

2021 Periodic Review Report

(Reporting Period: September 15, 2020 to September 15, 2021)

Location:

Franczyk Park 550 and 564 New Babcock Street, City of Buffalo, New York, 14206 NYSDEC Site No. B00174-9

Prepared for:

City of Buffalo Office of Strategic Planning Division of Environmental Affairs 65 Niagara Square Room 901 Buffalo, New York 14202

LaBella Project No. 2212554

November 2021

Table of Contents

1.0	EXECL	JTIVE SUMMARY	1
1.	.1 Site	Summary	1
1.	.2 Effe	ectiveness of Remedial Program	2
1.	.3 Non	n-Compliance	2
1.	.4 Rec	ommendations	2
2.0		OVERVIEWBackground	
3.0		TIVENESS OF THE REMEDIAL PROGRAMTUTIONAL/ENGINEERING CONTROLS (IC/EC)	
		itutional Control Requirements and Compliance	
4.	.2 Eng	ineering Control Requirements and Compliance	3
	4.2.1	Site Cover System	3
	4.2.2	Interceptor Trench System	4
5.0 5.		MONITORING PLAN	
	5.1.1	Site-Wide Inspection	
	5.1.2	IC/EC Certification	5
5.	.2 Gro	undwater Monitoring	5
	5.2.1	Groundwater Monitoring Procedures	5
	5.2.2	Groundwater Monitoring Results	6
	5.2.3	Data Usability Summary Report	6
6.0		ECTIVE ACTIONS	
7.0		LUSIONS AND RECOMMENDATIONS	
8.0 9.0		ATIONSRENCES	

TABLE OF CONTENTS

Continued

Figures Figure 1 – Site Location Map

Figure 2 - Site Map

Figure 3 - Groundwater Contours

Tables Table 1 – Summary of Groundwater Analytical Results

Appendix 1 Inspection Form and Field Logs

Appendix 2 Photographs

Appendix 3 Site Management Periodic Review Report-Institutional and Engineering Controls

Certification Form

Appendix 4
 Appendix 5
 Appendix 6
 Laboratory Analytical Report
 Data Usability Summary Report
 MW-05R Installation Documentation

Appendix 7 Monitoring Well Concentration Versus Time Plots for Select Metals

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the approved Site Management Plan (SMP) for the Franczyk Park Site located at 550 and 564 Babcock Street in the City of Buffalo, Erie County, New York (hereafter referred to as the "Site"). This PRR was prepared on behalf of the City of Buffalo to summarize the post remedial status of the New York State Department of Environmental Conservation (NYSDE) Environmental Restoration Program (ERP) Site No. B00174. This PRR and associated Institutional and Engineering Controls (IC/EC) Certification Form have been completed for the post-remedial activities at the Site for the reporting period from September 15, 2020 to September 15, 2021.

1.1 Site Summary

The Site is a public park composed of two adjoining parcels totaling approximately 15.49 acres, located at 550 and 564 New Babcock Street in the City of Buffalo, Erie County, New York. The Site is bound by Lyman Street to the north, Fleming Street to the south, New Babcock Street to the east, and Lewis Street to the west. The Site area is characterized as a mixture of commercial, industrial, and residential.

The City of Buffalo entered into a State Assistance Contract (SAC) with the NYSDEC to complete a Site Investigation/Remedial Alternatives Report (SI/RAR) for the Site. The Site Investigation, performed in the fall of 2003 and the spring of 2004, identified contaminated subsurface soil/fill throughout the Site as well as a minor amount of contaminated surface soil/fill in some high traffic areas. Following the completion of the SI, an SI/RAR was prepared. Based on the SI/RAR, a Proposed Remedial Action Plan (PRAP) was prepared. The PRAP was finalized in the March 2005 Record of Decision (ROD) following receipt of public input. A Remedial Action Work Plan (RAWP) was prepared in March 2006 to describe the specific remedial activities that were propose for the Site. December 2006, the City of Buffalo entered into an agreement with a contractor to implement the RAWP. The remedial activities completed at the Site included excavation and off-Site disposal of two hazardous contaminated soil/fill areas, installation of a groundwater interceptor trench along Fleming Street, demolition and replacement of all athletic facilities and the playground to facilitate the installation of the cover system, augmentation of the existing cover soil to achieve a minimum 24-inch cover thickness, and covering non-vegetated areas by a paving system of asphalt or concrete of at least six inches in thickness.

On June 15, 2016, a Certificate of Completion was issued by the NYSDEC indicating approval of the Final Engineering Report and satisfactory completion of the remediation phase of the environmental restoration project.

Subsequent completion of the remedial work, some contamination remained in the subsurface of the Site, referred to as "remaining contamination." A SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. The SMP addresses the means for implementing the ICs and ECs that are required by the Environmental Easement for the Site.

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the Site cover system and the groundwater interceptor trench system are intact and functioning as designed on the Site. Additionally, the groundwater sampling results indicate no semi-volatile organic compounds (SVOCs) were detected in the groundwater samples collected in August 2021 at concentrations exceeding NYSDEC standards. Limited metals parameters were identified in the groundwater samples collected from the Site at concentrations exceeding NYSDEC standards.

1.3 Non-Compliance

No areas of non-compliance regarding the major elements of the SMP were identified during the preparation of this PRR.

1.4 Recommendations

Overall, the remedial program is viewed to be effective in achieving the remedial objectives for the Site. No changes to the SMP or the frequency of PRR submissions are recommended at this time.

2.0 SITE OVERVIEW

The Site is a public park encompasses approximately 15.49-acre area and is located at 550 and 560 Babcock Street in the City of Buffalo, Erie County, New York (see Figure 1). As shown in Figure 2, the Site is bounded by Lyman Street to the north, Fleming Street to the south, New Babcock Street to the east, and Lewis Street to the west. Figure 2 depicts the Site boundaries overlain on a current aerial image.

2.1 Site Background

The Site was first developed by Buffalo Fertilizing Chemicals Works, (L.L. Crocker) as an agricultural fertilizer manufacturing facility. These manufacturing operations lasted almost a century while the facility underwent a number of name changes during its tenure as a fertilizer manufacturing facility. The parcel adjoining the northwest corner of the Site was sold to the Thaddeus Joseph Dulski Community Center, Inc. in 1975. The following year, the remainder of the Site was sold to the Industrial Refining Corporation and then to Car Salvage World in 1977. The Site was used as an automobile junk yard in the final years until Car Salvage World went Bankrupt in 1981. The Brondy Real Estate Co. acquired the Site and later sold it to the Site of Buffalo in 1984. The City of Buffalo redeveloped the Site into a park in 1987.

3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

As detailed below in Section 5.1.1, the Site cover system, groundwater interceptor trench, and groundwater monitoring wells were inspected during the annual periodic review conducted August 19, 2021. Additionally, annual groundwater samples were collected and submitted for laboratory analysis from four on-Site groundwater monitoring wells on August 19, 2021. Based on this inspection, the engineering controls are generally intact and functioning effectively; the cover system and groundwater interceptor trench system are intact and functioning effectively throughout the Site.

4.0 INSTITUTIONAL/ENGINEERING CONTROLS (IC/EC)

4.1 Institutional Control Requirements and Compliance

In accordance with the SMP, a series of Institutional Controls (ICs) have been established for the Site in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement and implemented under the SMP. The ICs include the following:

- Compliance with the Environmental Easement and the SMP by Owner and the Owner's successors and assigns;
- All Engineering Controls (ECs) must be operated and maintained as specified in the SMP;
- All ECs on the Site must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management of the Site must be reported at the frequency and in a manner defined in the SMP; and
- On-site environmental monitoring devices, including but not limited to, groundwater
 monitoring wells, must be protected and replaced as necessary to ensure the devices
 function in the manner specified in the SMP.

ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The Site has a series of ICs in the form of restrictions. Site restrictions that apply are as follows:

- The Site may only be used for public park use provided that the long-term ECs and ICs included in the SMP are employed;
- The Site may not be used for a higher level of use, such as unrestricted use without additional remediation and amendment of the Environmental Easement;
- All future activities on the Site that will disturb the cover system and/or remaining contaminated material must be conducted in accordance with the SMP;
- The use of groundwater underlying the Site is prohibited without treatment rendering it safe for intended use;
- Vegetable gardens and farming on the Site are prohibited; and
- The owner of the Site is required to provide an IC/EC certification, prepared and submitted by a professional engineer or environmental professional acceptable to the NYSDEC annually or for a period to be approved by the NYSDEC, which will certify that the ICs and ECs put in place are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC, and, nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.

LaBella has concluded that the ICs are in force and are being adhered to with respect to the condition and use of the Sites and activities conducted thereon.

4.2 Engineering Control Requirements and Compliance

4.2.1 Site Cover System

Exposure to the remaining contamination in soil/fill at the Site is prevented by cover systems placed over the Site. The cover system is comprised of a minimum of 24 inches of clean soil cover, or a

combination of asphalt or concrete pavement and clean soil cover that is a minimum 24 inches thick over all "active" areas of the Site, and a minimum of 12 inches over all "passive" areas. The cover system is a permanent control and quality and integrity of this system is inspected on an annual basis. The frequency of inspections will not change without the prior approval of the NYSDEC.

The final cover system shall be observed by traversing the cover on foot and making appropriate observations, notes and photographic records. The overall integrity of the final cover system on the Site will be assessed during inspections. The following characteristics shall be inspected during the observation of the cover system:

- Sloughing of slopes;
- · Large cracks in the soil or paved cover surface;
- Settlement of the cover system;
- Erosion;
- Distressed vegetation/turf;
- Damaged to park access controls; or
- Vehicular rutting

Repairs will be performed at all areas exhibiting deficiencies or potential problems. Remedies for deficiencies are described in the SMP.

4.2.2 Interceptor Trench System

Exposure to remaining contamination in groundwater at the Site is prevented by a groundwater interceptor trench installed along Fleming Street and Lewis Street. The groundwater interceptor trench is located along the downgradient boundary of the Site, parallel to Fleming Street and Lewis Street. A groundwater interceptor trench was also installed in between the northwestern playground and the Dulski Community Center to the north and connected to the existing interceptor trench along Lewis Street. Groundwater collected in the trench system is conveyed to the Buffalo Sewer Authority sewer system. The interceptor trench system is a permanent control and quality and integrity of this system is inspected on an annual basis.

5.0 SITE MONITORING PLAN

5.1 Site Inspection and Certification

This PRR provides the information necessary to document the IC/EC certification. The certification primarily consists of a Site inspection to complete the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form" and confirm the IC/ECs:

- Are in place, performing properly, and remain effective;
- Nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with the SMP for such controls; and
- That access is available to the Site to evaluate continued maintenance of such controls.

The Site inspection includes the inspection of the following components in accordance with the SMP.

- Final cover system;
- Interceptor trench;
- · Site access controls; and
- Site monitoring wells

5.1.1 Site-Wide Inspection

Annual site-wide inspections along with annual monitoring of the performance of the remedy is conducted for the first 30 years post completion. An annual inspection was conducted by LaBella on August 19, 2021, which included traversing the Site on foot to observe current conditions. The Site is developed with a park, including vegetated soil cover at the ground surface, baseball diamonds, basketball courts, soccer fields, a playground area, and asphalt pedestrian/bicycle trails and parking areas. At the time of the Site inspection the cover systems were observed to be generally in good condition, intact, and functioning as intended. Low areas of mulch were observed in portions of the playground area. Several large boulders were observed missing along Fleming Street. The fencing along the north portion of the park was generally observed to be intact and functioning as intended. The interceptor trench appeared to be in good condition and functioning as intended. The Site monitoring wells were covered with approximately six inches of soil and grass; once soil covering the wells was removed the wells were observed to be in good condition. The Site Inspection Form is included in Appendix 1. Appendix 2 includes photographs taking during the Site Inspection.

5.1.2 IC/EC Certification

The NYSDEC's IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. Appendix 3 includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

5.2 Groundwater Monitoring

The SMP specifies that groundwater sampling shall be performed at four down-gradient monitoring wells (MW-03, MW-05R, MW-07, and MW0-8) on an annual basis and include analysis of Target Compound List (TCL) SVOCs and Target Analyte List (TAL) metals. Sampling of the monitoring wells is to be conducted using low-flow sampling procedures. Trends in contaminant levels in groundwater are evaluated to determine if the remedy continues to be effective in achieving remedial goals.

5.2.1 Groundwater Monitoring Procedures

The annual groundwater monitoring activities were performed in general accordance with the SMP and included the following.

- Measure depth of groundwater from the top of the well riser to determine groundwater elevations for the sampled groundwater monitoring wells;
- Collection of groundwater samples from monitoring wells MW-03, MW-05R, MW-07, and MW-08 using low-flow sampling techniques;
- Record field parameters (pH, oxidation-reduction potential, temperature, turbidity, and specific conductivity) at each monitoring well during the low-flow sampling;
- Submit groundwater samples for laboratory analysis for TCL SVOCs and TAL Metals to Alpha Analytical, Inc., a New York State Department of Health (NYSDEC) environmental laboratory approval program (ELAP)-certified laboratory;
- Collection and analysis of a blind duplicate sample "Field Duplicate" from MW-07;

- Inspection and documentation of the structural integrity of the monitoring wells; and
- Containerize groundwater generated during the sampling and discharge to the groundwater interceptor trench collection system

Groundwater monitoring well low-flow sampling logs are included in Appendix 1.

5.2.2 Groundwater Monitoring Results

The analytical results for the groundwater samples are summarized on Table 1. The laboratory analytical results are compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (AWQS) dated June 1998.

SVOCs were detected in the groundwater samples collected and submitted for laboratory analysis from MW-03 and MW-05R (July). SVOCs in MW-03 were detected at concentrations below NYSDEC TOGS 1.1.1 AWQS. Six SVOCs were detected in the groundwater sample collected from MW-05R (July) at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS. No SVOCs were detected in the groundwater sample from MW-05R during the August sampling event.

Metals were detected in each of the groundwater samples with two or more parameters in each sample detected at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS. Parameters detected in each groundwater sample at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS are listed below.

- MW-03: Beryllium, iron, lead, magnesium, manganese, selenium, and sodium
- MW-05R (July): Magnesium and sodium
- MW-05R (August): Magnesium, manganese, and sodium
- MW-07: Iron, lead, magnesium, manganese, sodium, and thallium
- MW-08: Iron, magnesium, and manganese
- Field Duplicate (MW-07): Antimony, iron, and manganese

Historical metals parameter concentration trends are plot for each monitoring well on graphs included in Appendix 7. The laboratory analytical reports are included in Appendix 4.

The groundwater elevations within each monitoring well were measured prior to sampling and are indicated on Figure 3.

5.2.3 Data Usability Summary Report

Data Validation Services completed the third-party data validation of the groundwater sample analytical results. The Data Usability Summary Report (DUSR) prepared by Data Validation Services is included in Appendix 5. The data validator indicated the results for the samples are usable either as reported or with minor qualification/edit. Data completeness, representativeness, reproducibility, and comparability are acceptable.

6.0 CORRECTIVE ACTIONS

Corrective actions conducted during this monitoring period included the replacement of groundwater monitoring well MW-05.

During previous Site inspections groundwater monitoring well MW-05 was not able to be located and was assumed to have been accidentally buried. The City of Buffalo Department of Public Works retained LaBella to install a replacement groundwater monitoring well for MW-05. On June 8, 2021, LaBella mobilized to the Site and completed the installation of replacement groundwater monitoring well MW-05R. Monitoring well installation activities followed the Excavation Work Plan (EWP), Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) included within the SMP. The location of MW-05R was determined in concurrence with the City of Buffalo and the NYSDEC.

A track-mounted Geoprobe® System equipped with 4 $\frac{1}{4}$ inch hollow stem auger was utilized to install a two-inch PVC groundwater monitoring well. MW-05R was installed at a depth of 12 feet below ground surface. MW-05R consists of five feet of 0.01-inch slotted well screen connected to a length of PVC riser to proximate the ground surface. The well was finished with a flush mount protective steel casing and concrete well pad. The soil boring and well construction logs are included in Appendix 6.

