 2100        |     | ug/Kg | ₽          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dinitrotoluene                   | ND  |           | 210         | 43  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,6-Dinitrotoluene                   | ND  |           | 210         | 25  | ug/Kg | ₽          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Chloronaphthalene                  | ND  |           | 210         | 35  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Chlorophenol                       | ND  |           | 410         | 38  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Methylphenol                       | ND  |           | 210         | 25  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Methylnaphthalene                  | ND  |           | 210         | 42  | ug/Kg | ☼          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Nitroaniline                       | ND  |           | 410         | 31  | ug/Kg | ☼          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Nitrophenol                        | ND  |           | 210         | 59  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 3,3'-Dichlorobenzidine               | ND  |           | 410         | 250 | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 3-Nitroaniline                       | ND  |           | 410         | 58  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4,6-Dinitro-2-methylphenol           | ND  |           | 410         | 210 | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Bromophenyl phenyl ether           | ND  |           | 210         | 30  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Chloro-3-methylphenol              | ND  |           | 210         | 52  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Chloroaniline                      | ND  |           | 210         | 52  | ug/Kg | ☆          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Chlorophenyl phenyl ether          | ND  |           | 210         | 26  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Methylphenol                       | ND  |           | 410         | 25  | ug/Kg | ☼          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Nitroaniline                       | ND  |           | 410         | 110 | ug/Kg | ☆          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Nitrophenol                        | ND  |           | 410         | 150 | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
|                                      |     |           |             |     |       |            |                |                |         |

Eurofins Buffalo

Page 8 of 31 12/16/2022

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 **Matrix: Solid** 

Date Received: 12/06/22 15:30 Percent Solids: 80.2

| Analyte                     | Result    | Qualifier | RL     | MDL | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|--------|-----|-------|--------------|----------------|----------------|---------|
| Acenaphthene                | ND        |           | 210    | 31  | ug/Kg | <del>-</del> | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Acenaphthylene              | ND        |           | 210    | 27  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Acetophenone                | ND        |           | 210    | 28  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Anthracene                  | ND        |           | 210    | 52  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Atrazine                    | ND        |           | 210    | 73  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzaldehyde                | ND        |           | 210    | 170 | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[a]anthracene          | 57        | J         | 210    | 21  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[a]pyrene              | 66        | J         | 210    | 31  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[b]fluoranthene        | 84        | J         | 210    | 33  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[g,h,i]perylene        | 49        | J         | 210    | 22  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[k]fluoranthene        | 32        | J         | 210    | 27  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Bis(2-chloroethoxy)methane  | ND        |           | 210    | 45  | ug/Kg | ☼            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Bis(2-chloroethyl)ether     | ND        |           | 210    | 27  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Bis(2-ethylhexyl) phthalate | ND        |           | 210    | 72  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Butyl benzyl phthalate      | ND        |           | 210    | 35  | ug/Kg | ⊅            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Caprolactam                 | ND        |           | 210    | 63  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Carbazole                   | ND        |           | 210    |     | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Chrysene                    | 79        | J         | 210    | 47  | ug/Kg | ⊅            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Dibenz(a,h)anthracene       | ND        |           | 210    | 37  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Di-n-butyl phthalate        | ND        |           | 210    | 36  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Di-n-octyl phthalate        | ND        |           | 210    | 25  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Dibenzofuran                | ND        |           | 210    | 25  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Diethyl phthalate           | ND        |           | 210    | 27  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Dimethyl phthalate          | ND        |           | 210    | 25  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Fluoranthene                | 140       | J         | 210    | 22  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Fluorene                    | ND        |           | 210    | 25  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachlorobenzene           | ND        |           | 210    | 28  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachlorobutadiene         | ND        |           | 210    | 31  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachlorocyclopentadiene   | ND        |           | 210    | 28  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachloroethane            | ND        |           | 210    | 27  | ug/Kg | ⊅            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Indeno[1,2,3-cd]pyrene      | 45        | J         | 210    | 26  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Isophorone                  | ND        |           | 210    | 45  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| N-Nitrosodi-n-propylamine   | ND        |           | 210    |     | ug/Kg | ☼            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| N-Nitrosodiphenylamine      | ND        |           | 210    | 170 | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Naphthalene                 | ND        |           | 210    | 27  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Nitrobenzene                | ND        |           | 210    |     | ug/Kg |              | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Pentachlorophenol           | ND        |           | 410    | 210 | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Phenanthrene                | 100       | J         | 210    | 31  | 0 0   | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Phenol                      | ND        |           | 210    | 32  | ug/Kg |              | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Pyrene                      | 110       | J         | 210    |     | ug/Kg | ☼            |                | 12/08/22 20:23 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits |     |       |              | Prepared       | Analyzed       | Dil Fac |

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared Ana           | lyzed Dil Fac |
|-----------------------------|---------------------|----------|------------------------|---------------|
| Nitrobenzene-d5 (Surr)      | 53                  | 53 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| Phenol-d5 (Surr)            | 55                  | 54 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| p-Terphenyl-d14 (Surr)      | 87                  | 79 - 130 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| 2,4,6-Tribromophenol (Surr) | 77                  | 54 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| 2-Fluorobiphenyl (Surr)     | 66                  | 60 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| 2-Fluorophenol (Surr)       | 51 S1-              | 52 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

Mercury

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 **Matrix: Solid** 

Date Received: 12/06/22 15:30 Percent Solids: 80.2

| Analyte                     | Result         | Qualifier | RL       | MDL     | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|----------------|-----------|----------|---------|-------|---|----------------|----------------|---------|
| 1,4-Dichlorobenzene         | ND             |           | 0.040    | 0.0018  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2,4-Dinitrotoluene          | ND             |           | 0.020    | 0.0017  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2,4,5-Trichlorophenol       | ND             |           | 0.020    | 0.0019  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2,4,6-Trichlorophenol       | ND             |           | 0.020    | 0.0024  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2-Methylphenol              | ND             |           | 0.020    | 0.0016  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 3-Methylphenol              | ND             |           | 0.040    | 0.0016  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 4-Methylphenol              | ND             |           | 0.040    | 0.0014  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Hexachlorobenzene           | ND             |           | 0.020    | 0.0020  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Hexachlorobutadiene         | ND             |           | 0.020    | 0.0027  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Hexachloroethane            | ND             |           | 0.020    | 0.0023  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Nitrobenzene                | ND             |           | 0.020    | 0.0011  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Pentachlorophenol           | ND             |           | 0.040    | 0.0088  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Pyridine                    | 0.0021         | J         | 0.10     | 0.0016  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Surrogate                   | %Recovery      | Qualifier | Limits   |         |       |   | Prepared       | Analyzed       | Dil Fac |
| 2,4,6-Tribromophenol (Surr) | 95             |           | 41 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2-Fluorobiphenyl (Surr)     | 89             |           | 48 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2-Fluorophenol (Surr)       | 48             |           | 35 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Nitrobenzene-d5 (Surr)      | 84             |           | 46 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| p-Terphenyl-d14 (Surr)      | 98             |           | 60 - 148 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Phenol-d5 (Surr)            | 33             |           | 22 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Method: SW846 6010C - Met   | als (ICP) - TC | LP        |          |         |       |   |                |                |         |
| Analyte                     | Result         | Qualifier | RL       | MDL     | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                     | 0.0076         | J         | 0.020    |         | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Barium                      | 1.1            |           | 0.0050   | 0.0011  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Cadmium                     | 0.0014         | J         | 0.0020   | 0.00030 | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Chromium                    | ND             |           | 0.0050   | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Lead                        | 0.034          |           | 0.010    | 0.0024  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Selenium                    | 0.0042         | JB        | 0.040    | 0.0040  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Silver                      | ND             |           | 0.0060   | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Method: SW846 7470A - Mer   | cury (CVAA)    | - TCLP    |          |         |       |   |                |                |         |
|                             |                |           |          |         |       |   |                |                |         |

0.000043 mg/L

<u>12/09/22 11:47</u> <u>12/09/22 18:05</u>

0.00020

ND

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

|                      |                    |          | Pe       | ercent Surre | ogate Reco |
|----------------------|--------------------|----------|----------|--------------|------------|
|                      |                    | TOL      | DCA      | BFB          | DBFM       |
| Lab Sample ID        | Client Sample ID   | (71-125) | (64-126) | (72-126)     | (60-140)   |
| 480-204473-1         | ROBLIN DRUM        | 112      | 124      | 79           | 108        |
| LCS 480-652673/1-A   | Lab Control Sample | 106      | 102      | 102          | 104        |
| MB 480-652673/2-A    | Method Blank       | 104      | 103      | 103          | 106        |
| Surrogate Legend     |                    |          |          |              |            |
| TOL = Toluene-d8 (Su | rr)                |          |          |              |            |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Prep Type: Total/NA **Matrix: Solid** 

|                  |                    |          | Pe       | ercent Surre | ogate Red |
|------------------|--------------------|----------|----------|--------------|-----------|
|                  |                    | TOL      | DCA      | BFB          | DBFM      |
| Lab Sample ID    | Client Sample ID   | (80-120) | (77-120) | (73-120)     | (75-123)  |
| LCS 480-652922/6 | Lab Control Sample | 90       | 93       | 96           | 100       |
| MB 480-652922/8  | Method Blank       | 85       | 99       | 90           | 104       |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

**Matrix: Solid Prep Type: TCLP** 

|                   |                  | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |  |  |  |
|-------------------|------------------|------------------------------------------------|----------|----------|----------|--|--|--|
|                   |                  | DCA                                            | BFB      | TOL      | DBFM     |  |  |  |
| Lab Sample ID     | Client Sample ID | (77-120)                                       | (73-120) | (80-120) | (75-123) |  |  |  |
| 480-204473-1      | ROBLIN DRUM      | 100                                            | 89       | 88       | 102      |  |  |  |
| LB 480-652650/1-A | Method Blank     | 103                                            | 91       | 89       | 103      |  |  |  |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Matrix: Solid** Prep Type: Total/NA

|                    |                    | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |  |  |
|--------------------|--------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|--|--|
|                    |                    | NBZ                                            | PHL      | TPHd14   | TBP      | FBP      | 2FP      |  |  |  |
| Lab Sample ID      | Client Sample ID   | (53-120)                                       | (54-120) | (79-130) | (54-120) | (60-120) | (52-120) |  |  |  |
| 480-204473-1       | ROBLIN DRUM        | 53                                             | 55       | 87       | 77       | 66       | 51 S1-   |  |  |  |
| LCS 480-652566/2-A | Lab Control Sample | 63                                             | 66       | 79       | 80       | 69       | 61       |  |  |  |
| MB 480-652566/1-A  | Method Blank       | 76                                             | 78       | 90       | 84       | 83       | 75       |  |  |  |
| Surrogate Legend   |                    |                                                |          |          |          |          |          |  |  |  |

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

**Eurofins Buffalo** 

12/16/2022

Page 11 of 31

### **Surrogate Summary**

Client: LaBella Associates DPC Project/Site: Roblin Steel site

TPHd14 = p-Terphenyl-d14 (Surr) TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Solid** 

| _                   |                        | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |  |
|---------------------|------------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|--|
|                     |                        | NBZ                                            | PHL      | TPHd14   | TBP      | FBP      | 2FP      |  |  |
| Lab Sample ID       | Client Sample ID       | (46-120)                                       | (22-120) | (60-148) | (41-120) | (48-120) | (35-120) |  |  |
| LCS 480-653570/2-A  | Lab Control Sample     | 84                                             | 35       | 105      | 103      | 92       | 47       |  |  |
| LCSD 480-653570/3-A | Lab Control Sample Dup | 88                                             | 37       | 107      | 106      | 94       | 49       |  |  |
| MB 480-653570/1-A   | Method Blank           | 90                                             | 36       | 100      | 95       | 94       | 53       |  |  |

#### **Surrogate Legend**

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Prep Type: TCLP Matrix: Solid** 

|                   |                  | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |  |  |
|-------------------|------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|--|--|
|                   |                  | TBP                                            | FBP      | 2FP      | NBZ      | TPHd14   | PHL      |  |  |  |
| Lab Sample ID     | Client Sample ID | (41-120)                                       | (48-120) | (35-120) | (46-120) | (60-148) | (22-120) |  |  |  |
| 480-204473-1      | ROBLIN DRUM      | 95                                             | 89       | 48       | 84       | 98       | 33       |  |  |  |
| LB 480-652622/1-G | Method Blank     | 102                                            | 92       | 51       | 92       | 105      | 35       |  |  |  |

### Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

**Eurofins Buffalo** 

Page 12 of 31

Job ID: 480-204473-1

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

RL

5.0

5.0

**MDL** Unit

0.81 ug/Kg

0.66 ug/Kg

0.47 ug/Kg

0.61 ug/Kg

0.84 ug/Kg

0.64

1.1

0.31

0.30

0.64

0.72

0.70

0.41

0.35

0.64

0.75

0.49

0.76

2.3

0.25

0.67

0.38

0.52

2.2

ug/Kg

0.36

### Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

0.330

Lab Sample ID: MB 480-652673/2-A

**Matrix: Solid** 

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Isopropylbenzene

Methyl acetate

Styrene

Toluene

Chloroform

Dibromochloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

1,1,1-Trichloroethane

1,1,2,2-Tetrachloroethane

Analyte

Analysis Batch: 652739

Client Sample ID: Method Blank Prep Type: Total/NA

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 21:12

12/08/22 12:27

Prepared

**Prep Batch: 652673** Analyzed Dil Fac

1

|                                       |    |     |      | 0 0   |                |                |   |
|---------------------------------------|----|-----|------|-------|----------------|----------------|---|
| 1,1,2-Trichloroethane                 | ND | 5.0 | 0.65 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND | 5.0 | 1.1  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,1-Dichloroethane                    | ND | 5.0 | 0.61 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2,4-Trichlorobenzene                | ND | 5.0 | 0.30 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dibromo-3-Chloropropane           | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dichlorobenzene                   | ND | 5.0 | 0.39 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dichloroethane                    | ND | 5.0 | 0.25 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dichloropropane                   | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,3-Dichlorobenzene                   | ND | 5.0 | 0.26 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,1-Dichloroethene                    | ND | 5.0 | 0.61 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,4-Dichlorobenzene                   | ND | 5.0 | 0.70 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 2-Butanone (MEK)                      | ND | 25  | 1.8  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 2-Hexanone                            | ND | 25  | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 4-Methyl-2-pentanone (MIBK)           | ND | 25  | 1.6  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Acetone                               | ND | 25  | 4.2  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Benzene                               | ND | 5.0 | 0.25 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Bromodichloromethane                  | ND | 5.0 | 0.67 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Bromoform                             | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Bromomethane                          | ND | 5.0 | 0.45 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Carbon disulfide                      | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Carbon tetrachloride                  | ND | 5.0 | 0.48 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
|                                       |    |     |      |       |                |                |   |

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

25

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

10

**Eurofins Buffalo** 

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

## Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-652673/2-A

Matrix: Solid

**Analysis Batch: 652739** 

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

**Prep Batch: 652673** 

|                              | MB        | MB        |          |                |                |         |
|------------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 104       |           | 71 - 125 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 64 - 126 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 72 - 126 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |
| Dibromofluoromethane (Surr)  | 106       |           | 60 - 140 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |

Lab Sample ID: LCS 480-652673/1-A

**Matrix: Solid** 

**Analysis Batch: 652739** 

| Client Sample | ID: Lab | Control | Sample |
|---------------|---------|---------|--------|
|---------------|---------|---------|--------|

Prep Type: Total/NA Prep Batch: 652673

| Analysis Batch: 652739              | Spike | LCS  | LCS       |       |   |      | Prep Batch: 65267<br>%Rec |
|-------------------------------------|-------|------|-----------|-------|---|------|---------------------------|
| Analyte                             | Added |      | Qualifier | Unit  | D | %Rec | Limits                    |
| 1,1,1-Trichloroethane               | 50.0  | 45.7 |           | ug/Kg |   | 91   |                           |
| 1,1,2,2-Tetrachloroethane           | 50.0  | 45.3 |           | ug/Kg |   | 91   | 80 - 120                  |
| 1,1,2-Trichloroethane               | 50.0  | 51.2 |           | ug/Kg |   | 102  | 78 - 122                  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 50.0  | 48.2 |           | ug/Kg |   | 96   | 60 - 140                  |
| ne                                  |       |      |           |       |   |      |                           |
| 1,1-Dichloroethane                  | 50.0  | 42.9 |           | ug/Kg |   | 86   | 73 - 126                  |
| 1,2,4-Trichlorobenzene              | 50.0  | 46.9 |           | ug/Kg |   | 94   | 64 - 120                  |
| 1,2-Dibromo-3-Chloropropane         | 50.0  | 40.0 |           | ug/Kg |   | 80   | 63 - 124                  |
| 1,2-Dichlorobenzene                 | 50.0  | 46.5 |           | ug/Kg |   | 93   | 75 - 120                  |
| 1,2-Dichloroethane                  | 50.0  | 50.0 |           | ug/Kg |   | 100  | 77 - 122                  |
| 1,2-Dichloropropane                 | 50.0  | 42.7 |           | ug/Kg |   | 85   | 75 - 124                  |
| 1,3-Dichlorobenzene                 | 50.0  | 49.2 |           | ug/Kg |   | 98   | 74 - 120                  |
| 1,1-Dichloroethene                  | 50.0  | 47.5 |           | ug/Kg |   | 95   | 59 - 125                  |
| 1,4-Dichlorobenzene                 | 50.0  | 48.9 |           | ug/Kg |   | 98   | 73 - 120                  |
| 2-Butanone (MEK)                    | 250   | 195  |           | ug/Kg |   | 78   | 70 - 134                  |
| 2-Hexanone                          | 250   | 240  |           | ug/Kg |   | 96   | 59 - 130                  |
| 4-Methyl-2-pentanone (MIBK)         | 250   | 237  |           | ug/Kg |   | 95   | 65 - 133                  |
| Acetone                             | 250   | 199  |           | ug/Kg |   | 79   | 61 - 137                  |
| Benzene                             | 50.0  | 47.1 |           | ug/Kg |   | 94   | 79 - 127                  |
| Bromodichloromethane                | 50.0  | 47.5 |           | ug/Kg |   | 95   | 80 - 122                  |
| Bromoform                           | 50.0  | 47.7 |           | ug/Kg |   | 95   | 68 - 126                  |
| Bromomethane                        | 50.0  | 58.6 |           | ug/Kg |   | 117  | 37 - 149                  |
| Carbon disulfide                    | 50.0  | 43.0 |           | ug/Kg |   | 86   | 64 - 131                  |
| Carbon tetrachloride                | 50.0  | 43.5 |           | ug/Kg |   | 87   | 75 - 135                  |
| Chlorobenzene                       | 50.0  | 51.6 |           | ug/Kg |   | 103  | 76 - 124                  |
| Dibromochloromethane                | 50.0  | 51.4 |           | ug/Kg |   | 103  | 76 - 125                  |
| Chloroethane                        | 50.0  | 52.0 |           | ug/Kg |   | 104  | 69 - 135                  |
| Chloroform                          | 50.0  | 47.9 |           | ug/Kg |   | 96   | 80 - 120                  |
| Chloromethane                       | 50.0  | 40.9 |           | ug/Kg |   | 82   | 63 - 127                  |
| cis-1,2-Dichloroethene              | 50.0  | 44.7 |           | ug/Kg |   | 89   | 81 - 120                  |
| cis-1,3-Dichloropropene             | 50.0  | 42.9 |           | ug/Kg |   | 86   | 80 - 120                  |
| Cyclohexane                         | 50.0  | 44.2 |           | ug/Kg |   | 88   | 65 - 120                  |
| Dichlorodifluoromethane             | 50.0  | 48.9 |           | ug/Kg |   | 98   | 57 - 142                  |
| Ethylbenzene                        | 50.0  | 50.9 |           | ug/Kg |   | 102  | 80 - 120                  |
| 1,2-Dibromoethane                   | 50.0  | 50.2 |           | ug/Kg |   | 100  | 78 - 120                  |
| Isopropylbenzene                    | 50.0  | 46.5 |           | ug/Kg |   | 93   | 72 - 120                  |
| Methyl acetate                      | 100   | 74.9 |           | ug/Kg |   | 75   | 55 - 136                  |
| Methyl tert-butyl ether             | 50.0  | 41.9 |           | ug/Kg |   | 84   | 63 - 125                  |
| Methylcyclohexane                   | 50.0  | 45.7 |           | ug/Kg |   | 91   | 60 - 140                  |
| • •                                 |       |      |           | 5. 5  |   |      |                           |

**Eurofins Buffalo** 

Page 14 of 31

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-652673/1-A

**Matrix: Solid** 

**Analysis Batch: 652739** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA Prep Batch: 652673** 

|                           | Spike | LCS    | LCS       |       |   |      | %Rec                |  |
|---------------------------|-------|--------|-----------|-------|---|------|---------------------|--|
| Analyte                   | Added | Result | Qualifier | Unit  | D | %Rec | Limits              |  |
| Methylene Chloride        | 50.0  | 46.5   |           | ug/Kg |   | 93   | 61 - 127            |  |
| Styrene                   | 50.0  | 47.4   |           | ug/Kg |   | 95   | 80 - 120            |  |
| Tetrachloroethene         | 50.0  | 52.3   |           | ug/Kg |   | 105  | 74 - 122            |  |
| Toluene                   | 50.0  | 49.6   |           | ug/Kg |   | 99   | 74 - 128            |  |
| trans-1,2-Dichloroethene  | 50.0  | 43.5   |           | ug/Kg |   | 87   | 78 - 126            |  |
| trans-1,3-Dichloropropene | 50.0  | 43.9   |           | ug/Kg |   | 88   | 73 - 123            |  |
| Trichloroethene           | 50.0  | 47.7   |           | ug/Kg |   | 95   | 77 - 129            |  |
| Trichlorofluoromethane    | 50.0  | 54.1   |           | ug/Kg |   | 108  | 65 - 146            |  |
| Vinyl chloride            | 50.0  | 46.4   |           | ug/Kg |   | 93   | 61 <sub>-</sub> 133 |  |
|                           |       |        |           |       |   |      |                     |  |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 106       |           | 71 - 125 |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 64 - 126 |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 72 - 126 |
| Dibromofluoromethane (Surr)  | 104       |           | 60 - 140 |

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

**Matrix: Solid** 

**Analysis Batch: 652922** 

Lab Sample ID: MB 480-652922/8

MB MB

| Analyte              | Result ( | Qualifier RL | MDL     | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|----------|--------------|---------|------|---|----------|----------------|---------|
| 1,2-Dichloroethane   | ND       | 0.0010       | 0.00021 | mg/L |   |          | 12/10/22 04:41 | 1       |
| 1,1-Dichloroethene   | ND       | 0.0010       | 0.00029 | mg/L |   |          | 12/10/22 04:41 | 1       |
| 2-Butanone (MEK)     | ND       | 0.0050       | 0.0013  | mg/L |   |          | 12/10/22 04:41 | 1       |
| Benzene              | ND       | 0.0010       | 0.00041 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Carbon tetrachloride | ND       | 0.0010       | 0.00027 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Chlorobenzene        | ND       | 0.0010       | 0.00075 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Chloroform           | ND       | 0.0010       | 0.00034 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Tetrachloroethene    | ND       | 0.0010       | 0.00036 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Trichloroethene      | ND       | 0.0010       | 0.00046 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Vinyl chloride       | ND       | 0.0010       | 0.00090 | mg/L |   |          | 12/10/22 04:41 | 1       |

MB MB

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 85                  | 80 - 120 |          | 12/10/22 04:41 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 99                  | 77 - 120 |          | 12/10/22 04:41 | 1       |
| 4-Bromofluorobenzene (Surr)  | 90                  | 73 - 120 |          | 12/10/22 04:41 | 1       |
| Dibromofluoromethane (Surr)  | 104                 | 75 - 123 |          | 12/10/22 04:41 | 1       |

Lab Sample ID: LCS 480-652922/6

Matrix: Solid

Analysis Batch: 652922

| Client Sample ID: Lab Control Sample |
|--------------------------------------|
| Prep Type: Total/NA                  |

|                      | Spike  | LCS    | LCS       |      |   |      | %Rec     |  |
|----------------------|--------|--------|-----------|------|---|------|----------|--|
| Analyte              | Added  | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,2-Dichloroethane   | 0.0250 | 0.0237 |           | mg/L |   | 95   | 75 - 120 |  |
| 1,1-Dichloroethene   | 0.0250 | 0.0219 |           | mg/L |   | 88   | 66 - 127 |  |
| 2-Butanone (MEK)     | 0.125  | 0.114  |           | mg/L |   | 91   | 57 - 140 |  |
| Benzene              | 0.0250 | 0.0226 |           | mg/L |   | 91   | 71 - 124 |  |
| Carbon tetrachloride | 0.0250 | 0.0232 |           | mg/L |   | 93   | 72 - 134 |  |

**Eurofins Buffalo** 

Page 15 of 31

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-652922/6

**Matrix: Solid** 

**Analysis Batch: 652922** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chlorobenzene 0.0250 0.0225 mg/L 90 80 - 120 Chloroform 0.0250 0.0226 mg/L 90 73 - 127 Tetrachloroethene 0.0250 0.0241 74 - 122 mg/L 96 0.0250 92 Trichloroethene 0.0231 mg/L 74 - 123 0.0250 Vinyl chloride 0.0247 mg/L 99 65 - 133

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 90        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 93        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 100       |           | 75 - 123 |

**Client Sample ID: Method Blank** 

Lab Sample ID: LB 480-652650/1-A **Matrix: Solid Prep Type: TCLP** 

**Analysis Batch: 652922** 

LB LB

| Analyte              | Result | Qualifier R | L MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|--------|-------------|--------|------|---|----------|----------------|---------|
| 1,2-Dichloroethane   | ND     | 0.01        | 0.0021 | mg/L |   |          | 12/10/22 10:05 | 10      |
| 1,1-Dichloroethene   | ND     | 0.01        | 0.0029 | mg/L |   |          | 12/10/22 10:05 | 10      |
| 2-Butanone (MEK)     | ND     | 0.05        | 0.013  | mg/L |   |          | 12/10/22 10:05 | 10      |
| Benzene              | ND     | 0.01        | 0.0041 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Carbon tetrachloride | ND     | 0.01        | 0.0027 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Chlorobenzene        | ND     | 0.01        | 0.0075 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Chloroform           | ND     | 0.01        | 0.0034 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Tetrachloroethene    | ND     | 0.01        | 0.0036 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Trichloroethene      | ND     | 0.01        | 0.0046 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Vinyl chloride       | ND     | 0.01        | 0.0090 | mg/L |   |          | 12/10/22 10:05 | 10      |

LB LB

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepare | ed Analyzed    | Dil Fac |
|------------------------------|-----------|-----------|----------|---------|----------------|---------|
| Toluene-d8 (Surr)            | 89        |           | 80 - 120 |         | 12/10/22 10:05 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 77 - 120 |         | 12/10/22 10:05 | 10      |
| 4-Bromofluorobenzene (Surr)  | 91        |           | 73 - 120 |         | 12/10/22 10:05 | 10      |
| Dibromofluoromethane (Surr)  | 103       |           | 75 - 123 |         | 12/10/22 10:05 | 10      |

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-652566/1-A

**Matrix: Solid** 

**Analysis Batch: 652617** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

**Prep Batch: 652566** 

|                               | MB     | MR        |      |     |       |   |                |                |         |
|-------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte                       | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Biphenyl                      | ND     |           | 170  | 24  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| bis (2-chloroisopropyl) ether | ND     |           | 170  | 33  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4,5-Trichlorophenol         | ND     |           | 170  | 45  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4,6-Trichlorophenol         | ND     |           | 170  | 33  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4-Dichlorophenol            | ND     |           | 170  | 18  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4-Dimethylphenol            | ND     |           | 170  | 40  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4-Dinitrophenol             | ND     |           | 1600 | 770 | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| •                             |        |           |      |     |       |   |                |                |         |

**Eurofins Buffalo** 

Job ID: 480-204473-1 Client: LaBella Associates DPC Project/Site: Roblin Steel site

## Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-652566/1-A

**Matrix: Solid** 

Indeno[1,2,3-cd]pyrene

Analysis Batch: 652617

Client Sample ID: Method Blank **Prep Type: Total/NA** 

**Prep Batch: 652566** 

| 7 maryolo Batom 002011             | МВ       | МВ        |            |     |                |   |                | . Top Butom    | 302000  |
|------------------------------------|----------|-----------|------------|-----|----------------|---|----------------|----------------|---------|
| Analyte                            | Result   | Qualifier | RL         | MDL | Unit           | D | Prepared       | Analyzed       | Dil Fac |
| 2,4-Dinitrotoluene                 | ND       |           | 170        | 34  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,6-Dinitrotoluene                 | ND       |           | 170        | 20  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Chloronaphthalene                | ND       |           | 170        | 27  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Chlorophenol                     | ND       |           | 320        | 30  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Methylphenol                     | ND       |           | 170        | 20  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Methylnaphthalene                | ND       |           | 170        | 33  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Nitroaniline                     | ND       |           | 320        | 24  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Nitrophenol                      | ND       |           | 170        | 47  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 3,3'-Dichlorobenzidine             | ND       |           | 320        | 200 | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 3-Nitroaniline                     | ND       |           | 320        | 46  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4,6-Dinitro-2-methylphenol         | ND       |           | 320        | 170 | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Bromophenyl phenyl ether         | ND       |           | 170        | 24  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Chloro-3-methylphenol            | ND       |           | 170        | 41  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Chloroaniline                    | ND       |           | 170        |     | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Chlorophenyl phenyl ether        | ND       |           | 170        | 21  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Methylphenol                     | ND       |           | 320        |     | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Nitroaniline                     | ND       |           | 320        |     | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 4-Nitrophenol                      | ND       |           | 320        |     | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| Acenaphthene                       | ND       |           | 170        |     | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| Acenaphthylene                     | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Acetophenone                       | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Anthracene                         | ND       |           | 170        | 41  |                |   |                | 12/08/22 14:00 | 1       |
| Atrazine                           | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Benzaldehyde                       | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Benzo[a]anthracene                 | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Benzo[a]pyrene                     | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Benzo[b]fluoranthene               | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Benzo[g,h,i]perylene               | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Benzo[k]fluoranthene               | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Bis(2-chloroethoxy)methane         | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Bis(2-chloroethyl)ether            | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Bis(2-ethylhexyl) phthalate        | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Butyl benzyl phthalate             | 32.6     |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Caprolactam                        | ND       | ·         | 170        | 50  |                |   |                | 12/08/22 14:00 | 1       |
| Carbazole                          | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Chrysene                           | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Dibenz(a,h)anthracene              | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Di-n-butyl phthalate               | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Di-n-octyl phthalate               | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Dibenzofuran                       | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Diethyl phthalate                  | ND       |           | 170        |     | ug/Kg<br>ug/Kg |   |                | 12/08/22 14:00 | 1       |
|                                    |          |           |            |     | ug/Kg<br>ug/Kg |   |                | 12/08/22 14:00 |         |
| Dimethyl phthalate<br>Fluoranthene | ND<br>ND |           | 170<br>170 |     |                |   |                | 12/08/22 14:00 | 1       |
| Fluorene                           | ND<br>ND |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 |         |
|                                    |          |           |            |     | ug/Kg          |   |                |                | 1       |
| Hexachlorobenzene                  | ND       |           | 170<br>170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Hexachlorobutadiene                | ND       |           | 170<br>170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Hexachlorocyclopentadiene          | ND       |           | 170        |     | ug/Kg          |   |                | 12/08/22 14:00 | 1       |
| Hexachloroethane                   | ND       |           | 170        | 22  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |

Eurofins Buffalo

12/07/22 16:14 12/08/22 14:00

170

21 ug/Kg

ND

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-652566/1-A

**Matrix: Solid** 

Analysis Batch: 652617

| MB N     | <b>ЛВ</b> |                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result C | Qualifier | RL                               | MDL                                                                                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                       | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       |           | 170                              | 35                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 28                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 140                                                                                                                                                                                                                                                                                                                    | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 22                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 19                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 320                              | 170                                                                                                                                                                                                                                                                                                                    | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 24                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 25                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |           | 170                              | 20                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Result O  | ND<br>ND<br>ND<br>ND<br>ND<br>ND | Result         Qualifier         RL           ND         170           ND         170           ND         170           ND         170           ND         170           ND         320           ND         170           ND         170           ND         170           ND         170           ND         170 | Result         Qualifier         RL         MDL           ND         170         35           ND         170         28           ND         170         140           ND         170         22           ND         170         19           ND         320         170           ND         170         24           ND         170         25 | Result         Qualifier         RL         MDL ug/Kg           ND         170         35 ug/Kg           ND         170         28 ug/Kg           ND         170         140 ug/Kg           ND         170         22 ug/Kg           ND         170         19 ug/Kg           ND         320         170 ug/Kg           ND         170         24 ug/Kg           ND         170         25 ug/Kg | Result         Qualifier         RL         MDL         Unit         D           ND         170         35         ug/Kg         Ug/Kg           ND         170         28         ug/Kg           ND         170         140         ug/Kg           ND         170         22         ug/Kg           ND         170         19         ug/Kg           ND         320         170         ug/Kg           ND         170         24         ug/Kg           ND         170         25         ug/Kg | Result         Qualifier         RL         MDL         Unit         D         Prepared           ND         170         35         ug/Kg         12/07/22 16:14           ND         170         28         ug/Kg         12/07/22 16:14           ND         170         140         ug/Kg         12/07/22 16:14           ND         170         22         ug/Kg         12/07/22 16:14           ND         170         19         ug/Kg         12/07/22 16:14           ND         320         170         ug/Kg         12/07/22 16:14           ND         170         24         ug/Kg         12/07/22 16:14           ND         170         25         ug/Kg         12/07/22 16:14 | Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           ND         170         35         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         28         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         140         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         22         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         19         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         320         170         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         24         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         24         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         25         ug/Kg         12/07/22 16:14         12/08/22 14:00 |

|                             | MB MB               |          |                |                |         |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| Nitrobenzene-d5 (Surr)      | 76                  | 53 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| Phenol-d5 (Surr)            | 78                  | 54 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| p-Terphenyl-d14 (Surr)      | 90                  | 79 - 130 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4,6-Tribromophenol (Surr) | 84                  | 54 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Fluorobiphenyl (Surr)     | 83                  | 60 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Fluorophenol (Surr)       | 75                  | 52 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
|                             |                     |          |                |                |         |

Lab Sample ID: LCS 480-652566/2-A

| Matrix: Solid                 |        |      |           |       |     |      | Prep Type: Total/NA |
|-------------------------------|--------|------|-----------|-------|-----|------|---------------------|
| Analysis Batch: 652617        | Cmileo | 1.00 | LCS       |       |     |      | Prep Batch: 652566  |
| Ameliate                      | Spike  |      |           | 1114  | _   | 0/ 🗖 | %Rec                |
| Analyte                       | Added  |      | Qualifier | Unit  | _ D | %Rec | Limits              |
| Biphenyl                      | 1640   | 1080 |           | ug/Kg |     | 66   | 59 - 120            |
| bis (2-chloroisopropyl) ether | 1640   | 970  |           | ug/Kg |     | 59   | 44 - 120            |
| 2,4,5-Trichlorophenol         | 1640   | 1210 |           | ug/Kg |     | 74   | 59 - 126            |
| 2,4,6-Trichlorophenol         | 1640   | 1210 |           | ug/Kg |     | 73   | 59 - 123            |
| 2,4-Dichlorophenol            | 1640   | 1140 |           | ug/Kg |     | 69   | 61 - 120            |
| 2,4-Dimethylphenol            | 1640   | 1140 |           | ug/Kg |     | 70   | 59 - 120            |
| 2,4-Dinitrophenol             | 3280   | 2460 |           | ug/Kg |     | 75   | 41 - 146            |
| 2,4-Dinitrotoluene            | 1640   | 1290 |           | ug/Kg |     | 79   | 63 - 120            |
| 2,6-Dinitrotoluene            | 1640   | 1240 |           | ug/Kg |     | 75   | 66 - 120            |
| 2-Chloronaphthalene           | 1640   | 1060 |           | ug/Kg |     | 64   | 57 - 120            |
| 2-Chlorophenol                | 1640   | 1020 |           | ug/Kg |     | 62   | 53 - 120            |
| 2-Methylphenol                | 1640   | 1110 |           | ug/Kg |     | 68   | 54 - 120            |
| 2-Methylnaphthalene           | 1640   | 988  |           | ug/Kg |     | 60   | 59 - 120            |
| 2-Nitroaniline                | 1640   | 1220 |           | ug/Kg |     | 74   | 61 - 120            |
| 2-Nitrophenol                 | 1640   | 1060 |           | ug/Kg |     | 65   | 56 - 120            |
| 3,3'-Dichlorobenzidine        | 3280   | 2380 |           | ug/Kg |     | 73   | 54 - 120            |
| 3-Nitroaniline                | 1640   | 1150 |           | ug/Kg |     | 70   | 48 - 120            |
| 4,6-Dinitro-2-methylphenol    | 3280   | 2480 |           | ug/Kg |     | 76   | 49 - 122            |
| 4-Bromophenyl phenyl ether    | 1640   | 1200 |           | ug/Kg |     | 73   | 58 - 120            |
| 4-Chloro-3-methylphenol       | 1640   | 1240 |           | ug/Kg |     | 75   | 61 - 120            |
| 4-Chloroaniline               | 1640   | 1030 |           | ug/Kg |     | 63   | 38 - 120            |
| 4-Chlorophenyl phenyl ether   | 1640   | 1180 |           | ug/Kg |     | 72   | 63 - 124            |
| 4-Methylphenol                | 1640   | 1130 |           | ug/Kg |     | 69   | 55 - 120            |
| 4-Nitroaniline                | 1640   | 1250 |           | ug/Kg |     | 76   | 56 - 120            |
| 4-Nitrophenol                 | 3280   | 2580 |           | ug/Kg |     | 79   | 43 - 147            |

**Eurofins Buffalo** 

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

**Prep Batch: 652566** 

Spike

Client: LaBella Associates DPC Job ID: 480-204473-1

LCS LCS

Project/Site: Roblin Steel site

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-652566/2-A

**Matrix: Solid** 

**Analysis Batch: 652617** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 652566 %Rec

|                             | Shire | LCS    | LUJ            |        | /orvec   |  |
|-----------------------------|-------|--------|----------------|--------|----------|--|
| Analyte                     | Added | Result | Qualifier Unit | D %Rec | Limits   |  |
| Acenaphthene                | 1640  | 1120   | ug/Kg          | 68     | 62 - 120 |  |
| Acenaphthylene              | 1640  | 1140   | ug/Kg          | 69     | 58 - 121 |  |
| Acetophenone                | 1640  | 1030   | ug/Kg          | 63     | 54 - 120 |  |
| Anthracene                  | 1640  | 1240   | ug/Kg          | 76     | 62 - 120 |  |
| Atrazine                    | 3280  | 2620   | ug/Kg          | 80     | 60 - 127 |  |
| Benzaldehyde                | 3280  | 1940   | ug/Kg          | 59     | 10 - 150 |  |
| Benzo[a]anthracene          | 1640  | 1250   | ug/Kg          | 76     | 65 - 120 |  |
| Benzo[a]pyrene              | 1640  | 1250   | ug/Kg          | 76     | 64 - 120 |  |
| Benzo[b]fluoranthene        | 1640  | 1440   | ug/Kg          | 88     | 64 - 120 |  |
| Benzo[g,h,i]perylene        | 1640  | 1170   | ug/Kg          | 71     | 45 - 145 |  |
| Benzo[k]fluoranthene        | 1640  | 1180   | ug/Kg          | 72     | 65 - 120 |  |
| Bis(2-chloroethoxy)methane  | 1640  | 1050   | ug/Kg          | 64     | 55 - 120 |  |
| Bis(2-chloroethyl)ether     | 1640  | 961    | ug/Kg          | 59     | 45 - 120 |  |
| Bis(2-ethylhexyl) phthalate | 1640  | 1310   | ug/Kg          | 80     | 61 - 133 |  |
| Butyl benzyl phthalate      | 1640  | 1280   | ug/Kg          | 78     | 61 - 129 |  |
| Caprolactam                 | 3280  | 2680   | ug/Kg          | 82     | 47 - 120 |  |
| Carbazole                   | 1640  | 1280   | ug/Kg          | 78     | 65 - 120 |  |
| Chrysene                    | 1640  | 1200   | ug/Kg          | 73     | 64 - 120 |  |
| Dibenz(a,h)anthracene       | 1640  | 1220   | ug/Kg          | 75     | 54 - 132 |  |
| Di-n-butyl phthalate        | 1640  | 1300   | ug/Kg          | 79     | 58 - 130 |  |
| Di-n-octyl phthalate        | 1640  | 1280   | ug/Kg          | 78     | 57 - 133 |  |
| Dibenzofuran                | 1640  | 1150   | ug/Kg          | 70     | 63 - 120 |  |
| Diethyl phthalate           | 1640  | 1270   | ug/Kg          | 77     | 66 - 120 |  |
| Dimethyl phthalate          | 1640  | 1250   | ug/Kg          | 76     | 65 - 124 |  |
| Fluoranthene                | 1640  | 1270   | ug/Kg          | 77     | 62 - 120 |  |
| Fluorene                    | 1640  | 1170   | ug/Kg          | 72     | 63 - 120 |  |
| Hexachlorobenzene           | 1640  | 1210   | ug/Kg          | 73     | 60 - 120 |  |
| Hexachlorobutadiene         | 1640  | 959    | ug/Kg          | 58     | 45 - 120 |  |
| Hexachlorocyclopentadiene   | 1640  | 1010   | ug/Kg          | 62     | 47 - 120 |  |
| Hexachloroethane            | 1640  | 885    | ug/Kg          | 54     | 41 - 120 |  |
| Indeno[1,2,3-cd]pyrene      | 1640  | 1220   | ug/Kg          | 74     | 56 - 134 |  |
| Isophorone                  | 1640  | 1090   | ug/Kg          | 66     | 56 - 120 |  |
| N-Nitrosodi-n-propylamine   | 1640  | 1040   | ug/Kg          | 64     | 52 - 120 |  |
| N-Nitrosodiphenylamine      | 1640  | 1210   | ug/Kg          | 74     | 51 - 128 |  |
| Naphthalene                 | 1640  | 1020   | ug/Kg          | 62     | 55 - 120 |  |
| Nitrobenzene                | 1640  | 1040   | ug/Kg          | 63     | 54 - 120 |  |
| Pentachlorophenol           | 3280  | 2330   | ug/Kg          | 71     | 51 - 120 |  |
| Phenanthrene                | 1640  | 1210   | ug/Kg          | 74     | 60 - 120 |  |
| Phenol                      | 1640  | 1060   | ug/Kg          | 65     | 53 - 120 |  |
| Pyrene                      | 1640  | 1250   | ug/Kg          | 76     | 61 - 133 |  |
| •                           |       |        | 5 0            |        |          |  |

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits              |
|-----------------------------|-----------|-----------|---------------------|
| Nitrobenzene-d5 (Surr)      | 63        |           | 53 - 120            |
| Phenol-d5 (Surr)            | 66        |           | 54 <sub>-</sub> 120 |
| p-Terphenyl-d14 (Surr)      | 79        |           | 79 - 130            |
| 2,4,6-Tribromophenol (Surr) | 80        |           | 54 - 120            |
| 2-Fluorobiphenyl (Surr)     | 69        |           | 60 - 120            |
| 2-Fluorophenol (Surr)       | 61        |           | 52 - 120            |

**Eurofins Buffalo** 

4

6

8

46

11

13

14

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-653570/1-A

**Matrix: Solid** 

**Analysis Batch: 653688** 

Client Sample ID: Method Blank Prep Type: Total/NA

**Prep Batch: 653570** 

| Analyte               | Result ( | Qualifier RL | MDL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------|----------|--------------|---------|------|---|----------------|----------------|---------|
| 1,4-Dichlorobenzene   | ND       | 0.010        | 0.00045 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4,5-Trichlorophenol | ND       | 0.0050       | 0.00048 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4,6-Trichlorophenol | ND       | 0.0050       | 0.00060 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4-Dinitrotoluene    | ND       | 0.0050       | 0.00043 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 3-Methylphenol        | ND       | 0.010        | 0.00040 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2-Methylphenol        | ND       | 0.0050       | 0.00040 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Pyridine              | ND       | 0.025        | 0.00040 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 4-Methylphenol        | ND       | 0.010        | 0.00035 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Hexachlorobenzene     | ND       | 0.0050       | 0.00050 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Hexachlorobutadiene   | ND       | 0.0050       | 0.00068 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Hexachloroethane      | ND       | 0.0050       | 0.00058 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Nitrobenzene          | ND       | 0.0050       | 0.00028 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Pentachlorophenol     | ND       | 0.010        | 0.0022  | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
|                       |          |              |         |      |   |                |                |         |

MB MB

MB MB

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| Nitrobenzene-d5 (Surr)      | 90                  | 46 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Phenol-d5 (Surr)            | 36                  | 22 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| p-Terphenyl-d14 (Surr)      | 100                 | 60 - 148 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4,6-Tribromophenol (Surr) | 95                  | 41 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2-Fluorobiphenyl (Surr)     | 94                  | 48 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2-Fluorophenol (Surr)       | 53                  | 35 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |

Lab Sample ID: LCS 480-653570/2-A

**Matrix: Solid** 

**Analysis Batch: 653688** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 653570

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1,4-Dichlorobenzene 0.0500 0.0258 52 51 - 120 mg/L 2,4,5-Trichlorophenol 0.0500 0.0483 mg/L 97 65 - 126 2,4,6-Trichlorophenol 0.0500 0.0461 mg/L 92 64 - 120 2,4-Dinitrotoluene 0.0500 0.0515 mg/L 103 69 - 120 3-Methylphenol 0.0500 0.0344 mg/L 69 39 - 120 74 2-Methylphenol 0.0500 0.0369 mg/L 39 - 120 Pyridine 0.100 0.0484 48 10 - 120 mg/L 4-Methylphenol 0.0500 0.0344 69 29 - 131 mg/L Hexachlorobenzene 0.0500 0.0478 mg/L 96 61 - 120 Hexachlorobutadiene 0.0500 0.0269 54 35 - 120 mg/L Hexachloroethane 0.0500 0.0231 mg/L 46 43 - 120 Nitrobenzene 0.0500 0.0415 mg/L 83 53 - 123 Pentachlorophenol 0.100 0.100 mg/L 100 29 - 136

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| Nitrobenzene-d5 (Surr)      | 84        |           | 46 - 120 |
| Phenol-d5 (Surr)            | 35        |           | 22 - 120 |
| p-Terphenyl-d14 (Surr)      | 105       |           | 60 - 148 |
| 2,4,6-Tribromophenol (Surr) | 103       |           | 41 - 120 |
| 2-Fluorobiphenyl (Surr)     | 92        |           | 48 - 120 |
| 2-Fluorophenol (Surr)       | 47        |           | 35 - 120 |

