

2020 PERIODIC REVIEW REPORT

FRANCZYK PARK SITE 550-564 Babcock Street Buffalo, New York NYSDEC ID: B00174

17-039-1144

Prepared for:

City of BuffaloOffice of Strategic Planning
Division of Environmental Affairs

Prepared by:

Table of Contents

1.0	Introdu	ction1
1.1	Back	ground Information1
1.2	Regu	latory History1
2.0	Site Ov	erview3
3.0	Site Ma	nagement4
3.1	Moni	toring and Maintenance Program4
3.1.1	Sit	e Inspection and Certification4
3.1.2	Gr	oundwater Monitoring5
3.2	Instit	utional and Engineering Control Requirements and Compliance6
3.2.1	Co	rrective Actions6
4.0	Conclus	sions and Recommendations
		List of Figures
Figure	1	Site Location
Figure	2	Site Plan
Table 1		List of Tables Summary of Groundwater Elevations
Table 2		Summary of Groundwater Field Parameters
Table 3		Summary of Groundwater Teld Tarameters Summary of Groundwater Semi-Volatile Organic Compounds (SVOCs) Results
Table 4		Summary of Groundwater Target Analyte List (TAL) Metals Results
		List of Appendices
Append	dix A	PRR Certification Form
Append	dix B	Site Inspection Form
Append	dix C	Site Photographic Log
Append	dix D	Monitoring Well Purge and Sample Logs
Appen	dix E	Laboratory Analytical Reports – Included on Attached CD
Appen	dix F	Concentration Versus Time Plots for Selected Metals
Appen	dix G	Corrective Action Work Plan

1.0 Introduction

LiRo Engineers, Inc. (LiRo) has prepared this Periodic Review Report (PRR) on behalf of the City of Buffalo (COB) to summarize the post remedial status of the New York State Department of Environmental Conservation (NYSDEC) State Assistance Contract (SAC) Site No. B00174, located at 550 and 564 Babcock Street in the City of Buffalo, Erie County, New York (the "Site"; see Figure 1).

This PRR has been prepared for the Franczyk Park Site in accordance with NYSDEC Division of Environmental Remediation (DER)-10 *Technical Guidance for Site Investigation and Remediation*. The NYSDEC Institutional and Engineering Controls (IC/EC) Certification Form has been completed for the Site (Appendix A). This PRR and associated inspection form have been completed for the post-remedial activities at the Site for the reporting period from September 15, 2019 to September 15, 2020.

1.1 Background Information

The Franczyk Park Site (Site) is located at 550 and 564 Babcock Street in the City of Buffalo, Erie County, New York (Figure 1).

The Site is a public park composed of two adjoining parcels totaling an approximately 15.49-acre area bounded by Lyman Street to the north, Fleming Street to the south, New Babcock Street to the east, and Lewis Street to the west. The Site is generally rectangular in shape and is in an area that is zoned for industrial use. Land use in the vicinity of the Site is characterized as a mixture of commercial, industrial, and residential. Residential properties are located on the south side of Fleming Street and on the west side of Lewis Street.

The Site was first developed by Buffalo Fertilizing Chemical Works, (L.L. Crocker) as an agricultural fertilizer manufacturing facility. These manufacturing operations lasted almost a century while the facility underwent a number of name changes during its tenure as a fertilizer manufacturing facility. The parcel adjoining the northwest corner of the Site was sold to the Thaddeus Joseph Dulski Community Center, Inc. in 1975. The following year, the remainder of the Site was sold to the Industrial Refining Corporation and then to Car Salvage World in 1977. The Site was used as an automobile junk yard in the final years until Car Salvage World went bankrupt in 1981. The Brondy Real Estate Co. acquired the Site and later sold it to the City of Buffalo in 1984. The City of Buffalo redeveloped the Site into a park in 1987.

1.2 Regulatory History

The City of Buffalo entered into a SAC with the NYSDEC to complete a Site Investigation/Remedial Alternatives Report (SI/RAR) for the Site. The Site investigation, performed in the fall of 2003 and the spring of 2004, identified contaminated subsurface soil/fill throughout the Site as well as a minor amount of contaminated surface soil/fill in some high traffic areas.

Following the completion of the SI, an SI/RAR was prepared to describe the approach and results of the investigation, and provided an assessment of the risks posed by the contaminants encountered. The report also described the process used to develop and evaluate alternatives for addressing the contaminated media at the Site. Based on the SI/RAR, a Proposed Remedial Action Plan (PRAP) was prepared. The PRAP

was finalized in the March 2005 Record of Decision (ROD) following receipt of public input. The ROD presents the remedies that were selected by NYSDEC and the New York State Department of Health (NYSDOH) to address the identified contamination.

A Remedial Action Work Plan (RAWP) was prepared in March 2006 to describe the specific remedial activities that were proposed for the Site. In December 2006, the City of Buffalo entered into an agreement with a contractor to implement the RAWP.

On June 15, 2016, a Certificate of Completion was issued by NYSDEC indicating approval of the Final Engineering Report and satisfactory completion of the remediation phase of the environmental restoration project.

2.0 Site Overview

The Franczyk Park Site is an approximately 15.49-acre public park located at 550 and 564 Babcock Street in the City of Buffalo, Erie County, New York (Figure 1). The environmental restoration of the park was completed in 2016 and the Site Management Plan (SMP) prepared by KHEOPS Architecture, Engineering, & Survey, DPC (KHEOPS) was implemented in 2016 by the City of Buffalo.

3.0 Site Management

3.1 Monitoring and Maintenance Program

3.1.1 Site Inspection and Certification

In accordance with NYSDEC DER-10 6.3(a)(4), this PRR is to provide the information necessary to document the basis for the IC/EC certification. The certification primarily consists of a Site inspection to complete the NYSDEC's IC/EC Certification Form in order to confirm:

- That the IC/ECs are in place, performing properly, and remain effective;
- that nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- that nothing has occurred that would constitute a violation or failure to comply with any operation and maintenance plan for such controls; and,
- that access is available to the Site to evaluate continued maintenance of such controls.

The Site inspection of the property was conducted on December 9, 2019 by a LiRo employee who meets the requirements of a Qualified Environmental Professional (QEP). The Site inspection included the following components:

- inspection of the Site Soil cover system;
- inspection of the groundwater containment system (interceptor trenches);
- inspection of the site access and security systems; and,
- inspection of Site monitoring wells shown on Figure 2.

The Site soil cover system inspection included a complete walk of the entire Site area. Evidence of erosion, ponding water, tree and brush growth, and protruding objects were not observed within the Site area. Vehicle ruts (most likely from lawn mowing equipment) were observed on the north side of the Site near the basketball courts. The ruts were approximately 4-inches deep. Geotextile material was observed in low spots within the swing set area.

The inspection of the groundwater containment system including inspection of interceptor trench cleanouts and sewer tie-ins. No obstructions were observed within the interceptor trench system.

The Site monitoring wells were found to be in generally good condition. At the time of the Site inspection, monitoring well MW-5 was not located and was believed to have been buried. Due to the COVID pandemic, well MW-05 was not replaced as planned in the spring of 2020. The Corrective Action Work Plan for replacing the well is provided in Appendix G.

At the time of the inspection, the Site was in compliance with the IC/ECs. Appendix A includes the completed IC/ECs Certification form and Appendix B contains the completed Site inspection form.

Appendix C provides a photographic log showing the current conditions of the Site at the time of the

inspections.

3.1.2 Groundwater Monitoring

The SMP specifies that groundwater sampling would be performed at four down-gradient monitoring wells (MW-03, MW-05, MW-07, and MW0-8) on an annual basis and would include analysis of Target Compound List (TCL) Semi-Volatile Organic Compounds (SVOCs) and Target Analyte List (TAL) metals. Sampling of the monitoring wells is to be conducted using low-flow sampling procedures.

As previously discussed, one groundwater monitoring well (MW-5) was not located. As a result, MW-5 was not sampled during this groundwater monitoring event.

The following groundwater monitoring activities were performed during this PRR reporting period to assess Site conditions:

- groundwater sample collection from monitoring wells MW-03, MW-07, and MW-08 using low-flow sampling techniques;
- analysis of field parameters (pH, oxidation-reduction potential, temperature, turbidity, and specific conductivity) at each monitoring well during the low-flow sampling procedure;
- analysis of the collected samples for TCL SVOCs and TAL Metals by a New York State Department of Health (NYSDEC) environmental laboratory approval program (ELAP)-certified laboratory;
- inspection and documentation of the structural integrity of the monitoring wells; and,
- collection of groundwater elevation data from the sampled monitoring wells (MW-03, MW-07, and MW-08).

Groundwater level monitoring and sampling was performed on December 6 and 9, 2019 at monitoring wells MW-03, MW-07, and MW-08. Table 1 provides a summary of the groundwater elevation data for the Site monitoring wells.

Monitoring wells were purged and sampled using standard low-flow techniques. A "blind" duplicate sample (MW-D) was collected from monitoring well MW-08 as a quality assurance/quality control (QA/QC) check.

Purged groundwater was collected and contained in 5-gallon plastic buckets until the completion of sampling. The collected groundwater was discharged to the interceptor trench collection system after sample collection.

Field parameters measured at each of the sampled monitoring wells are summarized in Table 2. TCL SVOC analytical results are presented in Table 3. TAL metals analytical results are presented in Table 4. Monitoring well purge and sample logs are provided in Appendix D. Laboratory analytical reports are provided in Appendix E. M3etals concentration trend charts are provided in Appendix F.

3.2 Institutional and Engineering Control Requirements and Compliance

The following engineering and institutional controls (IC/ECs) are to be maintained as a requirement of the SAC for the Site:

• **Engineering Controls**: Engineering controls (ECs) for the Site consist of a soil cover system and a groundwater containment system.

The Site soil cover system and Site groundwater containment system are operating as designed and are being maintained and monitored as required.

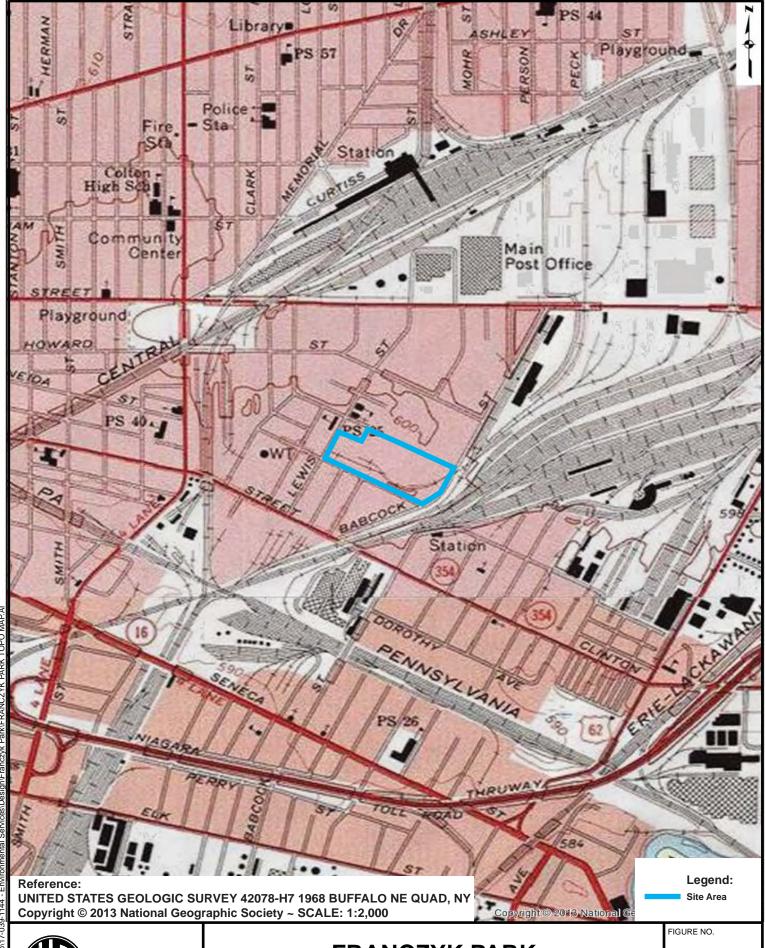
• Institutional Controls: Institutional controls (ICs) for the Site consist of a groundwater use restriction, an IC/EC plan, a land use restriction, a monitoring plan, a SMP, and a soil management plan.

The monitoring and maintenance activities are being conducted.

3.2.1 Corrective Actions

The submittal of the 2020 PRR and replacement of monitoring well MW-05 were delayed due to COVID-related funding constraints. The Corrective Action Work Plan for MW-05 is attached. It is anticipated that the well will be replaced during the 2021 reporting period and that the 2021 sampling and reporting will be conducted on schedule.

4.0 Conclusions and Recommendations

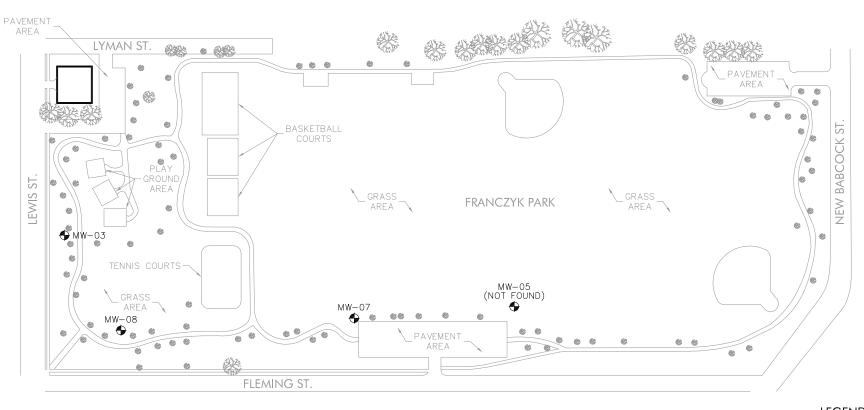

Conclusions from the monitoring, maintenance, and inspection activities performed during the current PRR reporting period are as follows.

- At the time of the Site inspection, the Site was in compliance with the ECs/ICs including: groundwater monitoring, inspection, and maintenance of the groundwater monitoring wells; inspection and maintenance of the groundwater containment system; and, inspection and maintenance of the Site soil cover system. Monitoring well MW-05, which has not been located since 2017, will be replaced with monitoring well MW-05R.
- TCL SVOC analytical results obtained from monitoring wells MW-03, MW-07, and MW-08 indicate that detectable concentrations of phenol are present in monitoring wells MW-03 and MW-07.
- TAL metals analytical results obtained from monitoring wells MW-03, MW-07, and MW-08 indicate detectable concentrations of metals in each of the monitoring wells sampled. Antimony, beryllium, cadmium, iron, lead, magnesium, manganese, nickel, sodium, and thallium were detected at concentrations exceeding the Class "GA" AWQSGVs in monitoring well MW-03. Antimony, manganese, and selenium were detected at concentrations exceeding the Class "GA" AWQSGVs in monitoring well MW-07. Antimony, iron, magnesium, manganese, and selenium were detected at concentrations exceeding the Class "GA" AWQSGVs in monitoring well MW-08.
- Based on visual inspection, the groundwater monitoring wells were observed to be structurally sound.
- Based on physical inspection, the groundwater monitoring wells were found to be free of
 obstructions and a minimal amount of silt accumulation was observed in each of the inspected
 wells.

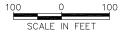
Based on the conclusions presented above, the Site has been in operation and in compliance with the SMP since the Certificate of Completion was issued by NYSDEC on June 15, 2016. LiRo recommends the following with regards to the operation, maintenance, and monitoring at the Site.

- Additional wood chips should be added in low spots within the swing set area;
- The ruts in the play area will be filled in;
- The replacement well for MW-05 should be installed;
- Site inspections should continue to be performed annually; and,
- Groundwater monitoring should continue to be performed annually.

Figures

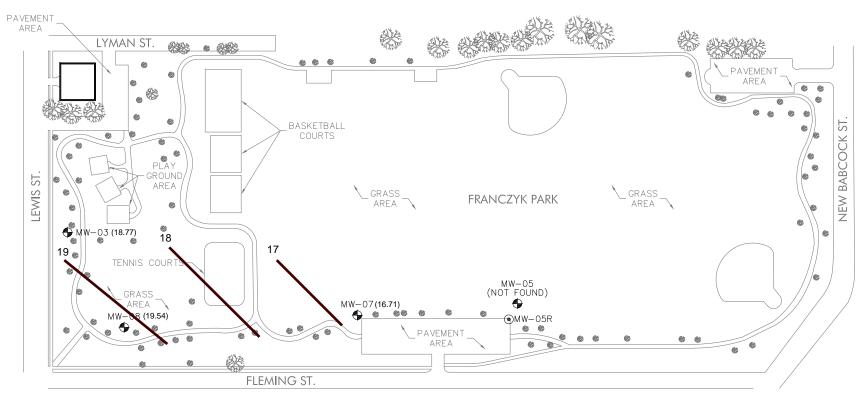


FRANCZYK PARK SITE TOPOGRAPHIC LOCATION MAP


1

<u>LEGEND</u>

♦ MONITORING WELL



FRANCZYK PARK SITE PLAN FIGURE NO.

2

N •

LEGEND

- MONITORING WELL
- PROPOSED REPLACEMENT MONITORING WELL

FIGURE NO.

3

Tables

TABLE 1

SUMMARY OF GROUNDWATER ELEVATIONS DECEMBER 2019 MONITORING EVENT

Franczyk Park Site (B00174) City of Buffalo, New York

Well ID	Date	Top of Casing Elevation ¹	Depth to Water (ft. BTOC)	Groundwater Elevation ¹
MW-03	12/9/2019	21.86	3.09	18.77
MW-05	Not Found	23.11	NM	NA
MW-07	12/9/2019	19.7	2.99	16.71
MW-08	12/6/2019	21.34	1.80	19.54

Notes:

1 - City of Buffalo Datum

ft. BTOC - feet below top of casing.

NM - Not measured

NA - Not available

TABLE 2

SUMMARY OF GROUNDWATER FIELD PARAMETERS DECEMBER 2019 MONITORING EVENT FRANCZYK PARK SITE (B00174) CITY OF BUFFALO, NEW YORK

	Class "GA"	Monitoring Location				
PARAMETER	AWQSGVs ¹	MW-03	MW-05	MW-07	MW-08	
Field Measurements						
pH (standard units)	6.5 - 8.5	7.56	NM	8.43	8.25	
Temperature (°C)	NS	11.56	NM	8.81	7.59	
Specific Conductance (mS/cm)	NS	6.800	NM	0.551	1.260	
Turbidity (NTU)	5	40.4	NM	37.3	31.5	
ORP (mV)	NS	28	NM	-38	-95	
Dissolved Oxygen (mg/L)	NS	9.37	NM	11.91	12.6	
Appearance (visual)	NS	Clear	NM	Clear	Clear	
Odor (olfactory)	NS	None	NM	None	None	

Notes:

1 - NYSDEC Class "GA" Ambient Groundwater Quality Standards/Guidance Values (AWQSGVs) as per 6 NYCRR Part 703.3

Bold - Concentration exceeds NYS Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality

NM - Not measured.

NS - No Standard; an AWQSGV has not been established for this parameter.

TABLE 3

SUMMARY OF GROUNDWATER SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) RESULTS DECEMBER 2019 MONITORING EVENT FRANCZYK PARK SITE (B00174) CITY OF BUFFALO, NEW YORK

	CI HCAH	Well ID, Sample ID, & Date Collected				
TCL SVOC	Class "GA"	MW-03	MW-07	MW-08 ²		
	AWQSGVs ¹	MW-3	MW-7	MW-8/MW-DUP		
		12/9/2019	12/9/2019	12/6/2019		
Benzaldehyde	NS	10 UQ	10 UQ	10 UQ		
1,1-Biphenyl	5	10 U	10 U	10 U		
1,2,4,5-Tetrachlorobenzene	5	10 U	10 U	10 U		
2,2-oxybis(1-Chloropropane)	NS	10 U	10 U	10 U		
2,3,4,6-Tetrachlorophenol	NS	10 U	10 U	10 U		
2,4,5-Trichlorophenol	NS	10 U	10 U	10 U		
2,4,6-Trichlorophenol	NS	10 U	10 U	10 U		
2,4-Dichlorophenol	5	10 U	10 U	10 U		
2,4-Dimethylphenol	50	10 U	10 U	10 U		
2,4-Dinitrophenol	10	10 U	10 U	10 U		
2,4-Dinitrotoluene	5	10 U	10 U	10 U		
2,6-Dinitrotoluene	5	10 U	10 U	10 U		
2-Chloronaphthalene	10	10 U	10 U	10 U		
2-Chlorophenol	NS	10 U	10 U	10 U		
2-Methylnaphthalene	NS	10 U	10 U	10 U		
2-Methylphenol	NS	10 U	10 U	10 U		
2-Nitroaniline	5	10 U	10 U	10 U		
2-Nitrophenol	NS	10 U	10 U	10 U		
3,3-Dichlorobenzidine	5	10 U	10 U	10 U		
3+4-Methylphenols	NS	10 U	10 U	10 U		
3-Nitroaniline	5	10 U	10 U	10 U		
4,6-Dinitro-2-methylphenol	NS	10 U	10 U	10 U		
4-Bromophenyl-phenylether	NS	10 U	10 U	10 U		
4-Chloro-3-methylphenol	NS	10 U	10 U	10 U		
4-Chloroaniline	5	10 U	10 U	10 U		
4-Chlorophenyl-phenylether	NS	10 U	10 U	10 U		
4-Nitroaniline	5	10 U	10 U	10 U		
4-Nitrophenol	NS	10 U	10 U	10 U		
Acenaphthene	20	10 U	10 U	10 U		
Acenaphthylene	NS	10 U	10 U	10 U		
Acetophenone	NS	10 U	10 U	10 U		
Anthracene	50	10 U	10 U	10 U		
Atrazine	7.5	10 U	10 U	10 U		
Benzo(a)anthracene	0.002	10 U	10 U	10 U		
Benzo(a)pyrene	ND	10 U	10 U	10 U		
Benzo(b)fluoranthene	0.002	10 U	10 U	10 U		

TABLE 3

SUMMARY OF GROUNDWATER SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) RESULTS DECEMBER 2019 MONITORING EVENT FRANCZYK PARK SITE (B00174) CITY OF BUFFALO, NEW YORK

		Well ID, Sample ID, & Date Collected				
TCL SVOC	Class "GA"	MW-03	MW-07	MW-08 ²		
	AWQSGVs ¹	MW-3	MW-7	MW-8/MW-DUP		
		12/9/2019	12/9/2019	12/6/2019		
Benzo(g,h,i)perylene	NS	10 U	10 U	10 U		
Benzo(k)fluoranthene	0.002	10 U	10 U	10 U		
bis(2-Chloroethoxy)methane	5	10 U	10 U	10 U		
bis(2-Chloroethyl)ether	1	10 U	10 U	10 U		
Bis(2-ethylhexyl)phthalate	5	10 U	10 U	10 U		
Butylbenzylphthalate	50	10 U	10 U	10 U		
Caprolactam	NS	10 U	10 U	10 U		
Carbazole	NS	10 U	10 U	10 U		
Chrysene	0.002	10 U	10 U	10 U		
Dibenzo(a,h)anthracene	NS	10 U	10 U	10 U		
Dibenzofuran	NS	10 U	10 U	10 U		
Diethylphthalate	50	10 U	10 U	10 U		
Dimethylphthalate	50	10 U	10 U	10 U		
Di-n-butylphthalate	50	10 U	10 U	10 U		
Di-n-octyl phthalate	50	10 U	10 U	10 U		
Fluoranthene	50	10 U	10 U	10 U		
Fluorene	50	10 U	10 U	10 U		
Hexachlorobenzene	0.04	10 U	10 U	10 U		
Hexachlorobutadiene	0.5	10 U	10 U	10 U		
Hexachlorocyclopentadiene	5	10 U	10 U	10 U		
Hexachloroethane	5	10 U	10 U	10 U		
Indeno(1,2,3-cd)pyrene	0.002	10 U	10 U	10 U		
Isophorone	50	10 U	10 U	10 U		
Naphthalene	10	10 U	10 U	10 U		
Nitrobenzene	0.4	10 U	10 U	10 U		
n-Nitroso-di-n-propylamine	NS	10 U	10 U	10 U		
n-Nitrosodiphenylamine	NS	10 U	10 U	10 U		
Pentachlorophenol	1	10 U	10 U	10 U		
Phenanthrene	50	10 U	10 U	10 U		
Phenol	1	2.6 J	2.6 J	10 U		
Pyrene	50	10 U	10 U	10 U		
Total SVOCs	NS	ND	ND	ND		

Notes:

- 1 NYS Ambient Water Quality Standards/Guidance Values (AWQSGVs) for Class GA Waterbody
- 2 Reported values represent the average value of sample and duplicate sample results.

All concentrations reported in parts per billion (ppb or $\mu g/L)$

- U Analyte not detected at the associated reporting limit
- NS No Standard; an AWQSGV has not been established for this parameter
- ND Not Detected

TABLE 4

TAL METALS ANALYTICAL RESULTS DECEMBER 2019 MONITORING EVENT FRANCZYK PARK SITE (B00174) CITY OF BUFFALO, NEW YORK

	GL HGAH	Well ID, Sample ID, & Date Collected					
TAL Metal	Class "GA"	MW-03	MW-07	MW-08 ²			
	AWQSGVs ¹	MW-3	MW-7	MW-8/MW-DUP			
		12/9/2019	12/9/2019	12/6/2019			
Silver	50	5 UN	5 UN	5 UN			
Aluminum	NS	130,000	101	50 U			
Arsenic	25	10 U	2.53 J	9.19 J			
Barium	1,000	18.7 J	23.5 J	116.0			
Beryllium	3	23.5	3 U	3 U			
Calcium Metal	NS	349,000	98,000	266,500			
Cadmium	5	61.2	3 U	0.3 J			
Cobalt	NS	79.4	2.06 J	2.66 J			
Chromium, total	50	4.85 J	5 UN	5 U			
Copper	200	10 UN	10.2	5.66 J			
Iron	300	811,000	200	2,135			
Potassium	NS	125,000	6,740	13,700			
Magnesium	35,000	384,000	18,300	47,300			
Manganese	300	9,440	465	398			
Sodium	20,000	95,000	8,130	8,815			
Nickel	100	181	2.9 J	5.73 J			
Lead	25	132	6 U	3.82 J			
Antimony	3	17 J	18.8 J	23.9 J			
Selenium	10	10 U	39	50			
Thallium	0.5	125	20 U	20 U			
Vanadium	NS	20 U	2.32 J	20 U			
Zinc	2,000	85.7	86.5	136			
Mercury	0.7	0.19 J	0.2 U	0.2 U			

Notes:

- 1 NYS Ambient Water Quality Standards/Guidance Values for Class GA Waterbody
- 2 Reported values represent the average value of sample and duplicate sample results.

All concentrations are reported in parts per billion (ppb or µg/L)

- U Compound not detected above the associated reporting limit
- N Indicates the spiked sample recovery is not within control limits
- J Estimated value
- $\ensuremath{\mathsf{NS}}$ No Standard; an AWQSGV has not been established for this parameter.

Bold - Concentration exceeds NYS Technical and Operational Guidance Series (TOGS 1.1.1) Ambient Water Quality Standards/Guidance Values - Class GA Waters

Appendix A PRR Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	B00174	Site	e Details		Box 1	
Sit	e Name F	ranczyk Park In	vestigation				
Cit	e Address: y/Town: Brunty: Erie e Acreage:		ew Babcock Stre	et Zip Code: 1	14206-		
Re	porting Per	iod: September	15, 2019 to Sep	tember 15, 2020			
						YES	NO
1.	Is the info	rmation above co	orrect?			X	
	If NO, incl	ude handwritten	above or on a se	eparate sheet.			
2.		or all of the site mendment durin			nerged, or undergone	e a	X
3.		been any chang CRR 375-1.11(d)		ite during this Re	porting Period		Х
4.		federal, state, ar ne property during			discharge) been issu	ed	X
					mentation or evide		
5.	Is the site	currently underg	oing developme	nt?			X
						Box 2	
						YES	NO
6.		ent site use cons I-Residential, Co		se(s) listed below	?	X	
7.	Are all ICs	s in place and fur	nctioning as desi	gned?			
	IF 1				O, sign and date belo . Otherwise continue		
AC	^			omitted along wit	h this form to addres	ss these iss	sues.
	Sty	The France	R		11/05/202	20	
Sig	nature of O	wner, Remedial F	arty or Designate	ed Representative	Dat	e	

SITE NO. B00174 Box 3

Description of Institutional Controls

Parcel Owner Institutional Control

112.17-1-10 City of Buffalo Ground Water Use Restriction

Landuse Restriction Site Management Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

O&M Plan

112.17-1-11 City of Buffalo

O&M Plan

Ground Water Use Restriction

Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan

IC/EC Plan

Box 4

Description of Engineering Controls

Parcel Engineering Control

112.17-1-10

Cover System

Cover System

Groundwater Containment

112.17-1-11

Cover System

Box	5
Box	5

	Periodic Review Report (PRR) Certification Statements								
١.	I certify by checking "YES" below that:								
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification; 								
	b) to the best of my knowledge and belief, the work and conclusions described are in accordance with the requirements of the site remedial program, and gene								
	engineering practices; and the information presented is accurate and compete.	YES	NO						
		X							
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all following statements are true:	of the							
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the De	partmer	ıt;						
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public h	ealth and						
	(c) access to the site will continue to be provided to the Department, to evaluate remedy, including access to evaluate the continued maintenance of this Control								
	(d) nothing has occurred that would constitute a violation or failure to comply wind Site Management Plan for this Control; and	ith the							
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in t								
		YES	NO						
		X							
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.								
	A Corrective Measures Work Plan must be submitted along with this form to address t	these is:	sues.						
	Signature of Owner, Remedial Party or Designated Representative Date	_							

IC CERTIFICATIONS SITE NO. B00174

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Stephen Fra	nk	_ at _	690 Delaware Ave	
print r	name		print business addr	ess
am certifying as _	Remedial Party			(Owner or Remedial Party)
^	I in the Site Details S	ectio	n of this form.	
Styphi	Frank			11/05/2020
Signature of Owner Rendering Certific		Des	signated Representative	Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

print name	print bu	siness address
certifying as a Qualified Environr	mental Professional for th	ne Remedial Party
		(Owner or Remedial Party)
Styphu Frau	R	11/05/2020

Appendix B Site Inspection Form

SITE INSPECTION FORM FRANCZYK PARK

Property Name: Franc	zyk Park		Inspection	Date:	
Property Address: 56	1 Babcock Street				
<u>City</u> : Buffalo		State:	NY	Zip Code:	14206
Property ID: (Tax Assess	ment Map)				
<u>Section</u> : 112.17	Block: 1	Lo	<u>t(s)</u> : 10 aı	nd 11	
Total Acreage: 16.5 a	cres				
Weather (during inspect	on): Temperature:	/o ^o Condii	tions: Parti	hy cloudy	
SIGNATURE:					
The findings of this inswere identified and implimate inspector: Next Scheduled Inspecti	ementation was mutua	lly agreed	oropriate pe upon:	rsonnel, correcti Date: <u>12/9</u>	
	COVER & V	VEGETATIO	N		
	of sloughing, erosion,	IN THE REAL PROPERTY AND ADDRESS OF THE PARTY OF THE PART	r settlement		<u>x</u>
	of unintended traffic; of distressed vegetation of baskeflad a	. m	y "deep		_X
(lawnuswe	~)			Yes	No
Is there evidence	y covers soil/fill mater visible in the soil or pa of erosion in the storn rosion control fabric vi	vement? nwater cha			X_
playground and/	or athletic field area?		-	K	
1	NTERCEPTOR TRENCH	AND MONI	TORING WEI	<u>LS</u> Yes	No
6. Interceptor trench in	acceptable condition?			* 0	140
Are the intercept	caps secured and not bor pipes obstructed (chench connects to the s	eck the ma	unholes whe	<u>γ</u> re	X

What is	the condition of th	e monitoring wells?		
WM-	7 Good			a kar aya sar aya saa ka kar car car ka
MW-	8 Good			of and that sight was mad there are said one sight for said the last
MW-	3 6009			
WM- 1	5 - Not found			
		ACTIVITY ON SITE		
			Yes	No
7. Any activity	on site that distur	bed the soil cover?	an on an on an	<u> </u>
		ACCESS CONTROLS		
			Yes	No
	CONTRACTOR	(i.e. fencing, boulders, etc. ccess controls damaged or		X
Are the	re sections of the a	ccess controls damaged or	missing?	
		ion of vehicles on the site?	<u>×</u>	
	/	ge to the cover or access con on the project site?	ntrols	X
L	immowing t	neto r		
	ADD	NITIONAL FACILITY INFORMA	TION	
	any any developm acres, well and sep	ent on or near the site? (Spotic)	ecify size and type: o	e.g.,
tem #		<u>COMMENTS</u>		
	development n	partle site		
No hew	oever spinent	orcellent, should add	40.1	Audia cat
	THE LENGTHOUSE	once it is, should all	New Malch 14	swingsei ar
	N-300012778880145	and the second s	***************************************	
		<u>.</u>		

 \bigcirc

0

 \bigcirc

(¹) (¹)

 \bigcirc

 \bigcirc

() ()

C

Appendix C Site Photographs

Photo No. 1 – Monitoring Well MW-07.

Photo No. 2 – View towards southwest corner of Site.

Photo No. 3 – View across the Site towards the east.

Photo No. 4 – View towards tennis courts.

Photo No. 5 – Monitoring Well MW-08.

Photo No. 6 – View of Site from the west.

Photo No. 7 – Monitoring Well MW-03.

Photo No. 8 – Playground Area.

Photo No. 9 – Swing set Area

Photo No. 10 – Slide Area.

Photo No. 11 – Ruts in field

Appendix D Monitoring Well Purge and Stabilization Logs

WELL PURGE LOG

LiRo Engineers, Inc.

0.04

Project Title: City of Buffalo - Franczyk Park Well Number: MW-3

Site Name: Date: 12/9/19
Franczyk Park

Staff: Kris Charney

A). Total casing and screen length in feet: 16.41 Well ID Volume (gal/ft)

B). Water level below top of casing in feet:

3.09

2"
0.17
3"
0.38

C). Number of feet standing water [A-B]: 13.32 4" 0.66

D). Volume of water/foot of casing (gal.):

0.17

6"
1.50
8"
2.60

E). Volume of water in casing (gal. [CxD]: 2.2644

F). Volume of water to remove (gal.) [Ex5]: 6.7932

G). Volume of water actually removed (gal.): 5.00

ļ								
			PU	U RGE DATA				
Time	Temperature (°C)	pH (SU)	ORP (mV)	Conductivity (ms/cm)	Turbidity (NTU)	Dissolved Oxygen	Salinity	Appearance
						(mg/L)		
11:24 AM	9.87	8.62	25	9.730	-	19.64	NR	muddy
11:28 AM	8.63	8.50	34	8.460	1000.0	12.51	NR	muddy
11:34 AM	11.05	8.12	38	7.410	191.0	10.37	NR	cloudy
11:38 AM	11.43	7.92	37	7.210	126.0	10.33	NR	cloudy
11:42 AM	11.48	7.88	33	7.090	126.0	10.19	NR	cloudy
11:46 AM	11.49	7.83	32	7.030	64.3	10.09	NR	clear
11:50 AM	11.50	7.74	30	6.950	52.4	9.88	NR	clear
11:54 AM	11.49	7.66	29	6.890	45.2	9.68	NR	clear
11:58 AM	11.51	7.61	28	6.840	42.0	9.50	NR	clear
12:02 PM	11.56	7.56	28	6.800	40.4	9.37	NR	clear

Comments: Sample MW-3 @ 11:45 AM on 12/9/19

TCL SVOCs, TAL Metals, & Mercury

42° 52' 49.0759" N 78° 49' 58.6074" W

WELL PURGE LOG

LiRo Engineers, Inc.