During drilling activities CAMP equipment, including a DustTrak II Aerosol Monitor and a photoionization detector, was employed downgradient of the work area to monitor dust particulate and total organic vapor (TOV) levels. No dust particulate or TOV level contraventions of CAMP requirements were recorded during the groundwater monitoring well installation activities. CAMP data logs are included in Appendix 6. Soil auger cuttings generated during the installation of the groundwater monitoring well were placed in a 55-gallon drum for off-Site disposal. The auger cutting were transported by Environmental Service Group, Inc. to American Recyclers Company for off-Site disposal. The auger cutting disposal documentation is included in Appendix 6.

On June 11 and 23, 2021 MW-05R was developed until dry conditions were encountered. On July 7, 2021 MW-5R was sampled via low-flow techniques. The groundwater samples were submitted to Alpha Analytical, Inc. for laboratory analysis for TCL SVOCs and TAL Metals. The laboratory analytical results for MW-05R are summarized in Table 1 and discussed in Section 5.2.2 above. Development and purge water was containerized and discharged to the groundwater interceptor trench system. Groundwater monitoring well development and sampling logs are included in Appendix 1.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Annual inspection of the Site was performed on August 19, 2021 by LaBella Associates, DPC as prescribed in the SMP. As a result of this inspection, LaBella has determined that the Site is in compliance with the elements of the SMP.

As reflected by the signed Institutional and Engineering Controls Certification Form (Appendix 3), LaBella has concluded that:

- The required EC/ICs are in place, are performing properly, and remain effective;
- The SMP is being implemented; and
- The remedy continues to be protective of public health and the environment.

Based on the results of the annual groundwater monitoring, SVOCs were detected in MW-05R during the July sampling event at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS; however, SVOCs were not detected in the groundwater sample from MW-05R collected in August. SVOCs were not detected in remaining groundwater samples at concentrations exceeding NYSDEC TOGS 1.1.1

AWQS. Metals parameters exceeding NYSDEC TOGS 1.1.1 AWQS were identified in each groundwater sample analyzed. The SMP for the Site indicates that antimony, arsenic, beryllium, lead nickel, and selenium were previously identified in Site groundwater at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS. Of these parameters only beryllium, lead, and selenium in MW-03 and antimony and lead in MW-07 were detected at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS in the groundwater samples collected during this reporting period. Additional metals parameters including iron, magnesium, manganese, thallium, and sodium were detected in one or more of the groundwater samples during this reporting period at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS. The SMP indicates that iron, magnesium, manganese, and sodium were previously detected at the Site at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS and are commonly encountered in uncontaminated, natural environmental and are associated with groundwater aesthetics rather than toxicity.

LaBella recommends the following:

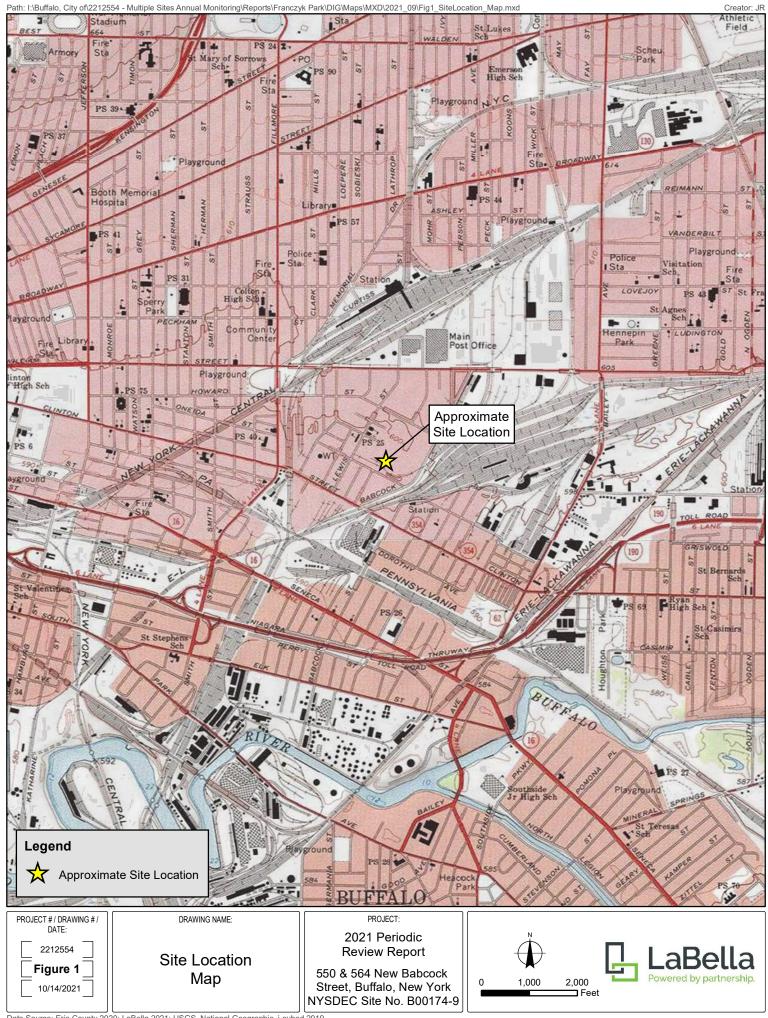
- Additional wood chips should be added to low areas within the playground areas;
- No changes to the inspection, reporting or certification frequency prescribed for the Site; and
- Groundwater monitoring should continue to be performed annually.

8.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's' intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action expect where explicitly stated as such. LaBella makes no warranties, expressed or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not be construed as legal advice.

This assessment and report have been completed and prepared on behalf of and for the exclusive use of the City of Buffalo. Any reliance on this report by a third party is at such party's sole risk.


9.0 REFERENCES

DER-10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010

Site Management Plan, Franczyk Park Site Erie County, New York; KHEOPS Architecture, Engineering & Survey, DPC, Februruay 2015

I:\BUFFALO, CITY OF\2212554 - MULTIPLE SITES ANNUAL MONITORING\REPORTS\FRANCZYK PARK\2021 PPR_FRANCZYK PARK_B00174_11.5.2021.DOCX

PROJECT # / DRAWING # / DATE:

2212554

Figure 2 10/14/2021 DRAWING NAME:

Site Мар PROJECT:

2021 Periodic Review Report

550 & 564 New Babcock Street, Buffalo, New York NYSDEC Site No. B00174-9

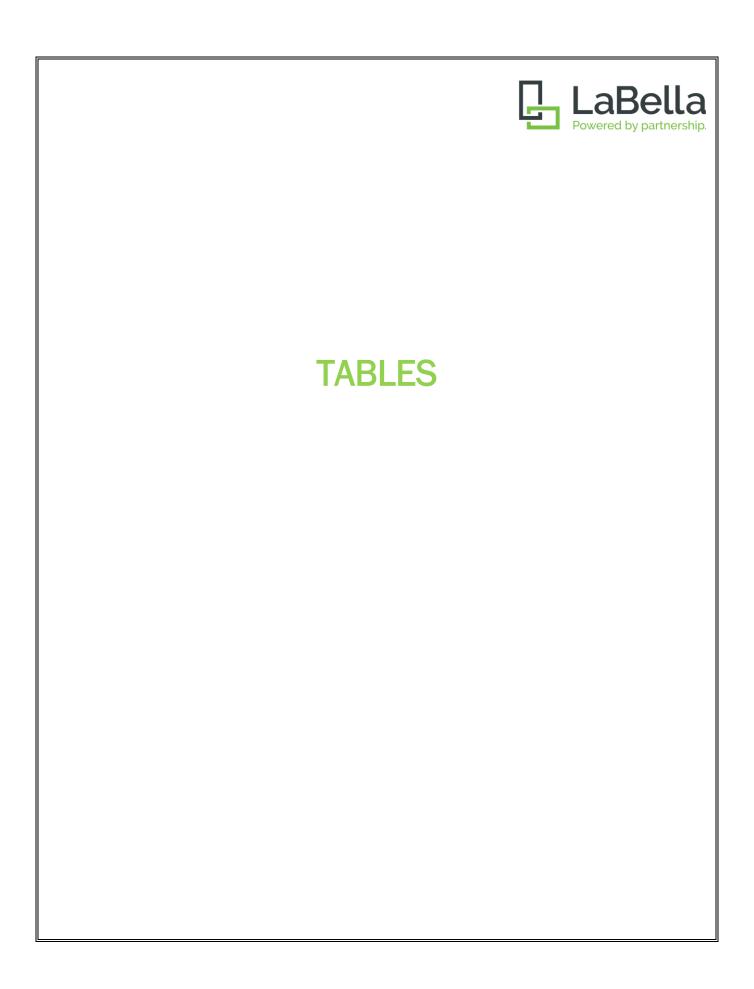
Groundwater Contour (Elevation in Feet AMSL)

Approximate Location of Groundwater Monitoring Well (Groundwater Elevation)

PROJECT # / DRAWING # / DATE:

2212554

Figure 3 10/14/2021 DRAWING NAME:


Groundwater **Contours Map** PROJECT:

2021 Periodic Review Report

550 & 564 New Babcock Street, Buffalo, New York NYSDEC Site No. B00174-9

TABLE 1 SUMMARY OF ANNUAL GROUNDWATER SAMPLE ANALYTICAL RESULTS FRANCZYK PARK 2021 PRR CITY OF BUFFALO, NEW YORK (Detected Analytes Only)

MONITORING LOCATIONS	MW-03	MW-05R	MW-05R	MW-07	MW-08	Field Duplicate	NYSDEC TOGS
Collection Date	8/19/2021	7/7/2021	8/19/2021	8/19/2021	8/19/2021	8/19/2021	1.1.1 AWQS
Semi-Volatile Organic Compound	ls (µg/L)						
Benzo(a)anthracene	-	0.06 J	-	-	-	-	0.002
Benzo(a)pyrene	-	0.05 J	-	-	-	-	ND
Benzo(b)fluoranthene	-	0.08 J	-	-	-	-	0.002
Benzo(k)fluoranthene	-	0.09 J	-	-	-	-	0.002
Chrysene	-	0.07 J	-	-	-	-	0.002
Benzo(g,h,i)perylene	-	0.11	-	-	-	-	NS
Fluoranthene	0.02 J	0.06 J	-	-	-	-	50
Fluorene	0.02 J	-	-	-	-	-	50
Phenanthrene	0.07 J	0.03 J	-	-	-	-	50
Dibenzo(a,h,)anthracene	-	0.11	-	-	-	-	NS
Indeno(1,2,3-cd)pyrene	-	0.11	-	-	-	-	0.002
2-Methylnaphthalene	-	0.06	-	-	-	-	NS
Pyrene	-	0.02 J	-	-	-	-	50
Naphthalene	-	0.19	-	-	-	-	10
Di-n-butyl phthalate	-	0.68 J	-	-	-	-	50
Metals (mg/L)							
Aluminum	204	0.033	0.0352	3.75 J	0.0217	0.377 J	NS
Antimony	-	-	0.00070 J	0.00051 J	-	0.00472	0.003
Arsenic	0.00867	-	0.00113	0.01208 J	0.00277	0.00542 J	0.025
Barium	0.08529	0.057	0.04496	0.06541 J	0.1219	0.3489 J	1
Beryllium	0.00762	-	-	0.00028 J	-	-	0.003
Cadmium	0.0007	-	-	0.00043 J	-	0.00007 J	0.005
Calcium	410	176	144	440 J	390	250 J	NS
Chromium	0.03668	-	0.00086 J	0.00744 J	0.00112	0.00153 J	0.05
Cobalt	0.04548	-	0.00116 J	0.01387 J	0.00089	0.00197 J	NS
Copper	0.01077	-	0.00074 J	0.02215 J	0.00116	0.00487 J	0.2
Iron	932	0.024	0.167	29.0 J	12.3	8.24 J	0.3
Lead	0.03726	-	-	0.02833 J	0.01001	0.00316 J	0.025
Magnesium	479	151	164	84.0 J	51.9	25.7 J	35
Manganese	15.35	0.294	0.5539	5.298 J	0.9367	0.735 J	0.3
Mercury	0.00009 J	-	-	0.00011 J	-	-	0.0007
Nickel	0.0747	0.002	0.00227	0.01151 J	0.00476	0.00273 J	0.1
Potassium	127	13.6	8.99	21.6 J	20.4	12.5 J	NS
Selenium	0.015	-	-	-	-	0.0086	0.01
Sodium	92.7	68.2	66.3	36.6 J	9.1	13.2 J	20
Thallium	-	-	0.00042 U	0.00057 J	-	0.00022 U	0.0005
Vanadium	0.06358	-	-	0.00813 J	-	0.00321 J	NS
Zinc	0.259	0.005	0.00694 J	0.08874	0.04348	0.01734 J	2

NYSDEC TOGS 1.1.1 AWQS = New York State Department of Environmental Conservation (NYSDEC) Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998)

mg/L = Milligrams per liter

µg/L = Micrograms per liter

NS - Indictes the no regulatory value is noted within the NYSDEC TOGS 1.1.1 AWQS

"-" - Indicates no detection

Shaded = Value exceedes NYSDEC TOGS 1.1.1 AWQS

J = Estimated value. The target analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.

APPENDIX 1

Inspection Form and Field Logs

SITE INSPECTION FORM FRANCZYK PARK

Property Name: Franczyk Park Inspection Date:	81191001
Property Address: 564 Babcock Street	7.4206
City Burialo ——	<u>Zip Code</u> : 14206
Property ID: (Tax Assessment Map)	
<u>Section</u> : 112.17 <u>Block</u> : 1 <u>Lot(s)</u> : 10 and 11	
Total Acreage: acres	
Weather (during inspection): Temperature: 81°F Conditions:	•
Humid, early morning cloud coverage to sun	
SIGNATURE: Please & Log L	
The findings of this inspection were discussed with appropriate person	nel, corrective actions
were identified and implementation was mutually agreed upon.	ate: 8/19/2001
Inspector. 112410	ate: Of 1110001L
Next Scheduled Inspection Date:	
COVER & VEGETATION	
COVER & VEGETATION	
4. Final cover in acceptable condition?	×
Is there evidence of sloughing, erosion, ponding or settlement?	<u>X</u>
Is there evidence of unintended traffic; rutting? Is there evidence of distressed vegetation/turf?	X
is there evidence of distressed vegetation, ton.	
	Yes No
the state of the s	Χ
5. Final cover sufficiently covers soil/fill material? Are there cracks visible in the soil or pavement?	X
Is there evidence of erosion in the stormwater channels or swales?	× ×
Is the synthetic erosion control fabric visible or damaged in the	×
playground and/or athletic field area?	
INTERCEPTOR TRENCH AND MONITORING WELLS	
111 01100	Yes No
6. Interceptor trench in acceptable condition?	
Are the cleanout cans secured and not buried?	<u>×</u>
Are the interceptor pipes obstructed (check the manholes where the interceptor trench connects to the sanitary sewer)	×

What is the	condition of the m	onitoring wells?		
monito	rine wells	wlexception to MW-5R	where	
	J	=3/		
buried	beneath 6-	8" of dirt & Vegetati	ive gran	Hs.
- Aren W	as completely	y cleared in an aren a	pproximal	ely
2 10	circumterance			
		A CETH WELL CALL SITE		
		ACTIVITY ON SITE	V	A1
			Yes	No
7 A	in the chime of the second	(La continuos)	\checkmark	
7. Any activity on s		scape cover in	23	
76527	-	scape cover in		
Tlay gra	und Area.	ACCESS CONTROLS		
•		ACCESS CONTROLS		M-
			Yes	No
		e. fencing, boulders, etc?	×	Januario G
_ 8		ss controls damaged or missing?		**************************************
2 Is there evidence	is of the operation	of vehicles on the site?		χ_{-}
		to the cover or access controls		, , , , , , , , , , , , , , , , , , ,
	rom vehicle use on			
32				
- 3	ADDITI	ONAL FACILITY INFORMATION		
Has there been any residential, 40 acre	any development	on or near the site? (Specify size	and type: e.g	٠,
Itom #		COMMENTS		
ltem #				
		-	_	
*				
-				
-				
:				

71.8

18.3

e 8

); a ();

(_)

1

Ę.,

Ç.