**Eurofins Buffalo** 

Page 20 of 31

2

3

4

6

8

10

11

13

14

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: LCSD 480-653570/3-A

**Matrix: Solid** 

Analysis Batch: 653688

**Client Sample ID: Lab Control Sample Dup** 

**Prep Type: Total/NA Prep Batch: 653570** %Rec

| <b>,</b>              |        |        |           |      |   |      |          |     |       |
|-----------------------|--------|--------|-----------|------|---|------|----------|-----|-------|
|                       | Spike  | LCSD   | LCSD      |      |   |      | %Rec     |     | RPD   |
| Analyte               | Added  | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 1,4-Dichlorobenzene   | 0.0500 | 0.0264 |           | mg/L |   | 53   | 51 - 120 | 2   | 36    |
| 2,4,5-Trichlorophenol | 0.0500 | 0.0476 |           | mg/L |   | 95   | 65 - 126 | 1   | 18    |
| 2,4,6-Trichlorophenol | 0.0500 | 0.0478 |           | mg/L |   | 96   | 64 - 120 | 3   | 19    |
| 2,4-Dinitrotoluene    | 0.0500 | 0.0526 |           | mg/L |   | 105  | 69 - 120 | 2   | 20    |
| 3-Methylphenol        | 0.0500 | 0.0357 |           | mg/L |   | 71   | 39 - 120 | 4   | 30    |
| 2-Methylphenol        | 0.0500 | 0.0387 |           | mg/L |   | 77   | 39 - 120 | 5   | 27    |
| Pyridine              | 0.100  | 0.0464 |           | mg/L |   | 46   | 10 - 120 | 4   | 49    |
| 4-Methylphenol        | 0.0500 | 0.0357 |           | mg/L |   | 71   | 29 - 131 | 4   | 24    |
| Hexachlorobenzene     | 0.0500 | 0.0485 |           | mg/L |   | 97   | 61 - 120 | 2   | 15    |
| Hexachlorobutadiene   | 0.0500 | 0.0266 |           | mg/L |   | 53   | 35 - 120 | 1   | 44    |
| Hexachloroethane      | 0.0500 | 0.0237 |           | mg/L |   | 47   | 43 - 120 | 2   | 46    |
| Nitrobenzene          | 0.0500 | 0.0421 |           | mg/L |   | 84   | 53 - 123 | 1   | 24    |
| Pentachlorophenol     | 0.100  | 0.105  |           | mg/L |   | 105  | 29 - 136 | 5   | 37    |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| Nitrobenzene-d5 (Surr)      | 88        |           | 46 - 120 |
| Phenol-d5 (Surr)            | 37        |           | 22 - 120 |
| p-Terphenyl-d14 (Surr)      | 107       |           | 60 - 148 |
| 2,4,6-Tribromophenol (Surr) | 106       |           | 41 - 120 |
| 2-Fluorobiphenyl (Surr)     | 94        |           | 48 - 120 |
| 2-Fluorophenol (Surr)       | 49        |           | 35 - 120 |

Lab Sample ID: LB 480-652622/1-G

**Matrix: Solid** 

**Analysis Batch: 653688** 

Client Sample ID: Method Blank **Prep Type: TCLP** 

**Prep Batch: 653570** 

|                       | LB     | LB        |       |        |      |   |                |                |         |
|-----------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
| Analyte               | Result | Qualifier | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 1,4-Dichlorobenzene   | ND     |           | 0.040 | 0.0018 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4,5-Trichlorophenol | ND     |           | 0.020 | 0.0019 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4,6-Trichlorophenol | ND     |           | 0.020 | 0.0024 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4-Dinitrotoluene    | ND     |           | 0.020 | 0.0017 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 3-Methylphenol        | ND     |           | 0.040 | 0.0016 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2-Methylphenol        | ND     |           | 0.020 | 0.0016 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Pyridine              | ND     |           | 0.10  | 0.0016 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 4-Methylphenol        | ND     |           | 0.040 | 0.0014 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Hexachlorobenzene     | ND     |           | 0.020 | 0.0020 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Hexachlorobutadiene   | ND     |           | 0.020 | 0.0027 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Hexachloroethane      | ND     |           | 0.020 | 0.0023 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Nitrobenzene          | ND     |           | 0.020 | 0.0011 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Pentachlorophenol     | ND     |           | 0.040 | 0.0088 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |

|                             | LD        | LB        |          |                |                |         |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| Nitrobenzene-d5 (Surr)      | 92        |           | 46 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Phenol-d5 (Surr)            | 35        |           | 22 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| p-Terphenyl-d14 (Surr)      | 105       |           | 60 - 148 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4,6-Tribromophenol (Surr) | 102       |           | 41 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2-Fluorobiphenyl (Surr)     | 92        |           | 48 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2-Fluorophenol (Surr)       | 51        |           | 35 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |

**Eurofins Buffalo** 

12/16/2022

Page 21 of 31

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-652821/2-A

Analysis Batch: 653387

Client Sample ID: Method Blank **Prep Type: Total/NA Matrix: Solid Prep Batch: 652821** 

| MB     | MB                             |                            |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|--------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result | Qualifier                      | RL                         | MDL                                                                                                                                                                                                      | Unit                                                                                                                                                                                                                                                                                                            | D                                                                                                                                                                                                                                                                                                                                                                                                                | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ND     |                                | 0.020                      | 0.0040                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     |                                | 0.0050                     | 0.0011                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     |                                | 0.0020                     | 0.00030                                                                                                                                                                                                  | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     |                                | 0.0050                     | 0.0020                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     |                                | 0.010                      | 0.0024                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     |                                | 0.040                      | 0.0040                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND     |                                | 0.0060                     | 0.0020                                                                                                                                                                                                   | mg/Kg                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                  | 12/09/22 10:09                                                                                                                                                                                                                                                                                                                                                                                                                           | 12/13/22 13:04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Result ND ND ND ND ND ND ND ND | ND<br>ND<br>ND<br>ND<br>ND | Result         Qualifier         RL           ND         0.020           ND         0.0050           ND         0.0020           ND         0.0050           ND         0.010           ND         0.040 | Result         Qualifier         RL         MDL           ND         0.020         0.0040           ND         0.0050         0.0011           ND         0.0020         0.00030           ND         0.0050         0.0020           ND         0.010         0.0024           ND         0.040         0.0040 | Result         Qualifier         RL         MDL         Unit           ND         0.020         0.0040         mg/Kg           ND         0.0050         0.0011         mg/Kg           ND         0.0020         0.00030         mg/Kg           ND         0.0050         0.0020         mg/Kg           ND         0.010         0.0024         mg/Kg           ND         0.040         0.0040         mg/Kg | Result         Qualifier         RL         MDL         Unit         D           ND         0.020         0.0040         mg/Kg         mg/Kg           ND         0.0050         0.0011         mg/Kg           ND         0.0020         0.00030         mg/Kg           ND         0.0050         0.0020         mg/Kg           ND         0.010         0.0024         mg/Kg           ND         0.040         0.0040         mg/Kg | Result         Qualifier         RL         MDL         Unit         D         Prepared           ND         0.020         0.0040         mg/Kg         12/09/22 10:09           ND         0.0050         0.0011         mg/Kg         12/09/22 10:09           ND         0.0020         0.00030         mg/Kg         12/09/22 10:09           ND         0.0050         0.0020         mg/Kg         12/09/22 10:09           ND         0.010         0.0024         mg/Kg         12/09/22 10:09           ND         0.040         0.0040         mg/Kg         12/09/22 10:09 | Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           ND         0.020         0.0040         mg/Kg         12/09/22 10:09         12/13/22 13:04           ND         0.0050         0.0011         mg/Kg         12/09/22 10:09         12/13/22 13:04           ND         0.0020         0.0030         mg/Kg         12/09/22 10:09         12/13/22 13:04           ND         0.0050         0.0020         mg/Kg         12/09/22 10:09         12/13/22 13:04           ND         0.010         0.0024         mg/Kg         12/09/22 10:09         12/13/22 13:04           ND         0.040         0.0040         mg/Kg         12/09/22 10:09         12/13/22 13:04 |

Lab Sample ID: LCS 480-652821/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 653387 Prep Batch: 652821** 

|          | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Arsenic  | 1.00  | 1.11   |           | mg/Kg |   | 111  | 80 - 120 |  |
| Barium   | 1.00  | 1.01   |           | mg/Kg |   | 101  | 80 - 120 |  |
| Cadmium  | 1.00  | 1.09   |           | mg/Kg |   | 109  | 80 - 120 |  |
| Chromium | 1.00  | 1.05   |           | mg/Kg |   | 105  | 80 - 120 |  |
| Lead     | 1.00  | 1.07   |           | mg/Kg |   | 107  | 80 - 120 |  |
| Selenium | 1.00  | 1.11   |           | mg/Kg |   | 111  | 80 - 120 |  |
| Silver   | 1.00  | 1.12   |           | mg/Kg |   | 112  | 80 - 120 |  |

Lab Sample ID: LB 480-652622/1-E Client Sample ID: Method Blank **Matrix: Solid Prep Type: TCLP Prep Batch: 652821** Analysis Batch: 653387

LB LB Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Arsenic ND 0.020 0.0040 mg/Kg 12/09/22 10:09 12/13/22 13:00 Barium ND 0.0050 0.0011 mg/Kg 12/09/22 10:09 12/13/22 13:00 Cadmium ND 0.0020 0.00030 mg/Kg 12/09/22 10:09 12/13/22 13:00 Chromium 0.00496 J 0.0050 0.0020 mg/Kg 12/09/22 10:09 12/13/22 13:00 0.010 12/09/22 10:09 12/13/22 13:00 Lead ND 0.0024 mg/Kg Selenium 0.00646 J 0.040 0.0040 mg/Kg 12/09/22 10:09 12/13/22 13:00 12/09/22 10:09 12/13/22 13:00 Silver ND 0.0060 0.0020 mg/Kg

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-652847/2-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

**Analysis Batch: 652921** Prep Batch: 652847 MB MB

Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac ND 0.00020 0.000043 mg/L 12/09/22 11:47 12/09/22 17:53 Mercury

Lab Sample ID: LCS 480-652847/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 652921 Prep Batch: 652847** LCS LCS %Rec Spike

Added Analyte Result Qualifier Unit %Rec Limits 0.00680 Mercury 0.00602 mg/L 88 80 - 120

**Eurofins Buffalo** 

Page 22 of 31

#### **QC Sample Results**

Client: LaBella Associates DPC
Project/Site: Roblin Steel site

Job ID: 480-204473-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 480-652622/1-F Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 652921

LB LB

Collett Sample ID: Metrica Blank
Prep Type: TCLP
Prep Batch: 652847

| Analyte | Result Qualifier | RL      | MDL U      | Jnit I | D | Prepared       | Analyzed       | Dil Fac |
|---------|------------------|---------|------------|--------|---|----------------|----------------|---------|
| Mercury | ND .             | 0.00020 | 0.000043 m | na/l   |   | 12/09/22 11:47 | 12/09/22 17:51 | 1       |

#### **QC Association Summary**

Client: LaBella Associates DPC
Project/Site: Roblin Steel site

Job ID: 480-204473-1

#### **GC/MS VOA**

| I pach | Ratch:  | 652650 |
|--------|---------|--------|
| Leacii | Dateii. | 002000 |

| Lab Sample ID     | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------|-----------|--------|--------|------------|
| 480-204473-1      | ROBLIN DRUM      | TCLP      | Solid  | 1311   |            |
| LB 480-652650/1-A | Method Blank     | TCLP      | Solid  | 1311   |            |

#### **Prep Batch: 652673**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method  | Prep Batch |
|--------------------|--------------------|-----------|--------|---------|------------|
| 480-204473-1       | ROBLIN DRUM        | Total/NA  | Solid  | 5035A_L |            |
| MB 480-652673/2-A  | Method Blank       | Total/NA  | Solid  | 5035A_L |            |
| LCS 480-652673/1-A | Lab Control Sample | Total/NA  | Solid  | 5035A_L |            |

#### **Analysis Batch: 652739**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | Total/NA  | Solid  | 8260C  | 652673     |
| MB 480-652673/2-A  | Method Blank       | Total/NA  | Solid  | 8260C  | 652673     |
| LCS 480-652673/1-A | Lab Control Sample | Total/NA  | Solid  | 8260C  | 652673     |

#### **Analysis Batch: 652922**

| Lab Sample ID<br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix Solid | Method<br>8260C | Prep Batch 652650 |
|-------------------------------|------------------------------|----------------|--------------|-----------------|-------------------|
| LB 480-652650/1-A             | Method Blank                 | TCLP           | Solid        | 8260C           | 652650            |
| MB 480-652922/8               | Method Blank                 | Total/NA       | Solid        | 8260C           |                   |
| LCS 480-652922/6              | Lab Control Sample           | Total/NA       | Solid        | 8260C           |                   |

#### **GC/MS Semi VOA**

#### **Prep Batch: 652566**

| <b>Lab Sample ID</b><br>480-204473-1 | Client Sample ID  ROBLIN DRUM | Prep Type Total/NA | Matrix Solid | Method 3550C | Prep Batch |
|--------------------------------------|-------------------------------|--------------------|--------------|--------------|------------|
| MB 480-652566/1-A                    | Method Blank                  | Total/NA           | Solid        | 3550C        |            |
| LCS 480-652566/2-A                   | Lab Control Sample            | Total/NA           | Solid        | 3550C        |            |

#### **Analysis Batch: 652617**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | Total/NA  | Solid  | 8270D  | 652566     |
| MB 480-652566/1-A  | Method Blank       | Total/NA  | Solid  | 8270D  | 652566     |
| LCS 480-652566/2-A | Lab Control Sample | Total/NA  | Solid  | 8270D  | 652566     |

#### Leach Batch: 652622

| Lab Sample ID     | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------|-----------|--------|--------|------------|
| 480-204473-1      | ROBLIN DRUM      | TCLP      | Solid  | 1311   |            |
| LB 480-652622/1-G | Method Blank     | TCLP      | Solid  | 1311   |            |

#### **Prep Batch: 653570**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 480-204473-1        | ROBLIN DRUM            | TCLP      | Solid  | 3510C  | 652622     |
| LB 480-652622/1-G   | Method Blank           | TCLP      | Solid  | 3510C  | 652622     |
| MB 480-653570/1-A   | Method Blank           | Total/NA  | Solid  | 3510C  |            |
| LCS 480-653570/2-A  | Lab Control Sample     | Total/NA  | Solid  | 3510C  |            |
| LCSD 480-653570/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 3510C  |            |

Eurofins Buffalo

12/16/2022

3

4

6

0

9

11

12

14

14

13

#### **QC Association Summary**

Client: LaBella Associates DPC
Project/Site: Roblin Steel site

Job ID: 480-204473-1

#### **GC/MS Semi VOA**

#### Analysis Batch: 653688

| Lab Sample ID<br>480-204473-1 | Client Sample ID  ROBLIN DRUM | Prep Type TCLP | Matrix Solid | Method 8270D | Prep Batch 653570 |
|-------------------------------|-------------------------------|----------------|--------------|--------------|-------------------|
| LB 480-652622/1-G             | Method Blank                  | TCLP           | Solid        | 8270D        | 653570            |
| MB 480-653570/1-A             | Method Blank                  | Total/NA       | Solid        | 8270D        | 653570            |
| LCS 480-653570/2-A            | Lab Control Sample            | Total/NA       | Solid        | 8270D        | 653570            |
| LCSD 480-653570/3-A           | Lab Control Sample Dup        | Total/NA       | Solid        | 8270D        | 653570            |

#### Metals

#### Leach Batch: 652622

| Lab Sample ID<br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix Solid | Method 1311 | Prep Batch |
|-------------------------------|------------------------------|----------------|--------------|-------------|------------|
| LB 480-652622/1-E             | Method Blank                 | TCLP           | Solid        | 1311        |            |
| LB 480-652622/1-F             | Method Blank                 | TCLP           | Solid        | 1311        |            |

#### **Prep Batch: 652821**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | TCLP      | Solid  | 3050B  | 652622     |
| LB 480-652622/1-E  | Method Blank       | TCLP      | Solid  | 3050B  | 652622     |
| MB 480-652821/2-A  | Method Blank       | Total/NA  | Solid  | 3050B  |            |
| LCS 480-652821/3-A | Lab Control Sample | Total/NA  | Solid  | 3050B  |            |

#### **Prep Batch: 652847**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | TCLP      | Solid  | 7470A  | 652622     |
| LB 480-652622/1-F  | Method Blank       | TCLP      | Solid  | 7470A  | 652622     |
| MB 480-652847/2-A  | Method Blank       | Total/NA  | Solid  | 7470A  |            |
| LCS 480-652847/3-A | Lab Control Sample | Total/NA  | Solid  | 7470A  |            |

#### **Analysis Batch: 652921**

| Lab Sample ID<br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix<br>Solid | Method<br>7470A | Prep Batch 652847 |
|-------------------------------|------------------------------|----------------|-----------------|-----------------|-------------------|
| LB 480-652622/1-F             | Method Blank                 | TCLP           | Solid           | 7470A           | 652847            |
| MB 480-652847/2-A             | Method Blank                 | Total/NA       | Solid           | 7470A           | 652847            |
| LCS 480-652847/3-A            | Lab Control Sample           | Total/NA       | Solid           | 7470A           | 652847            |

#### **Analysis Batch: 653387**

| <b>Lab Sample ID</b><br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix<br>Solid | Method<br>6010C | Prep Batch 652821 |
|--------------------------------------|------------------------------|----------------|-----------------|-----------------|-------------------|
| LB 480-652622/1-E                    | Method Blank                 | TCLP           | Solid           | 6010C           | 652821            |
| MB 480-652821/2-A                    | Method Blank                 | Total/NA       | Solid           | 6010C           | 652821            |
| LCS 480-652821/3-A                   | Lab Control Sample           | Total/NA       | Solid           | 6010C           | 652821            |

#### **General Chemistry**

#### **Analysis Batch: 652563**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 480-204473-1  | ROBLIN DRUM      | Total/NA  | Solid  | Moisture |            |

**Eurofins Buffalo** 

12/16/2022

#### Lab Chronicle

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

Client Sample ID: ROBLIN DRUM

Date Collected: 12/06/22 11:30 Date Received: 12/06/22 15:30

Lab Sample ID: 480-204473-1 **Matrix: Solid** 

Batch **Batch** Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab 1311 EET BUF 12/08/22 09:38 - 12/09/22 10:54 1 TCLP Leach 652650 BML **TCLP** 8260C 652922 ATG 12/10/22 12:24 Analysis 10 **EET BUF TCLP** Leach 1311 652622 BML **EET BUF** 12/08/22 09:01 - 12/09/22 09:36 1 **TCLP** Prep 3510C 653570 JMP **EET BUF** 12/15/22 09:33 **TCLP** Analysis 8270D 1 653688 JMM **EET BUF** 12/16/22 12:34 **TCLP** Leach 1311 652622 BML **EET BUF** 12/08/22 09:01 - 12/09/22 09:36 1 **TCLP** Prep 3050B 652821 NVK **EET BUF** 12/09/22 10:09 **TCLP** 6010C Analysis 1 653387 LMH EET BUF 12/13/22 13:43 **TCLP** Leach 1311 **EET BUF** 12/08/22 09:01 - 12/09/22 09:36 1 652622 BML **TCLP** Prep 7470A 652847 NVK **EET BUF** 12/09/22 11:47 **TCLP** Analysis 7470A 652921 NVK **EET BUF** 12/09/22 18:05 1 **EET BUF** 12/07/22 16:01 Total/NA Analysis Moisture 1 652563 JMM

Client Sample ID: ROBLIN DRUM

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 Matrix: Solid Date Received: 12/06/22 15:30 Percent Solids: 80.2

|           | Batch    | Batch   |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|---------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method  | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Prep     | 5035A_L |     |          | 652673 | LCH     | EET BUF | 12/08/22 12:27 |
| Total/NA  | Analysis | 8260C   |     | 1        | 652739 | CDC     | EET BUF | 12/09/22 06:45 |
| Total/NA  | Prep     | 3550C   |     |          | 652566 | SJM     | EET BUF | 12/07/22 16:14 |
| Total/NA  | Analysis | 8270D   |     | 1        | 652617 | JMM     | EET BUF | 12/08/22 20:23 |

Completion dates and times are reported or not reported per method requirements or individual lab discretion.

#### **Laboratory References:**

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

10

#### **Accreditation/Certification Summary**

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

#### **Laboratory: Eurofins Buffalo**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                     | Pr          | ogram                        | Identification Number                     | Expiration Date                         |
|-----------------------------------------------|-------------|------------------------------|-------------------------------------------|-----------------------------------------|
| New York                                      | NE          | ELAP                         | 10026                                     | 03-31-23                                |
| The following analytes the agency does not do | •           | ort, but the laboratory is r | not certified by the governing authority. | This list may include analytes for whic |
| 0 ,                                           |             | Matrix                       | Analyto                                   |                                         |
| Analysis Method                               | Prep Method | Matrix                       | Analyte                                   |                                         |
| 0 ,                                           |             | Matrix<br>Solid              | Analyte<br>Mercury                        |                                         |
| Analysis Method                               | Prep Method |                              |                                           |                                         |

#### **Method Summary**

Client: LaBella Associates DPC Project/Site: Roblin Steel site

Job ID: 480-204473-1

| Method   | Method Description                           | Protocol | Laboratory |
|----------|----------------------------------------------|----------|------------|
| 3260C    | Volatile Organic Compounds by GC/MS          | SW846    | EET BUF    |
| 3270D    | Semivolatile Organic Compounds (GC/MS)       | SW846    | EET BUF    |
| 010C     | Metals (ICP)                                 | SW846    | EET BUF    |
| 470A     | Mercury (CVAA)                               | SW846    | EET BUF    |
| loisture | Percent Moisture                             | EPA      | EET BUF    |
| 311      | TCLP Extraction                              | SW846    | EET BUF    |
| 050B     | Preparation, Metals                          | SW846    | EET BUF    |
| 510C     | Liquid-Liquid Extraction (Separatory Funnel) | SW846    | EET BUF    |
| 550C     | Ultrasonic Extraction                        | SW846    | EET BUF    |
| 030C     | Purge and Trap                               | SW846    | EET BUF    |
| 035A_L   | Closed System Purge and Trap                 | SW846    | EET BUF    |
| 7470A    | Preparation, Mercury                         | SW846    | EET BUF    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

5

7

8

9

. .

12

13

14

15

#### **Sample Summary**

Client: LaBella Associates DPC Project/Site: Roblin Steel site

Job ID: 480-204473-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-204473-1  | ROBLIN DRUM      | Solid  | 12/06/22 11:30 | 12/06/22 15:30 |

**Environment Testing** Eurofins Environment Testing America Sample Specific Notes: America Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) For Lab Use Only TALS Project #: Walk-in Client: -ab Sampling: Job / SDG No. ō 🔅 eurofins Sampler: 480-204473 Chain of Custody Site Contact: A Mrcw Koon Date: 12 16/12 **Chain of Custody Record** Other: نلم Lab Contact: RCRA 5700 Filtered Sample (Y/N)
Perform MS/MSD (Y/N) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the □ NPDES Email: CKi Bles @ labella concoin # of Cont. 2 weeks Frankard WORKING DAYS Project Manager: Chris Killer Matrix So. Ma Analysis Turnaround Time Type (C=Comp, G=Grab) Sample Regulatory Program: TAT if different from Below 2 days 1 day Sample Time 132 CALENDAR DAYS Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other 12/ch Sample Date Tel/Fax: 21/2 Comments Section if the lab is to dispose of the sample. Steel Sample Identification Amherst, NY 14228-2223 phone 716.691.2600 fax 716.691.7991 Client Contact Site: Mw installation ossible Hazard Identification Project Name: Robhふ Roblin

**Eurofins Buffalo** 10 Hazelwood Drive

-aBella Associates

300 Pearl sTreet

Buffalo, NY

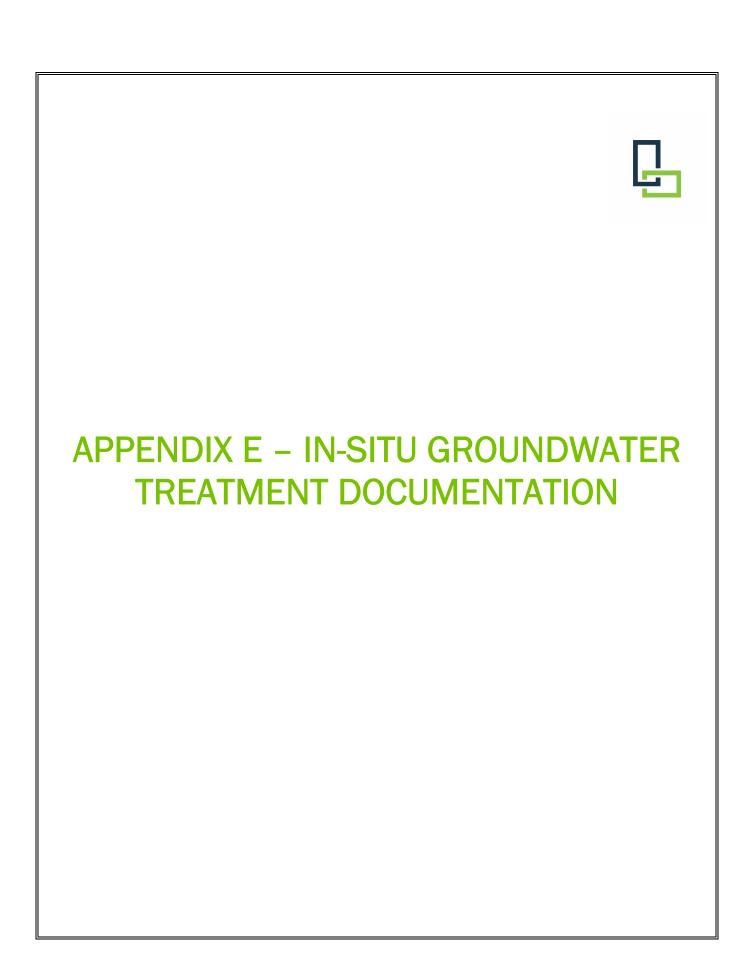
# O d

Archive for

Return to Client

Special Instructions/QC Requirements & Comments:

Client: LaBella Associates DPC

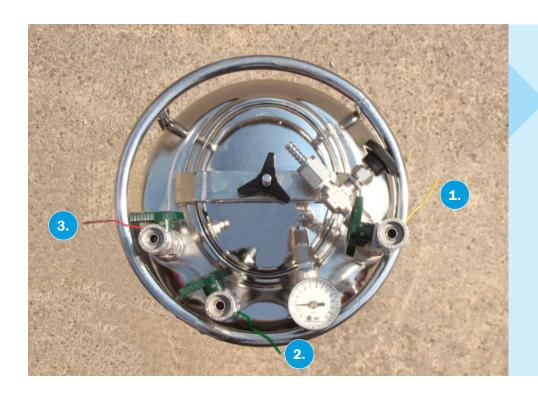

Job Number: 480-204473-1

Login Number: 204473 List Source: Eurofins Buffalo

List Number: 1

Creator: Sabuda, Brendan D

| Creator. Sabuda, Brendan D                                                       |        |            |
|----------------------------------------------------------------------------------|--------|------------|
| Question                                                                         | Answer | Comment    |
| Radioactivity either was not measured or, if measured, is at or below background | True   |            |
| The cooler's custody seal, if present, is intact.                                | True   |            |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |            |
| Samples were received on ice.                                                    | True   |            |
| Cooler Temperature is acceptable.                                                | True   |            |
| Cooler Temperature is recorded.                                                  | True   | 4.8 #1 ICE |
| COC is present.                                                                  | True   |            |
| COC is filled out in ink and legible.                                            | True   |            |
| COC is filled out with all pertinent information.                                | True   |            |
| Is the Field Sampler's name present on COC?                                      | True   |            |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |            |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |            |
| Sample containers have legible labels.                                           | True   |            |
| Containers are not broken or leaking.                                            | True   |            |
| Sample collection date/times are provided.                                       | True   |            |
| Appropriate sample containers are used.                                          | True   |            |
| Sample bottles are completely filled.                                            | True   |            |
| Sample Preservation Verified                                                     | True   |            |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |            |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |            |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |            |
| Multiphasic samples are not present.                                             | True   |            |
| Samples do not require splitting or compositing.                                 | True   |            |
| Sampling Company provided.                                                       | True   |            |
| Samples received within 48 hours of sampling.                                    | True   |            |
| Samples requiring field filtration have been filtered in the field.              | True   |            |
| Chlorine Residual checked.                                                       | True   |            |
|                                                                                  |        |            |






# TOOL KIT CONTENTS

- 1. Toolkit Case
- 2. Quick Connect Fittings
- 3. Scale
- 4. Tubing
- 5. Regulator
- 6. Tools
- 7. KB-1® Vessel in Overpack Case

\*Please note that the nitrogen/argon gas cylinder is not included with the culture shipment. Gas can be obtained from a local gas supplier.



## VESSEL PORT FUNCTIONS

- **1.** Inoculation Port (YELLOW)

  To allow KB-1® to flow out of the vessel.
- 2. Purge Port (GREEN)

  To purge tubing with inert gas.
- **3. Pressurization Port (RED)**To pressurize KB-1® vessel.

# **SETUP TO PURGE INJECTION TUBING**



- **1. Gas In:** The inert gas tubing remains in the pressurization port (RED) for the duration of the injection.
- **2. Gas Out:** Initially the tubing used to inject the KB-1® will be connected to the purge port (GREEN).

#### **SETUP TO INJECT KB-1®**



- **1. Gas In:** The pressurization port **(RED)** remains in the open position for the duration of the injection.
- **2. KB-1**® **Out:** The KB-1® injection tubing is moved from the purge port (**GREEN**) to the KB-1® inoculation port (**YELLOW**).



Turn scale on by pressing the lbs/kg button and ON buttons simultaneously

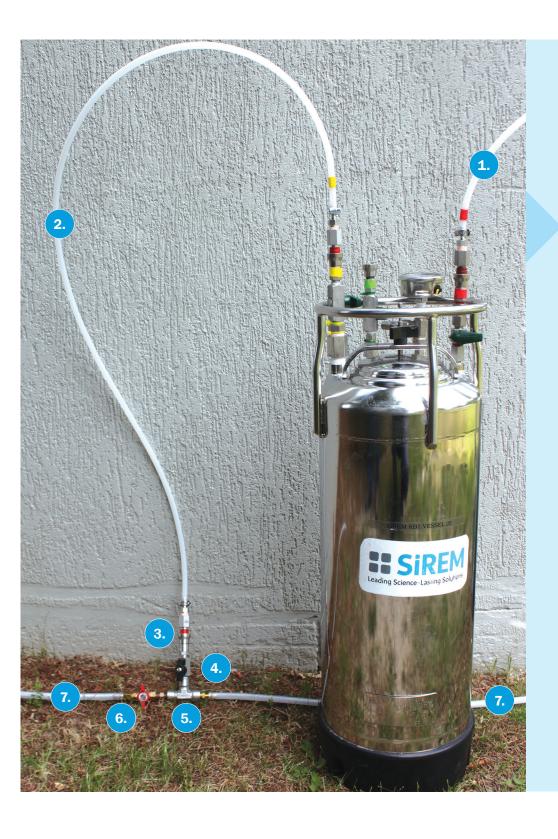


Change the units to kg by pressing lbs/kg button



Press Zero/Hold to tare scale

#### USING THE SCALE




Place KB-1® vessel on scale and record the weight



Weight will decrease with each injection of KB-1®





# ANAEROBIC WATER DRIVEN KB-1® INJECTION SETUP

- 1. Gas Tubing
- 2. KB-1<sup>®</sup> Injection Tubing
- 3. Female Quick Connect (1/4" Male NPT)
- 4. Ball Valve with 1/4" Female NPT Fitting\*
- 5. T-Fitting\*
- 6. Ball Valve\*
- 7. Anaerobic water line

<sup>\*</sup>not included with shipment

# KB-1<sup>®</sup> Injection Summary

#### KB-1® INJECTION DISPENSER OPERATION

- 1. Gas Line
- 2. Female Quick Connect (item #3 as shown in anaerobic water driven KB-1 injection set-up)













**Step 1:** Cut the length of tubing that will span from the gas cylinder to the culture vessel (5-10' should be sufficient). Attach one end to the hosebarb on the regulator and the other to the hosebarb on a quick connect. Connect the quick connect to the top port of the injection dispenser.

**Step 2:** Cut the length of tubing that will span from the injection dispenser to the injection location (5-10' should be sufficient). Attach one end to the hosebarb on the injection dispenser and the other to the hosebarb on a quick connect. Open the valve on the gas cylinder, followed by the regulator, the top of the injection dispenser and finally the bottom of the injection dispenser. Push on the bottom of the quick connect to allow gas to flow through the injection equipment.

**Step 3:** Close the bottom port on the injection dispenser and allow pressure to build to 5 psi in the dispenser. Close the top port of the injection dispenser.

**Step 4:** Connect the bottom quick connect into the inoculation port **(YELLOW)**. Move the gas line from the top of the injection dispenser to the pressurization port **(RED)** on the culture vessel. Connect a quick connect into the top port of the injection dispenser.

**Step 5:** Open the inoculation port **(YELLOW)** and allow KB-1® to flow into the injection dispenser to the desired volume.

**Step 6:** Pressure will increase as the injection dispenser fills. Release the pressure by opening the top port. Close the top port before the target volume is reached, this will ensure that there is always pressure in the dispenser.

**Step 7:** Once the target volume is reached close the bottom port and remove the quick connect from the top port.

**Step 8:** Move the injection dispenser from the inoculation port **(YELLOW)** to the port on the anaerobic water line set up. Connect the gas line to the top of the injection dispenser. Open the top port followed by the bottom port of the injection dispenser. Once the culture has been injected, close the bottom port followed by the top port to keep pressure in the injection dispenser.

**Step 9:** Repeat steps 4-8 until all injections are complete.

**Step 10:** Once the injections are complete, pack the vessel(s) in the white over pack(s) & place all tools into the tool kit. Contact Corey Scales at 519-515-0848 for return shipping instructions and paperwork.



#### **OVERVIEW**

Provect-IR® *In Situ* Chemical Reduction (ISCR) reagent is designed to treat persistent organic and/or inorganic contaminants present in the subsurface environment. As developers of the conventional ISCR amendments, scientists now at Provectus know that Provect-IR is a more efficient, and safer amendment. It is unique in its composition:

- Zero Valent Iron: Up to 85% (weight basis), site-specific particle sizes
- Integrated Vitamins, minerals, and nutrients (yeast extract) specially selected for anaerobes
- Chemical oxygen scavenger to maintain reduced condition
- Multiple, Complex, Hydrophilic, Timed-Release organic carbon sources (plant materials, Kelp, Calcium Propionate) @ 390 g H donor / lb product
- Natural, food-grade methane inhibitors to increase safety and efficiency

#### MATERIAL PACKAGING, HANDLING AND STORAGE



Provect-IR can be specially formulated to meet site-specific needs. The standard formulation contains 40% ZVI and is packaged as a dry powder in 50-lb easy-open (no sharps), polyethylene-lined, recycled paper bags or, upon request, in 2,000 lb supersacks. Typical shipments entail multiple units of 4x4 wooden pallets containing 40 bags x 50 lbs/ bag = 2,000 lbs reagent per pallet. Each pallet is neatly wrapped in water-resistant plastic, but direct exposure to rain should be avoided.

#### **GENERAL HEALTH AND SAFETY GUIDELINES**

Provect-IR is non-hazardous and safe to handle. The use of standard personal protective equipment is always recommended, including safety glasses, steel-toe boots, gloves, hearing protection (in the proximity of loud machinery) and hard hats. Dust mask may be desired when working with the material under certain conditions. The SDS is posted on our web site.

#### **SLURRY PREPARATION**

Provect-IR is mixed with clean water on site to yield an aqueous slurry (see **Table 1** for field mixing guidelines). Experienced injection contractors can manage (mix, transport/pump, and inject) slurry containing between 20% and 30% solids (defined as the mass of dry Provect-IR divided by the total mass of slurry, including the water). For situations where more volume is desired, slurry density can be decreased (e.g., using a thinner slurry). Conversely, for situations where less volume is required (for example to minimize surfacing issues), thicker slurry with higher



solids can be applied. A slurry containing *ca.* 30% solids will have the following general characteristics:

- Wet Density = 0.9 to 1.1 g/cm<sup>3</sup>
- Dry Density = 0.3 to 0.4 g/cm $^3$
- Viscosity = 500 to 1,500 c P

| TABLE 1. FIELD GUIDE FOR MAKING SLURRY |                       |                 |                          |  |  |  |  |
|----------------------------------------|-----------------------|-----------------|--------------------------|--|--|--|--|
| per                                    | 50 pound bag          | per 25 kg bag   |                          |  |  |  |  |
| Target weight %                        | USG<br>water required | Target weight % | Liters<br>water required |  |  |  |  |
| 15                                     | 34                    | 15              | 142                      |  |  |  |  |
| 20                                     | 24                    | 20              | 100                      |  |  |  |  |
| 22                                     | 21                    | 22              | 89                       |  |  |  |  |
| 24                                     | 19                    | 24              | 79                       |  |  |  |  |
| 26                                     | 17                    | 26              | 71                       |  |  |  |  |
| 28                                     | 15                    | 28              | 64                       |  |  |  |  |
| 30                                     | 14                    | 30              | 58                       |  |  |  |  |
| 32                                     | 13                    | 32              | 53                       |  |  |  |  |
| 34                                     | 12                    | 34              | 49                       |  |  |  |  |
| 36                                     | 11                    | 36              | 44                       |  |  |  |  |

#### **APPLICATION TECHNIQUES**

Provect-IR has been employed for source area treatment, plume treatment and/or plume management using permeable reactive barrier (PRBs). The choice of installation method will depend on the site-specific conditions, including treatment depth and geology. The most practiced *in situ* application method has been direct injection of aqueous slurry.

Provect-IR® slurry containing 10 to 35% solids has been added to numerous aquifers using a variety of injection methods, including hydraulic fracturing, pneumatic fracturing, and direct



injection. It can also be added via direct soil mixing using a wide range of equipment, or it can be placed directly into an open excavation or trench.

#### GENERAL GUIDELINES FOR DIRECT PUSH INJECTION OF AQUEOUS SLURRY

Mixing Equipment: Reagent slurry has been prepared in various ways, ranging from in-line automated mixing systems, to manual mixing using a hand-held drill with a mixing attachment, to more creative processes. Particularly for larger projects, experienced drillers will have some form of mechanical mixing system on site that includes a tank with a paddle-type mixer at the bottom. The slurry is then transferred to a feed tank connected to an injection pump so that slurry can be prepared continuously while injections are being performed (see example, ChemGrout mixing system). Slurry mixes quickly in these systems (<1 minute), and injections can proceed without interruption.



<u>Pumps</u>: Experienced drillers will have a variety of pumping equipment on site. For injecting slurries, an injection pump capable of generating at least 300 psi of pressure at a flow rate of >5 gpm is desired. Obviously, the pump needs to be able to handle solids, such as piston pumps, grout pumps, and progressing cavity pumps - with a preference towards the piston and grout pumps. Slurry is typically injected at pressures of 100 to 200 psi; however, higher pressures are sometimes required to initiate the injection. It is recommended to have a higher pressure pump available on site that can generate over 500 psi and ca. >10 gpm, as deeper installations often require higher injection pressures.



<u>Tooling</u>. Experienced drillers will have sufficient rod length on site to allow 3 to 5 injection points to be capped overnight to allow pressure to dissipate. This can help prevent backflow and surfacing of slurry as the injection rods are retracted. Likewise, experienced drillers will have on hand a variety of injection tips, some that direct the slurry horizontally (see for example GeoProbe's pressure activated tip).





Handling and Application Guidelines

In a "top-down" injection approach, the rods are initially advanced to the top of the targeted depth interval, and a specified volume of slurry is injected while recording flow rate, injection pressure, and slurry volume delivered. The injection rods are then further advanced a distance ranging 2 to 4 feet and the process is repeated to help ensure even distribution of slurry over the targeted depth interval. At the end of each injection point, a small volume of water (15 USG) is often used to clear the rods and the injection tip of any slurry.

#### **CONTACT US FOR A SITE EVALUATION**

PROVECTUS ENVIRONMENTAL PRODUCTS, INC.

PO BOX 358 | Freeport, IL 61032

Tel: (815) 650-2230 | Email: info@ProvectusEnv.com



#### **Provect-IR® ISCR Reagent**

Provect-IR® is a unique mixture of reagents combined into a single product that optimizes the *in situ* reductive dechlorination of chemicals present in soil, sediment, and groundwater. It acts by promoting synergistic interactions between:

- Natural antimethanogenic compounds
- Hydrophilic, nutrient rich organic carbon sources
- Zero-Valent Iron (ZVI)
- Chemical oxygen scavengers
- Vitamin and mineral sources



This distinctive, patented combination of natural and food-grade chemicals promotes *in situ* chemical reduction (ISCR) conditions for fast and effective destruction of targeted constituents of interest (COIs) such as chlorinated solvents, organochlorine pesticides, and other halogenated compounds (Brown *et al.*, 2009; Dolfing *et al.*, 2008; US Patent Office Scalzi *et al* 2012). Notably, Provect-IR® is the only ISCR reagent to simultaneously inhibit the production of methane during the requisite carbon fermentation processes (US Patent Office Scalzi *et al*, 2013, 2014). This promotes more efficient use of the hydrogen donor while avoiding negative issues associated with elevated methane (CH4) in groundwater, soil gas, and indoor air.

Current regulations for methane in groundwater vary from ca. 10 to 28 mg CH4/L (Indiana Department of Environmental Management, 2014). More State regulations are pending, with several enhanced reductive dechlorination (ERD) projects which intended to use liquid carbon (emulsified oils) sources failing to receive regulatory approval due to issues associated with excessive production of methane during previous technology applications (Personal Communication - State of California; State of Minnesota). Many remedial practitioners have subsequently been required to establish contingencies for conventional ERD/ISCR implementation if methane exceeds a threshold level ranging from 1 ppm to 10 ppm groundwater. These contingencies often entail expensive and extensive systems for capturing and treating methane in soil gas/vapor captured via SVE systems.

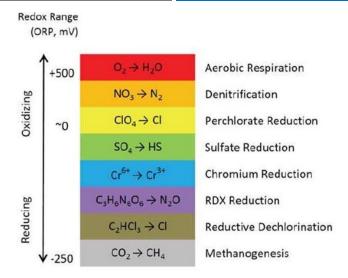
#### **MODE OF ACTION - HOW DOES IT WORK?**

What is a Methanogen? In the 1970s, Dr. Carl Woese (1928 to 2012) and his colleagues at the University of Illinois - Urbana studied prokaryotic relationships using DNA sequences and they found that microbes that produce methane – or methanogens - are Archaea (Woese and Fox, 1977). The identification of this new Domain of microorganism was very important for many reasons, but from our limited perspective herein this vast difference in genetic composition means that methanogens are significantly different from typical heterotrophic bacteria and eukaryotes. In other words, *Dehalococcoides* ethenogenes are as different from methanogens as you are.



What is a Statin? A statin can be defined as "a class of lipid-lowering drugs that reduce serum cholesterol levels by inhibiting a key enzyme involved in the biosynthesis of cholesterol". Lovastatin is a widely known, potent statin used for decades to lower cholesterol in human blood by inhibiting 3-hydro-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which is a key enzyme in the cholesterol biosynthesis pathway (Alberts et al., 1980). It was the first statin approved by the United States Food and Drug Administration in 1987 as a hypercholesterolemic drug.

What is Red Yeast (Rice) Extract? The red yeast rice (RYR) extract that is component of Provect-IR® is a substance extracted from rice that has been fermented with a type of yeast called Monascus purpureus. Red yeast extract is used as a food coloring, food additive/preservative, and is widely consumed by humans. The RYR extract contains a number of monacolins - most importantly, Monacolin K, otherwise known as Lovastatin or Mevinolin. Monacolin K is the only naturally occurring statin compound. In addition to Monacolin K, RYR extract also contains monounsaturated fatty acids and other vitamins that will effectively stimulate anaerobic bacteria in the subsurface.


**So - How Does a Statin Inhibit a Methanogen?** Interestingly, Monacolin K is a potent inhibitor of methanogenic archaea because cell membrane production in archaea shares a similar pathway with cholesterol biosynthesis (Miller and Wolin, 2001). And since methanogens are so uniquely different than bacteria, the inhibitory effect is not observed in microbes that are typically associated with: i) catabolism of organic contaminants (such as pseudomonas species) and/or, ii) halo-respiration/biodegradation of chlorinated solvents (such as *Dehalococcoides* species). RYR has been used in the cattle industry for decades in efforts to manage rumen microbiology and control methane production in cows.

#### ATTENUATION PROCESSES - SAFER, MORE EFFICIENT ISCR TREATMENT

In situ chemical reduction as defined by Dolfing et al (2008) describes the combined effect of stimulated biological oxygen consumption (via fermentation of an organic carbon source), direct chemical reduction with ZVI or other reduced metals. The corresponding enhanced thermodynamic decomposition reactions that are realized at the lowered redox (Eh) conditions allow for more effective mineralization of many COIs.

Several ERD substrates and other accelerated anaerobic bioremediation technologies exist (e.g., emulsified oils, non-emulsified oils, carbon-based hydrogen release compounds, vegetable matter + ZVI amendments) that purportedly offer similar responses. However, the Provect-IR® antimethanogenic ISCR substrate is unique in its ability to yield Eh values most conducive to reductive dechlorination while simultaneously preventing methane production - which is a waste of the H being generated and potentially a safety issue under field conditions.





Provect-IR® uniquely combines RYR extract with of a variety of specially selected reagents in order to induce genuine ISCR conditions and facilitate the destruction of targeted COIs in a safer, more efficacious manner. As outlined below, it can be used to manage environments impacted by chlorinated solvents, pesticides, heavy metals and other COIs.