3"

0.04

0.38

Project Title: City of Buffalo - Franczyk Park Well Number: MW-7

Site Name: Date: 12/9/19
Franczyk Park

Staff: Kris Charney

A). Total casing and screen length in feet: 7.81 Well ID Volume (gal/ft)

B). Water level below top of casing in feet: 2.99

C). Number of feet standing water [A-B]: 4.82 4" 0.66 5" 1.04

D). Volume of water/foot of casing (gal.):
0.17
6"
1.50
8"
2.60

E). Volume of water in casing (gal. [CxD]: 0.8194

F). Volume of water to remove (gal.) [Ex5]: 2.4582

G). Volume of water actually removed (gal.): 3.00

			PU	U RGE DATA				
Time	Temperature (°C)	pH (SU)	ORP (mV)	Conductivity (ms/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Salinity	Appearance
10:16 AM	14.86	8.47	-175	0.822	-	21.22	NR	muddy
10:20 AM	9.92	8.22	-139	0.521	831.0	15.60	NR	muddy
10:24 AM	9.02	8.22	-102	0.447	463.0	13.30	NR	muddy
10:28 AM	8.70	8.19	-67	0.454	145.0	12.68	NR	cloudy
10:32 AM	8.82	8.41	-54	0.515	72.5	12.19	NR	clear
10:36 AM	8.83	8.46	-44	0.535	48.7	12.01	NR	clear
10:40 AM	8.81	8.43	-38	0.551	37.3	11.91	NR	clear

Comments: Sample MW-7 @ 11:00 AM on 12/9/19

TCL SVOCs, TAL Metals, & Mercury

42° 52' 45.7094" N 78° 49' 53.6758" W

WELL PURGE LOG

LiRo Engineers, Inc.

3"

0.04

0.38

2.60

0.17

Project Title: City of Buffalo - Franczyk Park Well Number: MW-8

Site Name: Date: 12/6/19
Franczyk Park

Staff: Kris Charney

A). Total casing and screen length in feet: 7.80 Well ID Volume (gal/ft)

B). Water level below top of casing in feet: 1.80

C). Number of feet standing water [A-B]: 6.00 4" 0.66

D). Volume of water/foot of casing (gal.):

5"
1.04
6"
1.50

E). Volume of water in casing (gal. [CxD]: 1.02

F). Volume of water to remove (gal.) [Ex5]: 3.06

G). Volume of water actually removed (gal.): 3.50

			PU	URGE DATA				
Time	Temperature (°C)	pH (SU)	ORP (mV)	Conductivity (ms/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Salinity	Appearance
12:30 PM	7.74	8.20	-73	3.580	435.0	17.02	NR	turbid
12:34 PM	7.13	8.08	-79	1.080	101.0	15.12	NR	turbid
12:38 PM	6.96	8.07	-73	0.798	58.5	14.12	NR	clear
12:42 PM	6.71	8.20	-78	1.010	36.3	13.47	NR	clear
12:46 PM	7.42	8.10	-76	0.884	42.7	12.68	NR	clear
			Batteries died	d on Horiba, had	to replace.			
12:54 PM	7.50	8.21	-88	1.030	33.5	23.54	NR	clear
12:58 PM	7.51	8.24	-93	1.150	31.3	13.40	NR	clear
1:00 PM	7.59	8.25	-95	1.260	31.5	12.60	NR	clear

Comments: Sample MW-8 @ 1:00 PM on 12/6/19

TCL SVOCs, TAL Metals, & Mercury

Duplicate sample collected here

42° 52' 47.1216" N 78° 49' 58.4237" W

Appendix E Laboratory Analytical Reports (Included on Attached CD)

LiRo Engineers, Inc.

ANALYTICAL RESULTS SUMMARY

METALS SEMI-VOLATILE ORGANICS

PROJECT NAME: CITY OF BUFFALO - FRANCZYK PARK SITE

LIRO ENGINEERS, INC. 690 Delaware Ave.

Buffalo, NY - 14209

Phone No: 716-882-5476

ORDER ID: K6235

ATTENTION: Jon Williams

K6235 1 of 140

Table Of Contents for K6235

I) S	Signature Page	3
2) C	Case Narrative	9
	2.1) SVOCMS Group1- Case Narrative	9
	2.2) Metals-AES- Case Narrative	11
3) G	Qualifier Page	12
t) G	QA Checklist	14
5) S	SVOCMS Group1 Data	15
6) N	Metals-AES Data	57
7) S	Shipping Document	137
	7.1) CHAIN OF CUSTODY	138
	7.2) Air Bill	139
	7.3) Lab Certificate	140

K6235 **2 of 140**

SAMPLE IDENTIFICATION AND ANALYTICAL REQUIREMENT SUMMARY

NYSDEC Sample	Laboratory Sampl	VOA GC/MS	BNA GC/MS	VOA GC	Pest PCBs	Metals	Other
ID/Code	ID/Code	(Method #)	(Method #)				
MW-08	K6235-01		8270D			6010D, 7470A	
MW-07	K6235-02		8270D			6010D, 7470A	
MW-03	K6235-03		8270D			6010D, 7470A	
DUP	K6235-04		8270D			6010D, 7470A	

K6235 3 of 140

FORM S-IIa

SAMPLE PREPARATION AND ANALYSIS SUMMARY SEMIVOLATILE (BNA) ANALYSES

Laboratory Sample ID	Matrix	Date Collected	Date Rec'd at Lab	Date Extracted	Date Analyzed
K6235-01	Water	12/06/19	12/10/19	12/11/19	12/13/19
K6235-02	Water	12/09/19	12/10/19	12/11/19	12/13/19
K6235-03	Water	12/09/19	12/10/19	12/11/19	12/13/19
K6235-04	Water	12/09/19	12/10/19	12/11/19	12/13/19

^{*} Details For Test: SVOCMS Group1

K6235 4 of 140

FORM S-IV

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
K6235-01	Water	Mercury	12/10/19	12/12/19	12/13/19
K6235-02	Water	Mercury	12/10/19	12/12/19	12/13/19
K6235-03	Water	Mercury	12/10/19	12/12/19	12/13/19
K6235-04	Water	Mercury	12/10/19	12/12/19	12/13/19

^{*} Details For Test: Mercury

K6235 **5 of 140**

FORM S-III

SAMPLE PREPARATION AND ANALYSIS SUMMARY MISCELLANEOUS ORGANIC ANALYSES

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
K6235-01	Water	8270D	NA		
K6235-02	Water	8270D	NA		
K6235-03	Water	8270D	NA		
K6235-04	Water	8270D	NA		

K6235 6 of 140

FORM S-IV

SAMPLE PREPARATION AND ANALYSIS SUMMARY INORGANIC ANALYSES

Laboratory Sample ID	Matrix	Analytical Protocol	Extraction Method	Auxiliary Cleanup	Dil/Conc Factor
K6235-01	Water	Metals ICP-TAL	12/10/19	12/11/19	12/11/19
K6235-02	Water	Metals ICP-TAL	12/10/19	12/11/19	12/11/19
K6235-03	Water	Metals ICP-TAL	12/10/19	12/11/19	12/11/19
K6235-04	Water	Metals ICP-TAL	12/10/19	12/11/19	12/11/19

^{*} Details For Test: Metals ICP-TAL

K6235 7 of 140

Cover Page

Order ID: K6235

Project ID: City of Buffalo - Franczyk Park Site

Client: LiRo Engineers, Inc.

Lab Sample Number Client Sample Number

K6235-01MW-08K6235-02MW-07K6235-03MW-03K6235-04DUP

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the laboratory manager or his designee, as verified by the following signature.

Signature:

N. N. Pandya

APPKOVED

By Nimisha Pandya, QA QC Supervisor at 3:05 pm, Dec 23, 2019

NYDOH CERTIFICATION NO - 11376

NJDEP CERTIFICATION NO - 20012

K6235 **8 of 140**

CASE NARRATIVE

LiRo Engineers, Inc.

Project Name: City of Buffalo - Franczyk Park Site

Project # N/A

Chemtech Project # K6235 Test Name: SVOCMS Group1

A. Number of Samples and Date of Receipt:

4 Water samples were received on 12/10/2019.

B. Parameters

According to the Chain of Custody document, the following analyses were requested: Mercury, Metals ICP-TAL, METALS-TAL and SVOCMS Group1. This data package contains results for SVOCMS Group1.

C. Analytical Techniques:

The samples were analyzed on instrument BNA_F using GC Column DB-UI 8270D which is 20 meters, 0.18 mm ID, 0.36 um dfThe analysis of SVOCMS Group1 was based on method 8270D and extraction was done based on method 3510.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

The Surrogate recoveries met the acceptable criteria.

The Internal Standards Areas met the acceptable requirements.

The Retention Times were acceptable for all samples.

The RPD met criteria.

The Blank Spike for {PB125387BS} with File ID: BF118179.D recoveries met requirements for all Compounds except for Benzaldehyde [118%].

The Blank Spike Duplicate with File ID: BF118180.D recoveries met requirements for all Compounds except for Benzaldehyde [125%].

The above BS & BSD Duplicate recoveries were not within the acceptance criteria for benzaldehyde. As the associated sample has no positive hit for this Compound, therefore no corrective action was taken.

The Blank analysis did not indicate the presence of lab contamination.

The %RSD is greater than 15% in the Initial Calibration (Method 8270-BF120619.M) for Benzaldehyde, Atrazine these compounds are passing on Quadratic regression.

The Continuous Calibration met the requirements.

The Tuning criteria met requirements.

K6235 9 of 140

E. Additional Comments:

The Form 6 is not included in the data package because the Initial Calibration was performed using 7 points.

Please use %D calculated based on Avg RF and CCRF for all compounds using Average Response Factor when the %RSD value for a compound is <15% for the Initial Calibration curve and use %D calculated based on Amount added and Calculated amount for all compounds using Linear Regression when the %RSD value for a compound is > 15% for the Initial Calibration curve for SW-846 analysis.

F. Manual Integration Comments:

Please refer to the Manual integration Report included with the Run Logs for information on the manual integrations performed.

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_ N. N. Pankya

APPROVED

By Nimisha Pandya, QA QC Supervisor at 3:06 pm, Dec 23, 2019

K6235 **10 of 140**

CASE NARRATIVE

LiRo Engineers, Inc.

Project Name: City of Buffalo - Franczyk Park Site

Project # N/A

Chemtech Project # K6235

Test Name: Metals ICP-TAL, Mercury

A. Number of Samples and Date of Receipt:

4 Water samples were received on 12/10/2019.

B. Parameters:

According to the Chain of Custody document, the following analyses were requested: Mercury, Metals ICP-TAL, METALS-TAL and SVOCMS Group1. This data package contains results for Metals ICP-TAL, Mercury.

C. Analytical Techniques:

The analysis of Metals ICP-TAL was based on method 6010D, digestion based on method 3010 (waters). The analysis and digestion of Mercury was based on method 7470A.

D. QA/ QC Samples:

The Holding Times were met for all analysis.

Sample MW-03 was diluted due to high concentrations for Iron.

The Blank Spike met requirements for all samples.

The Duplicate analysis met criteria for all samples.

The Matrix Spike analysis met criteria for all samples.

The Matrix Spike Duplicate analysis met criteria for all samples.

The Blank analysis did not indicate the presence of lab contamination.

The Calibration met the requirements.

The Serial Dilution met the acceptable requirements.

E. Additional Comments:

I certify that the data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. The laboratory manager or his designee, as verified by the following signature has authorized release of the data contained in this hard copy data package.

Signature_ N. N. Pandya

APPROVED

By Nimisha Pandya, QA QC Supervisor at 3:06 pm, Dec 23, 2019

K6235 11 of 140

DATA REPORTING QUALIFIERS- INORGANIC

For reporting results, the following "Results Qualifiers" are used:

- J Indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).
- U Indicates the analyte was analyzed for, but not detected.
- ND Indicates the analyte was analyzed for, but not detected
- E Indicates the reported value is estimated because of the presence of interference
- M Indicates Duplicate injection precision not met.
- N Indicates the spiked sample recovery is not within control limits.
- S Indicates the reported value was determined by the Method of Standard Addition (MSA).
- * Indicates that the duplicate analysis is not within control limits.
- + Indicates the correlation coefficient for the MSA is less than 0.995.
- D Indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.
- M Method qualifiers
 - **"P"** for ICP instrument
 - "PM" for ICP when Microwave Digestion is used
 - "CV" for Manual Cold Vapor AA
 - "AV" for automated Cold Vapor AA
 - "CA" for MIDI-Distillation Spectrophotometric "AS" for Semi –Automated Spectrophotometric
 - "C" for Manual Spectrophotometric
 - **"T"** for Titrimetric
 - "NR" for analyte not required to be analyzed
- OR Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
 - 1 ,
- Q Indicates the LCS did not meet the control limits requirements
- H Sample Analysis Out Of Hold Time

Value

DATA REPORTING QUALIFIERS- ORGANIC

For reporting results, the following "Results Qualifiers" are used:

U Indicates the compound was analyzed for but was not detected. Report the minimum detection limit for the sample with the U, i.e. "10 U". This is not necessarily the instrument detection limit attainable for this particular sample based on any concentration or dilution that may have been required.

If the result is a value greater than or equal to the detection limit, report the value

ND Indicates the analyte was analyzed for, but not detected

- **J** Indicates an estimated value. This flag is used:
 - (1) When estimating a concentration for a tentatively identified compound (library search hits, where a 1:1 response is assumed.)
 - (2) When the mass spectral data indicated the identification, however the result was less than the specified detection limit greater than zero. If the detection limit was 10 ug/L and a concentration of 3 ug/L was calculated report as 3 J. This is flag is used when similar situation arise on any organic parameter i.e. Pest, PCB and others.
- B Indicates the analyte was found in the blank as well as the sample report as "12 B".
- E Indicates the analyte's concentration exceeds the calibrated range of the instrument for that specific analysis.
- **D** This flag identifies all compounds identified in an analysis at a secondary dilution factor.
- P This flag is used for Pesticide/PCB target analyte when there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported on Form 1 and flagged with a "P".
- N This flag indicates presumptive evidence of a compound. This is only used for tentatively identified compounds (TICs), where the identification is based on a mass spectral library search. It applies to all TIC results. For generic characterization of a TIC, such as chlorinated hydrocarbon, the flag is not used.
- **A** This flag indicates that a Tentatively Identified Compound is a suspected aldol-condensation product.
- Q Indicates the LCS did not meet the control limits requirements

APPENDIX A

QA REVIEW GENERAL DOCUMENTATION

Project #: K6235

	Completed
For thorough review, the report must have the following:	
GENERAL:	
Are all original paperwork present (chain of custody, record of communication, airbill, sample management lab chronicle, login page)	<u> </u>
Check chain-of-custody for proper relinquish/return of samples	' ' ' ' ' '
Is the chain of custody signed and complete	<u> </u>
Check internal chain-of-custody for proper relinquish/return of samples /sample extracts	<u> </u>
Collect information for each project id from server. Were all requirements followed	<u> </u>
COVER PAGE:	
Do numbers of samples correspond to the number of samples in the Chain of Custody on login page	<u> </u>
Do lab numbers and client Ids on cover page agree with the Chain of Custody	<u> </u>
CHAIN OF CUSTODY:	
Do requested analyses on Chain of Custody agree with form I results	<u> </u>
Do requested analyses on Chain of Custody agree with the log-in page	<u>'</u> <u>'</u> <u>'</u> <u>'</u>
Were the correct method log-in for analysis according to the Analytical Request and Chain of Castody	<u> </u>
Were the samples received within hold time	<u> </u>
Were any problems found with the samples at arrival recorded in the Sample Management Laboratory Chronicle	<u> </u>
ANALYTICAL:	
Was method requirement followed?	<u> </u>
Was client requirement followed?	<u> </u>
Does the case narrative summarize all QC failure?	<u>√</u> <u>√</u> <u>√</u>
All runlogs and manual integration are reviewed for requirements	<u> </u>
All manual calculations and /or hand notations verified	<u> </u>

1st Level QA Review Signature:

APARNA SONI

Date: 12/23/2019

2nd Level QA Review Signature:

K6235

N. N. Pandya

APPROVED

Date:

By Nimisha Pandya, QA QC Supervisor at 3:06 pm, Dec 23, 2019

284 Sheffield Street, Mountainside, New Jersey - 07092

Phone: (908) 789 8900 Fax: (908) 789 8922

LAB CHRONICLE

OrderID: K6235

Client: LiRo Engineers, Inc.

Contact: Jon Williams

OrderDate: 12

12/10/2019 11:02:38 AM

Project: City of Buffalo - Franczyk Park Site

Location: B31

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
K6235-01	MW-08	Water			12/06/19			12/10/19
			SVOCMS Group1	8270D		12/11/19	12/13/19	
K6235-02	MW-07	Water			12/09/19			12/10/19
			SVOCMS Group1	8270D		12/11/19	12/13/19	
K6235-03	MW-03	Water			12/09/19			12/10/19
			SVOCMS Group1	8270D		12/11/19	12/13/19	
K6235-04	DUP	Water			12/09/19			12/10/19
			SVOCMS Group1	8270D		12/11/19	12/13/19	

K6235 15 of 140

Α

В

ט

Е

Hit Summary Sheet SW-846

SDG No.: K6235

Client: LiRo Engineers, Inc.

Sample ID Client ID:	Client ID MW-07		Parameter	Concentration C	MDL	RDL	Units
K6235-02	MW-07	WATER	Phenol Total Svoc: Total Concentration:		2.2 2.60 2.60	10	ug/L
Client ID : K6235-03	MW-03 MW-03	WATER	Phenol	2.600 J	2.2	10	ug/L
			Total Svoc : Total Concentration:		.60 2.60		

K6235 **16 of 140**

5

A

C

D

E

-

SAMPLE DATA

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/06/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-08 SDG No.: K6235
Lab Sample ID: K6235-01 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118188.D 1 12/11/19 08:36 12/13/19 16:11 PB125387

DF110100.D	1	12/11/19 06.30		12/13/19 10.11	FB123387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10.0	UQ	2.90	10.0	ug/L
108-95-2	Phenol	10.0	U	2.20	10.0	ug/L
111-44-4	bis(2-Chloroethyl)ether	10.0	U	3.40	10.0	ug/L
95-57-8	2-Chlorophenol	10.0	U	2.50	10.0	ug/L
95-48-7	2-Methylphenol	10.0	U	2.80	10.0	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10.0	U	3.00	10.0	ug/L
98-86-2	Acetophenone	10.0	U	3.20	10.0	ug/L
65794-96-9	3+4-Methylphenols	10.0	U	3.40	10.0	ug/L
621-64-7	n-Nitroso-di-n-propylamine	10.0	U	4.70	10.0	ug/L
67-72-1	Hexachloroethane	10.0	U	2.90	10.0	ug/L
98-95-3	Nitrobenzene	10.0	U	2.60	10.0	ug/L
78-59-1	Isophorone	10.0	U	2.20	10.0	ug/L
88-75-5	2-Nitrophenol	10.0	U	3.60	10.0	ug/L
105-67-9	2,4-Dimethylphenol	10.0	U	2.80	10.0	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10.0	U	2.50	10.0	ug/L
120-83-2	2,4-Dichlorophenol	10.0	U	2.30	10.0	ug/L
91-20-3	Naphthalene	10.0	U	2.50	10.0	ug/L
106-47-8	4-Chloroaniline	10.0	U	4.50	10.0	ug/L
87-68-3	Hexachlorobutadiene	10.0	U	3.20	10.0	ug/L
105-60-2	Caprolactam	10.0	U	3.40	10.0	ug/L
59-50-7	4-Chloro-3-methylphenol	10.0	U	2.50	10.0	ug/L
91-57-6	2-Methylnaphthalene	10.0	U	2.50	10.0	ug/L
77-47-4	Hexachlorocyclopentadiene	10.0	U	7.60	10.0	ug/L
88-06-2	2,4,6-Trichlorophenol	10.0	U	2.80	10.0	ug/L
95-95-4	2,4,5-Trichlorophenol	10.0	U	2.80	10.0	ug/L
92-52-4	1,1-Biphenyl	10.0	U	3.30	10.0	ug/L
91-58-7	2-Chloronaphthalene	10.0	U	3.00	10.0	ug/L
88-74-4	2-Nitroaniline	10.0	U	3.10	10.0	ug/L
131-11-3	Dimethylphthalate	10.0	U	2.70	10.0	ug/L
208-96-8	Acenaphthylene	10.0	U	2.70	10.0	ug/L
606-20-2	2,6-Dinitrotoluene	10.0	U	3.10	10.0	ug/L

Α

С

uL

1000

Sample Wt/Vol:

1000

Units:

mL

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/06/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-08 SDG No.: K6235

Lab Sample ID: K6235-01 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118188.D 1 12/11/19 08:36 12/13/19 16:11 PB125387

BF118188.D	1	12/11/19	08:36	12/13/19 16:11	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	10.0	U	4.20	10.0	ug/L
83-32-9	Acenaphthene	10.0	U	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	10.0	U	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	10.0	U	3.40	10.0	ug/L
132-64-9	Dibenzofuran	10.0	U	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	10.0	U	3.10	10.0	ug/L
84-66-2	Diethylphthalate	10.0	U	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	3.30	10.0	ug/L
86-73-7	Fluorene	10.0	U	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	10.0	U	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	10.0	U	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	10.0	U	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	10.0	U	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	10.0	U	2.70	10.0	ug/L
1912-24-9	Atrazine	10.0	U	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	10.0	U	4.30	10.0	ug/L
85-01-8	Phenanthrene	10.0	U	2.50	10.0	ug/L
120-12-7	Anthracene	10.0	U	2.50	10.0	ug/L
86-74-8	Carbazole	10.0	U	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	10.0	U	3.70	10.0	ug/L
206-44-0	Fluoranthene	10.0	U	2.90	10.0	ug/L
129-00-0	Pyrene	10.0	U	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	10.0	U	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	10.0	U	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	10.0	U	2.30	10.0	ug/L
218-01-9	Chrysene	10.0	U	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	10.0	U	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	10.0	U	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	10.0	U	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	10.0	U	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	10.0	U	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	10.0	U	2.60	10.0	ug/L
6235			19 of 140			

Sample Wt/Vol:

1000

Units:

mL

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/06/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-08 SDG No.: K6235

Lab Sample ID: K6235-01 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF118188.D
 1
 12/11/19 08:36
 12/13/19 16:11
 PB125387

DI 110100.D	1	12/11/19 00	5.50	12/13/19 10.11	1 D123367	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	10.0	U	2.60	10.0	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	10.0	U	3.10	10.0	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	10.0	U	2.60	10.0	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	56.2		10 - 130	37%	SPK: 150
13127-88-3	Phenol-d6	35.2		10 - 130	23%	SPK: 150
4165-60-0	Nitrobenzene-d5	85.4		36 - 131	85%	SPK: 100
321-60-8	2-Fluorobiphenyl	87.9		39 - 131	88%	SPK: 100
118-79-6	2,4,6-Tribromophenol	138		25 - 155	92%	SPK: 150
1718-51-0	Terphenyl-d14	105		23 - 130	105%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	123000	6.87			
1146-65-2	Naphthalene-d8	476000	8.15			
15067-26-2	Acenaphthene-d10	245000	9.92			
1517-22-2	Phenanthrene-d10	433000	11.4			
1719-03-5	Chrysene-d12	261000	14.06			
1520-96-3	Perylene-d12	265000	15.55			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Final Vol:

1000

uL

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

K6235

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-07 SDG No.: K6235
Lab Sample ID: K6235-02 Matrix: Water
Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118189.D 1 12/11/19 08:36 12/13/19 16:39 PB125387

DF110109.D	1	12/11/19 06.30		12/13/19 10.39	FB123387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10.0	UQ	2.90	10.0	ug/L
108-95-2	Phenol	2.60	J	2.20	10.0	ug/L
111-44-4	bis(2-Chloroethyl)ether	10.0	U	3.40	10.0	ug/L
95-57-8	2-Chlorophenol	10.0	U	2.50	10.0	ug/L
95-48-7	2-Methylphenol	10.0	U	2.80	10.0	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10.0	U	3.00	10.0	ug/L
98-86-2	Acetophenone	10.0	U	3.20	10.0	ug/L
65794-96-9	3+4-Methylphenols	10.0	U	3.40	10.0	ug/L
621-64-7	n-Nitroso-di-n-propylamine	10.0	U	4.70	10.0	ug/L
67-72-1	Hexachloroethane	10.0	U	2.90	10.0	ug/L
98-95-3	Nitrobenzene	10.0	U	2.60	10.0	ug/L
78-59-1	Isophorone	10.0	U	2.20	10.0	ug/L
88-75-5	2-Nitrophenol	10.0	U	3.60	10.0	ug/L
105-67-9	2,4-Dimethylphenol	10.0	U	2.80	10.0	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10.0	U	2.50	10.0	ug/L
120-83-2	2,4-Dichlorophenol	10.0	U	2.30	10.0	ug/L
91-20-3	Naphthalene	10.0	U	2.50	10.0	ug/L
106-47-8	4-Chloroaniline	10.0	U	4.50	10.0	ug/L
87-68-3	Hexachlorobutadiene	10.0	U	3.20	10.0	ug/L
105-60-2	Caprolactam	10.0	U	3.40	10.0	ug/L
59-50-7	4-Chloro-3-methylphenol	10.0	U	2.50	10.0	ug/L
91-57-6	2-Methylnaphthalene	10.0	U	2.50	10.0	ug/L
77-47-4	Hexachlorocyclopentadiene	10.0	U	7.60	10.0	ug/L
88-06-2	2,4,6-Trichlorophenol	10.0	U	2.80	10.0	ug/L
95-95-4	2,4,5-Trichlorophenol	10.0	U	2.80	10.0	ug/L
92-52-4	1,1-Biphenyl	10.0	U	3.30	10.0	ug/L
91-58-7	2-Chloronaphthalene	10.0	U	3.00	10.0	ug/L
88-74-4	2-Nitroaniline	10.0	U	3.10	10.0	ug/L
131-11-3	Dimethylphthalate	10.0	U	2.70	10.0	ug/L
208-96-8	Acenaphthylene	10.0	U	2.70	10.0	ug/L
606-20-2	2,6-Dinitrotoluene	10.0	U	3.10	10.0	ug/L

Α

С

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-07 SDG No.: K6235
Lab Sample ID: K6235-02 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118189.D	1	12/11/19 08:36		12/13/19 16:39	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	10.0	U	4.20	10.0	ug/L
83-32-9	Acenaphthene	10.0	U	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	10.0	U	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	10.0	U	3.40	10.0	ug/L
132-64-9	Dibenzofuran	10.0	U	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	10.0	U	3.10	10.0	ug/L
84-66-2	Diethylphthalate	10.0	U	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	3.30	10.0	ug/L
86-73-7	Fluorene	10.0	U	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	10.0	U	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	10.0	U	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	10.0	U	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	10.0	U	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	10.0	U	2.70	10.0	ug/L
1912-24-9	Atrazine	10.0	U	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	10.0	U	4.30	10.0	ug/L
85-01-8	Phenanthrene	10.0	U	2.50	10.0	ug/L
120-12-7	Anthracene	10.0	U	2.50	10.0	ug/L
86-74-8	Carbazole	10.0	U	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	10.0	U	3.70	10.0	ug/L
206-44-0	Fluoranthene	10.0	U	2.90	10.0	ug/L
129-00-0	Pyrene	10.0	U	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	10.0	U	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	10.0	U	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	10.0	U	2.30	10.0	ug/L
218-01-9	Chrysene	10.0	U	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	10.0	U	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	10.0	U	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	10.0	U	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	10.0	U	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	10.0	U	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	10.0	U	2.60	10.0	ug/L
6235			22 of 140			

Sample Wt/Vol:

1000

Units:

mL

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-07 SDG No.: K6235

Lab Sample ID: K6235-02 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF118189.D
 1
 12/11/19 08:36
 12/13/19 16:39
 PB125387

BI IIOIO).B	*	12/11/19 00	3.50	12/13/17 10.37	15123307	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	10.0	U	2.60	10.0	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	10.0	U	3.10	10.0	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	10.0	U	2.60	10.0	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	56.1		10 - 130	37%	SPK: 150
13127-88-3	Phenol-d6	33.9		10 - 130	23%	SPK: 150
4165-60-0	Nitrobenzene-d5	89.0		36 - 131	89%	SPK: 100
321-60-8	2-Fluorobiphenyl	88.1		39 - 131	88%	SPK: 100
118-79-6	2,4,6-Tribromophenol	137		25 - 155	91%	SPK: 150
1718-51-0	Terphenyl-d14	104		23 - 130	104%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	118000	6.87			
1146-65-2	Naphthalene-d8	450000	8.15			
15067-26-2	Acenaphthene-d10	240000	9.92			
1517-22-2	Phenanthrene-d10	444000	11.4			
1719-03-5	Chrysene-d12	283000	14.06			
1520-96-3	Perylene-d12	278000	15.55			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Final Vol:

1000

uL

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

K6235

Soil Aliquot Vol:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-03 SDG No.: K6235 Lab Sample ID: K6235-03 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

uL

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

GPC Factor: Ν Injection Volume: 1.0 GPC Cleanup: PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118190 D 12/11/19 08:36 12/13/19 17:07 PB125387

BF118190.D	1	12/11/19	J8:36 	12/13/19 17:07	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10.0	UQ	2.90	10.0	ug/L
108-95-2	Phenol	2.60	J	2.20	10.0	ug/L
111-44-4	bis(2-Chloroethyl)ether	10.0	U	3.40	10.0	ug/L
95-57-8	2-Chlorophenol	10.0	U	2.50	10.0	ug/L
95-48-7	2-Methylphenol	10.0	U	2.80	10.0	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10.0	U	3.00	10.0	ug/L
98-86-2	Acetophenone	10.0	U	3.20	10.0	ug/L
65794-96-9	3+4-Methylphenols	10.0	U	3.40	10.0	ug/L
621-64-7	n-Nitroso-di-n-propylamine	10.0	U	4.70	10.0	ug/L
67-72-1	Hexachloroethane	10.0	U	2.90	10.0	ug/L
98-95-3	Nitrobenzene	10.0	U	2.60	10.0	ug/L
78-59-1	Isophorone	10.0	U	2.20	10.0	ug/L
88-75-5	2-Nitrophenol	10.0	U	3.60	10.0	ug/L
105-67-9	2,4-Dimethylphenol	10.0	U	2.80	10.0	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10.0	U	2.50	10.0	ug/L
120-83-2	2,4-Dichlorophenol	10.0	U	2.30	10.0	ug/L
91-20-3	Naphthalene	10.0	U	2.50	10.0	ug/L
106-47-8	4-Chloroaniline	10.0	U	4.50	10.0	ug/L
87-68-3	Hexachlorobutadiene	10.0	U	3.20	10.0	ug/L
105-60-2	Caprolactam	10.0	U	3.40	10.0	ug/L
59-50-7	4-Chloro-3-methylphenol	10.0	U	2.50	10.0	ug/L
91-57-6	2-Methylnaphthalene	10.0	U	2.50	10.0	ug/L
77-47-4	Hexachlorocyclopentadiene	10.0	U	7.60	10.0	ug/L
88-06-2	2,4,6-Trichlorophenol	10.0	U	2.80	10.0	ug/L
95-95-4	2,4,5-Trichlorophenol	10.0	U	2.80	10.0	ug/L
92-52-4	1,1-Biphenyl	10.0	U	3.30	10.0	ug/L
91-58-7	2-Chloronaphthalene	10.0	U	3.00	10.0	ug/L
88-74-4	2-Nitroaniline	10.0	U	3.10	10.0	ug/L
131-11-3	Dimethylphthalate	10.0	U	2.70	10.0	ug/L
208-96-8	Acenaphthylene	10.0	U	2.70	10.0	ug/L
606-20-2	2,6-Dinitrotoluene	10.0	U	3.10	10.0	ug/L

24 of 140 K6235

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-03 SDG No.: K6235 Lab Sample ID: K6235-03 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL

Soil Aliquot Vol: uL Test: SVOCMS Group1

Level: Extraction Type: Decanted: N LOW

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

DE110100 D 12/12/10 17:07 DD125297

BF118190.D	1	12/11/19	08:36	12/13/19 17:07	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	10.0	U	4.20	10.0	ug/L
83-32-9	Acenaphthene	10.0	U	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	10.0	U	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	10.0	U	3.40	10.0	ug/L
132-64-9	Dibenzofuran	10.0	U	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	10.0	U	3.10	10.0	ug/L
84-66-2	Diethylphthalate	10.0	U	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	3.30	10.0	ug/L
86-73-7	Fluorene	10.0	U	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	10.0	U	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	10.0	U	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	10.0	U	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	10.0	U	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	10.0	U	2.70	10.0	ug/L
1912-24-9	Atrazine	10.0	U	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	10.0	U	4.30	10.0	ug/L
85-01-8	Phenanthrene	10.0	U	2.50	10.0	ug/L
120-12-7	Anthracene	10.0	U	2.50	10.0	ug/L
86-74-8	Carbazole	10.0	U	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	10.0	U	3.70	10.0	ug/L
206-44-0	Fluoranthene	10.0	U	2.90	10.0	ug/L
129-00-0	Pyrene	10.0	U	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	10.0	U	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	10.0	U	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	10.0	U	2.30	10.0	ug/L
218-01-9	Chrysene	10.0	U	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	10.0	U	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	10.0	U	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	10.0	U	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	10.0	U	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	10.0	U	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	10.0	U	2.60	10.0	ug/L
6235			25 of 140			

Lab Sample ID:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: MW-03 SDG No.: K6235

Analytical Method: SW8270 % Moisture: 100

K6235-03

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Matrix:

Water

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF118190.D 1 12/11/19 08:36 12/13/19 17:07 PB125387

DI 110190.D	1	12/11/19 00	3.30	12/13/19 17:07	1 D123367	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	10.0	U	2.60	10.0	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	10.0	U	3.10	10.0	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	10.0	U	2.60	10.0	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	81.9		10 - 130	55%	SPK: 150
13127-88-3	Phenol-d6	54.4		10 - 130	36%	SPK: 150
4165-60-0	Nitrobenzene-d5	83.6		36 - 131	84%	SPK: 100
321-60-8	2-Fluorobiphenyl	86.7		39 - 131	87%	SPK: 100
118-79-6	2,4,6-Tribromophenol	139		25 - 155	93%	SPK: 150
1718-51-0	Terphenyl-d14	101		23 - 130	101%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	115000	6.86			
1146-65-2	Naphthalene-d8	437000	8.15			
15067-26-2	Acenaphthene-d10	227000	9.92			
1517-22-2	Phenanthrene-d10	421000	11.4			
1719-03-5	Chrysene-d12	273000	14.06			
1520-96-3	Perylene-d12	279000	15.55			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

K6235

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: DUP SDG No.: K6235
Lab Sample ID: K6235-04 Matrix: Water

Analytical Method:

K6235

SW8270

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

% Moisture:

100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118186.D 1 12/11/19 08:36 12/13/19 15:15 PB125387

CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10.0	UQ	2.90	10.0	ug/L
108-95-2	Phenol	10.0	U	2.20	10.0	ug/L
111-44-4	bis(2-Chloroethyl)ether	10.0	U	3.40	10.0	ug/L
95-57-8	2-Chlorophenol	10.0	U	2.50	10.0	ug/L
95-48-7	2-Methylphenol	10.0	U	2.80	10.0	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10.0	U	3.00	10.0	ug/L
98-86-2	Acetophenone	10.0	U	3.20	10.0	ug/L
65794-96-9	3+4-Methylphenols	10.0	U	3.40	10.0	ug/L
621-64-7	n-Nitroso-di-n-propylamine	10.0	U	4.70	10.0	ug/L
67-72-1	Hexachloroethane	10.0	U	2.90	10.0	ug/L
98-95-3	Nitrobenzene	10.0	U	2.60	10.0	ug/L
78-59-1	Isophorone	10.0	U	2.20	10.0	ug/L
88-75-5	2-Nitrophenol	10.0	U	3.60	10.0	ug/L
105-67-9	2,4-Dimethylphenol	10.0	U	2.80	10.0	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10.0	U	2.50	10.0	ug/L
120-83-2	2,4-Dichlorophenol	10.0	U	2.30	10.0	ug/L
91-20-3	Naphthalene	10.0	U	2.50	10.0	ug/L
106-47-8	4-Chloroaniline	10.0	U	4.50	10.0	ug/L
87-68-3	Hexachlorobutadiene	10.0	U	3.20	10.0	ug/L
105-60-2	Caprolactam	10.0	U	3.40	10.0	ug/L
59-50-7	4-Chloro-3-methylphenol	10.0	U	2.50	10.0	ug/L
91-57-6	2-Methylnaphthalene	10.0	U	2.50	10.0	ug/L
77-47-4	Hexachlorocyclopentadiene	10.0	U	7.60	10.0	ug/L
88-06-2	2,4,6-Trichlorophenol	10.0	U	2.80	10.0	ug/L
95-95-4	2,4,5-Trichlorophenol	10.0	U	2.80	10.0	ug/L
92-52-4	1,1-Biphenyl	10.0	U	3.30	10.0	ug/L
91-58-7	2-Chloronaphthalene	10.0	U	3.00	10.0	ug/L
88-74-4	2-Nitroaniline	10.0	U	3.10	10.0	ug/L
131-11-3	Dimethylphthalate	10.0	U	2.70	10.0	ug/L
208-96-8	Acenaphthylene	10.0	U	2.70	10.0	ug/L
606-20-2	2,6-Dinitrotoluene	10.0	U	3.10	10.0	ug/L

27 of 140

5

LOW

Extraction Type:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

Client Sample ID: DUP SDG No.: K6235 Lab Sample ID: K6235-04 Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL

N

Level:

Soil Aliquot Vol: uL Test: SVOCMS Group1 Decanted:

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118186.D	1	12/11/19 08:36		12/13/19 15:15	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	10.0	U	4.20	10.0	ug/L
83-32-9	Acenaphthene	10.0	U	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	10.0	U	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	10.0	U	3.40	10.0	ug/L
132-64-9	Dibenzofuran	10.0	U	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	10.0	U	3.10	10.0	ug/L
84-66-2	Diethylphthalate	10.0	U	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	3.30	10.0	ug/L
86-73-7	Fluorene	10.0	U	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	10.0	U	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	10.0	U	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	10.0	U	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	10.0	U	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	10.0	U	2.70	10.0	ug/L
1912-24-9	Atrazine	10.0	U	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	10.0	U	4.30	10.0	ug/L
85-01-8	Phenanthrene	10.0	U	2.50	10.0	ug/L
120-12-7	Anthracene	10.0	U	2.50	10.0	ug/L
86-74-8	Carbazole	10.0	U	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	10.0	U	3.70	10.0	ug/L
206-44-0	Fluoranthene	10.0	U	2.90	10.0	ug/L
129-00-0	Pyrene	10.0	U	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	10.0	U	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	10.0	U	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	10.0	U	2.30	10.0	ug/L
218-01-9	Chrysene	10.0	U	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	10.0	U	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	10.0	U	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	10.0	U	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	10.0	U	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	10.0	U	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	10.0	U	2.60	10.0	ug/L
6235			28 of 140			

1000

Units:

mL

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected: 12/09/19

Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19

DUP SDG No.: Client Sample ID: K6235

K6235-04 Matrix: Lab Sample ID: Water

100 Analytical Method: SW8270 % Moisture:

Sample Wt/Vol: Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Level: LOW Decanted: Ν

GPC Factor: 1.0 GPC Cleanup: Ν PH: Injection Volume:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID BF118186 D 12/11/19 08:36 12/13/19 15:15 PB125387

DF118180.D	1	12/11/19 00	5.30	12/13/19 13.13	PD123387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	10.0	U	2.60	10.0	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	10.0	U	3.10	10.0	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	10.0	U	2.60	10.0	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	60.7		10 - 130	40%	SPK: 150
13127-88-3	Phenol-d6	37.3		10 - 130	25%	SPK: 150
4165-60-0	Nitrobenzene-d5	86.5		36 - 131	87%	SPK: 100
321-60-8	2-Fluorobiphenyl	89.7		39 - 131	90%	SPK: 100
118-79-6	2,4,6-Tribromophenol	141		25 - 155	94%	SPK: 150
1718-51-0	Terphenyl-d14	102		23 - 130	102%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	121000	6.87			
1146-65-2	Naphthalene-d8	466000	8.15			
15067-26-2	Acenaphthene-d10	244000	9.92			
1517-22-2	Phenanthrene-d10	450000	11.4			
1719-03-5	Chrysene-d12	295000	14.06			
1520-96-3	Perylene-d12	270000	15.55			

Final Vol:

1000

uL

K6235

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

^{() =} Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

J

A

В

D

Ε

G

QC SUMMARY

Surrogate Summary

SW-846

SDG No.: K6235

Client: LiRo Engineers, Inc.