WELL I.D.: MW-5R

300 Pearl Street
Buffalo, New York 14202
Telephone: (716) 551-6281
Facsimile: (716) 551-6282

	716) 551-6282							
Project Na Location: Project No Sampled B Date: Weather:	y: Jess	sica Dombr	owski - Dew	ark we star	ell R	Halo	inclno	
PURGE VO	LUME CALCU							
Well Diame Depth of W		2"		Ft.		/ater Level: ell Volume:		ft Gallons
PURGE AN	D SAMPLING	METHOD						
Bailer – Sampling D					Pum Pump F	np – Type: late:		
FIELD PAR	AMETER MEA	SUREMEN	T					
Time	Gallons Purged	pH	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	ORP/Eh	Water Level	Comments
Initial		~~	~	~~	in	<u> </u>	The state of the s	Sughtly Harted
Total	1.0	Gallons Pu	urged					Well Alaged Onf
Purge Time	Start:	1081)		Purge T	ime End:	_11	00
WELL SAM	PLING							
Sample I.D. No. of Cont Sampled For:	ainers:	Cs - 8260 Cs - 8270			Sample Sample TCL Pesticide TAL Metals	Preservation	on:	☐ PCBs ☐ Other:
OBSERVATI	IONS		1					
	Il was installe		g # SB-					
Rècharge B	ehavior:	☐ Fast		Modera	te	☐ Slow		☐ Purged Dry

300 Pearl Stre Buffalo, New Telephone: (7		nership.	WELI	LI.D.: M	IW-5R			
Project Nan Location: Project No. Sampled By Date: Weather:	: Jess	211701	owski 💮	Park va Le Stract	ell Re	placer faco,	nen-	
PURGE VOI	UME CALCU	LATION						
Well Diame Depth of W	ell:	12"		Ft.		/ater Level: ell Volume:		ft Gallons
	SAMPLING	METHOD						
Bailer – Sampling D					Pump F	np – Type: Rate:		
FIELD PARA	METER MEA	SUREMEN	T					
Time	Gallons Purged	pН	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	ORP/Eh	Water Level	Comments
Initial 1315 1320 1345 1400	0.84 1.68 2.52 3.00							Shightly terbid Tubid Tubid Tubid Tubid - Renged Dy
Total Purge Time	3.0 Start:	Gallons Pi			Purge 1	Time End:	_1	400
WELL SAM	PLING							
Sample I.D. No. of Cont	: ainers:					Preservati	on:	
Sampled For:		Cs - 8260 Cs - 8270		[[TCL Pesticide TAL Metals	2 \$		PCBs Other:
OBSERVAT	IONS		/		/			
Notes: We	ll was installe	ed in Borin	g # SB-		_			

☐ Slow

☐ Purged Dry

☐ Moderate

Recharge Behavior:

☐ Fast

Recharge Behavior:

☐ Fast

WELL I.D.:

MW-5R

300 Pearl S Buffalo, Nev	Street w York 14202	ir triersnip.								
Telephone:	(716) 551-628 (716) 551-6282	31 2								
Project Na Location:	ame: Fr	ancz 04 Bc	yk Pr	ark w	ell Reg	Dager	rent			
Project No).: <u>2</u>	21170	0		4100	Huce;	-4			
Sampled B		sica Domb								
Date:	7/~	7 /2021			-					
Weather:										
	DLUME CALCU	JLATION								
Well Diam		2"			Static \	Water Level:	: 4	4.27	ft	
Depth of V	Vell:	12		Ft.		ell Volume:		022	Gallons	
PURGE AN	ID SAMPLING	METHOD					4	C T T	33.13.13	
☐ Bailer –					7/					
Sampling [mp – Type:				
					Pump I	Rate:				
	AMETER MEA	ASUREMEN	IT							
Time	Gallons Purged	рН	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	ORP/Eh	Water Level		Comments	
Initial		7.12	21.3	1.958	5.05	57-1		Clea		
1035	0.35	7.28	18.0	1.850	9.50	44.3		0)	11	
1040	0.5	7.29	110.8	1.802	11.00	49.2		U	11	
1045	0.75	7.24	17.0	1.800	11.110	52.7		u	ν	
1085	1.25	7.24	16.7	1.821	10.30	43:0		U	v	
1100	1.5	7.23	16.1	1.809	8.84	44.0		e	1.	
1100	1.0	1.00	12.1	1.78	9.86	43.3		C.	0g	
							1			
/							V			
Total	3	6 " 6								
Total	1.5	Gallons Pu	ırged							
Purge Time WELL SAMF	_				Purge T	ime End:	_11	100		
Sample I.D.: No. of Conta		100	5R		Sample Sample	Time: Preservation		00	4.0	
Sampled For:	TCL VOC	s - 8260 Cs - 8270			TCL Pesticides			PCBs		
OBSERVATION	ONS				Total			Othe	:r:	-
Notes: Well	l was installed	l in Boring	#SB- Lu	10-5R						

Moderate

☐ Slow

☐ Purged Dry

	_aBe	# # F.	WELL	I.D.: N	1W-5R		-					
Telephone: (7	Buffalo, New York 14202 Felephone: (716) 551-6281 Facsimile: (716) 551-6282											
Project Nan Location: Project No. Sampled By Date: Weather:	: SQL Hea	czyk fo czyk fo ossy ther Geogl 9 /2021	negan	y of Bull	410							
PURGE VOI	LUME CALCU	LATION										
Well Diame Depth of W		2"				Vater Level: ell Volume:		08	ft Gallons			
	D SAMPLING		•		One m							
☐ Bailer – Sampling D	Type:		c-Runs	Š	☐ Pum Pump F	np – Type: Rate:	Per	staltic.	2			
FIELD PARA	AMETER MEA	SUREMEN	Т									
Time	Gallons Purged	рН	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	ORP/Eh	Water Level	D0	Comments			
Initial		8,06	19.8	0.670	46.10	-37, 8	2.08	3.00				
980	1.0	7.54	17.9	1.986	11.18	-108.1	7,03	0.91				
0935	0.5	7.33	17.5	2.099	0.77	-19.7	3.80 8.08	3.27				
0945	0.25	7.59	17.3	2.095	5.07	61.1	9.0					
0950	. 05	7.58	17.1	2.108	1.69	10.7	10.55					
		/										
Total	3.25	Gallons P	urged									
Purge Time	e Start:	900		<u>)</u>	Purge 7	Time End:	95	5	(DRY)			
Sample I.D No. of Con	.:	M-5R			Sample Sample	e Time: e Preservati		00				
Sampled For:	☐ TCL VO				☐ TCL Pesticide ☐ TAL Metals	es		☐ PCE				
OBSERVAT	TIONS											
Notes:	sed out	Bide C	Asirs:	1	6			3				
This u	sell pur	jes dru	. com	pletely	dry							
							7	in Test				
Recharge E	Behavior:	☐ Fast		☐ Mode	rate	Slow		Pu	rged Dry			

MW-7										
	eet									
		1								
-	me: Fra	mzyk	Park				*			
	<u>C1</u>	92554	outtolo)						
15			negan							
-	-		тедин							
	80	1	-mid	cloud co	verage.					
PURGE VO	LUME CALCU	JLATION			Y					
					Static V	Vater Level	: 0.	58	ft	
				Ft.			0	.80		
PURGE AN	D SAMPLING									
□ Bailer –	Tyne				□ Pur	nn – Type:	D	ridaltic		
		Designa	ted tu	hina						
		J.		7						
	Gallons		Temp			ORP/Eh			Comments	
Initial		6.80	18.0	3.203	The state of the s			- Deco	Gray @ 1st	
									9	
1103	0.10	6.59	19.0	1.019	9.69	-79.2	5.41			
		1						1		
		-				-			*	
		V								
		V								
Total	1.6	Gallons P	urged							
Total Purge Time		Gallons P	urged		Purge	Time End:		03		
	e Start:		urged		Purge	Time End:	_11	03		
Purge Time	e Start:				Sample	Time End:		03		
Purge Time WELL SAM Sample I.D	e Start: IPLING .: tainers:	1050 MW-7 3 0cs-8260			Sample Sample □ TCL Pesticid	e Time: e Preservati				
Purge Time WELL SAM Sample I.D No. of Con	e Start: IPLING .: tainers: TCL VC	1050 MW-7			Sample Sample	e Time: e Preservati				
Purge Time WELL SAM Sample I.D No. of Con Sampled For: OBSERVAT Notes:	e Start: IPLING .: tainers: TCL VC	10 50 MW-7 3 OCs - 8260 OCs - 8270		e bieginiout DArk	Sample Sample □ TCL Pesticid ☑ TAL Metals	e Time: e Preservati es	ion:	PCBs	f	
Purge Time WELL SAM Sample I.D No. of Con Sampled For: OBSERVAT Notes:	E Start: IPLING .: tainers: TCL VC TCL SV	10 50 MW-7 3 OCs - 8260 OCs - 8270	At the	e bigini out Dark	Sample Sample TCL Pesticid TAL Metals TAL Metals	e Time: e Preservati es	ion:	PCBs	f	

	_aBe		WELI	. I.D.: N	1W- 08				
300 Pearl Str Buffalo, New									
Telephone: (716) 551-6281 16) 551-6282			20	9/0				
Project Nar		nczyk fr							
Location:	/	of But	Palo						
Project No. Sampled By		12554 other Geog	hogan						
Date:		9 /2021	negan						
Weather:	80		sid cli	uds.					
	LUME CALCU								
Well Diame	eter:	2"			Static V	Vater Level:	2	.94	ft
Depth of W	/ell:	7.0		Ft.	One We	ell Volume:	0;	.94 75	Gallons
PURGE AN	D SAMPLING	METHOD							
☐ Bailer –	Type:				Ď₹Pun	np – Type:	Peri	Stattic	
Sampling D		Designa	ted Tub	00	Pump f		7	A	
	AMETER ME	9		7			- ·		
Time	Gallons Purged	рН	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)	ORP/Eh	Water Level		Comments
Initial		6.84	19.2	3.03	762.8	-85.7	2.94		ellow Golor.
1130	1.0	6.84	21.8	1.020	58.73	7107.le	3.31	Slightly c	jellow.
1135	0.5	6.79	20.9	1.355	14.59	-107.4	3.36	Cleared	up.
1145	0.5	6.81	20:3	1.699	2.45	-1150	3.40		
1150	0.5	6.80	20.5	1.870	2.79	-117,1	3.70		
				,					
Total	3.5	Gallons F	urged						
Purge Time		1130			Purge 7	Time End:	11	50	
WELL SAM	PLING								
Sample I.D No. of Con		MW-8			Sample Sample	e Time: e Preservation		50	
Sampled For:		OCs - 8260 OCs - 8270			☐ TCL Pesticid	es		☐ PCBs	
OBSERVAT	IONS								
	etting Abo					,			
Recharge I		₩ Fas	A		ate	□ Slow		Pur	ged Dry

В	10 100000000	rk 14202 (6) 551-6281 (6) 551-6282		WELL I	D.: <u>MV</u>	11.8	10	-			
1	Project Name Location: Project No.: Sampled By: Date: Weather:	City of Heat	CZYK for Buffer Seogher Geogher /2021	olo .	Sunny						
	PURGE VOL	UME CALCUI	ATION					, 1	01	ft	
	Well Diame	ter	2"			_	ater Level:	George	Cx (allons	
	Depth of W		16.15	F	t.	One We	II Volume:		- 00	1110113	
		SAMPLING		d Tubio	[*	∑ Pum Pump R	p – Type: ate:	Peris	Altic		
	FIFI D PARA	METER MEA	SUREMEN	Т		,		14/		Comments	
ſ	Time	Gallons	рН	Temp	Conductivity	Turbidity (NTU)	ORP/Eh	Water Level		Commente	
		Purged		(°C)	(mS/cm)	457	80.	16.4	The state of the s	Bottom	Spell
S	Initial		4.22	18.3	10.040	905	106.5	4.65	V.Silty		
	1015	0.25	4.08	15.5	8.224	1055	106.1	5.16	daudg		
	1950	0.05	4.07	15.3	7.751	201.40	93.7	5.72	doudgo		
	1225	0.25	4.13	15,4	6.951	79.10	88.1	6.10	claray		V
	1235	0.25	4.18	15.8	6.395	50.0	88.9	(0.15	cloudy		
	1940	0.05	4.49	16.4	6.685	55.0	89,7	10.21	Cloudy		
	12.45	0.25	4.17	16.1	6,502	54.0	81.7	6.43	Cloud	4_	
	12 50	0.25	4. 4.7	16.3	6.505	53.0	8(0)	7.00000		1	
	14										
	Total		Gallons F	Purged							
	Purge Tim	e Start:				Purge	Time End:				
	WELL SAN	/PLING							. 10		
	Sample I.I	D.:	MW-3				e Time: e Preservat	<u>103</u>	50		
	Sampled For	r: TCL V	OCs - 8260 VOCs - 8270			☐ TCL Pesticio			PCBs Othe		
	OBSERVA	TIONS									
	Notes:			ilts wi	th driller	sand pro	Sent.		* Note !		well cap.
	· water	remaind a	u const	ant li	ant mills	color. No	visible	floating	Partic	es.	
		Woodiday Behavior:	meter A Fas	Clad	Mode		☐ Slov			ged Dry	

APPENDIX 2

Photographs

East portion of Site (baseball diamond)

Site from east end facing west

Central portion of Site from south portion facing north (soccer fields)

West portion of Site

Site from west portion facing east

Basketball courts

Playground

Playgrounds

Hockey Rink

Parking area on south portion of Site along Fleming Street

Parking Area at northwest corner of Site off New Babcock Street

Typical pedestrian/bicycle trail on east portion of Site

APPENDIX 3

Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	e No.	Site Details B00174		Box 1	
Sit	e Name Fra	anczyk Park Investigation			
City Co	e Address: y/Town: Bu unty:Erie e Acreage:				
Re∣	porting Perio	od: September 15, 2020 to September 15, 2021			
				YES	NO
1.	Is the infor	mation above correct?		X	
	If NO, inclu	ude handwritten above or on a separate sheet.			
2.		or all of the site property been sold, subdivided, merged, nendment during this Reporting Period?	or undergone a		X
3.		been any change of use at the site during this Reporting CRR 375-1.11(d))?	Period		X
١.		ederal, state, and/or local permits (e.g., building, dischar e property during this Reporting Period?	ge) been issued		X
		wered YES to questions 2 thru 4, include documenta mentation has been previously submitted with this co			
5.	Is the site of	currently undergoing development?			X
				Box 2	
				YES	NO
i.		ent site use consistent with the use(s) listed below? Residential, Commercial, and Industrial		X	
7.	Are all ICs	in place and functioning as designed?	X		
	IF TI	HE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign DO NOT COMPLETE THE REST OF THIS FORM. Other		and	
7 C	Corrective M	leasures Work Plan must be submitted along with this f	orm to address t	hese iss	ues.
 Sia	nature of Ow	vner, Remedial Party or Designated Representative	Date		

SITE NO. B00174 Box 3 **Description of Institutional Controls** Owner **Parcel Institutional Control** 112.17-1-10 City of Buffalo Ground Water Use Restriction Landuse Restriction Site Management Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan O&M Plan City of Buffalo 112.17-1-11 O&M Plan Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan Box 4 **Description of Engineering Controls Engineering Control** Parcel

112.17-1-10

Cover System Cover System

Groundwater Containment

112.17-1-11

Cover System

Box :	5
-------	---

	Periodic Review Report (PRR) Certification Statements					
1.	I certify by checking "YES" below that:					
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;					
	 b) to the best of my knowledge and belief, the work and conclusions described in this certific are in accordance with the requirements of the site remedial program, and generally accepte engineering practices; and the information presented is accurate and compete. 					
	YES NO					
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:					
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;					
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;					
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;					
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and					
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.					
	YES NO					
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.						
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.					
	Signature of Owner, Remedial Party or Designated Representative Date					

IC CERTIFICATIONS SITE NO. B00174

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class A"misdemeanor, pursuant to Section 210.45 of the Penal Law.

1 ANDREW BENK	CLEMAN at	BELLA ASSOCIATES 300 PEARL ST, SUITE 130, BUTTALO, NY print business address
print nam	ie	print business address
am certifying as	REMEDIAL PARTY	(Owner or Remedial Party)
Mill	the Site Details Section of Remedial Party, or Designa	10/14/2021

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true.	I understand that a false statement made herein is
punishable as a Class A'misdemeanor, pursuant to S	ection 210.45 of the Penal Law.