**Specially Selected Organic Hydrogen Donors:** A variety of hydrophilic, nutrient rich organic carbon sources are incorporated in Provect-IR® that assist in promoting the ISCR process. The Provect-IR bioremediation amendments consist of slow, medium and long-term release carbon sources. Such a formulation is desirable because it provides both a rapidly utilized electron donor (calcium propionate), slow-release long-term electron donors (kelp meal and yeast extract) and long-term release carbon sources (other cellulose and hemi-cellulose carbon such as soy meal). More specifically,

- Calcium propionate and other readily biodegradable carbon sources: Following the addition of simple carbon sources such as lactate, formate, ethanol or glucose to an aquifer setting these compounds are often converted rapidly to hydrogen and acetate. Although this is the desired response, the process is sometimes too rapid, and this can result in aquifer acidification (due to rapid VFA production) and the liberation of too much hydrogen (which allows methanogens and sulfate reducers to compete effectively with dehalogenators, which tend to grow more slowly). Hence, calcium propionate is used as a readily biodegradable carbon source.
- Yeast extract: This supplement provides a variety of organic hydrogen donors that have slower release profiles (i.e., they are not fermented as rapidly as proprionate). Yeast extract also contains biological components that are very useful to anaerobes, but are not available through other carbon-only media. In particular, yeast extract provides an abundant source of priming ATPase along with trace nutrients and vitamin B complexes.



<u>Kelp meal/Cellulose based carbon:</u> These hydrogen sources are composed of a hydrophilic, solid and complex carbon that ferment more slowly and inherently generate less methane. The hydrophilic organic component of the kelp meal, for example, is composed of cellulose and hemicellulose and it may be treated during the manufacturing process so that some of the components more easily undergo hydrolysis to glucose while maintaining an overall longevity of 3 to 5+ years.

Chemical Oxygen Scavengers: The presence of chemical oxygen scavengers such as sodium sulfite helps minimize performance lag phases that are often observed following the injection of remedial amendments. This is due, in part, to the presence of oxygen that is introduced as a result of the field mixing and blending operations. It takes a certain amount of time and reagent consumption to remove that introduced oxygen and allow the ISCR reactions to proceed. Provect-IR is unique it that manages this impact chemically, which is a more effective, reliable manner thus allowing the ISCR process to be more effective.

**Zero-Valent Iron:** The presence of ZVI in Provect-IR® is critical to ISCR reactions. The ZVI is added as a reduced material that is oxidized during the reductive dechlorination reactions which use ZVI as the reducing agent. The beta-elimination reaction mainly produces (chloro)acetylene, ethane/ethane and chloride ions, without the accumulation of potentially problematic catabolites typical of microbiologically mediated sequential reductive dehalogenation processes (e.g., DCE "stall"). As the ZVI reacts, hydroxyl ions are released and pH increases which is useful in neutralizing the acidity generated during the fermentation of carbon, where acids are generated. Oxidized iron species are also produced, where are useful in alpha-elimination reactions and iron cycling. One limitation to ZVI reactions is that they are surface mediated which means that direct contact is required for direct COI destruction.

**RYR Extract:** Provect-IR® is the only ISCR amendment that will rapidly induce ISCR conditions while simultaneously preventing or significantly minimizing the production of methane. The benefits are notable:

- Safer: Methane is explosive with an LEL of 5% and an UEL of 15%. Production of methane will result from the addition of any conventional ERD or ISCR amendment: excessive and extended production of methane can result in elevated in groundwater concentrations (as high as 1,000 ppm have been reported) which can lead to accumulation in soil gas subsequently impacting indoor air. State specific regulations for methane in groundwater have been promulgated, with others pending for soil gas and indoor air.
- More Efficient = More Cost Effective: Production of methane is a direct indication that the hydrogen generated from the organic carbon amendments was used by methanogens and the amendment has been wasted because it was not utilized by acetogens or



dehalorespiration. By inhibiting the growth and proliferation of methane producing Archaea, chlororespiring bacteria can become the more dominant bacterial populations.

#### **PRIMARY FEATURES**

- <u>Effective</u>: No accumulation of dead-end catabolic intermediates as a function of substrate addition (as is common with [emulsified] oils and sources of carbon only).
  - Does not rely on physical sorption/sequestration as a major "removal" mechanism (as is common with oils).
  - Inherently buffered for pH control will not acidify an aquifer and liberate heavy metals as potential secondary COIs.
- <u>Efficient:</u> Significantly lower costs as a result more efficient amendment utilization and avoidance of contingencies for methane management. No need for additional buffers.
- <u>Safe:</u> Fewer health and safety concerns as compared with use of traditional ERD or ISCR reagents; Avoid issues associated with new and emerging methane regulations.
- <u>Ease of Use:</u> Green and sustainable. All components integrated in a single package. Logistics with no surprises.
- Longevity: Engineered profile of carbon sources for multi-year longevity estimated at 3 to 7 years based on site-specific hydrogeology. Reagent will stay in place and remain active which prevents rebound.
- <u>Improved Performance:</u> More efficient use of hydrogen donors (does not get wasted as methane).
- Adaptable Formulations for Heavy Metals: Will not mobilize arsenic or other heavy metals yielding secondary contaminants (as is common with [emulsified] oils and sources of carbon only). Can be formulated to manage environments that are co-impacted by various inorganic contaminants while simultaneously mineralizing the organic compounds.
- <u>Patented Technologies:</u> Technology end users and their clients are fully protected from all Patent and other legal issues

#### PHYSICAL PROPERTIES

Particle Size: ranges from ca. <5 to >100 micron (can be manufactured to specifications).

Dry Density: ranges from 0.4 to 0.5 g/cm3

29% Aqueous Slurry Density: ranges from 0.9 to 1.0 g/cm3 29% Aqueous Slurry Viscosity: ranges from 500 to 1,500 cP



#### LITERATURE CITED:

Alberts, A., J. Chen, G. Kuron, V. Hunt, J. Huff, C. Hoffman, J. Rothrock, M. Lopez, H. Joshua, an E. Harris; 1980. Mevinolin: a Highly Potent Competitive Inhibitor of Hydroxymethylglutaryl-coenzyme A Reductase and a Cholesterol-Lowering Agent. Proceedings of the National Acadaemy of Sciences of the United States of America 77:3957-3961.

Brown, R., J. Mueller, A. Seech, J. Henderson and J. Wilson. 2009. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents. Remediation Journal Winter 2009, pages 9-20.

Dolfing, J., M. Van Eekert, A. Seech, J. Vogan and J. Mueller. 2008. *In Situ* Chemical Reduction (ISCR) Technologies – Significance of Low Eh Reactions. International Journal Soil & Sediment Contamination 17 (1): 63-74.

Miller, T.L. and M.J. Wolin. 2001. Inhibition of growth of Methane-Producing Bacteria of the Rumen Forestomach by HydroxymethylglutarylSCoA Reductase Inhibitors. J. Dairy Sci. 84:1445-1448.

Scalzi, M. and McGill, J. 2012. Method for the Treatment of Groundwater and Soils using Mixtures of Seaweed Kelp. US PTO No. 8,147,694 B2 (April 3, 2012).

Scalzi, M. and A. Karachalios. 2013 and 2014. Inhibition of Methane Production during Anaerobic Reductive Dechlorination. US PTO 13/785,840 and CIP 14/268,637

Woese, C.R. and G.E. Fox (1977). <u>"Phylogenetic structure of the prokaryotic domain: the primary kingdoms"</u>. *Proceedings of the National Academy of Sciences of the United States of America* **74** (11): 5088–5090.

#### Kibler, Christopher

From: Will Moody <will.moody@provectusenv.com>
Sent: Wednesday, August 31, 2022 12:02 PM

**To:** Kibler, Christopher

**Subject:** RE: [Ext] RE: Quote for a project site in Dunkirk, NY???

Hi Chris,

Thank you for the update. Yes, I can provide dosage details. We typically do not provide our full calculation sheets, but I can outline how we develop our recommended reagent mass. For our Provect-IR remedial programs, we develop and compare two different design calculations. The first calculation is based on the site contaminant concentrations, competing electron acceptors (e.g., nitrate, sulfate, etc.), and desired lifespan of the reagent in the subsurface. The second calculation is based on ensuring sufficient distribution of the reagent in the subsurface. Typically the larger calculated reagent mass is recommended to ensure we overcome the contaminant/electron acceptor demands while achieving good subsurface reagent distribution. For your site, the distribution demand was larger than the contaminant/electron acceptor demand (i.e., the site contaminant concentrations aren't very high).

Please see below for details:

#### **MW-07**

1,600 sq ft treatment area with a 5-ft vertical target interval

#### **Contaminant/Electron Acceptor Demand**

Used TCE, DCE, and VC concentrations of 120 ug/L, 3,600 ug/L, and 740 ug/L, respectively, for contaminant demands. Data is from 12/2/2021 sample event.

Assumed nitrate and sulfate concentrations of 5 mg/L and 40 mg/L, respectively.

Used a 3 year treatment area lifespan; the same CVOC and electron acceptor concentrations will be entering the treatment zone over this time period.

Total calculated Provect-IR required is approximately 515 lbs.

#### **Reagent Distribution Calculation**

Used a 115 lbs/ft3 soil density to calculate approximate total mass within treatment area (460 US tons).

Recommend an approximate 0.35% by soil mass reagent demand to ensure distribution or **3,250 lbs of Provect-IR** or greater than 6X the contaminant/electron acceptor demand

#### EX-MW-11R

1,600 sq ft treatment area with a 5-ft vertical target interval

#### Contaminant/Electron Acceptor Demand

Used TCE, DCE, and VC concentrations of 1,400 ug/L, 7,450 ug/L, and 1,300 ug/L, respectively, for contaminant demands. Data is from 12/2/2021 sample event.

Assumed nitrate and sulfate concentrations of 5 mg/L and 40 mg/L, respectively.

Used a 3 year treatment area lifespan; the same CVOC and electron acceptor concentrations will be entering the treatment zone over this time period.

Total calculated Provect-IR required is approximately 525 lbs.

#### **Reagent Distribution Calculation**

Used a 115 lbs/ft3 soil density to calculate approximate total mass within treatment area (460 US tons)

Recommend an approximate 0.35% by soil mass reagent demand to ensure distribution or 3,250 lbs of Provect-IR or greater than 6X the contaminant/electron acceptor demand

Please contact me with questions or if you need any additional information.



#### AMERICAN RECYCLERS COMPANY Waste Profile Report (WPR)

177 Wales Avenue APPROVAL NUMBER: A-21300L Tonawanda, New York 14151 **EXPIRATION DATE:** 12/21/2024 Phone (716) 695-6720 Fax (716) 695-0161 HANDLING CODE: L Generator: Chautauqua County DPW (Falconer Shop EPAID #: NYD981875180 Address: 454 North Works St Contact: Drew E. Rodgers, PE City Falconer STATE: NY ZIP: 14733 Phone: 716-661-8410 Fax: 716-661-8451 Waste Name: Drill Cuttings Shipping Name: Non RCRA Non DOT Regulated Generating Process: IDW - Drill Cuttings Rate of Generation: Once Container Type: 55 Gal Steel 1A2 Composition of Waste % Phase % % **Drill Cuttings** 100 - 10b Solids Liquid Sludge Debris Is the material RCRA listed or Characteristicly Hazardous? ☐ YES X NO Does the material contain Medical or Biological Wastes? ☐ YES X NO Does the material contain etiological waste? ☐ YES X NO Does the material contain, or has it come in contact with PCB's? ☐ YES X NO Is the material radioactive? ☐ YES X NO Does the material contain septic or domestic sewage? ☐ YES X NO Is the material Non-Hazardous as defined by RCRA Title 40? X YES ☐ NO Check all below which apply: Material is to be shipped and recycled as Universal Waste ☐ YES X NO Material is to be shipped and recycled under 6 NYCRR Part 371.1(g)(1)(ii)(b) NO X ☐ YES (ie Computer Equipment & monitors) Material is being shipped for disposal/recycle via facility transfer/consolidation permit X YES ☐ NO Material is a Labpack and all contents are CERTIFIED as Non-RCRA ☐ YES X NO List all Lab Pack Container Numbers: (Attach packing slips to profile) I certify that the above submitted information (including any attachments) is true, accurate and complete to the best of my knowledge and ability and that all known Signer Title Deputy Director and suspected hazards have been disclosed. All material offered herein is deemed Company Chautaugua County DPF Non-RCRA. Signed: Print: Drew Rodgers Date: 12/21/22 ARC Presonel Reviewed and Approved by:

Print: Tom Martin

Date:

Approved by:

| À                                      | NON-HAZARDOUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. Generator ID Number                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Page 1 of                          | 3. Emergenc                 | y Response                                          | e Phone                          | 4. Waste Tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | acking Nun        | nber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | -                                      |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|
| T                                      | WASTE MANIFEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | 31875180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i,                                    | 800-                        |                                                     | -5053                            | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7332              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | 5. Generator's Name and Maili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng Address                                   | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Generator's 5               | Site Addres                                         | s (if different t                | han mailing addre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | The County Court Court                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng Address<br>unity DPW (Falcone<br>s St     | a chon)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | •                           |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | * :                                    |
|                                        | Falconer, NY 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 733                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | •                           |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | Generator's Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /16-601-641                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                        |
|                                        | 6. Transporter 1 Company Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne<br>bun'i Makazarah ma                     | the study of the state of the s | 74 &                                  | . 695 . 6                   | rom                                                 |                                  | U.S. EPA ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | iaana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tal Service Gi                               | COUP, LINC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 A O                                 | . www. C                    | ికడ్చి                                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 13904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                        |
|                                        | 7. Transporter 2 Company Nar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  | U.S. EPA ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | n Designation Francisco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ad Otto Safales                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  | HA PRESID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Minuel            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                        |
|                                        | Designated Facility Name at Average 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd Site Address<br>acyclers Compa            | TIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                             |                                                     |                                  | u.s. epa id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number            | * * .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                        |
|                                        | 177 Wales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                    | ı                                      |
|                                        | Tears of the Facility's Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              | ्रक्रमा <u>स्</u> र                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 <b>a a a a a</b>                    | t i poden                   |                                                     |                                  | Mani                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10005             | 10809                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                        |
| Н                                      | Facility's Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              | · # 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.695.                               | ) # AZ W                    | 10.0                                                | ninor-                           | _1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                 | e vide tod tod vide*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                    |                                        |
|                                        | 9. Waste Shipping Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e and Description                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | -                           | 10. Cont                                            |                                  | 11. Total<br>Quantity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12. Unit Wt./Vol. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | a de arma sono en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · · |                             | INU.                                                | Туре                             | Sequinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 116/701           | jārēksinda.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gangga aring         | i.<br>Jajoteta                         |
| 8                                      | 1 19 11 x x x x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non DOT Regula                               | ited, (Drill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| HAI                                    | Outtings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | l C                         | 3/                                                  | Om                               | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                 | Xerman Fire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                        |
| ENERATOR                               | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | • •                         |                                                     |                                  | - '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | nazze i sitelasi<br>Laisiga roʻfurisi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | angasti<br>Sventski  |                                        |
| 5                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                     |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| Ц                                      | re nebel<br>Less en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .                 | ugordi (Zaryê) -<br>Jegirê elkerek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                        |
| П                                      | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···········                           |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Age Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                        |
| П                                      | 10 (A)<br>A) (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| П                                      | 500, 900<br>24 5<br>4 5 1 5 1 5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | raudelii.<br>Maalesi |                                        |
| П                                      | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | .Vir. 502-6 (sec 1)<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                        |
| П                                      | 2.44 (A. A. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | areas and the second se |                      |                                        |
| H                                      | AST COLUMN COLUM |                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                             | •                                                   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| П                                      | 13. Special Handling Instruction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For and the out of the court          | g Codes:                    | 1 m 14                                              | iden                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | erc:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Approval #:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i – Pari                              | -                           | 4771 - FD                                           |                                  | norgana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 - A-21300L                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 - 840A                              | En'ig                       |                                                     |                                  | (Caller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | emst.             | A.W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | •                                      |
|                                        | <b>Z</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | # ·                                   |                             | rsg                                                 | 11                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                        |
|                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>3</b> - 4                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>A</i>                              |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | . "                                    |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 9 1 1 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        | 14. GENERATOR'S CERTIFIC Generator's/Offeror's Printed/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ATION: I certify the materials designed Name | cribed above on this manif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | t to federal reg<br>nature  | ulations for                                        | reporting pro                    | per disposal of H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | azardous W        | aste.<br>Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Day                  | Year                                   |
| ¥ I                                    | A Sept 19 September 19 Sept 19 | урев паше                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alg<br>I                              | Halult                      |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | INIOIEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l Day                | ].                                     |
| <u>'</u>                               | 15. International Shipments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | П.                                           | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                              |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                    | 1                                      |
| 2                                      | Transporter Signature (for expo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Import to U.S.                               | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Export from U                         | J.S.                        | Port of e                                           | -                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · .                  |                                        |
| r                                      | 16. Transporter Signature (for expo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | **                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             | Date leav                                           | ыну 0.5.:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | •••••••••••••••••••••••••••••••••••••• |
| 1                                      | Transporter 1 Printed/Typed N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sig                                   | nature 1                    |                                                     | 1)                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day                  | · Year                                 |
| 2                                      | Glann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CAVELLY                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 4   4   51                  | n                                                   | Yal                              | Dulje -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127                  | <b>12</b>                              |
| 25                                     | Transporter 2 Printed/Typed N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sig                                   | nature                      | - te 1                                              |                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day                  | Year                                   |
| ř                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| 4                                      | 17. Discrepancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · .                  |                                        |
|                                        | 17a. Discrepancy Indication Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ace Quantity                                 | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Pac                         | sidue                                               |                                  | Partial Rej                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ection            | . []                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Full Rejec           | tion                                   |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | stadinity                                    | , ype                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 166                         |                                                     |                                  | i viadi i Oji                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | . 🗀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i iojuu              |                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Manifest F                  | Reference I                                         | Number:                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| <u>-</u> [                             | 17b. Alternate Facility (or Gene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rator)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  | U.S. EPA ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Number            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
| ׅ֝֟֝֝֝֟֝֟֝ <del>֚</del>                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                     |                             |                                                     |                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | N.                                     |
| Į,                                     | Facility's Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                     |                             |                                                     |                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                    |                                        |
|                                        | 17c. Signature of Alternate Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iity (or Generator)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                                     |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I Day                | Year                                   |
| 2 2                                    | en lagraga et en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              | National Control of the Control of t |                                       | Talasta Baran Pen           | <u> 1 21 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 </u> | and the second second            | nag saggiar an isang saggiar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | al Vije geta bisc | my law year or a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                    | 1                                      |
| Ž                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAC)                 |                                        |
| ֓֞֝֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             |                                                     | apa pepakata 12<br>Marahiji Cali | io ang patenta<br>Ing payaga an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             | <u> </u>                                            |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | ustydii, by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                        |
| ľ                                      | 18. Designated Facility Owner of Printed/Typed Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or Operator: Certification of receipt        | t or materials covered by th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | t as noted in the<br>nature | em 1/a                                              | · sometime                       | Andreas Constitution of the Park                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day                  | Year                                   |
| 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | acing x 1/10/                                | e<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . J                                   | Ja after                    | 26                                                  |                                  | AND THE STREET OF THE STREET O |                   | K4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 177                  | 17 9                                   |
| į.                                     | CIVETIA (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | one of a little of                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                             | 11/3 JEM                                            |                                  | مسرسيده منها استها                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 9 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , w                  | Waget                                  |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | - 14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | 7//                         |                                                     |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ATÉD FAG                              | ZIŁITY'S                    | COPY                                                | (                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |

11

13

4 5

PREPARED FOR

**ANALYTICAL REPORT** 

Attn: Chris Kibler LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Generated 12/16/2022 4:23:45 PM

#### **JOB DESCRIPTION**

Roblin Steel site

#### **JOB NUMBER**

480-204473-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

#### **Eurofins Buffalo**

#### **Job Notes**

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing Northeast, LLC Buffalo and its client. All questions regarding this report should be directed to the Eurofins Environment Testing Northeast, LLC Buffalo Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

#### **Authorization**

Generated 12/16/2022 4:23:45 PM

Authorized for release by Brian Fischer, Manager of Project Management Brian.Fischer@et.eurofinsus.com (716)504-9835 Client: LaBella Associates DPC Project/Site: Roblin Steel site

Laboratory Job ID: 480-204473-1

### **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 6  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 11 |
| QC Sample Results      | 13 |
| QC Association Summary | 24 |
| Lab Chronicle          | 26 |
| Certification Summary  | 27 |
| Method Summary         | 28 |
| Sample Summary         | 29 |
| Chain of Custody       | 30 |
| Receipt Checklists     | 31 |

#### **Definitions/Glossary**

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

#### **Qualifiers**

#### **GC/MS VOA**

| Qualifier | Qualifier Description |
|-----------|-----------------------|
|           |                       |

\*3 ISTD response or retention time outside acceptable limits.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

vs Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L

low-level specifications.

#### **GC/MS Semi VOA**

#### 

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1- Surrogate recovery exceeds control limits, low biased.

**Metals** 

Qualifier Qualifier Description

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

#### **Glossary**

#### Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Buffalo** 

Page 4 of 31 12/16/2022

#### **Case Narrative**

Client: LaBella Associates DPC

Project/Site: Roblin Steel site

Job ID: 480-204473-1

Job ID: 480-204473-1

**Laboratory: Eurofins Buffalo** 

**Narrative** 

Job Narrative 480-204473-1

#### Comments

No additional comments.

#### Receipt

The sample was received on 12/6/2022 3:30 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.8° C.

#### GC/MS VOA

Method 8260C: Internal standard responses were outside of acceptance limits for the following sample: ROBLIN DRUM (480-204473-1). The sample(s) shows evidence of matrix interference.

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-652739 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCV were non-detects for the affected analyte; therefore, the data have been reported. The associated sample is impacted: ROBLIN DRUM (480-204473-1).

Method 8260C: The following samples were diluted due to the nature of the TCLP sample matrix: ROBLIN DRUM (480-204473-1) and (LB 480-652650/1-A). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### GC/MS Semi VOA

Method 8270D: Six surrogates are used for this analysis. The laboratory's SOP allows one acid and one base of these surrogates to be outside acceptance criteria without performing re-extraction/re-analysis. The following sample contained an allowable number of surrogate compounds outside limits: ROBLIN DRUM (480-204473-1). These results have been reported and qualified.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **Organic Prep**

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-652622 and 480-652820.

Method 3510C: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with preparation batch 480-652622 and 480-653570.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

6

4

\_

6

\_\_\_\_\_

9

10

12

13

#### **Detection Summary**

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Client Sample ID: ROBLIN DRUM

#### Lab Sample ID: 480-204473-1

| Analyte                  | Result | Qualifier | RL     | MDL     | Unit  | Dil Fac | D | Method | Prep Type |
|--------------------------|--------|-----------|--------|---------|-------|---------|---|--------|-----------|
| Acetone                  | 54     | vs        | 31     | 5.2     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Benzene                  | 2.2    | J vs      | 6.2    | 0.30    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Carbon disulfide         | 4.4    | J vs      | 6.2    | 3.1     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Chloroform               | 0.58   | J B vs    | 6.2    | 0.38    | ug/Kg | 1       | ⊅ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene   | 14     | VS        | 6.2    | 0.79    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Cyclohexane              | 11     | vs        | 6.2    | 0.87    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Ethylbenzene             | 4.7    | J vs      | 6.2    | 0.43    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Isopropylbenzene         | 3.4    | J *3 vs   | 6.2    | 0.93    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Methylcyclohexane        | 53     | vs        | 6.2    | 0.94    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Methylene Chloride       | 5.1    | J vs      | 6.2    | 2.8     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Styrene                  | 0.78   | J vs      | 6.2    | 0.31    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Toluene                  | 7.2    | vs        | 6.2    | 0.47    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene | 1.4    | J vs      | 6.2    | 0.64    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Trichloroethene          | 2.7    | J vs      | 6.2    | 1.4     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Vinyl chloride           | 2.4    | J vs      | 6.2    | 0.75    | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Xylenes, Total           | 27     | VS        | 12     | 1.0     | ug/Kg | 1       | ₩ | 8260C  | Total/NA  |
| Benzo[a]anthracene       | 57     | J         | 210    | 21      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[a]pyrene           | 66     | J         | 210    | 31      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[b]fluoranthene     | 84     | J         | 210    | 33      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[g,h,i]perylene     | 49     | J         | 210    | 22      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Benzo[k]fluoranthene     | 32     | J         | 210    | 27      | ug/Kg | 1       | ₽ | 8270D  | Total/NA  |
| Chrysene                 | 79     | J         | 210    | 47      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Fluoranthene             | 140    | J         | 210    | 22      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Indeno[1,2,3-cd]pyrene   | 45     | J         | 210    | 26      | ug/Kg | 1       | ₽ | 8270D  | Total/NA  |
| Phenanthrene             | 100    | J         | 210    | 31      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Pyrene                   | 110    | J         | 210    | 25      | ug/Kg | 1       | ₩ | 8270D  | Total/NA  |
| Pyridine                 | 0.0021 | J         | 0.10   | 0.0016  | mg/L  | 1       |   | 8270D  | TCLP      |
| Arsenic                  | 0.0076 | J         | 0.020  | 0.0040  | mg/Kg | 1       |   | 6010C  | TCLP      |
| Barium                   | 1.1    |           | 0.0050 | 0.0011  | mg/Kg | 1       |   | 6010C  | TCLP      |
| Cadmium                  | 0.0014 | J         | 0.0020 | 0.00030 | mg/Kg | 1       |   | 6010C  | TCLP      |
| Lead                     | 0.034  |           | 0.010  | 0.0024  | mg/Kg | 1       |   | 6010C  | TCLP      |
| Selenium                 | 0.0042 | JB        | 0.040  | 0.0040  | mg/Kg | 1       |   | 6010C  | TCLP      |

This Detection Summary does not include radiochemical test results.

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Client Sample ID: ROBLIN DRUM

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 Matrix: Solid Date Received: 12/06/22 15:30 Percent Solids: 80.2

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier **MDL** Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND VS 6.2 0.45 ug/Kg 12/08/22 12:27 12/09/22 06:45 \*3 vs 6.2 1.1.2.2-Tetrachloroethane ND 1.0 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,1,2-Trichloroethane ND vs 6.2 0.80 ug/Kg 12/08/22 12:27 12/09/22 06:45 6.2 12/09/22 06:45 1,1,2-Trichloro-1,2,2-trifluoroethane ND 1.4 ug/Kg 12/08/22 12:27 VS 1.1-Dichloroethane 6.2 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND 0.75 1,1-Dichloroethene ND 6.2 0.76 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,2,4-Trichlorobenzene \*3 vs 6.2 0.38 12/08/22 12:27 12/09/22 06:45 ND ug/Kg 1,2-Dibromo-3-Chloropropane 6.2 3.1 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND \*3 vs 1,2-Dichlorobenzene ND \*3 vs 6.2 0.48 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,2-Dichloroethane ND 6.2 0.31 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 1,2-Dichloropropane ND 6.2 ug/Kg 12/08/22 12:27 12/09/22 06:45 ug/Kg 1.3-Dichlorobenzene ND \*3 vs 6.2 0.32 12/08/22 12:27 12/09/22 06:45 1 1,4-Dichlorobenzene ND \*3 vs 6.2 0.87 ug/Kg 12/08/22 12:27 12/09/22 06:45 2-Butanone (MEK) ND 31 2.3 ug/Kg 12/08/22 12:27 12/09/22 06:45 vs 31 12/08/22 12:27 2-Hexanone 3.1 12/09/22 06:45 ND VS ug/Kg 12/08/22 12:27 31 2.0 4-Methyl-2-pentanone (MIBK) ND VS ug/Kg 12/09/22 06:45 12/09/22 06:45 31 5.2 12/08/22 12:27 **Acetone** 54 ug/Kg 6.2 0.30 12/08/22 12:27 12/09/22 06:45 Benzene 2.2 J vs ug/Kg Bromodichloromethane 62 0.83 12/08/22 12:27 12/09/22 06:45 ND VS ug/Kg Bromoform ND 6.2 ug/Kg 12/08/22 12:27 12/09/22 06:45 ug/Kg Bromomethane ND 6.2 0.56 12/08/22 12:27 12/09/22 06:45 VS Carbon disulfide 6.2 3.1 ug/Kg 12/08/22 12:27 12/09/22 06:45 Carbon tetrachloride 6.2 12/08/22 12:27 12/09/22 06:45 ND 0.60 ug/Kg VS Chlorobenzene ND 6.2 0.82 ug/Kg 12/08/22 12:27 12/09/22 06:45 Dibromochloromethane ND 6.2 0.79 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 6.2 12/08/22 12:27 12/09/22 06:45 Chloroethane ND 1.4 ug/Kg Chloroform 0.58 JB vs 6.2 0.38 ug/Kg 12/08/22 12:27 12/09/22 06:45 Chloromethane 12/08/22 12:27 ND vs 6.2 0.37 ug/Kg 12/09/22 06:45 cis-1.2-Dichloroethene 62 0.79 ug/Kg 12/08/22 12:27 12/09/22 06:45 14 VS 6.2 cis-1,3-Dichloropropene ND VS 0.89 ug/Kg 12/08/22 12:27 12/09/22 06:45 Cyclohexane 6.2 0.87 ug/Kg 12/08/22 12:27 12/09/22 06:45 11 VS Dichlorodifluoromethane 6.2 0.51 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND VS 6.2 0.43 12/08/22 12:27 12/09/22 06:45 Ethylbenzene 4.7 ug/Kg 12/08/22 12:27 12/09/22 06:45 1,2-Dibromoethane ND 62 0.79 ug/Kg VS Isopropylbenzene 6.2 0.93 ug/Kg 12/08/22 12:27 12/09/22 06:45 3.4 ND 31 12/08/22 12:27 12/09/22 06:45 Methyl acetate 37 ug/Kg VS Methyl tert-butyl ether ND ٧S 6.2 0.61 ug/Kg 12/08/22 12:27 12/09/22 06:45 Methylcyclohexane 53 6.2 0.94 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 6.2 12/08/22 12:27 12/09/22 06:45 **Methylene Chloride** 2.8 ug/Kg 5.1 6.2 0.31 ug/Kg 12/08/22 12:27 12/09/22 06:45 **Styrene** 0.78 J vs Tetrachloroethene ND vs 6.2 0.83 ug/Kg 12/08/22 12:27 12/09/22 06:45 **Toluene** 7.2 62 0.47 ug/Kg 12/08/22 12:27 12/09/22 06:45 VS 12/08/22 12:27 6.2 12/09/22 06:45 0.64 trans-1,2-Dichloroethene 1.4 J vs ug/Kg trans-1,3-Dichloropropene 6.2 12/08/22 12:27 12/09/22 06:45 ND vs 2.7 ug/Kg 6.2 12/08/22 12:27 12/09/22 06:45 **Trichloroethene** 1.4 ug/Kg 2.7 Trichlorofluoromethane 6.2 0.59 ug/Kg 12/08/22 12:27 12/09/22 06:45 ND 6.2 0.75 ug/Kg 12/08/22 12:27 12/09/22 06:45 Vinyl chloride 24 .lvs **Xylenes, Total** 27 12 1.0 ug/Kg 12/08/22 12:27 12/09/22 06:45

**Eurofins Buffalo** 

12/16/2022

6

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30

**Matrix: Solid** Percent Solids: 80.2

Date Received: 12/06/22 15:30

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------------|----------------|---------|
| Toluene-d8 (Surr)            | 112                 | 71 - 125 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 124                 | 64 - 126 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |
| 4-Bromofluorobenzene (Surr)  | 79                  | 72 - 126 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |
| Dibromofluoromethane (Surr)  | 108                 | 60 - 140 | 12/08/22 12:27 | 12/09/22 06:45 | 1       |

| Ī | Г., .,                       |     |          |                               |   |
|---|------------------------------|-----|----------|-------------------------------|---|
|   | Dibromofluoromethane (Surr)  | 108 | 60 - 140 | 12/08/22 12:27 12/09/22 06:45 | 1 |
|   | 4-Bromofluorobenzene (Surr)  | 79  | 72 - 126 | 12/08/22 12:27 12/09/22 06:45 | 1 |
|   | 1,2-Dichloroethane-d4 (Surr) | 124 | 64 - 126 | 12/08/22 12:27 12/09/22 06:45 | 1 |
|   | Toluene-a8 (Surr)            | 112 | 71 - 125 | 12/08/22 12:27 12/09/22 06:45 | 7 |

| Analyte              | Result Qualifier | RL    | MDL    | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|------------------|-------|--------|------|---|----------|----------------|---------|
| 1,2-Dichloroethane   | ND ND            | 0.010 | 0.0021 | mg/L |   |          | 12/10/22 12:24 | 10      |
| 2-Butanone (MEK)     | ND               | 0.050 | 0.013  | mg/L |   |          | 12/10/22 12:24 | 10      |
| Benzene              | ND               | 0.010 | 0.0041 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Carbon tetrachloride | ND               | 0.010 | 0.0027 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Chlorobenzene        | ND               | 0.010 | 0.0075 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Chloroform           | ND               | 0.010 | 0.0034 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Tetrachloroethene    | ND               | 0.010 | 0.0036 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Trichloroethene      | ND               | 0.010 | 0.0046 | mg/L |   |          | 12/10/22 12:24 | 10      |
| Vinyl chloride       | ND               | 0.010 | 0.0090 | mg/L |   |          | 12/10/22 12:24 | 10      |
| 1,1-Dichloroethene   | ND               | 0.010 | 0.0029 | mg/L |   |          | 12/10/22 12:24 | 10      |

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 100                 | 77 - 120 |          | 12/10/22 12:24 | 10      |
| 4-Bromofluorobenzene (Surr)  | 89                  | 73 - 120 |          | 12/10/22 12:24 | 10      |
| Toluene-d8 (Surr)            | 88                  | 80 - 120 |          | 12/10/22 12:24 | 10      |
| Dibromofluoromethane (Surr)  | 102                 | 75 - 123 |          | 12/10/22 12:24 | 10      |

| - Dibromonacromemane (Garr)          | 102 |           | 70-720      |     |       |            |                | 12/10/22 12.21 | 70      |
|--------------------------------------|-----|-----------|-------------|-----|-------|------------|----------------|----------------|---------|
| Method: SW846 8270D - Sen<br>Analyte | _   | anic Comp | oounds (GC/ | MS) | Unit  | D          | Prepared       | Analyzed       | Dil Fac |
| Biphenyl                             | ND  | <u> </u>  | 210         | 31  | ug/Kg | — <u>=</u> | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| bis (2-chloroisopropyl) ether        | ND  |           | 210         | 42  |       | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4,5-Trichlorophenol                | ND  |           | 210         | 57  | 0 0   | ☆          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4,6-Trichlorophenol                | ND  |           | 210         | 42  | ug/Kg |            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dichlorophenol                   | ND  |           | 210         | 22  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dimethylphenol                   | ND  |           | 210         | 51  | ug/Kg | ₽          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dinitrophenol                    | ND  |           | 2100        |     | ug/Kg | ₽          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,4-Dinitrotoluene                   | ND  |           | 210         | 43  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2,6-Dinitrotoluene                   | ND  |           | 210         | 25  | ug/Kg | ₽          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Chloronaphthalene                  | ND  |           | 210         | 35  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Chlorophenol                       | ND  |           | 410         | 38  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Methylphenol                       | ND  |           | 210         | 25  | ug/Kg | ≎          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Methylnaphthalene                  | ND  |           | 210         | 42  | ug/Kg | ☼          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Nitroaniline                       | ND  |           | 410         | 31  | ug/Kg | ☼          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 2-Nitrophenol                        | ND  |           | 210         | 59  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 3,3'-Dichlorobenzidine               | ND  |           | 410         | 250 | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 3-Nitroaniline                       | ND  |           | 410         | 58  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4,6-Dinitro-2-methylphenol           | ND  |           | 410         | 210 | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Bromophenyl phenyl ether           | ND  |           | 210         | 30  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Chloro-3-methylphenol              | ND  |           | 210         | 52  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Chloroaniline                      | ND  |           | 210         | 52  | ug/Kg | ☆          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Chlorophenyl phenyl ether          | ND  |           | 210         | 26  | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Methylphenol                       | ND  |           | 410         | 25  | ug/Kg | ☼          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Nitroaniline                       | ND  |           | 410         | 110 | ug/Kg | ☆          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| 4-Nitrophenol                        | ND  |           | 410         | 150 | ug/Kg | ₩          | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
|                                      |     |           |             |     |       |            |                |                |         |

**Eurofins Buffalo** 

Page 8 of 31 12/16/2022

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 **Matrix: Solid** 

Date Received: 12/06/22 15:30 Percent Solids: 80.2

| Analyte                     | Result    | Qualifier | RL     | MDL | Unit  | D            | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|--------|-----|-------|--------------|----------------|----------------|---------|
| Acenaphthene                | ND        |           | 210    | 31  | ug/Kg | <del>-</del> | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Acenaphthylene              | ND        |           | 210    | 27  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Acetophenone                | ND        |           | 210    | 28  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Anthracene                  | ND        |           | 210    | 52  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Atrazine                    | ND        |           | 210    | 73  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzaldehyde                | ND        |           | 210    | 170 | ug/Kg | ☼            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[a]anthracene          | 57        | J         | 210    | 21  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[a]pyrene              | 66        | J         | 210    | 31  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[b]fluoranthene        | 84        | J         | 210    | 33  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[g,h,i]perylene        | 49        | J         | 210    | 22  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Benzo[k]fluoranthene        | 32        | J         | 210    | 27  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Bis(2-chloroethoxy)methane  | ND        |           | 210    | 45  | ug/Kg | ☼            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Bis(2-chloroethyl)ether     | ND        |           | 210    | 27  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Bis(2-ethylhexyl) phthalate | ND        |           | 210    | 72  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Butyl benzyl phthalate      | ND        |           | 210    | 35  | ug/Kg | ⊅            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Caprolactam                 | ND        |           | 210    | 63  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Carbazole                   | ND        |           | 210    |     | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Chrysene                    | 79        | J         | 210    | 47  | ug/Kg | ⊅            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Dibenz(a,h)anthracene       | ND        |           | 210    | 37  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Di-n-butyl phthalate        | ND        |           | 210    | 36  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Di-n-octyl phthalate        | ND        |           | 210    | 25  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Dibenzofuran                | ND        |           | 210    | 25  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Diethyl phthalate           | ND        |           | 210    | 27  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Dimethyl phthalate          | ND        |           | 210    | 25  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Fluoranthene                | 140       | J         | 210    | 22  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Fluorene                    | ND        |           | 210    | 25  | ug/Kg | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachlorobenzene           | ND        |           | 210    | 28  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachlorobutadiene         | ND        |           | 210    | 31  | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachlorocyclopentadiene   | ND        |           | 210    | 28  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Hexachloroethane            | ND        |           | 210    | 27  | ug/Kg | ⊅            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Indeno[1,2,3-cd]pyrene      | 45        | J         | 210    | 26  | ug/Kg | ☆            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Isophorone                  | ND        |           | 210    | 45  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| N-Nitrosodi-n-propylamine   | ND        |           | 210    |     | ug/Kg | ☼            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| N-Nitrosodiphenylamine      | ND        |           | 210    | 170 | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Naphthalene                 | ND        |           | 210    | 27  | ug/Kg | ₽            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Nitrobenzene                | ND        |           | 210    |     | ug/Kg | <br>         | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Pentachlorophenol           | ND        |           | 410    | 210 | ug/Kg | ≎            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Phenanthrene                | 100       | J         | 210    | 31  | 0 0   | ₩            | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Phenol                      | ND        |           | 210    | 32  | ug/Kg |              | 12/07/22 16:14 | 12/08/22 20:23 | 1       |
| Pyrene                      | 110       | J         | 210    |     | ug/Kg | ☼            |                | 12/08/22 20:23 | 1       |
| Surrogate                   | %Recovery | Ouglifier | Limits |     |       |              | Prepared       | Analyzed       | Dil Fac |

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared Ana           | lyzed Dil Fac |
|-----------------------------|---------------------|----------|------------------------|---------------|
| Nitrobenzene-d5 (Surr)      | 53                  | 53 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| Phenol-d5 (Surr)            | 55                  | 54 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| p-Terphenyl-d14 (Surr)      | 87                  | 79 - 130 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| 2,4,6-Tribromophenol (Surr) | 77                  | 54 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| 2-Fluorobiphenyl (Surr)     | 66                  | 60 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |
| 2-Fluorophenol (Surr)       | 51 S1-              | 52 - 120 | 12/07/22 16:14 12/08/2 | 22 20:23 1    |

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

Mercury

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 **Matrix: Solid** 

Date Received: 12/06/22 15:30 Percent Solids: 80.2

| Analyte                     | Result         | Qualifier | RL       | MDL     | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|----------------|-----------|----------|---------|-------|---|----------------|----------------|---------|
| 1,4-Dichlorobenzene         | ND             |           | 0.040    | 0.0018  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2,4-Dinitrotoluene          | ND             |           | 0.020    | 0.0017  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2,4,5-Trichlorophenol       | ND             |           | 0.020    | 0.0019  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2,4,6-Trichlorophenol       | ND             |           | 0.020    | 0.0024  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2-Methylphenol              | ND             |           | 0.020    | 0.0016  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 3-Methylphenol              | ND             |           | 0.040    | 0.0016  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 4-Methylphenol              | ND             |           | 0.040    | 0.0014  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Hexachlorobenzene           | ND             |           | 0.020    | 0.0020  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Hexachlorobutadiene         | ND             |           | 0.020    | 0.0027  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Hexachloroethane            | ND             |           | 0.020    | 0.0023  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Nitrobenzene                | ND             |           | 0.020    | 0.0011  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Pentachlorophenol           | ND             |           | 0.040    | 0.0088  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Pyridine                    | 0.0021         | J         | 0.10     | 0.0016  | mg/L  |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Surrogate                   | %Recovery      | Qualifier | Limits   |         |       |   | Prepared       | Analyzed       | Dil Fac |
| 2,4,6-Tribromophenol (Surr) | 95             |           | 41 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2-Fluorobiphenyl (Surr)     | 89             |           | 48 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| 2-Fluorophenol (Surr)       | 48             |           | 35 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Nitrobenzene-d5 (Surr)      | 84             |           | 46 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| p-Terphenyl-d14 (Surr)      | 98             |           | 60 - 148 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Phenol-d5 (Surr)            | 33             |           | 22 - 120 |         |       |   | 12/15/22 09:33 | 12/16/22 12:34 | 1       |
| Method: SW846 6010C - Met   | als (ICP) - TC | LP        |          |         |       |   |                |                |         |
| Analyte                     | Result         | Qualifier | RL       | MDL     | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic                     | 0.0076         | J         | 0.020    |         | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Barium                      | 1.1            |           | 0.0050   | 0.0011  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Cadmium                     | 0.0014         | J         | 0.0020   | 0.00030 | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Chromium                    | ND             |           | 0.0050   | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Lead                        | 0.034          |           | 0.010    | 0.0024  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Selenium                    | 0.0042         | JB        | 0.040    | 0.0040  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Silver                      | ND             |           | 0.0060   | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:43 | 1       |
| Method: SW846 7470A - Mer   | cury (CVAA)    | - TCLP    |          |         |       |   |                |                |         |
|                             |                |           |          |         |       |   |                |                |         |

0.000043 mg/L

12/09/22 11:47 12/09/22 18:05

0.00020

ND

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

|                      |                    |          | Pe       | ercent Surre | ogate Reco |
|----------------------|--------------------|----------|----------|--------------|------------|
|                      |                    | TOL      | DCA      | BFB          | DBFM       |
| Lab Sample ID        | Client Sample ID   | (71-125) | (64-126) | (72-126)     | (60-140)   |
| 480-204473-1         | ROBLIN DRUM        | 112      | 124      | 79           | 108        |
| LCS 480-652673/1-A   | Lab Control Sample | 106      | 102      | 102          | 104        |
| MB 480-652673/2-A    | Method Blank       | 104      | 103      | 103          | 106        |
| Surrogate Legend     |                    |          |          |              |            |
| TOL = Toluene-d8 (Su | rr)                |          |          |              |            |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr) DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

Prep Type: Total/NA **Matrix: Solid** 

|                  |                    |          | Pe       | ercent Surre | ogate Rec |
|------------------|--------------------|----------|----------|--------------|-----------|
|                  |                    | TOL      | DCA      | BFB          | DBFM      |
| Lab Sample ID    | Client Sample ID   | (80-120) | (77-120) | (73-120)     | (75-123)  |
| LCS 480-652922/6 | Lab Control Sample | 90       | 93       | 96           | 100       |
| MB 480-652922/8  | Method Blank       | 85       | 99       | 90           | 104       |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS

**Matrix: Solid Prep Type: TCLP** 

|                   |                  |          | Pe       | ercent Surro | ogate Reco | very (Acceptance Limits) |
|-------------------|------------------|----------|----------|--------------|------------|--------------------------|
|                   |                  | DCA      | BFB      | TOL          | DBFM       |                          |
| Lab Sample ID     | Client Sample ID | (77-120) | (73-120) | (80-120)     | (75-123)   |                          |
| 480-204473-1      | ROBLIN DRUM      | 100      | 89       | 88           | 102        |                          |
| LB 480-652650/1-A | Method Blank     | 103      | 91       | 89           | 103        |                          |

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Matrix: Solid** Prep Type: Total/NA

|                    |                    | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |          |  |  |
|--------------------|--------------------|------------------------------------------------|----------|----------|----------|----------|----------|--|--|
|                    |                    | NBZ                                            | PHL      | TPHd14   | TBP      | FBP      | 2FP      |  |  |
| Lab Sample ID      | Client Sample ID   | (53-120)                                       | (54-120) | (79-130) | (54-120) | (60-120) | (52-120) |  |  |
| 480-204473-1       | ROBLIN DRUM        | 53                                             | 55       | 87       | 77       | 66       | 51 S1-   |  |  |
| LCS 480-652566/2-A | Lab Control Sample | 63                                             | 66       | 79       | 80       | 69       | 61       |  |  |
| MB 480-652566/1-A  | Method Blank       | 76                                             | 78       | 90       | 84       | 83       | 75       |  |  |
| Surrogate Legend   |                    |                                                |          |          |          |          |          |  |  |

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

**Eurofins Buffalo** 

12/16/2022

Page 11 of 31

### **Surrogate Summary**

Client: LaBella Associates DPC Project/Site: Roblin Steel site

TPHd14 = p-Terphenyl-d14 (Surr) TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Solid** 

| _                   |                        |          | Pe       | ercent Surre | ogate Reco | very (Acce | otance Lin |
|---------------------|------------------------|----------|----------|--------------|------------|------------|------------|
|                     |                        | NBZ      | PHL      | TPHd14       | TBP        | FBP        | 2FP        |
| Lab Sample ID       | Client Sample ID       | (46-120) | (22-120) | (60-148)     | (41-120)   | (48-120)   | (35-120)   |
| LCS 480-653570/2-A  | Lab Control Sample     | 84       | 35       | 105          | 103        | 92         | 47         |
| LCSD 480-653570/3-A | Lab Control Sample Dup | 88       | 37       | 107          | 106        | 94         | 49         |
| MB 480-653570/1-A   | Method Blank           | 90       | 36       | 100          | 95         | 94         | 53         |