Analytical Method: 8270D

I ak Camala II	D Client ID	Danis dan Sulla	(DDM)	D 14 (DDM)	D		nits (%)
Lab Sample II	D Client ID	Parameter Spike	(PPM)	Result (PPM)	Recovery (%) Qual	Low	High
K6235-01	MW-08	2-Fluorophenol	150	56.2	37	10	130
		Phenol-d6	150	35.2	23	10	130
		Nitrobenzene-d5	100	85.4	85	36	131
		2-Fluorobiphenyl	100	87.9	88	39	131
		2,4,6-Tribromophenol	150	138	92	25	155
		Terphenyl-d14	100	105	105	23	130
K6235-02	MW-07	2-Fluorophenol	150	56.1	37	10	130
		Phenol-d6	150	33.9	23	10	130
		Nitrobenzene-d5	100	89.0	89	36	131
		2-Fluorobiphenyl	100	88.1	88	39	131
		2,4,6-Tribromophenol	150	137	91	25	155
		Terphenyl-d14	100	104	104	23	130
K6235-03	MW-03	2-Fluorophenol	150	81.9	55	10	130
		Phenol-d6	150	54.4	36	10	130
		Nitrobenzene-d5	100	83.6	84	36	131
		2-Fluorobiphenyl	100	86.7	87	39	131
		2,4,6-Tribromophenol	150	139	93	25	155
		Terphenyl-d14	100	101	101	23	130
K6235-04	DUP	2-Fluorophenol	150	60.7	40	10	130
		Phenol-d6	150	37.3	25	10	130
		Nitrobenzene-d5	100	86.5	87	36	131
		2-Fluorobiphenyl	100	89.7	90	39	131
		2,4,6-Tribromophenol	150	141	94	25	155
		Terphenyl-d14	100	102	102	23	130
PB125387BL	PB125387BL	2-Fluorophenol	150	135	90	10	130
		Phenol-d6	150	139	93	10	130
		Nitrobenzene-d5	100	83.5	84	36	131
		2-Fluorobiphenyl	100	86.5	87	39	131
		2,4,6-Tribromophenol	150	134	89	25	155
		Terphenyl-d14	100	89.5	89	23	130
PB125387BS	PB125387BS	2-Fluorophenol	150	107	71	10	130
		Phenol-d6	150	106	71	10	130
		Nitrobenzene-d5	100	68.9	69	36	131
		2-Fluorobiphenyl	100	72.7	73	39	131
		2,4,6-Tribromophenol	150	102	68	25	155
		Terphenyl-d14	100	74.2	74	23	130
PB125387BSD	PB125387BSD	2-Fluorophenol	150	111	74	10	130
1212001101	. 101200000	Phenol-d6	150	112	75	10	130
		Nitrobenzene-d5	100	71.5	72	36	131
		2-Fluorobiphenyl	100	75.3	75 75	39	131
		2,4,6-Tribromophenol	150	108	72	25	155
		Terphenyl-d14	100	74.9	75 75	23	130

K6235 **31 of 140**

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: K6235

Client: LiRo Engineers, Inc.

Analytical Method: 8270D DataFile: BF118179.D

								RPD		Limits	
ab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPI
PB125387BS	Benzaldehyde	50	58.8	ug/L	118		*		10	109	
	Phenol	50	40.5	ug/L	81				10	130	
	bis(2-Chloroethyl)ether	50	41.1	ug/L	82				46	116	
	2-Chlorophenol	50	42.1	ug/L	84				40	105	
	2-Methylphenol	50	41.9	ug/L	84				32	94	
	2,2-oxybis(1-Chloropropane)	50	39.6	ug/L	79				60	113	
	Acetophenone	50	37.3	ug/L	75				64	120	
	3+4-Methylphenols	50	41.8	ug/L	84				24	91	
	N-Nitroso-di-n-propylamine	50	42.4	ug/L	85				61	115	
	Hexachloroethane	50	39.4	ug/L	79				52	104	
	Nitrobenzene	50	38.0	ug/L	76				49	120	
	Isophorone	50	39.2	ug/L	78				65	114	
	2-Nitrophenol	50	39.6	ug/L	79				57	116	
	2,4-Dimethylphenol	50	45.3	ug/L	91				43	108	
	bis(2-Chloroethoxy)methane	50	36.8	ug/L	74				65	111	
	2,4-Dichlorophenol	50	39.0	ug/L	78				49	113	
	Naphthalene	50	39.2	ug/L	78				61	107	
	4-Chloroaniline	50	16.6	ug/L	33				10	93	
	Hexachlorobutadiene	50	36.3	ug/L	73				35	120	
	Caprolactam	50	39.1	ug/L	78				10	130	
	4-Chloro-3-methylphenol	50	39.0	ug/L	78				51	109	
	2-Methylnaphthalene	50	39.8	ug/L	80				63	110	
	Hexachlorocyclopentadiene	100	91.8	ug/L ug/L	92				42	121	
	2,4,6-Trichlorophenol	50	38.0	ug/L ug/L	76				62	114	
	-			_	78				58	114	
	2,4,5-Trichlorophenol	50	39.1	ug/L					56 65	117	
	1,1-Biphenyl	50 50	38.2	ug/L	76						
	2-Chloronaphthalene	50	37.0	ug/L	74 70				65	111	
	2-Nitroaniline	50	35.9	ug/L	72				63	119	
	Dimethylphthalate	50	37.1	ug/L	74				68	112	
	Acenaphthylene	50	39.8	ug/L	80				65	110	
	2,6-Dinitrotoluene	50	37.7	ug/L	75				68	115	
	3-Nitroaniline	50	21.1	ug/L	42				16	104	
	Acenaphthene	50	37.4	ug/L	75 				66	114	
	2,4-Dinitrophenol	100	75.1	ug/L	75				35	129	
	4-Nitrophenol	100	73.9	ug/L	74				10	130	
	Dibenzofuran	50	39.0	ug/L	78				66	111	
	2,4-Dinitrotoluene	50	39.0	ug/L	78				65	119	
	Diethylphthalate	50	38.5	ug/L	77				66	116	
	4-Chlorophenyl-phenylether	50	38.1	ug/L	76				66	113	
	Fluorene	50	39.0	ug/L	78				66	112	
	4-Nitroaniline	50	31.2	ug/L	62				53	115	
	4,6-Dinitro-2-methylphenol	50	41.4	ug/L	83				47	137	
	N-Nitrosodiphenylamine	50	38.8	ug/L	78				65	116	
	4-Bromophenyl-phenylether	50	37.3	ug/L	75				66	119	
	Hexachlorobenzene	50	36.7	ug/L	73				57	121	
	Atrazine	50	54.7	ug/L	109				53	130	

K6235 **32 of 140**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: K6235

Client: LiRo Engineers, Inc.

Analytical Method: 8270D DataFile: BF118179.D

								RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD
PB125387BS	Pentachlorophenol	100	83.2	ug/L	83				51	128	
	Phenanthrene	50	38.9	ug/L	78				68	112	
	Anthracene	50	40.3	ug/L	81				69	112	
	Carbazole	50	37.8	ug/L	76				65	115	
	Di-n-butylphthalate	50	39.9	ug/L	80				67	117	
	Fluoranthene	50	39.0	ug/L	78				67	115	
	Pyrene	50	38.5	ug/L	77				67	116	
	Butylbenzylphthalate	50	39.3	ug/L	79				66	121	
	3,3-Dichlorobenzidine	50	29.3	ug/L	59				13	119	
	Benzo(a)anthracene	50	38.0	ug/L	76				64	117	
	Chrysene	50	37.8	ug/L	76				65	116	
	bis(2-Ethylhexyl)phthalate	50	41.8	ug/L	84				61	123	
	Di-n-octyl phthalate	50	42.9	ug/L	86				63	123	
	Benzo(b)fluoranthene	50	37.0	ug/L	74				62	122	
	Benzo(k)fluoranthene	50	39.0	ug/L	78				60	123	
	Benzo(a)pyrene	50	36.5	ug/L	73				65	118	
	Indeno(1,2,3-cd)pyrene	50	34.3	ug/L	69				50	133	
	Dibenz(a,h)anthracene	50	36.2	ug/L	72				45	150	
	Benzo(g,h,i)perylene	50	36.0	ug/L	72				64	123	
	1,2,4,5-Tetrachlorobenzene	50	36.3	ug/L	73				60	105	
	2,3,4,6-Tetrachlorophenol	50	39.7	ug/L	79				66	110	

K6235 33 of 140

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: K6235

Client: LiRo Engineers, Inc.

Analytical Method: 8270D DataFile: BF118180.D

Analytical Metho	d: 8270D	I	DataFile:	BF1181	80.D						
								RPD		Limits	
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD
PB125387BSD	Benzaldehyde	50	62.5	ug/L	125	6	*		10	109	20
	Phenol	50	42.4	ug/L	85	5			10	130	20
	bis(2-Chloroethyl)ether	50	41.9	ug/L	84	2			46	116	20
	2-Chlorophenol	50	43.8	ug/L	88	4			40	105	20
	2-Methylphenol	50	44.1	ug/L	88	5			32	94	20
	2,2-oxybis(1-Chloropropane)	50	40.5	ug/L	81	2			60	113	20
	Acetophenone	50	38.9	ug/L	78	4			64	120	20
	3+4-Methylphenols	50	44.1	ug/L	88	5			24	91	20
	N-Nitroso-di-n-propylamine	50	43.5	ug/L	87	3			61	115	20
	Hexachloroethane	50	41.1	ug/L	82	4			52	104	20
	Nitrobenzene	50	39.2	ug/L	78	3			49	120	20
	Isophorone	50	41.2	ug/L	82	5			65	114	20
	2-Nitrophenol	50	41.7	ug/L	83	5			57	116	20
	2,4-Dimethylphenol	50	47.8	ug/L	96	5			43	108	20
	bis(2-Chloroethoxy)methane	50	38.4	ug/L	77	4			65	111	20
	2,4-Dichlorophenol	50	40.3	ug/L	81	3			49	113	20
	Naphthalene	50	40.8	ug/L	82	4			61	107	20
	4-Chloroaniline	50	18.8	ug/L	38	12			10	93	20
	Hexachlorobutadiene	50	37.0	ug/L	74	2			35	120	20
	Caprolactam	50	42.4	ug/L	85	8			10	130	20
	4-Chloro-3-methylphenol	50	41.3	ug/L	83	6			51	109	20
	2-Methylnaphthalene	50	41.8	ug/L	84	5			63	110	20
	Hexachlorocyclopentadiene	100	94.3	ug/L	94	3			42	121	20
	2,4,6-Trichlorophenol	50	39.3	ug/L	79	3			62	114	20
	2,4,5-Trichlorophenol	50	41.4	ug/L	83	6			58	116	20
	1,1-Biphenyl	50	39.8	ug/L	80	4			65	117	20
	2-Chloronaphthalene	50	38.4	ug/L	77	4			65	111	20
	2-Nitroaniline	50	38.3	ug/L	77	6			63	119	20
	Dimethylphthalate	50	39.4	ug/L	79	6			68	112	20
	Acenaphthylene	50	42.1	ug/L	84	6			65	110	20
	2,6-Dinitrotoluene	50	40.6	ug/L	81	7			68	115	20
	3-Nitroaniline	50	23.2	ug/L	46	9			16	104	20
	Acenaphthene	50	39.5	ug/L	79	5			66	114	20
	2,4-Dinitrophenol	100	81.5	ug/L	82	8			35	129	20
	4-Nitrophenol	100	79.3	ug/L	79	7			10	130	20
	Dibenzofuran	50	41.3	ug/L	83	6			66	111	20
	2,4-Dinitrotoluene	50	41.5	ug/L	83	6			65	119	20
	Diethylphthalate	50	40.5	ug/L	81	5			66	116	20
	4-Chlorophenyl-phenylether	50	40.0	ug/L	80	5			66	113	20
	Fluorene	50	41.0	ug/L	82	5			66	112	20
	4-Nitroaniline	50	34.2	ug/L	68	9			53	115	20
	4,6-Dinitro-2-methylphenol	50	43.7	ug/L	87	5			47	137	20
	N-Nitrosodiphenylamine	50	40.4	ug/L	81	4			65	116	20
	4-Bromophenyl-phenylether	50	38.8	ug/L	78	4			66	119	20
	Hexachlorobenzene	50	38.7	ug/L	77	5			57	121	20
	Atrazine	50	59.9	ug/L	120	9			53	130	20

K6235 **34 of 140**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.: K6235

Client: LiRo Engineers, Inc.

Analytical Method: 8270D DataFile: BF118180.D

Analytical Mictio	0270D		Datai IIC.	ווטוו	00.D							
								RPD		Limits		_
Lab Sample ID	Parameter	Spike	Result	Unit	Rec	RPD	Qual	Qual	Low	High	RPD	_ ;
PB125387BSD	Pentachlorophenol	100	87.4	ug/L	87	5			51	128	20	
	Phenanthrene	50	40.4	ug/L	81	4			68	112	20	
	Anthracene	50	42.3	ug/L	85	5			69	112	20	
	Carbazole	50	40.1	ug/L	80	6			65	115	20	
	Di-n-butylphthalate	50	41.6	ug/L	83	4			67	117	20	
	Fluoranthene	50	41.2	ug/L	82	5			67	115	20	
	Pyrene	50	39.5	ug/L	79	3			67	116	20	
	Butylbenzylphthalate	50	39.4	ug/L	79	0			66	121	20	
	3,3-Dichlorobenzidine	50	28.7	ug/L	57	2			13	119	20	
	Benzo(a)anthracene	50	38.8	ug/L	78	2			64	117	20	
	Chrysene	50	37.9	ug/L	76	0			65	116	20	
	bis(2-Ethylhexyl)phthalate	50	41.0	ug/L	82	2			61	123	20	
	Di-n-octyl phthalate	50	42.3	ug/L	85	1			63	123	20	
	Benzo(b)fluoranthene	50	40.5	ug/L	81	9			62	122	20	
	Benzo(k)fluoranthene	50	40.5	ug/L	81	4			60	123	20	
	Benzo(a)pyrene	50	39.0	ug/L	78	7			65	118	20	
	Indeno(1,2,3-cd)pyrene	50	33.7	ug/L	67	2			50	133	20	
	Dibenz(a,h)anthracene	50	38.5	ug/L	77	6			45	150	20	
	Benzo(g,h,i)perylene	50	38.7	ug/L	77	7			64	123	20	
	1,2,4,5-Tetrachlorobenzene	50	37.7	ug/L	75	4			60	105	20	
	2.3.4.6-Tetrachlorophenol	50	41.6	ua/L	83	5			66	110	20	

K6235 **35 of 140**

4B SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

PB125387BL

Lab Name: CHEMTECH Contract: LIRO01

Lab File ID: BF118181.D Lab Sample ID: PB125387BL

Instrument ID: BNA_F Date Extracted: 12/11/2019

Matrix: (soil/water) Water Date Analyzed: 12/13/2019

Level: (low/med) LOW Time Analyzed: 12:49

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB	DATE ANALYZED
DUP	K6235-04	BF118186.D	12/13/2019
MW-03	K6235-03	BF118190.D	12/13/2019
PB125387BSD	PB125387BSD	BF118180.D	12/13/2019
MW-08	K6235-01	BF118188.D	12/13/2019
MW-07	K6235-02	BF118189.D	12/13/2019
PB125387BS	PB125387BS	BF118179.D	12/13/2019

COMMENTS:			
	·	·	

5в

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: CHEMTECH Contract: LIR001

Lab Code: CHEM SAS No.: K6235 SDG NO.: K6235

Lab File ID: BF118111.D DFTPP Injection Date: 12/06/2019

Instrument ID: BNA_F DFTPP Injection Time: 13:32

D E

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	10.0 - 80.0% of mass 198	32.8
68	Less than 2.0% of mass 69	0.7 (1.9) 1
69	Mass 69 relative abundance	34.5
70	Less than 2.0% of mass 69	0.1 (0.3) 1
127	10.0 - 80.0% of mass 198	51.2
197	Less than 2.0% of mass 198	0.5
198	Base Peak, 100% relative abundance	100
199	5.0 to 9.0% of mass 198	7
275	10.0 - 60.0% of mass 198	30.3
365	Greater than 1% of mass 198	4.6
441	Present, but less than mass 443	16.3
442	Greater than 50% of mass 198	98.1
443	15.0 - 24.0% of mass 442	19 (19.4) 2

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDICC010	SSTDICC010	BF118112.D	12/06/2019	14:05
SSTDICC020	SSTDICC020	BF118113.D	12/06/2019	14:32
SSTDICCC040	SSTDICCC040	BF118114.D	12/06/2019	14:59
SSTDICC050	SSTDICC050	BF118115.D	12/06/2019	15:27
SSTDICC060	SSTDICC060	BF118116.D	12/06/2019	15:55
SSTDICC080	SSTDICC080	BF118117.D	12/06/2019	16:22
SSTDICC100	SSTDICC100	BF118118.D	12/06/2019	16:50

m/e

51

68 69

70

127

197

198 199

275

365

441

442

443

5в

SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: CHEMTECH Contract: LIRO01

Lab Code: CHEM SAS No.: K6235 SDG NO.: K6235

Lab File ID: BF118177.D DFTPP Injection Date: 12/13/2019

Instrument ID: BNA_F DFTPP Injection Time: 10:14

10.14							
	% RELATIVE						
	ABUNDANCE						
	34.6						
	0.5 (1.5) 1						
	37.1						
	0.0 (0.0) 1						
_	52						
	0.3						
	100						
	6.6						
<u>.</u>	29.3						

4.3

14.5

89.8

16.9 (18.9)

1-Value is % mass 69

ION ABUNDANCE CRITERIA

10.0 - 80.0% of mass 198

Less than 2.0% of mass 69

Less than 2.0% of mass 69

Less than 2.0% of mass 198

Base Peak, 100% relative abundance

Present, but less than mass 443

Greater than 50% of mass 198

15.0 - 24.0% of mass 442

10.0 - 80.0% of mass 198

5.0 to 9.0% of mass 198

10.0 - 60.0% of mass 198 Greater than 1% of mass 198

Mass 69 relative abundance

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
SSTDCCC040	SSTDCCC040	BF118178.D	12/13/2019	10:41
PB125387BS	PB125387BS	BF118179.D	12/13/2019	11:53
PB125387BSD	PB125387BSD	BF118180.D	12/13/2019	12:21
PB125387BL	PB125387BL	BF118181.D	12/13/2019	12:49
DUP	K6235-04	BF118186.D	12/13/2019	15:15
MW-08	K6235-01	BF118188.D	12/13/2019	16:11
MW-07	к6235-02	BF118189.D	12/13/2019	16:39
MW-03	к6235-03	BF118190.D	12/13/2019	17:07

8в

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: K6235 SAS No.: K6235 SDG NO.: K6235

EPA Sample No.: SSTDCCC040 Date Analyzed: 12/13/2019

Lab File ID: BF118178.D Time Analyzed: 10:41

Instrument ID: BNA F GC Column: DB-UI ID: 0.18 (mm)

	<u></u>					<u> </u>	
		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	146321	6.87	561093	8.16	300351	9.92
	UPPER LIMIT	292642	7.37	1122190	8.66	600702	10.42
	LOWER LIMIT	73160.5	6.37	280547	7.66	150176	9.42
	EPA SAMPLE NO.						
01	PB125387BS	115726	6.87	474449	8.16	255675	9.92
02	PB125387BSD	112594	6.87	460885	8.16	248287	9.92
03	PB125387BL	135935	6.87	536310	8.15	288132	9.92
04	DUP	120728	6.87	466019	8.15	243889	9.92
05	мw-08	123402	6.87	476288	8.15	245339	9.92
06	MW-07	117915	6.87	450388	8.15	239778	9.92
07	MW-03	114709	6.86	437317	8.15	227297	9.92

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

8C

SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: CHEMTECH

Lab Code: CHEM Case No.: K6235 SAS No.: K6235 SDG NO.: K6235

EPA Sample No.: SSTDCCC040 Date Analyzed: 12/13/2019

Lab File ID: BF118178.D Time Analyzed: 10:41

Instrument ID: BNA F GC Column: DB-UI ID: 0.18 (mm)

							
		IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
	12 HOUR STD	562336	11.41	388149	14.07	338782	15.56
	UPPER LIMIT	1124670	11.91	776298	14.57	677564	16.06
	LOWER LIMIT	281168	10.91	194075	13.57	169391	15.06
	EPA SAMPLE NO.						
01	PB125387BS	478530	11.41	339238	14.07	299873	15.56
02	PB125387BSD	470848	11.41	340735	14.06	278934	15.56
03	PB125387BL	561082	11.41	406060	14.06	349790	15.55
04	DUP	450115	11.40	294937	14.06	269610	15.55
05	MW-08	432942	11.40	260516	14.06	265405	15.55
06	MW-07	444180	11.40	283469	14.06	278175	15.55
07	MW-03	421124	11.40	272834	14.06	278710	15.55

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

- # Column used to flag values outside QC limits with an asterisk.
- * Values outside of QC limits.

5

Α

C

D

F

-

QC SAMPLE DATA

K6235

41 of 140

Final Vol:

1000

uL

Sample Wt/Vol:

1000

Units:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

mL

Client Sample ID: PB125387BL SDG No.: K6235
Lab Sample ID: PB125387BL Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118181.D 1 12/11/19 08:36 12/13/19 12:49 PB125387

DF110101.D	I	12/11/19 00.30		12/13/19 12.49	FB123367	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
TARGETS						
100-52-7	Benzaldehyde	10.0	U	2.90	10.0	ug/L
108-95-2	Phenol	10.0	U	2.20	10.0	ug/L
111-44-4	bis(2-Chloroethyl)ether	10.0	U	3.40	10.0	ug/L
95-57-8	2-Chlorophenol	10.0	U	2.50	10.0	ug/L
95-48-7	2-Methylphenol	10.0	U	2.80	10.0	ug/L
108-60-1	2,2-oxybis(1-Chloropropane)	10.0	U	3.00	10.0	ug/L
98-86-2	Acetophenone	10.0	U	3.20	10.0	ug/L
65794-96-9	3+4-Methylphenols	10.0	U	3.40	10.0	ug/L
621-64-7	n-Nitroso-di-n-propylamine	10.0	U	4.70	10.0	ug/L
67-72-1	Hexachloroethane	10.0	U	2.90	10.0	ug/L
98-95-3	Nitrobenzene	10.0	U	2.60	10.0	ug/L
78-59-1	Isophorone	10.0	U	2.20	10.0	ug/L
88-75-5	2-Nitrophenol	10.0	U	3.60	10.0	ug/L
105-67-9	2,4-Dimethylphenol	10.0	U	2.80	10.0	ug/L
111-91-1	bis(2-Chloroethoxy)methane	10.0	U	2.50	10.0	ug/L
120-83-2	2,4-Dichlorophenol	10.0	U	2.30	10.0	ug/L
91-20-3	Naphthalene	10.0	U	2.50	10.0	ug/L
106-47-8	4-Chloroaniline	10.0	U	4.50	10.0	ug/L
87-68-3	Hexachlorobutadiene	10.0	U	3.20	10.0	ug/L
105-60-2	Caprolactam	10.0	U	3.40	10.0	ug/L
59-50-7	4-Chloro-3-methylphenol	10.0	U	2.50	10.0	ug/L
91-57-6	2-Methylnaphthalene	10.0	U	2.50	10.0	ug/L
77-47-4	Hexachlorocyclopentadiene	10.0	U	7.60	10.0	ug/L
88-06-2	2,4,6-Trichlorophenol	10.0	U	2.80	10.0	ug/L
95-95-4	2,4,5-Trichlorophenol	10.0	U	2.80	10.0	ug/L
92-52-4	1,1-Biphenyl	10.0	U	3.30	10.0	ug/L
91-58-7	2-Chloronaphthalene	10.0	U	3.00	10.0	ug/L
88-74-4	2-Nitroaniline	10.0	U	3.10	10.0	ug/L
131-11-3	Dimethylphthalate	10.0	U	2.70	10.0	ug/L
208-96-8	Acenaphthylene	10.0	U	2.70	10.0	ug/L
606-20-2	2,6-Dinitrotoluene	10.0	U	3.10	10.0	ug/L

K6235 **42 of 140**

SVOCMS Group1

Soil Aliquot Vol:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

uL

Client Sample ID: PB125387BL SDG No.: K6235
Lab Sample ID: PB125387BL Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Test:

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118181.D	1	12/11/19	08:36	12/13/19 12:49	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	10.0	U	4.20	10.0	ug/L
83-32-9	Acenaphthene	10.0	U	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	10.0	U	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	10.0	U	3.40	10.0	ug/L
132-64-9	Dibenzofuran	10.0	U	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	10.0	U	3.10	10.0	ug/L
84-66-2	Diethylphthalate	10.0	U	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	10.0	U	3.30	10.0	ug/L
86-73-7	Fluorene	10.0	U	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	10.0	U	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	10.0	U	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	10.0	U	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	10.0	U	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	10.0	U	2.70	10.0	ug/L
1912-24-9	Atrazine	10.0	U	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	10.0	U	4.30	10.0	ug/L
85-01-8	Phenanthrene	10.0	U	2.50	10.0	ug/L
120-12-7	Anthracene	10.0	U	2.50	10.0	ug/L
86-74-8	Carbazole	10.0	U	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	10.0	U	3.70	10.0	ug/L
206-44-0	Fluoranthene	10.0	U	2.90	10.0	ug/L
129-00-0	Pyrene	10.0	U	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	10.0	U	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	10.0	U	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	10.0	U	2.30	10.0	ug/L
218-01-9	Chrysene	10.0	U	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	10.0	U	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	10.0	U	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	10.0	U	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	10.0	U	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	10.0	U	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	10.0	U	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	10.0	U	2.60	10.0	ug/L
6235			43 of 140			

Sample Wt/Vol:

1000

Units:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

mL

Client Sample ID: PB125387BL SDG No.: K6235 Lab Sample ID: PB125387BL Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Final Vol:

1000

uL

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

 File ID/Qc Batch:
 Dilution:
 Prep Date
 Date Analyzed
 Prep Batch ID

 BF118181.D
 1
 12/11/19 08:36
 12/13/19 12:49
 PB125387

DI 110101.D	1	12/11/19 00	3.30	12/13/19 12.49	1 D123367		
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units	
191-24-2	Benzo(g,h,i)perylene	10.0	U	2.60	10.0	ug/L	
95-94-3	1,2,4,5-Tetrachlorobenzene	10.0	U	3.10	10.0	ug/L	
58-90-2	2,3,4,6-Tetrachlorophenol	10.0	U	2.60	10.0	ug/L	
SURROGATES							
367-12-4	2-Fluorophenol	135		10 - 130	90%	SPK: 150	
13127-88-3	Phenol-d6	139		10 - 130	93%	SPK: 150	
4165-60-0	Nitrobenzene-d5	83.5		36 - 131	84%	SPK: 100	
321-60-8	2-Fluorobiphenyl	86.5		39 - 131	87%	SPK: 100	
118-79-6	2,4,6-Tribromophenol	134		25 - 155	89%	SPK: 150	
1718-51-0	Terphenyl-d14	89.5		23 - 130	89%	SPK: 100	
INTERNAL STA	ANDARDS						
3855-82-1	1,4-Dichlorobenzene-d4	136000	6.87				
1146-65-2	Naphthalene-d8	536000	8.15				
15067-26-2	Acenaphthene-d10	288000	9.92				
1517-22-2	Phenanthrene-d10	561000	11.41				
1719-03-5	Chrysene-d12	406000	14.06				
1520-96-3	Perylene-d12	350000	15.55				

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Soil Aliquot Vol:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

uL

Client Sample ID: PB125387BS SDG No.: K6235 Lab Sample ID: PB125387BS Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Ν Injection Volume: GPC Factor: 1.0 GPC Cleanup: PH:

File ID/Qc Batch: Dilution: Date Analyzed Prep Batch ID Prep Date

RE118170 D 12/11/10 08:36 12/13/10 11:53 PR125387

BF118179.D	1	12/11/19 0	8:36 12/13/19 11:53	PB125387		
CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units	
TARGETS						
100-52-7	Benzaldehyde	58.8	2.90	10.0	ug/L	
108-95-2	Phenol	40.5	2.20	10.0	ug/L	
111-44-4	bis(2-Chloroethyl)ether	41.1	3.40	10.0	ug/L	
95-57-8	2-Chlorophenol	42.1	2.50	10.0	ug/L	
95-48-7	2-Methylphenol	41.9	2.80	10.0	ug/L	
108-60-1	2,2-oxybis(1-Chloropropane)	39.6	3.00	10.0	ug/L	
98-86-2	Acetophenone	37.3	3.20	10.0	ug/L	
65794-96-9	3+4-Methylphenols	41.8	3.40	10.0	ug/L	
621-64-7	n-Nitroso-di-n-propylamine	42.4	4.70	10.0	ug/L	
67-72-1	Hexachloroethane	39.4	2.90	10.0	ug/L	
98-95-3	Nitrobenzene	38.0	2.60	10.0	ug/L	
78-59-1	Isophorone	39.2	2.20	10.0	ug/L	
88-75-5	2-Nitrophenol	39.6	3.60	10.0	ug/L	
105-67-9	2,4-Dimethylphenol	45.3	2.80	10.0	ug/L	
111-91-1	bis(2-Chloroethoxy)methane	36.8	2.50	10.0	ug/L	
120-83-2	2,4-Dichlorophenol	39.0	2.30	10.0	ug/L	
91-20-3	Naphthalene	39.2	2.50	10.0	ug/L	
106-47-8	4-Chloroaniline	16.6	4.50	10.0	ug/L	
87-68-3	Hexachlorobutadiene	36.3	3.20	10.0	ug/L	
105-60-2	Caprolactam	39.1	3.40	10.0	ug/L	
59-50-7	4-Chloro-3-methylphenol	39.0	2.50	10.0	ug/L	
91-57-6	2-Methylnaphthalene	39.8	2.50	10.0	ug/L	
77-47-4	Hexachlorocyclopentadiene	91.8	7.60	10.0	ug/L	
88-06-2	2,4,6-Trichlorophenol	38.0	2.80	10.0	ug/L	
95-95-4	2,4,5-Trichlorophenol	39.1	2.80	10.0	ug/L	
92-52-4	1,1-Biphenyl	38.2	3.30	10.0	ug/L	
91-58-7	2-Chloronaphthalene	37.0	3.00	10.0	ug/L	
88-74-4	2-Nitroaniline	35.9	3.10	10.0	ug/L	
131-11-3	Dimethylphthalate	37.1	2.70	10.0	ug/L	
208-96-8	Acenaphthylene	39.8	2.70	10.0	ug/L	
606-20-2	2,6-Dinitrotoluene	37.7	3.10	10.0	ug/L	

K6235 45 of 140

Test:

Client:

Soil Aliquot Vol:

Report of Analysis

Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

uL

LiRo Engineers, Inc.