ANDREW BENKLEMAN		LABBLIA ASSOC	LIATES	1
- ANDREW DENKLEMIAN	at _	300 PEARL	5T, SUITE 130,	BUTTALO, MY
print name			ess address	
am certifying as a Qualified Environm	ental Pi	rofessional for the	REMEDIAL	PARTY
. •			(Owner or Rem	nedial Party)
	1			
that the	2			10/14/2021
Signature of Qualified Environmental the Owner or Remedial Party, Rende			amp equired for PE)	Date

APPENDIX 4

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number: L2136420

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Andy Benkleman Phone: (716) 551-6281

Project Name: FRANCZYK PARK WELL REPLACEMENT

Project Number: 2211700 Report Date: 07/28/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FRANCZYK PARK WELL REPLACEMENT

Project Number: 2211700

Lab Number:

L2136420

Report Date:

07/28/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2136420-01	MW-5R	WATER	BUFFALO, NY	07/07/21 11:00	07/07/21

Project Name:FRANCZYK PARK WELL REPLACEMENTLab Number:L2136420Project Number:2211700Report Date:07/28/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:FRANCZYK PARK WELL REPLACEMENTLab Number:L2136420Project Number:2211700Report Date:07/28/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analysis of Total Metals was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Semivolatile Organics

The WG1522863-2 LCS recovery, associated with L2136420-01 and -01RE, is below the acceptance criteria for benzidine (0%); however, it has been identified as a "difficult" analyte. The result of the associated sample is reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sebastian Corbin

Authorized Signature:

Title: Technical Director/Representative

Date: 07/28/21

ORGANICS

SEMIVOLATILES

L2136420

07/28/21

Project Name: FRANCZYK PARK WELL REPLACEMENT

07/14/21 16:36

Project Number: 2211700

SAMPLE RESULTS

Date Collected: 07/07/21 11:00

Lab Number:

Report Date:

Lab ID: L2136420-01 Client ID: Date Received: 07/07/21 MW-5R Field Prep: Sample Location: BUFFALO, NY Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 07/12/21 11:02 Analytical Method: 1,8270D

Analyst: WR

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1			
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1			
Isophorone	ND		ug/l	5.0	1.2	1			
Nitrobenzene	ND		ug/l	2.0	0.77	1			
NDPA/DPA	ND		ug/l	2.0	0.42	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1			
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1			
Di-n-butylphthalate	0.68	J	ug/l	5.0	0.39	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1			
Diethyl phthalate	ND		ug/l	5.0	0.38	1			
Dimethyl phthalate	ND		ug/l	5.0	1.8	1			
Biphenyl	ND		ug/l	2.0	0.46	1			
4-Chloroaniline	ND		ug/l	5.0	1.1	1			
2-Nitroaniline	ND		ug/l	5.0	0.50	1			
3-Nitroaniline	ND		ug/l	5.0	0.81	1			
4-Nitroaniline	ND		ug/l	5.0	0.80	1			
Dibenzofuran	ND		ug/l	2.0	0.50	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1			
Acetophenone	ND		ug/l	5.0	0.53	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1			

07/28/21

Report Date:

Project Name: FRANCZYK PARK WELL REPLACEMENT Lab Number: L2136420

Project Number: 2211700

SAMPLE RESULTS

Lab ID: L2136420-01 Date Collected: 07/07/21 11:00

Client ID: MW-5R Date Received: 07/07/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
2-Methylphenol	ND		ug/l	5.0	0.49	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Carbazole	ND		ug/l	2.0	0.49	1		
Atrazine	ND		ug/l	10	0.76	1		
Benzaldehyde	ND		ug/l	5.0	0.53	1		
Caprolactam	ND		ug/l	10	3.3	1		
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1		

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	65	21-120
Phenol-d6	53	10-120
Nitrobenzene-d5	83	23-120
2-Fluorobiphenyl	72	15-120
2,4,6-Tribromophenol	77	10-120
4-Terphenyl-d14	81	41-149

07/28/21

Project Name: Lab Number: FRANCZYK PARK WELL REPLACEMENT L2136420

Project Number: Report Date: 2211700

SAMPLE RESULTS

Lab ID: L2136420-01 Date Collected: 07/07/21 11:00

Client ID: Date Received: 07/07/21 MW-5R Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/12/21 11:04 Analytical Method: 1,8270D-SIM Analytical Date: 07/25/21 19:27

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.01	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	0.06	J	ug/l	0.10	0.02	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1		
Naphthalene	0.19		ug/l	0.10	0.05	1		
Benzo(a)anthracene	0.06	J	ug/l	0.10	0.02	1		
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	0.08	J	ug/l	0.10	0.01	1		
Benzo(k)fluoranthene	0.09	J	ug/l	0.10	0.01	1		
Chrysene	0.07	J	ug/l	0.10	0.01	1		
Acenaphthylene	ND		ug/l	0.10	0.01	1		
Anthracene	ND		ug/l	0.10	0.01	1		
Benzo(ghi)perylene	0.11		ug/l	0.10	0.01	1		
Fluorene	ND		ug/l	0.10	0.01	1		
Phenanthrene	0.03	J	ug/l	0.10	0.02	1		
Dibenzo(a,h)anthracene	0.11		ug/l	0.10	0.01	1		
Indeno(1,2,3-cd)pyrene	0.11		ug/l	0.10	0.01	1		
Pyrene	0.02	J	ug/l	0.10	0.02	1		
2-Methylnaphthalene	0.06	J	ug/l	0.10	0.02	1		
Pentachlorophenol	ND		ug/l	0.80	0.01	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.06	1		

07/28/21

Project Name: Lab Number: FRANCZYK PARK WELL REPLACEMENT L2136420

Project Number: 2211700

SAMPLE RESULTS

Date Collected: 07/07/21 11:00

Report Date:

Lab ID: L2136420-01 Date Received: 07/07/21 Client ID: MW-5R

Sample Location: Field Prep: BUFFALO, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	77		21-120
Phenol-d6	69		10-120
Nitrobenzene-d5	113		23-120
2-Fluorobiphenyl	109		15-120
2,4,6-Tribromophenol	123	Q	10-120
4-Terphenyl-d14	123		41-149

Project Name: FRANCZYK PARK WELL REPLACEMENT Lab Number: L2136420

Project Number: 2211700 Report Date: 07/28/21

CAMPLE

SAMPLE RESULTS

Lab ID: L2136420-01 RE Date Collected: 07/07/21 11:00

Client ID: MW-5R Date Received: 07/07/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 07/20/21 15:38

Analytical Date: 07/22/21 03:07

Analyst: SZ

3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Bromophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chloriosthosyropylether ND ug/l 5.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hosphorone ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.69 1 NITrobenzene ND ug/l 2.0 0.42 1 n-Nitrobenzene ND ug/l 2.0 0.44 1 n-Nitrobenzene ND ug/l 5.0	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Bromophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chloriosthosyropylether ND ug/l 5.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hosphorone ND ug/l 5.0 0.69 1 Nitrobenzene ND ug/l 5.0 0.69 1 NITrobenzene ND ug/l 2.0 0.42 1 n-Nitrobenzene ND ug/l 2.0 0.44 1 n-Nitrobenzene ND ug/l 5.0	Semivolatile Organics by GC/MS - Westborough Lab								
2,4-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisthoxyl)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.59 1 Nitrobenzene ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 Bis(2-chlyflexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-chlyflexyl)phthalate ND ug/l 5.0	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1		
2.6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorosisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chlorosisopropyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 ND ug/l 5.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.69 1 ND ug/l 5.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.77 1 NDPA/DPA ND ug/l 5.0 0.42 1 N-Nitrosenzene ND ug/l 5.0 0.42 1 N-Nitrosenzene ND ug/l 5.0 0.54 1 Bis(2-ethylnexyl)phthalate ND ug/l 5.0 0.50 1.2 1 Bis(2-ethylnexyl)phthalate ND ug/l 5.0 0.59 1 Bis(2-ethylnexyl)phthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1 Di-n-otylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.50 1.3 1 Bisphenyl ND ug/l 5.0 0.66 1 A-Chlorosniline ND ug/l 5.0 0.60 1 3-Nitrosniline ND ug/l 5.0 0.60 1 3-Nitrosniline ND ug/l 5.0 0.60 1 3-Nitrosniline ND ug/l 5.0 0.81 1 4-Nitrosniline ND ug/l 5.0 0.80 1 1.2.4,5-Tetrachlorobenzene ND ug/l 5.0 0.63 1	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1		
4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.77 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.77 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.64 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.39 1 Di-n-butyl phthalate ND ug/l 5.0 0.39 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1	2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1		
4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.50 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.69 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.77 1 Bis(2-chloroisopropyl)ethane ND ug/l 2.0 0.77 1 Bis(2-chloroisopropyl)ethane ND ug/l 5.0 0.64 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-chlylhexyl)phthalate ND ug/l 5.0 0.64 1 Bit(2-chlylhexyl)phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Biphenyl ND ug/l 5.0 0.46 1 Biphenyl ND ug/l 5.0 0.50 1.1 1 Chloroinlline ND ug/l 5.0 0.50 1 Chloroinlline ND ug/l 5.0 0.50 1 Chloroinlline ND ug/l 5.0 0.80 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1		
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 2.0 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 NDPA/DPA ND ug/l 5.0 0.64 1 NDPA/DPA/DPA <	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1		
Bis(2-chloroethoxy)methane ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 20 0.69 1 Isophorone ND ug/l 5.0 1.2 1 Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1		
Hexachlorocyclopentadiene ND	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1		
Suphorone ND Ug/l 5.0 1.2 1	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1		
Ntrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 1.8 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Siphenyl ND ug/l 5.0 1.8 1 Siphenyl ND ug/l 5.0 1.1 1 C-Nitroaniline ND ug/l 5.0 1.1 1 C-Nitroaniline ND ug/l 5.0 0.50 1 C-Nitroaniline ND ug/l 5.0 0.81 1 C-Nitroaniline ND ug/l 5.0 0.80 1	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1		
NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Di-n-butylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 0.81	Isophorone	ND		ug/l	5.0	1.2	1		
n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.1 1 1 2-Nitroaniline ND ug/l 5.0 1.1 1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 1-2-4,5-Tetrachlorobenzene ND ug/l 5.0 0.53 1	Nitrobenzene	ND		ug/l	2.0	0.77	1		
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1	NDPA/DPA	ND		ug/l	2.0	0.42	1		
Butyl benzyl phthalate ND ug/l 5.0 1.2 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 1.3 1 Di-n-butyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 4-Nitroaniline ND ug/l 5.0 0.50 1 <tr< td=""><td>n-Nitrosodi-n-propylamine</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td>0.64</td><td>1</td></tr<>	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1		
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cyt/lphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1		
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.80 1 4-Nitroaniline ND ug/l 5.0 0.50 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1		
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1		
Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1		
Biphenyl ND ug/l 2.0 0.46 1	Diethyl phthalate	ND		ug/l	5.0	0.38	1		
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1		
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1		
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1		
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1		
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1		
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1		
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1		
	1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
2,4,6-Trichlorophenol ND ug/l 5.0 0.61 1	Acetophenone	ND		ug/l	5.0	0.53	1		
	2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		

07/28/21

Report Date:

Project Name: FRANCZYK PARK WELL REPLACEMENT Lab Number: L2136420

Project Number: 2211700

SAMPLE RESULTS

L2136420-01 RE Date Collected: 07/07/21 11:00

Client ID: MW-5R Date Received: 07/07/21 Sample Location: BUFFALO, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	21-120
Phenol-d6	54	10-120
Nitrobenzene-d5	82	23-120
2-Fluorobiphenyl	87	15-120
2,4,6-Tribromophenol	59	10-120
4-Terphenyl-d14	96	41-149

Project Number: 2211700

Lab Number:

L2136420

Report Date: 07/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/14/21 10:17

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 07/12/21 11:02

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1522863-1	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6	
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50	
Hexachlorocyclopentadiene	ND		ug/l		20	0.69	
Isophorone	ND		ug/l		5.0	1.2	
Nitrobenzene	ND		ug/l		2.0	0.77	
NDPA/DPA	ND		ug/l		2.0	0.42	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5	
Butyl benzyl phthalate	ND		ug/l		5.0	1.2	
Di-n-butylphthalate	ND		ug/l		5.0	0.39	
Di-n-octylphthalate	ND		ug/l		5.0	1.3	
Diethyl phthalate	ND		ug/l		5.0	0.38	
Dimethyl phthalate	ND		ug/l		5.0	1.8	
Biphenyl	ND		ug/l		2.0	0.46	
4-Chloroaniline	ND		ug/l		5.0	1.1	
2-Nitroaniline	ND		ug/l		5.0	0.50	
3-Nitroaniline	ND		ug/l		5.0	0.81	
4-Nitroaniline	ND		ug/l		5.0	0.80	
Dibenzofuran	ND		ug/l		2.0	0.50	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44	
Acetophenone	ND		ug/l		5.0	0.53	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61	
p-Chloro-m-cresol	ND		ug/l		2.0	0.35	

Project Number: 2211700

Lab Number:

L2136420

Report Date: 07/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/14/21 10:17

Analyst: SZ

Extraction Method: EPA 3510C

Extraction Date: 07/12/21 11:02

arameter	Result	Qualifier	Units		RL	MDL	
semivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01	Batch:	WG1522863-1	
2-Chlorophenol	ND		ug/l		2.0	0.48	
2,4-Dichlorophenol	ND		ug/l		5.0	0.41	
2,4-Dimethylphenol	ND		ug/l		5.0	1.8	
2-Nitrophenol	ND		ug/l		10	0.85	
4-Nitrophenol	ND		ug/l		10	0.67	
2,4-Dinitrophenol	ND		ug/l		20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8	
Phenol	ND		ug/l		5.0	0.57	
2-Methylphenol	ND		ug/l		5.0	0.49	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77	
Carbazole	ND		ug/l		2.0	0.49	
Atrazine	ND		ug/l		10	0.76	
Benzaldehyde	ND		ug/l		5.0	0.53	
Caprolactam	ND		ug/l		10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84	

Surrogate	%Recovery Qualifie	Acceptance r Criteria
2-Fluorophenol	62	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	61	10-120
4-Terphenyl-d14	82	41-149

Project Number: 2211700

Lab Number:

L2136420

Report Date: 07/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 07/25/21 19:08

Analyst: JJW

Extraction Method: EPA 3510C Extraction Date: 07/12/21 11:04

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample(s)	: 01	Batch: WG1522866-1
Acenaphthene	ND		ug/l	0.10	0.01
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	ND		ug/l	0.10	0.02
Hexachlorobutadiene	ND		ug/l	0.50	0.05
Naphthalene	0.09	J	ug/l	0.10	0.05
Benzo(a)anthracene	0.02	J	ug/l	0.10	0.02
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01
Benzo(k)fluoranthene	0.01	J	ug/l	0.10	0.01
Chrysene	0.02	J	ug/l	0.10	0.01
Acenaphthylene	ND		ug/l	0.10	0.01
Anthracene	ND		ug/l	0.10	0.01
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01
Fluorene	ND		ug/l	0.10	0.01
Phenanthrene	0.03	J	ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01
Pyrene	ND		ug/l	0.10	0.02
2-Methylnaphthalene	ND		ug/l	0.10	0.02
Pentachlorophenol	ND		ug/l	0.80	0.01
Hexachlorobenzene	ND		ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.06

Project Name: FRANCZYK PARK WELL REPLACEMENT Lab Number: L2136420

Project Number: 2211700 Report Date: 07/28/21

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C
Analytical Date: 07/25/21 19:08 Extraction Date: 07/12/21 11:04

Analyst: JJW

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01 Batch: WG1522866-1

			Acceptance	
Surrogate	%Recovery		Criteria	
2-Fluorophenol	48		21-120	
Phenol-d6	59		10-120	
Nitrobenzene-d5	121	Q	23-120	
2-Fluorobiphenyl	114		15-120	
2,4,6-Tribromophenol	72		10-120	
4-Terphenyl-d14	138		41-149	

Project Number: 2211700

Lab Number:

L2136420

Report Date: 07/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/21/21 11:13