### **Surrogate Legend**

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

**Prep Type: TCLP Matrix: Solid** 

|                   |                  |          | Percent Surrogate Recovery (Acceptance Limits) |          |          |          |          |  |  |
|-------------------|------------------|----------|------------------------------------------------|----------|----------|----------|----------|--|--|
|                   |                  | TBP      | FBP                                            | 2FP      | NBZ      | TPHd14   | PHL      |  |  |
| Lab Sample ID     | Client Sample ID | (41-120) | (48-120)                                       | (35-120) | (46-120) | (60-148) | (22-120) |  |  |
| 480-204473-1      | ROBLIN DRUM      | 95       | 89                                             | 48       | 84       | 98       | 33       |  |  |
| LB 480-652622/1-G | Method Blank     | 102      | 92                                             | 51       | 92       | 105      | 35       |  |  |

### Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

PHL = Phenol-d5 (Surr)

**Eurofins Buffalo** 

Page 12 of 31

Job ID: 480-204473-1

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

RL

5.0

5.0

**MDL** Unit

0.81 ug/Kg

0.66 ug/Kg

0.47 ug/Kg

0.61 ug/Kg

0.84 ug/Kg

0.64

1.1

0.31

0.30

0.64

0.72

0.70

0.41

0.35

0.64

0.75

0.49

0.76

2.3

0.25

0.67

0.38

0.52

2.2

ug/Kg

0.36

### Method: 8260C - Volatile Organic Compounds by GC/MS

MB MB Result Qualifier

ND

0.330

Lab Sample ID: MB 480-652673/2-A

**Matrix: Solid** 

Chlorobenzene

Chloroethane

Chloromethane

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Methyl tert-butyl ether

Methylcyclohexane

Methylene Chloride

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Isopropylbenzene

Methyl acetate

Styrene

Toluene

Chloroform

Dibromochloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

1,1,1-Trichloroethane

1,1,2,2-Tetrachloroethane

Analyte

**Analysis Batch: 652739** 

Client Sample ID: Method Blank Prep Type: Total/NA

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 12:27 12/08/22 21:12

12/08/22 21:12

12/08/22 12:27

Prepared

**Prep Batch: 652673** Analyzed Dil Fac

1

|                                       |    |     |      | 0 0   |                |                |   |
|---------------------------------------|----|-----|------|-------|----------------|----------------|---|
| 1,1,2-Trichloroethane                 | ND | 5.0 | 0.65 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND | 5.0 | 1.1  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,1-Dichloroethane                    | ND | 5.0 | 0.61 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2,4-Trichlorobenzene                | ND | 5.0 | 0.30 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dibromo-3-Chloropropane           | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dichlorobenzene                   | ND | 5.0 | 0.39 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dichloroethane                    | ND | 5.0 | 0.25 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,2-Dichloropropane                   | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,3-Dichlorobenzene                   | ND | 5.0 | 0.26 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,1-Dichloroethene                    | ND | 5.0 | 0.61 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 1,4-Dichlorobenzene                   | ND | 5.0 | 0.70 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 2-Butanone (MEK)                      | ND | 25  | 1.8  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 2-Hexanone                            | ND | 25  | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| 4-Methyl-2-pentanone (MIBK)           | ND | 25  | 1.6  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Acetone                               | ND | 25  | 4.2  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Benzene                               | ND | 5.0 | 0.25 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Bromodichloromethane                  | ND | 5.0 | 0.67 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Bromoform                             | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Bromomethane                          | ND | 5.0 | 0.45 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Carbon disulfide                      | ND | 5.0 | 2.5  | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
| Carbon tetrachloride                  | ND | 5.0 | 0.48 | ug/Kg | 12/08/22 12:27 | 12/08/22 21:12 | 1 |
|                                       |    |     |      |       |                |                |   |

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

25

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

5.0

10

**Eurofins Buffalo** 

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-652673/2-A

Matrix: Solid

**Analysis Batch: 652739** 

**Client Sample ID: Method Blank** 

**Prep Type: Total/NA** 

**Prep Batch: 652673** 

|                              | MB        | MB        |          |                |                |         |
|------------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 104       |           | 71 - 125 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 64 - 126 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |
| 4-Bromofluorobenzene (Surr)  | 103       |           | 72 - 126 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |
| Dibromofluoromethane (Surr)  | 106       |           | 60 - 140 | 12/08/22 12:27 | 12/08/22 21:12 | 1       |

Lab Sample ID: LCS 480-652673/1-A

**Matrix: Solid** 

**Analysis Batch: 652739** 

| Client Sample | ID: Lab | Control | Sample |
|---------------|---------|---------|--------|
|---------------|---------|---------|--------|

Prep Type: Total/NA Prep Batch: 652673

| Analysis Batch: 652739              | Spike | LCS  | LCS       |       |   |      | Prep Batch: 65267<br>%Rec |
|-------------------------------------|-------|------|-----------|-------|---|------|---------------------------|
| Analyte                             | Added |      | Qualifier | Unit  | D | %Rec | Limits                    |
| 1,1,1-Trichloroethane               | 50.0  | 45.7 |           | ug/Kg |   | 91   |                           |
| 1,1,2,2-Tetrachloroethane           | 50.0  | 45.3 |           | ug/Kg |   | 91   | 80 - 120                  |
| 1,1,2-Trichloroethane               | 50.0  | 51.2 |           | ug/Kg |   | 102  | 78 - 122                  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 50.0  | 48.2 |           | ug/Kg |   | 96   | 60 - 140                  |
| ne                                  |       |      |           |       |   |      |                           |
| 1,1-Dichloroethane                  | 50.0  | 42.9 |           | ug/Kg |   | 86   | 73 - 126                  |
| 1,2,4-Trichlorobenzene              | 50.0  | 46.9 |           | ug/Kg |   | 94   | 64 - 120                  |
| 1,2-Dibromo-3-Chloropropane         | 50.0  | 40.0 |           | ug/Kg |   | 80   | 63 - 124                  |
| 1,2-Dichlorobenzene                 | 50.0  | 46.5 |           | ug/Kg |   | 93   | 75 - 120                  |
| 1,2-Dichloroethane                  | 50.0  | 50.0 |           | ug/Kg |   | 100  | 77 - 122                  |
| 1,2-Dichloropropane                 | 50.0  | 42.7 |           | ug/Kg |   | 85   | 75 - 124                  |
| 1,3-Dichlorobenzene                 | 50.0  | 49.2 |           | ug/Kg |   | 98   | 74 - 120                  |
| 1,1-Dichloroethene                  | 50.0  | 47.5 |           | ug/Kg |   | 95   | 59 - 125                  |
| 1,4-Dichlorobenzene                 | 50.0  | 48.9 |           | ug/Kg |   | 98   | 73 - 120                  |
| 2-Butanone (MEK)                    | 250   | 195  |           | ug/Kg |   | 78   | 70 - 134                  |
| 2-Hexanone                          | 250   | 240  |           | ug/Kg |   | 96   | 59 - 130                  |
| 4-Methyl-2-pentanone (MIBK)         | 250   | 237  |           | ug/Kg |   | 95   | 65 - 133                  |
| Acetone                             | 250   | 199  |           | ug/Kg |   | 79   | 61 - 137                  |
| Benzene                             | 50.0  | 47.1 |           | ug/Kg |   | 94   | 79 - 127                  |
| Bromodichloromethane                | 50.0  | 47.5 |           | ug/Kg |   | 95   | 80 - 122                  |
| Bromoform                           | 50.0  | 47.7 |           | ug/Kg |   | 95   | 68 - 126                  |
| Bromomethane                        | 50.0  | 58.6 |           | ug/Kg |   | 117  | 37 - 149                  |
| Carbon disulfide                    | 50.0  | 43.0 |           | ug/Kg |   | 86   | 64 - 131                  |
| Carbon tetrachloride                | 50.0  | 43.5 |           | ug/Kg |   | 87   | 75 - 135                  |
| Chlorobenzene                       | 50.0  | 51.6 |           | ug/Kg |   | 103  | 76 - 124                  |
| Dibromochloromethane                | 50.0  | 51.4 |           | ug/Kg |   | 103  | 76 - 125                  |
| Chloroethane                        | 50.0  | 52.0 |           | ug/Kg |   | 104  | 69 - 135                  |
| Chloroform                          | 50.0  | 47.9 |           | ug/Kg |   | 96   | 80 - 120                  |
| Chloromethane                       | 50.0  | 40.9 |           | ug/Kg |   | 82   | 63 - 127                  |
| cis-1,2-Dichloroethene              | 50.0  | 44.7 |           | ug/Kg |   | 89   | 81 - 120                  |
| cis-1,3-Dichloropropene             | 50.0  | 42.9 |           | ug/Kg |   | 86   | 80 - 120                  |
| Cyclohexane                         | 50.0  | 44.2 |           | ug/Kg |   | 88   | 65 - 120                  |
| Dichlorodifluoromethane             | 50.0  | 48.9 |           | ug/Kg |   | 98   | 57 - 142                  |
| Ethylbenzene                        | 50.0  | 50.9 |           | ug/Kg |   | 102  | 80 - 120                  |
| 1,2-Dibromoethane                   | 50.0  | 50.2 |           | ug/Kg |   | 100  | 78 - 120                  |
| Isopropylbenzene                    | 50.0  | 46.5 |           | ug/Kg |   | 93   | 72 - 120                  |
| Methyl acetate                      | 100   | 74.9 |           | ug/Kg |   | 75   | 55 - 136                  |
| Methyl tert-butyl ether             | 50.0  | 41.9 |           | ug/Kg |   | 84   | 63 - 125                  |
| Methylcyclohexane                   | 50.0  | 45.7 |           | ug/Kg |   | 91   | 60 - 140                  |
| • •                                 |       |      |           | 5. 5  |   |      |                           |

**Eurofins Buffalo** 

Page 14 of 31

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-652673/1-A

**Matrix: Solid** 

**Analysis Batch: 652739** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA Prep Batch: 652673** 

|                           | Spike | LCS    | LCS       |       |   |      | %Rec                |  |
|---------------------------|-------|--------|-----------|-------|---|------|---------------------|--|
| Analyte                   | Added | Result | Qualifier | Unit  | D | %Rec | Limits              |  |
| Methylene Chloride        | 50.0  | 46.5   |           | ug/Kg |   | 93   | 61 - 127            |  |
| Styrene                   | 50.0  | 47.4   |           | ug/Kg |   | 95   | 80 - 120            |  |
| Tetrachloroethene         | 50.0  | 52.3   |           | ug/Kg |   | 105  | 74 - 122            |  |
| Toluene                   | 50.0  | 49.6   |           | ug/Kg |   | 99   | 74 - 128            |  |
| trans-1,2-Dichloroethene  | 50.0  | 43.5   |           | ug/Kg |   | 87   | 78 - 126            |  |
| trans-1,3-Dichloropropene | 50.0  | 43.9   |           | ug/Kg |   | 88   | 73 - 123            |  |
| Trichloroethene           | 50.0  | 47.7   |           | ug/Kg |   | 95   | 77 - 129            |  |
| Trichlorofluoromethane    | 50.0  | 54.1   |           | ug/Kg |   | 108  | 65 - 146            |  |
| Vinyl chloride            | 50.0  | 46.4   |           | ug/Kg |   | 93   | 61 <sub>-</sub> 133 |  |
|                           |       |        |           |       |   |      |                     |  |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 106       |           | 71 - 125 |
| 1,2-Dichloroethane-d4 (Surr) | 102       |           | 64 - 126 |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 72 - 126 |
| Dibromofluoromethane (Surr)  | 104       |           | 60 - 140 |

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

**Matrix: Solid** 

**Analysis Batch: 652922** 

Lab Sample ID: MB 480-652922/8

MB MB

| Analyte              | Result ( | Qualifier RL | MDL     | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|----------|--------------|---------|------|---|----------|----------------|---------|
| 1,2-Dichloroethane   | ND       | 0.0010       | 0.00021 | mg/L |   |          | 12/10/22 04:41 | 1       |
| 1,1-Dichloroethene   | ND       | 0.0010       | 0.00029 | mg/L |   |          | 12/10/22 04:41 | 1       |
| 2-Butanone (MEK)     | ND       | 0.0050       | 0.0013  | mg/L |   |          | 12/10/22 04:41 | 1       |
| Benzene              | ND       | 0.0010       | 0.00041 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Carbon tetrachloride | ND       | 0.0010       | 0.00027 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Chlorobenzene        | ND       | 0.0010       | 0.00075 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Chloroform           | ND       | 0.0010       | 0.00034 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Tetrachloroethene    | ND       | 0.0010       | 0.00036 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Trichloroethene      | ND       | 0.0010       | 0.00046 | mg/L |   |          | 12/10/22 04:41 | 1       |
| Vinyl chloride       | ND       | 0.0010       | 0.00090 | mg/L |   |          | 12/10/22 04:41 | 1       |

MB MB

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 85                  | 80 - 120 |          | 12/10/22 04:41 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 99                  | 77 - 120 |          | 12/10/22 04:41 | 1       |
| 4-Bromofluorobenzene (Surr)  | 90                  | 73 - 120 |          | 12/10/22 04:41 | 1       |
| Dibromofluoromethane (Surr)  | 104                 | 75 - 123 |          | 12/10/22 04:41 | 1       |

Lab Sample ID: LCS 480-652922/6

Matrix: Solid

Analysis Batch: 652922

| Client Sample ID: Lab Control Sample |
|--------------------------------------|
| Prep Type: Total/NA                  |

|                      | Spike  | LCS    | LCS       |      |   |      | %Rec     |  |
|----------------------|--------|--------|-----------|------|---|------|----------|--|
| Analyte              | Added  | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,2-Dichloroethane   | 0.0250 | 0.0237 |           | mg/L |   | 95   | 75 - 120 |  |
| 1,1-Dichloroethene   | 0.0250 | 0.0219 |           | mg/L |   | 88   | 66 - 127 |  |
| 2-Butanone (MEK)     | 0.125  | 0.114  |           | mg/L |   | 91   | 57 - 140 |  |
| Benzene              | 0.0250 | 0.0226 |           | mg/L |   | 91   | 71 - 124 |  |
| Carbon tetrachloride | 0.0250 | 0.0232 |           | mg/L |   | 93   | 72 - 134 |  |

**Eurofins Buffalo** 

Page 15 of 31

### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-652922/6

**Matrix: Solid** 

**Analysis Batch: 652922** 

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits Chlorobenzene 0.0250 0.0225 mg/L 90 80 - 120 Chloroform 0.0250 0.0226 mg/L 90 73 - 127 Tetrachloroethene 0.0250 0.0241 74 - 122 mg/L 96 0.0250 92 Trichloroethene 0.0231 mg/L 74 - 123 0.0250 Vinyl chloride 0.0247 mg/L 99 65 - 133

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 90        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 93        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 100       |           | 75 - 123 |

**Client Sample ID: Method Blank** 

Lab Sample ID: LB 480-652650/1-A **Matrix: Solid Prep Type: TCLP** 

**Analysis Batch: 652922** 

LB LB

| Analyte              | Result | Qualifier R | L MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|----------------------|--------|-------------|--------|------|---|----------|----------------|---------|
| 1,2-Dichloroethane   | ND     | 0.01        | 0.0021 | mg/L |   |          | 12/10/22 10:05 | 10      |
| 1,1-Dichloroethene   | ND     | 0.01        | 0.0029 | mg/L |   |          | 12/10/22 10:05 | 10      |
| 2-Butanone (MEK)     | ND     | 0.05        | 0.013  | mg/L |   |          | 12/10/22 10:05 | 10      |
| Benzene              | ND     | 0.01        | 0.0041 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Carbon tetrachloride | ND     | 0.01        | 0.0027 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Chlorobenzene        | ND     | 0.01        | 0.0075 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Chloroform           | ND     | 0.01        | 0.0034 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Tetrachloroethene    | ND     | 0.01        | 0.0036 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Trichloroethene      | ND     | 0.01        | 0.0046 | mg/L |   |          | 12/10/22 10:05 | 10      |
| Vinyl chloride       | ND     | 0.01        | 0.0090 | mg/L |   |          | 12/10/22 10:05 | 10      |

LB LB

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepare | ed Analyzed    | Dil Fac |
|------------------------------|-----------|-----------|----------|---------|----------------|---------|
| Toluene-d8 (Surr)            | 89        |           | 80 - 120 |         | 12/10/22 10:05 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 103       |           | 77 - 120 |         | 12/10/22 10:05 | 10      |
| 4-Bromofluorobenzene (Surr)  | 91        |           | 73 - 120 |         | 12/10/22 10:05 | 10      |
| Dibromofluoromethane (Surr)  | 103       |           | 75 - 123 |         | 12/10/22 10:05 | 10      |

### Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-652566/1-A

**Matrix: Solid** 

**Analysis Batch: 652617** 

**Client Sample ID: Method Blank** Prep Type: Total/NA

**Prep Batch: 652566** 

|                               | MB     | MR        |      |     |       |   |                |                |         |
|-------------------------------|--------|-----------|------|-----|-------|---|----------------|----------------|---------|
| Analyte                       | Result | Qualifier | RL   | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Biphenyl                      | ND     |           | 170  | 24  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| bis (2-chloroisopropyl) ether | ND     |           | 170  | 33  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4,5-Trichlorophenol         | ND     |           | 170  | 45  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4,6-Trichlorophenol         | ND     |           | 170  | 33  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4-Dichlorophenol            | ND     |           | 170  | 18  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4-Dimethylphenol            | ND     |           | 170  | 40  | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4-Dinitrophenol             | ND     |           | 1600 | 770 | ug/Kg |   | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| •                             |        |           |      |     |       |   |                |                |         |

**Eurofins Buffalo** 

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-652566/1-A

**Matrix: Solid** 

Indeno[1,2,3-cd]pyrene

**Analysis Batch: 652617** 

**Client Sample ID: Method Blank Prep Type: Total/NA** 

**Prep Batch: 652566** 

| Analyte                     | Result   | Qualifier | RL  | MDL | Unit           | D | Prepared       | Analyzed       | Dil Fac                               |
|-----------------------------|----------|-----------|-----|-----|----------------|---|----------------|----------------|---------------------------------------|
| 2,4-Dinitrotoluene          | ND       |           | 170 | 34  | ug/Kg          |   | 12/07/22 16:14 | 12/08/22 14:00 | 1                                     |
| 2,6-Dinitrotoluene          | ND       |           | 170 | 20  |                |   |                | 12/08/22 14:00 | 1                                     |
| 2-Chloronaphthalene         | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| 2-Chlorophenol              | ND       |           | 320 | 30  | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| 2-Methylphenol              | ND       |           | 170 | 20  |                |   |                | 12/08/22 14:00 | 1                                     |
| 2-Methylnaphthalene         | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| 2-Nitroaniline              | ND       |           | 320 | 24  |                |   |                | 12/08/22 14:00 | 1                                     |
| 2-Nitrophenol               | ND       |           | 170 | 47  |                |   |                | 12/08/22 14:00 | 1                                     |
| 3,3'-Dichlorobenzidine      | ND       |           | 320 | 200 |                |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| 3-Nitroaniline              | ND       |           | 320 |     |                |   |                | 12/08/22 14:00 | 1                                     |
| 4,6-Dinitro-2-methylphenol  | ND       |           | 320 | 170 |                |   |                | 12/08/22 14:00 | 1                                     |
| 4-Bromophenyl phenyl ether  | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 |                                       |
| 4-Chloro-3-methylphenol     | ND       |           | 170 | 41  |                |   |                | 12/08/22 14:00 | 1                                     |
| 4-Chloroaniline             | ND       |           | 170 | 41  |                |   | 12/07/22 16:14 | 12/08/22 14:00 | 1                                     |
| 4-Chlorophenyl phenyl ether | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 |                                       |
| 4-Methylphenol              | ND       |           | 320 | 20  | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| 4-Nitroaniline              | ND       |           | 320 | 87  |                |   |                | 12/08/22 14:00 | 1                                     |
| 4-Nitrophenol               | ND       |           | 320 | 120 | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| Acenaphthene                | ND       |           | 170 | 24  | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Acenaphthylene              | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Acetophenone                | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Anthracene                  | ND       |           | 170 | 41  | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Atrazine                    | ND       |           | 170 | 58  | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Benzaldehyde                | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 |                                       |
| Benzo[a]anthracene          | ND       |           | 170 | 17  |                |   |                | 12/08/22 14:00 | 1                                     |
| Benzo[a]pyrene              | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Benzo[b]fluoranthene        | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 |                                       |
| Benzo[g,h,i]perylene        | ND       |           | 170 | 18  |                |   |                | 12/08/22 14:00 | 1                                     |
| Benzo[k]fluoranthene        | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Bis(2-chloroethoxy)methane  | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| Bis(2-chloroethyl)ether     | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Bis(2-ethylhexyl) phthalate | ND       |           | 170 | 57  |                |   |                | 12/08/22 14:00 | 1                                     |
| Butyl benzyl phthalate      | 32.6     |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| Caprolactam                 | ND       |           | 170 | 50  |                |   |                | 12/08/22 14:00 | 1                                     |
| Carbazole                   | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Chrysene                    | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| Dibenz(a,h)anthracene       | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Di-n-butyl phthalate        | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Di-n-octyl phthalate        | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | · · · · · · · · · · · · · · · · · · · |
| Dibenzofuran                | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Diethyl phthalate           | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Dimethyl phthalate          | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 |                                       |
| Fluoranthene                | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Fluorene                    | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Hexachlorobenzene           | ND       |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 |                                       |
| Hexachlorobutadiene         | ND<br>ND |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Hexachlorocyclopentadiene   | ND<br>ND |           | 170 |     | ug/Kg          |   |                | 12/08/22 14:00 | 1                                     |
| Hexachloroethane            | ND       |           | 170 |     | ug/Kg<br>ug/Kg |   |                | 12/08/22 14:00 | 1                                     |
| 1 IOAGO IIO OCUITATIO       | ND       |           | 170 | 22  | ug/itg         |   | 12/01/22 10.14 | 12/00/22 14.00 |                                       |

**Eurofins Buffalo** 

12/07/22 16:14 12/08/22 14:00

Page 17 of 31

170

21 ug/Kg

ND

12/16/2022

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-652566/1-A

**Matrix: Solid** 

**Analysis Batch: 652617** 

| MB N     | <b>ИВ</b>                                       |                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|-------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result C | Qualifier                                       | RL                               | MDL                                                                                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                       | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dil Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND       |                                                 | 170                              | 35                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 28                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 140                                                                                                                                                                                                                                                                                                                    | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 22                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 19                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 320                              | 170                                                                                                                                                                                                                                                                                                                    | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 24                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 25                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND       |                                                 | 170                              | 20                                                                                                                                                                                                                                                                                                                     | ug/Kg                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                         | 12/07/22 16:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/08/22 14:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | Result 0 ND | ND<br>ND<br>ND<br>ND<br>ND<br>ND | Result         Qualifier         RL           ND         170           ND         170           ND         170           ND         170           ND         170           ND         320           ND         170           ND         170           ND         170           ND         170           ND         170 | Result         Qualifier         RL         MDL           ND         170         35           ND         170         28           ND         170         140           ND         170         22           ND         170         19           ND         320         170           ND         170         24           ND         170         25 | Result         Qualifier         RL         MDL ug/Kg           ND         170         35 ug/Kg           ND         170         28 ug/Kg           ND         170         140 ug/Kg           ND         170         22 ug/Kg           ND         170         19 ug/Kg           ND         320         170 ug/Kg           ND         170         24 ug/Kg           ND         170         25 ug/Kg | Result         Qualifier         RL         MDL         Unit         D           ND         170         35         ug/Kg         Ug/Kg           ND         170         28         ug/Kg           ND         170         140         ug/Kg           ND         170         22         ug/Kg           ND         170         19         ug/Kg           ND         320         170         ug/Kg           ND         170         24         ug/Kg           ND         170         25         ug/Kg | Result         Qualifier         RL         MDL         Unit         D         Prepared           ND         170         35         ug/Kg         12/07/22 16:14           ND         170         28         ug/Kg         12/07/22 16:14           ND         170         140         ug/Kg         12/07/22 16:14           ND         170         22         ug/Kg         12/07/22 16:14           ND         170         19         ug/Kg         12/07/22 16:14           ND         320         170         ug/Kg         12/07/22 16:14           ND         170         24         ug/Kg         12/07/22 16:14           ND         170         25         ug/Kg         12/07/22 16:14 | Result         Qualifier         RL         MDL         Unit         D         Prepared         Analyzed           ND         170         35         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         28         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         140         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         22         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         19         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         320         170         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         24         ug/Kg         12/07/22 16:14         12/08/22 14:00           ND         170         25         ug/Kg         12/07/22 16:14         12/08/22 14:00 |

|                             | MB MB               |          |                |                |         |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| Nitrobenzene-d5 (Surr)      | 76                  | 53 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| Phenol-d5 (Surr)            | 78                  | 54 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| p-Terphenyl-d14 (Surr)      | 90                  | 79 - 130 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2,4,6-Tribromophenol (Surr) | 84                  | 54 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Fluorobiphenyl (Surr)     | 83                  | 60 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
| 2-Fluorophenol (Surr)       | 75                  | 52 - 120 | 12/07/22 16:14 | 12/08/22 14:00 | 1       |
|                             |                     |          |                |                |         |

Lab Sample ID: LCS 480-652566/2-A

| Matrix: Solid                 |        |      |           |       |     |      | Prep Type: Total/NA |
|-------------------------------|--------|------|-----------|-------|-----|------|---------------------|
| Analysis Batch: 652617        | Cmiles | 1.00 | LCS       |       |     |      | Prep Batch: 652566  |
| Ameliate                      | Spike  |      |           | 1194  | _   | 0/ 🗖 | %Rec                |
| Analyte                       | Added  |      | Qualifier | Unit  | _ D | %Rec | Limits              |
| Biphenyl                      | 1640   | 1080 |           | ug/Kg |     | 66   | 59 - 120            |
| bis (2-chloroisopropyl) ether | 1640   | 970  |           | ug/Kg |     | 59   | 44 - 120            |
| 2,4,5-Trichlorophenol         | 1640   | 1210 |           | ug/Kg |     | 74   | 59 - 126            |
| 2,4,6-Trichlorophenol         | 1640   | 1210 |           | ug/Kg |     | 73   | 59 - 123            |
| 2,4-Dichlorophenol            | 1640   | 1140 |           | ug/Kg |     | 69   | 61 - 120            |
| 2,4-Dimethylphenol            | 1640   | 1140 |           | ug/Kg |     | 70   | 59 - 120            |
| 2,4-Dinitrophenol             | 3280   | 2460 |           | ug/Kg |     | 75   | 41 - 146            |
| 2,4-Dinitrotoluene            | 1640   | 1290 |           | ug/Kg |     | 79   | 63 - 120            |
| 2,6-Dinitrotoluene            | 1640   | 1240 |           | ug/Kg |     | 75   | 66 - 120            |
| 2-Chloronaphthalene           | 1640   | 1060 |           | ug/Kg |     | 64   | 57 - 120            |
| 2-Chlorophenol                | 1640   | 1020 |           | ug/Kg |     | 62   | 53 - 120            |
| 2-Methylphenol                | 1640   | 1110 |           | ug/Kg |     | 68   | 54 - 120            |
| 2-Methylnaphthalene           | 1640   | 988  |           | ug/Kg |     | 60   | 59 - 120            |
| 2-Nitroaniline                | 1640   | 1220 |           | ug/Kg |     | 74   | 61 - 120            |
| 2-Nitrophenol                 | 1640   | 1060 |           | ug/Kg |     | 65   | 56 - 120            |
| 3,3'-Dichlorobenzidine        | 3280   | 2380 |           | ug/Kg |     | 73   | 54 - 120            |
| 3-Nitroaniline                | 1640   | 1150 |           | ug/Kg |     | 70   | 48 - 120            |
| 4,6-Dinitro-2-methylphenol    | 3280   | 2480 |           | ug/Kg |     | 76   | 49 - 122            |
| 4-Bromophenyl phenyl ether    | 1640   | 1200 |           | ug/Kg |     | 73   | 58 - 120            |
| 4-Chloro-3-methylphenol       | 1640   | 1240 |           | ug/Kg |     | 75   | 61 - 120            |
| 4-Chloroaniline               | 1640   | 1030 |           | ug/Kg |     | 63   | 38 - 120            |
| 4-Chlorophenyl phenyl ether   | 1640   | 1180 |           | ug/Kg |     | 72   | 63 - 124            |
| 4-Methylphenol                | 1640   | 1130 |           | ug/Kg |     | 69   | 55 - 120            |
| 4-Nitroaniline                | 1640   | 1250 |           | ug/Kg |     | 76   | 56 - 120            |
| 4-Nitrophenol                 | 3280   | 2580 |           | ug/Kg |     | 79   | 43 - 147            |

**Eurofins Buffalo** 

Client Sample ID: Method Blank

**Client Sample ID: Lab Control Sample** 

**Prep Type: Total/NA** 

**Prep Batch: 652566** 

Spike

Client: LaBella Associates DPC Job ID: 480-204473-1

LCS LCS

Project/Site: Roblin Steel site

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-652566/2-A

**Matrix: Solid** 

**Analysis Batch: 652617** 

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 652566 %Rec

|                             | Shire | LUS    | LUJ            |        | /orvec   |  |
|-----------------------------|-------|--------|----------------|--------|----------|--|
| Analyte                     | Added | Result | Qualifier Unit | D %Rec | Limits   |  |
| Acenaphthene                | 1640  | 1120   | ug/Kg          | 68     | 62 - 120 |  |
| Acenaphthylene              | 1640  | 1140   | ug/Kg          | 69     | 58 - 121 |  |
| Acetophenone                | 1640  | 1030   | ug/Kg          | 63     | 54 - 120 |  |
| Anthracene                  | 1640  | 1240   | ug/Kg          | 76     | 62 - 120 |  |
| Atrazine                    | 3280  | 2620   | ug/Kg          | 80     | 60 - 127 |  |
| Benzaldehyde                | 3280  | 1940   | ug/Kg          | 59     | 10 - 150 |  |
| Benzo[a]anthracene          | 1640  | 1250   | ug/Kg          | 76     | 65 - 120 |  |
| Benzo[a]pyrene              | 1640  | 1250   | ug/Kg          | 76     | 64 - 120 |  |
| Benzo[b]fluoranthene        | 1640  | 1440   | ug/Kg          | 88     | 64 - 120 |  |
| Benzo[g,h,i]perylene        | 1640  | 1170   | ug/Kg          | 71     | 45 - 145 |  |
| Benzo[k]fluoranthene        | 1640  | 1180   | ug/Kg          | 72     | 65 - 120 |  |
| Bis(2-chloroethoxy)methane  | 1640  | 1050   | ug/Kg          | 64     | 55 - 120 |  |
| Bis(2-chloroethyl)ether     | 1640  | 961    | ug/Kg          | 59     | 45 - 120 |  |
| Bis(2-ethylhexyl) phthalate | 1640  | 1310   | ug/Kg          | 80     | 61 - 133 |  |
| Butyl benzyl phthalate      | 1640  | 1280   | ug/Kg          | 78     | 61 - 129 |  |
| Caprolactam                 | 3280  | 2680   | ug/Kg          | 82     | 47 - 120 |  |
| Carbazole                   | 1640  | 1280   | ug/Kg          | 78     | 65 - 120 |  |
| Chrysene                    | 1640  | 1200   | ug/Kg          | 73     | 64 - 120 |  |
| Dibenz(a,h)anthracene       | 1640  | 1220   | ug/Kg          | 75     | 54 - 132 |  |
| Di-n-butyl phthalate        | 1640  | 1300   | ug/Kg          | 79     | 58 - 130 |  |
| Di-n-octyl phthalate        | 1640  | 1280   | ug/Kg          | 78     | 57 - 133 |  |
| Dibenzofuran                | 1640  | 1150   | ug/Kg          | 70     | 63 - 120 |  |
| Diethyl phthalate           | 1640  | 1270   | ug/Kg          | 77     | 66 - 120 |  |
| Dimethyl phthalate          | 1640  | 1250   | ug/Kg          | 76     | 65 - 124 |  |
| Fluoranthene                | 1640  | 1270   | ug/Kg          | 77     | 62 - 120 |  |
| Fluorene                    | 1640  | 1170   | ug/Kg          | 72     | 63 - 120 |  |
| Hexachlorobenzene           | 1640  | 1210   | ug/Kg          | 73     | 60 - 120 |  |
| Hexachlorobutadiene         | 1640  | 959    | ug/Kg          | 58     | 45 - 120 |  |
| Hexachlorocyclopentadiene   | 1640  | 1010   | ug/Kg          | 62     | 47 - 120 |  |
| Hexachloroethane            | 1640  | 885    | ug/Kg          | 54     | 41 - 120 |  |
| Indeno[1,2,3-cd]pyrene      | 1640  | 1220   | ug/Kg          | 74     | 56 - 134 |  |
| Isophorone                  | 1640  | 1090   | ug/Kg          | 66     | 56 - 120 |  |
| N-Nitrosodi-n-propylamine   | 1640  | 1040   | ug/Kg          | 64     | 52 - 120 |  |
| N-Nitrosodiphenylamine      | 1640  | 1210   | ug/Kg          | 74     | 51 - 128 |  |
| Naphthalene                 | 1640  | 1020   | ug/Kg          | 62     | 55 - 120 |  |
| Nitrobenzene                | 1640  | 1040   | ug/Kg          | 63     | 54 - 120 |  |
| Pentachlorophenol           | 3280  | 2330   | ug/Kg          | 71     | 51 - 120 |  |
| Phenanthrene                | 1640  | 1210   | ug/Kg          | 74     | 60 - 120 |  |
| Phenol                      | 1640  | 1060   | ug/Kg          | 65     | 53 - 120 |  |
| Pyrene                      | 1640  | 1250   | ug/Kg          | 76     | 61 - 133 |  |
| •                           |       |        | 5 0            |        |          |  |

LCS LCS

| Surrogate                   | %Recovery | Qualifier | Limits              |
|-----------------------------|-----------|-----------|---------------------|
| Nitrobenzene-d5 (Surr)      | 63        |           | 53 - 120            |
| Phenol-d5 (Surr)            | 66        |           | 54 <sub>-</sub> 120 |
| p-Terphenyl-d14 (Surr)      | 79        |           | 79 - 130            |
| 2,4,6-Tribromophenol (Surr) | 80        |           | 54 - 120            |
| 2-Fluorobiphenyl (Surr)     | 69        |           | 60 - 120            |
| 2-Fluorophenol (Surr)       | 61        |           | 52 - 120            |

**Eurofins Buffalo** 

4

6

8

46

11

13

14

15

### Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-653570/1-A

**Matrix: Solid** 

Analysis Batch: 653688

**Client Sample ID: Method Blank** Prep Type: Total/NA

**Prep Batch: 653570** 

| Analyte               | Result | Qualifier R | L MDL     | Unit | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------|--------|-------------|-----------|------|---|----------------|----------------|---------|
| 1,4-Dichlorobenzene   | ND     | 0.01        | 0.00045   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4,5-Trichlorophenol | ND     | 0.005       | 0.00048   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4,6-Trichlorophenol | ND     | 0.005       | 0.00060   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4-Dinitrotoluene    | ND     | 0.005       | 0.00043   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 3-Methylphenol        | ND     | 0.01        | 0.00040   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2-Methylphenol        | ND     | 0.005       | 0.00040   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Pyridine              | ND     | 0.02        | 5 0.00040 | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 4-Methylphenol        | ND     | 0.01        | 0.00035   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Hexachlorobenzene     | ND     | 0.005       | 0.00050   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Hexachlorobutadiene   | ND     | 0.005       | 0.00068   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Hexachloroethane      | ND     | 0.005       | 0.00058   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Nitrobenzene          | ND     | 0.005       | 0.00028   | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Pentachlorophenol     | ND     | 0.01        | 0.0022    | mg/L |   | 12/15/22 09:33 | 12/16/22 10:57 | 1       |

MB MB

| Surrogate                   | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|---------------------|----------|----------------|----------------|---------|
| Nitrobenzene-d5 (Surr)      | 90                  | 46 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| Phenol-d5 (Surr)            | 36                  | 22 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| p-Terphenyl-d14 (Surr)      | 100                 | 60 - 148 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2,4,6-Tribromophenol (Surr) | 95                  | 41 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2-Fluorobiphenyl (Surr)     | 94                  | 48 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |
| 2-Fluorophenol (Surr)       | 53                  | 35 - 120 | 12/15/22 09:33 | 12/16/22 10:57 | 1       |

Lab Sample ID: LCS 480-653570/2-A

**Matrix: Solid** 

Analysis Batch: 653688

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA **Prep Batch: 653570** 

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits 1,4-Dichlorobenzene 0.0500 0.0258 52 51 - 120 mg/L 2,4,5-Trichlorophenol 0.0500 0.0483 mg/L 97 65 - 126 2,4,6-Trichlorophenol 0.0500 0.0461 mg/L 92 64 - 120 2,4-Dinitrotoluene 0.0500 0.0515 mg/L 103 69 - 120 3-Methylphenol 0.0500 0.0344 mg/L 69 39 - 120 74 2-Methylphenol 0.0500 0.0369 mg/L 39 - 120 Pyridine 0.100 0.0484 48 10 - 120 mg/L 4-Methylphenol 0.0500 0.0344 69 29 - 131 mg/L Hexachlorobenzene 0.0500 0.0478 mg/L 96 61 - 120 Hexachlorobutadiene 0.0500 0.0269 54 35 - 120 mg/L Hexachloroethane 0.0500 0.0231 mg/L 46 43 - 120 Nitrobenzene 0.0500 0.0415 mg/L 83 53 - 123 Pentachlorophenol 0.100 0.100 mg/L 100 29 - 136

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| Nitrobenzene-d5 (Surr)      | 84        |           | 46 - 120 |
| Phenol-d5 (Surr)            | 35        |           | 22 - 120 |
| p-Terphenyl-d14 (Surr)      | 105       |           | 60 - 148 |
| 2,4,6-Tribromophenol (Surr) | 103       |           | 41 - 120 |
| 2-Fluorobiphenyl (Surr)     | 92        |           | 48 - 120 |
| 2-Fluorophenol (Surr)       | 47        |           | 35 - 120 |

Page 20 of 31

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: LCSD 480-653570/3-A

**Matrix: Solid** 

Analysis Batch: 653688

**Client Sample ID: Lab Control Sample Dup** 

**Prep Type: Total/NA Prep Batch: 653570** %Rec

| <b>,</b>              |        |        |           |      |   |      |          |     |       |
|-----------------------|--------|--------|-----------|------|---|------|----------|-----|-------|
|                       | Spike  | LCSD   | LCSD      |      |   |      | %Rec     |     | RPD   |
| Analyte               | Added  | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| 1,4-Dichlorobenzene   | 0.0500 | 0.0264 |           | mg/L |   | 53   | 51 - 120 | 2   | 36    |
| 2,4,5-Trichlorophenol | 0.0500 | 0.0476 |           | mg/L |   | 95   | 65 - 126 | 1   | 18    |
| 2,4,6-Trichlorophenol | 0.0500 | 0.0478 |           | mg/L |   | 96   | 64 - 120 | 3   | 19    |
| 2,4-Dinitrotoluene    | 0.0500 | 0.0526 |           | mg/L |   | 105  | 69 - 120 | 2   | 20    |
| 3-Methylphenol        | 0.0500 | 0.0357 |           | mg/L |   | 71   | 39 - 120 | 4   | 30    |
| 2-Methylphenol        | 0.0500 | 0.0387 |           | mg/L |   | 77   | 39 - 120 | 5   | 27    |
| Pyridine              | 0.100  | 0.0464 |           | mg/L |   | 46   | 10 - 120 | 4   | 49    |
| 4-Methylphenol        | 0.0500 | 0.0357 |           | mg/L |   | 71   | 29 - 131 | 4   | 24    |
| Hexachlorobenzene     | 0.0500 | 0.0485 |           | mg/L |   | 97   | 61 - 120 | 2   | 15    |
| Hexachlorobutadiene   | 0.0500 | 0.0266 |           | mg/L |   | 53   | 35 - 120 | 1   | 44    |
| Hexachloroethane      | 0.0500 | 0.0237 |           | mg/L |   | 47   | 43 - 120 | 2   | 46    |
| Nitrobenzene          | 0.0500 | 0.0421 |           | mg/L |   | 84   | 53 - 123 | 1   | 24    |
| Pentachlorophenol     | 0.100  | 0.105  |           | mg/L |   | 105  | 29 - 136 | 5   | 37    |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| Nitrobenzene-d5 (Surr)      | 88        |           | 46 - 120 |
| Phenol-d5 (Surr)            | 37        |           | 22 - 120 |
| p-Terphenyl-d14 (Surr)      | 107       |           | 60 - 148 |
| 2,4,6-Tribromophenol (Surr) | 106       |           | 41 - 120 |
| 2-Fluorobiphenyl (Surr)     | 94        |           | 48 - 120 |
| 2-Fluorophenol (Surr)       | 49        |           | 35 - 120 |

Lab Sample ID: LB 480-652622/1-G

**Matrix: Solid** 

**Analysis Batch: 653688** 

Client Sample ID: Method Blank **Prep Type: TCLP** 

**Prep Batch: 653570** 

|                       | LB     | LB        |       |        |      |   |                |                |         |
|-----------------------|--------|-----------|-------|--------|------|---|----------------|----------------|---------|
| Analyte               | Result | Qualifier | RL    | MDL    | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 1,4-Dichlorobenzene   | ND     |           | 0.040 | 0.0018 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4,5-Trichlorophenol | ND     |           | 0.020 | 0.0019 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4,6-Trichlorophenol | ND     |           | 0.020 | 0.0024 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4-Dinitrotoluene    | ND     |           | 0.020 | 0.0017 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 3-Methylphenol        | ND     |           | 0.040 | 0.0016 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2-Methylphenol        | ND     |           | 0.020 | 0.0016 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Pyridine              | ND     |           | 0.10  | 0.0016 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 4-Methylphenol        | ND     |           | 0.040 | 0.0014 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Hexachlorobenzene     | ND     |           | 0.020 | 0.0020 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Hexachlorobutadiene   | ND     |           | 0.020 | 0.0027 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Hexachloroethane      | ND     |           | 0.020 | 0.0023 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Nitrobenzene          | ND     |           | 0.020 | 0.0011 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Pentachlorophenol     | ND     |           | 0.040 | 0.0088 | mg/L |   | 12/15/22 09:33 | 12/16/22 12:10 | 1       |

|                             | LD        | LB        |          |                |                |         |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| Nitrobenzene-d5 (Surr)      | 92        |           | 46 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| Phenol-d5 (Surr)            | 35        |           | 22 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| p-Terphenyl-d14 (Surr)      | 105       |           | 60 - 148 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2,4,6-Tribromophenol (Surr) | 102       |           | 41 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2-Fluorobiphenyl (Surr)     | 92        |           | 48 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |
| 2-Fluorophenol (Surr)       | 51        |           | 35 - 120 | 12/15/22 09:33 | 12/16/22 12:10 | 1       |

**Eurofins Buffalo** 

12/16/2022

Page 21 of 31

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-652821/2-A

**Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA Analysis Batch: 653387 **Prep Batch: 652821** MD MD

|          | MB     | INIR      |        |         |       |   |                |                |         |
|----------|--------|-----------|--------|---------|-------|---|----------------|----------------|---------|
| Analyte  | Result | Qualifier | RL     | MDL     | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | ND     |           | 0.020  | 0.0040  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
| Barium   | ND     |           | 0.0050 | 0.0011  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
| Cadmium  | ND     |           | 0.0020 | 0.00030 | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
| Chromium | ND     |           | 0.0050 | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
| Lead     | ND     |           | 0.010  | 0.0024  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
| Selenium | ND     |           | 0.040  | 0.0040  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
| Silver   | ND     |           | 0.0060 | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:04 | 1       |
|          |        |           |        |         |       |   |                |                |         |

Lab Sample ID: LCS 480-652821/3-A

**Matrix: Solid Prep Type: Total/NA** Analysis Batch: 653387 **Prep Batch: 652821** 

|          | Spike | LUS    | LCS       |       |   |      | %Rec     |  |
|----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Arsenic  | 1.00  | 1.11   |           | mg/Kg |   | 111  | 80 - 120 |  |
| Barium   | 1.00  | 1.01   |           | mg/Kg |   | 101  | 80 - 120 |  |
| Cadmium  | 1.00  | 1.09   |           | mg/Kg |   | 109  | 80 - 120 |  |
| Chromium | 1.00  | 1.05   |           | mg/Kg |   | 105  | 80 - 120 |  |
| Lead     | 1.00  | 1.07   |           | mg/Kg |   | 107  | 80 - 120 |  |
| Selenium | 1.00  | 1.11   |           | mg/Kg |   | 111  | 80 - 120 |  |
| Silver   | 1.00  | 1.12   |           | mg/Kg |   | 112  | 80 - 120 |  |
|          |       |        |           |       |   |      |          |  |

Lab Sample ID: LB 480-652622/1-E

**Matrix: Solid** 

Analysis Batch: 653387

Client Sample ID: Method Blank **Prep Type: TCLP Prep Batch: 652821** 

|          | LB      | LB        |        |         |       |   |                |                |         |
|----------|---------|-----------|--------|---------|-------|---|----------------|----------------|---------|
| Analyte  | Result  | Qualifier | RL     | MDL     | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Arsenic  | ND      |           | 0.020  | 0.0040  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| Barium   | ND      |           | 0.0050 | 0.0011  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| Cadmium  | ND      |           | 0.0020 | 0.00030 | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| Chromium | 0.00496 | J         | 0.0050 | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| Lead     | ND      |           | 0.010  | 0.0024  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| Selenium | 0.00646 | J         | 0.040  | 0.0040  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| Silver   | ND      |           | 0.0060 | 0.0020  | mg/Kg |   | 12/09/22 10:09 | 12/13/22 13:00 | 1       |
| <u> </u> |         |           |        |         |       |   |                |                |         |

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 480-652847/2-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 652921 Prep Batch: 652847

MB MB Analyte Result Qualifier **MDL** Unit Prepared Analyzed Dil Fac ND 0.00020 0.000043 mg/L 12/09/22 11:47 12/09/22 17:53 Mercury

Lab Sample ID: LCS 480-652847/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 652921 **Prep Batch: 652847** LCS LCS Spike %Rec Analyte Added Result Qualifier Limits Unit %Rec

0.00680 0.00602 88 80 - 120 Mercury mg/L

**Eurofins Buffalo** 

Page 22 of 31

**Client Sample ID: Lab Control Sample** 

Client: LaBella Associates DPC
Project/Site: Roblin Steel site

Job ID: 480-204473-1

Method: 7470A - Mercury (CVAA) (Continued)