Client Sample ID: PB125387BS SDG No.: K6235
Lab Sample ID: PB125387BS Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mL Final Vol: 1000 uL

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118179.D 1 12/11/19 08:36 12/13/19 11:53 PB125387

BF118179.D	ı	12/11/19 (J8:36 12/13/19 11:53	PB125387	
CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	21.1	4.20	10.0	ug/L
83-32-9	Acenaphthene	37.4	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	75.1	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	73.9	3.40	10.0	ug/L
132-64-9	Dibenzofuran	39.0	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	39.0	3.10	10.0	ug/L
84-66-2	Diethylphthalate	38.5	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	38.1	3.30	10.0	ug/L
86-73-7	Fluorene	39.0	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	31.2	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	41.4	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	38.8	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	37.3	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	36.7	2.70	10.0	ug/L
1912-24-9	Atrazine	54.7	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	83.2	4.30	10.0	ug/L
85-01-8	Phenanthrene	38.9	2.50	10.0	ug/L
120-12-7	Anthracene	40.3	2.50	10.0	ug/L
86-74-8	Carbazole	37.8	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	39.9	3.70	10.0	ug/L
206-44-0	Fluoranthene	39.0	2.90	10.0	ug/L
129-00-0	Pyrene	38.5	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	39.3	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	29.3	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	38.0	2.30	10.0	ug/L
218-01-9	Chrysene	37.8	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	41.8	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	42.9	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	37.0	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	39.0	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	36.5	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	34.3	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	36.2	2.60	10.0	ug/L
3225			46 of 140		

В

SVOCMS Group1

Sample Wt/Vol:

1000

Units:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

mL

Client Sample ID: PB125387BS SDG No.: K6235
Lab Sample ID: PB125387BS Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BE118179 D. 12/11/19 08:36 12/13/19 11:53 PB125387

BF118179.D	1	12/11/19 08:36		12/13/19 11:53	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	36.0		2.60	10.0	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	36.3		3.10	10.0	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	39.7		2.60	10.0	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	107		10 - 130	71%	SPK: 150
13127-88-3	Phenol-d6	106		10 - 130	71%	SPK: 150
4165-60-0	Nitrobenzene-d5	68.9		36 - 131	69%	SPK: 100
321-60-8	2-Fluorobiphenyl	72.7		39 - 131	73%	SPK: 100
118-79-6	2,4,6-Tribromophenol	102		25 - 155	68%	SPK: 150
1718-51-0	Terphenyl-d14	74.2		23 - 130	74%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	116000	6.87			
1146-65-2	Naphthalene-d8	474000	8.16			
15067-26-2	Acenaphthene-d10	256000	9.92			
1517-22-2	Phenanthrene-d10	479000	11.41			
1719-03-5	Chrysene-d12	339000	14.07			
1520-96-3	Pervlene-d12	300000	15.56			

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Final Vol:

1000

uL

* = Values outside of QC limits

D = Dilution

() = Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

Final Vol:

1000

uL

Sample Wt/Vol:

1000

Units:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

mL

Client Sample ID: PB125387BSD SDG No.: K6235
Lab Sample ID: PB125387BSD Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume : GPC Factor : 1.0 GPC Cleanup : N PH :

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118180.D 1 12/11/19 08:36 12/13/19 12:21 PB125387

BF118180.D	1	12/11/19 0	8:36 12/13/19 12:21	PB125387		
CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units	
TARGETS						
100-52-7	Benzaldehyde	62.5	2.90	10.0	ug/L	
108-95-2	Phenol	42.4	2.20	10.0	ug/L	
111-44-4	bis(2-Chloroethyl)ether	41.9	3.40	10.0	ug/L	
95-57-8	2-Chlorophenol	43.8	2.50	10.0	ug/L	
95-48-7	2-Methylphenol	44.1	2.80	10.0	ug/L	
108-60-1	2,2-oxybis(1-Chloropropane)	40.5	3.00	10.0	ug/L	
98-86-2	Acetophenone	38.9	3.20	10.0	ug/L	
65794-96-9	3+4-Methylphenols	44.1	3.40	10.0	ug/L	
621-64-7	n-Nitroso-di-n-propylamine	43.5	4.70	10.0	ug/L	
67-72-1	Hexachloroethane	41.1	2.90	10.0	ug/L	
98-95-3	Nitrobenzene	39.2	2.60	10.0	ug/L	
78-59-1	Isophorone	41.2	2.20	10.0	ug/L	
88-75-5	2-Nitrophenol	41.7	3.60	10.0	ug/L	
105-67-9	2,4-Dimethylphenol	47.8	2.80	10.0	ug/L	
111-91-1	bis(2-Chloroethoxy)methane	38.4	2.50	10.0	ug/L	
120-83-2	2,4-Dichlorophenol	40.3	2.30	10.0	ug/L	
91-20-3	Naphthalene	40.8	2.50	10.0	ug/L	
106-47-8	4-Chloroaniline	18.8	4.50	10.0	ug/L	
87-68-3	Hexachlorobutadiene	37.0	3.20	10.0	ug/L	
105-60-2	Caprolactam	42.4	3.40	10.0	ug/L	
59-50-7	4-Chloro-3-methylphenol	41.3	2.50	10.0	ug/L	
91-57-6	2-Methylnaphthalene	41.8	2.50	10.0	ug/L	
77-47-4	Hexachlorocyclopentadiene	94.3	7.60	10.0	ug/L	
88-06-2	2,4,6-Trichlorophenol	39.3	2.80	10.0	ug/L	
95-95-4	2,4,5-Trichlorophenol	41.4	2.80	10.0	ug/L	
92-52-4	1,1-Biphenyl	39.8	3.30	10.0	ug/L	
91-58-7	2-Chloronaphthalene	38.4	3.00	10.0	ug/L	
88-74-4	2-Nitroaniline	38.3	3.10	10.0	ug/L	
131-11-3	Dimethylphthalate	39.4	2.70	10.0	ug/L	
208-96-8	Acenaphthylene	42.1	2.70	10.0	ug/L	
606-20-2	2,6-Dinitrotoluene	40.6	3.10	10.0	ug/L	

K6235 48 of 140

Test:

Soil Aliquot Vol:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

uL

Client Sample ID: PB125387BSD SDG No.: K6235 Lab Sample ID: PB125387BSD Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Sample Wt/Vol: 1000 Units: mLFinal Vol: 1000 uL

Level: Extraction Type: Decanted: N LOW

GPC Factor: Ν PH: Injection Volume: 1.0 GPC Cleanup:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID

BF118180.D 1 12/11/19 08:36 12/13/19 12:21 PB125387

BF118180.D	I	12/11/19	08:36 12/13/19 12:21	PB125387	
CAS Number	Parameter	Conc.	Qualifier MDL	LOQ / CRQL	Units
99-09-2	3-Nitroaniline	23.2	4.20	10.0	ug/L
83-32-9	Acenaphthene	39.5	2.80	10.0	ug/L
51-28-5	2,4-Dinitrophenol	81.5	4.20	10.0	ug/L
100-02-7	4-Nitrophenol	79.3	3.40	10.0	ug/L
132-64-9	Dibenzofuran	41.3	3.20	10.0	ug/L
121-14-2	2,4-Dinitrotoluene	41.5	3.10	10.0	ug/L
84-66-2	Diethylphthalate	40.5	2.90	10.0	ug/L
7005-72-3	4-Chlorophenyl-phenylether	40.0	3.30	10.0	ug/L
86-73-7	Fluorene	41.0	2.50	10.0	ug/L
100-01-6	4-Nitroaniline	34.2	3.40	10.0	ug/L
534-52-1	4,6-Dinitro-2-methylphenol	43.7	3.50	10.0	ug/L
86-30-6	n-Nitrosodiphenylamine	40.4	2.90	10.0	ug/L
101-55-3	4-Bromophenyl-phenylether	38.8	2.60	10.0	ug/L
118-74-1	Hexachlorobenzene	38.7	2.70	10.0	ug/L
1912-24-9	Atrazine	59.9	2.90	10.0	ug/L
87-86-5	Pentachlorophenol	87.4	4.30	10.0	ug/L
85-01-8	Phenanthrene	40.4	2.50	10.0	ug/L
120-12-7	Anthracene	42.3	2.50	10.0	ug/L
86-74-8	Carbazole	40.1	3.20	10.0	ug/L
84-74-2	Di-n-butylphthalate	41.6	3.70	10.0	ug/L
206-44-0	Fluoranthene	41.2	2.90	10.0	ug/L
129-00-0	Pyrene	39.5	2.50	10.0	ug/L
85-68-7	Butylbenzylphthalate	39.4	3.10	10.0	ug/L
91-94-1	3,3-Dichlorobenzidine	28.7	5.00	10.0	ug/L
56-55-3	Benzo(a)anthracene	38.8	2.30	10.0	ug/L
218-01-9	Chrysene	37.9	2.40	10.0	ug/L
117-81-7	Bis(2-ethylhexyl)phthalate	41.0	3.60	10.0	ug/L
117-84-0	Di-n-octyl phthalate	42.3	3.30	10.0	ug/L
205-99-2	Benzo(b)fluoranthene	40.5	2.30	10.0	ug/L
207-08-9	Benzo(k)fluoranthene	40.5	2.30	10.0	ug/L
50-32-8	Benzo(a)pyrene	39.0	2.40	10.0	ug/L
193-39-5	Indeno(1,2,3-cd)pyrene	33.7	3.30	10.0	ug/L
53-70-3	Dibenzo(a,h)anthracene	38.5	2.60	10.0	ug/L
6225			40 of 140		

SVOCMS Group1

Sample Wt/Vol:

1000

Units:

Report of Analysis

Client: LiRo Engineers, Inc. Date Collected:

Project: City of Buffalo - Franczyk Park Site Date Received:

mL

Client Sample ID: PB125387BSD SDG No.: K6235
Lab Sample ID: PB125387BSD Matrix: Water

Analytical Method: SW8270 % Moisture: 100

Soil Aliquot Vol: uL Test: SVOCMS Group1

Extraction Type: Decanted: N Level: LOW

Injection Volume: GPC Factor: 1.0 GPC Cleanup: N PH:

File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID
BF118180 D 1 12/11/19 08:36 12/13/19 12:21 PB125387

BF118180.D	1	12/11/19 08:36		12/13/19 12:21	PB125387	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOQ / CRQL	Units
191-24-2	Benzo(g,h,i)perylene	38.7		2.60	10.0	ug/L
95-94-3	1,2,4,5-Tetrachlorobenzene	37.7		3.10	10.0	ug/L
58-90-2	2,3,4,6-Tetrachlorophenol	41.6		2.60	10.0	ug/L
SURROGATES						
367-12-4	2-Fluorophenol	111		10 - 130	74%	SPK: 150
13127-88-3	Phenol-d6	112		10 - 130	75%	SPK: 150
4165-60-0	Nitrobenzene-d5	71.5		36 - 131	72%	SPK: 100
321-60-8	2-Fluorobiphenyl	75.3		39 - 131	75%	SPK: 100
118-79-6	2,4,6-Tribromophenol	108		25 - 155	72%	SPK: 150
1718-51-0	Terphenyl-d14	74.9		23 - 130	75%	SPK: 100
INTERNAL STA	ANDARDS					
3855-82-1	1,4-Dichlorobenzene-d4	113000	6.87			
1146-65-2	Naphthalene-d8	461000	8.16			
15067-26-2	Acenaphthene-d10	248000	9.92			
1517-22-2	Phenanthrene-d10	471000	11.41			
1719-03-5	Chrysene-d12	341000	14.06			
1520-96-3	Perylene-d12	279000	15.56			

Final Vol:

1000

uL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

E = Value Exceeds Calibration Range

Q = indicates LCS control criteria did not meet requirements

M = MS/MSD acceptance criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

^{* =} Values outside of QC limits

D = Dilution

^{() =} Laboratory InHouse Limit

A = Aldol-Condensation Reaction Products

5

C

D

F

CALIBRATION SUMMARY

K6235

51 of 140

36) C 37)

38)

4-Chloro-3-met... 0.334 0.318 0.297 0.304 0.299 0.298 0.289 0.305

2-Methylnaphth... 0.764 0.721 0.661 0.674 0.664 0.655 0.621 0.680

1-Methylnaphth... 0.725 0.680 0.624 0.629 0.620 0.612 0.581 0.638

5.08

7.00

7.54

Page: 1

```
Method Path : Z:\SVOASRV\HPCHEM1\BNA F\METHODS\
Method File: 8270-BF120619.M
39) I
       Acenaphthene-d10
                             -----ISTD-----
       1,2,4,5-Tetrac... 0.665 0.630 0.592 0.607 0.591 0.579 0.577 0.606
40)
                                                                            5.29
41) P
       Hexachlorocycl... 0.197 0.246 0.269 0.291 0.294 0.299 0.305 0.271
                                                                           14.29
42) S
       2,4,6-Tribromo... 0.266 0.253 0.235 0.241 0.240 0.233 0.232 0.243
                                                                            5.12
43) C
       2,4,6-Trichlor... 0.426 0.420 0.399 0.410 0.399 0.391 0.388 0.405
                                                                            3.57
44)
       2,4,5-Trichlor... 0.457 0.439 0.406 0.416 0.412 0.405 0.400 0.419
                                                                            4.95
45) S
       2-Fluorobiphenyl 1.565 1.441 1.276 1.291 1.257 1.191 1.179 1.314
                                                                           10.67
       1.1'-Biphenvl
                         1.791 1.665 1.545 1.578 1.522 1.482 1.457 1.577
                                                                            7.36
46)
       2-Chloronaphth... 1.403 1.329 1.241 1.257 1.248 1.214 1.190 1.269
47)
                                                                            5.77
48)
       2-Nitroaniline
                                                                            2.71
                         0.375 0.370 0.348 0.366 0.363 0.357 0.353 0.362
49)
       Acenaphthylene
                         2.137 1.996 1.835 1.844 1.814 1.782 1.692 1.871
                                                                            7.92
50)
       Dimethylphthalate 1.641 1.534 1.426 1.446 1.446 1.425 1.423 1.477
                                                                            5.54
51)
       2,6-Dinitrotol... 0.343 0.328 0.309 0.320 0.315 0.318 0.314 0.321
                                                                            3.55
       Acenaphthene
                                                                            7.07
52) C
                         1.296 1.204 1.106 1.122 1.119 1.084 1.065 1.142
                                                                            3.30
53)
       3-Nitroaniline
                         0.400 0.385 0.370 0.377 0.381 0.372 0.361 0.378
54) P
       2,4-Dinitrophenol 0.117 0.146 0.153 0.168 0.174 0.178 0.183 0.160
                                                                           14.50
55)
       Dibenzofuran
                         1.946 1.797 1.626 1.662 1.615 1.563 1.508 1.674
                                                                            8.97
56) P
       4-Nitrophenol
                         0.254 0.262 0.253 0.271 0.269 0.263 0.264 0.262
                                                                            2.63
       2,4-Dinitrotol... 0.457 0.435 0.418 0.433 0.435 0.419 0.406 0.429
57)
                                                                            3.83
                         1.537 1.429 1.299 1.299 1.287 1.256 1.203 1.330
58)
       Fluorene
                                                                            8.59
59)
       2,3,4,6-Tetrac... 0.386 0.363 0.338 0.342 0.345 0.327 0.320 0.346
                                                                            6.47
60)
       Diethylphthalate 1.629 1.537 1.405 1.425 1.427 1.390 1.376 1.455
                                                                            6.37
61)
       4-Chlorophenyl... 0.774 0.725 0.657 0.657 0.646 0.625 0.602 0.669
                                                                            8.91
62)
       4-Nitroaniline
                         0.415 0.412 0.385 0.392 0.388 0.388 0.380 0.394
                                                                            3.44
       Azobenzene
                                                                            6.74
63)
                         1.400 1.312 1.203 1.212 1.224 1.181 1.165 1.243
       Phenanthrene-d10
64) I
                             -----ISTD-----
65)
       4,6-Dinitro-2-... 0.091 0.105 0.110 0.116 0.116 0.119 0.118 0.110
                                                                            9.09
                                                                            5.98
66) c
       n-Nitrosodiphe... 0.687 0.662 0.604 0.629 0.599 0.608 0.583 0.625
67)
       4-Bromophenyl-... 0.245 0.240 0.222 0.230 0.223 0.221 0.217 0.228
                                                                            4.66
       Hexachlorobenzene 0.286 0.281 0.261 0.269 0.264 0.265 0.256 0.269
                                                                            3.97
68)
69)
       Atrazine
                         0.215 0.201 0.172 0.156 0.145 0.127 0.093 0.158
                                                                           26.59
       Pentachlorophenol 0.116 0.123 0.128 0.133 0.131 0.130 0.122 0.126
70) C
                                                                            4.67
71)
       Phenanthrene
                         1.204 1.151 1.039 1.050 1.026 1.004 0.969 1.063
                                                                            7.86
72)
       Anthracene
                         1.203 1.158 1.032 1.054 1.021 0.993 0.964 1.061
                                                                            8.26
73)
       Carbazole
                                                                            7.68
                         1.075 1.028 0.927 0.940 0.923 0.896 0.871 0.952
74)
       Di-n-butylphth... 1.363 1.295 1.172 1.172 1.154 1.108 1.074 1.191
                                                                            8.60
75) C
       Fluoranthene
                                                                            8.75
                         1.243 1.183 1.062 1.072 1.065 1.022 0.964 1.087
76) I
       Chrysene-d12
                             -----ISTD-----
       Benzidine
77)
                         0.611 0.527 0.523 0.549 0.531 0.417
                                                                   0.527
                                                                           11.89
                                                                            2.91
78)
       Pyrene
                         1.612 1.560 1.486 1.601 1.561 1.592 1.619 1.576
79) S
       Terphenyl-d14
                         1.275 1.193 1.104 1.166 1.116 1.137 1.150 1.163
                                                                            4.97
80)
       Butylbenzylpht... 0.717 0.706 0.688 0.720 0.711 0.726 0.727 0.714
                                                                            1.91
81)
       Benzo(a)anthra... 1.518 1.431 1.335 1.386 1.354 1.354 1.303 1.383
                                                                            5.19
82)
       3,3'-Dichlorob... 0.554 0.499 0.440 0.434 0.417 0.382
                                                                   0.454
                                                                           13.61
83)
                                                                            5.79
       Chrysene
                         1.459 1.390 1.274 1.311 1.292 1.280 1.242 1.321
84)
       Bis(2-ethylhex... 0.974 0.953 0.912 0.941 0.949 0.934 0.926 0.941
                                                                            2.12
                                                                            6.23
85) c
       Di-n-octyl pht... 1.576 1.493 1.395 1.426 1.421 1.373 1.297 1.426
86)
       Indeno(1,2,3-c... 1.339 1.072 0.950 1.035 1.051 1.123 1.210 1.112
```

Method Path : Z:\SVOASRV\HPCHEM1\BNA_F\METHODS\

Method File: 8270-BF120619.M

87) I Pervlene-d12 -----ISTD-----

88) Benzo(b)fluora... 1.335 1.352 1.351 1.320 1.305 1.301 1.296 1.323 1.79

89) Benzo(k)fluora... 1.380 1.317 1.198 1.300 1.285 1.269 1.145 1.271 6.12

90) C Benzo(a)pyrene 1.237 1.187 1.132 1.166 1.158 1.171 1.129 1.168 3.14

91) Dibenzo(a,h)an... 1.061 0.926 0.892 0.982 1.002 1.067 1.084 1.002 7.36

92) Benzo(g,h,i)pe... 0.983 0.837 0.841 0.960 0.970 1.057 1.092 0.963 10.12

(#) = Out of Range

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: LIR001

Lab Code: CHEM _ Case No.: K6235 SAS No.: K6235 SDG No.: K6235

Instrument ID: BNA_F Calibration Date/Time: 12/13/2019 10:41

Lab File ID: BF118178.D Init. Calib. Date(s): 12/06/2019 12/06/2019

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:05 16:50

GC Column: DB-UI ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
2-Fluorophenol	1.142	1.080		-5.4	
Benzaldehyde	0.702	0.695		-1.0	
Phenol-d6	1.381	1.315		-4.8	
Phenol	1.575	1.489		-5.5	20.0
bis(2-Chloroethyl)ether	1.139	1.087		-4.6	
2-Chlorophenol	1.288	1.236		-4.0	
2-Methylphenol	1.024	0.974		-4.9	
2,2-oxybis(1-Chloropropane)	1.370	1.347		-1.7	
Acetophenone	0.480	0.455		-5.2	
3+4-Methylphenols	1.286	1.238		-3.7	
n-Nitroso-di-n-propylamine	0.839	0.831	0.050	-1.0	
Nitrobenzene-d5	0.356	0.335		-5.9	
Hexachloroethane	0.558	0.548		-1.8	
Nitrobenzene	0.349	0.326		-6.6	
Isophorone	0.603	0.569		-5.6	
2-Nitrophenol	0.187	0.178		-4.8	20.0
2,4-Dimethylphenol	0.249	0.233		-6.4	
bis(2-Chloroethoxy)methane	0.394	0.381		-3.3	
2,4-Dichlorophenol	0.290	0.279		-3.8	20.0
Naphthalene	1.004	0.961		-4.3	
4-Chloroaniline	0.434	0.406		-6.5	
Hexachlorobutadiene	0.203	0.200		-1.5	20.0
Caprolactam	0.090	0.084		-6.7	
4-Chloro-3-methylphenol	0.305	0.289		-5.2	20.0
2-Methylnaphthalene	0.680	0.655		-3.7	
Hexachlorocyclopentadiene	0.271	0.232	0.050	-14.4	
2,4,6-Trichlorophenol	0.405	0.381		-5.9	20.0
2-Fluorobiphenyl	1.314	1.281		-2.5	
2,4,5-Trichlorophenol	0.419	0.400		-4.5	
1,1-Biphenyl	1.577	1.523		-3.4	
2-Chloronaphthalene	1.269	1.206		-5.0	
2-Nitroaniline	0.362	0.339		-6.4	
Dimethylphthalate	1.477	1.421		-3.8	
Acenaphthylene	1.871	1.788		-4.4	
2,6-Dinitrotoluene	0.321	0.302		-5.9	
3-Nitroaniline	0.378	0.355		-6.1	
Acenaphthene	1.142	1.086		-4.9	20.0
2,4-Dinitrophenol	0.160	0.148	0.050	-7.5	
4-Nitrophenol	0.262	0.220	0.050	-16.0	
Dibenzofuran	1.674	1.596		-4.7	
2,4-Dinitrotoluene	0.429	0.415		-3.3	1

Form VII SV-1

K6235 **55 of 140**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

7C

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: CHEMTECH Contract: LIRO01

Lab Code: CHEM Case No.: K6235 SAS No.: K6235 SDG No.: K6235

Instrument ID: BNA_F Calibration Date/Time: 12/13/2019 10:41

Lab File ID: BF118178.D Init. Calib. Date(s): 12/06/2019 12/06/2019

EPA Sample No.: SSTDCCC040 Init. Calib. Time(s): 14:05 16:50

GC Column: DB-UI ID: 0.18 (mm)

COMPOUND	RRF	RRF040	MIN RRF	%D	MAX%D
Diethylphthalate	1.456	1.429		-1.9	
4-Chlorophenyl-phenylether	0.669	0.656		-1.9	
Fluorene	1.330	1.291		-2.9	
4-Nitroaniline	0.394	0.362		-8.1	
4,6-Dinitro-2-methylphenol	0.110	0.102		-7.3	
n-Nitrosodiphenylamine	0.625	0.595		-4.8	20.0
2,4,6-Tribromophenol	0.243	0.236		-2.9	
4-Bromophenyl-phenylether	0.228	0.222		-2.6	
Hexachlorobenzene	0.269	0.259		-3.7	1
Atrazine	0.158	0.162		2.5	
Pentachlorophenol	0.126	0.117		-7.1	20.0
Phenanthrene	1.063	1.009		-5.1	
Anthracene	1.061	1.023		-3.6	
Carbazole	0.952	0.897		-5.8	
Di-n-butylphthalate	1.191	1.236		3.8	
Fluoranthene	1.087	1.028		-5.4	20.0
Pyrene	1.576	1.499		-4.9	
Terphenyl-d14	1.163	1.152		-0.9	
Butylbenzylphthalate	0.714	0.743		4.1	
3,3-Dichlorobenzidine	0.454	0.434		-4.4	
Benzo(a)anthracene	1.383	1.308		-5.4	
Chrysene	1.321	1.238		-6.3	
Bis(2-ethylhexyl)phthalate	0.941	1.037		10.2	
Di-n-octyl phthalate	1.426	1.572		10.2	20.0
Benzo(b)fluoranthene	1.323	1.249		-5.6	
Benzo(k)fluoranthene	1.271	1.213		-4.6	
Benzo(a)pyrene	1.168	1.097		-6.1	20.0
Indeno(1,2,3-cd)pyrene	1.112	0.989		-11.1	1
Dibenzo(a,h)anthracene	1.002	0.946		-5.6	1
Benzo(g,h,i)perylene	0.963	0.867		-10.0	1
1,2,4,5-Tetrachlorobenzene	0.606	0.575		-5.1	
2,3,4,6-Tetrachlorophenol	0.346	0.331		-4.3	

All other compounds must meet a minimum RRF of 0.010.

Form VII SV-1

K6235 **56 of 140**

284 Sheffield Street, Mountainside, New Jersey - 07092

Phone: (908) 789 8900 Fax: (908) 789 8922

LAB CHRONICLE

OrderID: K6235

Client: LiRo Engineers, Inc.

Contact: Jon Williams

OrderDate: 12/10/2019 11:02:38 AM

Project: City of Buffalo - Franczyk Park Site

Location: B31

LabID	ClientID	Matrix	Test	Method	Sample Date	Prep Date	Anal Date	Received
K6235-01	MW-08	Water			12/06/19			12/10/19
			Mercury	7470A		12/12/19	12/13/19	
			Metals ICP-TAL	6010D		12/11/19	12/11/19	
K6235-02	MW-07	Water			12/09/19			12/10/19
			Mercury	7470A		12/12/19	12/13/19	
			Metals ICP-TAL	6010D		12/11/19	12/11/19	
K6235-03	MW-03	Water			12/09/19			12/10/19
			Mercury	7470A		12/12/19	12/13/19	
			Metals ICP-TAL	6010D		12/11/19	12/11/19	
			Metals ICP-TAL	6010D		12/11/19	12/12/19	
K6235-04	DUP	Water			12/09/19			12/10/19
			Mercury	7470A		12/12/19	12/13/19	
			Metals ICP-TAL	6010D		12/11/19	12/11/19	

K6235 **57 of 140**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Hit Summary Sheet SW-846

SDG No.: K6235 **Order ID:** K6235

Client: LiRo Engineers, Inc. Project ID: City of Buffalo - Franczyk Park Site

Client:	Liko Engineers, Inc.			Project ID:		City of Buffalo - Franczyk Park Site		,
Sample ID Client ID:	Client ID MW-08	Matrix	Parameter	Concentration	C	MDL	RDL	Units
K6235-01	MW-08	Water	Antimony	23.600	J	2.03	25.0	ug/L
K6235-01	MW-08	Water	Arsenic	8.820	J	0.68	10.0	ug/L
K6235-01	MW-08	Water	Barium	116.000		3.99	50.0	ug/L
K6235-01	MW-08	Water	Cadmium	0.300	J	0.17	3.00	ug/L
K6235-01	MW-08	Water	Calcium	268,000.000		88.5	1000	ug/L
K6235-01	MW-08	Water	Cobalt	2.640	J	1.09	15.0	ug/L
K6235-01	MW-08	Water	Copper	5.510	J	0.49	10.0	ug/L
K6235-01	MW-08	Water	Iron	2,140.000		7.85	50.0	ug/L
K6235-01	MW-08	Water	Lead	2.330	J	1.43	6.00	ug/L
K6235-01	MW-08	Water	Magnesium	47,600.000		104	1000	ug/L
K6235-01	MW-08	Water	Manganese	401.000		0.98	10.0	ug/L
K6235-01	MW-08	Water	Nickel	5.960	J	1.69	20.0	ug/L
K6235-01	MW-08	Water	Potassium	13,800.000		179	1000	ug/L
K6235-01	MW-08	Water	Selenium	50.200		2.79	10.0	ug/L
K6235-01	MW-08	Water	Sodium	8,850.000		169	1000	ug/L
K6235-01	MW-08	Water	Zinc	137.000		4.81	20.0	ug/L
Client ID:	MW-07							
K6235-02	MW-07	Water	Aluminum	101.000		5.29	50.0	ug/L
K6235-02	MW-07	Water	Antimony	18.800	J	2.03	25.0	ug/L
K6235-02	MW-07	Water	Arsenic	2.530	J	0.68	10.0	ug/L
K6235-02	MW-07	Water	Barium	23.500	J	3.99	50.0	ug/L
K6235-02	MW-07	Water	Calcium	98,000.000		88.5	1000	ug/L
K6235-02	MW-07	Water	Cobalt	2.060	J	1.09	15.0	ug/L
K6235-02	MW-07	Water	Copper	10.200		0.49	10.0	ug/L
K6235-02	MW-07	Water	Iron	200.000		7.85	50.0	ug/L
K6235-02	MW-07	Water	Magnesium	18,300.000		104	1000	ug/L
K6235-02	MW-07	Water	Manganese	465.000		0.98	10.0	ug/L
K6235-02	MW-07	Water	Nickel	2.900	J	1.69	20.0	ug/L
K6235-02	MW-07	Water	Potassium	6,740.000		179	1000	ug/L
K6235-02	MW-07	Water	Selenium	39.000		2.79	10.0	ug/L
K6235-02	MW-07	Water	Sodium	8,130.000		169	1000	ug/L
K6235-02	MW-07	Water	Vanadium	2.320	J	1.39	20.0	ug/L
K6235-02	MW-07	Water	Zinc	86.500		4.81	20.0	ug/L
Client ID:	MW-03							
K6235-03	MW-03	Water	Aluminum	130,000.000		5.29	50.0	ug/L
K6235-03	MW-03	Water	Antimony	17.000	J	2.03	25.0	ug/L
K6235-03	MW-03	Water	Barium	18.700	J	3.99	50.0	ug/L
K6235-03	MW-03	Water	Beryllium	23.500		0.20	3.00	ug/L

K6235 **58 of 140**

Hit Summary Sheet SW-846

SDG No.: K6235 Order ID: K6235 **Client: Project ID:** City of Buffalo - Franczyk Park Site LiRo Engineers, Inc. \mathbf{C} Sample ID **Parameter** Concentration MDL RDL **Client ID** Matrix Units K6235-03 MW-03 Water Cadmium 61.200 0.17 3.00 ug/L K6235-03 MW-03 Water Calcium 349,000.000 88.5 1000 ug/L Water Chromium 4.850 J K6235-03 MW-03 1.33 5.00 ug/L K6235-03 MW-03 Water Cobalt 79.400 1.09 15.0 ug/L 811,000.000 K6235-03 MW-03 Water Iron D 78.5 500 ug/L 132.000 K6235-03 MW-03 Water Lead 1.43 6.00 ug/L K6235-03 MW-03 Water Magnesium 384,000.000 104 1000 ug/L Water 9,440.000 K6235-03 MW-03 Manganese 0.98 10.0 ug/L K6235-03 MW-03 Water Mercury 0.190 J 0.043 0.20 ug/L K6235-03 MW-03 Water Nickel 181.000 1.69 20.0 ug/L K6235-03 MW-03 Water Potassium 125,000.000 179 1000 ug/L 95,000.000 169 1000 K6235-03 MW-03 Water Sodium ug/L K6235-03 MW-03 Water Thallium 125.000 2.88 20.0 ug/L K6235-03 MW-03 Water Zinc 85.700 4.81 20.0 ug/L Client ID: **DUP** 24.200 J K6235-04 DUP Water Antimony 2.03 25.0 ug/L K6235-04 DUP Water Arsenic 9.550 J 0.68 10.0 ug/L Water 115.000 K6235-04 DUP Barium 3.99 50.0 ug/L K6235-04 Water Cadmium 0.200 J DUP 0.17 3.00 ug/L K6235-04 DUP Water Calcium 265,000.000 88.5 1000 ug/L 2.680 K6235-04 DUP Water Cobalt J 1.09 15.0 ug/L K6235-04 DUP Water Copper 5.810 0.49 10.0 ug/L K6235-04 DUP Water Iron 2,130.000 7.85 50.0 ug/L Water 5.310 K6235-04 DUP Lead J 1.43 6.00 ug/L K6235-04 DUP Water Magnesium 47,000.000 104 1000 ug/L Water 394.000 K6235-04 DUP Manganese 0.98 10.0 ug/L 5.500 K6235-04 Water Nickel J 20.0 DUP 1.69 ug/L K6235-04 DUP Water Potassium 13,600.000 179 1000 ug/L K6235-04 Water Selenium 49.800 2.79 10.0 DUP ug/L Water Sodium 8,780.000 1000 K6235-04 DUP 169 ug/L 135.000 K6235-04 DUP Water Zinc 4.81 20.0 ug/L

K6235 **59 of 140**

SAMPLE DATA

6

А

D

F

.