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 07/20/21 15:38

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1525934-1
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.50
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.6
2,4-Dinitrotoluene	ND		ug/l		5.0	1.2
2,6-Dinitrotoluene	ND		ug/l		5.0	0.93
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.49
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.38
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.53
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.50
Hexachlorocyclopentadiene	ND		ug/l		20	0.69
Isophorone	ND		ug/l		5.0	1.2
Nitrobenzene	ND		ug/l		2.0	0.77
NDPA/DPA	ND		ug/l		2.0	0.42
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.5
Butyl benzyl phthalate	ND		ug/l		5.0	1.2
Di-n-butylphthalate	ND		ug/l		5.0	0.39
Di-n-octylphthalate	ND		ug/l		5.0	1.3
Diethyl phthalate	ND		ug/l		5.0	0.38
Dimethyl phthalate	ND		ug/l		5.0	1.8
Biphenyl	ND		ug/l		2.0	0.46
4-Chloroaniline	ND		ug/l		5.0	1.1
2-Nitroaniline	ND		ug/l		5.0	0.50
3-Nitroaniline	ND		ug/l		5.0	0.81
4-Nitroaniline	ND		ug/l		5.0	0.80
Dibenzofuran	ND		ug/l		2.0	0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.44
Acetophenone	ND		ug/l		5.0	0.53
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.61
p-Chloro-m-cresol	ND		ug/l		2.0	0.35

Project Number: 2211700

Lab Number:

L2136420

Report Date: 07/28/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 07/21/21 11:13

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 07/20/21 15:38

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	S - Westborough	Lab for s	ample(s):	01	Batch:	WG1525934-1	
2-Chlorophenol	ND		ug/l		2.0	0.48	
2,4-Dichlorophenol	ND		ug/l		5.0	0.41	
2,4-Dimethylphenol	ND		ug/l		5.0	1.8	
2-Nitrophenol	ND		ug/l		10	0.85	
4-Nitrophenol	ND		ug/l		10	0.67	
2,4-Dinitrophenol	ND		ug/l		20	6.6	
4,6-Dinitro-o-cresol	ND		ug/l		10	1.8	
Phenol	ND		ug/l		5.0	0.57	
2-Methylphenol	ND		ug/l		5.0	0.49	
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	0.48	
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.77	
Carbazole	ND		ug/l		2.0	0.49	
Atrazine	ND		ug/l		10	0.76	
Benzaldehyde	ND		ug/l		5.0	0.53	
Caprolactam	ND		ug/l		10	3.3	
2,3,4,6-Tetrachlorophenol	ND		ug/l		5.0	0.84	

Surrogate	%Recovery Qualif	Acceptance ier Criteria
2-Fluorophenol	56	21-120
Phenol-d6	41	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	67	10-120
4-Terphenyl-d14	77	41-149

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number: L2136420

Project Number: 2211700

Report Date: 07/28/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01 Batch:	WG1522863-2	2 WG1522863-3				
Bis(2-chloroethyl)ether	57		62		40-140	8		30	
3,3'-Dichlorobenzidine	1	Q	57		40-140	194	Q	30	
2,4-Dinitrotoluene	70		79		48-143	12		30	
2,6-Dinitrotoluene	66		76		40-140	14		30	
4-Chlorophenyl phenyl ether	66		73		40-140	10		30	
4-Bromophenyl phenyl ether	65		73		40-140	12		30	
Bis(2-chloroisopropyl)ether	56		60		40-140	7		30	
Bis(2-chloroethoxy)methane	58		67		40-140	14		30	
Hexachlorocyclopentadiene	69		76		40-140	10		30	
Isophorone	55		62		40-140	12		30	
Nitrobenzene	63		68		40-140	8		30	
NDPA/DPA	57		66		40-140	15		30	
n-Nitrosodi-n-propylamine	60		65		29-132	8		30	
Bis(2-ethylhexyl)phthalate	81		80		40-140	1		30	
Butyl benzyl phthalate	59		70		40-140	17		30	
Di-n-butylphthalate	59		71		40-140	18		30	
Di-n-octylphthalate	65		71		40-140	9		30	
Diethyl phthalate	62		72		40-140	15		30	
Dimethyl phthalate	61		71		40-140	15		30	
Biphenyl	63		68		40-140	8		30	
4-Chloroaniline	32	Q	45		40-140	34	Q	30	
2-Nitroaniline	64		75		52-143	16		30	
3-Nitroaniline	40		70		25-145	55	Q	30	

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number: L2136420

Project Number: 2211700

Report Date: 07/28/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS -	Westborough Lab Associ	ated sample(s)	: 01 Batch:	WG1522863-2	2 WG1522863-3	3			
4-Nitroaniline	51		70		51-143	31	Q	30	
Dibenzofuran	64		68		40-140	6		30	
1,2,4,5-Tetrachlorobenzene	67		74		2-134	10		30	
Acetophenone	54		61		39-129	12		30	
2,4,6-Trichlorophenol	67		74		30-130	10		30	
p-Chloro-m-cresol	61		69		23-97	12		30	
2-Chlorophenol	63		69		27-123	9		30	
2,4-Dichlorophenol	64		71		30-130	10		30	
2,4-Dimethylphenol	57		45		30-130	24		30	
2-Nitrophenol	71		80		30-130	12		30	
4-Nitrophenol	61		66		10-80	8		30	
2,4-Dinitrophenol	88		87		20-130	1		30	
4,6-Dinitro-o-cresol	79		91		20-164	14		30	
Phenol	44		51		12-110	15		30	
2-Methylphenol	57		61		30-130	7		30	
3-Methylphenol/4-Methylphenol	58		66		30-130	13		30	
2,4,5-Trichlorophenol	67		76		30-130	13		30	
Carbazole	57		69		55-144	19		30	
Atrazine	68		85		40-140	22		30	
Benzaldehyde	50		57		40-140	13		30	
Caprolactam	27		30		10-130	11		30	
2,3,4,6-Tetrachlorophenol	67		72		40-140	7		30	

L2136420

Lab Control Sample Analysis

FRANCZYK PARK WELL REPLACEMENT

Batch Quality Control Lab Number:

Project Number: 2211700 Report Date: 07/28/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1522863-2 WG1522863-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	63	68	21-120
Phenol-d6	50	57	10-120
Nitrobenzene-d5	73	83	23-120
2-Fluorobiphenyl	69	79	15-120
2,4,6-Tribromophenol	80	89	10-120
4-Terphenyl-d14	72	83	41-149

Project Name:

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number: L2136420

Project Number: 2211700

Report Date: 07/28/21

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - V	Vestborough Lab As	sociated sample(s): 01 Batch	h: WG1522866-2 WG1522	2866-3	
Acenaphthene	89	91	40-140	2	40
2-Chloronaphthalene	80	80	40-140	0	40
Fluoranthene	95	99	40-140	4	40
Hexachlorobutadiene	65	65	40-140	0	40
Naphthalene	79	80	40-140	1	40
Benzo(a)anthracene	98	104	40-140	6	40
Benzo(a)pyrene	104	108	40-140	4	40
Benzo(b)fluoranthene	106	111	40-140	5	40
Benzo(k)fluoranthene	105	109	40-140	4	40
Chrysene	96	102	40-140	6	40
Acenaphthylene	82	84	40-140	2	40
Anthracene	94	99	40-140	5	40
Benzo(ghi)perylene	98	102	40-140	4	40
Fluorene	82	85	40-140	4	40
Phenanthrene	92	96	40-140	4	40
Dibenzo(a,h)anthracene	100	105	40-140	5	40
Indeno(1,2,3-cd)pyrene	102	105	40-140	3	40
Pyrene	94	98	40-140	4	40
2-Methylnaphthalene	82	82	40-140	0	40
Pentachlorophenol	70	73	40-140	4	40
Hexachlorobenzene	72	76	40-140	5	40
Hexachloroethane	74	75	40-140	1	40

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number:

L2136420

Project Number: 2211700

Report Date:

07/28/21

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1522866-2 WG1522866-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	80	78	21-120
Phenol-d6	74	74	10-120
Nitrobenzene-d5	112	113	23-120
2-Fluorobiphenyl	89	90	15-120
2,4,6-Tribromophenol	79	72	10-120
4-Terphenyl-d14	102	104	41-149

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number: L2136420

Project Number: 2211700

Report Date: 07/28/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	iated sample(s):	01 Batch:	WG1525934-2	WG1525934-3			
Bis(2-chloroethyl)ether	38	Q	66		40-140	54	Q	30
3,3'-Dichlorobenzidine	54		65		40-140	18		30
2,4-Dinitrotoluene	62		88		48-143	35	Q	30
2,6-Dinitrotoluene	57		81		40-140	35	Q	30
4-Chlorophenyl phenyl ether	50		76		40-140	41	Q	30
4-Bromophenyl phenyl ether	55		78		40-140	35	Q	30
Bis(2-chloroisopropyl)ether	36	Q	66		40-140	59	Q	30
Bis(2-chloroethoxy)methane	41		71		40-140	54	Q	30
Hexachlorocyclopentadiene	41		76		40-140	60	Q	30
Isophorone	38	Q	66		40-140	54	Q	30
Nitrobenzene	45		76		40-140	51	Q	30
NDPA/DPA	52		73		40-140	34	Q	30
n-Nitrosodi-n-propylamine	40		69		29-132	53	Q	30
Bis(2-ethylhexyl)phthalate	72		77		40-140	7		30
Butyl benzyl phthalate	63		75		40-140	17		30
Di-n-butylphthalate	57		68		40-140	18		30
Di-n-octylphthalate	62		73		40-140	16		30
Diethyl phthalate	55		73		40-140	28		30
Dimethyl phthalate	53		73		40-140	32	Q	30
Biphenyl	43		72		40-140	50	Q	30
4-Chloroaniline	24	Q	40		40-140	50	Q	30
2-Nitroaniline	54		81		52-143	40	Q	30
3-Nitroaniline	44		58		25-145	27		30

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number: L2136420

Project Number: 2211700

Report Date: 07/28/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbore	ough Lab Associ	ated sample(s):	01 Batch:	WG1525934-2	WG1525934-3				
4-Nitroaniline	59		74		51-143	23		30	
Dibenzofuran	46		75		40-140	48	Q	30	
1,2,4,5-Tetrachlorobenzene	46		79		2-134	53	Q	30	
Acetophenone	39		67		39-129	53	Q	30	
2,4,6-Trichlorophenol	51		82		30-130	47	Q	30	
p-Chloro-m-cresol	48		73		23-97	41	Q	30	
2-Chlorophenol	43		73		27-123	52	Q	30	
2,4-Dichlorophenol	45		78		30-130	54	Q	30	
2,4-Dimethylphenol	32		58		30-130	58	Q	30	
2-Nitrophenol	50		88		30-130	55	Q	30	
4-Nitrophenol	59		75		10-80	24		30	
2,4-Dinitrophenol	91		109		20-130	18		30	
4,6-Dinitro-o-cresol	87		102		20-164	16		30	
Phenol	30		48		12-110	46	Q	30	
2-Methylphenol	38		65		30-130	52	Q	30	
3-Methylphenol/4-Methylphenol	40		68		30-130	52	Q	30	
2,4,5-Trichlorophenol	55		81		30-130	38	Q	30	
Carbazole	62		76		55-144	20		30	
Atrazine	80		94		40-140	16		30	
Benzaldehyde	37	Q	65		40-140	55	Q	30	
Caprolactam	19		24		10-130	23		30	
2,3,4,6-Tetrachlorophenol	58		82		40-140	34	Q	30	

FRANCZYK PARK WELL REPLACEMENT

Lab Number:

L2136420

Project Number: 2211700

Project Name:

0011=00

Report Date:

07/28/21

LCS			LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1525934-2 WG1525934-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	41	68	21-120
Phenol-d6	32	53	10-120
Nitrobenzene-d5	51	88	23-120
2-Fluorobiphenyl	47	77	15-120
2,4,6-Tribromophenol	72	95	10-120
4-Terphenyl-d14	73	85	41-149

Project Name: FRANCZYK PARK WELL REPLACEMENT

Lab Number: L2136420

Project Number: 2211700 Report Date: 07/28/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2136420-01A	Amber 250ml unpreserved	Α	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2136420-01B	Amber 250ml unpreserved	Α	7	7	3.4	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2136420-01C	Plastic 250ml HNO3 preserved	Α	<2	<2	3.4	Υ	Absent		SUB-TAL 6010(180)

Project Name: Lab Number: FRANCZYK PARK WELL REPLACEMENT L2136420 2211700 **Report Date: Project Number:** 07/28/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:FRANCZYK PARK WELL REPLACEMENTLab Number:L2136420Project Number:2211700Report Date:07/28/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:FRANCZYK PARK WELL REPLACEMENTLab Number:L2136420Project Number:2211700Report Date:07/28/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Project Name:FRANCZYK PARK WELL REPLACEMENTLab Number:L2136420Project Number:2211700Report Date:07/28/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Published Date: 4/2/2021 1:14:23 PM

ID No.:17873

Revision 19

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg.

EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Ацэна	NEW YORK CHAIN OF CUSTODY	Service Centers Page Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way of Tonawanda, NY 14150: 275 Cooper Ave, Suite 105					-	Date Rec in Lab	'd	717	121	ALPHA Job# 62136420
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information						erables	201			Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 506-822-9300 FAX: 508-822-3288	Project Name: Tranc Project Location: Buf	zchk Ra	newel	el Repl	reemer	#	ASP-A	2000000	ASI		Same as Client Info
1900 3/05 - 1900 100 100 100 100 100 100 100 100 10	0/00/00/00/00/00/00/00/00/00/00/00/00/0	Project Location: Post	faile, L	DV				EQuIS (1	File)	∐ EQ	ulS (4 File)	PO#
Client Information		Project # 221700		· ·				Other	OMESS CONTRACTOR			
Client: La Bolla							Regu	latory Req	uiremer	it		Disposal Site Information
Address: 300 Peg	en struct	Project Manager: And	reco Bo	hkten	an			NY TOGS		□ NY	Part 375	Please identify below location of
BURGLO, N	4 14202	ALPHAQuote #:						AWQ Stand	fards	☐ NY	CP-51	applicable disposal facilities.
Phone: 71(0-551-1		Turn-Around Time	1					NY Restrict	ed Use	Oth	Br	Disposal Facility:
Fax: 716-551-	6282	Standard	4	Due Date:				NY Unrestr	icted Use	E .		□ NJ □ NY
		Rush (only if pre approved)		# of Days:				NYC Sewe	r Dischar	ge		Other:
These samples have be							ANA	LYSIS			77	Sample Filtration T
Other project specific	requirements/comm	ents:										Done t
Please specify Metals	or TAL.						Syches by	CHEERS				Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID	525	MATERIA.	Colle	ection	Sample	Sampler's		0				The state of the s
(Lab Use Only)	Sa	mple ID	Date	Time	Matrix	Initials	1	500				Sample Specific Comments
36420-01	NW-SR		717/21	1100	BW	SLO	N	8				
	- SE		11 1/2	6100	-	200	100	~				
		1										
	/											1 3
		#	-								1	1 / 1
		2	5			/			+			
			1			/			\rightarrow		+	+ / +
			as .			/			+		++	1
	/		J. S. C.		/	1-			+	1	+	
			_	2			\vdash	-	+-	\rightarrow		
B = HCI C = HNO ₃ D = H ₂ SO ₄	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Type Preservative						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are
F = MeOH	C = Cube	Relinquished By: Date/Time					Receiv	ged By:		, Da	te/Time	resolved. BY EXECUTING
H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	The second secon	Ar	7/7/21	1135	n	70	mir	AM	7/7	21 113 St -00:55	THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)
Form No: 01-25 HC (rev. 30	0-Sept-2013)	V										

Tuesday, July 20, 2021

Attn: Melissa Deyo Alpha Analytical Lab 8 Walkup Drive Westborough, MA 01581

Project ID: L2136420 SDG ID: GCI69758 Sample ID#s: CI69758

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #M-CT007

ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 UT Lab Registration #CT00007 VT Lab Registration #VT11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

July 20, 2021

SDG I.D.: GCI69758

Project ID: L2136420

Client Id	Lab Id	Matrix
MW-5R	CI69758	GROUND WATER

Page 35 of 43 Page 2 of 10

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 20, 2021

FOR: Attn: Melissa Deyo Alpha Analytical Lab

8 Walkup Drive

Westborough, MA 01581

Sample InformationCustody InformationDateTimeMatrix:GROUND WATERCollected by:07/07/2111:00Location Code:ALPHAReceived by:LB07/08/2111:32

Rush Request: Standard Analyzed by: see "By" below

Laboratory Data

SDG ID: GCI69758

Phoenix ID: Cl69758

Project ID: L2136420 Client ID: MW-5R

P.O.#:

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	07/16/21	TH	SW6010D
Aluminum	0.033	0.020	mg/L	1	07/16/21	TH	SW6010D
Arsenic	< 0.004	0.004	mg/L	1	07/16/21	TH	SW6010D
Barium	0.057	0.002	mg/L	1	07/16/21	TH	SW6010D
Beryllium	< 0.001	0.001	mg/L	1	07/16/21	TH	SW6010D
Calcium	176	0.10	mg/L	10	07/16/21	EK	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	07/16/21	TH	SW6010D
Cobalt	< 0.002	0.002	mg/L	1	07/16/21	TH	SW6010D
Chromium	< 0.001	0.001	mg/L	1	07/16/21	TH	SW6010D
Copper	< 0.005	0.005	mg/L	1	07/16/21	TH	SW6010D
Iron	0.024	0.010	mg/L	1	07/16/21	TH	SW6010D
Mercury	< 0.0002	0.0002	mg/L	1	07/09/21	MGH	SW7470A
Potassium	13.6	0.1	mg/L	1	07/16/21	TH	SW6010D
Magnesium	151	0.10	mg/L	10	07/16/21	EK	SW6010D
Manganese	0.294	0.001	mg/L	1	07/16/21	TH	SW6010D
Sodium	68.2	1.0	mg/L	10	07/16/21	EK	SW6010D
Nickel	0.002	0.001	mg/L	1	07/16/21	EK	SW6010D
Lead	< 0.002	0.002	mg/L	1	07/16/21	TH	SW6010D
Antimony	< 0.005	0.005	mg/L	1	07/16/21	TH	SW6010D
Selenium	< 0.010	0.010	mg/L	1	07/16/21	TH	SW6010D
Thallium	< 0.0005	0.0005	mg/L	5	07/12/21	CPP	SW6020B
Vanadium	< 0.002	0.002	mg/L	1	07/16/21	TH	SW6010D
Zinc	0.005	0.004	mg/L	1	07/16/21	TH	SW6010D
Sample Disposal	Completed				07/08/21		
Mercury Digestion	Completed				07/09/21	CG/AB/A	BSW7470A
Total Metals Digestion	Completed				07/08/21	AG	
Total Metals Digestion MS	Completed				07/09/21	AG	

Project ID: L2136420 Phoenix I.D.: CI69758

Client ID: MW-5R

RL/

Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 20, 2021

Reviewed and Released by: Rashmi Makol, Project Manager

SDG I.D.: GCI69758

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 20, 2021

Comment:

Additional Criteria: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Data

,													
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 582879 (mg/L),	QC Sam	ple No: (CI69781	(CI69758	3)								
Mercury - Water	BRL	-	<0.0002	•	NC	85.3			85.8	87.9	2.4	80 - 120	20
Comment:													
Additional Mercury criteria: LCS	acceptano	ce range f	for waters	is 80-120	% and fo	or soils i	s 70-130°	%. MS a	cceptan	ce range	is 75-1	25%.	
QA/QC Batch 582772 (mg/L),	QC Sam	ple No: (CI69548	(CI69758	3)								
ICP Metals - Aqueous				•	•								
Aluminum	BRL	0.020	0.105	0.106	0.90	98.5	98.0	0.5	109			80 - 120	20
Antimony	BRL	0.005	<0.005	<0.005	NC	103	102	1.0	106			80 - 120	20
Arsenic	BRL	0.004	<0.004	< 0.004	NC	104	103	1.0	109			80 - 120	20
3arium	BRL	0.002	0.140	0.135	3.60	101	99.5	1.5	101			80 - 120	20
Beryllium	BRL	0.001	< 0.001	< 0.001	NC	100	99.5	0.5	99.9			80 - 120	20
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	100	98.2	1.8	98.8			80 - 120	20
Calcium	BRL	0.010	112	108	3.60	100	98.4	1.6	NC			80 - 120	20
Chromium	BRL	0.001	0.621	0.586	5.80	101	100	1.0	92.1			80 - 120	20
Cobalt	BRL	0.002	0.003	0.003	NC	99.4	98.0	1.4	96.4			80 - 120	20
Copper	BRL	0.005	3.02	3.17	4.80	101	101	0.0	95.2			80 - 120	20
ron	BRL	0.010	2.42	2.24	7.70	99.3	98.1	1.2	96.1			80 - 120	20
.ead	BRL	0.002	0.004	0.004	NC	100	99.5	0.5	100			80 - 120	20
Magnesium	BRL	0.010	24.0	23.1	3.80	102	101	1.0	NC			80 - 120	20
Manganese	BRL	0.001	0.140	0.135	3.60	99.8	98.6	1.2	97.9			80 - 120	20
lickel	BRL	0.001	0.143	0.135	5.80	94.2	93.6	0.6	94.8			80 - 120	20
Potassium	BRL	0.1	16.0	15.5	3.20	102	102	0.0	80.6			80 - 120	20
Selenium	BRL	0.010	<0.010	<0.010	NC	101	99.4	1.6	103			80 - 120	20
Silver	BRL	0.001	<0.001	<0.001	NC	97.4	96.7	0.7	104			80 - 120	20
Sodium	BRL	0.10	613	593	3.30	100	99.7	0.3	NC			80 - 120	20
/anadium	BRL	0.002	0.003	0.006	NC	97.5	96.1	1.4	98.5			80 - 120	20
inc	BRL	0.004	0.027	0.026	3.80	101	99.3	1.7	103			80 - 120	20
Comment:													
Additional Criteria: LCS accepta	nce range	is 80-120)% MS acc	ceptance	range 75	5-125%.							
QA/QC Batch 582956 (mg/L),	QC Sam	ple No: (CI69814	5X (CI69	758)								
CP MS Metals - Aqueou	us												
Thallium	BRL	0.0005	<0.0002	<0.0002	NC	97.0	97.0	0.0	94.4	86.0	9.3	80 - 120	20
	- · · · -		–	2.3002	-								

Page 38 of 43 Page 5 of 10

QA/QC Data

SDG I.D.: GCI69758

% RPD Blk Sample Dup Dup LCS LCSD LCS MS MSD MS Rec Blank RL Result Result RPD % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

July 20, 2021

Sample Criteria Exceedances Report

GCI69758 - ALPHA

Analysis Units RL Criteria Criteria 묍 Result Criteria Phoenix Analyte

*** No Data to Display ***

Acode

SampNo

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Tuesday, July 20, 2021

Criteria: None State: NY

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

July 20, 2021 SDG I.D.: GCl69758

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report: None.

Page 41 of 43

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

July 20, 2021

SDG I.D.: GCI69758

The samples in this delivery group were received at 4.1°C. (Note acceptance criteria for relevant matrices is above freezing up to 6°C)

Page 42 of 43

41° ECC

) /		
		nS	bcontrac	Subcontract Chain of Custody	-			
ALPHA KNACE CAREET		Phoeni 587 Ea Manch	x Environme sst Middle Tu ester, CT 06	Phoenix Environmental Laboratories 587 East Middle Tumpike Manchester, CT 06040			Alpha Job Number	umber
Client	Client Information	d	Project Information	rmation	Regul	Regulatory Requirements/Report Limits	nts/Report Lim	ts
Client: Alpha Analytic Address: Eight Walkup Westborough,	Alpha Analytical Labs Eight Walkup Drive Westborough, MA 01581-1019	Project Location: NY Project Manager: Melissa Deyo Turnaround & Deliver	ץ felissa Deyo d & Deliver	#Location: NY # Manager: Melissa Deyo Turnaround & Deliverables Information	State/Federal Progr Regulatory Criteria:	State/Federal Program: NYDOH Regulatory Criteria:		
Phone: 716.427.5229 Email: mdeyo@alphalab.com	alab.com	Due Date: 07/28/21 Deliverables:	28/21					
		Project Specific R	equiremer	Project Specific Requirements and/or Report Requirements	uirements			
Refere	Reference following Alpha Job Number on final report/deliverables: L2136420	ber on final report/de	liverables: 1		Report to include N	Report to include Method Blank, LCS/LCSD:	CSD:	
Additional Comments:	Additional Comments: Send all results/reports to subreports@alphalab.com	breports@alphalab.c	mo					
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis	S			Batch QC
85 469	MW-5R			TAL 6010 Metals				
	Relinquished By	۷,			Received By:		Date/Time:	
	John John John John John John John John	Dad		7/8/21 18(27	of Const	In AT	11 (e/s/L	7
Form No: AL_subcoc								

ANALYTICAL REPORT

Lab Number: L2144691

Client: LaBella Associates, P.C.

300 Pearl Street

Suite 252

Buffalo, NY 14202

ATTN: Andy Benkleman Phone: (716) 551-6281

Project Name: FRANCZYK PARK

Project Number: 221554
Report Date: 08/26/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691 **Report Date:** 08/26/21

Collection **Alpha** Sample Date/Time **Receive Date** Sample ID Location Client ID Matrix WATER CITY OF BUFFALO, NEW YORK 08/19/21 10:00 08/19/21 L2144691-01 MW-05R WATER CITY OF BUFFALO, NEW YORK 08/19/21 11:05 08/19/21 L2144691-02 MW-7 WATER CITY OF BUFFALO, NEW YORK 08/19/21 11:50 08/19/21 L2144691-03 MW-8 CITY OF BUFFALO, NEW YORK L2144691-04 MW-3 WATER 08/19/21 12:50 08/19/21 L2144691-05 FIELD DUPLICATE WATER CITY OF BUFFALO, NEW YORK 08/19/21 00:00 08/19/21

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

M 2 M Jennifer L Clements

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 08/26/21

ORGANICS

SEMIVOLATILES

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-01 Date Collected: 08/19/21 10:00

Client ID: MW-05R Date Received: 08/19/21 Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270D Extraction Date: 08/23/21 01:18

Analytical Method: 1,8270D Extraction Date: 08/23/21 01:1

Analytical Date: 08/23/21 16:58

Analyst: JG

3,3 - Dichlorobenzidine ND ug/l 5.0 1.6 1 2,4 - Dinitrotoluene ND ug/l 5.0 1.2 1 2,6 - Dinitrotoluene ND ug/l 5.0 0.93 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4 - Chlorophenyl phenyl ether ND ug/l 2.0 0.53 1 Bis(2-chloroisthosy)methane ND ug/l 5.0 0.50 1 Bis(2-chloroisthosy)methane ND ug/l 5.0 0.59 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.59 1 Isophorone ND ug/l 5.0 0.59 1 NItrobanzene ND ug/l 5.0 0.64 1 NItrobanzene ND ug/	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	Semivolatile Organics by GC/MS - We	estborough Lab					
ND	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
2,4-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chloroisoproyl)ether ND ug/l 2.0 0.53 1 Bis(2-chloroisoproyl)ether ND ug/l 5.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.77 1 Isophorone ND ug/l 5.0 0.42 1 NITrobenzene ND ug/l 5.0 0.64 1 NDPAZDPA ND ug/l 5.0 0.64 1 Bis(2-chlorophylphthalate ND ug/l 5.0 0.39	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2.6Dinitrotoluene ND ug/l 5.0 0.93 1 4Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 Bis(2-chlorosporpyl)ether ND ug/l 2.0 0.53 1 Bis(2-chlorosporpyl)ether ND ug/l 2.0 0.50 1 Bis(2-chlorosporpyl)ether ND ug/l 2.0 0.50 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.69 1 Isophorone ND ug/l 5.0 0.42 1 ND ug/l 2.0 0.42 1 ND ug/l 5.0 0.64 1 Bis(2-cethylhexyl)phthalate ND ug/l 5.0 0.64 1 Bis(2-cethylhexyl)phthalate ND ug/l 5.0 0.39 1	2,4-Dinitrotoluene	ND			5.0	1.2	1
A-Bromophenyl phenyl ether ND	2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
Bis(2-chloroispropyl)ether ND	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
Bis(2-chloroethoxy)methane ND	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Hexachlorocyclopentadiene ND ug/l 20 0.69 1 1 1 1 1 1 1 1 1	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Suphorone ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Nitrobenzene ND ug/l 2.0 0.77 1 NDPA/DPA ND ug/l 2.0 0.42 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.64 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-cylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 5.0 1.8 1 Eiphenyl ND ug/l 5.0 1.8 1 Eiphenyl ND ug/l 5.0 0.46 1 E-Nitroaniline ND ug/l 5.0 0.50 1 E-Nitroaniline ND ug/l 5.0 0.80 1 E-Nitroaniline ND ug/l 5.0 0.80 1 E-Nitroaniline ND ug/l 5.0 0.80 1 E-Nitroaniline ND ug/l 5.0 0.50 1	Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
NDPA/DPA ND ug/l 2.0 0.42 1	Isophorone	ND		ug/l	5.0	1.2	1
ND Ug/l 5.0 0.64 1	Nitrobenzene	ND		ug/l	2.0	0.77	1
Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1	NDPA/DPA	ND		ug/l	2.0	0.42	1
Butyl benzyl phthalate ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Di-n-butylphthalate ND ug/l 5.0 0.39 1 Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 1.1 1 3-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.50 1 Acetophenone ND ug/l 5.0 0.50 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Diethyl phthalate ND ug/l 5.0 0.38 1 Dimethyl phthalate ND ug/l 5.0 1.8 1 Biphenyl ND ug/l 2.0 0.46 1 4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Dimethyl phthalate ND ug/l 5.0 1.8 1	Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Biphenyl ND ug/l 2.0 0.46 1	Diethyl phthalate	ND		ug/l	5.0	0.38	1
4-Chloroaniline ND ug/l 5.0 1.1 1 2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 5.0 0.80 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Dimethyl phthalate	ND		ug/l	5.0	1.8	1
2-Nitroaniline ND ug/l 5.0 0.50 1 3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	Biphenyl	ND		ug/l	2.0	0.46	1
3-Nitroaniline ND ug/l 5.0 0.81 1 4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Chloroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline ND ug/l 5.0 0.80 1 Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	2-Nitroaniline	ND		ug/l	5.0	0.50	1
Dibenzofuran ND ug/l 2.0 0.50 1 1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	3-Nitroaniline	ND		ug/l	5.0	0.81	1
1,2,4,5-Tetrachlorobenzene ND ug/l 10 0.44 1 Acetophenone ND ug/l 5.0 0.53 1	4-Nitroaniline	ND		ug/l	5.0	0.80	1
Acetophenone ND ug/l 5.0 0.53 1	Dibenzofuran	ND		ug/l	2.0	0.50	1
	1,2,4,5-Tetrachlorobenzene	ND			10	0.44	1
	Acetophenone	ND		ug/l	5.0	0.53	1
	2,4,6-Trichlorophenol	ND			5.0	0.61	1

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-01 Date Collected: 08/19/21 10:00

Client ID: MW-05R Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

% Recovery	Acceptance Qualifier Criteria
46	21-120
39	10-120
51	23-120
55	15-120
47	10-120
58	41-149
	46 39 51 55 47

Project Name: Lab Number: FRANCZYK PARK L2144691

Project Number: Report Date: 221554 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-01 Date Collected: 08/19/21 10:00

Client ID: Date Received: 08/19/21 MW-05R

Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/23/21 01:18 Analytical Method: 1,8270D-SIM Analytical Date: 08/25/21 14:14

Analyst: DV

		Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - West	tborough La	ab				
Assessables	ND			0.40	0.04	4
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-01 Date Collected: 08/19/21 10:00

Client ID: MW-05R Date Received: 08/19/21 Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	31	21-120
Phenol-d6	36	10-120
Nitrobenzene-d5	60	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	35	10-120
4-Terphenyl-d14	42	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-02 Date Collected: 08/19/21 11:05

Client ID: MW-7 Date Received: 08/19/21

Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 08/23/21 01:18

Analytical Date: 08/23/21 17:24

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-02 Date Collected: 08/19/21 11:05

Client ID: MW-7 Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	stborough Lab						
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1	
2-Chlorophenol	ND		ug/l	2.0	0.48	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1	
2-Nitrophenol	ND		ug/l	10	0.85	1	
4-Nitrophenol	ND		ug/l	10	0.67	1	
2,4-Dinitrophenol	ND		ug/l	20	6.6	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1	
Phenol	ND		ug/l	5.0	0.57	1	
2-Methylphenol	ND		ug/l	5.0	0.49	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1	
Carbazole	ND		ug/l	2.0	0.49	1	
Atrazine	ND		ug/l	10	0.76	1	
Benzaldehyde	ND		ug/l	5.0	0.53	1	
Caprolactam	ND		ug/l	10	3.3	1	
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	44	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	55	15-120
2,4,6-Tribromophenol	56	10-120
4-Terphenyl-d14	65	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-02 Date Collected: 08/19/21 11:05