Lab Sample ID: LB 480-652622/1-F Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 652921

LB LB

Collett Sample ID: Metrica Blank
Prep Type: TCLP
Prep Batch: 652847

| Analyte | Result Qualifier | RL      | MDL U      | Jnit I | D | Prepared       | Analyzed       | Dil Fac |
|---------|------------------|---------|------------|--------|---|----------------|----------------|---------|
| Mercury | ND .             | 0.00020 | 0.000043 m | na/l   |   | 12/09/22 11:47 | 12/09/22 17:51 | 1       |

### **QC Association Summary**

Client: LaBella Associates DPC
Project/Site: Roblin Steel site

Job ID: 480-204473-1

### **GC/MS VOA**

| I pach | Ratch:  | 652650 |
|--------|---------|--------|
| Leacii | Dateii. | 002000 |

| Lab Sample ID     | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------|-----------|--------|--------|------------|
| 480-204473-1      | ROBLIN DRUM      | TCLP      | Solid  | 1311   |            |
| LB 480-652650/1-A | Method Blank     | TCLP      | Solid  | 1311   |            |

### **Prep Batch: 652673**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method  | Prep Batch |
|--------------------|--------------------|-----------|--------|---------|------------|
| 480-204473-1       | ROBLIN DRUM        | Total/NA  | Solid  | 5035A_L |            |
| MB 480-652673/2-A  | Method Blank       | Total/NA  | Solid  | 5035A_L |            |
| LCS 480-652673/1-A | Lab Control Sample | Total/NA  | Solid  | 5035A_L |            |

### **Analysis Batch: 652739**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | Total/NA  | Solid  | 8260C  | 652673     |
| MB 480-652673/2-A  | Method Blank       | Total/NA  | Solid  | 8260C  | 652673     |
| LCS 480-652673/1-A | Lab Control Sample | Total/NA  | Solid  | 8260C  | 652673     |

### **Analysis Batch: 652922**

| Lab Sample ID<br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix Solid | Method<br>8260C | Prep Batch 652650 |
|-------------------------------|------------------------------|----------------|--------------|-----------------|-------------------|
| LB 480-652650/1-A             | Method Blank                 | TCLP           | Solid        | 8260C           | 652650            |
| MB 480-652922/8               | Method Blank                 | Total/NA       | Solid        | 8260C           |                   |
| LCS 480-652922/6              | Lab Control Sample           | Total/NA       | Solid        | 8260C           |                   |

### **GC/MS Semi VOA**

### **Prep Batch: 652566**

| <b>Lab Sample ID</b><br>480-204473-1 | Client Sample ID  ROBLIN DRUM | Prep Type Total/NA | Matrix Solid | Method 3550C | Prep Batch |
|--------------------------------------|-------------------------------|--------------------|--------------|--------------|------------|
| MB 480-652566/1-A                    | Method Blank                  | Total/NA           | Solid        | 3550C        |            |
| LCS 480-652566/2-A                   | Lab Control Sample            | Total/NA           | Solid        | 3550C        |            |

### **Analysis Batch: 652617**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | Total/NA  | Solid  | 8270D  | 652566     |
| MB 480-652566/1-A  | Method Blank       | Total/NA  | Solid  | 8270D  | 652566     |
| LCS 480-652566/2-A | Lab Control Sample | Total/NA  | Solid  | 8270D  | 652566     |

### Leach Batch: 652622

| Lab Sample ID     | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|-------------------|------------------|-----------|--------|--------|------------|
| 480-204473-1      | ROBLIN DRUM      | TCLP      | Solid  | 1311   |            |
| LB 480-652622/1-G | Method Blank     | TCLP      | Solid  | 1311   |            |

### **Prep Batch: 653570**

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 480-204473-1        | ROBLIN DRUM            | TCLP      | Solid  | 3510C  | 652622     |
| LB 480-652622/1-G   | Method Blank           | TCLP      | Solid  | 3510C  | 652622     |
| MB 480-653570/1-A   | Method Blank           | Total/NA  | Solid  | 3510C  |            |
| LCS 480-653570/2-A  | Lab Control Sample     | Total/NA  | Solid  | 3510C  |            |
| LCSD 480-653570/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 3510C  |            |

Eurofins Buffalo

12/16/2022

3

4

6

0

9

11

12

14

14

13

### **QC Association Summary**

Client: LaBella Associates DPC
Project/Site: Roblin Steel site

Job ID: 480-204473-1

### **GC/MS Semi VOA**

### Analysis Batch: 653688

| Lab Sample ID<br>480-204473-1 | Client Sample ID  ROBLIN DRUM | Prep Type TCLP | Matrix Solid | Method 8270D | Prep Batch 653570 |
|-------------------------------|-------------------------------|----------------|--------------|--------------|-------------------|
| LB 480-652622/1-G             | Method Blank                  | TCLP           | Solid        | 8270D        | 653570            |
| MB 480-653570/1-A             | Method Blank                  | Total/NA       | Solid        | 8270D        | 653570            |
| LCS 480-653570/2-A            | Lab Control Sample            | Total/NA       | Solid        | 8270D        | 653570            |
| LCSD 480-653570/3-A           | Lab Control Sample Dup        | Total/NA       | Solid        | 8270D        | 653570            |

### Metals

### Leach Batch: 652622

| Lab Sample ID<br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix Solid | Method 1311 | Prep Batch |
|-------------------------------|------------------------------|----------------|--------------|-------------|------------|
| LB 480-652622/1-E             | Method Blank                 | TCLP           | Solid        | 1311        |            |
| LB 480-652622/1-F             | Method Blank                 | TCLP           | Solid        | 1311        |            |

### **Prep Batch: 652821**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | TCLP      | Solid  | 3050B  | 652622     |
| LB 480-652622/1-E  | Method Blank       | TCLP      | Solid  | 3050B  | 652622     |
| MB 480-652821/2-A  | Method Blank       | Total/NA  | Solid  | 3050B  |            |
| LCS 480-652821/3-A | Lab Control Sample | Total/NA  | Solid  | 3050B  |            |

### **Prep Batch: 652847**

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-204473-1       | ROBLIN DRUM        | TCLP      | Solid  | 7470A  | 652622     |
| LB 480-652622/1-F  | Method Blank       | TCLP      | Solid  | 7470A  | 652622     |
| MB 480-652847/2-A  | Method Blank       | Total/NA  | Solid  | 7470A  |            |
| LCS 480-652847/3-A | Lab Control Sample | Total/NA  | Solid  | 7470A  |            |

### **Analysis Batch: 652921**

| Lab Sample ID<br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix<br>Solid | Method<br>7470A | Prep Batch 652847 |
|-------------------------------|------------------------------|----------------|-----------------|-----------------|-------------------|
| LB 480-652622/1-F             | Method Blank                 | TCLP           | Solid           | 7470A           | 652847            |
| MB 480-652847/2-A             | Method Blank                 | Total/NA       | Solid           | 7470A           | 652847            |
| LCS 480-652847/3-A            | Lab Control Sample           | Total/NA       | Solid           | 7470A           | 652847            |

### **Analysis Batch: 653387**

| <b>Lab Sample ID</b><br>480-204473-1 | Client Sample ID ROBLIN DRUM | Prep Type TCLP | Matrix<br>Solid | Method<br>6010C | Prep Batch 652821 |
|--------------------------------------|------------------------------|----------------|-----------------|-----------------|-------------------|
| LB 480-652622/1-E                    | Method Blank                 | TCLP           | Solid           | 6010C           | 652821            |
| MB 480-652821/2-A                    | Method Blank                 | Total/NA       | Solid           | 6010C           | 652821            |
| LCS 480-652821/3-A                   | Lab Control Sample           | Total/NA       | Solid           | 6010C           | 652821            |

### **General Chemistry**

### **Analysis Batch: 652563**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 480-204473-1  | ROBLIN DRUM      | Total/NA  | Solid  | Moisture |            |

**Eurofins Buffalo** 

12/16/2022

### **Lab Chronicle**

Client: LaBella Associates DPC Job ID: 480-204473-1

Project/Site: Roblin Steel site

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 **Matrix: Solid** Date Received: 12/06/22 15:30

|           | Batch    | Batch    |     | Dilution | Batch  |         |         | Prepared                                     |
|-----------|----------|----------|-----|----------|--------|---------|---------|----------------------------------------------|
| Prep Type | Туре     | Method   | Run | Factor   | Number | Analyst | Lab     | or Analyzed                                  |
| TCLP      | Leach    | 1311     |     |          | 652650 | BML     | EET BUF | 12/08/22 09:38 - 12/09/22 10:54 <sup>1</sup> |
| TCLP      | Analysis | 8260C    |     | 10       | 652922 | ATG     | EET BUF | 12/10/22 12:24                               |
| TCLP      | Leach    | 1311     |     |          | 652622 | BML     | EET BUF | 12/08/22 09:01 - 12/09/22 09:36 <sup>1</sup> |
| TCLP      | Prep     | 3510C    |     |          | 653570 | JMP     | EET BUF | 12/15/22 09:33                               |
| TCLP      | Analysis | 8270D    |     | 1        | 653688 | JMM     | EET BUF | 12/16/22 12:34                               |
| TCLP      | Leach    | 1311     |     |          | 652622 | BML     | EET BUF | 12/08/22 09:01 - 12/09/22 09:36 <sup>1</sup> |
| TCLP      | Prep     | 3050B    |     |          | 652821 | NVK     | EET BUF | 12/09/22 10:09                               |
| TCLP      | Analysis | 6010C    |     | 1        | 653387 | LMH     | EET BUF | 12/13/22 13:43                               |
| TCLP      | Leach    | 1311     |     |          | 652622 | BML     | EET BUF | 12/08/22 09:01 - 12/09/22 09:36 <sup>1</sup> |
| TCLP      | Prep     | 7470A    |     |          | 652847 | NVK     | EET BUF | 12/09/22 11:47                               |
| TCLP      | Analysis | 7470A    |     | 1        | 652921 | NVK     | EET BUF | 12/09/22 18:05                               |
| Total/NA  | Analysis | Moisture |     | 1        | 652563 | JMM     | EET BUF | 12/07/22 16:01                               |

**Client Sample ID: ROBLIN DRUM** 

Lab Sample ID: 480-204473-1 Date Collected: 12/06/22 11:30 **Matrix: Solid** 

Date Received: 12/06/22 15:30 Percent Solids: 80.2

|           | Batch    | Batch   |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|---------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Type     | Method  | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Prep     | 5035A_L |     |          | 652673 | LCH     | EET BUF | 12/08/22 12:27 |
| Total/NA  | Analysis | 8260C   |     | 1        | 652739 | CDC     | EET BUF | 12/09/22 06:45 |
| Total/NA  | Prep     | 3550C   |     |          | 652566 | SJM     | EET BUF | 12/07/22 16:14 |
| Total/NA  | Analysis | 8270D   |     | 1        | 652617 | JMM     | EET BUF | 12/08/22 20:23 |

<sup>\*</sup>Completion dates and times are reported or not reported per method requirements or individual lab discretion.

### **Laboratory References:**

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

### **Accreditation/Certification Summary**

Client: LaBella Associates DPC Job ID: 480-204473-1 Project/Site: Roblin Steel site

### **Laboratory: Eurofins Buffalo**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                     | Pr          | ogram                        | Identification Number                     | Expiration Date                         |  |
|-----------------------------------------------|-------------|------------------------------|-------------------------------------------|-----------------------------------------|--|
| New York                                      |             | ELAP                         | 10026                                     | 03-31-23                                |  |
| The following analytes the agency does not do | •           | ort, but the laboratory is r | not certified by the governing authority. | This list may include analytes for whic |  |
| 0 ,                                           |             | Matrix                       | Analyto                                   |                                         |  |
| Analysis Method                               | Prep Method | Matrix                       | Analyte                                   |                                         |  |
| 0 ,                                           |             | Matrix<br>Solid              | Analyte<br>Mercury                        |                                         |  |
| Analysis Method                               | Prep Method |                              |                                           |                                         |  |

### **Method Summary**

Client: LaBella Associates DPC Project/Site: Roblin Steel site

Job ID: 480-204473-1

| Method   | Method Description                           | Protocol | Laboratory |
|----------|----------------------------------------------|----------|------------|
| 3260C    | Volatile Organic Compounds by GC/MS          | SW846    | EET BUF    |
| 3270D    | Semivolatile Organic Compounds (GC/MS)       | SW846    | EET BUF    |
| 010C     | Metals (ICP)                                 | SW846    | EET BUF    |
| 470A     | Mercury (CVAA)                               | SW846    | EET BUF    |
| loisture | Percent Moisture                             | EPA      | EET BUF    |
| 311      | TCLP Extraction                              | SW846    | EET BUF    |
| 050B     | Preparation, Metals                          | SW846    | EET BUF    |
| 510C     | Liquid-Liquid Extraction (Separatory Funnel) | SW846    | EET BUF    |
| 550C     | Ultrasonic Extraction                        | SW846    | EET BUF    |
| 030C     | Purge and Trap                               | SW846    | EET BUF    |
| 035A_L   | Closed System Purge and Trap                 | SW846    | EET BUF    |
| 7470A    | Preparation, Mercury                         | SW846    | EET BUF    |

### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

### Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

5

7

8

9

. .

12

13

14

15

### **Sample Summary**

Client: LaBella Associates DPC Project/Site: Roblin Steel site

Job ID: 480-204473-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 480-204473-1
 ROBLIN DRUM
 Solid
 12/06/22 11:30
 12/06/22 15:30

3

Λ

5

7

8

10

11

13

14

15

# Chain of Custody Record

Amherst, NY 14228-2223 phone 716.691.2600 fax 716 **Eurofins Buffalo** 10 Hazelwood Drive

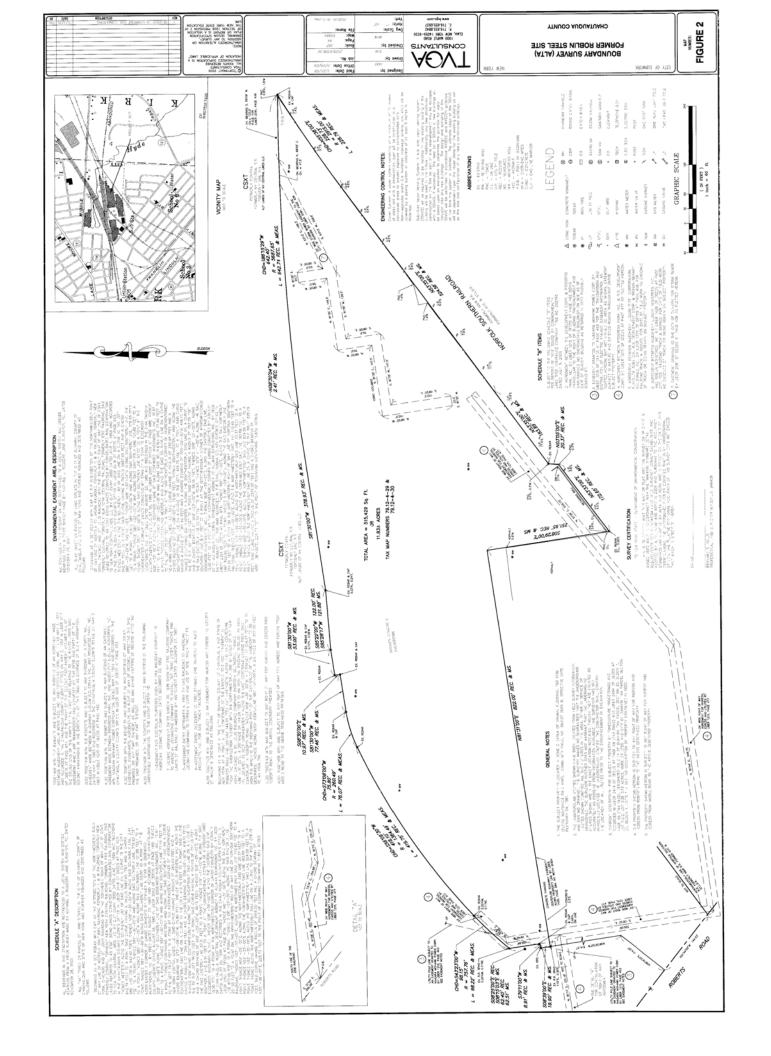
| Profess 10:091.2000 Tax / 10:091./991                                                                             | Regulatory Program: Dw NPDES RCRA Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eurofins Environment Testing Amorio |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
|                                                                                                                   | Project Manager: Chris Killer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COC No:                             |
| Client Contact                                                                                                    | Email: C Ki Ster @ Pate 1 man Color Site Contact: A Journ Land Date: 12 / Ling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,50                                 |
| LaBella Associates                                                                                                | l ab Contact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOO IN                              |
| 300 Pearl sTreet                                                                                                  | Analysis Turnaround Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TALS Project #:                     |
| Buffalo, NY                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sampler:                            |
|                                                                                                                   | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | For Lab Use Only:                   |
|                                                                                                                   | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Walk-in Client:                     |
| Project Name: Robbin comp Steel Sike                                                                              | I week Standary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab Sampling:                       |
| Site: NE                                                                                                          | 2 days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |
| PO#                                                                                                               | M / S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Job / SDG No.:                      |
|                                                                                                                   | Imple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |
|                                                                                                                   | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     |
| Sample Identification                                                                                             | Date Time Geran) Matrix Cont   Helical Cont   Cont  |                                     |
| 1                                                                                                                 | HI COURT OF THE PROPERTY OF TH | Sample Specific Notes:              |
| Lobin Drin                                                                                                        | 1960 1130 C Soil 5 12 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   | Constant of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     |
|                                                                                                                   | 48C-241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other                                             | ; 5=NaOH; 6= Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| Are any samples from a listed EPA Hazardous Waste? Pleas Comments Section if the lab is to dispose of the sample. | Please List any EPA Waste Codes for the sample in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tained longer than 1 month)         |
| Non-Hazard Flammable Skin Irritant                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| ctions/QC Requirements & C                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for Months                          |
|                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                                                                                                                   | 3,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                   |
| Intact: Tes No                                                                                                    | Custody Seal No.: Corr'd: Cooler Temp. (°C): Obs'd: Corr'd:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Therm io No :                       |
| no Kas                                                                                                            | Comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date/Time:                          |
| Relinquished by:                                                                                                  | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ij                                  |
| Relinguished by:                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:                          |
|                                                                                                                   | Company: Date/Time: Received in Laboratory by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date/Time[/ / / / / / /             |
|                                                                                                                   | 2 2/1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |

Client: LaBella Associates DPC

Job Number: 480-204473-1

Login Number: 204473 List Source: Eurofins Buffalo

List Number: 1


Creator: Sabuda, Brendan D

| Creator. Sabuda, Brendan D                                                       |        |            |
|----------------------------------------------------------------------------------|--------|------------|
| Question                                                                         | Answer | Comment    |
| Radioactivity either was not measured or, if measured, is at or below background | True   |            |
| The cooler's custody seal, if present, is intact.                                | True   |            |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |            |
| Samples were received on ice.                                                    | True   |            |
| Cooler Temperature is acceptable.                                                | True   |            |
| Cooler Temperature is recorded.                                                  | True   | 4.8 #1 ICE |
| COC is present.                                                                  | True   |            |
| COC is filled out in ink and legible.                                            | True   |            |
| COC is filled out with all pertinent information.                                | True   |            |
| Is the Field Sampler's name present on COC?                                      | True   |            |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |            |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |            |
| Sample containers have legible labels.                                           | True   |            |
| Containers are not broken or leaking.                                            | True   |            |
| Sample collection date/times are provided.                                       | True   |            |
| Appropriate sample containers are used.                                          | True   |            |
| Sample bottles are completely filled.                                            | True   |            |
| Sample Preservation Verified                                                     | True   |            |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |            |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |            |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |            |
| Multiphasic samples are not present.                                             | True   |            |
| Samples do not require splitting or compositing.                                 | True   |            |
| Sampling Company provided.                                                       | True   |            |
| Samples received within 48 hours of sampling.                                    | True   |            |
| Samples requiring field filtration have been filtered in the field.              | True   |            |
| Chlorine Residual checked.                                                       | True   |            |
|                                                                                  |        |            |



# **APPENDIX 2**

**Boundary Survey-Former Roblin Steel Site** 





# **APPENDIX 3**

**Cover Inspection Form** 

# COVER INSPECTION FORM Former Roblin Steel Site

| Property Name: Former Roblin Steel Site                                                                                                                                                             | Inspection Da                   | ate:         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|
| Property Address: 320 South Roberts Road                                                                                                                                                            |                                 | ,            |
| City: Dunkirk State: NY 14048                                                                                                                                                                       | ,                               | Zip Code     |
| Property ID: (Tax Assessment Map)                                                                                                                                                                   |                                 |              |
| <u>Section</u> : 79.12 <u>Block</u> : 4 <u>Lot(s)</u> : 29                                                                                                                                          | and 30                          |              |
| Total Acreage: 12 acres                                                                                                                                                                             |                                 |              |
| Weather (during inspection): Temperature: 29° Conditions: Cl                                                                                                                                        | oudy<br>/                       |              |
| SIGNATURE and Koend                                                                                                                                                                                 |                                 |              |
| The findings of this inspection were discussed with appropriate were identified and implementation was mutually agreed upon: Inspector: Andrew Koons  Next Scheduled Inspection Date: December 2024 | personnel, corre<br>Date: 12/12 |              |
| SECURITY AND ACCESS                                                                                                                                                                                 |                                 |              |
|                                                                                                                                                                                                     | Yes                             | No           |
| <ol> <li>Access controlled by perimeter fencing?</li> <li>Are there sections of the fence material damaged or missin</li> </ol>                                                                     |                                 | $\nearrow$   |
| Are the fence or gate post foundations structurally sound?                                                                                                                                          | 9:                              | 1.000 mm.    |
|                                                                                                                                                                                                     | 40, 40, 40, 40                  | ~            |
| 2. "No Trespass" signs posted in appropriate languages?                                                                                                                                             |                                 | <u> </u>     |
| Are the signs securely attached to the fencing or posts?  Are there sufficient signs; are the signs adequately spaced                                                                               |                                 |              |
| around the perimeter of the property?                                                                                                                                                               | on his michigan                 |              |
|                                                                                                                                                                                                     |                                 | 8            |
| 3. Is there evidence of trespassing?                                                                                                                                                                |                                 | $\mathbf{X}$ |
| Is there evidence of illegal dumping?                                                                                                                                                               | party trees made alone          |              |
| <b>COVER &amp; VEGETATION</b>                                                                                                                                                                       |                                 |              |
| 4. Final cover in acceptable condition?                                                                                                                                                             | ×                               |              |
| Is there evidence of sloughing, erosion, ponding or settleme                                                                                                                                        | <br>ent?                        | X            |
| Is there evidence of unintended traffic; rutting?                                                                                                                                                   |                                 | ×            |
| Is there evidence of distressed vegetation/turf?                                                                                                                                                    | -                               | X            |

|                                                                                                                                                                                                                                                                   | Yes       | No          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| 5. Final cover sufficiently covers soil/fill material?  Are there cracks visible in the soil or pavement?  Is there evidence of erosion in the stormwater channels or swales?  Is there damage to the synthetic erosion control fabric in the channels or swales? | <u>X</u>  | X<br>X<br>X |
| ACTIVITY ON SITE                                                                                                                                                                                                                                                  |           |             |
| 6. Any activity on site that mechanically disturbed soil cover?                                                                                                                                                                                                   |           | X           |
| ADDITIONAL FACILITY INFORMATION  Development on or near the site? (Specify size and type: e.g., residential, septic)                                                                                                                                              | 40 acres, | well and    |
| COMMENTS                                                                                                                                                                                                                                                          |           |             |
| ltem #                                                                                                                                                                                                                                                            |           |             |
|                                                                                                                                                                                                                                                                   |           |             |
|                                                                                                                                                                                                                                                                   |           |             |
|                                                                                                                                                                                                                                                                   |           |             |
|                                                                                                                                                                                                                                                                   |           |             |
|                                                                                                                                                                                                                                                                   |           |             |
| Ú                                                                                                                                                                                                                                                                 |           |             |
|                                                                                                                                                                                                                                                                   |           |             |
| ATTACHMENTS  1. Site Sketch 2. Photographs                                                                                                                                                                                                                        |           | ,           |
| 3. Laboratory Report (s)                                                                                                                                                                                                                                          |           |             |

N:\2005.0308.00-Roblin Remedial Design and Oversight\Engineering\10Dellverables\Final Engineering Report\Site Management Plan\Attachments for 2010 SMP\Attachment E-1 Cover Insp.Form.doc



# **APPENDIX 4**

Photographs









## **APPENDIX 5**

Site Management Periodic Review Report – Institutional and Engineering Controls Certification Form



# Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Sit       | e No.                                                       | Box 1                                                                          |                                                                               |               |       |
|-----------|-------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------|-------|
| Sit       | e Name For                                                  | mer Roblin Steel Site ( Du                                                     | ınkirk )                                                                      |               |       |
| Cit<br>Co | e Address: 3<br>y/Town: Dur<br>unty: Chauta<br>e Acreage: 1 | uqua                                                                           | Zip Code: 14048                                                               |               |       |
| Re        | porting Perio                                               | d: December 15, 2022 to D                                                      | December 15, 2023                                                             |               |       |
|           |                                                             |                                                                                |                                                                               | YES           | NO    |
| 1.        | Is the inform                                               | nation above correct?                                                          |                                                                               | X             |       |
|           | If NO, include                                              | de handwritten above or on                                                     | a separate sheet.                                                             |               |       |
| 2.        |                                                             | or all of the site property been all of the site property beauting this Report | en sold, subdivided, merged, or undergor<br>ing Period?                       | ne a          | ×     |
| 3.        |                                                             | een any change of use at th<br>RR 375-1.11(d))?                                | ne site during this Reporting Period                                          |               | ×     |
| 4.        |                                                             | ederal, state, and/or local pe<br>property during this Report                  | ermits (e.g., building, discharge) been issing Period?                        | sued X        |       |
|           |                                                             |                                                                                | thru 4, include documentation or evidusly submitted with this certification   |               |       |
| 5.        | Is the site c                                               | urrently undergoing develop                                                    | oment?                                                                        |               | ×     |
|           |                                                             |                                                                                |                                                                               | Doy 2         |       |
|           |                                                             |                                                                                |                                                                               | Box 2         | NO    |
| 6.        |                                                             | nt site use consistent with th<br>I and Industrial                             | ne use(s) listed below?                                                       | X             |       |
| 7.        | Are all ICs i                                               | n place and functioning as o                                                   | designed?                                                                     | × □           |       |
|           |                                                             |                                                                                | JESTION 6 OR 7 IS NO, sign and date be<br>REST OF THIS FORM. Otherwise contin |               |       |
| Α (       | Corrective Me                                               | easures Work Plan must be                                                      | submitted along with this form to addr                                        | ess these iss | sues. |
|           |                                                             |                                                                                |                                                                               |               |       |
| Sic       | inature of Ow                                               | ner, Remedial Party or Desig                                                   | nated Representative D                                                        | ate           |       |

**SITE NO. B00173** Box 3

### **Description of Institutional Controls**

Owner Institutional Control Parcel

79.12-4-29 Chautaugua County

> Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

### The Site Management Plan includes:

- An Engineering and Institutional Controls Plan. Engineering controls include a one-foot thick soil cover system, asphalt cover system (Progress Drive), and provisions for evaluating the potential for soil vapor intrusion to any new buildings constructed and the installation of soil vapor mitigation systems if warranted. Institutional controls at the site will include groundwater use restrictions and use restrictions of the Site to restricted use (i.e. commercial/industrial purposes).
- An Excavation Work Plan to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner.
- A Site Monitoring Plan that includes: provisions for groundwater monitoring; and,
- A Site-wide Inspection program to assure that the Institutional controls have not been altered and remain effective.

79.12-4-30 Chautaugua County

> Ground Water Use Restriction Soil Management Plan Monitoring Plan Site Management Plan IC/EC Plan

Landuse Restriction

### The Site Management Plan includes:

- An Engineering and Institutional Controls Plan. Engineering controls include a one-foot thick soil cover system, asphalt cover system (Progress Drive) and provisions for evaluating the potential for soil vapor intrusion to any new buildings constructed and the installation of soil vapor mitigation systems if warranted. Institutional controls at the site will include groundwater use restrictions and use restrictions of the Site to restricted use (i.e. commercial/industrial purposes).
- An Excavation Work Plan to assure that future intrusive activities and soil/fill handling at the Site are completed in a safe and environmentally responsible manner.
- A Site Monitoring Plan that includes: provisions for groundwater monitoring; and,
- A Site-wide Inspection program to assure that the Institutional controls have not been altered and remain effective.

Box 4

### **Description of Engineering Controls**

Parcel Parcel **Engineering Control** 

79.12-4-29

Cover System Vapor Mitigation

79.12-4-30

Vapor Mitigation Cover System

| R | ^ | v | 5 |
|---|---|---|---|
| О | u |   | u |

|                                                                                                                                   | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                                                                                |           |  |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| 1.                                                                                                                                | I certify by checking "YES" below that:                                                                                                                                                                                                                                              |           |  |
|                                                                                                                                   | a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;                                                                                                                     |           |  |
|                                                                                                                                   | b) to the best of my knowledge and belief, the work and conclusions described in this certification<br>are in accordance with the requirements of the site remedial program, and generally accepted<br>engineering practices; and the information presented is accurate and compete. |           |  |
|                                                                                                                                   | YES                                                                                                                                                                                                                                                                                  | NO        |  |
|                                                                                                                                   | ×                                                                                                                                                                                                                                                                                    |           |  |
| 2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true: |                                                                                                                                                                                                                                                                                      |           |  |
|                                                                                                                                   | (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;                                                                                                                          |           |  |
|                                                                                                                                   | (b) nothing has occurred that would impair the ability of such Control, to protect public has environment;                                                                                                                                                                           | ealth and |  |
|                                                                                                                                   | (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;                                                                                                               |           |  |
|                                                                                                                                   | (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and                                                                                                                                                  |           |  |
|                                                                                                                                   | (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.                                                                                          |           |  |
|                                                                                                                                   | YES                                                                                                                                                                                                                                                                                  | NO        |  |
|                                                                                                                                   | ×                                                                                                                                                                                                                                                                                    |           |  |
|                                                                                                                                   | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                                                                                |           |  |
|                                                                                                                                   | A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                                                                                                                      |           |  |
|                                                                                                                                   | Signature of Owner, Remedial Party or Designated Representative Date                                                                                                                                                                                                                 |           |  |

### IC CERTIFICATIONS SITE NO. B00173

Box 6

### SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

| print name at 454                                                         | N. Work St., Felconer, MY 14733, print business address |
|---------------------------------------------------------------------------|---------------------------------------------------------|
| am certifying as <u>Owner</u>                                             | (Owner or Remedial Party                                |
| for the Site named in the Site Details Section of this                    | s form.                                                 |
| Tim Card                                                                  | 1/4/24                                                  |
| Signature of Owner, Remedial Party, or Designated Rendering Certification | d Representative Date                                   |

#### **EC CERTIFICATIONS**

Box 7

### **Professional Engineer Signature**

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

LaBella Associates, DPC

at 300 State Street, Rochester, NY

print name print business address

am certifying as a Professional Engineer for the Owner (Owner or Remedial Party)

DJ 7. 7/1

Signature of Professional Engineer, for the Owner or Remedial Party, Rendering Certification

TOP SEND AND BEST OF SEND AND BEST OF SESSIONAL PROPERTY OF SESSIO

Stamp (Required for PE)

1.9.2024

Date



# **APPENDIX 6**

**Groundwater Sampling Logs** 



WELL I.D.:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

Sampled By: A. Koons Date: 12/12/2023

Weather: 29°F, cloudy

| WFII | SAMPI | ING   | <b>INFORM</b> | IATION |
|------|-------|-------|---------------|--------|
| ***  |       | _1114 |               |        |

MW-02R

Well Diameter: 2.0' Depth of Well: 23.50' Static Water Level: 6.45' Length of Well Screen:

Depth to Top of Pump:

Measuring Point: Top of inner casing Pump Type: Tubing Type: 1/4" OD Peri-pump

### FIELD PARAMETER MEASUREMENT

|   | Time  | Pump Rate | Gallons | Temp | Conductivity | рН      | Redox     | Turbidity | Dissolved | Comments |
|---|-------|-----------|---------|------|--------------|---------|-----------|-----------|-----------|----------|
|   |       |           | Purged  | ٥C   | (mS/cm)      |         | (mV)      | (NTU)     | Oxygen    |          |
|   |       |           |         |      |              |         |           |           | (mg/L)    |          |
| Ļ |       | (mL/min)  |         |      | +/- 3%       | +/- 0.1 | +/- 10 mV | +/- 10%   | +/- 10%   |          |
|   | 10:50 | 1,000     | 0       | 11.7 | 1.029        | 7.41    | -37.4     | 12.41     | 7.13      |          |
| Ī | 11:00 | 1,000     | 2.75    | 12.7 | 1.052        | 7.35    | -42.9     | 34.55     | 4.80      |          |
| Ī | 11:10 | 1,000     | 5.5     | 12.9 | 1.088        | 7.29    | -46.3     | 11.45     | 4.81      |          |
| Ī | 11:20 | 1,000     | 8.25    | 12.6 | 1.102        | 7.17    | -74.9     | 5.46      | 4.43      |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |
| Ī |       |           |         |      |              |         |           |           |           |          |

|                   | Total | 8.25 | Gallons Purged  |       |                           |
|-------------------|-------|------|-----------------|-------|---------------------------|
| Purge Time Start: | 10:50 |      | Purge Time End: | 11:20 | Final Static Water Level: |

### **OBSERVATIONS**

| Sampled at 11:25 |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |



WELL I.D.:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

Sampled By: A. Koons
Date: 12/12/2023

Weather: 29°F, cloudy

Well Diameter: 2"
Depth of Well: 16.2'

Static Water Level: 3.30'

Length of Well Screen: Depth to Top of Pump:

Measuring Point: Top of inner casing Pump Type: Peri-pump

MW-04

Tubing Type: 1/4" OD

### FIELD PARAMETER MEASUREMENT

|   | Time  | Pump Rate | Gallons<br>Purged | Temp<br>°C | Conductivity<br>(mS/cm) | рН      | Redox<br>(mV) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Comments |  |
|---|-------|-----------|-------------------|------------|-------------------------|---------|---------------|--------------------|-------------------------------|----------|--|
|   |       | (mL/min)  |                   |            | +/- 3%                  | +/- 0.1 | +/- 10 mV     | +/- 10%            | +/- 10%                       |          |  |
| Ī | 12:20 | 1,000     | 0                 | 13.6       | 1.036                   | 7.56    | -25.1         | 7.82               | 6.52                          |          |  |
| Ī | 12:27 | 1,000     | 2.0               | 12.4       | 1.011                   | 7.26    | -20.9         | 10.35              | 5.12                          |          |  |
| Ī | 12:34 | 1,000     | 4.0               | 12.5       | 1.038                   | 7.14    | -50.9         | 5.43               | 5.21                          |          |  |
| Ī | 12:41 | 1,000     | 6.0               | 12.4       | 1.031                   | 7.14    | -99.9         | 7.33               | 5.24                          |          |  |
| Ī |       |           |                   |            |                         |         |               |                    |                               |          |  |
|   |       |           |                   |            |                         |         |               |                    |                               |          |  |
|   |       |           |                   |            |                         |         |               |                    |                               |          |  |
| L |       |           |                   |            |                         |         |               |                    |                               |          |  |
| l |       |           |                   |            |                         |         |               |                    |                               |          |  |
| l |       |           |                   |            |                         |         |               |                    |                               |          |  |
| L |       |           |                   |            |                         |         |               |                    |                               |          |  |
| L |       |           |                   |            |                         |         |               |                    |                               |          |  |
| Ţ |       |           |                   |            |                         |         |               |                    |                               |          |  |
| L |       |           |                   |            |                         |         |               |                    |                               |          |  |
|   |       |           |                   |            |                         |         |               |                    |                               |          |  |

|        | Total | 6.0 | Gallons Purged  |       |                           |
|--------|-------|-----|-----------------|-------|---------------------------|
| Start: | 12.20 |     | Purge Time End: | 12:41 | Final Static Water Level: |

### **OBSERVATIONS**

Purge Time

| Sampled at 12:45 |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |
|                  |  |  |  |



300 Pearl Street Suite 130

Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

| Buffal                                                                                           | Buffalo, New York 14202<br>Telephone: (716) 551-6281 |                                               |                   | Sampled Date: |                         | _A. Koons<br>12/12/2023   |                  |                    |                               |          |  |  |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|-------------------|---------------|-------------------------|---------------------------|------------------|--------------------|-------------------------------|----------|--|--|
| WEL                                                                                              | LL I.D.:                                             | MW-07R                                        |                   | Weather       |                         | )°F, cloudy               |                  |                    |                               |          |  |  |
| WELI                                                                                             | L SAMPLING                                           | INFORMATION                                   |                   |               |                         |                           |                  |                    |                               |          |  |  |
| Well Diameter: 2" Depth of Well: 17.8' Measuring Point: Top of inner casing Pump Type: Peri-pump |                                                      | Length of Well Screen:  Depth to Top of Pump: |                   |               |                         | ell Screen:<br>p of Pump: | 3.66'<br>1/4" OD |                    |                               |          |  |  |
| FIEL                                                                                             |                                                      | R MEASUREMENT                                 |                   |               |                         | 1                         |                  | 7 111              |                               |          |  |  |
|                                                                                                  | Time                                                 | Pump Rate                                     | Gallons<br>Purged | Temp<br>°C    | Conductivity<br>(mS/cm) |                           | Redox<br>(mV)    | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Comments |  |  |
|                                                                                                  |                                                      | (mL/min)                                      | <u></u>           |               | +/- 3%                  | +/- 0.1                   | +/- 10 mV        | +/- 10%            | +/- 10%                       | <u> </u> |  |  |
|                                                                                                  | 13:36                                                | 1,000                                         | 0                 | 13.6          | 1.036                   | 7.56                      | -25.1            | 7.82               | 6.52                          |          |  |  |
|                                                                                                  | 13:44                                                | 1,000                                         | 2.25              | 12.4          | 1.011                   | 7.26                      | -20.9            | 10.35              | 5.12                          |          |  |  |
|                                                                                                  | 13:52                                                | 1,000                                         | 4.5               | 12.5          | 1.038                   | 7.14                      | -50.9            | 5.43               | 5.21                          |          |  |  |
|                                                                                                  | 14:00                                                | 1,000                                         | 6.75              | 12.4          | 1.031                   | 7.14                      | -99.9            | 7.33               | 5.24                          |          |  |  |
|                                                                                                  |                                                      | Total <u>6.75</u>                             | Gallons P         | Purged        |                         |                           |                  |                    |                               |          |  |  |
|                                                                                                  | e Time Start:<br>ERVATIONS                           | 13:36                                         |                   | Purge Tim     | ne End: _               | 14:00                     |                  | Fina               | al Static Water               | Level:   |  |  |
| San                                                                                              | mpled at 14:0                                        | )5                                            |                   |               |                         |                           |                  |                    |                               |          |  |  |



300 Pearl Street Suite 130 Buffalo, New York 14202

Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

Sampled By: A. Koons

| Telepl                                                                   | Telephone: (716) 551-6281 |             |                   | Date:      |                         | /12/2023  |                                                                               |                    |                               |                  |  |  |
|--------------------------------------------------------------------------|---------------------------|-------------|-------------------|------------|-------------------------|-----------|-------------------------------------------------------------------------------|--------------------|-------------------------------|------------------|--|--|
| WEL                                                                      | L I.D.:                   | MW-09R      |                   | Weather    |                         | F, cloudy |                                                                               |                    |                               |                  |  |  |
| WELI                                                                     | L SAMPLING                | INFORMATION |                   |            |                         |           |                                                                               |                    |                               |                  |  |  |
| Well Diameter: Depth of Well: Measuring Point: Pump Type: FIELD PARAMETE |                           | Peri-pump   | _                 |            |                         |           | Static Water Level: Length of Well Screen: Depth to Top of Pump: Tubing Type: |                    |                               | 2.44'<br>1/4" OD |  |  |
| FIEL                                                                     | 1                         |             | _                 | <u> </u>   |                         | 1         |                                                                               |                    |                               |                  |  |  |
|                                                                          | Time                      | Pump Rate   | Gallons<br>Purged | Temp<br>°C | Conductivity<br>(mS/cm) | рН        | Redox<br>(mV)                                                                 | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Comments         |  |  |
|                                                                          |                           | (mL/min)    |                   |            | +/- 3%                  | +/- 0.1   | +/- 10 mV                                                                     | +/- 10%            | +/- 10%                       |                  |  |  |
|                                                                          | 9:45                      | 1,000       | 0                 | 11.0       | 0.565                   | 7.86      | -110.7                                                                        | 5.66               | 6.21                          |                  |  |  |
|                                                                          | 9:53                      | 1,000       | 2.3               | 10.8       | 0.792                   | 7.47      | -103.5                                                                        | 10.42              | 5.36                          |                  |  |  |
|                                                                          | 10:01                     | 1,000       | 4.6               | 11.3       | 0.827                   | 7.36      | -100.7                                                                        | 2.59               | 5.07                          |                  |  |  |
|                                                                          | 10:04                     | 1,000       | 6.9               | 11.4       | 0.965                   | 7.35      | -98.6                                                                         | 0.33               | 5.32                          |                  |  |  |
|                                                                          |                           | Total 6.9   | Gallons           | Purged     |                         |           |                                                                               |                    |                               |                  |  |  |
|                                                                          | e Time Start:             | 9:45        |                   | Purge Tir  | ne End:                 | 10:09     |                                                                               | Fina               | l Static Water                | Level:           |  |  |
|                                                                          | npled at 10:              | 15          |                   |            |                         |           |                                                                               |                    |                               |                  |  |  |
| San                                                                      | ripieu at 10:             | 10          |                   |            |                         |           |                                                                               |                    |                               |                  |  |  |



300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

Sampled By: A. Koons

| Telep       | Telephone: (716) 551-6281                             |                                         |                   | Date:      | 12/                     | 12/12/2023      |                    |                                             |                               |          |   |  |  |  |
|-------------|-------------------------------------------------------|-----------------------------------------|-------------------|------------|-------------------------|-----------------|--------------------|---------------------------------------------|-------------------------------|----------|---|--|--|--|
| WE          | LL I.D.:                                              | EX-MW-11R                               | Weather           |            | F, cloudy               |                 |                    |                                             |                               |          |   |  |  |  |
| WEL         | L SAMPLING                                            | INFORMATION                             |                   |            |                         |                 |                    |                                             |                               |          |   |  |  |  |
| Dept<br>Mea | Diameter:<br>th of Well:<br>suring Point:<br>pp Type: | 2"<br>18.9'<br>Top of inne<br>Peri-pump | er casing         | Len        |                         |                 |                    | r Level:<br>'ell Screen:<br>p of Pump:<br>: | 5.77'<br>1/4" OD              |          |   |  |  |  |
| FIEL        | D PARAMETE                                            | ER MEASUREMENT                          | Ī                 |            |                         |                 |                    |                                             |                               |          |   |  |  |  |
|             | Time                                                  | Pump Rate                               | Gallons<br>Purged | Temp<br>°C | Conductivity<br>(mS/cm) | рН              | Redox<br>(mV)      | Turbidity<br>(NTU)                          | Dissolved<br>Oxygen<br>(mg/L) | Comments |   |  |  |  |
|             | 10:20                                                 | (mL/min)<br>1,000                       | 0                 | 12.5       | +/- 3%<br>0.757         | +/- 0.1<br>7.45 | +/- 10 mV<br>-80.0 | +/- 10%<br>6.26                             | +/- 10%<br>5.59               | <u> </u> | _ |  |  |  |
|             |                                                       |                                         |                   |            |                         |                 |                    |                                             |                               |          |   |  |  |  |
|             | 10:27<br>10:34                                        | 1,000                                   | 2.0               | 12.4       | 0.676                   | 7.61<br>7.50    | -100.9             | 15.72                                       | 4.28                          |          |   |  |  |  |
|             |                                                       | 1,000                                   | 4.0               | 12.8       | 0.621                   |                 | -96.1              | 9.73                                        | 4.96                          |          |   |  |  |  |
|             | 10:41                                                 | 1,000                                   | 6.0               | 12.9       | 0.618                   | 7.48            | -103.6             | 8.84                                        | 5.11                          |          |   |  |  |  |
|             | e Time Start:                                         | 10:20                                   |                   | Purge Tir  | ne End:                 | 10:41           |                    | Fina                                        | l Static Wate                 | r Level: |   |  |  |  |
| OBS         | ERVATIONS                                             |                                         |                   |            |                         |                 |                    |                                             |                               |          |   |  |  |  |
| Sar         | mpled at 10:4                                         | 45                                      |                   |            |                         |                 |                    |                                             |                               |          |   |  |  |  |



WELL I.D.:

Measuring Point:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

Sampled By: A. Koons
Date: 12/12/2023

Weather: 29°F, cloudy

| WFII | SAMPI | ING   | INFOR | MATION |
|------|-------|-------|-------|--------|
| ***  |       | _1114 |       |        |

EX-MW-12

Well Diameter: 2"
Depth of Well: 23.2

Static Water Level: 5.30' Length of Well Screen:

23.2 Top of inner casing

Depth to Top of Pump:

Pump Type: Peri-pump Tubing Type: 1/4" OD

### FIELD PARAMETER MEASUREMENT

|   | Time  | Pump Rate | Gallons | Temp | Conductivity | рН      | Redox     | Turbidity | Dissolved | Comments |
|---|-------|-----------|---------|------|--------------|---------|-----------|-----------|-----------|----------|
|   |       |           | Purged  | ٥C   | (mS/cm)      |         | (mV)      | (NTU)     | Oxygen    |          |
|   |       |           |         |      |              |         |           |           | (mg/L)    |          |
| Į |       | (mL/min)  |         |      | +/- 3%       | +/- 0.1 | +/- 10 mV | +/- 10%   | +/- 10%   |          |
|   | 1135  | 1,000     | 0       | 13.0 | 1.680        | 6.97    | -103.2    | 3.06      | 4.99      |          |
|   | 11:45 | 1,000     | 2.8     | 12.6 | 1.684        | 6.79    | -74.0     | 7.19      | 3.82      |          |
|   | 11:55 | 1,000     | 5.6     | 12.3 | 1.621        | 6.83    | -91.4     | 5.17      | 4.84      |          |
|   | 12:05 | 1,.000    | 8.4     | 12.8 | 1.731        | 6.79    | -77.8     | 0.86      | 3.69      |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |
|   |       |           |         |      |              |         |           |           |           |          |

| Total | 8.4 | Gallons Purge |
|-------|-----|---------------|
|       |     |               |

| Purge Time Start: | 11:35 | Purge Time End: | 12:05 | Final Static Water Level: |
|-------------------|-------|-----------------|-------|---------------------------|
|-------------------|-------|-----------------|-------|---------------------------|

### **OBSERVATIONS**

| Sampled at 12:10 |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |



WELL I.D.:

300 Pearl Street Suite 130 Buffalo, New York 14202 Telephone: (716) 551-6281 Project Name: Former Roblin Steel PRR

Location: Dunkirk, NY

Project No.: 2200014

Sampled By: A. Koons Date: 12/12/2023

Weather: 29°F, cloudy

Well Diameter: Depth of Well: 20.20

Peri-pump

Static Water Level: Length of Well Screen:

4.61'

Measuring Point: Top of inner casing Pump Type:

MW-13

Depth to Top of Pump:

Tubing Type: 1/4" OD

### FIELD PARAMETER MEASUREMENT

|          | Time  | Pump Rate | Gallons<br>Purged | Temp<br>°C | Conductivity<br>(mS/cm) | рН      | Redox<br>(mV) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Comments |
|----------|-------|-----------|-------------------|------------|-------------------------|---------|---------------|--------------------|-------------------------------|----------|
|          |       | (mL/min)  |                   |            | +/- 3%                  | +/- 0.1 | +/- 10 mV     | +/- 10%            | +/- 10%                       |          |
|          | 12:54 | 1,000     | 0                 | 12.7       | 1.304                   | 7.10    | -146.5        | 42.34              | 4.12                          |          |
|          | 13:04 | 1,000     | 2.5               | 12.1       | 1.310                   | 7.14    | -127.7        | 66.43              | 3.91                          |          |
|          | 13:14 | 1,000     | 5.0               | 12.0       | 1.310                   | 7.04    | -121.1        | 15.66              | 4.64                          |          |
|          | 13:24 | 1,000     | 7.5               | 12.4       | 1.315                   | 6.91    | -79.9         | 14.06              | 5.13                          |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
| <u> </u> |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
| <u> </u> |       |           |                   |            |                         |         |               |                    |                               |          |
| <u> </u> |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           |                   |            |                         |         |               |                    |                               |          |
|          |       |           | 0 " 0             |            |                         |         |               |                    |                               |          |

|                   | 10tal <u>7.5</u> | Gallons Purged  |       |                           |  |
|-------------------|------------------|-----------------|-------|---------------------------|--|
| Purge Time Start: | 12:54            | Purge Time End: | 13:24 | Final Static Water Level: |  |

### **OBSERVATIONS**

| Sampled at 13:30 |  |  |  |
|------------------|--|--|--|
|                  |  |  |  |
|                  |  |  |  |
|                  |  |  |  |



# **APPENDIX 7**

Laboratory Analytical Results

# ANALYTICAL REPORT

# PREPARED FOR

Attn: Chris Kibler LaBella Associates DPC 300 Pearl Street Suite 130 Buffalo, New York 14202

Generated 12/22/2023 11:51:51 AM

# **JOB DESCRIPTION**

Alumax & Roblin Periodic Review Reports

# **JOB NUMBER**

480-215658-1

Eurofins Buffalo 10 Hazelwood Drive Amherst NY 14228-2298

# **Eurofins Buffalo**

### **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

# Authorization

Generated 12/22/2023 11:51:51 AM

Authorized for release by
Rebecca Jones, Project Management Assistant I
Rebecca.Jones@et.eurofinsus.com
Designee for
Brian Fischer, Manager of Project Management
Brian.Fischer@et.eurofinsus.com
(716)504-9835

2

А

**O** 

8

9

1 1

12

13

\_\_\_\_

# 2

3

4

5

6

g

10

12

14

| <b>T</b> _ | I_ I | _            | _ <b>_</b> | 0- | 4 - | 1-  |
|------------|------|--------------|------------|----|-----|-----|
| 12         | nı   | e            | <b>OT</b>  |    | nte | nts |
| ıu         | N I  | $\mathbf{C}$ | VI.        |    |     |     |

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Detection Summary      | 6  |
| Client Sample Results  | 8  |
| Surrogate Summary      | 33 |
| QC Sample Results      | 34 |
| QC Association Summary | 42 |
| Lab Chronicle          | 43 |
| Certification Summary  | 45 |
| Method Summary         | 46 |
| Sample Summary         | 47 |
| ·                      | 48 |
| Receipt Checklists     | 50 |

# **Definitions/Glossary**

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

### **Qualifiers**

| GC/MS VOA | G | C/I | <b>VIS</b> | VC | A |
|-----------|---|-----|------------|----|---|
|-----------|---|-----|------------|----|---|

| Qualifier | Qualifier Description                                                                                          |
|-----------|----------------------------------------------------------------------------------------------------------------|
| E         | Result exceeded calibration range.                                                                             |
| F1        | MS and/or MSD recovery exceeds control limits.                                                                 |
| F2        | MS/MSD RPD exceeds control limits                                                                              |
| J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. |
|           |                                                                                                                |

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |

| Method Detection Limit    |
|---------------------------|
| Minimum Level (Dioxin)    |
| Most Probable Number      |
| Method Quantitation Limit |
|                           |

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL

Practical Quantitation Limit

**PRES** Presumptive QC **Quality Control** 

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points RPD

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

Eurofins Buffalo

Page 4 of 50

### **Case Narrative**

Client: LaBella Associates DPC Job ID: 480-215658-1

Project: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1 Eurofins Buffalo

# Job Narrative 480-215658-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
  demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
  method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed
  unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 12/13/2023 9:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.9°C

#### GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-695216 recovered outside acceptance criteria, low biased, for 2-Butanone (MEK). A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated samples are impacted: AL-7 (480-215658-2), AL-2 (480-215658-3), MW-09R (480-215658-4), MW-02R (480-215658-6), EX-MW-12 (480-215658-7), MW-04 (480-215658-8), MW-13 (480-215658-9), MW-07R (480-215658-10) and TRIP BLANK (480-215658-12).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-09R (480-215658-4), MW-02R (480-215658-6) and MW-07R (480-215658-10). Elevated reporting limits (RLs) are provided.