K6235 **60 of 140**

Client: Date Collected: LiRo Engineers, Inc. 12/06/19 Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19 SDG No.: Client Sample ID: MW-08 K6235 Lab Sample ID: K6235-01 Matrix: Water % Solid: Level (low/med): low 0

Cas	Parameter	Conc.	Qu	a. D	F MDL	LC	Q / CRQL	Units	Prep	Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	50.0	U	1	5.29		50.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-36-0	Antimony	23.6	J	1	2.03		25.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-38-2	Arsenic	8.82	J	1	0.68		10.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-39-3	Barium	116		1	3.99		50.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-41-7	Beryllium	3.00	U	1	0.20		3.00	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-43-9	Cadmium	0.30	J	1	0.17		3.00	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-70-2	Calcium	268000		1	88.5		1000	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-47-3	Chromium	5.00	U	1	1.33		5.00	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-48-4	Cobalt	2.64	J	1	1.09		15.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-50-8	Copper	5.51	J	1	0.49		10.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7439-89-6	Iron	2140		1	7.85		50.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7439-92-1	Lead	2.33	J	1	1.43		6.00	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7439-95-4	Magnesium	47600		1	104		1000	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7439-96-5	Manganese	401		1	0.98		10.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7439-97-6	Mercury	0.20	U	1	0.043		0.20	ug/L	12/12/19	9 14:30	12/13/19 11:06	SW7470A
7440-02-0	Nickel	5.96	J	1	1.69		20.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-09-7	Potassium	13800		1	179		1000	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7782-49-2	Selenium	50.2		1	2.79		10.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-22-4	Silver	5.00	U	1	0.17		5.00	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-23-5	Sodium	8850		1	169		1000	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-28-0	Thallium	20.0	U	1	2.88		20.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-62-2	Vanadium	20.0	U	1	1.39		20.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010
7440-66-6	Zinc	137		1	4.81		20.0	ug/L	12/11/19	9 09:26	12/11/19 18:14	SW6010

Color Before: Colorless Clarity Before: Clear Texture:
Color After: Colorless Clarity After: Clear Artifacts:

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Client: Date Collected: LiRo Engineers, Inc. 12/09/19 Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19 SDG No.: Client Sample ID: MW-07 K6235 Lab Sample ID: K6235-02 Matrix: Water % Solid: Level (low/med): low 0

Cas	Parameter	Conc.	Qu	a. D	F MDL	L	OQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	101		1	5.29		50.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-36-0	Antimony	18.8	J	1	2.03		25.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-38-2	Arsenic	2.53	J	1	0.68		10.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-39-3	Barium	23.5	J	1	3.99		50.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-41-7	Beryllium	3.00	U	1	0.20		3.00	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-43-9	Cadmium	3.00	U	1	0.17		3.00	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-70-2	Calcium	98000		1	88.5		1000	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-47-3	Chromium	5.00	U	1	1.33		5.00	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-48-4	Cobalt	2.06	J	1	1.09		15.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-50-8	Copper	10.2		1	0.49		10.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7439-89-6	Iron	200		1	7.85		50.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7439-92-1	Lead	6.00	U	1	1.43		6.00	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7439-95-4	Magnesium	18300		1	104		1000	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7439-96-5	Manganese	465		1	0.98		10.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7439-97-6	Mercury	0.20	U	1	0.043		0.20	ug/L	12/12/19 14:30	12/13/19 11:08	SW7470A
7440-02-0	Nickel	2.90	J	1	1.69		20.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-09-7	Potassium	6740		1	179		1000	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7782-49-2	Selenium	39.0		1	2.79		10.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-22-4	Silver	5.00	U	1	0.17		5.00	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-23-5	Sodium	8130		1	169		1000	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-28-0	Thallium	20.0	U	1	2.88		20.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-62-2	Vanadium	2.32	J	1	1.39		20.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010
7440-66-6	Zinc	86.5		1	4.81		20.0	ug/L	12/11/19 09:26	12/11/19 18:46	SW6010

Color Before: Colorless Clarity Before: Clear Texture:
Color After: Colorless Clarity After: Clear Artifacts:

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Client: Date Collected: LiRo Engineers, Inc. 12/09/19 Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19 SDG No.: Client Sample ID: MW-03 K6235 Lab Sample ID: K6235-03 Matrix: Water % Solid: Level (low/med): low 0

Cas	Parameter	Conc.	Qu	a. D	F MDL	I	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	130000		1	5.29		50.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-36-0	Antimony	17.0	J	1	2.03		25.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-38-2	Arsenic	10.0	U	1	0.68		10.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-39-3	Barium	18.7	J	1	3.99		50.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-41-7	Beryllium	23.5		1	0.20		3.00	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-43-9	Cadmium	61.2		1	0.17		3.00	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-70-2	Calcium	349000		1	88.5		1000	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-47-3	Chromium	4.85	J	1	1.33		5.00	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-48-4	Cobalt	79.4		1	1.09		15.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-50-8	Copper	10.0	U	1	0.49		10.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7439-89-6	Iron	811000	D	10	78.5		500	ug/L	12/11/19 09:26	12/12/19 14:05	SW6010
7439-92-1	Lead	132		1	1.43		6.00	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7439-95-4	Magnesium	384000		1	104		1000	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7439-96-5	Manganese	9440		1	0.98		10.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7439-97-6	Mercury	0.19	J	1	0.043		0.20	ug/L	12/12/19 14:30	12/13/19 11:10	SW7470A
7440-02-0	Nickel	181		1	1.69		20.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-09-7	Potassium	125000		1	179		1000	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7782-49-2	Selenium	10.0	U	1	2.79		10.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-22-4	Silver	5.00	U	1	0.17		5.00	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-23-5	Sodium	95000		1	169		1000	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-28-0	Thallium	125		1	2.88		20.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-62-2	Vanadium	20.0	U	1	1.39		20.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010
7440-66-6	Zinc	85.7		1	4.81		20.0	ug/L	12/11/19 09:26	12/11/19 18:50	SW6010

Color Before: Colorless Clarity Before: Clear Texture:

Color After: Colorless Clarity After: Clear Artifacts:

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

Client: Date Collected: LiRo Engineers, Inc. 12/09/19 Project: City of Buffalo - Franczyk Park Site Date Received: 12/10/19 DUP SDG No.: Client Sample ID: K6235 Lab Sample ID: K6235-04 Matrix: Water % Solid: Level (low/med): low 0

Cas	Parameter	Conc.	Qu	a. D	F MDL	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
7429-90-5	Aluminum	50.0	U	1	5.29	50.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-36-0	Antimony	24.2	J	1	2.03	25.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-38-2	Arsenic	9.55	J	1	0.68	10.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-39-3	Barium	115		1	3.99	50.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-41-7	Beryllium	3.00	U	1	0.20	3.00	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-43-9	Cadmium	0.20	J	1	0.17	3.00	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-70-2	Calcium	265000		1	88.5	1000	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-47-3	Chromium	5.00	U	1	1.33	5.00	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-48-4	Cobalt	2.68	J	1	1.09	15.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-50-8	Copper	5.81	J	1	0.49	10.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7439-89-6	Iron	2130		1	7.85	50.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7439-92-1	Lead	5.31	J	1	1.43	6.00	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7439-95-4	Magnesium	47000		1	104	1000	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7439-96-5	Manganese	394		1	0.98	10.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7439-97-6	Mercury	0.20	U	1	0.043	0.20	ug/L	12/12/19 14:30	12/13/19 11:12	SW7470A
7440-02-0	Nickel	5.50	J	1	1.69	20.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-09-7	Potassium	13600		1	179	1000	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7782-49-2	Selenium	49.8		1	2.79	10.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-22-4	Silver	5.00	U	1	0.17	5.00	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-23-5	Sodium	8780		1	169	1000	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-28-0	Thallium	20.0	U	1	2.88	20.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-62-2	Vanadium	20.0	U	1	1.39	20.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010
7440-66-6	Zinc	135		1	4.81	20.0	ug/L	12/11/19 09:26	12/11/19 18:54	SW6010

Color Before: Colorless Clarity Before: Clear Texture:
Color After: Colorless Clarity After: Clear Artifacts:

Comments: METALS-TAL

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

J = Estimated Value

B = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

K6235 **64 of 140**

6

A

В

D

Ε

G

E

METAL CALIBRATION DATA

Metals

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: PLASMA-PURE

Result % ug/L **True Value** Acceptance Analysis Analysis Run Recovery \mathbf{M} Sample ID Analyte Window (%R) Date Time Number ICV28 3.93 4.0 98 90 - 110 CV 12/13/2019 10:16 LB106736 Mercury

K6235 **66 of 140**

Metals

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: PLASMA-PURE

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)	M	Date	Time	Number
CCV16	Mercury	4.99	5.0	100	90 - 110	CV	12/13/2019	10:20	LB106736
CCV17	Mercury	5.10	5.0	102	90 - 110	CV	12/13/2019	10:51	LB106736
CCV18	Mercury	4.67	5.0	93	90 - 110	CV	12/13/2019	11:16	LB106736
CCV19	Mercury	4.93	5.0	98	90 - 110	CV	12/13/2019	11:33	LB106736

K6235 **67 of 140**

Metals

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

		Result							_
Sample ID	Analyte	ug/L	True Value	% Recovery	Acceptance Window (%R)	N	Analysis I Date	Analysis Time	Run Number
Sample 1D	Analyte			Recovery	William (70K)	17	1 Date	Time	Number
ICV01	Aluminum	2610	2520	104	95 - 105	P	12/11/2019	11:50	LB106689
	Antimony	1010	1010	100	95 - 105	P	12/11/2019	11:50	LB106689
	Arsenic	1000	997	100	95 - 105	P	12/11/2019	11:50	LB106689
	Barium	534	518	103	95 - 105	P	12/11/2019	11:50	LB106689
	Beryllium	520	514	101	95 - 105	P	12/11/2019	11:50	LB106689
	Cadmium	505	514	98	95 - 105	P	12/11/2019	11:50	LB106689
	Calcium	10200	10000	102	95 - 105	P	12/11/2019	11:50	LB106689
	Chromium	530	517	102	95 - 105	P	12/11/2019	11:50	LB106689
	Cobalt	519	521	100	95 - 105	P	12/11/2019	11:50	LB106689
	Copper	519	505	103	95 - 105	P	12/11/2019	11:50	LB106689
	Iron	10000	10100	99	95 - 105	P	12/11/2019	11:50	LB106689
	Lead	1010	1030	98	95 - 105	P	12/11/2019	11:50	LB106689
	Magnesium	6030	5990	101	95 - 105	P	12/11/2019	11:50	LB106689
	Manganese	529	524	101	95 - 105	P	12/11/2019	11:50	LB106689
	Nickel	518	525	99	95 - 105	P	12/11/2019	11:50	LB106689
	Potassium	9840	9940	99	95 - 105	P	12/11/2019	11:50	LB106689
	Selenium	975	1030	95	95 - 105	P	12/11/2019	11:50	LB106689
	Silver	254	252	101	95 - 105	P	12/11/2019	11:50	LB106689
	Sodium	9810	10100	97	95 - 105	P	12/11/2019	11:50	LB106689
	Thallium	1020	1040	98	95 - 105	P	12/11/2019	11:50	LB106689
	Vanadium	502	504	100	95 - 105	P	12/11/2019	11:50	LB106689
	Zinc	1030	1010	102	95 - 105	P	12/11/2019	11:50	LB106689

K6235 **68 of 140**

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Zinc

Continuing Calibration Source: Inorganic Ventures

		Result								
		ug/L	True Value	%	Acceptance			Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R))	M	Date	Time	Number
LLICV01	Aluminum	113	100	113	80 - 120	P		12/11/2019	11:55	LB106689
	Antimony	58.3	50.0	117	80 - 120	P		12/11/2019	11:55	LB106689
	Arsenic	19.6	20.0	98	80 - 120	P		12/11/2019	11:55	LB106689
	Barium	108	100	108	80 - 120	P		12/11/2019	11:55	LB106689
	Beryllium	6.66	6.0	111	80 - 120	P		12/11/2019	11:55	LB106689
	Cadmium	5.93	6.0	99	80 - 120	P		12/11/2019	11:55	LB106689
	Calcium	2120	2000	106	80 - 120	P		12/11/2019	11:55	LB106689
	Chromium	10.4	10.0	104	80 - 120	P		12/11/2019	11:55	LB106689
	Cobalt	31.5	30.0	105	80 - 120	P		12/11/2019	11:55	LB106689
	Copper	20.2	20.0	101	80 - 120	P		12/11/2019	11:55	LB106689
	Iron	109	100	110	80 - 120	P		12/11/2019	11:55	LB106689
	Lead	12.0	12.0	100	80 - 120	P		12/11/2019	11:55	LB106689
	Magnesium	2150	2000	108	80 - 120	P		12/11/2019	11:55	LB106689
	Manganese	22.6	20.0	113	80 - 120	P		12/11/2019	11:55	LB106689
	Nickel	42.3	40.0	106	80 - 120	P		12/11/2019	11:55	LB106689
	Potassium	2040	2000	102	80 - 120	P		12/11/2019	11:55	LB106689
	Selenium	23.4	20.0	117	80 - 120	P		12/11/2019	11:55	LB106689
	Silver	10.6	10.0	106	80 - 120	P		12/11/2019	11:55	LB106689
	Sodium	2050	2000	103	80 - 120	P		12/11/2019	11:55	LB106689
	Thallium	42.6	40.0	107	80 - 120	P		12/11/2019	11:55	LB106689
	Vanadium	38.3	40.0	96	80 - 120	P		12/11/2019	11:55	LB106689

40.0

111

80 - 120

P

12/11/2019

11:55

LB106689

K6235 **69 of 140**

44.3

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

Initial Calibration Source: EPA

Zinc

Inorganic Ventures **Continuing Calibration Source:**

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)	M	Date	Time	Number
CCV01	Aluminum	10100	10000	101	90 - 110	P	12/11/2019	12:15	LB106689
	Antimony	4990	5000	100	90 - 110	P	12/11/2019	12:15	LB106689
	Arsenic	4990	5000	100	90 - 110	P	12/11/2019	12:15	LB106689
	Barium	10100	10000	100	90 - 110	P	12/11/2019	12:15	LB106689
	Beryllium	247	250	99	90 - 110	P	12/11/2019	12:15	LB106689
	Cadmium	2480	2500	99	90 - 110	P	12/11/2019	12:15	LB106689
	Calcium	25200	25000	101	90 - 110	P	12/11/2019	12:15	LB106689
	Chromium	1030	1000	103	90 - 110	P	12/11/2019	12:15	LB106689
	Cobalt	2490	2500	100	90 - 110	P	12/11/2019	12:15	LB106689
	Copper	1230	1250	99	90 - 110	P	12/11/2019	12:15	LB106689
	Iron	5120	5000	102	90 - 110	P	12/11/2019	12:15	LB106689
	Lead	4990	5000	100	90 - 110	P	12/11/2019	12:15	LB106689
	Magnesium	25100	25000	100	90 - 110	P	12/11/2019	12:15	LB106689
	Manganese	2450	2500	98	90 - 110	P	12/11/2019	12:15	LB106689
	Nickel	2500	2500	100	90 - 110	P	12/11/2019	12:15	LB106689
	Potassium	25800	25000	103	90 - 110	P	12/11/2019	12:15	LB106689
	Selenium	4950	5000	99	90 - 110	P	12/11/2019	12:15	LB106689
	Silver	1290	1250	103	90 - 110	P	12/11/2019	12:15	LB106689
	Sodium	25400	25000	102	90 - 110	P	12/11/2019	12:15	LB106689
	Thallium	5000	5000	100	90 - 110	P	12/11/2019	12:15	LB106689
	Vanadium	2510	2500	100	90 - 110	P	12/11/2019	12:15	LB106689

2500

102

90 - 110

P

12/11/2019

12:15

LB106689

K6235 70 of 140

2540

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Zinc

Continuing Calibration Source: Inorganic Ventures

Sample ID	Analyte	Result ug/L	True Value	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
					.,	· ·				- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LLCCV01	Aluminum	105	100	105	80 - 120	P		12/11/2019	12:19	LB106689
	Antimony	52.6	50.0	105	80 - 120	P		12/11/2019	12:19	LB106689
	Arsenic	19.2	20.0	96	80 - 120	P		12/11/2019	12:19	LB106689
	Barium	103	100	103	80 - 120	P		12/11/2019	12:19	LB106689
	Beryllium	6.14	6.0	102	80 - 120	P		12/11/2019	12:19	LB106689
	Cadmium	5.74	6.0	96	80 - 120	P		12/11/2019	12:19	LB106689
	Calcium	2010	2000	100	80 - 120	P		12/11/2019	12:19	LB106689
	Chromium	9.92	10.0	99	80 - 120	P		12/11/2019	12:19	LB106689
	Cobalt	29.3	30.0	98	80 - 120	P		12/11/2019	12:19	LB106689
	Copper	19.4	20.0	97	80 - 120	P		12/11/2019	12:19	LB106689
	Iron	102	100	102	80 - 120	P		12/11/2019	12:19	LB106689
	Lead	10.2	12.0	85	80 - 120	P		12/11/2019	12:19	LB106689
	Magnesium	2030	2000	101	80 - 120	P		12/11/2019	12:19	LB106689
	Manganese	21.6	20.0	108	80 - 120	P		12/11/2019	12:19	LB106689
	Nickel	40.3	40.0	101	80 - 120	P		12/11/2019	12:19	LB106689
	Potassium	1970	2000	98	80 - 120	P		12/11/2019	12:19	LB106689
	Selenium	20.3	20.0	101	80 - 120	P		12/11/2019	12:19	LB106689
	Silver	9.74	10.0	97	80 - 120	P		12/11/2019	12:19	LB106689
	Sodium	1950	2000	97	80 - 120	P		12/11/2019	12:19	LB106689
	Thallium	39.2	40.0	98	80 - 120	P		12/11/2019	12:19	LB106689
	Vanadium	37.0	40.0	92	80 - 120	P		12/11/2019	12:19	LB106689

40.0

107

80 - 120

P

12/11/2019

12:19

LB106689

K6235 **71 of 140**

42.7

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)	<u>M</u>	Date	Time	Number
CCV02	Aluminum	10600	10000	106	90 - 110	P	12/11/2019	15:29	LB106689
	Antimony	5350	5000	107	90 - 110	P	12/11/2019	15:29	LB106689
	Arsenic	5330	5000	107	90 - 110	P	12/11/2019	15:29	LB106689
	Barium	10500	10000	105	90 - 110	P	12/11/2019	15:29	LB106689
	Beryllium	253	250	101	90 - 110	P	12/11/2019	15:29	LB106689
	Cadmium	2540	2500	102	90 - 110	P	12/11/2019	15:29	LB106689
	Calcium	26000	25000	104	90 - 110	P	12/11/2019	15:29	LB106689
	Chromium	1050	1000	105	90 - 110	P	12/11/2019	15:29	LB106689
	Cobalt	2580	2500	103	90 - 110	P	12/11/2019	15:29	LB106689
	Copper	1350	1250	108	90 - 110	P	12/11/2019	15:29	LB106689
	Iron	5400	5000	108	90 - 110	P	12/11/2019	15:29	LB106689
	Lead	5150	5000	103	90 - 110	P	12/11/2019	15:29	LB106689
	Magnesium	26000	25000	104	90 - 110	P	12/11/2019	15:29	LB106689
	Manganese	2500	2500	100	90 - 110	P	12/11/2019	15:29	LB106689
	Nickel	2600	2500	104	90 - 110	P	12/11/2019	15:29	LB106689
	Potassium	26600	25000	106	90 - 110	P	12/11/2019	15:29	LB106689
	Selenium	5140	5000	103	90 - 110	P	12/11/2019	15:29	LB106689
	Silver	1320	1250	106	90 - 110	P	12/11/2019	15:29	LB106689
	Sodium	26900	25000	107	90 - 110	P	12/11/2019	15:29	LB106689
	Thallium	5230	5000	104	90 - 110	P	12/11/2019	15:29	LB106689
	Vanadium	2620	2500	105	90 - 110	P	12/11/2019	15:29	LB106689
	Zinc	2620	2500	105	90 - 110	P	12/11/2019	15:29	LB106689
CCV03	Aluminum	10300	10000	103	90 - 110	P	12/11/2019	16:49	LB106689
	Antimony	5270	5000	105	90 - 110	P	12/11/2019	16:49	LB106689
	Arsenic	5190	5000	104	90 - 110	P	12/11/2019	16:49	LB106689
	Barium	10200	10000	102	90 - 110	P	12/11/2019	16:49	LB106689
	Beryllium	247	250	99	90 - 110	P	12/11/2019	16:49	LB106689
	Cadmium	2470	2500	99	90 - 110	P	12/11/2019	16:49	LB106689
	Calcium	25200	25000	101	90 - 110	P	12/11/2019	16:49	LB106689
	Chromium	1010	1000	101	90 - 110	P	12/11/2019	16:49	LB106689
	Cobalt	2520	2500	101	90 - 110	P	12/11/2019	16:49	LB106689
	Copper	1340	1250	107	90 - 110	P	12/11/2019	16:49	LB106689
	Iron	5170	5000	104	90 - 110	P	12/11/2019	16:49	LB106689
	Lead	5000	5000	100	90 - 110	P	12/11/2019	16:49	LB106689

K6235 **72 of 140**

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

EPA Initial Calibration Source:

Continuing Calibration Source: Inorganic Ventures

Result

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)	M	Date	Time	Number
CCV03	Magnesium	25200	25000	101	90 - 110	P	12/11/2019	16:49	LB106689
	Manganese	2420	2500	97	90 - 110	P	12/11/2019	16:49	LB106689
	Nickel	2540	2500	102	90 - 110	P	12/11/2019	16:49	LB106689
	Potassium	25300	25000	101	90 - 110	P	12/11/2019	16:49	LB106689
	Selenium	4950	5000	99	90 - 110	P	12/11/2019	16:49	LB106689
	Silver	1270	1250	101	90 - 110	P	12/11/2019	16:49	LB106689
	Sodium	26000	25000	104	90 - 110	P	12/11/2019	16:49	LB106689
	Thallium	5090	5000	102	90 - 110	P	12/11/2019	16:49	LB106689
	Vanadium	2540	2500	102	90 - 110	P	12/11/2019	16:49	LB106689
	Zinc	2550	2500	102	90 - 110	P	12/11/2019	16:49	LB106689
CCV04	Aluminum	10300	10000	103	90 - 110	P	12/11/2019	17:42	LB106689
	Antimony	5260	5000	105	90 - 110	P	12/11/2019	17:42	LB106689
	Arsenic	5210	5000	104	90 - 110	P	12/11/2019	17:42	LB106689
	Barium	10200	10000	102	90 - 110	P	12/11/2019	17:42	LB106689
	Beryllium	249	250	100	90 - 110	P	12/11/2019	17:42	LB106689
	Cadmium	2480	2500	99	90 - 110	P	12/11/2019	17:42	LB106689
	Calcium	25300	25000	101	90 - 110	P	12/11/2019	17:42	LB106689
	Chromium	1030	1000	103	90 - 110	P	12/11/2019	17:42	LB106689
	Cobalt	2530	2500	101	90 - 110	P	12/11/2019	17:42	LB106689
	Copper	1340	1250	107	90 - 110	P	12/11/2019	17:42	LB106689
	Iron	5220	5000	104	90 - 110	P	12/11/2019	17:42	LB106689
	Lead	5050	5000	101	90 - 110	P	12/11/2019	17:42	LB106689
	Magnesium	25700	25000	103	90 - 110	P	12/11/2019	17:42	LB106689
	Manganese	2420	2500	97	90 - 110	P	12/11/2019	17:42	LB106689
	Nickel	2550	2500	102	90 - 110	P	12/11/2019	17:42	LB106689
	Potassium	25400	25000	102	90 - 110	P	12/11/2019	17:42	LB106689
	Selenium	4940	5000	99	90 - 110	P	12/11/2019	17:42	LB106689
	Silver	1290	1250	103	90 - 110	P	12/11/2019	17:42	LB106689
	Sodium	25900	25000	104	90 - 110	P	12/11/2019	17:42	LB106689
	Thallium	5110	5000	102	90 - 110	P	12/11/2019	17:42	LB106689
	Vanadium	2570	2500	103	90 - 110	P	12/11/2019	17:42	LB106689
	Zinc	2570	2500	103	90 - 110	P	12/11/2019	17:42	LB106689
CCV05	Aluminum	10300	10000	103	90 - 110	P	12/11/2019	18:30	LB106689
	Antimony	5210	5000	104	90 - 110	P	12/11/2019	18:30	LB106689

K6235

73 of 140

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Sample ID	Analyte	Result ug/L	True Value	% Recovery	Acceptance Window (%R) M	Analysis Date	Analysis Time	Run Number
Sumple 1D	- I mai y to			recovery	//muo// (/012	,	Duce		Tiumber
CCV05	Arsenic	5190	5000	104	90 - 110	P	12/11/2019	18:30	LB106689
	Barium	10000	10000	100	90 - 110	P	12/11/2019	18:30	LB106689
	Beryllium	246	250	98	90 - 110	P	12/11/2019	18:30	LB106689
	Cadmium	2480	2500	99	90 - 110	P	12/11/2019	18:30	LB106689
	Calcium	25200	25000	101	90 - 110	P	12/11/2019	18:30	LB106689
	Chromium	1050	1000	105	90 - 110	P	12/11/2019	18:30	LB106689
	Cobalt	2530	2500	101	90 - 110	P	12/11/2019	18:30	LB106689
	Copper	1330	1250	106	90 - 110	P	12/11/2019	18:30	LB106689
	Iron	5280	5000	106	90 - 110	P	12/11/2019	18:30	LB106689
	Lead	5040	5000	101	90 - 110	P	12/11/2019	18:30	LB106689
	Magnesium	25900	25000	103	90 - 110	P	12/11/2019	18:30	LB106689
	Manganese	2390	2500	96	90 - 110	P	12/11/2019	18:30	LB106689
	Nickel	2550	2500	102	90 - 110	P	12/11/2019	18:30	LB106689
	Potassium	25600	25000	103	90 - 110	P	12/11/2019	18:30	LB106689
	Selenium	4980	5000	100	90 - 110	P	12/11/2019	18:30	LB106689
	Silver	1300	1250	104	90 - 110	P	12/11/2019	18:30	LB106689
	Sodium	25900	25000	103	90 - 110	P	12/11/2019	18:30	LB106689
	Thallium	5090	5000	102	90 - 110	P	12/11/2019	18:30	LB106689
	Vanadium	2570	2500	103	90 - 110	P	12/11/2019	18:30	LB106689
	Zinc	2570	2500	103	90 - 110	P	12/11/2019	18:30	LB106689
CCV06	Aluminum	10400	10000	104	90 - 110	P	12/11/2019	19:17	LB106689
	Antimony	5230	5000	104	90 - 110	P	12/11/2019	19:17	LB106689
	Arsenic	5210	5000	104	90 - 110	P	12/11/2019	19:17	LB106689
	Barium	10300	10000	103	90 - 110	P	12/11/2019	19:17	LB106689
	Beryllium	254	250	102	90 - 110	P	12/11/2019	19:17	LB106689
	Cadmium	2490	2500	100	90 - 110	P	12/11/2019	19:17	LB106689
	Calcium	25600	25000	103	90 - 110	P	12/11/2019	19:17	LB106689
	Chromium	1050	1000	105	90 - 110	P	12/11/2019	19:17	LB106689
	Cobalt	2550	2500	102	90 - 110	P	12/11/2019	19:17	LB106689
	Copper	1330	1250	106	90 - 110	P	12/11/2019	19:17	LB106689
	Iron	5240	5000	105	90 - 110	P	12/11/2019	19:17	LB106689
	Lead	5050	5000	101	90 - 110	P	12/11/2019	19:17	LB106689
	Magnesium	25800	25000	103	90 - 110	P	12/11/2019	19:17	LB106689
	Manganese	2450	2500	98	90 - 110	P	12/11/2019	19:17	LB106689

K6235 **74 of 140**

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: SDG No.: LiRo Engineers, Inc. K6235

Contract: LIRO01 Lab Code: **CHEM** Case No.: K6235 **SAS No.:** K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Result ug/L True Value % Acceptance Analysis Analysis Run Recovery Window (%R) M Time Sample ID Analyte Date Number Nickel 2560 2500 102 90 - 110 P 12/11/2019 19:17 LB106689 Potassium 25700 25000 103 90 - 110 P 12/11/2019 19:17 LB106689 99 90 - 110 P Selenium 4970 5000 12/11/2019 19:17 LB106689

CCV06 104 P Silver 1250 90 - 110 19:17 1300 12/11/2019 LB106689 Sodium 25900 25000 104 90 - 110 P 12/11/2019 19:17 LB106689 Thallium 5110 5000 102 90 - 110 P 12/11/2019 19:17 LB106689 Vanadium 2590 2500 104 90 - 110 P 12/11/2019 19:17 LB106689 90 - 110 103 P Zinc 2580 2500 12/11/2019 19:17 LB106689 CCV07 Aluminum 90 - 110 P 10400 10000 104 12/11/2019 20:04 LB106689 Antimony 5240 5000 105 90 - 110 P 12/11/2019 20:04 LB106689 Arsenic 5200 5000 104 90 - 110 P 12/11/2019 20:04 LB106689 10200 10000 102 90 - 110 P 20:04 LB106689 Barium 12/11/2019 250 101 90 - 110 P Beryllium 253 12/11/2019 20:04 LB106689 Cadmium 2510 2500 100 90 - 110 P 12/11/2019 20:04 LB106689 102 P Calcium 25000 90 - 110 12/11/2019 20:04 LB106689 25600 Chromium 1050 1000 105 90 - 110 P 12/11/2019 20:04 LB106689 Cobalt 2560 2500 102 90 - 110 P 12/11/2019 20:04 LB106689 Copper 1340 1250 107 90 - 110 P 12/11/2019 20:04 LB106689 P 5280 5000 106 90 - 110 20:04 Iron 12/11/2019 LB106689 Lead 5080 5000 102 90 - 110 P 12/11/2019 20:04 LB106689 26000 25000 104 90 - 110 P 12/11/2019 20:04 LB106689 Magnesium 2500 98 P 20:04 Manganese 2440 90 - 110 12/11/2019 LB106689 P Nickel 2570 2500 103 90 - 110 12/11/2019 20:04 LB106689 P Potassium 25500 25000 102 90 - 110 12/11/2019 20:04 LB106689 Selenium 4980 5000 100 90 - 110 P 12/11/2019 20:04 LB106689 Silver 1310 1250 105 90 - 110 P 12/11/2019 20:04 LB106689 25000 103 90 - 110 P Sodium 25800 12/11/2019 20:04 LB106689 90 - 110 P Thallium 5130 5000 103 12/11/2019 20:04 LB106689 Vanadium 2580 2500 103 90 - 110 P 12/11/2019 20:04 LB106689 102 90 - 110 P Zinc 2500 20:04 2550 12/11/2019 LB106689 CCV08 Aluminum 10000 103 90 - 110 P 20:52 LB106689 10300 12/11/2019 Antimony 5280 5000 106 90 - 110 P 12/11/2019 20:52 LB106689 Arsenic 5170 5000 103 90 - 110 P 12/11/2019 20:52 LB106689

10000

100

P

90 - 110

20:52

12/11/2019

LB106689

K6235 75 of 140

10000

Barium

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Sample ID	Analyte	Result ug/L	True Value	% Recovery	Acceptance Window (%R) M	Analysis Date	Analysis Time	Run Number
CCV08	Beryllium	255	250	102	90 - 110	P	12/11/2019	20:52	LB106689
22,00	Cadmium	2480	2500	99	90 - 110	P	12/11/2019	20:52	LB106689
	Calcium	25400	25000	102	90 - 110	P	12/11/2019	20:52	LB106689
	Chromium	1040	1000	104	90 - 110	P	12/11/2019	20:52	LB106689
	Cobalt	2530	2500	101	90 - 110	P	12/11/2019	20:52	LB106689
	Copper	1340	1250	107	90 - 110	P	12/11/2019	20:52	LB106689
	Iron	5150	5000	103	90 - 110	P	12/11/2019	20:52	LB106689
	Lead	5030	5000	101	90 - 110	P	12/11/2019	20:52	LB106689
	Magnesium	25900	25000	103	90 - 110	P	12/11/2019	20:52	LB106689
	Manganese	2410	2500	96	90 - 110	P	12/11/2019	20:52	LB106689
	Nickel	2550	2500	102	90 - 110	P	12/11/2019	20:52	LB106689
	Potassium	25100	25000	100	90 - 110	P	12/11/2019	20:52	LB106689
	Selenium	4880	5000	98	90 - 110	P	12/11/2019	20:52	LB106689
	Silver	1290	1250	103	90 - 110	P	12/11/2019	20:52	LB106689
	Sodium	25400	25000	101	90 - 110	P	12/11/2019	20:52	LB106689
	Thallium	5110	5000	102	90 - 110	P	12/11/2019	20:52	LB106689
	Vanadium	2570	2500	103	90 - 110	P	12/11/2019	20:52	LB106689
	Zinc	2540	2500	101	90 - 110	P	12/11/2019	20:52	LB106689
CCV09	Aluminum	10400	10000	104	90 - 110	P	12/11/2019	21:39	LB106689
	Antimony	5320	5000	106	90 - 110	P	12/11/2019	21:39	LB106689
	Arsenic	5220	5000	104	90 - 110	P	12/11/2019	21:39	LB106689
	Barium	10200	10000	102	90 - 110	P	12/11/2019	21:39	LB106689
	Beryllium	258	250	103	90 - 110	P	12/11/2019	21:39	LB106689
	Cadmium	2500	2500	100	90 - 110	P	12/11/2019	21:39	LB106689
	Calcium	25600	25000	102	90 - 110	P	12/11/2019	21:39	LB106689
	Chromium	1040	1000	104	90 - 110	P	12/11/2019	21:39	LB106689
	Cobalt	2560	2500	102	90 - 110	P	12/11/2019	21:39	LB106689
	Copper	1360	1250	109	90 - 110	P	12/11/2019	21:39	LB106689
	Iron	5160	5000	103	90 - 110	P	12/11/2019	21:39	LB106689
	Lead	5060	5000	101	90 - 110	P	12/11/2019	21:39	LB106689
	Magnesium	25900	25000	104	90 - 110	P	12/11/2019	21:39	LB106689
	Manganese	2430	2500	97	90 - 110	P	12/11/2019	21:39	LB106689
	Nickel	2580	2500	103	90 - 110	P	12/11/2019	21:39	LB106689
	Potassium	24800	25000	99	90 - 110	P	12/11/2019	21:39	LB106689

K6235 **76 of 140**

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Result

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)) M	Date	Time	Number
CCV09	Selenium	4900	5000	98	90 - 110	P	12/11/2019	21:39	LB106689
	Silver	1290	1250	103	90 - 110	P	12/11/2019	21:39	LB106689
	Sodium	25400	25000	102	90 - 110	P	12/11/2019	21:39	LB106689
	Thallium	5140	5000	103	90 - 110	P	12/11/2019	21:39	LB106689
	Vanadium	2590	2500	104	90 - 110	P	12/11/2019	21:39	LB106689
	Zinc	2570	2500	103	90 - 110	P	12/11/2019	21:39	LB106689
CCV10	Aluminum	10500	10000	105	90 - 110	P	12/11/2019	22:28	LB106689
	Antimony	5380	5000	108	90 - 110	P	12/11/2019	22:28	LB106689
	Arsenic	5300	5000	106	90 - 110	P	12/11/2019	22:28	LB106689
	Barium	10200	10000	102	90 - 110	P	12/11/2019	22:28	LB106689
	Beryllium	263	250	105	90 - 110	P	12/11/2019	22:28	LB106689
	Cadmium	2520	2500	101	90 - 110	P	12/11/2019	22:28	LB106689
	Calcium	25900	25000	104	90 - 110	P	12/11/2019	22:28	LB106689
	Chromium	1050	1000	105	90 - 110	P	12/11/2019	22:28	LB106689
	Cobalt	2590	2500	104	90 - 110	P	12/11/2019	22:28	LB106689
	Copper	1370	1250	110	90 - 110	P	12/11/2019	22:28	LB106689
	Iron	5190	5000	104	90 - 110	P	12/11/2019	22:28	LB106689
	Lead	5120	5000	102	90 - 110	P	12/11/2019	22:28	LB106689
	Magnesium	26500	25000	106	90 - 110	P	12/11/2019	22:28	LB106689
	Manganese	2460	2500	98	90 - 110	P	12/11/2019	22:28	LB106689
	Nickel	2590	2500	104	90 - 110	P	12/11/2019	22:28	LB106689
	Potassium	24800	25000	99	90 - 110	P	12/11/2019	22:28	LB106689
	Selenium	4930	5000	99	90 - 110	P	12/11/2019	22:28	LB106689
	Silver	1300	1250	104	90 - 110	P	12/11/2019	22:28	LB106689
	Sodium	25500	25000	102	90 - 110	P	12/11/2019	22:28	LB106689
	Thallium	5200	5000	104	90 - 110	P	12/11/2019	22:28	LB106689
	Vanadium	2620	2500	105	90 - 110	P	12/11/2019	22:28	LB106689
	Zinc	2590	2500	104	90 - 110	P	12/11/2019	22:28	LB106689
CCV11	Aluminum	10400	10000	104	90 - 110	P	12/11/2019	23:18	LB106689
	Antimony	5330	5000	107	90 - 110	P	12/11/2019	23:18	LB106689
	Arsenic	5220	5000	104	90 - 110	P	12/11/2019	23:18	LB106689
	Barium	10200	10000	102	90 - 110	P	12/11/2019	23:18	LB106689
	Beryllium	263	250	105	90 - 110	P	12/11/2019	23:18	LB106689
	Cadmium	2490	2500	100	90 - 110	P	12/11/2019	23:18	LB106689

K6235 77 of 140

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Vanadium

Zinc

2610

2570

		Result								
		ug/L	True Value	%	Acceptance			Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)		M	Date	Time	Number
CCV11	Calcium	25800	25000	103	90 - 110	P		12/11/2019	23:18	LB106689
CCVII										
	Chromium	1040	1000	104	90 - 110	P		12/11/2019	23:18	LB106689
	Cobalt	2560	2500	102	90 - 110	P		12/11/2019	23:18	LB106689
	Copper	1360	1250	109	90 - 110	P		12/11/2019	23:18	LB106689
	Iron	5100	5000	102	90 - 110	P		12/11/2019	23:18	LB106689
	Lead	5070	5000	101	90 - 110	P		12/11/2019	23:18	LB106689
	Magnesium	26400	25000	106	90 - 110	P		12/11/2019	23:18	LB106689
	Manganese	2450	2500	98	90 - 110	P		12/11/2019	23:18	LB106689
	Nickel	2570	2500	103	90 - 110	P		12/11/2019	23:18	LB106689
	Potassium	24400	25000	98	90 - 110	P		12/11/2019	23:18	LB106689
	Selenium	4880	5000	98	90 - 110	P		12/11/2019	23:18	LB106689
	Silver	1280	1250	103	90 - 110	P		12/11/2019	23:18	LB106689
	Sodium	25100	25000	100	90 - 110	P		12/11/2019	23:18	LB106689
	Thallium	5140	5000	103	90 - 110	P		12/11/2019	23:18	LB106689

2500

2500

105

103

90 - 110

90 - 110

P

12/11/2019

12/11/2019

23:18

23:18

LB106689

LB106689

K6235 **78 of 140**

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Zinc

Continuing Calibration Source: Inorganic Ventures

Sample ID	Analyte	Result ug/L	True Value	% Recovery	Acceptance Window (%R) M	Analysis I Date	Analysis Time	Run Number
ICV01	Aluminum	2520	2520	100	95 - 105	P	12/12/2019	13:09	LB106729
10 101	Antimony	993	1010	98	95 - 105	P	12/12/2019	13:09	LB106729
	Arsenic	971	997	97	95 - 105	P	12/12/2019	13:09	LB106729
	Barium	509	518	98	95 - 105	P	12/12/2019	13:09	LB106729
	Beryllium	502	514	98	95 - 105	P	12/12/2019	13:09	LB106729
	Cadmium	490	514	95	95 - 105	P	12/12/2019	13:09	LB106729
	Calcium	9880	10000	99	95 - 105	P	12/12/2019	13:09	LB106729
	Chromium	517	517	100	95 - 105	P	12/12/2019	13:09	LB106729
	Cobalt	501	521	96	95 - 105	P	12/12/2019	13:09	LB106729
	Copper	513	505	102	95 - 105	P	12/12/2019	13:09	LB106729
	Iron	9820	10100	97	95 - 105	P	12/12/2019	13:09	LB106729
	Lead	979	1030	95	95 - 105	P	12/12/2019	13:09	LB106729
	Magnesium	5910	5990	99	95 - 105	P	12/12/2019	13:09	LB106729
	Manganese	515	524	98	95 - 105	P	12/12/2019	13:09	LB106729
	Nickel	502	525	96	95 - 105	P	12/12/2019	13:09	LB106729
	Potassium	9630	9940	97	95 - 105	P	12/12/2019	13:09	LB106729
	Selenium	949	1030	92	95 - 105	P	12/12/2019	13:09	LB106729
	Silver	248	252	98	95 - 105	P	12/12/2019	13:09	LB106729
	Sodium	9550	10100	95	95 - 105	P	12/12/2019	13:09	LB106729
	Thallium	991	1040	95	95 - 105	P	12/12/2019	13:09	LB106729
	Vanadium	487	504	97	95 - 105	P	12/12/2019	13:09	LB106729

1010

99

95 - 105

P

12/12/2019

13:09

LB106729

K6235 **79 of 140**

997

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

Initial Calibration Source: EPA

Inorganic Ventures **Continuing Calibration Source:**

		Result ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)) M	Date	Time	Number
LLICV01	Aluminum	103	100	103	80 - 120	P	12/12/2019	13:15	LB106729
	Antimony	55.0	50.0	110	80 - 120	P	12/12/2019	13:15	LB106729
	Arsenic	16.8	20.0	84	80 - 120	P	12/12/2019	13:15	LB106729
	Barium	106	100	106	80 - 120	P	12/12/2019	13:15	LB106729
	Beryllium	6.55	6.0	109	80 - 120	P	12/12/2019	13:15	LB106729
	Cadmium	6.07	6.0	101	80 - 120	P	12/12/2019	13:15	LB106729
	Calcium	2140	2000	107	80 - 120	P	12/12/2019	13:15	LB106729
	Chromium	10.6	10.0	106	80 - 120	P	12/12/2019	13:15	LB106729
	Cobalt	30.9	30.0	103	80 - 120	P	12/12/2019	13:15	LB106729
	Copper	21.7	20.0	108	80 - 120	P	12/12/2019	13:15	LB106729
	Iron	104	100	104	80 - 120	P	12/12/2019	13:15	LB106729
	Lead	10.9	12.0	91	80 - 120	P	12/12/2019	13:15	LB106729
	Magnesium	2140	2000	107	80 - 120	P	12/12/2019	13:15	LB106729
	Manganese	23.1	20.0	115	80 - 120	P	12/12/2019	13:15	LB106729
	Nickel	42.4	40.0	106	80 - 120	P	12/12/2019	13:15	LB106729
	Potassium	1990	2000	99	80 - 120	P	12/12/2019	13:15	LB106729
	Selenium	21.0	20.0	105	80 - 120	P	12/12/2019	13:15	LB106729
	Silver	11.0	10.0	110	80 - 120	P	12/12/2019	13:15	LB106729
	Sodium	2040	2000	102	80 - 120	P	12/12/2019	13:15	LB106729
	Thallium	44.4	40.0	111	80 - 120	P	12/12/2019	13:15	LB106729
	Vanadium	38.0	40.0	95	80 - 120	P	12/12/2019	13:15	LB106729
	Zinc	44.6	40.0	112	80 - 120	P	12/12/2019	13:15	LB106729

K6235 80 of 140

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

Initial Calibration Source: EPA

Zinc

Continuing Calibration Source: Inorganic Ventures

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)	N	I Date	Time	Number
CCV01	Aluminum	10100	10000	101	90 - 110	P	12/12/2019	13:36	LB106729
CCV01	Antimony	4960	5000	99	90 - 110	P	12/12/2019	13:36	LB106729
	Artimony	4960	5000	99	90 - 110	r P	12/12/2019	13:36	LB106729
	Barium	10100	10000	100	90 - 110	r P	12/12/2019	13:36	LB106729
	Beryllium	251	250	100	90 - 110	P	12/12/2019	13:36	LB106729
	Cadmium	2460	2500	98	90 - 110	P	12/12/2019	13:36	LB106729
	Calcium	25000	25000	100	90 - 110	P	12/12/2019	13:36	LB106729
	Chromium	1010	1000	101	90 - 110	P	12/12/2019	13:36	LB106729
	Cobalt	2470	2500	99	90 - 110	P	12/12/2019	13:36	LB106729
	Copper	1240	1250	100	90 - 110	P	12/12/2019	13:36	LB106729
	Iron	5060	5000	101	90 - 110	P	12/12/2019	13:36	LB106729
	Lead	4960	5000	99	90 - 110	P	12/12/2019	13:36	LB106729
	Magnesium	25100	25000	100	90 - 110	P	12/12/2019	13:36	LB106729
	Manganese	2510	2500	100	90 - 110	P	12/12/2019	13:36	LB106729
	Nickel	2480	2500	99	90 - 110	P	12/12/2019	13:36	LB106729
	Potassium	24800	25000	99	90 - 110	P	12/12/2019	13:36	LB106729
	Selenium	4940	5000	99	90 - 110	P	12/12/2019	13:36	LB106729
	Silver	1250	1250	100	90 - 110	P	12/12/2019	13:36	LB106729
	Sodium	24800	25000	99	90 - 110	P	12/12/2019	13:36	LB106729
	Thallium	4990	5000	100	90 - 110	P	12/12/2019	13:36	LB106729
	Vanadium	2500	2500	100	90 - 110	P	12/12/2019	13:36	LB106729

2500

100

90 - 110

P

12/12/2019

13:36

LB106729

81 of 140 K6235

2500

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

Initial Calibration Source: EPA

Inorganic Ventures **Continuing Calibration Source:**

Zinc

		Result							
		ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R)	M	Date	Time	Number
LLCCV01	Aluminum	100	100	100	80 - 120	P	12/12/2019	13:40	LB106729
	Antimony	51.1	50.0	102	80 - 120	P	12/12/2019	13:40	LB106729
	Arsenic	19.8	20.0	99	80 - 120	P	12/12/2019	13:40	LB106729
	Barium	101	100	101	80 - 120	P	12/12/2019	13:40	LB106729
	Beryllium	6.31	6.0	105	80 - 120	P	12/12/2019	13:40	LB106729
	Cadmium	6.02	6.0	100	80 - 120	P	12/12/2019	13:40	LB106729
	Calcium	2010	2000	100	80 - 120	P	12/12/2019	13:40	LB106729
	Chromium	10.2	10.0	102	80 - 120	P	12/12/2019	13:40	LB106729
	Cobalt	29.6	30.0	99	80 - 120	P	12/12/2019	13:40	LB106729
	Copper	20.7	20.0	103	80 - 120	P	12/12/2019	13:40	LB106729
	Iron	110	100	110	80 - 120	P	12/12/2019	13:40	LB106729
	Lead	10.8	12.0	90	80 - 120	P	12/12/2019	13:40	LB106729
	Magnesium	2030	2000	101	80 - 120	P	12/12/2019	13:40	LB106729
	Manganese	22.1	20.0	110	80 - 120	P	12/12/2019	13:40	LB106729
	Nickel	40.3	40.0	101	80 - 120	P	12/12/2019	13:40	LB106729
	Potassium	1910	2000	95	80 - 120	P	12/12/2019	13:40	LB106729
	Selenium	20.0	20.0	100	80 - 120	P	12/12/2019	13:40	LB106729
	Silver	10.9	10.0	109	80 - 120	P	12/12/2019	13:40	LB106729
	Sodium	1940	2000	97	80 - 120	P	12/12/2019	13:40	LB106729
	Thallium	42.7	40.0	107	80 - 120	P	12/12/2019	13:40	LB106729
	Vanadium	38.3	40.0	96	80 - 120	P	12/12/2019	13:40	LB106729

40.0

104

80 - 120

P

12/12/2019

13:40

LB106729

K6235 82 of 140

41.7

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

EPA Initial Calibration Source:

Continuing Calibration Source: Inorganic Ventures

		Result ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample ID	Analyte			Recovery	Window (%R) M	Date	Time	Number
CCV02	Aluminum	9850	10000	98	90 - 110	P	12/12/2019	14:36	LB106729
CC , 02	Antimony	4980	5000	100	90 - 110	P	12/12/2019	14:36	LB106729
	Arsenic	5000	5000	100	90 - 110	P	12/12/2019	14:36	LB106729
	Barium	9730	10000	97	90 - 110	P	12/12/2019	14:36	LB106729
	Beryllium	248	250	99	90 - 110	P	12/12/2019	14:36	LB106729
	Cadmium	2450	2500	98	90 - 110	P	12/12/2019	14:36	LB106729
	Calcium	24500	25000	98	90 - 110	P	12/12/2019	14:36	LB106729
	Chromium	1020	1000	102	90 - 110	P	12/12/2019	14:36	LB106729
	Cobalt	2460	2500	99	90 - 110	P	12/12/2019	14:36	LB106729
	Copper	1250	1250	100	90 - 110	P	12/12/2019	14:36	LB106729
	Iron	5080	5000	102	90 - 110	P	12/12/2019	14:36	LB106729
	Lead	4960	5000	99	90 - 110	P	12/12/2019	14:36	LB106729
	Magnesium	24900	25000	100	90 - 110	P	12/12/2019	14:36	LB106729
	Manganese	2470	2500	99	90 - 110	P	12/12/2019	14:36	LB106729
	Nickel	2480	2500	99	90 - 110	P	12/12/2019	14:36	LB106729
	Potassium	25300	25000	101	90 - 110	P	12/12/2019	14:36	LB106729
	Selenium	4950	5000	99	90 - 110	P	12/12/2019	14:36	LB106729
	Silver	1270	1250	101	90 - 110	P	12/12/2019	14:36	LB106729
	Sodium	24800	25000	99	90 - 110	P	12/12/2019	14:36	LB106729
	Thallium	4990	5000	100	90 - 110	P	12/12/2019	14:36	LB106729
	Vanadium	2480	2500	99	90 - 110	P	12/12/2019	14:36	LB106729
	Zinc	2490	2500	100	90 - 110	P	12/12/2019	14:36	LB106729
CCV03	Aluminum	9890	10000	99	90 - 110	P	12/12/2019	15:43	LB106729
	Antimony	4980	5000	100	90 - 110	P	12/12/2019	15:43	LB106729
	Arsenic	4970	5000	100	90 - 110	P	12/12/2019	15:43	LB106729
	Barium	9870	10000	99	90 - 110	P	12/12/2019	15:43	LB106729
	Beryllium	251	250	100	90 - 110	P	12/12/2019	15:43	LB106729
	Cadmium	2450	2500	98	90 - 110	P	12/12/2019	15:43	LB106729
	Calcium	24700	25000	99	90 - 110	P	12/12/2019	15:43	LB106729
	Chromium	1010	1000	101	90 - 110	P	12/12/2019	15:43	LB106729
	Cobalt	2470	2500	99	90 - 110	P	12/12/2019	15:43	LB106729
	Copper	1250	1250	100	90 - 110	P	12/12/2019	15:43	LB106729
	Iron	5010	5000	100	90 - 110	P	12/12/2019	15:43	LB106729
	Lead	4960	5000	99	90 - 110	P	12/12/2019	15:43	LB106729

K6235 83 of 140

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Result

		Result							
Sample ID	Analyte	ug/L	True Value	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
P -					()				
CCV03	Magnesium	24900	25000	100	90 - 110	P	12/12/2019	15:43	LB106729
	Manganese	2490	2500	100	90 - 110	P	12/12/2019	15:43	LB106729
	Nickel	2480	2500	99	90 - 110	P	12/12/2019	15:43	LB106729
	Potassium	24900	25000	100	90 - 110	P	12/12/2019	15:43	LB106729
	Selenium	4960	5000	99	90 - 110	P	12/12/2019	15:43	LB106729
	Silver	1250	1250	100	90 - 110	P	12/12/2019	15:43	LB106729
	Sodium	24500	25000	98	90 - 110	P	12/12/2019	15:43	LB106729
	Thallium	4970	5000	100	90 - 110	P	12/12/2019	15:43	LB106729
	Vanadium	2480	2500	99	90 - 110	P	12/12/2019	15:43	LB106729
	Zinc	2500	2500	100	90 - 110	P	12/12/2019	15:43	LB106729
CCV04	Aluminum	9950	10000	100	90 - 110	P	12/12/2019	17:19	LB106729
	Antimony	4970	5000	100	90 - 110	P	12/12/2019	17:19	LB106729
	Arsenic	4960	5000	99	90 - 110	P	12/12/2019	17:19	LB106729
	Barium	9780	10000	98	90 - 110	P	12/12/2019	17:19	LB106729
	Beryllium	250	250	100	90 - 110	P	12/12/2019	17:19	LB106729
	Cadmium	2440	2500	98	90 - 110	P	12/12/2019	17:19	LB106729
	Calcium	24700	25000	99	90 - 110	P	12/12/2019	17:19	LB106729
	Chromium	1010	1000	101	90 - 110	P	12/12/2019	17:19	LB106729
	Cobalt	2460	2500	98	90 - 110	P	12/12/2019	17:19	LB106729
	Copper	1250	1250	100	90 - 110	P	12/12/2019	17:19	LB106729
	Iron	5030	5000	101	90 - 110	P	12/12/2019	17:19	LB106729
	Lead	4950	5000	99	90 - 110	P	12/12/2019	17:19	LB106729
	Magnesium	24900	25000	100	90 - 110	P	12/12/2019	17:19	LB106729
	Manganese	2500	2500	100	90 - 110	P	12/12/2019	17:19	LB106729
	Nickel	2460	2500	98	90 - 110	P	12/12/2019	17:19	LB106729
	Potassium	25000	25000	100	90 - 110	P	12/12/2019	17:19	LB106729
	Selenium	4910	5000	98	90 - 110	P	12/12/2019	17:19	LB106729
	Silver	1260	1250	101	90 - 110	P	12/12/2019	17:19	LB106729
	Sodium	24600	25000	98	90 - 110	P	12/12/2019	17:19	LB106729
	Thallium	4960	5000	99	90 - 110	P	12/12/2019	17:19	LB106729
	Vanadium	2480	2500	99	90 - 110	P	12/12/2019	17:19	LB106729
	Zinc	2510	2500	100	90 - 110	P	12/12/2019	17:19	LB106729
CCV05	Aluminum	9960	10000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Antimony	5040	5000	101	90 - 110	P	12/12/2019	18:11	LB106729

K6235 **84 of 140**

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM **SAS No.:** K6235 Case No.: K6235

EPA Initial Calibration Source:

Continuing Calibration Source: Inorganic Ventures

Sample ID	Analyte	ug/L	True Value	%	Acceptance		Analysis	Analysis	Run
Sample 1D		5	1140 / 1140	Recovery	Window (%R)) M		Time	Number
CCV05		5000	5000	100	00 110	n	12/12/2010	10.11	I D10/720
CCV05	Arsenic	5000	5000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Barium	9890	10000	99	90 - 110	P	12/12/2019	18:11	LB106729
	Beryllium	250	250	100	90 - 110	P	12/12/2019	18:11	LB106729
	Cadmium	2480	2500	99	90 - 110	P	12/12/2019	18:11	LB106729
	Calcium	24700	25000	99	90 - 110	P	12/12/2019	18:11	LB106729
	Chromium	1020	1000	102	90 - 110	P	12/12/2019	18:11	LB106729
	Cobalt	2490	2500	100	90 - 110	P	12/12/2019	18:11	LB106729
	Copper	1260	1250	101	90 - 110	P	12/12/2019	18:11	LB106729
	Iron	5120	5000	102	90 - 110	P	12/12/2019	18:11	LB106729
	Lead	5010	5000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Magnesium	25000	25000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Manganese	2500	2500	100	90 - 110	P	12/12/2019	18:11	LB106729
	Nickel	2490	2500	100	90 - 110	P	12/12/2019	18:11	LB106729
	Potassium	25400	25000	102	90 - 110	P	12/12/2019	18:11	LB106729
	Selenium	4990	5000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Silver	1280	1250	102	90 - 110	P	12/12/2019	18:11	LB106729
	Sodium	25100	25000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Thallium	5020	5000	100	90 - 110	P	12/12/2019	18:11	LB106729
	Vanadium	2500	2500	100	90 - 110	P	12/12/2019	18:11	LB106729
	Zinc	2530	2500	101	90 - 110	P	12/12/2019	18:11	LB106729
CCV06	Aluminum	9970	10000	100	90 - 110	P	12/12/2019	18:47	LB106729
	Antimony	5020	5000	100	90 - 110	P	12/12/2019	18:47	LB106729
	Arsenic	4970	5000	100	90 - 110	P	12/12/2019	18:47	LB106729
	Barium	9800	10000	98	90 - 110	P	12/12/2019	18:47	LB106729
	Beryllium	249	250	99	90 - 110	P	12/12/2019	18:47	LB106729
	Cadmium	2470	2500	99	90 - 110	P	12/12/2019	18:47	LB106729
	Calcium	24700	25000	99	90 - 110	P	12/12/2019	18:47	LB106729
	Chromium	1010	1000	102	90 - 110	P	12/12/2019	18:47	LB106729
	Cobalt	2490	2500	99	90 - 110	P	12/12/2019	18:47	LB106729
	Copper	1260	1250	101	90 - 110	P	12/12/2019	18:47	LB106729
	Iron	5090	5000	101	90 - 110	P	12/12/2019	18:47	LB106729
	Lead	4990	5000	102	90 - 110	P	12/12/2019	18:47	LB106729
		25100	25000	100	90 - 110 90 - 110	P P	12/12/2019	18:47	LB106729 LB106729
	Magnesium					P P			
	Manganese	2490	2500	100	90 - 110	r	12/12/2019	18:47	LB106729

K6235 85 of 140

Sample ID

CCV06

Metals

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: LiRo Engineers, Inc. SDG No.: K6235

5010

2490

2530

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

5000

2500

2500

100

100

101

Initial Calibration Source: EPA

Continuing Calibration Source: Inorganic Ventures

Analyte

Nickel

Potassium

Selenium

Silver

Sodium

Thallium

Vanadium

Zinc

Result ug/L **True Value** % Acceptance Analysis Analysis Run Recovery Window (%R) M Time Date Number 2470 99 90 - 110 P 2500 12/12/2019 18:47 LB106729 25700 25000 103 90 - 110 P 12/12/2019 18:47 LB106729 100 90 - 110 P 4980 5000 12/12/2019 18:47 LB106729 102 P 1250 90 - 110 12/12/2019 18:47 LB106729 1280 P 28100 25000 112 90 - 110 12/12/2019 18:47 LB106729

P

P

P

12/12/2019

12/12/2019

12/12/2019

18:47

18:47

18:47

LB106729

LB106729

LB106729

90 - 110

90 - 110

90 - 110

K6235 **86 of 140**

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Metals

- 2b -CRDL STANDARD FOR AA & ICP

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source:

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CRI01	Aluminum	114	100	114	40 - 160	P	12/11/2019	12:03	LB106689
	Antimony	56.2	50.0	112	40 - 160	P	12/11/2019	12:03	LB106689
	Arsenic	19.3	20.0	97	40 - 160	P	12/11/2019	12:03	LB106689
	Barium	111	100	111	40 - 160	P	12/11/2019	12:03	LB106689
	Beryllium	6.67	6.0	111	40 - 160	P	12/11/2019	12:03	LB106689
	Cadmium	6.09	6.0	102	40 - 160	P	12/11/2019	12:03	LB106689
	Calcium	2160	2000	108	40 - 160	P	12/11/2019	12:03	LB106689
	Chromium	11.0	10.0	110	40 - 160	P	12/11/2019	12:03	LB106689
	Cobalt	32.0	30.0	107	40 - 160	P	12/11/2019	12:03	LB106689
	Copper	21.9	20.0	110	40 - 160	P	12/11/2019	12:03	LB106689
	Iron	130	100	130	40 - 160	P	12/11/2019	12:03	LB106689
	Lead	11.6	12.0	96	40 - 160	P	12/11/2019	12:03	LB106689
	Magnesium	2160	2000	108	40 - 160	P	12/11/2019	12:03	LB106689
	Manganese	22.7	20.0	114	40 - 160	P	12/11/2019	12:03	LB106689
	Nickel	43.4	40.0	108	40 - 160	P	12/11/2019	12:03	LB106689
	Potassium	2080	2000	104	40 - 160	P	12/11/2019	12:03	LB106689
	Selenium	24.6	20.0	123	40 - 160	P	12/11/2019	12:03	LB106689
	Silver	10.4	10.0	104	40 - 160	P	12/11/2019	12:03	LB106689
	Sodium	2090	2000	104	40 - 160	P	12/11/2019	12:03	LB106689
	Thallium	42.7	40.0	107	40 - 160	P	12/11/2019	12:03	LB106689
	Vanadium	43.5	40.0	109	40 - 160	P	12/11/2019	12:03	LB106689
	Zinc	46.8	40.0	117	40 - 160	P	12/11/2019	12:03	LB106689
CRI01	Aluminum	113	100	114	40 - 160	P	12/12/2019	13:23	LB106729
	Antimony	52.1	50.0	104	40 - 160	P	12/12/2019	13:23	LB106729
	Arsenic	20.9	20.0	104	40 - 160	P	12/12/2019	13:23	LB106729
	Barium	106	100	106	40 - 160	P	12/12/2019	13:23	LB106729
	Beryllium	6.60	6.0	110	40 - 160	P	12/12/2019	13:23	LB106729
	Cadmium	5.88	6.0	98	40 - 160	P	12/12/2019	13:23	LB106729
	Calcium	2120	2000	106	40 - 160	P	12/12/2019	13:23	LB106729
	Chromium	10.5	10.0	106	40 - 160	P	12/12/2019	13:23	LB106729
	Cobalt	31.2	30.0	104	40 - 160	P	12/12/2019	13:23	LB106729
	Copper	22.1	20.0	110	40 - 160	P	12/12/2019	13:23	LB106729
	Iron	107	100	107	40 - 160	P	12/12/2019	13:23	LB106729
	Lead	10.0	12.0	83	40 - 160	P	12/12/2019	13:23	LB106729
	Magnesium	2140	2000	107	40 - 160	P	12/12/2019	13:23	LB106729

K6235 **87 of 140**

- 2b -CRDL STANDARD FOR AA & ICP

Client: LiRo Engineers, Inc. SDG No.: K6235	SDG No.: K6235	LiRo Engineers, Inc.	Client:
---	-----------------------	----------------------	---------

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Initial Calibration Source:

Continuing Calibration Source:

Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CRI01	Manganese	22.7	20.0	114	40 - 160	P	12/12/2019	13:23	LB106729
	Nickel	42.3	40.0	106	40 - 160	P	12/12/2019	13:23	LB106729
	Potassium	1920	2000	96	40 - 160	P	12/12/2019	13:23	LB106729
	Selenium	22.9	20.0	114	40 - 160	P	12/12/2019	13:23	LB106729
	Silver	11.1	10.0	111	40 - 160	P	12/12/2019	13:23	LB106729
	Sodium	2030	2000	101	40 - 160	P	12/12/2019	13:23	LB106729
	Thallium	43.7	40.0	109	40 - 160	P	12/12/2019	13:23	LB106729
	Vanadium	39.9	40.0	100	40 - 160	P	12/12/2019	13:23	LB106729
	Zinc	44.6	40.0	112	40 - 160	P	12/12/2019	13:23	LB106729
CRA	Mercury	0.23	0.2	113	40 - 160	CV	12/13/2019	10:24	LB106736

K6235 **88 of 140**

ICB28

Mercury

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

Metals

- 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

 Client:
 LiRo Engineers, Inc.
 SDG No.:
 K6235

 Contract:
 LIRO01
 Lab Code:
 CHEM
 Case No.:
 K6235
 SAS No.:
 K6235

+/-0.20

0.20

Result Acceptance Conc Analysis Analysis Run
Sample ID Analyte ug/L Limit Qual CRQL M Date Time Number

U

0.20 CV

12/13/2019

10:18

LB106736

K6235 **89 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

 Contract:
 LIRO01
 Lab Code:
 CHEM
 Case No.:
 K6235
 SAS No.:
 K6235

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB16	Mercury	0.20	+/-0.20	U	0.20	CV	12/13/2019	10:22	LB106736
CCB17	Mercury	0.20	+/-0.20	U	0.20	CV	12/13/2019	10:53	LB106736
CCB18	Mercury	0.20	+/-0.20	U	0.20	CV	12/13/2019	11:18	LB106736
CCB19	Mercury	0.20	+/-0.20	U	0.20	CV	12/13/2019	11:35	LB106736

K6235 **90 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

contract.	Entour					110233					
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number		
ICB01	Aluminum	100	+/-100	U	100	P	12/11/2019	11:59	LB106689		
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	11:59	LB106689		
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	11:59	LB106689		
	Barium	100	+/-100	U	100	P	12/11/2019	11:59	LB106689		
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	11:59	LB106689		
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	11:59	LB106689		
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	11:59	LB106689		
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	11:59	LB106689		
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	11:59	LB106689		
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	11:59	LB106689		
	Iron	100	+/-100	U	100	P	12/11/2019	11:59	LB106689		
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	11:59	LB106689		
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	11:59	LB106689		
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	11:59	LB106689		
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	11:59	LB106689		
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	11:59	LB106689		
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	11:59	LB106689		
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	11:59	LB106689		
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	11:59	LB106689		
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	11:59	LB106689		
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	11:59	LB106689		
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	11:59	LB106689		

K6235 **91 of 140**

- 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract:	LIRO01	Lab Code:	Lab Code: CHEM			35	SAS No.: K6235			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB01	Aluminum	100	+/-100	U	100	P	12/11/2019	12:27	LB106689	
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	12:27	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	12:27	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	12:27	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	12:27	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	12:27	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	12:27	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	12:27	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	12:27	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	12:27	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	12:27	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	12:27	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	12:27	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	12:27	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	12:27	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	12:27	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	12:27	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	12:27	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	12:27	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	12:27	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	12:27	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	12:27	LB106689	
CCB02	Aluminum	100	+/-100	U	100	P	12/11/2019	15:33	LB106689	
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	15:33	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	15:33	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	15:33	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	15:33	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	15:33	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	15:33	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	15:33	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	15:33	LB106689	
	Copper	1.01	+/-20.0	J	20.0	P	12/11/2019	15:33	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	15:33	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	15:33	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	15:33	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	15:33	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	15:33	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	15:33	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	15:33	LB106689	
	Silver	10.0	+/-10.0	U	10.0		12/11/2019	15:33	LB106689	

K6235 **92 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

	-		Lab Code: CHEM				SAS No.: K0233			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB02	Sodium	2000	+/-2000	U	2000	P	12/11/2019	15:33	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	15:33	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	15:33	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	15:33	LB106689	
CB03	Aluminum	100	+/-100	U	100	P	12/11/2019	16:53	LB106689	
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	16:53	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	16:53	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	16:53	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	16:53	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	16:53	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	16:53	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	16:53	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	16:53	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	16:53	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	16:53	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	16:53	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	16:53	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	16:53	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	16:53	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	16:53	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	16:53	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	16:53	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	16:53	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	16:53	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	16:53	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	16:53	LB106689	
CD04	Aluminum	100	+/-100	U	100	P P	12/11/2019		LB106689	
CB04		50.0	+/-50.0		50.0	P P	12/11/2019	17:46	LB106689	
	Antimony			U				17:46		
	Arsenic	20.0	+/-20.0	U	20.0 100	P	12/11/2019	17:46	LB106689	
	Barium	100	+/-100	U		P	12/11/2019	17:46	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	17:46	LB106689	
	Calaire	6.00	+/-6.00	U	6.00		12/11/2019	17:46	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	17:46	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	17:46	LB106689	
	Cobalt	30.0	+/-30.0	U		P	12/11/2019	17:46	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	17:46	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	17:46	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	17:46	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	17:46	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	17:46	LB106689	

K6235 93 of 140

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract.		Lab Code. CHEW			Case No Roz.		SAS 110 K0233			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB04	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	17:46	LB106689	
ссвог	Potassium	2000	+/-2000	U	2000	P	12/11/2019	17:46	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	17:46	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	17:46	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	17:46	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	17:46	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	17:46	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	17:46	LB106689	
CCB05	Aluminum	100	+/-100	U	100	P	12/11/2019	18:34	LB106689	
ССВОС	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	18:34	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	18:34	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	18:34	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	18:34	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	18:34	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	18:34	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	18:34	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	18:34	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	18:34	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	18:34	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	18:34	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	18:34	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	18:34	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	18:34	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	18:34	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	18:34	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	18:34	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	18:34	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	18:34	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	18:34	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	18:34	LB106689	
CCB06	Aluminum	100	+/-100	U	100	P	12/11/2019	19:21	LB106689	
ССВОО	Antimony	50.0	+/-50.0	U	50.0		12/11/2019	19:21	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	19:21	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	19:21	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	19:21	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	19:21	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	19:21	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	19:21	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P P	12/11/2019	19:21	LB106689 LB106689	
			+/-20.0	U		P P				
	Copper	20.0	±/-∠0.0	U	20.0	r	12/11/2019	19:21	LB106689	

K6235 **94 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract:	LIRO01	Lab Code	Lab Code: CHEM			55	SAS No.: K0235			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB06	Iron	100	+/-100	U	100	P	12/11/2019	19:21	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	19:21	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	19:21	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	19:21	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	19:21	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	19:21	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	19:21	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	19:21	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	19:21	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	19:21	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	19:21	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	19:21	LB106689	
CCB07	Aluminum	100	+/-100	U	100	P	12/11/2019	20:08	LB106689	
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	20:08	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	20:08	LB106689	
	Barium	41.7	+/-100	J	100	P	12/11/2019	20:08	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	20:08	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	20:08	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	20:08	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	20:08	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	20:08	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	20:08	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	20:08	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	20:08	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	20:08	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	20:08	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	20:08	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	20:08	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	20:08	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	20:08	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	20:08	LB106689	
	Thallium	40.0	+/-40.0	U	40.0		12/11/2019	20:08	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	20:08	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	20:08	LB106689	
CD06	Aluminum	100	+/-100	U	100	P	12/11/2019	20:56	LB106689	
CB08	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	20:56	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0		12/11/2019	20:56	LB106689	
	Barium		+/-20.0 +/-100	U	100				LB106689	
		100	+/-100		6.00	P P	12/11/2019	20:56		
	Beryllium	6.00		U			12/11/2019	20:56	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	r	12/11/2019	20:56	LB	

K6235 95 of 140

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract:	LIRO01	Lab Code:	СНЕМ		Case No.: <u>K62</u>	35	SAS No.: K6235		
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number
· · ·			-	<u> </u>					
CCB08	Calcium	2000	+/-2000	U	2000	P	12/11/2019	20:56	LB106689
СВОО	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	20:56	LB106689
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	20:56	LB106689
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	20:56	LB106689
	Iron	100	+/-100	U	100	P	12/11/2019	20:56	LB106689
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	20:56	LB106689
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	20:56	LB106689
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	20:56	LB106689
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	20:56	LB106689
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	20:56	LB106689
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	20:56	LB106689
	Silver	0.91	+/-10.0	J	10.0	P	12/11/2019	20:56	LB106689
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	20:56	LB106689
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	20:56	LB106689
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	20:56	LB106689
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	20:56	LB106689
CB09	Aluminum	100	+/-100	U	100	P	12/11/2019	21:43	LB106689
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	21:43	LB106689
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	21:43	LB106689
	Barium	100	+/-100	U	100	P	12/11/2019	21:43	LB106689
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	21:43	LB106689
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	21:43	LB106689
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	21:43	LB106689
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	21:43	LB106689
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	21:43	LB106689
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	21:43	LB106689
	Iron	100	+/-100	U	100	P	12/11/2019	21:43	LB106689
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	21:43	LB106689
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	21:43	LB106689
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	21:43	LB106689
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	21:43	LB106689
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	21:43	LB106689
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	21:43	LB106689
	Silver	0.57	+/-10.0	J	10.0	P	12/11/2019	21:43	LB106689
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	21:43	LB106689
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	21:43	LB106689
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	21:43	LB106689
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	21:43	LB106689
CCB10	Aluminum	100	+/-100	U	100	P	12/11/2019	22:32	LB106689
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	22:32	LB106689

K6235 96 of 140

- 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

		Lab Code: CHEM					SAS No.: K6235			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB10	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	22:32	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	22:32	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	22:32	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	22:32	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	22:32	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	22:32	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	22:32	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	22:32	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	22:32	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	22:32	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	22:32	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	22:32	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	22:32	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	22:32	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	22:32	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	22:32	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	22:32	LB106689	
	Thallium	40.0	+/-40.0	U	40.0	P	12/11/2019	22:32	LB106689	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	22:32	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	22:32	LB106689	
CCB11	Aluminum	100	+/-100	U	100	P	12/11/2019	23:22	LB106689	
	Antimony	50.0	+/-50.0	U	50.0	P	12/11/2019	23:22	LB106689	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/11/2019	23:22	LB106689	
	Barium	100	+/-100	U	100	P	12/11/2019	23:22	LB106689	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/11/2019	23:22	LB106689	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/11/2019	23:22	LB106689	
	Calcium	2000	+/-2000	U	2000	P	12/11/2019	23:22	LB106689	
	Chromium	10.0	+/-10.0	U	10.0	P	12/11/2019	23:22	LB106689	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/11/2019	23:22	LB106689	
	Copper	20.0	+/-20.0	U	20.0	P	12/11/2019	23:22	LB106689	
	Iron	100	+/-100	U	100	P	12/11/2019	23:22	LB106689	
	Lead	12.0	+/-12.0	U	12.0	P	12/11/2019	23:22	LB106689	
	Magnesium	2000	+/-2000	U	2000	P	12/11/2019	23:22	LB106689	
	Manganese	20.0	+/-20.0	U	20.0	P	12/11/2019	23:22	LB106689	
	Nickel	40.0	+/-40.0	U	40.0	P	12/11/2019	23:22	LB106689	
	Potassium	2000	+/-2000	U	2000	P	12/11/2019	23:22	LB106689	
	Selenium	20.0	+/-20.0	U	20.0	P	12/11/2019	23:22	LB106689	
	Silver	10.0	+/-10.0	U	10.0	P	12/11/2019	23:22	LB106689	
	Sodium	2000	+/-2000	U	2000	P	12/11/2019	23:22	LB106689	
	Thallium	40.0	+/-40.0	U	40.0		12/11/2019	23:22	LB106689	

K6235 **97 of 140**

- 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB11	Vanadium	40.0	+/-40.0	U	40.0	P	12/11/2019	23:22	LB106689	
	Zinc	40.0	+/-40.0	U	40.0	P	12/11/2019	23:22	LB106689	