Method 8260C: The following volatiles samples were diluted due to foaming at the time of purging during the original sample analysis: EX-MW-12 (480-215658-7), MW-04 (480-215658-8) and MW-13 (480-215658-9). Elevated reporting limits (RLs) are provided.

Method 8260C: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: AL-7 (480-215658-2).

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-695377 recovered outside acceptance criteria, low biased, for Chloromethane. A reporting limit (RL) standard was analyzed, and the target analytes are detected. Since the associated samples were non-detect for the analyte(s), the data are reported. The associated samples are impacted: AL-1 (480-215658-1), EX-MW-11R (480-215658-5), MW-07R (480-215658-10) and DUP (480-215658-11).

Method 8260C: The following samples were diluted to bring the concentration of target analytes within the calibration range: AL-1 (480-215658-1), EX-MW-11R (480-215658-5), MW-07R (480-215658-10), DUP (480-215658-11), (480-215658-B-11 MS) and (480-215658-B-11 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

**Eurofins Buffalo** 

Page 5 of 50

9

3

4

7

10

12

13

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1 Lab Sample ID: 480-215658-1

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Benzene                | 27     |           | 2.0 | 0.82 | ug/L | 2       | _ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 140    |           | 2.0 | 1.6  | ug/L | 2       |   | 8260C  | Total/NA  |
| Cyclohexane            | 33     |           | 2.0 | 0.36 | ug/L | 2       |   | 8260C  | Total/NA  |
| Methylcyclohexane      | 18     |           | 2.0 | 0.32 | ug/L | 2       |   | 8260C  | Total/NA  |
| Vinyl chloride         | 130    |           | 2.0 | 1.8  | ug/L | 2       |   | 8260C  | Total/NA  |
| Xylenes, Total         | 7.6    |           | 4.0 | 1.3  | ug/L | 2       |   | 8260C  | Total/NA  |

Client Sample ID: AL-7

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| 2-Butanone (MEK)       | 1.6    | J         | 10  | 1.3  | ug/L | 1       | _ | 8260C  | Total/NA  |
| Acetone                | 7.3    | J         | 10  | 3.0  | ug/L | 1       |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene | 2.0    |           | 1.0 | 0.81 | ug/L | 1       |   | 8260C  | Total/NA  |

Client Sample ID: AL-2

| Analyte           | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
|-------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Benzene           | 30     |           | 1.0 | 0.41 | ug/L | 1       | _ | 8260C  | Total/NA  |
| Cyclohexane       | 11     |           | 1.0 | 0.18 | ug/L | 1       |   | 8260C  | Total/NA  |
| Methylcyclohexane | 1.5    |           | 1.0 | 0.16 | ug/L | 1       |   | 8260C  | Total/NA  |

Client Sample ID: MW-09R

| Analyte                | Result | Qualifier | RL | MDL | Unit | Dil Fac | D Method | Prep Type |
|------------------------|--------|-----------|----|-----|------|---------|----------|-----------|
| cis-1,2-Dichloroethene | 75     |           | 10 | 8.1 | ug/L | 10      | 8260C    | Total/NA  |
| Cyclohexane            | 37     |           | 10 | 1.8 | ug/L | 10      | 8260C    | Total/NA  |
| Methylcyclohexane      | 34     |           | 10 | 1.6 | ug/L | 10      | 8260C    | Total/NA  |
| Vinyl chloride         | 310    |           | 10 | 9.0 | ug/L | 10      | 8260C    | Total/NA  |

Client Sample ID: EX-MW-11R

| Analyte                | Posult | Qualifier | RL | MDL | Unit | Dil Fac | <b>n</b> | Method | Prep Type |
|------------------------|--------|-----------|----|-----|------|---------|----------|--------|-----------|
| cis-1.2-Dichloroethene |        | Qualifier |    |     |      |         | _        | 8260C  | Total/NA  |
| ,                      | 1700   |           | 50 |     | ug/L | 50      |          |        |           |
| Cyclohexane            | 13     | J         | 50 | 9.0 | ug/L | 50      |          | 8260C  | Total/NA  |
| Methylcyclohexane      | 17     | J         | 50 | 8.0 | ug/L | 50      |          | 8260C  | Total/NA  |
| Trichloroethene        | 44     | J         | 50 | 23  | ug/L | 50      |          | 8260C  | Total/NA  |
| Vinyl chloride         | 1100   |           | 50 | 45  | ug/L | 50      |          | 8260C  | Total/NA  |

Client Sample ID: MW-02R

| Analyte                | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D Method | Prep Type |
|------------------------|--------|-----------|-----|------|------|---------|----------|-----------|
| Benzene                | 2.7    | J         | 5.0 | 2.1  | ug/L |         | 8260C    | Total/NA  |
| cis-1,2-Dichloroethene | 320    |           | 5.0 | 4.1  | ug/L | 5       | 8260C    | Total/NA  |
| Cyclohexane            | 7.7    |           | 5.0 | 0.90 | ug/L | 5       | 8260C    | Total/NA  |
| Methylcyclohexane      | 7.7    |           | 5.0 | 0.80 | ug/L | 5       | 8260C    | Total/NA  |
| Trichloroethene        | 3.6    | J         | 5.0 | 2.3  | ug/L | 5       | 8260C    | Total/NA  |
| Vinyl chloride         | 280    |           | 5.0 | 4.5  | ug/L | 5       | 8260C    | Total/NA  |

Client Sample ID: EX-MW-12

No Detections.

Client Sample ID: MW-04 Lab Sample ID: 480-215658-8

No Detections.

This Detection Summary does not include radiochemical test results.

**Eurofins Buffalo** 

Page 6 of 50

Job ID: 480-215658-1

Lab Sample ID: 480-215658-2

Lab Sample ID: 480-215658-3

Lab Sample ID: 480-215658-4

Lab Sample ID: 480-215658-5

Lab Sample ID: 480-215658-6

Lab Sample ID: 480-215658-7

# **Detection Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Lab Sample ID: 480-215658-9

| _                 |        |           |     |      |      |         |   |        |           |
|-------------------|--------|-----------|-----|------|------|---------|---|--------|-----------|
| Analyte           | Result | Qualifier | RL  | MDL  | Unit | Dil Fac | D | Method | Prep Type |
| Benzene           | 2.1    | J         | 4.0 | 1.6  | ug/L | 4       | _ | 8260C  | Total/NA  |
| Cyclohexane       | 6.1    |           | 4.0 | 0.72 | ug/L | 4       |   | 8260C  | Total/NA  |
| Methylcyclohexane | 6.8    |           | 4.0 | 0.64 | ug/L | 4       |   | 8260C  | Total/NA  |
| Toluene           | 3.0    | J         | 4.0 | 2.0  | ug/L | 4       |   | 8260C  | Total/NA  |
| Xylenes, Total    | 5.0    | J         | 8.0 | 2.6  | ug/L | 4       |   | 8260C  | Total/NA  |

Client Sample ID: MW-07R Lab Sample ID: 480-215658-10

| Analyte                     | Result | Qualifier | RL | MDL | Unit | Dil Fac | D | Method | Prep Type |
|-----------------------------|--------|-----------|----|-----|------|---------|---|--------|-----------|
| 1,1-Dichloroethene          |        |           | 10 | 2.9 | ug/L | 10      | _ | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene      | 3200   | E         | 10 | 8.1 | ug/L | 10      |   | 8260C  | Total/NA  |
| trans-1,2-Dichloroethene    | 9.6    | J         | 10 | 9.0 | ug/L | 10      |   | 8260C  | Total/NA  |
| Trichloroethene             | 21     |           | 10 | 4.6 | ug/L | 10      |   | 8260C  | Total/NA  |
| Vinyl chloride              | 690    | F1        | 10 | 9.0 | ug/L | 10      |   | 8260C  | Total/NA  |
| cis-1,2-Dichloroethene - DL | 3400   |           | 80 | 65  | ug/L | 80      |   | 8260C  | Total/NA  |
| Vinyl chloride - DL         | 780    |           | 80 | 72  | ug/L | 80      |   | 8260C  | Total/NA  |

Client Sample ID: DUP Lab Sample ID: 480-215658-11

| Analyte                | Result Qualifier | RL | MDL | Unit | Dil Fac | D M | ethod | Prep Type |
|------------------------|------------------|----|-----|------|---------|-----|-------|-----------|
| cis-1,2-Dichloroethene | 99               | 10 | 8.1 | ug/L | 10      | 82  | 260C  | Total/NA  |
| Cyclohexane            | 39               | 10 | 1.8 | ug/L | 10      | 83  | 260C  | Total/NA  |
| Methylcyclohexane      | 37               | 10 | 1.6 | ug/L | 10      | 83  | 260C  | Total/NA  |
| Vinyl chloride         | 360 F1           | 10 | 9.0 | ug/L | 10      | 8   | 260C  | Total/NA  |

Client Sample ID: TRIP BLANK

Lab Sample ID: 480-215658-12

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Buffalo

12/22/2023

Job ID: 480-215658-1

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1
Date Collected: 12/12/23 08:30

Lab Sample ID: 480-215658-1

Matrix: Water

| Date Received: 12/13/23 09:00 |  |
|-------------------------------|--|
|                               |  |

| Result | Qualifier                                | RL                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | D  | Prepared | Analyzed       | Dil Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------|------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND     |                                          | 2.0                                      | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        |                                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •    |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/L |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ND     |                                          | 2.0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 130    |                                          | 2.0                                      | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ua/l |    |          | 12/14/23 11:48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | ND N | ND N | ND       2.0         ND       10         ND       20         ND       10         ND       2.0         ND | ND   | ND | ND       | ND             | ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 0.42 ug/L 12/14/23 11:48 ND 2.0 0.46 ug/L 12/14/23 11:48 ND 2.0 0.62 ug/L 12/14/23 11:48 ND 2.0 0.62 ug/L 12/14/23 11:48 ND 2.0 0.76 ug/L 12/14/23 11:48 ND 2.0 0.76 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 1.6 ug/L 12/14/23 11:48 ND 2.0 1.7 ug/L 12/14/23 11:48 ND 2.0 1.4 ug/L 12/14/23 11:48 ND 2.0 1.7 ug/L 12/14/23 11:48 ND 2.0 1.8 ug/L 12/14/23 11:48 ND 2.0 1.7 ug/L 12/14/23 11:48 ND 2.0 1.8 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.82 ug/L 12/14/23 11:48 ND 2.0 0.78 ug/L 12/14/23 11:48 ND 2.0 0.79 ug/L 12/14/23 11:48 |

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1 Lab Sample ID: 480-215658-1

Date Collected: 12/12/23 08:30 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97                  | 80 - 120 |          | 12/14/23 11:48 | 2       |
| 1,2-Dichloroethane-d4 (Surr) | 83                  | 77 - 120 |          | 12/14/23 11:48 | 2       |
| 4-Bromofluorobenzene (Surr)  | 97                  | 73 - 120 |          | 12/14/23 11:48 | 2       |
| Dibromofluoromethane (Surr)  | 88                  | 75 - 123 |          | 12/14/23 11:48 | 2       |

5

6

8

10

12

4 4

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: AL-7** 

Lab Sample ID: 480-215658-2

Matrix: Water

Date Collected: 12/12/23 08:55 Date Received: 12/13/23 09:00

| Analyte                                 | Result   | Qualifier | RL  | MDL  | Unit         | D | Prepared | Analyzed       | Dil Fa |
|-----------------------------------------|----------|-----------|-----|------|--------------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                   | ND       |           | 1.0 | 0.82 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,1,2,2-Tetrachloroethane               | ND       |           | 1.0 | 0.21 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,1,2-Trichloroethane                   | ND       |           | 1.0 | 0.23 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | ND       |           | 1.0 | 0.31 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,1-Dichloroethane                      | ND       |           | 1.0 | 0.38 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,1-Dichloroethene                      | ND       |           | 1.0 | 0.29 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,2,4-Trichlorobenzene                  | ND       |           | 1.0 | 0.41 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,2-Dibromo-3-Chloropropane             | ND       |           | 1.0 | 0.39 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,2-Dichlorobenzene                     | ND       |           | 1.0 | 0.79 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,2-Dichloroethane                      | ND       |           | 1.0 | 0.21 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,2-Dichloropropane                     | ND       |           | 1.0 | 0.72 | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,3-Dichlorobenzene                     | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,4-Dichlorobenzene                     | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| 2-Butanone (MEK)                        | 1.6      | J         | 10  |      | ug/L         |   |          | 12/13/23 13:57 |        |
| 2-Hexanone                              | ND       | -         | 5.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| 4-Methyl-2-pentanone (MIBK)             | ND       |           | 5.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Acetone                                 | 7.3      | a .       | 10  |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Benzene                                 | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Bromodichloromethane                    | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Bromoform                               | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Bromomethane                            | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Carbon disulfide                        | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Carbon tetrachloride                    | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Chlorobenzene                           | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Dibromochloromethane                    | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Chloroethane                            | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Chloroform                              | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Chloromethane                           | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| cis-1,2-Dichloroethene                  | 2.0      |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| cis-1,3-Dichloropropene                 | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Cyclohexane                             | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Dichlorodifluoromethane                 | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Ethylbenzene                            | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| 1,2-Dibromoethane                       | ND       |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/13/23 13:57 |        |
| sopropylbenzene                         | ND<br>ND |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| • • • •                                 |          |           |     |      |              |   |          |                |        |
| Methyl acetate  Methyl tert-butyl ether | ND<br>ND |           | 2.5 |      | ug/L<br>ug/L |   |          | 12/13/23 13:57 |        |
|                                         |          |           | 1.0 |      |              |   |          | 12/13/23 13:57 |        |
| Methylcyclohexane                       | ND<br>ND |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Methylene Chloride                      |          |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Styrene                                 | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Tetrachloroethene                       | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Toluene                                 | ND ND    |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| trans-1,2-Dichloroethene                | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| rans-1,3-Dichloropropene                | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Trichloroethene                         | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| Trichlorofluoromethane                  | ND       |           | 1.0 |      | ug/L         |   |          | 12/13/23 13:57 |        |
| √inyl chloride<br>Xylenes, Total        | ND       |           | 1.0 | 0.90 | ug/L         |   |          | 12/13/23 13:57 |        |

Eurofins Buffalo

2

4

6

8

10

12

1 1

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-7 Lab Sample ID: 480-215658-2

Date Collected: 12/12/23 08:55 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Q | Qualifier Limits | Prepared | Analyzed       | Dil Fac |
|------------------------------|-------------|------------------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97          | 80 - 120         |          | 12/13/23 13:57 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 90          | 77 - 120         |          | 12/13/23 13:57 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99          | 73 - 120         |          | 12/13/23 13:57 | 1       |
| Dibromofluoromethane (Surr)  | 87          | 75 - 123         |          | 12/13/23 13:57 | 1       |

4

6

0

9

11

14

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-2

Lab Sample ID: 480-215658-3

Matrix: Water

Date Collected: 12/12/23 09:35 Date Received: 12/13/23 09:00

| Analyte                                 | Result Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
|-----------------------------------------|------------------|-----|------|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                   | ND -             | 1.0 | 0.82 | ug/L |   |          | 12/13/23 14:19 | 1       |
| 1,1,2,2-Tetrachloroethane               | ND               | 1.0 | 0.21 | ug/L |   |          | 12/13/23 14:19 | •       |
| 1,1,2-Trichloroethane                   | ND               | 1.0 | 0.23 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | ND               | 1.0 | 0.31 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,1-Dichloroethane                      | ND               | 1.0 | 0.38 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,1-Dichloroethene                      | ND               | 1.0 | 0.29 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,2,4-Trichlorobenzene                  | ND               | 1.0 | 0.41 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,2-Dibromo-3-Chloropropane             | ND               | 1.0 | 0.39 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,2-Dichlorobenzene                     | ND               | 1.0 | 0.79 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,2-Dichloroethane                      | ND               | 1.0 | 0.21 | ug/L |   |          | 12/13/23 14:19 |         |
| 1,2-Dichloropropane                     | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| 1,3-Dichlorobenzene                     | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| 1,4-Dichlorobenzene                     | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| 2-Butanone (MEK)                        | ND               | 10  |      | ug/L |   |          | 12/13/23 14:19 |         |
| 2-Hexanone                              | ND               | 5.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| 4-Methyl-2-pentanone (MIBK)             | ND               | 5.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Acetone                                 | ND               | 10  | 3.0  | _    |   |          | 12/13/23 14:19 |         |
| Benzene                                 | 30               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Bromodichloromethane                    | ND               | 1.0 | 0.39 |      |   |          | 12/13/23 14:19 |         |
| Bromoform                               | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Bromomethane                            | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Carbon disulfide                        | ND               | 1.0 |      |      |   |          | 12/13/23 14:19 |         |
| Carbon distillide  Carbon tetrachloride |                  |     |      | ug/L |   |          |                |         |
|                                         | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Chlorobenzene Dibromochloromethane      | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
|                                         | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Chloroethane                            | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Chloroform                              | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Chloromethane                           | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| cis-1,2-Dichloroethene                  | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| cis-1,3-Dichloropropene                 | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Cyclohexane                             | 11               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Dichlorodifluoromethane                 | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Ethylbenzene                            | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| 1,2-Dibromoethane                       | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 | •       |
| Isopropylbenzene                        | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 | •       |
| Methyl acetate                          | ND               | 2.5 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Methyl tert-butyl ether                 | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 | •       |
| Methylcyclohexane                       | 1.5              | 1.0 | 0.16 | ug/L |   |          | 12/13/23 14:19 |         |
| Methylene Chloride                      | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Styrene                                 | ND               | 1.0 | 0.73 | ug/L |   |          | 12/13/23 14:19 |         |
| Tetrachloroethene                       | ND               | 1.0 |      | ug/L |   |          | 12/13/23 14:19 |         |
| Toluene                                 | ND               | 1.0 | 0.51 | ug/L |   |          | 12/13/23 14:19 |         |
| trans-1,2-Dichloroethene                | ND               | 1.0 | 0.90 | ug/L |   |          | 12/13/23 14:19 |         |
| trans-1,3-Dichloropropene               | ND               | 1.0 | 0.37 | ug/L |   |          | 12/13/23 14:19 |         |
| Trichloroethene                         | ND               | 1.0 | 0.46 | ug/L |   |          | 12/13/23 14:19 |         |
| Trichlorofluoromethane                  | ND               | 1.0 | 0.88 | ug/L |   |          | 12/13/23 14:19 |         |
| Vinyl chloride                          | ND               | 1.0 | 0.90 | ug/L |   |          | 12/13/23 14:19 |         |
| Xylenes, Total                          | ND               | 2.0 | 0.66 | ug/L |   |          | 12/13/23 14:19 |         |

Eurofins Buffalo

4

6

8

9

11

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-2 Lab Sample ID: 480-215658-3

Date Collected: 12/12/23 09:35 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 12/13/23 14:19 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 88                  | 77 - 120 |          | 12/13/23 14:19 | 1       |
| 4-Bromofluorobenzene (Surr)  | 99                  | 73 - 120 |          | 12/13/23 14:19 | 1       |
| Dibromofluoromethane (Surr)  | 88                  | 75 - 123 |          | 12/13/23 14:19 | 1       |

4

5

6

8

10

11

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: MW-09R** Date Collected: 12/12/23 10:15

Lab Sample ID: 480-215658-4

Matrix: Water

Date Received: 12/13/23 09:00 Method: SW846 8260C - Volatile Organic Compounds by GC/MS

| Analyte                               | Result | Qualifier | RL  | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|---------------------------------------|--------|-----------|-----|-----|------|---|----------|----------------|---------|
| 1,1,1-Trichloroethane                 | ND     |           | 10  | 8.2 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 10  | 2.1 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,1,2-Trichloroethane                 | ND     |           | 10  | 2.3 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 10  | 3.1 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,1-Dichloroethane                    | ND     |           | 10  | 3.8 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,1-Dichloroethene                    | ND     |           | 10  | 2.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,2,4-Trichlorobenzene                | ND     |           | 10  | 4.1 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 10  | 3.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,2-Dichlorobenzene                   | ND     |           | 10  | 7.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,2-Dichloroethane                    | ND     |           | 10  | 2.1 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,2-Dichloropropane                   | ND     |           | 10  | 7.2 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,3-Dichlorobenzene                   | ND     |           | 10  | 7.8 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,4-Dichlorobenzene                   | ND     |           | 10  | 8.4 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 2-Butanone (MEK)                      | ND     |           | 100 | 13  | ug/L |   |          | 12/13/23 14:41 | 10      |
| 2-Hexanone                            | ND     |           | 50  | 12  | ug/L |   |          | 12/13/23 14:41 | 10      |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 50  | 21  | ug/L |   |          | 12/13/23 14:41 | 10      |
| Acetone                               | ND     |           | 100 | 30  | ug/L |   |          | 12/13/23 14:41 | 10      |
| Benzene                               | ND     |           | 10  | 4.1 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Bromodichloromethane                  | ND     |           | 10  | 3.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Bromoform                             | ND     |           | 10  | 2.6 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Bromomethane                          | ND     |           | 10  | 6.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Carbon disulfide                      | ND     |           | 10  | 1.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Carbon tetrachloride                  | ND     |           | 10  | 2.7 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Chlorobenzene                         | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Dibromochloromethane                  | ND     |           | 10  | 3.2 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Chloroethane                          | ND     |           | 10  | 3.2 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Chloroform                            | ND     |           | 10  | 3.4 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Chloromethane                         | ND     |           | 10  | 3.5 | ug/L |   |          | 12/13/23 14:41 | 10      |
| cis-1,2-Dichloroethene                | 75     |           | 10  | 8.1 | ug/L |   |          | 12/13/23 14:41 | 10      |
| cis-1,3-Dichloropropene               | ND     |           | 10  | 3.6 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Cyclohexane                           | 37     |           | 10  | 1.8 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Dichlorodifluoromethane               | ND     |           | 10  | 6.8 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Ethylbenzene                          | ND     |           | 10  | 7.4 | ug/L |   |          | 12/13/23 14:41 | 10      |
| 1,2-Dibromoethane                     | ND     |           | 10  | 7.3 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Isopropylbenzene                      | ND     |           | 10  | 7.9 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Methyl acetate                        | ND     |           | 25  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Methyl tert-butyl ether               | ND     |           | 10  | 1.6 | ug/L |   |          | 12/13/23 14:41 | 10      |
| Methylcyclohexane                     | 34     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Methylene Chloride                    | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Styrene                               | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Tetrachloroethene                     | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Toluene                               | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| trans-1,2-Dichloroethene              | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| trans-1,3-Dichloropropene             | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Trichloroethene                       | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Trichlorofluoromethane                | ND     |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Vinyl chloride                        | 310    |           | 10  |     | ug/L |   |          | 12/13/23 14:41 | 10      |
| Xylenes, Total                        | ND     |           | 20  |     | ug/L |   |          | 12/13/23 14:41 | 10      |

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-09R Lab Sample ID: 480-215658-4

Date Collected: 12/12/23 10:15 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97                  | 80 - 120 |          | 12/13/23 14:41 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 92                  | 77 - 120 |          | 12/13/23 14:41 | 10      |
| 4-Bromofluorobenzene (Surr)  | 98                  | 73 - 120 |          | 12/13/23 14:41 | 10      |
| Dibromofluoromethane (Surr)  | 92                  | 75 - 123 |          | 12/13/23 14:41 | 10      |

4

5

7

9

10

12

4 4

1!

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-11R

Lab Sample ID: 480-215658-5 Date Collected: 12/12/23 10:45

Matrix: Water

|                                                 |            | ounds by GC/ |          |     |              |   |          |                                  |        |
|-------------------------------------------------|------------|--------------|----------|-----|--------------|---|----------|----------------------------------|--------|
| Analyte                                         | Result     | Qualifier    | RL       | MDL |              | D | Prepared | Analyzed                         | Dil Fa |
| 1,1,1-Trichloroethane                           | ND         |              | 50       | 41  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,1,2,2-Tetrachloroethane                       | ND         |              | 50       | 11  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,1,2-Trichloroethane                           | ND         |              | 50       | 12  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane           | ND         |              | 50       | 16  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,1-Dichloroethane                              | ND         |              | 50       | 19  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,1-Dichloroethene                              | ND         |              | 50       | 15  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,2,4-Trichlorobenzene                          | ND         |              | 50       | 21  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,2-Dibromo-3-Chloropropane                     | ND         |              | 50       | 20  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,2-Dichlorobenzene                             | ND         |              | 50       | 40  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,2-Dichloroethane                              | ND         |              | 50       | 11  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,2-Dichloropropane                             | ND         |              | 50       | 36  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,3-Dichlorobenzene                             | ND         |              | 50       | 39  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,4-Dichlorobenzene                             | ND         |              | 50       | 42  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 2-Butanone (MEK)                                | ND         |              | 500      | 66  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 2-Hexanone                                      | ND         |              | 250      | 62  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 4-Methyl-2-pentanone (MIBK)                     | ND         |              | 250      | 110 | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Acetone                                         | ND         |              | 500      |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Benzene                                         | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Bromodichloromethane                            | ND         |              | 50       | 20  | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Bromoform                                       | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Bromomethane                                    | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Carbon disulfide                                | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Carbon tetrachloride                            | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Chlorobenzene                                   | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Dibromochloromethane                            | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Chloroethane                                    | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Chloroform                                      | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Chloromethane                                   | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| cis-1,2-Dichloroethene                          | 1700       |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| cis-1,3-Dichloropropene                         | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Cyclohexane                                     | 13         | .1           | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Dichlorodifluoromethane                         | ND         | ·            | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Ethylbenzene                                    | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| 1,2-Dibromoethane                               | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Isopropylbenzene                                | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Methyl acetate                                  | ND         |              | 130      |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Methyl tert-butyl ether                         | ND         |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Methylcyclohexane                               | 17         | 1            | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Methylene Chloride                              | ND         | 3            | 50       |     | ug/L<br>ug/L |   |          | 12/14/23 12:11                   | 5      |
| Styrene                                         | ND         |              | 50       |     | ug/L<br>ug/L |   |          | 12/14/23 12:11                   | 5      |
| Tetrachloroethene                               | ND         |              | 50       |     | ug/L<br>ug/L |   |          | 12/14/23 12:11                   | 5      |
| Toluene                                         | ND<br>ND   |              | 50       |     | -            |   |          |                                  | 5      |
|                                                 |            |              |          |     | ug/L         |   |          | 12/14/23 12:11                   |        |
| trans-1,2-Dichloroethene                        | ND<br>ND   |              | 50<br>50 |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| trans-1,3-Dichloropropene                       |            |              | 50<br>50 |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |
| Trichloroethene                                 | 44<br>ND   | J            | 50       |     | ug/L<br>ug/L |   |          | 12/14/23 12:11<br>12/14/23 12:11 |        |
|                                                 |            |              | 50       | 44  | HQ/I         |   |          | コン/コム/ンス 1ン・11                   | 5      |
| Trichlorofluoromethane<br><b>Vinyl chloride</b> | ND<br>1100 |              | 50       |     | ug/L         |   |          | 12/14/23 12:11                   | 5      |

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-11R Lab Sample ID: 480-215658-5

Date Collected: 12/12/23 10:45

Date Received: 12/13/23 09:00

Matrix: Water

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|---------------------|----------|----------|----------------|---------|--|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 12/14/23 12:11 | 50      |  |
| 1,2-Dichloroethane-d4 (Surr) | 88                  | 77 - 120 |          | 12/14/23 12:11 | 50      |  |
| 4-Bromofluorobenzene (Surr)  | 98                  | 73 - 120 |          | 12/14/23 12:11 | 50      |  |
| Dibromofluoromethane (Surr)  | 86                  | 75 - 123 |          | 12/14/23 12:11 | 50      |  |

5

6

8

46

11

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-02R Date Collected: 12/12/23 11:25

Date Received: 12/13/23 09:00

Lab Sample ID: 480-215658-6

**Matrix: Water** 

Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RLMDL Unit D Prepared Analyzed Dil Fac 5.0 1,1,1-Trichloroethane ND 4.1 ug/L 12/13/23 15:25 5 5 1,1,2,2-Tetrachloroethane ND 5.0 1.1 ug/L 12/13/23 15:25 1,1,2-Trichloroethane ND 5.0 1.2 ug/L 12/13/23 15:25 5 1,1,2-Trichloro-1,2,2-trifluoroethane 5 ND 5.0 1.6 ug/L 12/13/23 15:25 1,1-Dichloroethane ND 5.0 1.9 ug/L 12/13/23 15:25 5 1,1-Dichloroethene 5 ND 5.0 1.5 ug/L 12/13/23 15:25 1,2,4-Trichlorobenzene ND 5.0 2.1 ug/L 12/13/23 15:25 5

| 1,2-Dibromo-3-Chloropropane | ND    | 5.0 | 2.0  | ug/L | 12/13/23 15:25 | 5 |
|-----------------------------|-------|-----|------|------|----------------|---|
| 1,2-Dichlorobenzene         | ND    | 5.0 | 4.0  | ug/L | 12/13/23 15:25 | 5 |
| 1,2-Dichloroethane          | ND    | 5.0 | 1.1  | ug/L | 12/13/23 15:25 | 5 |
| 1,2-Dichloropropane         | ND    | 5.0 | 3.6  | ug/L | 12/13/23 15:25 | 5 |
| 1,3-Dichlorobenzene         | ND    | 5.0 | 3.9  | ug/L | 12/13/23 15:25 | 5 |
| 1,4-Dichlorobenzene         | ND    | 5.0 | 4.2  | ug/L | 12/13/23 15:25 | 5 |
| 2-Butanone (MEK)            | ND    | 50  | 6.6  | ug/L | 12/13/23 15:25 | 5 |
| 2-Hexanone                  | ND    | 25  | 6.2  | ug/L | 12/13/23 15:25 | 5 |
| 4-Methyl-2-pentanone (MIBK) | ND    | 25  | 11   | ug/L | 12/13/23 15:25 | 5 |
| Acetone                     | ND    | 50  | 15   | ug/L | 12/13/23 15:25 | 5 |
| Benzene                     | 2.7 J | 5.0 | 2.1  | ug/L | 12/13/23 15:25 | 5 |
| Bromodichloromethane        | ND    | 5.0 | 2.0  | ug/L | 12/13/23 15:25 | 5 |
| Bromoform                   | ND    | 5.0 | 1.3  | ug/L | 12/13/23 15:25 | 5 |
| Bromomethane                | ND    | 5.0 | 3.5  | ug/L | 12/13/23 15:25 | 5 |
| Carbon disulfide            | ND    | 5.0 | 0.95 | ug/L | 12/13/23 15:25 | 5 |
| Carbon tetrachloride        | ND    | 5.0 | 1.4  | ug/L | 12/13/23 15:25 | 5 |
| Chlorobenzene               | ND    | 5.0 | 3.8  | ug/L | 12/13/23 15:25 | 5 |
| Dibromochloromethane        | ND    | 5.0 | 1.6  | ug/L | 12/13/23 15:25 | 5 |
| Chloroethane                | ND    | 5.0 | 1.6  | ug/L | 12/13/23 15:25 | 5 |
| Chloroform                  | ND    | 5.0 | 1.7  | ug/L | 12/13/23 15:25 | 5 |
| Chloromethane               | ND    | 5.0 | 1.8  | ug/L | 12/13/23 15:25 | 5 |
| cis-1,2-Dichloroethene      | 320   | 5.0 | 4.1  | ug/L | 12/13/23 15:25 | 5 |
| cis-1,3-Dichloropropene     | ND    | 5.0 | 1.8  | ug/L | 12/13/23 15:25 | 5 |
| Cyclohexane                 | 7.7   | 5.0 | 0.90 | ug/L | 12/13/23 15:25 | 5 |
| Dichlorodifluoromethane     | ND    | 5.0 | 3.4  | ug/L | 12/13/23 15:25 | 5 |
| Ethylbenzene                | ND    | 5.0 | 3.7  | ug/L | 12/13/23 15:25 | 5 |
| 1,2-Dibromoethane           | ND    | 5.0 | 3.7  | ug/L | 12/13/23 15:25 | 5 |
| Isopropylbenzene            | ND    | 5.0 | 4.0  | ug/L | 12/13/23 15:25 | 5 |
| Methyl acetate              | ND    | 13  | 6.5  | ug/L | 12/13/23 15:25 | 5 |
| Methyl tert-butyl ether     | ND    | 5.0 | 0.80 | ug/L | 12/13/23 15:25 | 5 |
| Methylcyclohexane           | 7.7   | 5.0 | 0.80 | ug/L | 12/13/23 15:25 | 5 |
| Methylene Chloride          | ND    | 5.0 | 2.2  | ug/L | 12/13/23 15:25 | 5 |
| Styrene                     | ND    | 5.0 | 3.7  | ug/L | 12/13/23 15:25 | 5 |
| Tetrachloroethene           | ND    | 5.0 | 1.8  | ug/L | 12/13/23 15:25 | 5 |
| Toluene                     | ND    | 5.0 | 2.6  | ug/L | 12/13/23 15:25 | 5 |
| trans-1,2-Dichloroethene    | ND    | 5.0 | 4.5  | ug/L | 12/13/23 15:25 | 5 |
| trans-1,3-Dichloropropene   | ND    | 5.0 | 1.9  | ug/L | 12/13/23 15:25 | 5 |
| Trichloroethene             | 3.6 J | 5.0 | 2.3  | ug/L | 12/13/23 15:25 | 5 |
| Trichlorofluoromethane      | ND    | 5.0 | 4.4  | ug/L | 12/13/23 15:25 | 5 |
| Vinyl chloride              | 280   | 5.0 | 4.5  | ug/L | 12/13/23 15:25 | 5 |
| Xylenes, Total              | ND    | 10  | 3.3  | ug/L | 12/13/23 15:25 | 5 |

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-02R Lab Sample ID: 480-215658-6

Date Collected: 12/12/23 11:25 Matrix: Water

Date Received: 12/13/23 09:00

| ; | Surrogate                    | %Recovery Qua | alifier Limits | Prepared | Analyzed       | Dil Fac |
|---|------------------------------|---------------|----------------|----------|----------------|---------|
| 7 | Toluene-d8 (Surr)            | 97            | 80 - 120       |          | 12/13/23 15:25 | 5       |
|   | 1,2-Dichloroethane-d4 (Surr) | 90            | 77 - 120       |          | 12/13/23 15:25 | 5       |
| . | 4-Bromofluorobenzene (Surr)  | 99            | 73 - 120       |          | 12/13/23 15:25 | 5       |
|   | Dibromofluoromethane (Surr)  | 91            | 75 - 123       |          | 12/13/23 15:25 | 5       |

3

5

6

8

9

11

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12 Date Collected: 12/12/23 12:10

Lab Sample ID: 480-215658-7

Matrix: Water

Date Received: 12/13/23 09:00 Method: SW846 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RLMDL Unit Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 4.0 3.3 ug/L 12/13/23 15:48 ND 1,1,2,2-Tetrachloroethane 4.0 0.84 ug/L 12/13/23 15:48

| 1,1,2-Trichloroethane                 | ND | 4.0 | 0.92 | ug/L | 12/13/23 15:48 | 4 |
|---------------------------------------|----|-----|------|------|----------------|---|
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND | 4.0 | 1.2  | ug/L | 12/13/23 15:48 | 4 |
| 1,1-Dichloroethane                    | ND | 4.0 | 1.5  | ug/L | 12/13/23 15:48 | 4 |
| 1,1-Dichloroethene                    | ND | 4.0 | 1.2  | ug/L | 12/13/23 15:48 | 4 |
| 1,2,4-Trichlorobenzene                | ND | 4.0 | 1.6  | ug/L | 12/13/23 15:48 | 4 |
| 1,2-Dibromo-3-Chloropropane           | ND | 4.0 | 1.6  | ug/L | 12/13/23 15:48 | 4 |
| 1,2-Dichlorobenzene                   | ND | 4.0 | 3.2  | ug/L | 12/13/23 15:48 | 4 |
| 1,2-Dichloroethane                    | ND | 4.0 | 0.84 | ug/L | 12/13/23 15:48 | 4 |
| 1,2-Dichloropropane                   | ND | 4.0 | 2.9  | ug/L | 12/13/23 15:48 | 4 |
| 1,3-Dichlorobenzene                   | ND | 4.0 | 3.1  | ug/L | 12/13/23 15:48 | 4 |
| 1,4-Dichlorobenzene                   | ND | 4.0 | 3.4  | ug/L | 12/13/23 15:48 | 4 |
| 2-Butanone (MEK)                      | ND | 40  | 5.3  | ug/L | 12/13/23 15:48 | 4 |
| 2-Hexanone                            | ND | 20  | 5.0  | ug/L | 12/13/23 15:48 | 4 |
| 4-Methyl-2-pentanone (MIBK)           | ND | 20  | 8.4  | ug/L | 12/13/23 15:48 | 4 |
| Acetone                               | ND | 40  | 12   | ug/L | 12/13/23 15:48 | 4 |
| Benzene                               | ND | 4.0 | 1.6  | ug/L | 12/13/23 15:48 | 4 |
| Bromodichloromethane                  | ND | 4.0 | 1.6  | ug/L | 12/13/23 15:48 | 4 |
| Bromoform                             | ND | 4.0 | 1.0  | ug/L | 12/13/23 15:48 | 4 |
| Bromomethane                          | ND | 4.0 | 2.8  | ug/L | 12/13/23 15:48 | 4 |
| Carbon disulfide                      | ND | 4.0 | 0.76 | ug/L | 12/13/23 15:48 | 4 |
| Carbon tetrachloride                  | ND | 4.0 | 1.1  | ug/L | 12/13/23 15:48 | 4 |
| Chlorobenzene                         | ND | 4.0 | 3.0  | ug/L | 12/13/23 15:48 | 4 |
| Dibromochloromethane                  | ND | 4.0 | 1.3  | ug/L | 12/13/23 15:48 | 4 |
| Chloroethane                          | ND | 4.0 | 1.3  | ug/L | 12/13/23 15:48 | 4 |
| Chloroform                            | ND | 4.0 | 1.4  | ug/L | 12/13/23 15:48 | 4 |
| Chloromethane                         | ND | 4.0 | 1.4  | ug/L | 12/13/23 15:48 | 4 |
| cis-1,2-Dichloroethene                | ND | 4.0 | 3.2  | ug/L | 12/13/23 15:48 | 4 |
| cis-1,3-Dichloropropene               | ND | 4.0 | 1.4  | ug/L | 12/13/23 15:48 | 4 |
| Cyclohexane                           | ND | 4.0 | 0.72 | ug/L | 12/13/23 15:48 | 4 |
| Dichlorodifluoromethane               | ND | 4.0 | 2.7  | ug/L | 12/13/23 15:48 | 4 |
| Ethylbenzene                          | ND | 4.0 | 3.0  | ug/L | 12/13/23 15:48 | 4 |
| 1,2-Dibromoethane                     | ND | 4.0 | 2.9  | ug/L | 12/13/23 15:48 | 4 |
| Isopropylbenzene                      | ND | 4.0 | 3.2  | ug/L | 12/13/23 15:48 | 4 |
| Methyl acetate                        | ND | 10  | 5.2  | ug/L | 12/13/23 15:48 | 4 |
| Methyl tert-butyl ether               | ND | 4.0 | 0.64 | ug/L | 12/13/23 15:48 | 4 |
| Methylcyclohexane                     | ND | 4.0 | 0.64 | ug/L | 12/13/23 15:48 | 4 |
| Methylene Chloride                    | ND | 4.0 | 1.8  | ug/L | 12/13/23 15:48 | 4 |
| Styrene                               | ND | 4.0 | 2.9  | ug/L | 12/13/23 15:48 | 4 |
| Tetrachloroethene                     | ND | 4.0 | 1.4  | ug/L | 12/13/23 15:48 | 4 |
| Toluene                               | ND | 4.0 | 2.0  | ug/L | 12/13/23 15:48 | 4 |
| trans-1,2-Dichloroethene              | ND | 4.0 | 3.6  | ug/L | 12/13/23 15:48 | 4 |
| trans-1,3-Dichloropropene             | ND | 4.0 | 1.5  | ug/L | 12/13/23 15:48 | 4 |
| Trichloroethene                       | ND | 4.0 | 1.8  | ug/L | 12/13/23 15:48 | 4 |
| Trichlorofluoromethane                | ND | 4.0 | 3.5  | ug/L | 12/13/23 15:48 | 4 |
| Vinyl chloride                        | ND | 4.0 | 3.6  | ug/L | 12/13/23 15:48 | 4 |
| Xylenes, Total                        | ND | 8.0 | 2.6  | ug/L | 12/13/23 15:48 | 4 |

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: EX-MW-12 Lab Sample ID: 480-215658-7