K6235 **98 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract.	LIKOUI	Lab Code.	CHEW		Case No Koz.	,,,		.5 No <u>Ko</u>	
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number
·	·			-					
ICB01	Aluminum	100	+/-100	U	100	P	12/12/2019	13:19	LB106729
	Antimony	50.0	+/-50.0	U	50.0	P	12/12/2019	13:19	LB106729
	Arsenic	20.0	+/-20.0	U	20.0	P	12/12/2019	13:19	LB106729
	Barium	100	+/-100	U	100	P	12/12/2019	13:19	LB106729
	Beryllium	6.00	+/-6.00	U	6.00	P	12/12/2019	13:19	LB106729
	Cadmium	6.00	+/-6.00	U	6.00	P	12/12/2019	13:19	LB106729
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	13:19	LB106729
	Chromium	10.0	+/-10.0	U	10.0	P	12/12/2019	13:19	LB106729
	Cobalt	30.0	+/-30.0	U	30.0	P	12/12/2019	13:19	LB106729
	Copper	20.0	+/-20.0	U	20.0	P	12/12/2019	13:19	LB106729
	Iron	100	+/-100	U	100	P	12/12/2019	13:19	LB106729
	Lead	12.0	+/-12.0	U	12.0	P	12/12/2019	13:19	LB106729
	Magnesium	2000	+/-2000	U	2000	P	12/12/2019	13:19	LB106729
	Manganese	20.0	+/-20.0	U	20.0	P	12/12/2019	13:19	LB106729
	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	13:19	LB106729
	Potassium	2000	+/-2000	U	2000	P	12/12/2019	13:19	LB106729
	Selenium	20.0	+/-20.0	U	20.0	P	12/12/2019	13:19	LB106729
	Silver	10.0	+/-10.0	U	10.0	P	12/12/2019	13:19	LB106729
	Sodium	2000	+/-2000	U	2000	P	12/12/2019	13:19	LB106729
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	13:19	LB106729
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	13:19	LB106729
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	13:19	LB106729

K6235 **99 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract:	LIRO01	Lab Code:	СНЕМ		Case No.: K62))	SAS No.: K6235			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB01	Aluminum	100	+/-100	U	100	P	12/12/2019	13:44	LB106729	
	Antimony	50.0	+/-50.0	U	50.0	P	12/12/2019	13:44	LB106729	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/12/2019	13:44	LB106729	
	Barium	100	+/-100	U	100	P	12/12/2019	13:44	LB106729	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/12/2019	13:44	LB106729	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/12/2019	13:44	LB106729	
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	13:44	LB106729	
	Chromium	10.0	+/-10.0	U	10.0	P	12/12/2019	13:44	LB106729	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/12/2019	13:44	LB106729	
	Copper	20.0	+/-20.0	U	20.0	P	12/12/2019	13:44	LB106729	
	Iron	100	+/-100	U	100	P	12/12/2019	13:44	LB106729	
	Lead	12.0	+/-12.0	U	12.0	P	12/12/2019	13:44	LB106729	
	Magnesium	2000	+/-2000	U	2000	P	12/12/2019	13:44	LB106729	
	Manganese	20.0	+/-20.0	U	20.0	P	12/12/2019	13:44	LB106729	
	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	13:44	LB106729	
	Potassium	2000	+/-2000	U	2000	P	12/12/2019	13:44	LB106729	
	Selenium	20.0	+/-20.0	U	20.0	P	12/12/2019	13:44	LB106729	
	Silver	10.0	+/-10.0	U	10.0	P	12/12/2019	13:44	LB106729	
	Sodium	2000	+/-2000	U	2000	P	12/12/2019	13:44	LB106729	
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	13:44	LB106729	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	13:44	LB106729	
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	13:44	LB106729	
CCB02	Aluminum	100	+/-100	U	100	P	12/12/2019	14:59	LB106729	
CCD02	Antimony	50.0	+/-50.0	U	50.0	P	12/12/2019	14:59	LB106729	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/12/2019	14:59	LB106729	
	Barium	100	+/-100	U	100	P	12/12/2019	14:59	LB106729	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/12/2019	14:59	LB106729	
	Cadmium	6.00	+/-6.00	U	6.00	P	12/12/2019	14:59	LB106729	
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	14:59	LB106729	
	Chromium	10.0	+/-10.0	U	10.0	P	12/12/2019	14:59	LB106729	
	Cobalt	30.0	+/-30.0	U	30.0		12/12/2019	14:59	LB106729	
	Copper	20.0	+/-20.0	U	20.0		12/12/2019	14:59	LB106729	
	Iron	100	+/-100	U	100	P	12/12/2019	14:59	LB106729	
	Lead	12.0	+/-12.0	U	12.0	P	12/12/2019	14:59	LB106729	
	Magnesium	2000	+/-2000	U	2000	P	12/12/2019	14:59	LB106729	
	Manganese	20.0	+/-2000	U	20.0	P	12/12/2019	14:59	LB106729	
	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	14:59	LB106729	
	Potassium	2000	+/-2000	U	2000	P	12/12/2019	14.59	LB106729	
	Selenium	20.0	+/-2000	U	20.0	P P	12/12/2019	14:59	LB106729 LB106729	
	Silver	10.0	+/-20.0	U			12/12/2019			
	Silvel	10.0	⊤/-10.0	U	10.0	r	12/12/2019	14:59	LB106729	

K6235 100 of 140

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Contract:	-	Lab Code: CHEM			Case No.: K62.		SAS No.: K6233			
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number	
CCB02	Sodium	2000	+/-2000	U	2000	P	12/12/2019	14:59	LB106729	
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	14:59	LB106729	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	14:59	LB106729	
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	14:59	LB106729	
CCB03	Aluminum	100	+/-100	U	100	P	12/12/2019	15:47	LB106729	
	Antimony	50.0	+/-50.0	U	50.0	P	12/12/2019	15:47	LB106729	
	Arsenic	2.94	+/-20.0	J	20.0	P	12/12/2019	15:47	LB106729	
	Barium	100	+/-100	U	100	P	12/12/2019	15:47	LB106729	
	Beryllium	6.00	+/-6.00	U	6.00	P	12/12/2019	15:47	LB106729	
	Cadmium	0.40	+/-6.00	J	6.00	P	12/12/2019	15:47	LB106729	
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	15:47	LB106729	
	Chromium	10.0	+/-10.0	U	10.0	P	12/12/2019	15:47	LB106729	
	Cobalt	30.0	+/-30.0	U	30.0	P	12/12/2019	15:47	LB106729	
	Copper	20.0	+/-20.0	U	20.0	P	12/12/2019	15:47	LB106729	
	Iron	100	+/-100	U	100	P	12/12/2019	15:47	LB106729	
	Lead	12.0	+/-12.0	U	12.0	P	12/12/2019	15:47	LB106729	
	Magnesium	2000	+/-2000	U	2000	P	12/12/2019	15:47	LB106729	
	Manganese	20.0	+/-20.0	U	20.0	P	12/12/2019	15:47	LB106729	
	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	15:47	LB106729	
	Potassium	2000	+/-2000	U	2000	P	12/12/2019	15:47	LB106729	
	Selenium	20.0	+/-20.0	U	20.0	P	12/12/2019	15:47	LB106729	
	Silver	0.39	+/-10.0	J	10.0	P	12/12/2019	15:47	LB106729	
	Sodium	2000	+/-2000	U	2000	P	12/12/2019	15:47	LB106729	
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	15:47	LB106729	
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	15:47	LB106729	
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	15:47	LB106729	
CCD04	Aluminum	100	+/-100	U	100	P	12/12/2019	17:23	LB106729	
CCB04	Antimony	50.0	+/-50.0	U	50.0	P	12/12/2019	17:23	LB106729	
	Arsenic	20.0	+/-20.0	U	20.0	P	12/12/2019	17:23	LB106729	
	Barium	100	+/-100	U	100	P	12/12/2019	17:23	LB106729	
	Beryllium	6.00	+/-6.00	U	6.00		12/12/2019	17:23	LB106729	
	Cadmium	6.00	+/-6.00	U	6.00		12/12/2019	17:23	LB106729 LB106729	
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	17:23	LB106729 LB106729	
	Chromium	10.0	+/-2000	U	10.0	P P	12/12/2019	17:23	LB106729 LB106729	
	Cobalt	30.0			30.0		12/12/2019			
		20.0	+/-30.0 +/-20.0	U	20.0	P P		17:23	LB106729	
	Copper			U	100		12/12/2019 12/12/2019	17:23	LB106729	
	Iron	100	+/-100	U		P D		17:23	LB106729	
	Lead	12.0	+/-12.0	U	12.0	P D	12/12/2019	17:23	LB106729	
	Magnesium	2000	+/-2000	U	2000	P	12/12/2019	17:23	LB106729	
	Manganese	20.0	+/-20.0	U	20.0	P	12/12/2019	17:23	LB106729	

K6235 **101 of 140**

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB04	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	17:23	LB106729
ССВОТ	Potassium	2000	+/-2000	U	2000	P	12/12/2019	17:23	LB106729
	Selenium	20.0	+/-20.0	U	20.0	P	12/12/2019	17:23	LB106729
	Silver	10.0	+/-10.0	U	10.0	P	12/12/2019	17:23	LB106729
	Sodium	2000	+/-2000	U	2000	P	12/12/2019	17:23	LB106729
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	17:23	LB106729
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	17:23	LB106729
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	17:23	LB106729
CCB05	Aluminum	100	+/-100	U	100	P	12/12/2019	18:15	LB106729
ССВОЗ	Antimony	50.0	+/-50.0	U	50.0	P	12/12/2019	18:15	LB106729
	Arsenic	1.61	+/-20.0	J	20.0	P	12/12/2019	18:15	LB106729
	Barium	100	+/-100	U	100	P	12/12/2019	18:15	LB106729
	Beryllium	6.00	+/-6.00	U	6.00	P	12/12/2019	18:15	LB106729
	Cadmium	6.00	+/-6.00	U	6.00	P	12/12/2019	18:15	LB106729
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	18:15	LB106729
	Chromium	10.0	+/-10.0	U	10.0	P	12/12/2019	18:15	LB106729
	Cobalt	30.0	+/-30.0	U	30.0	P	12/12/2019	18:15	LB106729
		20.0	+/-20.0	U	20.0	P	12/12/2019	18:15	LB106729
	Copper	100	+/-20.0		100	P			LB106729 LB106729
	Iron			U	12.0		12/12/2019	18:15	
	Lead	12.0	+/-12.0	U	2000	P	12/12/2019	18:15	LB106729
	Magnesium	2000	+/-2000	U		P	12/12/2019	18:15	LB106729
	Manganese	20.0	+/-20.0	U	20.0	P	12/12/2019	18:15	LB106729
	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	18:15	LB106729
	Potassium	2000	+/-2000	U	2000	P	12/12/2019	18:15	LB106729
	Selenium	20.0	+/-20.0	U	20.0	P	12/12/2019	18:15	LB106729
	Silver	10.0	+/-10.0	U	10.0	P	12/12/2019	18:15	LB106729
	Sodium	2000	+/-2000	U	2000	P	12/12/2019	18:15	LB106729
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	18:15	LB106729
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	18:15	LB106729
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	18:15	LB106729
CCB06	Aluminum	100	+/-100	U	100	P	12/12/2019	18:51	LB106729
	Antimony	50.0	+/-50.0	U	50.0		12/12/2019	18:51	LB106729
	Arsenic	20.0	+/-20.0	U	20.0	P	12/12/2019	18:51	LB106729
	Barium	100	+/-100	U	100	P	12/12/2019	18:51	LB106729
	Beryllium	6.00	+/-6.00	U	6.00	P	12/12/2019	18:51	LB106729
	Cadmium	6.00	+/-6.00	U	6.00	P	12/12/2019	18:51	LB106729
	Calcium	2000	+/-2000	U	2000	P	12/12/2019	18:51	LB106729
	Chromium	10.0	+/-10.0	U	10.0	P	12/12/2019	18:51	LB106729
	Cobalt	30.0	+/-30.0	U	30.0	P	12/12/2019	18:51	LB106729
	Copper	20.0	+/-20.0	U	20.0	P	12/12/2019	18:51	LB106729

K6235 102 of 140

- 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	CRQL	M	Analysis Date	Analysis Time	Run Number
CCB06	Iron	100	+/-100	U	100	P	12/12/2019	18:51	LB106729
	Lead	12.0	+/-12.0	U	12.0	P	12/12/2019	18:51	LB106729
	Magnesium	2000	+/-2000	U	2000	P	12/12/2019	18:51	LB106729
	Manganese	20.0	+/-20.0	U	20.0	P	12/12/2019	18:51	LB106729
	Nickel	40.0	+/-40.0	U	40.0	P	12/12/2019	18:51	LB106729
	Potassium	2000	+/-2000	U	2000	P	12/12/2019	18:51	LB106729
	Selenium	20.0	+/-20.0	U	20.0	P	12/12/2019	18:51	LB106729
	Silver	10.0	+/-10.0	U	10.0	P	12/12/2019	18:51	LB106729
	Sodium	437	+/-2000	J	2000	P	12/12/2019	18:51	LB106729
	Thallium	40.0	+/-40.0	U	40.0	P	12/12/2019	18:51	LB106729
	Vanadium	40.0	+/-40.0	U	40.0	P	12/12/2019	18:51	LB106729
	Zinc	40.0	+/-40.0	U	40.0	P	12/12/2019	18:51	LB106729

K6235 103 of 140

- 3b -

PREPARATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Instrument: CV1

Sample ID	Analyte	Result (ug/L)	Acceptance Limit	Conc Qual	CRQL ug/L	M	Analysis Date	Analysis Time	Run
PB125428BL		WATER		Batch Number:	PB125428		Prep Date:	12/12/20	19
	Mercury	0.20	< 0.20	U	0.20	CV	12/13/2019	10:57	LB106736

K6235 **104 of 140**

Metals - 3b -PREPARATION BLANK SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Instrument: P4

Sample ID	Analyte	Result (ug/L)	Acceptance Limit	Conc Qual	CRQL ug/L	M	Analysis Date	Analysis Time	Run
PB125377BL		WATER		Batch Number:	PB125377		Prep Date:	12/11/20	19
	Aluminum	50.0	< 50.0	U	50.0	P	12/11/2019	16:41	LB106689
	Antimony	25.0	<25.0	U	25.0	P	12/11/2019	16:41	LB106689
	Arsenic	10.0	<10.0	U	10.0	P	12/11/2019	16:41	LB106689
	Barium	50.0	< 50.0	U	50.0	P	12/11/2019	16:41	LB106689
	Beryllium	3.00	< 3.00	U	3.00	P	12/11/2019	16:41	LB106689
	Cadmium	3.00	< 3.00	U	3.00	P	12/11/2019	16:41	LB106689
	Calcium	1000	<1000	U	1000	P	12/11/2019	16:41	LB106689
	Chromium	5.00	< 5.00	U	5.00	P	12/11/2019	16:41	LB106689
	Cobalt	15.0	<15.0	U	15.0	P	12/11/2019	16:41	LB106689
	Copper	10.0	<10.0	U	10.0	P	12/11/2019	16:41	LB106689
	Iron	50.0	< 50.0	U	50.0	P	12/11/2019	16:41	LB106689
	Lead	6.00	< 6.00	U	6.00	P	12/11/2019	16:41	LB106689
	Magnesium	1000	<1000	U	1000	P	12/11/2019	16:41	LB106689
	Manganese	10.0	<10.0	U	10.0	P	12/11/2019	16:41	LB106689
	Nickel	20.0	<20.0	U	20.0	P	12/11/2019	16:41	LB106689
	Potassium	1000	<1000	U	1000	P	12/11/2019	16:41	LB106689
	Selenium	10.0	<10.0	U	10.0	P	12/11/2019	16:41	LB106689
	Silver	5.00	< 5.00	U	5.00	P	12/11/2019	16:41	LB106689
	Sodium	1000	<1000	U	1000	P	12/11/2019	16:41	LB106689
	Thallium	20.0	<20.0	U	20.0	P	12/11/2019	16:41	LB106689
	Vanadium	20.0	<20.0	U	20.0	P	12/11/2019	16:41	LB106689
	Zinc	20.0	<20.0	U	20.0	P	12/11/2019	16:41	LB106689

Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

ICS Source: EPA Instrument ID: P4

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Low Limit (ug/L)	High Limit (ug/L)	Analysis Date	Analysis Time	Run Number
Sample ID	Analyte	ug/L	ug/L/	Recovery	(ug/L)	(ug/L)	Date	1 IIIIC	TAIIIDEI
ICSA01	Aluminum	270000	254900	106	203920	305880	12/11/2019	12:07	LB106689
	Antimony	39.5			-50	50	12/11/2019	12:07	LB106689
	Arsenic	18.5			-20	20	12/11/2019	12:07	LB106689
	Barium	8.33	6.0	139	-94	106	12/11/2019	12:07	LB106689
	Beryllium	3.03			-6	6	12/11/2019	12:07	LB106689
	Cadmium	4.99	1.0	499	-5	7	12/11/2019	12:07	LB106689
	Calcium	250000	244500	102	195600	293400	12/11/2019	12:07	LB106689
	Chromium	61.3	52.0	118	42	62	12/11/2019	12:07	LB106689
	Cobalt	6.10			-30	30	12/11/2019	12:07	LB106689
	Copper	-4.16	2.0	208	-18	22	12/11/2019	12:07	LB106689
	Iron	104000	100700	103	80560	120840	12/11/2019	12:07	LB106689
	Lead	2.96			-12	12	12/11/2019	12:07	LB106689
	Magnesium	267000	255400	104	204320	306480	12/11/2019	12:07	LB106689
	Manganese	15.0	7.0	214	-13	27	12/11/2019	12:07	LB106689
	Nickel	18.0	2.0	900	-38	42	12/11/2019	12:07	LB106689
	Potassium	-35.1			0	0	12/11/2019	12:07	LB106689
	Selenium	1.67			-20	20	12/11/2019	12:07	LB106689
	Silver	-0.099			-10	10	12/11/2019	12:07	LB106689
	Sodium	47.9			0	0	12/11/2019	12:07	LB106689
	Thallium	1.54			-40	40	12/11/2019	12:07	LB106689
	Vanadium	-9.80			-40	40	12/11/2019	12:07	LB106689
	Zinc	5.12			-40	40	12/11/2019	12:07	LB106689
ICSAB01	Aluminum	261000	246800	106	197440	296160	12/11/2019	12:11	LB106689
	Antimony	638	618	103	494	742	12/11/2019	12:11	LB106689
	Arsenic	121	104	116	83	125	12/11/2019	12:11	LB106689
	Barium	507	537	94	337	737	12/11/2019	12:11	LB106689
	Beryllium	477	495	96	396	594	12/11/2019	12:11	LB106689
	Cadmium	983	972	101	778	1166	12/11/2019	12:11	LB106689
	Calcium	241000	234900	103	187920	281880	12/11/2019	12:11	LB106689
	Chromium	550	542	102	434	650	12/11/2019	12:11	LB106689
	Cobalt	503	476	106	381	571	12/11/2019	12:11	LB106689
	Copper	464	511	91	409	613	12/11/2019	12:11	LB106689
	Iron	102000	99320	103	79456	119184	12/11/2019	12:11	LB106689
	Lead	50.9	49.0	104	39	59	12/11/2019	12:11	LB106689
	Magnesium	258000	248000	104	198400	297600	12/11/2019	12:11	LB106689
	Manganese	487	507	96	406	608	12/11/2019	12:11	LB106689
	Nickel	1000	954	105	763	1145	12/11/2019	12:11	LB106689
	Potassium	-19.4			0	0	12/11/2019	12:11	LB106689
	Selenium	55.4	46.0	120	11	81	12/11/2019	12:11	LB106689
	Silver	207	201	103	161	241	12/11/2019	12:11	LB106689
	Sodium	63.8			0	0	12/11/2019	12:11	LB106689
	Thallium	85.6	108	79	83	133	12/11/2019	12:11	LB106689
	Vanadium	471	491	96	393	589	12/11/2019	12:11	LB106689
	Zinc	1000	952	105	762	1142	12/11/2019	12:11	LB106689

K6235 106 of 140

Metals - 4 -INTERFERENCE CHECK SAMPLE

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

ICS Source: EPA Instrument ID: P4

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Low Limit (ug/L)	High Limit (ug/L)	Analysis Date	Analysis Time	Run Number
F 2D		~ 8 ~	5'		<i>∵ ⊕ =)</i>	∵ਭਾ≕∕			
IOC 125	A mti	20.1			50	50	10/10/0010	12.20	I D10/200
ICSA01	Antimony	32.1			-50 20	50	12/12/2019	13:29	LB106729
	Arsenic	17.5		00	-20	20	12/12/2019	13:29	LB106729
	Barium	5.93	6.0	99	-94	106	12/12/2019	13:29	LB106729
	Beryllium	5.05	1.0	11.4	-6 5	6	12/12/2019	13:29	LB106729
	Calmium	-1.14	1.0	114	-5 105600	7	12/12/2019	13:29	LB106729
	Calcium Chromium	235000	244500 52.0	96	195600	293400	12/12/2019	13:29	LB106729 LB106729
		57.5 4.94	32.0	111	42 -30	62 30	12/12/2019	13:29	LB106729 LB106729
	Copper	4.94 1.49	2.0	7.4	-30 -18	30 22	12/12/2019 12/12/2019	13:29 13:29	LB106729 LB106729
	Copper	1.49 97900	100700	74 97	-18 80560	120840	12/12/2019 12/12/2019	13:29	LB106729 LB106729
	Iron Lead	9/900 -1.61	100/00	91	-12	120840	12/12/2019 12/12/2019	13:29	LB106729 LB106729
	Lead Magnesium	-1.61 250000	255400	98	-12 204320	12 306480	12/12/2019 12/12/2019	13:29 13:29	LB106729 LB106729
	Manganese	10.3	255400 7.0		-13	306480 27	12/12/2019	13:29	LB106729 LB106729
	Nickel	17.5	2.0	148 875	-13 -38	42	12/12/2019	13.29	LB106729 LB106729
	Potassium	-92.8	2.0	013	0	0	12/12/2019	13.29	LB106729 LB106729
	Selenium	-92.8 -6.50			-20	20	12/12/2019	13:29	LB106729
	Silver	-0.42			-10	10	12/12/2019	13:29	LB106729
	Sodium	33.3			0	0	12/12/2019	13:29	LB106729
	Thallium	4.09			-40	40	12/12/2019	13:29	LB106729
	Vanadium	-7.88			-40	40	12/12/2019	13:29	LB106729
	Zinc	1.49			-40	40	12/12/2019	13:29	LB106729
ICSAB01	Aluminum	265000	246800	107	197440	296160	12/12/2019	13:33	LB106729
	Antimony	666	618	108	494	742	12/12/2019	13:33	LB106729
	Arsenic	118	104	114	83	125	12/12/2019	13:33	LB106729
	Barium	538	537	100	337	737	12/12/2019	13:33	LB106729
	Beryllium	530	495	107	396	594	12/12/2019	13:33	LB106729
	Cadmium	1030	972	106	778	1166	12/12/2019	13:33	LB106729
	Calcium	248000	234900	106	187920	281880	12/12/2019	13:33	LB106729
	Chromium	584	542	108	434	650	12/12/2019	13:33	LB106729
	Cobalt	529	476	111	381	571	12/12/2019	13:33	LB106729
	Copper	509	511	100	409	613	12/12/2019	13:33	LB106729
	Iron	102000	99320	103	79456	119184	12/12/2019	13:33	LB106729
	Lead	45.1	49.0	92	39	59	12/12/2019	13:33	LB106729
	Magnesium	264000	248000	106	198400	297600	12/12/2019	13:33	LB106729
	Manganese	527	507	104	406	608	12/12/2019	13:33	LB106729
	Nickel	1050	954	110	763	1145	12/12/2019	13:33	LB106729
	Potassium	-49.9			0	0	12/12/2019	13:33	LB106729
	Selenium	63.6	46.0	138	11	81	12/12/2019	13:33	LB106729
	Silver	220	201	110	161	241	12/12/2019	13:33	LB106729
	Sodium	62.5			0	0	12/12/2019	13:33	LB106729
	Thallium	83.1	108	77	83	133	12/12/2019	13:33	LB106729
	Vanadium	510	491	104	393	589	12/12/2019	13:33	LB106729
	Zinc	1070	952	112	762	1142	12/12/2019	13:33	LB106729

K6235 107 of 140

6

A

С

D

.

METAL QC DATA

metals - 5a -MATRIX SPIKE SUMMARY

client: LiRo Engineers, Inc. level: low sdg no.: K6235

contract: LIRO01 lab code: CHEM case no.: K6235 sas no.: K6235

matrix: Water sample id: K6235-01 client id: MW-08MS

			sumpre rav	110255 01		_	1.1.1. 001.15		_	
Percent Solids	for Sample:	NA	Spiked ID:	K6235-0	1MS	Percent Sol	ids for Spike Sa	ample:	NA	
Analyte	Units	Acceptance Limit %R	Spiked Result C	Sample Result	C	Spike Added	% Recovery	Qual	M	
Aluminum	ug/L	75 - 125	977	50.0	U	1000	98		P	
Antimony	ug/L	75 - 125	470	23.6	J	400	111		P	
Arsenic	ug/L	75 - 125	455	8.82	J	400	112		P	
Barium	ug/L	75 - 125	223	116		100	107		P	
Beryllium	ug/L	75 - 125	96.6	3.00	U	100	97		P	
Cadmium	ug/L	75 - 125	102	0.30	J	100	101		P	
Calcium	ug/L	75 - 125	267000	268000		500	-133		P	
Chromium	ug/L	75 - 125	218	5.00	U	200	109		P	
Cobalt	ug/L	75 - 125	109	2.64	J	100	106		P	
Copper	ug/L	75 - 125	168	5.51	J	150	108		P	
Iron	ug/L	75 - 125	3780	2140		1500	109		P	
Lead	ug/L	75 - 125	521	2.33	J	500	104		P	
Magnesium	ug/L	75 - 125	48000	47600		1000	41		P	
Manganese	ug/L	75 - 125	489	401		100	88		P	
Nickel	ug/L	75 - 125	268	5.96	J	250	105		P	
Potassium	ug/L	75 - 125	19700	13800		5000	119		P	
Selenium	ug/L	75 - 125	1110	50.2		1000	106		P	
Silver	ug/L	75 - 125	41.2	5.00	U	37.5	110		P	
Sodium	ug/L	75 - 125	10600	8850		1500	118		P	
Γhallium	ug/L	75 - 125	1040	20.0	U	1000	104		P	
Vanadium	ug/L	75 - 125	155	20.0	U	150	103		P	
Zinc	ug/L	75 - 125	242	137		100	105		P	
	-									

K6235 **109 of 140**

metals - 5a -MATRIX SPIKE DUPLICATE SUMMARY

client: LiRo Engineers, Inc. level: low sdg no.: K6235

contract: LIRO01 lab code: CHEM case no.: K6235 sas no.: K6235

matrix: Water sample id: K6235-01 client id: MW-08MSD

			sumpre rui	110200 01		_	11211 0011101	*	_	
Percent Solids	for Sample:	NA	Spiked ID:	K6235-0	1MSD	Percent Sol	ids for Spike Sa	mple:	NA	
Analyte	Units	Acceptance Limit %R	MSD Result C	Sample Result	C	Spike Added	% Recovery	Qual	M	
Aluminum	ug/L	75 - 125	946	50.0	U	1000	95		P	
Antimony	ug/L	75 - 125	467	23.6	J	400	111		P	
Arsenic	ug/L	75 - 125	450	8.82	J	400	110		P	
Barium	ug/L	75 - 125	223	116		100	107		P	
Beryllium	ug/L	75 - 125	95.9	3.00	U	100	96		P	
Cadmium	ug/L	75 - 125	101	0.30	J	100	100		P	
Calcium	ug/L	75 - 125	270000	268000		500	527		P	
Chromium	ug/L	75 - 125	217	5.00	U	200	108		P	
Cobalt	ug/L	75 - 125	108	2.64	J	100	105		P	
Copper	ug/L	75 - 125	166	5.51	J	150	107		P	
lron	ug/L	75 - 125	3800	2140		1500	111		P	
Lead	ug/L	75 - 125	520	2.33	J	500	104		P	
Magnesium	ug/L	75 - 125	48500	47600		1000	95		P	
Manganese	ug/L	75 - 125	494	401		100	93		P	
Nickel	ug/L	75 - 125	266	5.96	J	250	104		P	
Potassium	ug/L	75 - 125	19900	13800		5000	122		P	
Selenium	ug/L	75 - 125	1110	50.2		1000	106		P	
Silver	ug/L	75 - 125	40.8	5.00	U	37.5	109		P	
Sodium	ug/L	75 - 125	10700	8850		1500	123		P	
Гhallium	ug/L	75 - 125	1040	20.0	U	1000	104		P	
Vanadium	ug/L	75 - 125	155	20.0	U	150	103		P	
Zinc	ug/L	75 - 125	242	137		100	105		P	

K6235 110 of 140

metals - 5a -

MATRIX SPIKE SUMMARY

client:	LiRo Engineers, Ir	nc.	leve	l: <u>1</u>	low		sdg no.:	K6235		_		
contract:	LIRO01		lab o	code:	CHEN	1	case no.:	K6235	sa	s no.:	K6235	
matrix:	Water		sample io	l: <u>]</u>	K6235-04		_ client id:	DUPMS		_		
Percent So	olids for Sample:	NA	Spiked II	D:	K6235-04	MS	Percent Solid	ls for Spike Sa	mple:	N.	A	
		Acceptance	Spiked		Sample		Spike	%				
Analyte	Units	Limit %R	Result	C	Result	C	Added	Recovery	Qual	M		
Mercury	ug/L	75 - 125	3.45		0.20	U	4.0	86		CV		_

K6235 111 of 140

metals

- 5a -

MATRIX SPIKE DUPLICATE SUMMARY

client:	LiRo Engineers, Ir	nc.	leve	l: low	I		sdg no.:	K6235		_	
contract:	LIRO01		lab o	code:	CHEM		case no.:	K6235	sa	s no.:	K6235
matrix:	Water		sample ic	d: <u>K6</u>	235-04		_ client id:	DUPMSD		_	
Percent So	olids for Sample:	NA	Spiked II	D: K	[6235-04]	MSD	Percent Solid	ls for Spike Sa	mple:	NA	A
		Acceptance	MSD	S	ample		Spike	%			
Analyte	Units	Limit %R	Result	C R	esult	\mathbf{C}	Added	Recovery	Qual	M	
Mercury	ug/L	75 - 125	3.46	0.2	20	U	4.0	86		CV	

K6235 112 of 140

Metals - 5b -

Client:	LiRo Engineers,	Inc.				SDG No.:	K6235		_	
Contract:	LIRO01		Lab Code	: CHEM	[Case No.:	K6235	S.	AS No.:	K6235
Matrix:			Level:	LOW		_ Client ID:				
Sample ID:	:		Spiked ID:							
		Acceptance		Sample		Spike	%			
Analyte	Units	Limit %R	C	Result	\mathbf{C}	Added	Recovery	Qual	M	
- Inuite	Ones	Zimit /VIX		Itosuit		- Tuucu	recevery	Quui	.,,	

K6235 113 of 140

- 6 -

DUPLICATE SAMPLE SUMMARY

Client: LiRo Engineers, Inc. Level: LOW SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Matrix: Water Sample ID: K6235-01 Client ID: MW-08DUP

Percent Solids for Sample: NA **Duplicate ID** K6235-01DUP Percent Solids for Spike Sample: NA **Duplicate** Acceptance Sample RPD Units Limit Result \mathbf{C} Result \mathbf{C} Qual M Analyte Aluminum ug/L 20 50.0 U 50.0 U P 23.6 P Antimony ug/L 20 J 23.9 J 1 9.96 Arsenic 20 8.82 J J 12 P ug/L P 20 0 Barium ug/L 116 116 U P Beryllium 20 3.00 3.00 U ug/L Cadmium ug/L 20 0.30 J 0.30 J 2 P Calcium 20 268000 0 P 268000 ug/L U P Chromium ug/L 20 5.00 5.00 U Cobalt 20 2.64 J J 2 P ug/L 2.69 P Copper ug/L 20 5.51 J 6.31 J 14 20 2140 0 P Iron ug/L 2140 P Lead ug/L 20 2.33 J 3.64 J 44 20 47600 47400 0 P Magnesium ug/L Manganese ug/L 20 401 402 0 P Nickel 20 5.96 J 5.48 J 8 P ug/L P Potassium ug/L 20 13800 13700 1 20 50.2 2 P Selenium ug/L 49.3 Silver ug/L 20 5.00 U 5.00 U P Sodium 20 8850 0 P 8840 ug/L ug/L P Thallium 20 20.0 U 20.0 U Vanadium 20 20.0 U 20.0 U P ug/L

136

P

K6235

Zinc

ug/L

20

137

114 of 140

[&]quot;A control limit of $\pm 20\%$ RPD for each matrix applies for sample values greater than 10 times Detection Limit"

Zinc

ug/L

20

242

Metals

- 6 -

DUPLICATE SAMPLE SUMMARY

Client: LiRo Engineers, Inc. Level: LOW SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Matrix: Water Sample ID: K6235-01MS Client ID: MW-08MSD

Percent Solids for Sample: NA **Duplicate ID** K6235-01MSD Percent Solids for Spike Sample: NA **Duplicate** Acceptance Sample \mathbf{C} Units Limit Result Result \mathbf{C} **RPD** Qual M Analyte Aluminum ug/L 20 977 946 3 P P Antimony ug/L 20 470 467 1 Arsenic 20 455 450 1 P ug/L 0 P 20 223 223 Barium ug/L 20 P Beryllium 96.6 95.9 1 ug/L Cadmium ug/L 20 102 101 1 P Calcium 20 267000 270000 1 P ug/L 0 P Chromium ug/L 20 218 217 Cobalt 20 109 108 1 P ug/L P Copper ug/L 20 168 166 1 20 3780 1 P Iron ug/L 3800 Lead ug/L 20 521 520 0 P 20 48000 48500 1 P ug/L Magnesium ug/L Manganese 20 489 494 P Nickel 20 268 1 P ug/L 266 P Potassium ug/L 20 19700 19900 1 20 1110 0 P Selenium ug/L 1110 Silver ug/L 20 41.2 40.8 1 P Sodium 20 10600 10700 1 P ug/L ug/L 0 P Thallium 20 1040 1040 155 Vanadium 20 155 0 P ug/L

242

P

0

K6235 115 of 140

[&]quot;A control limit of $\pm 20\%$ RPD for each matrix applies for sample values greater than 10 times Detection Limit"

- 6 -

DUPLICATE SAMPLE SUMMARY

 Client:
 LiRo Engineers, Inc.
 Level:
 LOW
 SDG No.:
 K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Matrix: Water Sample ID: K6235-04 Client ID: DUPDUP

Percent Solids for Sample: NA Duplicate ID K6235-04DUP Percent Solids for Spike Sample: NA

		Acceptance	Sample		Duplicate				
Analyte	Units	Limit	Result	C	Result	C	RPD	Qual	M
Mercury	ug/L	20	0.20	U	0.20	U			CV

K6235

116 of 140

- 6 -

DUPLICATE SAMPLE SUMMARY

Client: LiRo Engineers, Inc. Level: LOW SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Matrix: Water Sample ID: K6235-04MS Client ID: DUPMSD

Percent Solids for Sample: NA Duplicate ID K6235-04MSD Percent Solids for Spike Sample: NA

		Acceptance	Sample		Duplicate				
Analyte	Units	Limit	Result	C	Result	C	RPD	Qual	M
Mercury	ug/L	20	3.45		3.40	6	0		CV