Date Collected: 12/12/23 12:10 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits              | Prepared Analyzed | l Dil Fac |
|------------------------------|---------------------|---------------------|-------------------|-----------|
| Toluene-d8 (Surr)            | 96                  | 80 - 120            | 12/13/23 15       | :48 4     |
| 1,2-Dichloroethane-d4 (Surr) | 89                  | 77 - 120            | 12/13/23 15       | :48 4     |
| 4-Bromofluorobenzene (Surr)  | 99                  | 73 - 120            | 12/13/23 15       | :48 4     |
| Dibromofluoromethane (Surr)  | 93                  | 75 <sub>-</sub> 123 | 12/13/23 15       | :48 4     |

4

5

7

8

10

12

13

4 -

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-04 Date Collected: 12/12/23 12:45

mple ID: MW-04 Lab Sample ID: 480-215658-8

Matrix: Water

Date Received: 12/13/23 09:00

Mothod: SW846 8260C Volatile Organic Compounds by GC/MS

| Analyte                               | Result   | Qualifier | RL  | MDL  |              | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------|----------|-----------|-----|------|--------------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                 | ND       |           | 4.0 | 3.3  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,1,2,2-Tetrachloroethane             | ND       |           | 4.0 | 0.84 | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,1,2-Trichloroethane                 | ND       |           | 4.0 | 0.92 | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND       |           | 4.0 | 1.2  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,1-Dichloroethane                    | ND       |           | 4.0 | 1.5  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,1-Dichloroethene                    | ND       |           | 4.0 | 1.2  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,2,4-Trichlorobenzene                | ND       |           | 4.0 | 1.6  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,2-Dibromo-3-Chloropropane           | ND       |           | 4.0 | 1.6  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,2-Dichlorobenzene                   | ND       |           | 4.0 | 3.2  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,2-Dichloroethane                    | ND       |           | 4.0 | 0.84 | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,2-Dichloropropane                   | ND       |           | 4.0 | 2.9  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,3-Dichlorobenzene                   | ND       |           | 4.0 | 3.1  | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,4-Dichlorobenzene                   | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| 2-Butanone (MEK)                      | ND       |           | 40  |      | ug/L         |   |          | 12/13/23 16:10 |        |
| 2-Hexanone                            | ND       |           | 20  |      | ug/L         |   |          | 12/13/23 16:10 |        |
| 4-Methyl-2-pentanone (MIBK)           | ND       |           | 20  |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Acetone                               | ND       |           | 40  |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Benzene                               | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Bromodichloromethane                  | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Bromoform                             | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Bromomethane                          | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Carbon disulfide                      | ND       |           | 4.0 |      | ug/L<br>ug/L |   |          | 12/13/23 16:10 |        |
| Carbon tetrachloride                  | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Chlorobenzene                         | ND<br>ND |           | 4.0 |      | -            |   |          | 12/13/23 16:10 |        |
| Dibromochloromethane                  | ND<br>ND |           | 4.0 |      | ug/L<br>ug/L |   |          | 12/13/23 16:10 |        |
| Chloroethane                          | ND<br>ND |           | 4.0 |      |              |   |          | 12/13/23 16:10 |        |
| Chloroform                            | ND<br>ND |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
|                                       |          |           |     |      | ug/L         |   |          |                |        |
| Chloromethane                         | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| cis-1,2-Dichloroethene                | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| cis-1,3-Dichloropropene               | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Cyclohexane                           | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Dichlorodifluoromethane               | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Ethylbenzene                          | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| 1,2-Dibromoethane                     | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Isopropylbenzene                      | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Methyl acetate                        | ND       |           | 10  |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Methyl tert-butyl ether               | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Methylcyclohexane                     | ND       |           | 4.0 |      | ug/L         |   |          | 12/13/23 16:10 |        |
| Methylene Chloride                    | ND       |           | 4.0 | 1.8  | ug/L         |   |          | 12/13/23 16:10 |        |
| Styrene                               | ND       |           | 4.0 | 2.9  | ug/L         |   |          | 12/13/23 16:10 |        |
| Tetrachloroethene                     | ND       |           | 4.0 | 1.4  | ug/L         |   |          | 12/13/23 16:10 |        |
| Toluene                               | ND       |           | 4.0 | 2.0  | ug/L         |   |          | 12/13/23 16:10 |        |
| trans-1,2-Dichloroethene              | ND       |           | 4.0 | 3.6  | ug/L         |   |          | 12/13/23 16:10 |        |
| trans-1,3-Dichloropropene             | ND       |           | 4.0 | 1.5  | ug/L         |   |          | 12/13/23 16:10 |        |
| Trichloroethene                       | ND       |           | 4.0 | 1.8  | ug/L         |   |          | 12/13/23 16:10 |        |
| Trichlorofluoromethane                | ND       |           | 4.0 | 3.5  | ug/L         |   |          | 12/13/23 16:10 |        |
| Vinyl chloride                        | ND       |           | 4.0 | 3.6  | ug/L         |   |          | 12/13/23 16:10 |        |
| Xylenes, Total                        | ND       |           | 8.0 | 2.6  | ug/L         |   |          | 12/13/23 16:10 |        |

Eurofins Buffalo

12/22/2023

6

0

4 6

11

13

Le

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-04 Lab Sample ID: 480-215658-8

Date Collected: 12/12/23 12:45 Matrix: Water

Date Received: 12/13/23 09:00

|   | Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|---|------------------------------|---------------------|----------|----------|----------------|---------|
| ' | Toluene-d8 (Surr)            | 97                  | 80 - 120 |          | 12/13/23 16:10 | 4       |
|   | 1,2-Dichloroethane-d4 (Surr) | 90                  | 77 - 120 |          | 12/13/23 16:10 | 4       |
|   | 4-Bromofluorobenzene (Surr)  | 97                  | 73 - 120 |          | 12/13/23 16:10 | 4       |
|   | Dibromofluoromethane (Surr)  | 90                  | 75 - 123 |          | 12/13/23 16:10 | 4       |

3

5

6

R

9

11

12

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Date Collected: 12/12/23 13:30 Lab Sample ID: 480-215658-9

Matrix: Water

Date Received: 12/13/23 09:00

Method: SW846 8260C - Volatile Organic Compounds by GC/MS

| Analyte                               | Result Qualifier   | RL         | MDL  |              | <u>D</u> . | Prepared | Analyzed                         | Dil F |
|---------------------------------------|--------------------|------------|------|--------------|------------|----------|----------------------------------|-------|
| 1,1,1-Trichloroethane                 | ND                 | 4.0        | 3.3  | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,1,2,2-Tetrachloroethane             | ND                 | 4.0        | 0.84 | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,1,2-Trichloroethane                 | ND                 | 4.0        | 0.92 | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND                 | 4.0        | 1.2  | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,1-Dichloroethane                    | ND                 | 4.0        | 1.5  | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,1-Dichloroethene                    | ND                 | 4.0        | 1.2  | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,2,4-Trichlorobenzene                | ND                 | 4.0        | 1.6  | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,2-Dibromo-3-Chloropropane           | ND                 | 4.0        | 1.6  | ug/L         |            |          | 12/13/23 16:32                   |       |
| I,2-Dichlorobenzene                   | ND                 | 4.0        | 3.2  | ug/L         |            |          | 12/13/23 16:32                   |       |
| I,2-Dichloroethane                    | ND                 | 4.0        | 0.84 | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1,2-Dichloropropane                   | ND                 | 4.0        | 2.9  | ug/L         |            |          | 12/13/23 16:32                   |       |
| I,3-Dichlorobenzene                   | ND                 | 4.0        | 3.1  | ug/L         |            |          | 12/13/23 16:32                   |       |
| I,4-Dichlorobenzene                   | ND                 | 4.0        | 3.4  | ug/L         |            |          | 12/13/23 16:32                   |       |
| 2-Butanone (MEK)                      | ND                 | 40         |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| 2-Hexanone                            | ND                 | 20         |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| 1-Methyl-2-pentanone (MIBK)           | ND                 | 20         | 8.4  | ug/L         |            |          | 12/13/23 16:32                   |       |
| Acetone                               | ND                 | 40         |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Benzene                               | 2.1 J              | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Bromodichloromethane                  | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Bromoform                             | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Bromomethane                          | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Carbon disulfide                      | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Carbon tetrachloride                  | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Chlorobenzene                         | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| )ibromochloromethane                  | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Chloroethane                          | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Chloroform                            | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Chloromethane                         | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| is-1,2-Dichloroethene                 | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| is-1,3-Dichloropropene                | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Cyclohexane                           | 6.1                | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Dichlorodifluoromethane               | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Ethylbenzene                          | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| ,2-Dibromoethane                      | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| sopropylbenzene                       | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Methyl acetate                        | ND                 | 10         |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Methyl tert-butyl ether               | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Methylcyclohexane                     | 6.8                | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| Methylene Chloride                    | ND                 | 4.0        |      | ug/L<br>ug/L |            |          | 12/13/23 16:32                   |       |
| Styrene                               | ND<br>ND           | 4.0        |      | ug/L<br>ug/L |            |          | 12/13/23 16:32                   |       |
| etrachloroethene                      | ND<br>ND           | 4.0        |      | ug/L<br>ug/L |            |          | 12/13/23 16:32                   |       |
|                                       | 3.0 J              | 4.0        |      | ug/L<br>ug/L |            |          | 12/13/23 16:32                   |       |
| oluene                                |                    |            |      |              |            |          |                                  |       |
| rans-1,2-Dichloroethene               | ND<br>ND           | 4.0        |      | ug/L<br>ug/L |            |          | 12/13/23 16:32                   |       |
| rans-1,3-Dichloropropene              | ND<br>ND           | 4.0        |      | •            |            |          | 12/13/23 16:32                   |       |
| Trichloroethene                       |                    | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| richlorofluoromethane                 | ND                 | 4.0        |      | ug/L         |            |          | 12/13/23 16:32                   |       |
| /inyl chloride<br>Kylenes, Total      | ND<br><b>5.0</b> J | 4.0<br>8.0 |      | ug/L<br>ug/L |            |          | 12/13/23 16:32<br>12/13/23 16:32 |       |

Eurofins Buffalo

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-13 Lab Sample ID: 480-215658-9

Date Collected: 12/12/23 13:30 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 100                 | 80 - 120 |          | 12/13/23 16:32 | 4       |
| 1,2-Dichloroethane-d4 (Surr) | 89                  | 77 - 120 |          | 12/13/23 16:32 | 4       |
| 4-Bromofluorobenzene (Surr)  | 98                  | 73 - 120 |          | 12/13/23 16:32 | 4       |
| Dibromofluoromethane (Surr)  | 92                  | 75 - 123 |          | 12/13/23 16:32 | 4       |

2

4

5

6

8

10

11

13

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: MW-07R Date Collected: 12/12/23 14:05 Lab Sample ID: 480-215658-10

**Matrix: Water** 

Date Received: 12/13/23 09:00

| Analyte                                 | Result (            | Qualifier | RL       | MDL        | Unit         | D | Prepared | Analyzed                         | Dil Fa |
|-----------------------------------------|---------------------|-----------|----------|------------|--------------|---|----------|----------------------------------|--------|
| 1,1,1-Trichloroethane                   | ND                  |           | 10       | 8.2        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,1,2,2-Tetrachloroethane               | ND                  |           | 10       | 2.1        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,1,2-Trichloroethane                   | ND                  |           | 10       | 2.3        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane   | ND                  |           | 10       | 3.1        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,1-Dichloroethane                      | ND                  |           | 10       | 3.8        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,1-Dichloroethene                      | 12                  |           | 10       | 2.9        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,2,4-Trichlorobenzene                  | ND                  |           | 10       | 4.1        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,2-Dibromo-3-Chloropropane             | ND                  |           | 10       | 3.9        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,2-Dichlorobenzene                     | ND                  |           | 10       | 7.9        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,2-Dichloroethane                      | ND                  |           | 10       | 2.1        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,2-Dichloropropane                     | ND                  |           | 10       | 7.2        | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,3-Dichlorobenzene                     | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 1,4-Dichlorobenzene                     | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 2-Butanone (MEK)                        | ND                  |           | 100      |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 2-Hexanone                              | ND                  |           | 50       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| 4-Methyl-2-pentanone (MIBK)             | ND                  |           | 50       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Acetone                                 | ND                  |           | 100      |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Benzene                                 | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Bromodichloromethane                    | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Bromoform                               | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Bromomethane                            | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Carbon disulfide                        | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Carbon tetrachloride                    | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Chlorobenzene                           | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Dibromochloromethane                    | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   |        |
| Chloroethane                            | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 1      |
| Chloroform                              | ND<br>ND            |           | 10       |            | ug/L<br>ug/L |   |          | 12/13/23 16:54                   | 10     |
| Chloromethane                           | ND ND               |           | 10       |            |              |   |          | 12/13/23 16:54                   |        |
|                                         |                     | _         | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| cis-1,2-Dichloroethene                  | <b>3200</b> I<br>ND | E         | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| cis-1,3-Dichloropropene                 |                     |           |          |            | ug/L         |   |          |                                  |        |
| Cyclohexane<br>Dichlorodifluoromethane  | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
|                                         | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Ethylbenzene<br>1,2-Dibromoethane       | ND ND               |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10<br> |
|                                         | ND<br>ND            |           | 10<br>10 |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Isopropylbenzene                        |                     |           |          |            | ug/L         |   |          | 12/13/23 16:54                   |        |
| Methyl acetate                          | ND                  |           | 25       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Methyl tert-butyl ether                 | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 1      |
| Methylcyclohexane                       | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Methylene Chloride                      | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Styrene                                 | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Tetrachloroethene                       | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 1      |
| Toluene                                 | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| trans-1,2-Dichloroethene                | 9.6                 | J         | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| trans-1,3-Dichloropropene               | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 1      |
| Trichloroethene                         | 21                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| Trichlorofluoromethane                  | ND                  |           | 10       |            | ug/L         |   |          | 12/13/23 16:54                   | 10     |
| <b>Vinyl chloride</b><br>Xylenes, Total | 690                 | F1        | 10       | 9.0<br>6.6 | ug/L         |   |          | 12/13/23 16:54<br>12/13/23 16:54 | 10     |

Eurofins Buffalo

\_

1

\_

Ω

10

12

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: MW-07R** 

Lab Sample ID: 480-215658-10

**Matrix: Water** 

Date Collected: 12/12/23 14:05 Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 97                  | 80 - 120 |          | 12/13/23 16:54 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 88                  | 77 - 120 |          | 12/13/23 16:54 | 10      |
| 4-Bromofluorobenzene (Surr)  | 99                  | 73 - 120 |          | 12/13/23 16:54 | 10      |
| Dibromofluoromethane (Surr)  | 89                  | 75 - 123 |          | 12/13/23 16:54 | 10      |

| Dibromofluoromethane (Surr)           | 89          |            | 75 - 123  |     |              |   |          | 12/13/23 16:54 | 10       |
|---------------------------------------|-------------|------------|-----------|-----|--------------|---|----------|----------------|----------|
| Method: SW846 8260C - Volatile O      | rganic Comp | ounds by G | C/MS - DL |     |              |   |          |                |          |
| Analyte                               |             | Qualifier  | RL        |     | Unit         | D | Prepared | Analyzed       | Dil Fac  |
| 1,1,1-Trichloroethane                 | ND          |            | 80        | 66  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,1,2,2-Tetrachloroethane             | ND          |            | 80        | 17  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,1,2-Trichloroethane                 | ND          |            | 80        | 18  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND          |            | 80        | 25  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,1-Dichloroethane                    | ND          |            | 80        | 30  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,1-Dichloroethene                    | ND          |            | 80        | 23  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,2,4-Trichlorobenzene                | ND          |            | 80        | 33  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,2-Dibromo-3-Chloropropane           | ND          |            | 80        | 31  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,2-Dichlorobenzene                   | ND          |            | 80        | 63  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,2-Dichloroethane                    | ND          |            | 80        | 17  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,2-Dichloropropane                   | ND          |            | 80        | 58  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,3-Dichlorobenzene                   | ND          |            | 80        | 62  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,4-Dichlorobenzene                   | ND          |            | 80        | 67  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 2-Butanone (MEK)                      | ND          |            | 800       | 110 | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 2-Hexanone                            | ND          |            | 400       | 99  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 4-Methyl-2-pentanone (MIBK)           | ND          |            | 400       | 170 | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Acetone                               | ND          |            | 800       | 240 | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Benzene                               | ND          |            | 80        | 33  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Bromodichloromethane                  | ND          |            | 80        | 31  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Bromoform                             | ND          |            | 80        | 21  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Bromomethane                          | ND          |            | 80        | 55  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Carbon disulfide                      | ND          |            | 80        | 15  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Carbon tetrachloride                  | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Chlorobenzene                         | ND          |            | 80        | 60  | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Dibromochloromethane                  | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Chloroethane                          | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Chloroform                            | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Chloromethane                         | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| cis-1,2-Dichloroethene                | 3400        |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| cis-1,3-Dichloropropene               | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Cyclohexane                           | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Dichlorodifluoromethane               | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Ethylbenzene                          | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| 1,2-Dibromoethane                     | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Isopropylbenzene                      | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Methyl acetate                        | ND          |            | 200       |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Methyl tert-butyl ether               | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Methylcyclohexane                     | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Methylene Chloride                    | ND          |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 | 80       |
| Styrene                               | ND          |            | 80        |     |              |   |          |                | 80       |
| Tetrachloroethene                     | ND<br>ND    |            |           |     | ug/L<br>ug/L |   |          | 12/14/23 12:33 |          |
|                                       | ND<br>ND    |            | 80        |     | -            |   |          | 12/14/23 12:33 | 80<br>80 |
| Toluene                               |             |            | 80        |     | ug/L         |   |          | 12/14/23 12:33 |          |
| trans-1,2-Dichloroethene              | ND          |            | 80        | 12  | ug/L         |   |          | 12/14/23 12:33 | 80       |

Eurofins Buffalo

3

4

6

9

11

12

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: MW-07R** 

Lab Sample ID: 480-215658-10

Matrix: Water

Date Collected: 12/12/23 14:05 Date Received: 12/13/23 09:00

| Analyte                      | Result    | Qualifier | RL       | MDL | Unit | D | Prepared | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|------|---|----------|----------------|---------|
| trans-1,3-Dichloropropene    | MD        |           | 80       | 30  | ug/L |   |          | 12/14/23 12:33 | 80      |
| Trichloroethene              | ND        |           | 80       | 37  | ug/L |   |          | 12/14/23 12:33 | 80      |
| Trichlorofluoromethane       | ND        |           | 80       | 70  | ug/L |   |          | 12/14/23 12:33 | 80      |
| Vinyl chloride               | 780       |           | 80       | 72  | ug/L |   |          | 12/14/23 12:33 | 80      |
| Xylenes, Total               | ND        |           | 160      | 53  | ug/L |   |          | 12/14/23 12:33 | 80      |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |      |   | Prepared | Analyzed       | Dil Fac |
| Toluene-d8 (Surr)            | 98        |           | 80 - 120 |     |      | = |          | 12/14/23 12:33 | 80      |
| 1,2-Dichloroethane-d4 (Surr) | 90        |           | 77 - 120 |     |      |   |          | 12/14/23 12:33 | 80      |
| 4-Bromofluorobenzene (Surr)  | 104       |           | 73 - 120 |     |      |   |          | 12/14/23 12:33 | 80      |
| Dibromofluoromethane (Surr)  | 92        |           | 75 - 123 |     |      |   |          | 12/14/23 12:33 | 80      |

0

4

6

0

10

12

13

14

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: DUP** 

Lab Sample ID: 480-215658-11

**Matrix: Water** 

Date Collected: 12/12/23 00:00 Date Received: 12/13/23 09:00

| Analyte                                           | Result (        | Qualifier | RL       | MDL | Unit         | D | Prepared | Analyzed                         | Dil Fa |
|---------------------------------------------------|-----------------|-----------|----------|-----|--------------|---|----------|----------------------------------|--------|
| 1,1,1-Trichloroethane                             | ND              |           | 10       | 8.2 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,1,2,2-Tetrachloroethane                         | ND              |           | 10       | 2.1 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,1,2-Trichloroethane                             | ND              |           | 10       | 2.3 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,1,2-Trichloro-1,2,2-trifluoroethane             | ND              |           | 10       | 3.1 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,1-Dichloroethane                                | ND              |           | 10       | 3.8 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,1-Dichloroethene                                | ND              |           | 10       | 2.9 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,2,4-Trichlorobenzene                            | ND              |           | 10       | 4.1 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,2-Dibromo-3-Chloropropane                       | ND              |           | 10       | 3.9 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,2-Dichlorobenzene                               | ND              |           | 10       | 7.9 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,2-Dichloroethane                                | ND              |           | 10       | 2.1 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,2-Dichloropropane                               | ND              |           | 10       | 7.2 | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,3-Dichlorobenzene                               | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,4-Dichlorobenzene                               | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 2-Butanone (MEK)                                  | ND              |           | 100      |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 2-Hexanone                                        | ND              |           | 50       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 4-Methyl-2-pentanone (MIBK)                       | ND              |           | 50       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Acetone                                           | ND              |           | 100      |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Benzene                                           | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Bromodichloromethane                              | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Bromoform                                         | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Bromomethane                                      | ND I            | F2        | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Carbon disulfide                                  | ND .            |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   |        |
| Carbon tetrachloride                              | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Chlorobenzene                                     | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Dibromochloromethane                              | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   |        |
| Chloroethane                                      | ND I            | EO        | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Chloroform                                        | ND ND           | 1 2       | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   | 1      |
| Chloromethane                                     | ND              |           | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   |        |
|                                                   |                 |           | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   | 1      |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene | <b>99</b><br>ND |           | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   | '<br>1 |
| Cyclohexane                                       |                 |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   |        |
| Dichlorodifluoromethane                           | <b>39</b><br>ND |           | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   | 1      |
| Ethylbenzene                                      | ND              |           |          |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| 1,2-Dibromoethane                                 | ND              |           | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   |        |
|                                                   | ND<br>ND        |           | 10       |     | ug/L<br>ug/L |   |          | 12/14/23 12:56                   | 1      |
| sopropylbenzene                                   |                 |           |          |     | •            |   |          |                                  |        |
| Methyl text histid other                          | ND ND           |           | 25       |     | ug/L         |   |          | 12/14/23 12:56                   |        |
| Methyl tert-butyl ether                           | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Methylcyclohexane                                 | 37              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Methylene Chloride                                | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Styrene                                           | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Tetrachloroethene                                 | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Toluene                                           | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   |        |
| trans-1,2-Dichloroethene                          | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| trans-1,3-Dichloropropene                         | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Trichloroethene                                   | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| Trichlorofluoromethane                            | ND              |           | 10       |     | ug/L         |   |          | 12/14/23 12:56                   | 1      |
| <b>Vinyl chloride</b><br>Xylenes, Total           | 360             | F1        | 10<br>20 |     | ug/L<br>ug/L |   |          | 12/14/23 12:56<br>12/14/23 12:56 | 1      |

Eurofins Buffalo

2

\_

6

9

11

13

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: DUP Lab Sample ID: 480-215658-11

Date Collected: 12/12/23 00:00 Matrix: Water

Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 95                  | 80 - 120 |          | 12/14/23 12:56 | 10      |
| 1,2-Dichloroethane-d4 (Surr) | 97                  | 77 - 120 |          | 12/14/23 12:56 | 10      |
| 4-Bromofluorobenzene (Surr)  | 100                 | 73 - 120 |          | 12/14/23 12:56 | 10      |
| Dibromofluoromethane (Surr)  | 97                  | 75 - 123 |          | 12/14/23 12:56 | 10      |

2

4

5

7

10

12

. .

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: TRIP BLANK** 

Lab Sample ID: 480-215658-12 Date Collected: 12/12/23 00:00

Matrix: Water

Date Received: 12/13/23 09:00

| Analyte                               | Result | Qualifier | RL  | MDL  | Unit         | D | Prepared | Analyzed       | Dil Fa |
|---------------------------------------|--------|-----------|-----|------|--------------|---|----------|----------------|--------|
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,2-Dichloroethane                    | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,2-Dichloropropane                   | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| 2-Butanone (MEK)                      | ND     |           | 10  |      | ug/L         |   |          | 12/13/23 17:39 |        |
| 2-Hexanone                            | ND     |           | 5.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Acetone                               | ND     |           | 10  |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Benzene                               | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Bromodichloromethane                  | ND     |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/13/23 17:39 |        |
| Bromoform                             | ND     |           | 1.0 |      | ug/L<br>ug/L |   |          | 12/13/23 17:39 |        |
| Bromomethane                          | ND     |           | 1.0 |      |              |   |          | 12/13/23 17:39 |        |
| Carbon disulfide                      |        |           |     |      | ug/L         |   |          |                |        |
|                                       | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Carbon tetrachloride                  | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Chlorobenzene                         | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Dibromochloromethane                  | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Chloroethane                          | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Chloroform                            | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Chloromethane                         | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| cis-1,2-Dichloroethene                | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| cis-1,3-Dichloropropene               | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Cyclohexane                           | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Dichlorodifluoromethane               | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Ethylbenzene                          | ND     |           | 1.0 | 0.74 | ug/L         |   |          | 12/13/23 17:39 |        |
| 1,2-Dibromoethane                     | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Isopropylbenzene                      | ND     |           | 1.0 | 0.79 | ug/L         |   |          | 12/13/23 17:39 |        |
| Methyl acetate                        | ND     |           | 2.5 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Methyl tert-butyl ether               | ND     |           | 1.0 | 0.16 | ug/L         |   |          | 12/13/23 17:39 |        |
| Methylcyclohexane                     | ND     |           | 1.0 | 0.16 | ug/L         |   |          | 12/13/23 17:39 |        |
| Methylene Chloride                    | ND     |           | 1.0 | 0.44 | ug/L         |   |          | 12/13/23 17:39 |        |
| Styrene                               | ND     |           | 1.0 | 0.73 | ug/L         |   |          | 12/13/23 17:39 |        |
| Tetrachloroethene                     | ND     |           | 1.0 | 0.36 | ug/L         |   |          | 12/13/23 17:39 |        |
| Toluene                               | ND     |           | 1.0 | 0.51 | ug/L         |   |          | 12/13/23 17:39 |        |
| trans-1,2-Dichloroethene              | ND     |           | 1.0 | 0.90 | ug/L         |   |          | 12/13/23 17:39 |        |
| trans-1,3-Dichloropropene             | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Trichloroethene                       | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Trichlorofluoromethane                | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Vinyl chloride                        | ND     |           | 1.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |
| Xylenes, Total                        | ND     |           | 2.0 |      | ug/L         |   |          | 12/13/23 17:39 |        |

Eurofins Buffalo

12/22/2023

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

**Client Sample ID: TRIP BLANK** 

Lab Sample ID: 480-215658-12

**Matrix: Water** 

Date Collected: 12/12/23 00:00 Date Received: 12/13/23 09:00

| Surrogate                    | %Recovery Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |
|------------------------------|---------------------|----------|----------|----------------|---------|
| Toluene-d8 (Surr)            | 99                  | 80 - 120 |          | 12/13/23 17:39 | 1       |
| 1,2-Dichloroethane-d4 (Surr) | 93                  | 77 - 120 |          | 12/13/23 17:39 | 1       |
| 4-Bromofluorobenzene (Surr)  | 100                 | 73 - 120 |          | 12/13/23 17:39 | 1       |
| Dibromofluoromethane (Surr)  | 92                  | 75 - 123 |          | 12/13/23 17:39 | 1       |

4

5

b

8

9

11

12

1 <u>1</u>

## **Surrogate Summary**

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

#### Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

|                    |                    |          |          | Percent Sui | rrogate Reco | very (Accep |
|--------------------|--------------------|----------|----------|-------------|--------------|-------------|
|                    |                    | TOL      | DCA      | BFB         | DBFM         |             |
| Lab Sample ID      | Client Sample ID   | (80-120) | (77-120) | (73-120)    | (75-123)     |             |
| 480-215658-1       | AL-1               | 97       | 83       | 97          | 88           |             |
| 480-215658-2       | AL-7               | 97       | 90       | 99          | 87           |             |
| 480-215658-3       | AL-2               | 99       | 88       | 99          | 88           |             |
| 480-215658-4       | MW-09R             | 97       | 92       | 98          | 92           |             |
| 480-215658-5       | EX-MW-11R          | 99       | 88       | 98          | 86           |             |
| 480-215658-6       | MW-02R             | 97       | 90       | 99          | 91           |             |
| 480-215658-7       | EX-MW-12           | 96       | 89       | 99          | 93           |             |
| 480-215658-8       | MW-04              | 97       | 90       | 97          | 90           |             |
| 480-215658-9       | MW-13              | 100      | 89       | 98          | 92           |             |
| 480-215658-10      | MW-07R             | 97       | 88       | 99          | 89           |             |
| 480-215658-10 - DL | MW-07R             | 98       | 90       | 104         | 92           |             |
| 480-215658-11      | DUP                | 95       | 97       | 100         | 97           |             |
| 480-215658-11 MS   | DUP                | 95       | 89       | 100         | 92           |             |
| 480-215658-11 MSD  | DUP                | 96       | 87       | 106         | 90           |             |
| 480-215658-12      | TRIP BLANK         | 99       | 93       | 100         | 92           |             |
| LCS 480-695216/6   | Lab Control Sample | 96       | 87       | 98          | 89           |             |
| LCS 480-695377/6   | Lab Control Sample | 97       | 84       | 102         | 88           |             |
| MB 480-695216/8    | Method Blank       | 97       | 89       | 98          | 91           |             |
| MB 480-695377/8    | Method Blank       | 98       | 87       | 104         | 93           |             |

Surrogate Legend

TOL = Toluene-d8 (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

-

3

4

6

ė

9

11

14

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1

#### Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-695216/8

**Matrix: Water** 

Analysis Batch: 695216

| Client Sample ID: Method Blanl | ( |
|--------------------------------|---|
| Prep Type: Total/NA            | 4 |

|                                       | MB |           |      |      |              | _          |          |                | B.: -                 |
|---------------------------------------|----|-----------|------|------|--------------|------------|----------|----------------|-----------------------|
| Analyte                               |    | Qualifier | RL _ | MDL  |              | <u>D</u> - | Prepared | Analyzed       | Dil Fac               |
| 1,1,1-Trichloroethane                 | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,1,2,2-Tetrachloroethane             | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,1,2-Trichloroethane                 | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,1-Dichloroethane                    | ND |           | 1.0  | 0.38 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,1-Dichloroethene                    | ND |           | 1.0  | 0.29 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,2,4-Trichlorobenzene                | ND |           | 1.0  | 0.41 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,2-Dibromo-3-Chloropropane           | ND |           | 1.0  | 0.39 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,2-Dichlorobenzene                   | ND |           | 1.0  | 0.79 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,2-Dichloroethane                    | ND |           | 1.0  | 0.21 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,2-Dichloropropane                   | ND |           | 1.0  | 0.72 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,3-Dichlorobenzene                   | ND |           | 1.0  | 0.78 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,4-Dichlorobenzene                   | ND |           | 1.0  | 0.84 | ug/L         |            |          | 12/13/23 11:40 |                       |
| 2-Butanone (MEK)                      | ND |           | 10   |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 2-Hexanone                            | ND |           | 5.0  | 1.2  | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 4-Methyl-2-pentanone (MIBK)           | ND |           | 5.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Acetone                               | ND |           | 10   |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Benzene                               | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Bromodichloromethane                  | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | · · · · · · · · · · 1 |
| Bromoform                             | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Bromomethane                          | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Carbon disulfide                      | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 |                       |
| Carbon tetrachloride                  | ND |           | 1.0  |      | ug/L<br>ug/L |            |          | 12/13/23 11:40 | 1                     |
|                                       |    |           |      |      | _            |            |          |                |                       |
| Chlorobenzene                         | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 |                       |
| Dibromochloromethane                  | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Chloroethane                          | ND |           | 1.0  | 0.32 | -            |            |          | 12/13/23 11:40 | 1                     |
| Chloroform                            | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Chloromethane                         | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| cis-1,2-Dichloroethene                | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| cis-1,3-Dichloropropene               | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Cyclohexane                           | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Dichlorodifluoromethane               | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Ethylbenzene                          | ND |           | 1.0  | 0.74 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| 1,2-Dibromoethane                     | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Isopropylbenzene                      | ND |           | 1.0  | 0.79 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Methyl acetate                        | ND |           | 2.5  | 1.3  | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Methyl tert-butyl ether               | ND |           | 1.0  | 0.16 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Methylcyclohexane                     | ND |           | 1.0  | 0.16 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Methylene Chloride                    | ND |           | 1.0  | 0.44 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Styrene                               | ND |           | 1.0  | 0.73 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Tetrachloroethene                     | ND |           | 1.0  | 0.36 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Toluene                               | ND |           | 1.0  | 0.51 | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| trans-1,2-Dichloroethene              | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| trans-1,3-Dichloropropene             | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Trichloroethene                       | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Trichlorofluoromethane                | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | <br>1                 |
| Vinyl chloride                        | ND |           | 1.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |
| Xylenes, Total                        | ND |           | 2.0  |      | ug/L         |            |          | 12/13/23 11:40 | 1                     |

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 480-695216/8

**Matrix: Water** 

Analysis Batch: 695216

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 480-215658-1

MB MB Dil Fac %Recovery Surrogate Qualifier Limits Prepared Analyzed Toluene-d8 (Surr) 97 80 - 120 12/13/23 11:40 1,2-Dichloroethane-d4 (Surr) 89 77 - 120 12/13/23 11:40 4-Bromofluorobenzene (Surr) 98 73 - 120 12/13/23 11:40 Dibromofluoromethane (Surr) 91 75 - 123 12/13/23 11:40

Lab Sample ID: LCS 480-695216/6 Client Sample ID: Lab Control Sample Prep Type: Total/NA

**Matrix: Water** 

Cyclohexane

Ethylbenzene

1,2-Dibromoethane

Isopropylbenzene

Methyl tert-butyl ether

Methylcyclohexane

Methyl acetate

Dichlorodifluoromethane

Analysis Batch: 695216

| 25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0 | 26.5<br>25.9<br>24.8<br>25.3                                             | Qualifier                                                                                                                                                                                                         | ug/L<br>ug/L<br>ug/L                                                                                                                                                                                                                  | <u>D</u> .                                                                                                                                                                      | 106<br>104                                                                                                                                                                      | Limits  73 - 126  76 - 120                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25.0<br>25.0<br>25.0<br>25.0<br>25.0         | 25.9<br>24.8<br>25.3                                                     |                                                                                                                                                                                                                   | ug/L<br>ug/L                                                                                                                                                                                                                          |                                                                                                                                                                                 | 104                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25.0<br>25.0<br>25.0<br>25.0                 | 24.8<br>25.3                                                             |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 |                                                                                                                                                                                 | 76 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0<br>25.0<br>25.0                         | 25.3                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 25.0<br>25.0                                 |                                                                          |                                                                                                                                                                                                                   | //                                                                                                                                                                                                                                    |                                                                                                                                                                                 | 99                                                                                                                                                                              | 76 - 122                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24 0                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 101                                                                                                                                                                             | 61 - 148                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24 0                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                              |                                                                          |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 96                                                                                                                                                                              | 77 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 22.4                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 90                                                                                                                                                                              | 66 - 127                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 23.7                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 95                                                                                                                                                                              | 79 - 122                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 27.7                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 111                                                                                                                                                                             | 56 - 134                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.8                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 99                                                                                                                                                                              | 80 - 124                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 23.2                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 93                                                                                                                                                                              | 75 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 25.5                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 102                                                                                                                                                                             | 76 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.8                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 99                                                                                                                                                                              | 77 _ 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 23.9                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 96                                                                                                                                                                              | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 125                                          | 106                                                                      |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 85                                                                                                                                                                              | 57 _ 140                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 125                                          | 113                                                                      |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 91                                                                                                                                                                              | 65 - 127                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 125                                          | 114                                                                      |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 91                                                                                                                                                                              | 71 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 125                                          | 104                                                                      |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 83                                                                                                                                                                              | 56 - 142                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.7                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 99                                                                                                                                                                              | 71 - 124                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 26.8                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 107                                                                                                                                                                             | 80 - 122                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 25.1                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 100                                                                                                                                                                             | 61 - 132                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 25.4                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 102                                                                                                                                                                             | 55 - 144                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 21.6                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 87                                                                                                                                                                              | 59 - 134                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 29.2                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 117                                                                                                                                                                             | 72 - 134                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 25.2                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 101                                                                                                                                                                             | 80 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 25.1                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 101                                                                                                                                                                             | 75 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.9                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 100                                                                                                                                                                             | 69 - 136                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.6                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 98                                                                                                                                                                              | 73 - 127                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.0                                                                     |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                                                                 |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20.0                                         | 24.0                                                                     |                                                                                                                                                                                                                   | ug/L                                                                                                                                                                                                                                  |                                                                                                                                                                                 | 96                                                                                                                                                                              | 68 - 124                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.0                                         | 24.0                                                                     |                                                                                                                                                                                                                   | ug/L<br>ug/L                                                                                                                                                                                                                          |                                                                                                                                                                                 | 96<br>98                                                                                                                                                                        | 68 <sub>-</sub> 124<br>74 <sub>-</sub> 124                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                              | 125<br>125<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25 | 125     114       125     104       25.0     26.8       25.0     25.1       25.0     25.4       25.0     21.6       25.0     29.2       25.0     25.2       25.0     25.1       25.0     24.9       25.0     24.6 | 125     114       125     104       25.0     24.7       25.0     26.8       25.0     25.1       25.0     25.4       25.0     21.6       25.0     29.2       25.0     25.2       25.0     25.1       25.0     24.9       25.0     24.6 | 125 114 ug/L 125 104 ug/L 25.0 24.7 ug/L 25.0 26.8 ug/L 25.0 25.1 ug/L 25.0 25.4 ug/L 25.0 21.6 ug/L 25.0 29.2 ug/L 25.0 25.1 ug/L 25.0 25.1 ug/L 25.0 24.9 ug/L 25.0 24.6 ug/L | 125 114 ug/L 125 104 ug/L 25.0 24.7 ug/L 25.0 26.8 ug/L 25.0 25.1 ug/L 25.0 25.4 ug/L 25.0 21.6 ug/L 25.0 29.2 ug/L 25.0 25.1 ug/L 25.0 25.1 ug/L 25.0 24.9 ug/L 25.0 24.6 ug/L | 125     114     ug/L     91       125     104     ug/L     83       25.0     24.7     ug/L     99       25.0     26.8     ug/L     107       25.0     25.1     ug/L     100       25.0     25.4     ug/L     102       25.0     21.6     ug/L     87       25.0     29.2     ug/L     117       25.0     25.2     ug/L     101       25.0     25.1     ug/L     101       25.0     24.9     ug/L     100       25.0     24.6     ug/L     98 |

**Eurofins Buffalo** 

Page 35 of 50

25.0

25.0

25.0

25.0

25.0

50.0

25.0

25.0

24.0

27.6

23.8

26.6

27.9

49.7

24.1

26.1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

96

110

95

106

112

99

97

104

59 - 135

59 - 135

77 - 123

77 - 120

77 - 122

74 - 133

77 - 120

68 - 134

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-695216/6

**Matrix: Water** 

Analysis Batch: 695216

Client Sample ID: Lab Control Sample

**Prep Type: Total/NA** 

Job ID: 480-215658-1

|                           | Spike | LCS    | LCS       |      |   |      | %Rec     |  |
|---------------------------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                   | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| Methylene Chloride        | 25.0  | 25.6   |           | ug/L |   | 102  | 75 - 124 |  |
| Styrene                   | 25.0  | 24.7   |           | ug/L |   | 99   | 80 - 120 |  |
| Tetrachloroethene         | 25.0  | 25.5   |           | ug/L |   | 102  | 74 - 122 |  |
| Toluene                   | 25.0  | 25.9   |           | ug/L |   | 104  | 80 - 122 |  |
| trans-1,2-Dichloroethene  | 25.0  | 23.3   |           | ug/L |   | 93   | 73 - 127 |  |
| trans-1,3-Dichloropropene | 25.0  | 28.3   |           | ug/L |   | 113  | 80 - 120 |  |
| Trichloroethene           | 25.0  | 25.5   |           | ug/L |   | 102  | 74 - 123 |  |
| Trichlorofluoromethane    | 25.0  | 26.4   |           | ug/L |   | 106  | 62 _ 150 |  |
| Vinyl chloride            | 25.0  | 26.3   |           | ug/L |   | 105  | 65 - 133 |  |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 96        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 87        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 89        |           | 75 - 123 |

Client Sample ID: Method Blank

**Prep Type: Total/NA** 

Analysis Batch: 695377

**Matrix: Water** 

Lab Sample ID: MB 480-695377/8

|                                       | MB     | MB        |     |      |      |   |          |                |         |
|---------------------------------------|--------|-----------|-----|------|------|---|----------|----------------|---------|
| Analyte                               | Result | Qualifier | RL  | MDL  | Unit | D | Prepared | Analyzed       | Dil Fac |
| 1,1,1-Trichloroethane                 | ND     |           | 1.0 | 0.82 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,1,2,2-Tetrachloroethane             | ND     |           | 1.0 | 0.21 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,1,2-Trichloroethane                 | ND     |           | 1.0 | 0.23 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,1,2-Trichloro-1,2,2-trifluoroethane | ND     |           | 1.0 | 0.31 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,1-Dichloroethane                    | ND     |           | 1.0 | 0.38 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,1-Dichloroethene                    | ND     |           | 1.0 | 0.29 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,2,4-Trichlorobenzene                | ND     |           | 1.0 | 0.41 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,2-Dibromo-3-Chloropropane           | ND     |           | 1.0 | 0.39 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,2-Dichlorobenzene                   | ND     |           | 1.0 | 0.79 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,2-Dichloroethane                    | ND     |           | 1.0 | 0.21 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,2-Dichloropropane                   | ND     |           | 1.0 | 0.72 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,3-Dichlorobenzene                   | ND     |           | 1.0 | 0.78 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 1,4-Dichlorobenzene                   | ND     |           | 1.0 | 0.84 | ug/L |   |          | 12/14/23 11:16 | 1       |
| 2-Butanone (MEK)                      | ND     |           | 10  | 1.3  | ug/L |   |          | 12/14/23 11:16 | 1       |
| 2-Hexanone                            | ND     |           | 5.0 | 1.2  | ug/L |   |          | 12/14/23 11:16 | 1       |
| 4-Methyl-2-pentanone (MIBK)           | ND     |           | 5.0 | 2.1  | ug/L |   |          | 12/14/23 11:16 | 1       |
| Acetone                               | ND     |           | 10  | 3.0  | ug/L |   |          | 12/14/23 11:16 | 1       |
| Benzene                               | ND     |           | 1.0 | 0.41 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Bromodichloromethane                  | ND     |           | 1.0 | 0.39 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Bromoform                             | ND     |           | 1.0 | 0.26 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Bromomethane                          | ND     |           | 1.0 | 0.69 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Carbon disulfide                      | ND     |           | 1.0 | 0.19 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Carbon tetrachloride                  | ND     |           | 1.0 | 0.27 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Chlorobenzene                         | ND     |           | 1.0 | 0.75 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Dibromochloromethane                  | ND     |           | 1.0 | 0.32 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Chloroethane                          | ND     |           | 1.0 | 0.32 | ug/L |   |          | 12/14/23 11:16 | 1       |
| Chloroform                            | ND     |           | 1.0 | 0.34 | ug/L |   |          | 12/14/23 11:16 | 1       |

Client: LaBella Associates DPC

Lab Sample ID: MB 480-695377/8

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

**Matrix: Water** 

Analysis Batch: 695377

Client Sample ID: Method Blank

12/14/23 11:16

12/14/23 11:16

**Client Sample ID: Lab Control Sample** 

%Rec

98

91

92

80 - 120

57 - 140

65 - 127

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 480-215658-1

мв мв Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed ND 1.0 Chloromethane 0.35 ug/L 12/14/23 11:16 cis-1,2-Dichloroethene ND 1.0 0.81 ug/L 12/14/23 11:16 ND cis-1,3-Dichloropropene 1.0 0.36 ug/L 12/14/23 11:16 Cyclohexane ND 1.0 0.18 ug/L 12/14/23 11:16 Dichlorodifluoromethane ND 1.0 12/14/23 11:16 0.68 ug/L Ethylbenzene ND 1.0 0.74 ug/L 12/14/23 11:16 1,2-Dibromoethane ND 0.73 ug/L 12/14/23 11:16 1.0 Isopropylbenzene ND 1.0 0.79 ug/L 12/14/23 11:16 1.3 ug/L Methyl acetate ND 2.5 12/14/23 11:16 Methyl tert-butyl ether ND 1.0 0.16 ug/L 12/14/23 11:16 Methylcyclohexane ND 1.0 0.16 ug/L 12/14/23 11:16 ND Methylene Chloride 1.0 0.44 ug/L 12/14/23 11:16 Styrene ND 1.0 0.73 ug/L 12/14/23 11:16 Tetrachloroethene ND 1.0 0.36 ug/L 12/14/23 11:16 ND Toluene 1.0 0.51 ug/L 12/14/23 11:16 trans-1,2-Dichloroethene ND 1.0 0.90 ug/L 12/14/23 11:16 trans-1,3-Dichloropropene ND 12/14/23 11:16 1.0 0.37 ug/L Trichloroethene ND 1.0 ug/L 12/14/23 11:16 0.46 Trichlorofluoromethane ND 1.0 88.0 ug/L 12/14/23 11:16

MB MB

ND

ND

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared | Analyzed       | Dil Fac |  |
|------------------------------|-----------|-----------|----------|----------|----------------|---------|--|
| Toluene-d8 (Surr)            | 98        |           | 80 - 120 |          | 12/14/23 11:16 | 1       |  |
| 1,2-Dichloroethane-d4 (Surr) | 87        |           | 77 - 120 |          | 12/14/23 11:16 | 1       |  |
| 4-Bromofluorobenzene (Surr)  | 104       |           | 73 - 120 |          | 12/14/23 11:16 | 1       |  |
| Dibromofluoromethane (Surr)  | 93        |           | 75 - 123 |          | 12/14/23 11:16 | 1       |  |

1.0

2.0

0.90 ug/L

0.66 ug/L

LCS LCS

24.5

114

116

ug/L

ug/L

ug/L

Lab Sample ID: LCS 480-695377/6

**Matrix: Water** 

1,4-Dichlorobenzene

2-Butanone (MEK)

2-Hexanone

Vinyl chloride

Xylenes, Total

Analysis Batch: 695377

| Analyte                             | Added | Result | Qualifier | Unit | D | %Rec | Limits   |
|-------------------------------------|-------|--------|-----------|------|---|------|----------|
| 1,1,1-Trichloroethane               | 25.0  | 27.2   |           | ug/L |   | 109  | 73 - 126 |
| 1,1,2,2-Tetrachloroethane           | 25.0  | 25.2   |           | ug/L |   | 101  | 76 - 120 |
| 1,1,2-Trichloroethane               | 25.0  | 25.3   |           | ug/L |   | 101  | 76 - 122 |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | 25.0  | 24.8   |           | ug/L |   | 99   | 61 - 148 |
| ne                                  |       |        |           |      |   |      |          |
| 1,1-Dichloroethane                  | 25.0  | 23.9   |           | ug/L |   | 96   | 77 - 120 |
| 1,1-Dichloroethene                  | 25.0  | 22.9   |           | ug/L |   | 92   | 66 - 127 |
| 1,2,4-Trichlorobenzene              | 25.0  | 25.7   |           | ug/L |   | 103  | 79 - 122 |
| 1,2-Dibromo-3-Chloropropane         | 25.0  | 28.1   |           | ug/L |   | 113  | 56 - 134 |
| 1,2-Dichlorobenzene                 | 25.0  | 25.3   |           | ug/L |   | 101  | 80 - 124 |
| 1,2-Dichloroethane                  | 25.0  | 23.2   |           | ug/L |   | 93   | 75 - 120 |
| 1,2-Dichloropropane                 | 25.0  | 24.3   |           | ug/L |   | 97   | 76 - 120 |
| 1,3-Dichlorobenzene                 | 25.0  | 25.4   |           | ug/L |   | 102  | 77 - 120 |

Spike

**Eurofins Buffalo** 

Page 37 of 50

25.0

125

125

2

3

5

R

9

11

13

14

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-695377/6

**Matrix: Water** 

Analysis Batch: 695377

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 480-215658-1

|                             | Spike | LCS    | LCS            |        | %Rec     |  |
|-----------------------------|-------|--------|----------------|--------|----------|--|
| Analyte                     | Added | Result | Qualifier Unit | D %Rec | Limits   |  |
| 4-Methyl-2-pentanone (MIBK) | 125   | 122    | ug/L           | 97     | 71 _ 125 |  |
| Acetone                     | 125   | 136    | ug/L           | 109    | 56 - 142 |  |
| Benzene                     | 25.0  | 24.4   | ug/L           | 98     | 71 - 124 |  |
| Bromodichloromethane        | 25.0  | 26.0   | ug/L           | 104    | 80 - 122 |  |
| Bromoform                   | 25.0  | 25.7   | ug/L           | 103    | 61 - 132 |  |
| Bromomethane                | 25.0  | 22.2   | ug/L           | 89     | 55 - 144 |  |
| Carbon disulfide            | 25.0  | 21.4   | ug/L           | 86     | 59 - 134 |  |
| Carbon tetrachloride        | 25.0  | 30.3   | ug/L           | 121    | 72 - 134 |  |
| Chlorobenzene               | 25.0  | 25.3   | ug/L           | 101    | 80 - 120 |  |
| Dibromochloromethane        | 25.0  | 26.8   | ug/L           | 107    | 75 _ 125 |  |
| Chloroethane                | 25.0  | 25.1   | ug/L           | 100    | 69 - 136 |  |
| Chloroform                  | 25.0  | 24.8   | ug/L           | 99     | 73 - 127 |  |
| Chloromethane               | 25.0  | 20.3   | ug/L           | 81     | 68 - 124 |  |
| cis-1,2-Dichloroethene      | 25.0  | 25.1   | ug/L           | 100    | 74 - 124 |  |
| cis-1,3-Dichloropropene     | 25.0  | 26.9   | ug/L           | 108    | 74 - 124 |  |
| Cyclohexane                 | 25.0  | 24.1   | ug/L           | 96     | 59 - 135 |  |
| Dichlorodifluoromethane     | 25.0  | 15.5   | ug/L           | 62     | 59 - 135 |  |
| Ethylbenzene                | 25.0  | 24.8   | ug/L           | 99     | 77 _ 123 |  |
| 1,2-Dibromoethane           | 25.0  | 26.2   | ug/L           | 105    | 77 - 120 |  |
| Isopropylbenzene            | 25.0  | 29.3   | ug/L           | 117    | 77 _ 122 |  |
| Methyl acetate              | 50.0  | 51.7   | ug/L           | 103    | 74 - 133 |  |
| Methyl tert-butyl ether     | 25.0  | 25.2   | ug/L           | 101    | 77 - 120 |  |
| Methylcyclohexane           | 25.0  | 26.5   | ug/L           | 106    | 68 - 134 |  |
| Methylene Chloride          | 25.0  | 26.0   | ug/L           | 104    | 75 - 124 |  |
| Styrene                     | 25.0  | 25.3   | ug/L           | 101    | 80 - 120 |  |
| Tetrachloroethene           | 25.0  | 27.0   | ug/L           | 108    | 74 - 122 |  |
| Toluene                     | 25.0  | 26.4   | ug/L           | 106    | 80 - 122 |  |
| trans-1,2-Dichloroethene    | 25.0  | 23.7   | ug/L           | 95     | 73 - 127 |  |
| trans-1,3-Dichloropropene   | 25.0  | 28.6   | ug/L           | 114    | 80 - 120 |  |
| Trichloroethene             | 25.0  | 24.6   | ug/L           | 99     | 74 - 123 |  |
| Trichlorofluoromethane      | 25.0  | 25.6   | ug/L           | 102    | 62 _ 150 |  |
| Vinyl chloride              | 25.0  | 23.1   | ug/L           | 93     | 65 - 133 |  |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 97        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 84        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 102       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 88        |           | 75 - 123 |

Lab Sample ID: 480-215658-11 MS

**Matrix: Water** 

Analysis Batch: 695377

|                                     | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |  |
|-------------------------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--|
| Analyte                             | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |  |
| 1,1,1-Trichloroethane               | ND     |           | 250   | 274    |           | ug/L |   | 109  | 73 - 126 |  |
| 1,1,2,2-Tetrachloroethane           | ND     |           | 250   | 260    |           | ug/L |   | 104  | 76 - 120 |  |
| 1,1,2-Trichloroethane               | ND     |           | 250   | 255    |           | ug/L |   | 102  | 76 - 122 |  |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND     |           | 250   | 266    |           | ug/L |   | 106  | 61 - 148 |  |
| ne                                  |        |           |       |        |           |      |   |      |          |  |

Eurofins Buffalo

**Client Sample ID: DUP** 

**Prep Type: Total/NA** 

Page 38 of 50

Spike

MS MS

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Job ID: 480-215658-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

Lab Sample ID: 480-215658-11 MS

**Matrix: Water** 

Toluene

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Analysis Batch: 695377

**Client Sample ID: DUP** 

%Rec

Prep Type: Total/NA

|                             |        |           | - P   |        |               |          |      | 701100   |  |
|-----------------------------|--------|-----------|-------|--------|---------------|----------|------|----------|--|
| Analyte                     | Result | Qualifier | Added | Result | Qualifier Uni | t D      | %Rec | Limits   |  |
| 1,1-Dichloroethane          | ND     |           | 250   | 248    | ug/l          |          | 99   | 77 - 120 |  |
| 1,1-Dichloroethene          | ND     |           | 250   | 224    | ug/l          | L        | 90   | 66 - 127 |  |
| 1,2,4-Trichlorobenzene      | ND     |           | 250   | 257    | ug/l          | L        | 103  | 79 - 122 |  |
| 1,2-Dibromo-3-Chloropropane | ND     |           | 250   | 262    | ug/l          | L        | 105  | 56 - 134 |  |
| 1,2-Dichlorobenzene         | ND     |           | 250   | 255    | ug/l          | L        | 102  | 80 - 124 |  |
| 1,2-Dichloroethane          | ND     |           | 250   | 241    | ug/l          | L        | 96   | 75 - 120 |  |
| 1,2-Dichloropropane         | ND     |           | 250   | 260    | ug/l          | L        | 104  | 76 - 120 |  |
| 1,3-Dichlorobenzene         | ND     |           | 250   | 259    | ug/l          | L        | 104  | 77 - 120 |  |
| 1,4-Dichlorobenzene         | ND     |           | 250   | 249    | ug/l          | <u> </u> | 100  | 78 - 124 |  |
| 2-Butanone (MEK)            | ND     |           | 1250  | 1200   | ug/l          | L        | 96   | 57 - 140 |  |
| 2-Hexanone                  | ND     |           | 1250  | 1190   | ug/l          | L        | 95   | 65 - 127 |  |
| 4-Methyl-2-pentanone (MIBK) | ND     |           | 1250  | 1170   | ug/l          | <u> </u> | 93   | 71 - 125 |  |
| Acetone                     | ND     |           | 1250  | 1330   | ug/l          | L        | 106  | 56 - 142 |  |
| Benzene                     | ND     |           | 250   | 257    | ug/l          | L        | 103  | 71 - 124 |  |
| Bromodichloromethane        | ND     |           | 250   | 272    | ug/l          | _        | 109  | 80 - 122 |  |
| Bromoform                   | ND     |           | 250   | 234    | ug/l          | L        | 93   | 61 - 132 |  |
| Bromomethane                | ND     | F2        | 250   | 193    | ug/l          | L        | 77   | 55 - 144 |  |
| Carbon disulfide            | ND     |           | 250   | 195    | ug/l          | _        | 78   | 59 - 134 |  |
| Carbon tetrachloride        | ND     |           | 250   | 297    | ug/l          | L        | 119  | 72 - 134 |  |
| Chlorobenzene               | ND     |           | 250   | 254    | ug/l          | L        | 101  | 80 - 120 |  |
| Dibromochloromethane        | ND     |           | 250   | 248    | ug/l          | _        | 99   | 75 - 125 |  |
| Chloroethane                | ND     | F2        | 250   | 196    | ug/l          | L        | 79   | 69 - 136 |  |
| Chloroform                  | ND     |           | 250   | 263    | ug/l          | L        | 105  | 73 - 127 |  |
| Chloromethane               | ND     |           | 250   | 199    | ug/l          | <u>_</u> | 80   | 68 - 124 |  |
| cis-1,2-Dichloroethene      | 99     |           | 250   | 337    | ug/l          | L        | 95   | 74 - 124 |  |
| cis-1,3-Dichloropropene     | ND     |           | 250   | 270    | ug/l          | L        | 108  | 74 - 124 |  |
| Cyclohexane                 | 39     |           | 250   | 276    | ug/l          | L        | 95   | 59 - 135 |  |
| Dichlorodifluoromethane     | ND     |           | 250   | 152    | ug/l          | L        | 61   | 59 - 135 |  |
| Ethylbenzene                | ND     |           | 250   | 251    | ug/l          | L        | 100  | 77 - 123 |  |
| 1,2-Dibromoethane           | ND     |           | 250   | 256    | ug/l          | _        | 102  | 77 - 120 |  |
| Isopropylbenzene            | ND     |           | 250   | 291    | ug/l          | L        | 117  | 77 - 122 |  |
| Methyl acetate              | ND     |           | 500   | 544    | ug/l          | L        | 109  | 74 - 133 |  |
| Methyl tert-butyl ether     | ND     |           | 250   | 248    | ug/l          | _<br>_   | 99   | 77 - 120 |  |
| Methylcyclohexane           | 37     |           | 250   | 298    | ug/l          | L        | 104  | 68 - 134 |  |
| Methylene Chloride          | ND     |           | 250   | 256    | ug/l          | L        | 103  | 75 - 124 |  |
| Styrene                     | ND     |           | 250   | 253    | ug/l          |          | 101  | 80 - 120 |  |
| Tetrachloroethene           | ND     |           | 250   | 270    | ug/l          | L        | 108  | 74 - 122 |  |
|                             |        |           |       | _      |               |          |      |          |  |

250

250

250

250

250

250

262

239

272

258

262

489 F1

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

105

96

109

103

105

80 - 122

73 - 127

80 - 120

74 - 123

62 - 150

65 - 133

| /IS | MS   |  |
|-----|------|--|
| //S | IVIS |  |

ND

ND

ND

ND

ND

360 F1

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 95        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 89        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 100       |           | 73 - 120 |

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-215658-11 MS

**Matrix: Water** 

Analysis Batch: 695377

**Client Sample ID: DUP Prep Type: Total/NA** 

MS MS

%Recovery Qualifier Surrogate Limits Dibromofluoromethane (Surr) 92 75 - 123

Lab Sample ID: 480-215658-11 MSD

**Matrix: Water** 

Analysis Batch: 695377

| Client Sample ID: DUP |
|-----------------------|
| Prep Type: Total/NA   |

|                                     | •        | •         | •          |            | MSD       |              |   |            |                      |        |          |
|-------------------------------------|----------|-----------|------------|------------|-----------|--------------|---|------------|----------------------|--------|----------|
| Analyte                             | Result   | Qualifier | Added      | Result     | Qualifier | Unit         | D | %Rec       | Limits               | RPD    | Limit    |
| 1,1,1-Trichloroethane               | ND       |           | 250        | 269        |           | ug/L         |   | 108        | 73 - 126             | 2      | 15       |
| 1,1,2,2-Tetrachloroethane           | ND       |           | 250        | 262        |           | ug/L         |   | 105        | 76 - 120             | 1      | 15       |
| 1,1,2-Trichloroethane               | ND       |           | 250        | 255        |           | ug/L         |   | 102        | 76 - 122             | 0      | 15       |
| 1,1,2-Trichloro-1,2,2-trifluoroetha | ND       |           | 250        | 262        |           | ug/L         |   | 105        | 61 - 148             | 1      | 20       |
| ne                                  |          |           |            |            |           |              |   |            |                      |        |          |
| 1,1-Dichloroethane                  | ND       |           | 250        | 248        |           | ug/L         |   | 99         | 77 - 120             | 0      | 20       |
| 1,1-Dichloroethene                  | ND       |           | 250        | 227        |           | ug/L         |   | 91         | 66 - 127             | 1      | 16       |
| 1,2,4-Trichlorobenzene              | ND       |           | 250        | 255        |           | ug/L         |   | 102        | 79 - 122             | 1      | 20       |
| 1,2-Dibromo-3-Chloropropane         | ND       |           | 250        | 267        |           | ug/L         |   | 107        | 56 - 134             | 2      | 15       |
| 1,2-Dichlorobenzene                 | ND       |           | 250        | 246        |           | ug/L         |   | 98         | 80 - 124             | 4      | 20       |
| 1,2-Dichloroethane                  | ND       |           | 250        | 241        |           | ug/L         |   | 97         | 75 - 120             | 0      | 20       |
| 1,2-Dichloropropane                 | ND       |           | 250        | 276        |           | ug/L         |   | 111        | 76 - 120             | 6      | 20       |
| 1,3-Dichlorobenzene                 | ND       |           | 250        | 261        |           | ug/L         |   | 104        | 77 - 120             | 1      | 20       |
| 1,4-Dichlorobenzene                 | ND       |           | 250        | 248        |           | ug/L         |   | 99         | 78 - 124             | 0      | 20       |
| 2-Butanone (MEK)                    | ND       |           | 1250       | 1250       |           | ug/L         |   | 100        | 57 - 140             | 3      | 20       |
| 2-Hexanone                          | ND       |           | 1250       | 1190       |           | ug/L         |   | 95         | 65 - 127             | 0      | 15       |
| 4-Methyl-2-pentanone (MIBK)         | ND       |           | 1250       | 1240       |           | ug/L         |   | 99         | 71 - 125             | 6      | 35       |
| Acetone                             | ND       |           | 1250       | 1320       |           | ug/L         |   | 106        | 56 - 142             | 0      | 15       |
| Benzene                             | ND       |           | 250        | 255        |           | ug/L         |   | 102        | 71 - 124             | 1      | 13       |
| Bromodichloromethane                | ND       |           | 250        | 266        |           | ug/L         |   | 106        | 80 - 122             | 2      | 15       |
| Bromoform                           | ND       |           | 250        | 235        |           | ug/L         |   | 94         | 61 - 132             | 1      | 15       |
| Bromomethane                        | ND       | F2        | 250        | 226        | F2        | ug/L         |   | 91         | 55 - 144             | 16     | 15       |
| Carbon disulfide                    | ND       |           | 250        | 195        |           | ug/L         |   | 78         | 59 - 134             | 0      | 15       |
| Carbon tetrachloride                | ND       |           | 250        | 306        |           | ug/L         |   | 123        | 72 - 134             | 3      | 15       |
| Chlorobenzene                       | ND       |           | 250        | 253        |           | ug/L         |   | 101        | 80 - 120             | 0      | 25       |
| Dibromochloromethane                | ND       |           | 250        | 260        |           | ug/L         |   | 104        | 75 - 125             | 5      | 15       |
| Chloroethane                        | ND       | F2        | 250        | 244        | F2        | ug/L         |   | 98         | 69 - 136             | 22     | 15       |
| Chloroform                          | ND       |           | 250        | 255        |           | ug/L         |   | 102        | 73 - 127             | 3      | 20       |
| Chloromethane                       | ND       |           | 250        | 187        |           | ug/L         |   | 75         | 68 - 124             | 6      | 15       |
| cis-1,2-Dichloroethene              | 99       |           | 250        | 342        |           | ug/L         |   | 97         | 74 - 124             | 2      | 15       |
| cis-1,3-Dichloropropene             | ND       |           | 250        | 265        |           | ug/L         |   | 106        | 74 - 124             | 2      | 15       |
| Cyclohexane                         | 39       |           | 250        | 271        |           | ug/L         |   | 93         | 59 - 135             | 2      | 20       |
| Dichlorodifluoromethane             | ND       |           | 250        | 157        |           | ug/L         |   | 63         | 59 - 135             | 4      | 20       |
| Ethylbenzene                        | ND       |           | 250        | 251        |           | ug/L         |   | 100        | 77 - 123             | 0      | 15       |
| 1.2-Dibromoethane                   | ND       |           | 250        | 262        |           | ug/L         |   | 105        | 77 - 120             | 2      | 15       |
| Isopropylbenzene                    | ND       |           | 250        | 291        |           | ug/L         |   | 116        | 77 - 122             | 0      | 20       |
| Methyl acetate                      | ND       |           | 500        | 556        |           | ug/L         |   | 111        | 74 - 133             | 2      | 20       |
| Methyl tert-butyl ether             | ND       |           | 250        | 254        |           | ug/L         |   | 102        | 77 - 120             | 3      | 37       |
| Methylcyclohexane                   | 37       |           | 250        | 292        |           | ug/L<br>ug/L |   | 102        | 68 <sub>-</sub> 134  | 2      | 20       |
| Methylene Chloride                  | ND       |           | 250        | 260        |           | ug/L<br>ug/L |   | 102        | 75 <sub>-</sub> 124  | 1      | 15       |
|                                     |          |           |            |            |           |              |   |            |                      |        |          |
| Styrene<br>Tetrachloroethene        | ND<br>ND |           | 250<br>250 | 252<br>277 |           | ug/L<br>ug/L |   | 101<br>111 | 80 - 120<br>74 - 122 | 0<br>3 | 20<br>20 |

Eurofins Buffalo

Page 40 of 50

Job ID: 480-215658-1

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

#### Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 480-215658-11 MSD

**Matrix: Water** 

Analysis Batch: 695377

**Client Sample ID: DUP Prep Type: Total/NA** 

Job ID: 480-215658-1

| :                         | Sample Samp  | ple Spike   | MSD    | MSD       |      |   |      | %Rec     |     | RPD   |
|---------------------------|--------------|-------------|--------|-----------|------|---|------|----------|-----|-------|
| Analyte                   | Result Quali | ifier Added | Result | Qualifier | Unit | D | %Rec | Limits   | RPD | Limit |
| Toluene                   | ND           | 250         | 256    |           | ug/L |   | 102  | 80 - 122 | 2   | 15    |
| trans-1,2-Dichloroethene  | ND           | 250         | 240    |           | ug/L |   | 96   | 73 - 127 | 0   | 20    |
| trans-1,3-Dichloropropene | ND           | 250         | 277    |           | ug/L |   | 111  | 80 - 120 | 2   | 15    |
| Trichloroethene           | ND           | 250         | 265    |           | ug/L |   | 106  | 74 - 123 | 3   | 16    |
| Trichlorofluoromethane    | ND           | 250         | 254    |           | ug/L |   | 102  | 62 - 150 | 3   | 20    |
| Vinyl chloride            | 360 F1       | 250         | 488    | F1        | ug/L |   | 52   | 65 - 133 | 0   | 15    |

| Rec | Limits   | RPD | Limit |
|-----|----------|-----|-------|
| 102 | 80 - 122 | 2   | 15    |
| 96  | 73 - 127 | 0   | 20    |
| 111 | 80 - 120 | 2   | 15    |
| 106 | 74 - 123 | 3   | 16    |
|     |          |     |       |

MSD MSD

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| Toluene-d8 (Surr)            | 96        |           | 80 - 120 |
| 1,2-Dichloroethane-d4 (Surr) | 87        |           | 77 - 120 |
| 4-Bromofluorobenzene (Surr)  | 106       |           | 73 - 120 |
| Dibromofluoromethane (Surr)  | 90        |           | 75 123   |

# **QC Association Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

#### Job ID: 480-215658-1

#### **GC/MS VOA**

#### Analysis Batch: 695216

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 480-215658-2     | AL-7               | Total/NA  | Water  | 8260C  |            |
| 480-215658-3     | AL-2               | Total/NA  | Water  | 8260C  |            |
| 480-215658-4     | MW-09R             | Total/NA  | Water  | 8260C  |            |
| 480-215658-6     | MW-02R             | Total/NA  | Water  | 8260C  |            |
| 480-215658-7     | EX-MW-12           | Total/NA  | Water  | 8260C  |            |
| 480-215658-8     | MW-04              | Total/NA  | Water  | 8260C  |            |
| 480-215658-9     | MW-13              | Total/NA  | Water  | 8260C  |            |
| 480-215658-10    | MW-07R             | Total/NA  | Water  | 8260C  |            |
| 480-215658-12    | TRIP BLANK         | Total/NA  | Water  | 8260C  |            |
| MB 480-695216/8  | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-695216/6 | Lab Control Sample | Total/NA  | Water  | 8260C  |            |

#### Analysis Batch: 695377

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|--------------------|--------------------|-----------|--------|--------|------------|
| 480-215658-1       | AL-1               | Total/NA  | Water  | 8260C  |            |
| 480-215658-5       | EX-MW-11R          | Total/NA  | Water  | 8260C  |            |
| 480-215658-10 - DL | MW-07R             | Total/NA  | Water  | 8260C  |            |
| 480-215658-11      | DUP                | Total/NA  | Water  | 8260C  |            |
| MB 480-695377/8    | Method Blank       | Total/NA  | Water  | 8260C  |            |
| LCS 480-695377/6   | Lab Control Sample | Total/NA  | Water  | 8260C  |            |
| 480-215658-11 MS   | DUP                | Total/NA  | Water  | 8260C  |            |
| 480-215658-11 MSD  | DUP                | Total/NA  | Water  | 8260C  |            |

10

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Client Sample ID: AL-1

Lab Sample ID: 480-215658-1

**Matrix: Water** 

Date Collected: 12/12/23 08:30 Date Received: 12/13/23 09:00

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C  |     |          | 695377 | CR      | EET BUF | 12/14/23 11:48 |

Client Sample ID: AL-7 Lab Sample ID: 480-215658-2

Matrix: Water

Date Collected: 12/12/23 08:55 Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number Analyst or Analyzed Туре Run Lab Total/NA 8260C 695216 CR EET BUF 12/13/23 13:57 Analysis

Client Sample ID: AL-2 Lab Sample ID: 480-215658-3

Date Collected: 12/12/23 09:35 Matrix: Water

Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared or Analyzed Prep Type Туре Method Run Factor Number Analyst Lab 12/13/23 14:19 Total/NA 8260C 695216 CR EET BUF Analysis

Client Sample ID: MW-09R Lab Sample ID: 480-215658-4

Date Collected: 12/12/23 10:15 Matrix: Water

Desired: 12/12/22 10:10

Date Received: 12/13/23 09:00

Dilution Batch Batch Batch Prepared Method or Analyzed Prep Type Type Run Factor Number Analyst Lab EET BUF 12/13/23 14:41 8260C 10 695216 CR Total/NA Analysis

Client Sample ID: EX-MW-11R Lab Sample ID: 480-215658-5

Date Collected: 12/12/23 10:45 Matrix: Water

Date Received: 12/13/23 09:00

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA Analysis 8260C 50 695377 CR EET BUF 12/14/23 12:11

Client Sample ID: MW-02R Lab Sample ID: 480-215658-6

Date Collected: 12/12/23 11:25 Matrix: Water

Date Received: 12/13/23 09:00

Dilution Batch Batch Batch Prepared Method Factor or Analyzed Prep Type Туре Run Number Analyst Lab 12/13/23 15:25 Total/NA 8260C 5 695216 CR EET BUF Analysis

Client Sample ID: EX-MW-12 Lab Sample ID: 480-215658-7

Date Collected: 12/12/23 12:10 Matrix: Water

Date Received: 12/13/23 09:00

Batch Batch Dilution Prepared Batch Method Factor Number Analyst or Analyzed Prep Type Type Run Lab 12/13/23 15:48 Total/NA Analysis 8260C 4 695216 CR EET BUF

#### Lab Chronicle

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

Lab Sample ID: 480-215658-8 Client Sample ID: MW-04

Date Collected: 12/12/23 12:45 **Matrix: Water** 

Date Received: 12/13/23 09:00

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C  |     | 4        | 695216 | CR      | EET BUF | 12/13/23 16:10 |

Client Sample ID: MW-13 Lab Sample ID: 480-215658-9

Date Collected: 12/12/23 13:30 **Matrix: Water** 

Date Received: 12/13/23 09:00

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C  |     | 4        | 695216 | CR      | EET BUF | 12/13/23 16:32 |

**Client Sample ID: MW-07R** Lab Sample ID: 480-215658-10

Date Collected: 12/12/23 14:05 **Matrix: Water** Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA 8260C 695216 CR EET BUF 12/13/23 16:54 Analysis 10

Total/NA Analysis 8260C 695377 CR **EET BUF** 12/14/23 12:33 DL 80

**Client Sample ID: DUP** Lab Sample ID: 480-215658-11

Date Collected: 12/12/23 00:00 **Matrix: Water** 

Date Received: 12/13/23 09:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor **Number Analyst** Lab or Analyzed Total/NA Analysis 8260C 10 695377 CR EET BUF 12/14/23 12:56

Client Sample ID: TRIP BLANK Lab Sample ID: 480-215658-12

Date Collected: 12/12/23 00:00 **Matrix: Water** 

Date Received: 12/13/23 09:00

|           | Batch    | Batch  |     | Dilution | Batch  |         |         | Prepared       |
|-----------|----------|--------|-----|----------|--------|---------|---------|----------------|
| Prep Type | Туре     | Method | Run | Factor   | Number | Analyst | Lab     | or Analyzed    |
| Total/NA  | Analysis | 8260C  |     |          | 695216 | CR      | EET BUF | 12/13/23 17:39 |

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

**Eurofins Buffalo** 

Job ID: 480-215658-1

# **Accreditation/Certification Summary**

Client: LaBella Associates DPC Job ID: 480-215658-1

Project/Site: Alumax & Roblin Periodic Review Reports

#### **Laboratory: Eurofins Buffalo**

The accreditations/certifications listed below are applicable to this report.

| Authority | Program | Identification Number | <b>Expiration Date</b> |
|-----------|---------|-----------------------|------------------------|
| New York  | NELAP   | 10026                 | 03-31-24               |

3

А

4

6

8

10

11

13

14

## **Method Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

MethodMethod DescriptionProtocolLaboratory8260CVolatile Organic Compounds by GC/MSSW846EET BUF5030CPurge and TrapSW846EET BUF

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

2

Job ID: 480-215658-1

3

4

9

16

14

# **Sample Summary**

Client: LaBella Associates DPC

Project/Site: Alumax & Roblin Periodic Review Reports

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 480-215658-1  | AL-1             | Water  | 12/12/23 08:30 | 12/13/23 09:00 |
| 480-215658-2  | AL-7             | Water  | 12/12/23 08:55 | 12/13/23 09:00 |
| 480-215658-3  | AL-2             | Water  | 12/12/23 09:35 | 12/13/23 09:00 |
| 480-215658-4  | MW-09R           | Water  | 12/12/23 10:15 | 12/13/23 09:00 |
| 480-215658-5  | EX-MW-11R        | Water  | 12/12/23 10:45 | 12/13/23 09:00 |
| 480-215658-6  | MW-02R           | Water  | 12/12/23 11:25 | 12/13/23 09:00 |
| 480-215658-7  | EX-MW-12         | Water  | 12/12/23 12:10 | 12/13/23 09:00 |
| 480-215658-8  | MW-04            | Water  | 12/12/23 12:45 | 12/13/23 09:00 |
| 480-215658-9  | MW-13            | Water  | 12/12/23 13:30 | 12/13/23 09:00 |
| 480-215658-10 | MW-07R           | Water  | 12/12/23 14:05 | 12/13/23 09:00 |
| 480-215658-11 | DUP              | Water  | 12/12/23 00:00 | 12/13/23 09:00 |
| 480-215658-12 | TRIP BLANK       | Water  | 12/12/23 00:00 | 12/13/23 09:00 |

Job ID: 480-215658-1

| Amherst, NY 14228-2298<br>Phone: 716-691-2600 Fax: 716-691-7991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Cus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ain of Custody Record                                            |                                                                                      | Seurofins Environment Testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sampler: 1, Koons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lab PM:<br>Fischer Brian I                                       | Carrier Tracking No(s):                                                              | COC No:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Client Contact:<br>Chris Kibler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone: 16,417 9, 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E-Mail:                                                          | State of Origin:                                                                     | 480-190974-40138.1<br>Page:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Company:<br>LaBella Associates DPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dirail.riscilei@el.euroimsus.com                                 |                                                                                      | Page 1 of 2<br>Job #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Address:<br>300 Pearl Street Suite 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Due Date Requested:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | Alialysis Requested                                                                  | Preservation Codes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TAT Requested (days):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| State, Zip:<br>NY, 14202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z Z Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  |                                                                                      | E - NaHSO4 R - NaZSO3<br>F - MeOH R - NaZSO3<br>F - MeOH S - H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Email:<br>CKibler@labellapc.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WO#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | والمحميدات ويرطيعا                                               | of Custody                                                                           | H - Ascorbic Acid U - Acetone V McAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ic Review Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project #:<br>48015183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×50)                                                             |                                                                                      | J - DI Water<br>K - EDTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSOW#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - P                                                              |                                                                                      | Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S ben<br>SM/SN                                                   |                                                                                      | Po Ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| nla idantification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                  |                                                                                      | muV is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| The second secon | Sample Date Time G=grab)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ation Code                                                       |                                                                                      | Special Instructions/Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| AL-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 112127 00830 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                  | L. T. C. Line box and R. L. L. St.                                                   | Walker The Control of |
| イト- 」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AL-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      | The second secon |
| marode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      | (Fig. 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EX-MU-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water                                                            |                                                                                      | and the second s |
| Med 22 MW-028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            | We keep comments                                                                     | of many                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mw-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mw-OJR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Water                                                            |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ひいや                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +<br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Water                                                            |                                                                                      | The state of the s |
| Possible Hazard Identification  Non-Hazard Flammable Skin Intiant Poison B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  | Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month) | ained longer than 1 month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| , III, IV, Other (specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | irements:                                                                            | Archive For Months                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Empty Kit Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time:                                                            | Method of Shipment:                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinquished by: Relinquished by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date/Time: 1530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | els.                                                             | Date/Time:                                                                           | Company Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Relinantehad bu:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company Received by:                                             | Dale/Time:                                                                           | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Company Received by:                                             | Date/Time:                                                                           | Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Custody Seals Intact: Custody Seal No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Entered State of the Party of the State of t | Cooler Temperaturate 0º (a) contraction of Cooler Temperaturates |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Ver: 06/08/2021

N - None
O - Ashabo
P - Na204S
Q - Na203
R - Na2503
R - Na25203
R - Na25204
I - TSP Dedecalydrate
U - Acetone
W - PH - 4-5
Y - Trizma Special Instructions/Note: Z - other (specify) Company TAR Sompany Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon COC No: 480-190974-40138.2 Page: Page 2 of 2 Job #: Preservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 900 I - Ice J - DI Water K - EDTA L - EDA Archive For Total Number of containers Date/Time: Date/Time: Method of Shipment: Carrier Tracking No(s): State of Origin: **Analysis Requested** Cooler Temperature(s) °C and Other Remarks: Special Instructions/QC Requirements Lab PM: Fischer, Brian J E-Mail: Brian.Fischer@et.eurofinsus.com Received by: Received by: Received by: 8260C - TCL VOC8 Field Filtered Sample (New Ortho) Time: Company BT=Tissue, A=Air) Preservation Code: Water Matrix Company 2516 Radiological Type (C=comp, G=grab) Sample 530 PWSID: J KORNY Compliance Project: △ Yes △ No 16-417 Purchase Order Requested Sample Time Poison B Unknown AT Requested (days): Due Date Requested: Phase Sample Date 12/12/12 Date/Time: Project #: 48015183 SSOW#: Date/Time: Date/Time Phone: ₩O₩ Skin Imitant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seals Intact: Custody Seal No. Blank Project Name: Alumax & Roblin Periodic Review Reports Non-Hazard Flammable Possible Hazard Identification 300 Pearl Street Suite 130 Empty Kit Relinquished by: Sompany: LaBella Associates DPC Client Information CKibler@labellapc.com Sample Identification 5 Relinquished by: elinquished by: elinquished by: State, Zip: NY, 14202 Chris Kibler City: Buffalo

**Environment Testing** 

🔅 eurofins

Chain of Custody Record

Amherst, NY 14228-2298 Phone: 716-691-2600 Fax: 716-691-7991

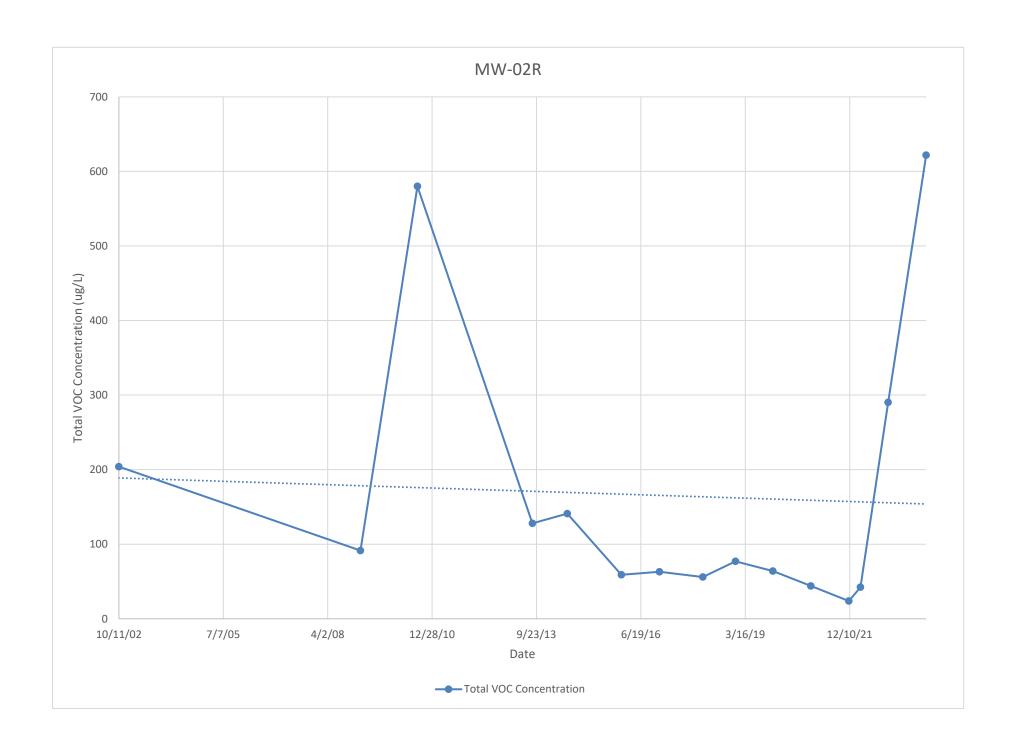
**Eurofins Buffalo** 

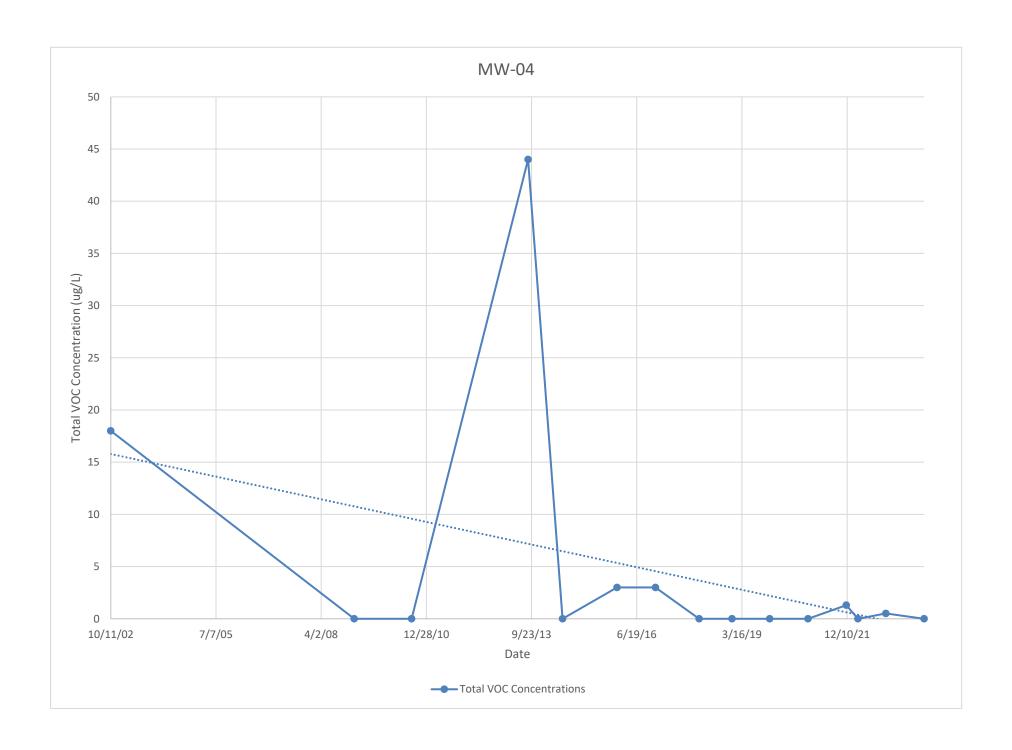
10 Hazelwood Drive

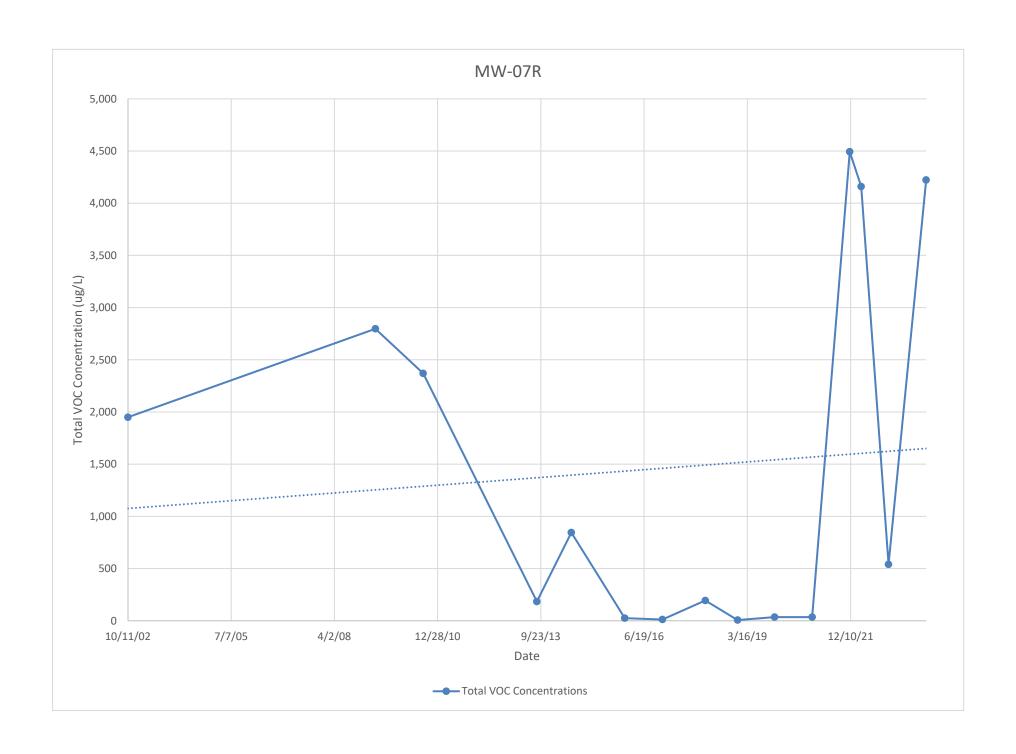
Client: LaBella Associates DPC

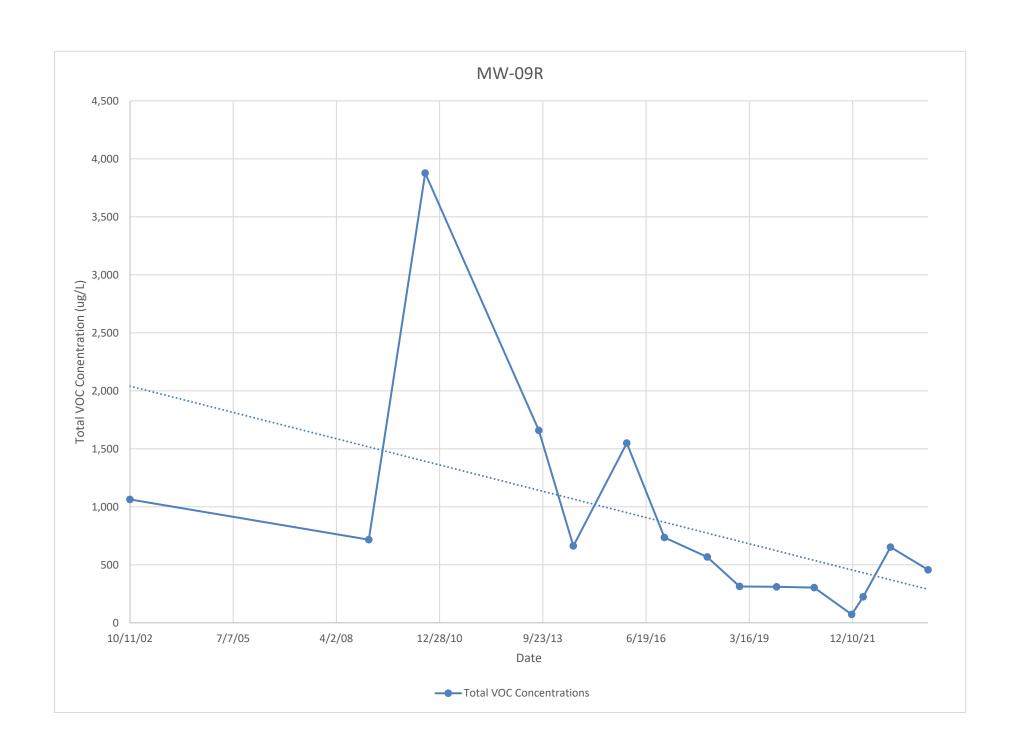
Job Number: 480-215658-1

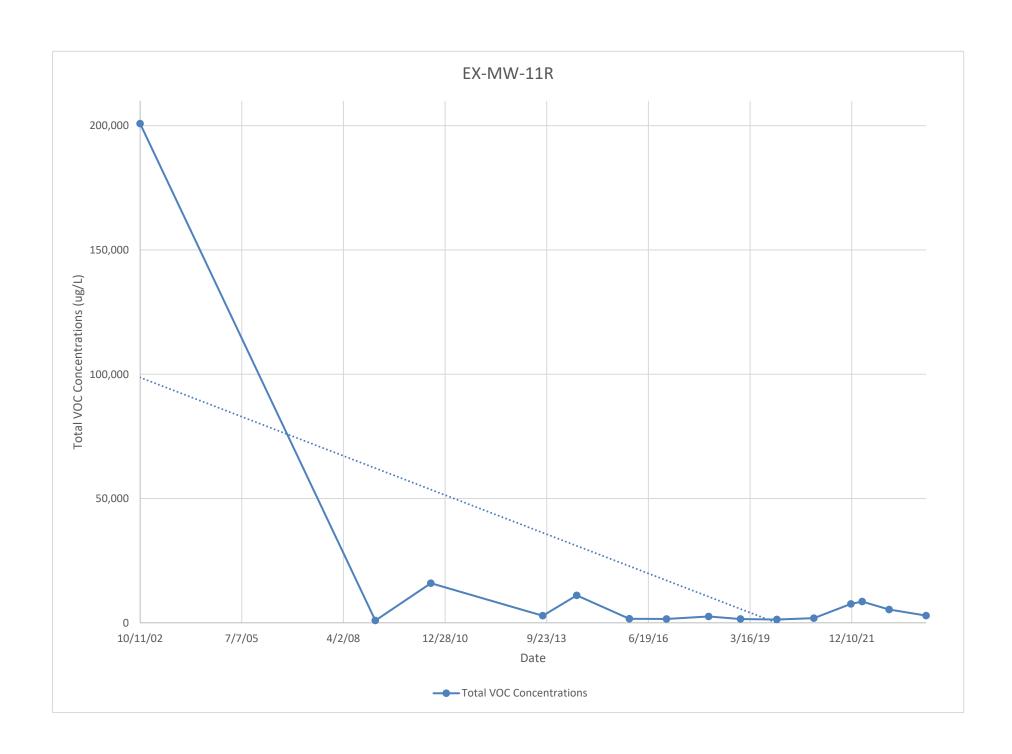
Login Number: 215658 List Source: Eurofins Buffalo


List Number: 1 Creator: Stopa, Erik S


| Creator. Stopa, Erik S                                                           |        |         |
|----------------------------------------------------------------------------------|--------|---------|
| Question                                                                         | Answer | Comment |
| Radioactivity either was not measured or, if measured, is at or below background | True   |         |
| The cooler's custody seal, if present, is intact.                                | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |         |
| Samples are received within Holding Time (Excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified                                                     | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |         |
| If necessary, staff have been informed of any short hold time or quick TAT needs | True   |         |
| Multiphasic samples are not present.                                             | True   |         |
| Samples do not require splitting or compositing.                                 | True   |         |
| Sampling Company provided.                                                       | True   | LABELLA |
| Samples received within 48 hours of sampling.                                    | True   |         |
| Samples requiring field filtration have been filtered in the field.              | N/A    |         |
| Chlorine Residual checked.                                                       | N/A    |         |
|                                                                                  |        |         |





# **APPENDIX 8**


Historical Monitoring Well Data and Trendlines