K6235

117 of 140

- 7 -

LABORATORY CONTROL SAMPLE SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Analyte	Units	True Value	Result	C	% Recovery	Acceptance Limits	M
PB125377BS	Cints	Truc value	Result		Recovery	Limits	171
Aluminum	ug/L	1000	1100		110	80 - 120	P
Antimony	ug/L	400	433		108	80 - 120	P
Arsenic	ug/L	400	414		104	80 - 120	P
Barium	ug/L	100	114		114	80 - 120	P
Beryllium	ug/L	100	101		101	80 - 120	P
Cadmium	ug/L	100	98.5		98	80 - 120	P
Calcium	ug/L	500	554	J	111	80 - 120	P
Chromium	ug/L	200	218		109	80 - 120	P
Cobalt	ug/L	100	105		105	80 - 120	P
Copper	ug/L	150	172		115	80 - 120	P
Iron	ug/L	1500	1620		108	80 - 120	P
Lead	ug/L	500	509		102	80 - 120	P
Magnesium	ug/L	1000	1070		107	80 - 120	P
Manganese	ug/L	100	105		105	80 - 120	P
Nickel	ug/L	250	265		106	80 - 120	P
Potassium	ug/L	5000	5170		103	80 - 120	P
Selenium	ug/L	1000	918		92	80 - 120	P
Silver	ug/L	37.5	39.3		105	80 - 120	P
Sodium	ug/L	1500	1640		109	80 - 120	P
Thallium	ug/L	1000	1070		107	80 - 120	P
Vanadium	ug/L	150	161		107	80 - 120	P
Zinc	ug/L	100	110		110	80 - 120	P

K6235 118 of 140

- 7 -

LABORATORY CONTROL SAMPLE SUMMARY

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Analyte	Units	True Value	Result C	% Recovery	Acceptance Limits	M
PB125428BS Mercury	ug/L	4.0	3.79	95	80 - 120	CV

K6235 119 of 140

-9 -

ICP SERIAL DILUTIONS

	SAMPLE NO.
MW-08L	MW-08L

Lab Name:	Chemtec	h Consulting	Group			Contract:	LIRO01	<u>-</u>	
Lab Code:	CHEM		Lb No.:	lb106689	Lab Sample ID :	K6235-01L	SDG No.:	K6235	
Matrix (soil/v	water):	Water			Level (low/	med):	LOW		

Concentration Units: ug/L

Analyte	Initial Sample Result (I)	-			Serial Dilution Result (S) C			Q	М
Aluminum	5	0.0	U	2	250	U			P
Antimony	2	23.6	J	6	7.1	J	184		P
Arsenic	8	3.82	J	5	0.0	U	100.0		P
Barium		116			126	J	9		P
Beryllium	3	00.5	U	1	5.0	U			P
Cadmium		0.30	J	1	5.0	U	100.0		P
Calcium	268	000		2780	000		4		P
Chromium	5	5.00	U	2	5.0	U			P
Cobalt	2	2.64	J	6	.76	J	156		P
Copper	5	5.51	J	1	6.6	J	201		P
Iron	2	140		2	120		1		P
Lead	2	2.33	J	3	0.0	U	100.0		P
Magnesium	47	600		502	200		5		P
Manganese		401		4	125		6		P
Nickel	5	5.96	J		100	U	100.0		P
Potassium	13	800		12	700		8		P
Selenium	5	0.2			172		243		P
Silver	5	5.00	U	2	5.0	U			P
Sodium	8	850		83	370		5		P
Thallium	2	0.0	U		100	U			P
Vanadium	2	0.0	U		100	U			P
Zinc		137			136		1		P

K6235 **120 of 140**

-9 -

ICP SERIAL DILUTIONS

						SAM	MPLE NO.	
						Ι	OUPL	
∠ab	Name: Chemte	ch Consulting Grou	ıp	Contr	ract: LIRO01			
∠ab	Code: CHEM	Lb	No.: lb106736	Lab Sample ID: K62	35-04L	SDG No.: K6	5235	
/Iat	rix (soil/water):	Water	<u>_</u>	Level (low/med):	<u>L</u> (OW		
		C	oncentration Units:	ug/L				
	Analyte	Initial Samp Result (I)	le C	Serial Dilution Result (S)	C	% Differ- ence	Q	M
H	Marcury		0.201.11		100 11			CV

K6235 **121 of 140**

METAL PREPARATION & INSTRUMENT DATA

K6235 **122 of 140**

- 10 -

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Instrument ID: P4 Preparation Method:

Analyte	Wave-length (nm)	MDL	LOQ/CRQL Date:	
LIQUID				
Method:	6010D			
Aluminum	396	5.29	50.0	
Antimony	207	2.03	25.0	
Arsenic	189	0.68	10.0	
Barium	493	3.99	50.0	
Beryllium	235	0.20	3.00	
Cadmium	227	0.17	3.00	
Calcium	374	88.5	1000	
Chromium	268	1.33	5.00	
Cobalt	229	1.09	15.0	
Copper	225	0.49	10.0	
Iron	240	7.85	50.0	
Lead	220	1.43	6.00	
Magnesium	279	104	1000	
Manganese	258	0.98	10.0	
Nickel	232	1.69	20.0	
Potassium	766	179	1000	
Selenium	196	2.79	10.0	
Silver	328	0.17	5.00	
Sodium	590	169	1000	
Thallium	191	2.88	20.0	
Vanadium	292	1.39	20.0	
Zinc	214	4.81	20.0	

K6235 **123 of 140**

Client: LiRo Engineers, Inc. SDG No.: K6235

Contract: LIRO01 Lab Code: CHEM Case No.: K6235 SAS No.: K6235

Instrument ID: CV1 **Preparation Method:**

Analyte	Wave-length (nm)	MDL	LOQ/CRQL Date:
LIQUID			
Method:	7470A		
Mercury	254	0.043	0.20

K6235 **124 of 140**

ICP INTERELEMENT CORRECTION FACTORS

Client:	LiRo Engineers, Inc.			SDG No.:	K6235			
Contract:	LIRO01	Lab Code:	CHEM	Case No.:	K6235	SAS No.:	K6235	
Instrument	ID:	<u> </u>		Date:				
Interelement	Correction Factors (apparer	nt ppb analyte/ppm interferent)						

	Wave-	ICP In	terelement Corre	ction Factors For:	:	
Analyte	Length (nm)	Al	Ca	Fe	Mg	Ag
Aluminum	396.100	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.833	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Arsenic	193.759	0.0000000	0.0000000	-0.0001030	0.0000000	0.00000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Beryllium	234.861	0.0000000	0.0000000	0.0000090	0.0000000	0.00000
Cadmium	226.502	0.0000000	0.0000000	0.0000840	0.0000000	0.00000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Copper	224.700	0.0000000	0.0000000	0.0001620	0.0000000	0.00000
Iron	240.488	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Lead	220.353	-0.0001070	0.0000000	0.0000280	0.0000000	0.00000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Manganese	257.610	0.0000000	0.0000000	-0.0000440	0.0000000	0.00000
Nickel	231.604	0.0000000	0.0000000	0.0000200	0.0000000	0.00000
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Selenium	196.090	0.0000000	0.0000000	-0.0001280	0.0000000	0.00000
Silver	328.068	0.0000000	0.0000000	-0.0001170	0.0000000	0.00000
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Thallium	190.856	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Zinc	213.800	0.0000000	0.0000000	0.0001900	0.0000000	0.00000

K6235 **125 of 140**

ICP INTERELEMENT CORRECTION FACTORS

Client:	LiRo Engineers, Inc.			SDG No.:	K6235			
Contract:	LIRO01	Lab Code:	CHEM	Case No.:	K6235	SAS No.:	K6235	
Instrument	ID:			Date:				
Interelement	Correction Factors (apparen	nt ppb analyte/ppm interferent)						

	Wave-	ICP Int	terelement Correc	tion Factors For:	:	
Analyte	Length (nm)	As	Ba	Be	Cd	Со
Aluminum	396.100	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.833	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Arsenic	193.759	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Copper	224.700	0.0000000	0.0000000	0.0000000	0.0000000	0.00015
Iron	240.488	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.00041
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0000000	-0.00026
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Thallium	190.856	0.0000000	0.0000000	0.0000000	0.0000000	0.00185
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Zinc	213.800	0.0000000	0.0000000	0.0000000	0.0000000	0.00000

K6235 **126 of 140**

ICP INTERELEMENT CORRECTION FACTORS

Client:	LiRo Engineers, Inc.			SDG No.:	K6235			
Contract:	LIRO01	Lab Code:	CHEM	Case No.:	K6235	SAS No.:	K6235	
Instrument	ID:	<u></u>		Date:				
Interelement	Correction Factors (apparen	t ppb analyte/ppm interferent)						

	Wave-	ICP In	terelement Correc	ction Factors For	:	
Analyte	Length (nm)	Cr	Cu	K	Mn	Mo
Aluminum	396.100	0.0000000	0.0000000	0.0000000	0.0000000	0.030824
Antimony	206.833	0.0013816	0.0000000	0.0000000	0.0000000	0.000000
Arsenic	193.759	-0.0011220	0.0000000	0.0000000	0.0000000	0.001530
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	-0.0000740	-0.000318
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	-0.000060
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0002280	0.00000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	-0.001190
Copper	224.700	0.0000000	0.0000000	0.0000000	0.0000000	0.00146
Iron	240.488	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Lead	220.353	-0.0003060	0.0000000	0.0000000	0.0001250	-0.00136
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	-0.01377
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.00205
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0006680	0.00000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Thallium	190.856	0.0002250	0.0000000	0.0000000	0.0011640	0.00000
Vanadium	292.402	-0.0032600	0.0000000	0.0000000	-0.0220050	-0.00037
Zinc	213.800	0.0000000	0.0000000	0.0000000	0.0000000	0.00000

K6235 **127 of 140**

ICP INTERELEMENT CORRECTION FACTORS

Client:	LiRo Engineers, Inc.			SDG No.:	K6235			
Contract:	LIRO01	Lab Code:	CHEM	Case No.:	K6235	SAS No.:	K6235	
Instrument	ID:	_		Date:				
Interelement	Correction Factors (apparer	t ppb analyte/ppm interferent)						

	Wave-	ICP In	terelement Correc	ction Factors For	:	
Analyte	Length (nm)	Na	Ni	Pb	Sb	Se
Aluminum	396.100	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.833	0.0000000	-0.0004160	0.0000000	0.0000000	0.000000
Arsenic	193.759	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	-0.0000930	0.0000000	0.0000000	0.000000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Cobalt	228.616	0.0000000	0.0001600	0.0000000	0.0000000	0.00000
Copper	224.700	0.0000000	-0.0049290	0.0000000	0.0000000	0.00000
Iron	240.488	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Lead	220.353	0.0000000	0.0002444	0.0000000	0.0000000	0.00000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Silver	328.068	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Thallium	190.856	0.0000000	0.0000000	0.0000000	0.0000000	0.00000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	213.800	0.0000000	0.0057000	0.0000000	0.0000000	0.000000

K6235 **128 of 140**

ICP INTERELEMENT CORRECTION FACTORS

Client:	LiRo Engineers, Inc.			SDG No.:	K6235			
Contract:	LIRO01	Lab Code:	CHEM	Case No.:	K6235	SAS No.:	K6235	
Instrument	ID:	_		Date:				
Interelement	Correction Factors (apparer	t ppb analyte/ppm interferent)						

	Wave-	ICP Int	terelement Correc	ction Factors For	:	
Analyte	Length (nm)	Sn	Ti	Tl	v	Zn
Aluminum	396.100	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Antimony	206.833	0.0000000	0.0000000	0.0000000	-0.0018200	0.000000
Arsenic	193.759	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Barium	493.409	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Beryllium	234.861	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cadmium	226.502	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Calcium	373.690	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Chromium	267.716	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Cobalt	228.616	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Copper	224.700	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Iron	240.488	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Lead	220.353	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Magnesium	279.079	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Manganese	257.610	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Nickel	231.604	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Potassium	766.490	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Selenium	196.090	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Silver	328.068	0.0000000	0.0000000	0.0000000	-0.0040370	0.000000
Sodium	589.592	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Thallium	190.856	0.0000000	0.0000000	0.0000000	-0.0346560	0.000000
Vanadium	292.402	0.0000000	0.0000000	0.0000000	0.0000000	0.000000
Zinc	213.800	0.0000000	0.0000000	0.0000000	0.0000000	0.000000

K6235 **129 of 140**

METAL PREPARATION & ANALYICAL SUMMARY

K6235 130 of 140

SAMPLE PREPARATION SUMMARY

 Client:
 LiRo Engineers, Inc.
 SDG No.:
 K6235

 Contract:
 LIRO01
 Lab Code:
 CHEM
 Method:

Case No.: K6235 SAS No.: K6235

						Final Sample		F
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Volume (mL)	Percent Solids	G
•		Туре	Matrix	Trep Date	Size(IIIL)		Solius	Н
Batch Number	: PB125377							
K6235-01	MW-08	SAM	WATER	12/11/2019	50.0	25.0		
K6235-01DUP	MW-08DUP	DUP	WATER	12/11/2019	50.0	25.0		
K6235-01MS	MW-08MS	MS	WATER	12/11/2019	50.0	25.0		
K6235-01MSD	MW-08MSD	MSD	WATER	12/11/2019	50.0	25.0		
K6235-02	MW-07	SAM	WATER	12/11/2019	50.0	25.0		
K6235-03	MW-03	SAM	WATER	12/11/2019	50.0	25.0		
K6235-04	DUP	SAM	WATER	12/11/2019	50.0	25.0		
PB125377BL	PB125377BL	MB	WATER	12/11/2019	50.0	25.0		
PB125377BS	PB125377BS	LCS	WATER	12/11/2019	50.0	25.0		

K6235 131 of 140

SAMPLE PREPARATION SUMMARY

 Client:
 LiRo Engineers, Inc.
 SDG No.:
 K6235

 Contract:
 LIRO01
 Lab Code:
 CHEM
 Method:

Case No.: K6235 SAS No.: K6235

						Final Sample	
Sample ID	Client ID	Sample Type	Matrix	Prep Date	Initial Sample Size(mL)	Volume (mL)	Percent Solids
Batch Number:	: PB125428						
K6235-01	MW-08	SAM	WATER	12/12/2019	30.0	30.0	
K6235-02	MW-07	SAM	WATER	12/12/2019	30.0	30.0	
K6235-03	MW-03	SAM	WATER	12/12/2019	30.0	30.0	
K6235-04	DUP	SAM	WATER	12/12/2019	30.0	30.0	
K6235-04DUP	DUPDUP	DUP	WATER	12/12/2019	30.0	30.0	
K6235-04MS	DUPMS	MS	WATER	12/12/2019	30.0	30.0	
K6235-04MSD	DUPMSD	MSD	WATER	12/12/2019	30.0	30.0	
PB125428BL	PB125428BL	MB	WATER	12/12/2019	30.0	30.0	
PB125428BS	PB125428BS	LCS	WATER	12/12/2019	30.0	30.0	

K6235 **132 of 140**

metals - 14 -ANALYSIS RUN LOG

lient:	LiRo Engineers, Inc.	Contract:	LIRO01	
--------	----------------------	-----------	--------	--

Lab code: CHEM Case no.: K6235 Sas no.: K6235 Sdg no.: K6235

Instrument id number: Method: Run number: LB106689

Lab sample id.	Client Sample Id	d/f	Time	Parameter list
50	S0	1	1127	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
1	S1	1	1131	Ag,Al,As,Ba,Be,Cd,Co,Cr,Cu,Fe,Mn,Ni,Pb,Sb,Se,Tl,V,Zn
2	S2	1	1135	Ca,K,Mg,Na
3	S3	1	1139	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
4	S4	1	1142	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
5	S5	1	1146	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CV01	ICV01	1	1150	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
LICV01	LLICV01	1	1155	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CB01	ICB01	1	1159	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CRI01	CRI01	1	1203	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CSA01	ICSA01	1	1207	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CSAB01	ICSAB01	1	1211	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV01	CCV01	1	1215	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
LCCV01	LLCCV01	1	1219	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB01	CCB01	1	1227	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV02	CCV02	1	1529	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB02	CCB02	1	1533	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
B125377BL	PB125377BL	1	1641	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
B125377BS	PB125377BS	1	1645	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV03	CCV03	1	1649	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB03	CCB03	1	1653	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV04	CCV04	1	1742	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB04	CCB04	1	1746	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
X6235-01	MW-08	1	1814	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
X6235-01DUP	MW-08DUP	1	1818	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
C6235-01L	MW-08L	5	1822	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
C6235-01MS	MW-08MS	1	1826	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV05	CCV05	1	1830	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB05	CCB05	1	1834	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
X6235-01MSD	MW-08MSD	1	1838	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
X6235-02	MW-07	1	1846	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
X6235-03	MW-03	1	1850	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
X6235-04	DUP	1	1854	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV06	CCV06	1	1917	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB06	CCB06	1	1921	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV07	CCV07	1	2004	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB07	CCB07	1	2008	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV08	CCV08	1	2052	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB08	CCB08	1	2056	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV09	CCV09	1	2139	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB09	CCB09	1	2143	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV10	CCV10	1	2228	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB10	CCB10	1	2232	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn

K6235 133 of 140

2318

2322

CCV11

CCB11

CCV11

CCB11

metals - 14 -

ANALYSIS RUN LOG

Client:	LiRo Engi	neers, Inc.							Contract	t:	I	LIRO01		
Lab code:	СНЕМ		Case no.:	K6235		Sas n	0.:	K6235	Sdg no.:		K	5235		
Instrument	t id number:	_		Meth	iod:				Run nun	nbe	er:	LB106689		
Start date:	12	/11/2019		End da	ate:	12	2/11/20)19	-					
Lab sa	ımple id.	Client Sa	mple Id		d/f	Time			Pa	ara	met	er list		

Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn

Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn

K6235 134 of 140

metals - 14 -

ANALYSIS RUN LOG

Client:	LiRo Engineers, Ir	ic.	Contract:	LIRO01				
Lab code:	CHEM	Case no.:	K6235	Sas no.:	K6235	Sdg no.:	K6235	

Method: LB106729 **Instrument id number:** Run number:

Start date:	12/12/2019	End date:	1	2/12/2019
Lab sample id.	Client Sample Id	d/f	Time	Parameter list
S0	S0	1	1241	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
S1	S1	1	1245	Ag,Al,As,Ba,Be,Cd,Co,Cr,Cu,Fe,Mn,Ni,Pb,Sb,Se,Tl,V,Zn
S2	S2	1	1249	Ca,K,Mg,Na
S3	S3	1	1253	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
S4	S4	1	1257	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
S5	S5	1	1301	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
ICV01	ICV01	1	1309	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
LLICV01	LLICV01	1	1315	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
ICB01	ICB01	1	1319	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CRI01	CRI01	1	1323	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
ICSA01	ICSA01	1	1329	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
ICSAB01	ICSAB01	1	1333	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV01	CCV01	1	1336	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
LLCCV01	LLCCV01	1	1340	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB01	CCB01	1	1344	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
K6235-03	MW-03	10	1405	Fe
CCV02	CCV02	1	1436	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB02	CCB02	1	1459	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV03	CCV03	1	1543	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB03	CCB03	1	1547	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV04	CCV04	1	1719	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB04	CCB04	1	1723	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV05	CCV05	1	1811	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB05	CCB05	1	1815	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCV06	CCV06	1	1847	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn
CCB06	CCB06	1	1851	Ag,Al,As,Ba,Be,Ca,Cd,Co,Cr,Cu,Fe,K,Mg,Mn,Na,Ni,Pb,Sb,Se,Tl,V,Zn

K6235 135 of 140

LB106736

Run number:

Instrument id number:

metals - 14 -

ANALYSIS RUN LOG

Client:	LiRo Engineers, Inc	.				Contract:	LIRO01
Lab code:	СНЕМ	_Case no.:	K6235	Sas no.:	K6235	Sdg no.:	K6235

Method:

Start date:	12/13/2019	End date:	1	2/13/2019
Lab sample id.	Client Sample Id	d/f	Time	Parameter list
S0	S0	1	1000	HG
S0.2	S0.2	1	1002	HG
S2.5	S2.5	1	1004	HG
S5	S5	1	1006	HG
S7.5	S7.5	1	1008	HG
S10	S10	1	1013	HG
ICV28	ICV28	1	1016	HG
ICB28	ICB28	1	1018	HG
CCV16	CCV16	1	1020	HG
CCB16	CCB16	1	1022	HG
CRA	CRA	1	1024	HG
CCV17	CCV17	1	1051	HG
CCB17	CCB17	1	1053	HG
PB125428BL	PB125428BL	1	1057	HG
PB125428BS	PB125428BS	1	1059	HG
K6235-01	MW-08	1	1106	HG
K6235-02	MW-07	1	1108	HG
K6235-03	MW-03	1	1110	HG
K6235-04	DUP	1	1112	HG
K6235-04DUP	DUPDUP	1	1114	HG
CCV18	CCV18	1	1116	HG
CCB18	CCB18	1	1118	HG
K6235-04MS	DUPMS	1	1123	HG
K6235-04MSD	DUPMSD	1	1125	HG
K6235-04L	DUPL	5	1129	HG
CCV19	CCV19	1	1133	HG
CCB19	CCB19	1	1135	HG

K6235 136 of 140

SHIPPING DOCUMENTS

K6235 137 of 140

284 Sheffield Street, Mountainside, NJ 07092 (908) 789-8900 Fax (908) 789-8922

Chemtech Proje	ct Number	
	1041	K6235
COC Number	2027220	

CHAIN OF COSTODY RECORD	www.c	hem	tech	n.net							6	UZ	. / .	32	U			
CLIENT INFORMATION	PRO	JECT	INFO	RMAT	ION			-			BIL	LIN	G IN	IFOF	RMA	TION	The same	TO B
Report to be sent to:	PROJECT NAME: COB-Franczxk Park						BILL TO: A POP											
COMPANY: LIKO	PROJECT #: LOCATION:					ADDRESS:												
ADDRESS: 690 Delanare AVE	PROJECT MANAGER: Jon Williams				CITY:			5	1	+	./	V 1	STAT	E:	ZIP:			
CITY: BUFFILO STATE: NY ZIP: 14209	E-MAIL: Williams Jei, Ro. com					ATTENTION:												
ATTENTION: For williams	PHONE: FAX:					PHONE:												
PHONE: 7/6 882 5476 FAX:	DATA DELIVERABLE					ANALYSIS												
DATA TURNAROUND INFORMATION		INFO						/	5/		55		//	Τ,	//	///		
FAX (RUSH)DAYS* HARDCOPY (DATA PACKAGE):DAYS*	☐ Level 1 (Results On ☐ Level 2 (Results + 0	ly) QC)		J Reduce	+ Full Raw	EPA CLP	19	10%		75	//	//	/,	//	//	//		
EDD:DAYS*	□ Level 3 (Results + QC + □ NYS ASP A NYS ASP B																	
*TO BE APPROVED BY CHEMTECH STANDARD HARDCOPY TURNAROUND TIME IS 10 BUSINESS DAYS	Raw Data) □ EDD FORMAT			other E	UIS V	4 600	4	N		4	EBV		N-	00	0			
		SAM	1PLE	I SA	MPLE			01	F	1-5		AUU	VES				MMENT:	W. Francisco
CHEMTECH PROJECT SAMPLE PROJECT	SAMPLE		PE		ECTION	ottles	2	6								A-HCI	D-NaOH	ives
SAMPLE IDENTIFICATION	MATRIX	COMP	GRAB	DATE	TIME	# of Bottles			-		-		_		-	B-HNO3	E-ICE	
		8	ō		The second		1		3	4	5	6	7	8	9	C-H2SO4	F-OTHER	
1. MW-08	water		X	12.6K	1300	2	X	X										
2. MW-07				12.7.1	1100	2	X	X										
3. MW-03				V	1145	Z	×	X										-
4. Pup	V		V	1		2	X	×										
5.																		
6.		-		-														
7.																		
8.		1 1									- 10							
9.			70.00															
10.			4/1-4															
SAMPLE CUSTODY MUST BE DOCUME	NTED BELOW EA	CH TI	ME S	SAMPL	ES CHA	NGE	PROS	SES	SIO	N IN	CLL	JDIN	IG C	OU	RIEF	R DELIV	ERY	37
RELINQUISHED BY SAMPLER DATE/TIME RECEIVED BY					collers at re													
K. Ca 12.9:19 1.	y.	13	nents							4								
PECLINQUISHED BY DATE/TIME 9:18 RECEIVED BY						_	IR-	Gin	n H	1								
12.10-19 2.																		
RELINQUISHED BY DATE/TIME RECEIVED FOR LAB BY		PA _				CLIENT	п	Hand C	elivere	ed D	Othe	ar.				Chi		
3.						☐ Hand Delivered ☐ Other: ECH: ☐ Picked Up								nent Comple				
0/2018 WHITE - CHEMTECH COPY FOR RETU	BN TO CLIENT	VELL	OW-	CHEMT	ECH COP	v	DIN	JK - S	AMD	ED	CORV	,					- 110	

ORIGIN ID:BUFA JON WILLIAMS LIRO ENGINEERS 690 DELAWARE AVE

(716) 882-5476

SHIP DATE: 07MAR19 ACTWGT: 1.00 LB CAD: 107979030/INET4100 DIMS: 10x12x10 IN

BUFFALO, NY 14209 UNITED STATES US

SAMPLE MANAGEMENT **CHEMTECH** 284 SHEFFIELD ST

565J1/46D3/23AD

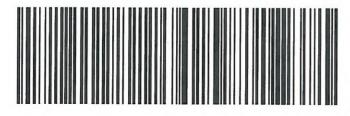
MOUNTAINSIDE NJ 07092

(908) 789-8900 INV: PO:

REF: LIRO01-BUFFALO

DEPT

RMA:


Fedex a

RETURNS MON-FRI STANDARD OVERNIGHT

7909 3818 5361

07092

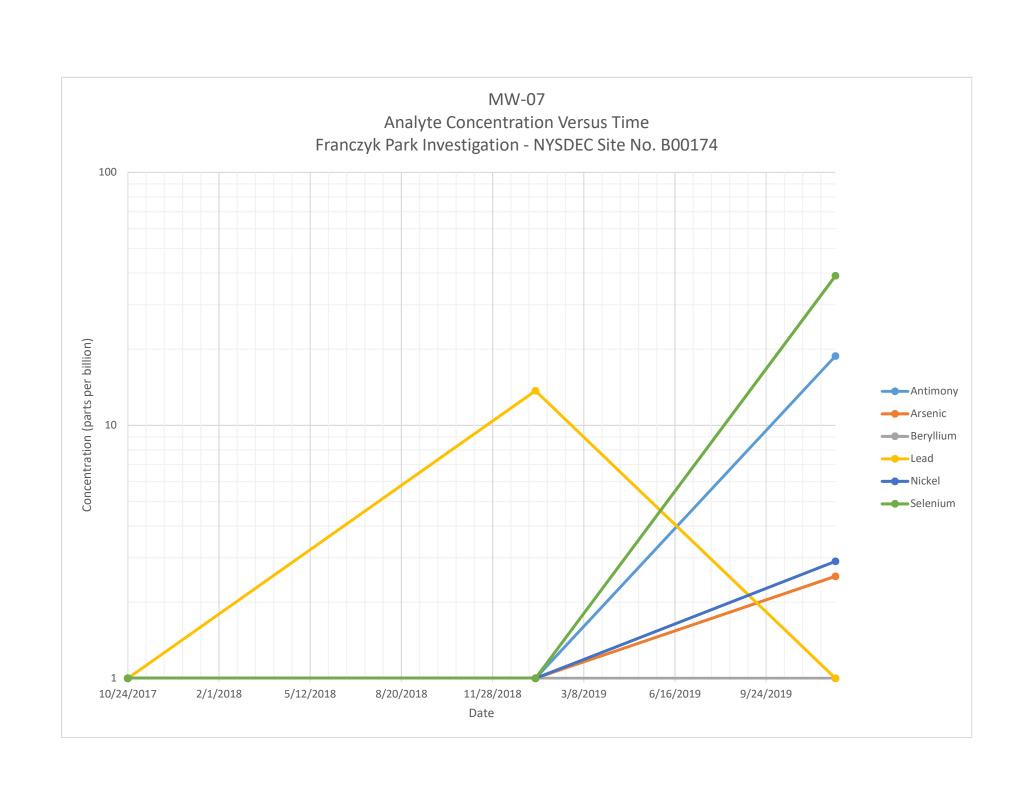
NJ-US

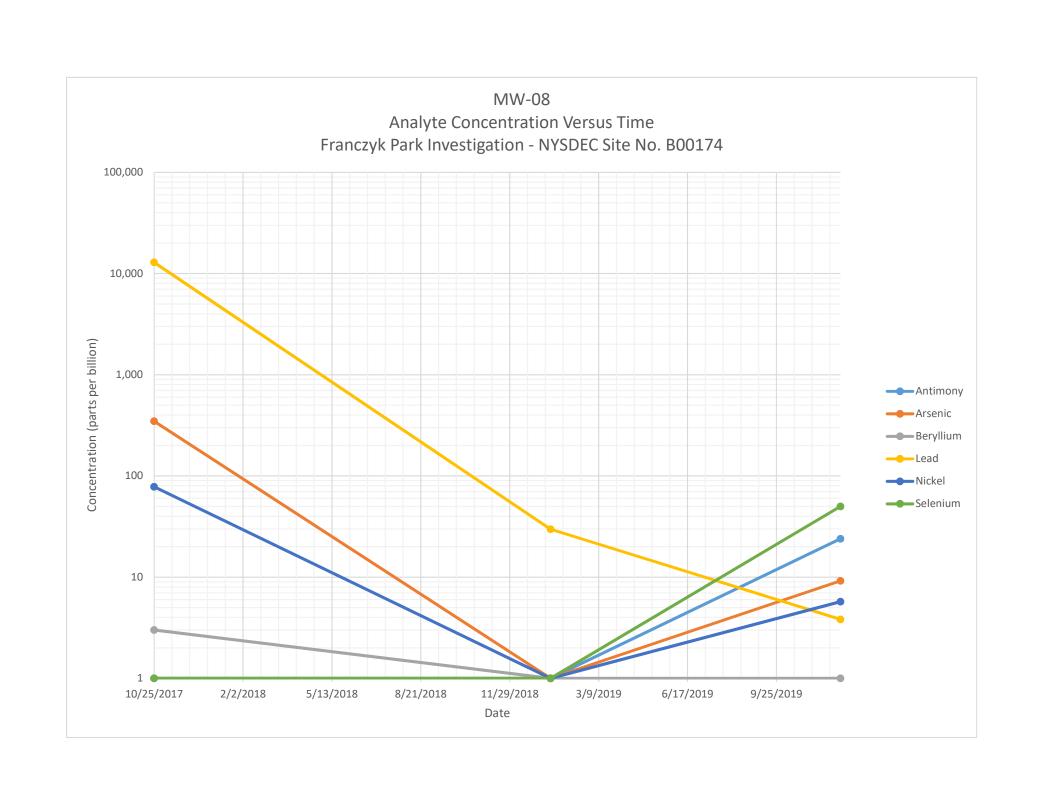
12-10-19

3 3

After printing this label:
CONSIGNEE COPY - PLEASE PLACE IN FRONT OF POUCH
1. Fold the printed page along the horizontal line.
2. Place label in shipping pouch and affix it to your shipment.

other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized your actual loss and file a timely claim. Limitations found in the current FedEx Service Guide apply. Your right to recover from delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document declared value. Recovery cannot exceed actual documented loss. Maximum for items of extraordinary value is \$1,000, e.g. FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and jewelry, precious metals, negotiable instruments and other items listed in our Service Guide. Written claims must be filed fedex.com. FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on within strict time limits, see current FedEx Service Guide.


Laboratory Certification


Certified By	License No.
CAS EPA CLP Contract	EP-W-14-030
Connecticut	PH-0649
DOD ELAP (L-A-B)	L2219
Florida	E87935
Maine	2012025
Maryland	296
New Hampshire	255413
New Jersey	20012
New York	11376
Pennsylvania	68-00548
Soil Permit	P330-13-00380
Texas	T104704488-13-5

QA Control Code: A2070148

Appendix F Concentration Versus Time Plots for Selected Metals

MW-03 Analyte Concentration Versus Time Franczyk Park Investigation - NYSDEC Site No. B00174 1,000 Concentration (parts per billion) 100 **—**Antimony -----Arsenic ----Beryllium **—**Lead Nickel Selenium 10 10/24/2017 2/1/2018 5/12/2018 11/28/2018 3/8/2019 8/20/2018 6/16/2019 9/24/2019 Date

Appendix G Corrective Action Report

February 7, 2020 Updated November 2, 2020

Megan Kuczka
Division of Environmental Remediation
New York State Department of Environmental Conservation
270 Michigan Avenue
Buffalo, New York 14203

Re: Corrective Action Work Plan
Replacement of Monitoring Well MW-05
Franczyk Park Site (B00174)
Buffalo, New York

Dear Ms. Kuczka:

On behalf of the City of Buffalo, LiRo Engineers, Inc. (LiRo) is submitting this Work Plan for the replacement of monitoring well MW-05 at the Franczyk Park site (Figure 1)The.

Background

During a routine Site inspection conducted in October 2017, monitoring well MW-05 could not be located. Several attempts were made to locate the well including with the use of a metal detector. A monitoring well lid was located in the reported vicinity of the reported well location. Subsequent excavation using a hand shovel did not identify the presence of a monitoring well and no further attempts to locate the well were performed.

Proposed Replacement Monitoring Well

LiRo is proposing to install a new monitoring well to replace monitoring well MW-05. Monitoring well MW-05R will be installed in the general vicinity of the original MW-05. The location has been moved in order to provide better protection for the new monitoring well. The proposed location for MW-05R is shown on Figure 2. The replacement monitoring well will be installed to the same approximate depth as MW-05. The well construction log for monitoring well MW-05 is attached as Attachment 1.

Monitoring Well Construction

A truck mounted drill rig will be used to advance 4-1/4-inch diameter (ID) hollow stem augers to a depth of approximately 12.5 feet below ground surface (ftbg). Continuous sampling using a split-spoon sampler will be completed through the overburden and will be supervised by LiRo's on-site geologist. The LiRo geologist will review the soil stratigraphy information to determine the final depth of MW-05R. Once the final depth of the boring is determined a monitoring well consisting of 2-inch diameter PVC well screen and riser will be installed within the borehole. The well screen will be 5-feet long and will have a #10 slot size.

Once the screen and riser are installed, a number 1 sandpack will be installed to depth of approximately 2 feet above the well screen. A 2-foot thick bentonite pellet seal will be placed above the sandpack and the remainder of the boring will be backfilled with cement/bentonite grout. The monitoring well will be completed with a lockable, expandable well plug and an at-grade protective cover.

Well Development

Following a minimum of 24 hours after installation, the replacement monitoring well will be developed using surging and pumping techniques. The well will be developed until water removed from the well is reasonably free of sediment. The well development water will be contained in 5-gallon buckets until the completion of development. At the completion of development, the contained water will be disposed into the Site interceptor trench system.

Waste Handling

Soil cuttings will be containerized in 55-gallon drums and will be properly disposed of off-site.

Groundwater Gauging and Sampling

After completion of the installation and development of MW-05R, LiRo will collect a groundwater level measurement and collect a sample for laboratory analysis. The groundwater sample will be analyzed for target compound list (TCL) semi-volatile organic compounds (SVOCs) and target analyte list (TAL) metals which are the chemicals of concern at the Site.

Schedule

It had been anticipated that the installation of replacement monitoring well MW-05 would be performed during the spring of 2020 contingent upon City of Buffalo funding and availability of a drilling contractor. However, due to the COVID pandemic, the work could not be funded. The well will be replaced as soon as possible after funding is available.

Reporting

Following completion of the replacement, development, and sampling of monitoring well MW-05R, LiRo will prepare a letter report to summarize the field activities and report the well construction details and analytical results.

Please contact me at 716-970-4136 if you have any questions regarding this work plan.

Sincerely,

LiRo Engineers, Inc.

Jon Williams Senior Geologist

Attachments

Figure 1 Topographic Site Location Map

Figure 2 Site Plan with Proposed MW-05R Location

Attachment 1 Well Installation Report – MW-05

Figures

Attachment 1