Client ID: MW-7 Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/23/21 01:18
Analytical Date: 08/25/21 16:11

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-02 Date Collected: 08/19/21 11:05

Client ID: MW-7 Date Received: 08/19/21 Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	37	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	95	23-120
2-Fluorobiphenyl	60	15-120
2,4,6-Tribromophenol	41	10-120
4-Terphenyl-d14	71	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-03 Date Collected: 08/19/21 11:50

Client ID: MW-8 Date Received: 08/19/21

Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Analyst:

JG

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 08/23/21 01:18

Analytical Date: 08/23/21 17:50

Result Qualifier Units RL MDL **Dilution Factor Parameter** Semivolatile Organics by GC/MS - Westborough Lab Bis(2-chloroethyl)ether ND 2.0 0.50 1 ug/l 3,3'-Dichlorobenzidine ND 5.0 1.6 ug/l 2,4-Dinitrotoluene ND ug/l 5.0 1.2 1 2,6-Dinitrotoluene ND ug/l 5.0 0.93 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.49 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.38 1 ND 2.0 0.53 Bis(2-chloroisopropyl)ether ug/l 1 Bis(2-chloroethoxy)methane ND 5.0 0.50 1 ug/l ND Hexachlorocyclopentadiene ug/l 20 0.69 1 Isophorone ND 5.0 1.2 1 ug/l Nitrobenzene ND 2.0 0.77 1 ug/l NDPA/DPA 2.0 ND 0.42 ug/l 1 n-Nitrosodi-n-propylamine ND 5.0 0.64 1 ug/l Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.5 1 Butyl benzyl phthalate ND 5.0 1.2 1 ug/l Di-n-butylphthalate ND 5.0 0.39 1 ug/l Di-n-octylphthalate ND ug/l 5.0 1.3 1 Diethyl phthalate ND 5.0 0.38 1 ug/l Dimethyl phthalate ND 5.0 1.8 1 ug/l Biphenyl ND 2.0 0.46 1 ug/l 4-Chloroaniline ND 5.0 1.1 1 ug/l 2-Nitroaniline ND ug/l 5.0 0.50 1 ND 3-Nitroaniline 5.0 0.81 1 ug/l 4-Nitroaniline ND 5.0 0.80 1 ug/l Dibenzofuran ND 2.0 0.50 1 ug/l 1,2,4,5-Tetrachlorobenzene ND 0.44 1 ug/l 10 ND 0.53 Acetophenone 5.0 1 ug/l

ug/l

5.0

0.61

ND

1

2,4,6-Trichlorophenol

Project Name: Lab Number: FRANCZYK PARK L2144691

Project Number: Report Date: 221554 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-03 Date Collected: 08/19/21 11:50

Client ID: Date Received: 08/19/21 MW-8

Field Prep: Sample Location: CITY OF BUFFALO, NEW YORK Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	61	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	66	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	66	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-03 Date Collected: 08/19/21 11:50

Client ID: MW-8 Date Received: 08/19/21

Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/23/21 01:18
Analytical Date: 08/25/21 16:31

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SI	M - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1	
Naphthalene	ND		ug/l	0.10	0.05	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1	
Chrysene	ND		ug/l	0.10	0.01	1	
Acenaphthylene	ND		ug/l	0.10	0.01	1	
Anthracene	ND		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1	
Fluorene	ND		ug/l	0.10	0.01	1	
Phenanthrene	ND		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1	
Pyrene	ND		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	
Pentachlorophenol	ND		ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.06	1	

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-03 Date Collected: 08/19/21 11:50

Client ID: MW-8 Date Received: 08/19/21 Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	21-120
Phenol-d6	48	10-120
Nitrobenzene-d5	97	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	68	10-120
4-Terphenyl-d14	73	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-04 Date Collected: 08/19/21 12:50

Client ID: MW-3 Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

08/26/21 12:02

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 08/23/21 22:40

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

Project Name: Lab Number: FRANCZYK PARK L2144691

Project Number: Report Date: 221554 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-04 Date Collected: 08/19/21 12:50

Client ID: Date Received: 08/19/21 MW-3 Field Prep: Not Specified

Sample Location: CITY OF BUFFALO, NEW YORK

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	51	15-120
2,4,6-Tribromophenol	51	10-120
4-Terphenyl-d14	52	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-04 Date Collected: 08/19/21 12:50

Client ID: MW-3 Date Received: 08/19/21

Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/23/21 22:40
Analytical Date: 08/25/21 16:51

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	ab				
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.02	J	ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	0.02	J	ug/l	0.10	0.01	1
Phenanthrene	0.07	J	ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-04 Date Collected: 08/19/21 12:50

Client ID: MW-3 Date Received: 08/19/21 Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	60	21-120
Phenol-d6	50	10-120
Nitrobenzene-d5	113	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	103	10-120
4-Terphenyl-d14	96	41-149

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-05 Date Collected: 08/19/21 00:00

Client ID: FIELD DUPLICATE Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 08/23/21 01:18

Analytical Date: 08/25/21 17:19

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	
Dibenzofuran	ND		ug/l	2.0	0.50	1	
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1	
Acetophenone	ND		ug/l	5.0	0.53	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1	

Project Name: Lab Number: FRANCZYK PARK L2144691

Project Number: Report Date: 221554 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-05 Date Collected: 08/19/21 00:00

Client ID: Date Received: 08/19/21 FIELD DUPLICATE

Field Prep: Sample Location: CITY OF BUFFALO, NEW YORK Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	tborough Lab					
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Carbazole	ND		ug/l	2.0	0.49	1
Atrazine	ND		ug/l	10	0.76	1
Benzaldehyde	ND		ug/l	5.0	0.53	1
Caprolactam	ND		ug/l	10	3.3	1
2,3,4,6-Tetrachlorophenol	ND		ug/l	5.0	0.84	1

% Recovery	Acceptance Qualifier Criteria
51	21-120
47	10-120
72	23-120
61	15-120
42	10-120
68	41-149
	51 47 72 61 42

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-05 Date Collected: 08/19/21 00:00

Client ID: FIELD DUPLICATE Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 08/23/21 01:18
Analytical Date: 08/25/21 17:12

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.10	0.01	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	ND		ug/l	0.10	0.02	1
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1
Naphthalene	ND		ug/l	0.10	0.05	1
Benzo(a)anthracene	ND		ug/l	0.10	0.02	1
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	1
Chrysene	ND		ug/l	0.10	0.01	1
Acenaphthylene	ND		ug/l	0.10	0.01	1
Anthracene	ND		ug/l	0.10	0.01	1
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	1
Fluorene	ND		ug/l	0.10	0.01	1
Phenanthrene	ND		ug/l	0.10	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	1
Pyrene	ND		ug/l	0.10	0.02	1
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1
Pentachlorophenol	ND		ug/l	0.80	0.01	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.06	1

Project Name: FRANCZYK PARK Lab Number: L2144691

Project Number: 221554 Report Date: 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-05 Date Collected: 08/19/21 00:00

Client ID: FIELD DUPLICATE Date Received: 08/19/21
Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	46	10-120
Nitrobenzene-d5	110	23-120
2-Fluorobiphenyl	70	15-120
2,4,6-Tribromophenol	53	10-120
4-Terphenyl-d14	90	41-149

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Report Date: 08/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/23/21 14:37

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 08/23/21 01:18

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - \	Nestborough	n Lab for s	ample(s):	01-05	Batch:	WG1537881-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Isophorone	ND		ug/l	5.0		1.2
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38
Dimethyl phthalate	ND		ug/l	5.0		1.8
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Report Date: 08/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 08/23/21 14:37

Analyst: SZ

Carbazole

Benzaldehyde

Caprolactam

2,3,4,6-Tetrachlorophenol

Atrazine

Extraction Method: EPA 3510C Extraction Date: 08/23/21 01:18

Qualifier RL MDL **Parameter** Result Units Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG1537881-1 2-Chlorophenol ND ug/l 2.0 0.48 2,4-Dichlorophenol ND ug/l 5.0 0.41 2,4-Dimethylphenol ND ug/l 5.0 1.8 2-Nitrophenol ND ug/l 10 0.85 ND 0.67 4-Nitrophenol ug/l 10 2,4-Dinitrophenol ND ug/l 20 6.6 4,6-Dinitro-o-cresol ND ug/l 10 1.8 Phenol ND ug/l 5.0 0.57 2-Methylphenol ND 5.0 0.49 ug/l 3-Methylphenol/4-Methylphenol ND 5.0 0.48 ug/l 2,4,5-Trichlorophenol ND 0.77 ug/l 5.0

ug/l

ug/l

ug/l

ug/l

ug/l

2.0

10

5.0

10

5.0

0.49

0.76

0.53

3.3

0.84

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
O. Florenshared	04	04.400
2-Fluorophenol	61	21-120
Phenol-d6	49	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	65	15-120
2,4,6-Tribromophenol	76	10-120
4-Terphenyl-d14	67	41-149

ND

ND

ND

ND

ND

L2144691

Project Name: FRANCZYK PARK

Project Number: 221554 Repo

Report Date: 08/26/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 08/25/21 12:58

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 08/23/21 01:18

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS-SI	M - Westbo	rough Lab	for sample(s)	01-05	Batch:	WG1537882-1
Acenaphthene	ND		ug/l	0.10	0.01	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	2
Fluoranthene	ND		ug/l	0.10	0.02	2
Hexachlorobutadiene	ND		ug/l	0.50	0.05	j
Naphthalene	0.09	J	ug/l	0.10	0.05	j
Benzo(a)anthracene	ND		ug/l	0.10	0.02	, -
Benzo(a)pyrene	ND		ug/l	0.10	0.02	, -
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01	
Chrysene	ND		ug/l	0.10	0.01	
Acenaphthylene	ND		ug/l	0.10	0.01	
Anthracene	ND		ug/l	0.10	0.01	
Benzo(ghi)perylene	ND		ug/l	0.10	0.01	
Fluorene	ND		ug/l	0.10	0.01	
Phenanthrene	ND		ug/l	0.10	0.02	2
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01	
Pyrene	ND		ug/l	0.10	0.02	· -
2-Methylnaphthalene	0.03	J	ug/l	0.10	0.02	2
Pentachlorophenol	ND		ug/l	0.80	0.01	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.06	;

Serial_No:08262120:04

Project Name: Lab Number: FRANCZYK PARK L2144691

Project Number: Report Date: 08/26/21 221554

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 1,8270D-SIM Extraction Method: EPA 3510C Analytical Date: 08/25/21 12:58 08/23/21 01:18 **Extraction Date:**

Analyst: DV

> MDL Result Qualifier Units RLParameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-05 Batch: WG1537882-1

Surrogate	%Recovery Qualifie	Acceptance er Criteria
2-Fluorophenol	55	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	59	23-120
2-Fluorobiphenyl	75	15-120
2,4,6-Tribromophenol	65	10-120
4-Terphenyl-d14	52	41-149

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS	- Westborough Lab Assoc	iated sample(s):	01-05 Batch	: WG1537881-2 WG15378	81-3	
Bis(2-chloroethyl)ether	65		65	40-140	0	30
3,3'-Dichlorobenzidine	66		68	40-140	3	30
2,4-Dinitrotoluene	74		74	48-143	0	30
2,6-Dinitrotoluene	74		76	40-140	3	30
4-Chlorophenyl phenyl ether	66		66	40-140	0	30
4-Bromophenyl phenyl ether	65		68	40-140	5	30
Bis(2-chloroisopropyl)ether	66		65	40-140	2	30
Bis(2-chloroethoxy)methane	66		65	40-140	2	30
Hexachlorocyclopentadiene	70		66	40-140	6	30
Isophorone	64		63	40-140	2	30
Nitrobenzene	72		70	40-140	3	30
NDPA/DPA	68		70	40-140	3	30
n-Nitrosodi-n-propylamine	68		64	29-132	6	30
Bis(2-ethylhexyl)phthalate	65		66	40-140	2	30
Butyl benzyl phthalate	82		86	40-140	5	30
Di-n-butylphthalate	67		67	40-140	0	30
Di-n-octylphthalate	71		74	40-140	4	30
Diethyl phthalate	66		68	40-140	3	30
Dimethyl phthalate	66		67	40-140	2	30
Biphenyl	68		69	40-140	1	30
4-Chloroaniline	43		47	40-140	9	30
2-Nitroaniline	77		83	52-143	8	30
3-Nitroaniline	63		67	25-145	6	30

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Qual Limits	RPD	RPD Qual Limit	
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s):	01-05	Batch:	WG1537881-2 WG1537	7881-3		
4-Nitroaniline	76		78		51-143	3	30	
Dibenzofuran	66		68		40-140	3	30	
1,2,4,5-Tetrachlorobenzene	68		66		2-134	3	30	
Acetophenone	66		67		39-129	2	30	
2,4,6-Trichlorophenol	68		70		30-130	3	30	
p-Chloro-m-cresol	68		69		23-97	1	30	
2-Chlorophenol	72		70		27-123	3	30	
2,4-Dichlorophenol	74		72		30-130	3	30	
2,4-Dimethylphenol	65		65		30-130	0	30	
2-Nitrophenol	91		89		30-130	2	30	
4-Nitrophenol	72		74		10-80	3	30	
2,4-Dinitrophenol	87		88		20-130	1	30	
4,6-Dinitro-o-cresol	92		96		20-164	4	30	
Phenol	57		54		12-110	5	30	
2-Methylphenol	65		64		30-130	2	30	
3-Methylphenol/4-Methylphenol	74		72		30-130	3	30	
2,4,5-Trichlorophenol	74		75		30-130	1	30	
Carbazole	68		70		55-144	3	30	
Atrazine	78		83		40-140	6	30	
Benzaldehyde	66		66		40-140	0	30	
Caprolactam	30		30		10-130	0	30	
2,3,4,6-Tetrachlorophenol	77		78		40-140	1	30	

Project Name: FRANCZYK PARK Lab Number:

L2144691

Project Number: 221554

Report Date:

08/26/21

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG1537881-2 WG1537881-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	66	63	21-120
Phenol-d6	55	54	10-120
Nitrobenzene-d5	77	74	23-120
2-Fluorobiphenyl	63	63	15-120
2,4,6-Tribromophenol	83	89	10-120
4-Terphenyl-d14	70	72	41-149

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

arameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recove Limits	ry RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS-SIM - Wes	stborough Lab A	ssociated sample((s): 01-05	Batch:	WG1537882-2	WG1537882-3			
Acenaphthene	71		76		40-140	7		40	
2-Chloronaphthalene	71		72		40-140	1		40	
Fluoranthene	73		74		40-140	1		40	
Hexachlorobutadiene	68		63		40-140	8		40	
Naphthalene	70		73		40-140	4		40	
Benzo(a)anthracene	74		73		40-140	1		40	
Benzo(a)pyrene	79		78		40-140	1		40	
Benzo(b)fluoranthene	78		81		40-140	4		40	
Benzo(k)fluoranthene	80		77		40-140	4		40	
Chrysene	71		73		40-140	3		40	
Acenaphthylene	71		71		40-140	0		40	
Anthracene	71		73		40-140	3		40	
Benzo(ghi)perylene	72		72		40-140	0		40	
Fluorene	109		76		40-140	36		40	
Phenanthrene	70		73		40-140	4		40	
Dibenzo(a,h)anthracene	75		76		40-140	1		40	
Indeno(1,2,3-cd)pyrene	76		73		40-140	4		40	
Pyrene	72		74		40-140	3		40	
2-Methylnaphthalene	73		75		40-140	3		40	
Pentachlorophenol	87		90		40-140	3		40	
Hexachlorobenzene	59		64		40-140	8		40	
Hexachloroethane	46		73		40-140	45	Q	40	

Project Name: FRANCZYK PARK Lab Number:

L2144691

Project Number: 221554

Report Date:

08/26/21

LCS **LCSD** %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 Batch: WG1537882-2 WG1537882-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	45	62	21-120
Phenol-d6	54	53	10-120
Nitrobenzene-d5	48	78	23-120
2-Fluorobiphenyl	67	66	15-120
2,4,6-Tribromophenol	76	58	10-120
4-Terphenyl-d14	65	67	41-149

METALS

Project Name: Lab Number: FRANCZYK PARK L2144691 **Report Date:** 08/26/21

Project Number: 221554

SAMPLE RESULTS Lab ID:

L2144691-01

Date Collected:

08/19/21 10:00

Client ID: MW-05R Date Received:

Field Prep:

08/19/21

Sample Location:

CITY OF BUFFALO, NEW YORK

Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.0352		mg/l	0.0100	0.00327	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Antimony, Total	0.00070	J	mg/l	0.00400	0.00042	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Arsenic, Total	0.00113		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Barium, Total	0.04496		mg/l	0.00050	0.00017	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Calcium, Total	144.		mg/l	0.100	0.0394	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Chromium, Total	0.00086	J	mg/l	0.00100	0.00017	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Cobalt, Total	0.00116		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Copper, Total	0.00074	J	mg/l	0.00100	0.00038	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Iron, Total	0.167		mg/l	0.0500	0.0191	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Magnesium, Total	164.		mg/l	0.0700	0.0242	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Manganese, Total	0.5539		mg/l	0.00100	0.00044	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/24/21 07:10	08/25/21 14:12	EPA 7470A	1,7470A	OU
Nickel, Total	0.00227		mg/l	0.00200	0.00055	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Potassium, Total	8.99		mg/l	0.100	0.0309	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Sodium, Total	66.3		mg/l	0.100	0.0293	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Thallium, Total	0.00042	J	mg/l	0.00100	0.00014	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD
Zinc, Total	0.00694	J	mg/l	0.01000	0.00341	1	08/24/21 04:40	08/24/21 23:36	EPA 3005A	1,6020B	CD

Project Name: Lab Number: FRANCZYK PARK L2144691

Project Number: Report Date: 221554 08/26/21

SAMPLE RESULTS

Lab ID: L2144691-02

Date Collected: 08/19/21 11:05 Client ID: MW-7 Date Received: 08/19/21

Sample Location: CITY OF BUFFALO, NEW YORK Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Aluminum, Total	3.75		mg/l	0.0100	0.00327	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Antimony, Total	0.00051	J	mg/l	0.00400	0.00042	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Arsenic, Total	0.01208		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Barium, Total	0.06541		mg/l	0.00050	0.00017	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Beryllium, Total	0.00028	J	mg/l	0.00050	0.00010	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Cadmium, Total	0.00043		mg/l	0.00020	0.00005	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Calcium, Total	440.		mg/l	0.100	0.0394	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Chromium, Total	0.00744		mg/l	0.00100	0.00017	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Cobalt, Total	0.01387		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Copper, Total	0.02215		mg/l	0.00100	0.00038	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Iron, Total	29.0		mg/l	0.0500	0.0191	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Lead, Total	0.02833		mg/l	0.00100	0.00034	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Magnesium, Total	84.0		mg/l	0.0700	0.0242	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Manganese, Total	5.298		mg/l	0.00100	0.00044	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Mercury, Total	0.00011	J	mg/l	0.00020	0.00009	1	08/24/21 07:10	08/25/21 14:15	EPA 7470A	1,7470A	OU
Nickel, Total	0.01151		mg/l	0.00200	0.00055	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Potassium, Total	21.6		mg/l	0.100	0.0309	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Sodium, Total	36.6		mg/l	0.100	0.0293	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Thallium, Total	0.00057	J	mg/l	0.00100	0.00014	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Vanadium, Total	0.00813		mg/l	0.00500	0.00157	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD
Zinc, Total	0.08874		mg/l	0.01000	0.00341	1	08/24/21 04:40	08/24/21 23:41	EPA 3005A	1,6020B	CD

Project Name: Lab Number: FRANCZYK PARK L2144691 08/26/21

Project Number: 221554 **Report Date:**

SAMPLE RESULTS Lab ID: L2144691-03

Date Collected:

08/19/21 11:50

Client ID: MW-8 Date Received:

08/19/21

Sample Location:

CITY OF BUFFALO, NEW YORK

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Aluminum, Total	0.0217		mg/l	0.0100	0.00327	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Arsenic, Total	0.00277		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Barium, Total	0.1219		mg/l	0.00050	0.00017	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Calcium, Total	390.		mg/l	0.100	0.0394	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Chromium, Total	0.00112		mg/l	0.00100	0.00017	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Cobalt, Total	0.00089		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Copper, Total	0.00116		mg/l	0.00100	0.00038	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Iron, Total	12.3		mg/l	0.0500	0.0191	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Lead, Total	0.01001		mg/l	0.00100	0.00034	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Magnesium, Total	51.9		mg/l	0.0700	0.0242	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Manganese, Total	0.9367		mg/l	0.00100	0.00044	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/24/21 07:10	08/25/21 14:19	EPA 7470A	1,7470A	OU
Nickel, Total	0.00476		mg/l	0.00200	0.00055	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Potassium, Total	20.4		mg/l	0.100	0.0309	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Sodium, Total	9.10		mg/l	0.100	0.0293	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD
Zinc, Total	0.04348		mg/l	0.01000	0.00341	1	08/24/21 04:40	08/25/21 00:07	EPA 3005A	1,6020B	CD

Project Name: Lab Number: FRANCZYK PARK L2144691 08/26/21

Project Number: 221554 **Report Date:**

SAMPLE RESULTS Lab ID:

L2144691-04

Date Collected:

08/19/21 12:50

Client ID: MW-3 Date Received:

Field Prep:

08/19/21

Sample Location:

CITY OF BUFFALO, NEW YORK

Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	204.		mg/l	0.0100	0.00327	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Arsenic, Total	0.00867		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Barium, Total	0.08529		mg/l	0.00050	0.00017	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Beryllium, Total	0.00762		mg/l	0.00050	0.00010	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Cadmium, Total	0.00070		mg/l	0.00020	0.00005	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Calcium, Total	410.		mg/l	0.100	0.0394	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Chromium, Total	0.03668		mg/l	0.00100	0.00017	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Cobalt, Total	0.04548		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Copper, Total	0.01077		mg/l	0.00100	0.00038	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Iron, Total	932.		mg/l	0.500	0.191	10	08/24/21 04:40	08/25/21 13:31	EPA 3005A	1,6020B	CD
Lead, Total	0.03726		mg/l	0.00100	0.00034	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Magnesium, Total	479.		mg/l	0.0700	0.0242	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Manganese, Total	15.35		mg/l	0.01000	0.00440	10	08/24/21 04:40	08/25/21 13:31	EPA 3005A	1,6020B	CD
Mercury, Total	0.00009	J	mg/l	0.00020	0.00009	1	08/24/21 07:10	08/25/21 14:22	EPA 7470A	1,7470A	OU
Nickel, Total	0.07470		mg/l	0.00200	0.00055	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Potassium, Total	127.		mg/l	0.100	0.0309	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Selenium, Total	0.0150		mg/l	0.00500	0.00173	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Sodium, Total	92.7		mg/l	0.100	0.0293	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Thallium, Total	ND		mg/l	0.00100	0.00014	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Vanadium, Total	0.06358		mg/l	0.00500	0.00157	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD
Zinc, Total	0.2590		mg/l	0.01000	0.00341	1	08/24/21 04:40	08/25/21 00:12	EPA 3005A	1,6020B	CD

08/19/21 00:00

Not Specified

08/19/21

Date Collected:

Date Received:

Field Prep:

Project Name: Lab Number: FRANCZYK PARK L2144691 **Project Number: Report Date:** 08/26/21

221554

SAMPLE RESULTS

Lab ID: L2144691-05

Client ID: FIELD DUPLICATE

Sample Location: CITY OF BUFFALO, NEW YORK

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Aluminum, Total	0.377		mg/l	0.0100	0.00327	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Antimony, Total	0.00472		mg/l	0.00400	0.00042	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Arsenic, Total	0.00542		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Barium, Total	0.03489		mg/l	0.00050	0.00017	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Cadmium, Total	0.00007	J	mg/l	0.00020	0.00005	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Calcium, Total	250.		mg/l	0.100	0.0394	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Chromium, Total	0.00153		mg/l	0.00100	0.00017	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Cobalt, Total	0.00197		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Copper, Total	0.00487		mg/l	0.00100	0.00038	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Iron, Total	8.24		mg/l	0.0500	0.0191	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Lead, Total	0.00316		mg/l	0.00100	0.00034	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Magnesium, Total	25.7		mg/l	0.0700	0.0242	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Manganese, Total	0.7350		mg/l	0.00100	0.00044	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Mercury, Total	ND		mg/l	0.00020	0.00009	1	08/24/21 07:10	08/25/21 14:33	EPA 7470A	1,7470A	OU
Nickel, Total	0.00273		mg/l	0.00200	0.00055	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Potassium, Total	12.5		mg/l	0.100	0.0309	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Selenium, Total	0.00860		mg/l	0.00500	0.00173	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Sodium, Total	13.2		mg/l	0.100	0.0293	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Thallium, Total	0.00022	J	mg/l	0.00100	0.00014	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Vanadium, Total	0.00321	J	mg/l	0.00500	0.00157	1	08/24/21 04:40	08/25/21 00:17	EPA 3005A	1,6020B	CD
Zinc, Total	0.01734		mg/l	0.01000	0.00341	1	08/24/21 04:40			1,6020B	CD
	,			2.2.20		· ·	22.2 ., 2 . 0 1. 10			•	

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number:

L2144691

Report Date: 08/26/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sam	ple(s):	01-05 E	atch: Wo	G153773	3-1				
Aluminum, Total	ND		mg/l	0.0100	0.00327	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Antimony, Total	ND		mg/l	0.00400	0.00042	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Arsenic, Total	ND		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Barium, Total	ND		mg/l	0.00050	0.00017	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Calcium, Total	ND		mg/l	0.100	0.0394	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Chromium, Total	0.00056	J	mg/l	0.00100	0.00017	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Cobalt, Total	ND		mg/l	0.00050	0.00016	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Copper, Total	ND		mg/l	0.00100	0.00038	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Iron, Total	ND		mg/l	0.0500	0.0191	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Lead, Total	ND		mg/l	0.00100	0.00034	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Magnesium, Total	ND		mg/l	0.0700	0.0242	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Manganese, Total	ND		mg/l	0.00100	0.00044	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Nickel, Total	ND		mg/l	0.00200	0.00055	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Potassium, Total	ND		mg/l	0.100	0.0309	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Selenium, Total	ND		mg/l	0.00500	0.00173	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Silver, Total	ND		mg/l	0.00040	0.00016	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Sodium, Total	ND		mg/l	0.100	0.0293	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Thallium, Total	0.00020	J	mg/l	0.00100	0.00014	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD
Zinc, Total	ND		mg/l	0.01000	0.00341	1	08/24/21 04:40	08/24/21 22:58	1,6020B	CD

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-05 E	Batch: WO	G15377	34-1				
Mercury, Total	ND	mg/l	0.00020	0.00009) 1	08/24/21 07:10	08/25/21 13:43	1,7470A	OU

Serial_No:08262120:04

Project Name:FRANCZYK PARKLab Number:L2144691

Project Number: 221554 Report Date: 08/26/21

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Aluminum, Total Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total Calcium, Total	102 89 108 102	ch: WG1537733-2 - -	80-120		
Antimony, Total Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	89 108			-	
Arsenic, Total Barium, Total Beryllium, Total Cadmium, Total	108	-			
Barium, Total Beryllium, Total Cadmium, Total			80-120	-	
Beryllium, Total Cadmium, Total	102	-	80-120	-	
Cadmium, Total		-	80-120	-	
	104	-	80-120	-	
Calcium, Total	104	-	80-120	-	
	84	-	80-120	-	
Chromium, Total	103	-	80-120	-	
Cobalt, Total	104	-	80-120	-	
Copper, Total	105	-	80-120	-	
Iron, Total	103	-	80-120	-	
Lead, Total	106	-	80-120	-	
Magnesium, Total	107	-	80-120	-	
Manganese, Total	102	-	80-120	-	
Nickel, Total	102	-	80-120	-	
Potassium, Total	105	-	80-120	-	
Selenium, Total	108	-	80-120	-	
Silver, Total	106	-	80-120	-	
Sodium, Total	106	-	80-120	-	
Thallium, Total					
Vanadium, Total	118	-	80-120	-	

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associate	ed sample(s): 01-05 Batch: WG	31537733-2			
Zinc, Total	110	-	80-120	-	
Total Metals - Mansfield Lab Associate	ed sample(s): 01-05 Batch: WG	31537734-2			
Mercury, Total	97	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-05	QC Bat	tch ID: WG153	7733-3	QC Sam	nple: L2144600-0	04 Client ID: MS	S Sample	
Aluminum, Total	ND	2	2.06	103		-	-	75-125	-	20
Antimony, Total	ND	0.5	0.4389	88		-	-	75-125	-	20
Arsenic, Total	ND	0.12	0.1227	102		-	-	75-125	-	20
Barium, Total	0.00020J	2	2.027	101		-	-	75-125	-	20
Beryllium, Total	ND	0.05	0.05289	106		-	-	75-125	-	20
Cadmium, Total	ND	0.053	0.05574	105		-	-	75-125	-	20
Calcium, Total	0.0651J	10	9.42	94		-	-	75-125	-	20
Chromium, Total	0.00074J	0.2	0.2072	104		-	-	75-125	-	20
Cobalt, Total	ND	0.5	0.5171	103		-	-	75-125	-	20
Copper, Total	ND	0.25	0.2693	108		-	-	75-125	-	20
Iron, Total	ND	1	1.04	104		-	-	75-125	-	20
Lead, Total	ND	0.53	0.5588	105		-	-	75-125	-	20
Magnesium, Total	ND	10	10.6	106		-	-	75-125	-	20
Manganese, Total	ND	0.5	0.5099	102		-	-	75-125	-	20
Nickel, Total	ND	0.5	0.5039	101		-	-	75-125	-	20
Potassium, Total	ND	10	9.99	100		-	-	75-125	-	20
Selenium, Total	ND	0.12	0.129	108		-	-	75-125	-	20
Silver, Total	ND	0.05	0.05256	105		-	-	75-125	-	20
Sodium, Total	0.279	10	10.7	104		-	-	75-125	-	20
Thallium, Total	0.00017J	0.12	0.1416	118		-	-	75-125	-	20
Vanadium, Total	ND	0.5	0.5106	102		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number:

L2144691

Report Date:

08/26/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield L	ab Associated sam	ple(s): 01-05	QC Ba	tch ID: WG1537733-3	QC Sam	ple: L2144600-04	Client ID: MS	Sample	
Zinc, Total	0.01263	0.5	0.5703	112	-	-	75-125	-	20
Total Metals - Mansfield L	ab Associated sam	ple(s): 01-05	QC Ba	tch ID: WG1537734-3	QC Sam	ple: L2144605-05	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00481	96	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691

nrameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits		
otal Metals - Mansfield Lab Associated sample(s):	01-05 QC Batch ID: WG	1537733-4 QC Sample:	L2144600-04	Client ID:	DUP Samp	ole	
Aluminum, Total	ND	ND	mg/l	NC		20	
Antimony, Total	ND	ND	mg/l	NC		20	
Arsenic, Total	ND	ND	mg/l	NC		20	
Barium, Total	0.00020J	0.00018J	mg/l	NC		20	
Beryllium, Total	ND	ND	mg/l	NC		20	
Cadmium, Total	ND	ND	mg/l	NC		20	
Calcium, Total	0.0651J	0.0748J	mg/l	NC		20	
Chromium, Total	0.00074J	0.00077J	mg/l	NC		20	
Cobalt, Total	ND	ND	mg/l	NC		20	
Copper, Total	ND	ND	mg/l	NC		20	
Iron, Total	ND	ND	mg/l	NC		20	
Lead, Total	ND	ND	mg/l	NC		20	
Magnesium, Total	ND	ND	mg/l	NC		20	
Manganese, Total	ND	ND	mg/l	NC		20	
Nickel, Total	ND	ND	mg/l	NC		20	
Potassium, Total	ND	ND	mg/l	NC		20	
Selenium, Total	ND	ND	mg/l	NC		20	
Silver, Total	ND	ND	mg/l	NC		20	
Sodium, Total	0.279	0.293	mg/l	5		20	

Lab Duplicate Analysis Batch Quality Control

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number:

L2144691

Report Date:

08/26/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits	
Total Metals - Mansfield Lab Associated sample(s): 01-0	5 QC Batch ID:	WG1537733-4 QC Sample:	L2144600-04	Client ID:	DUP Sample	
Thallium, Total	0.00017J	ND	mg/l	NC	20	
Vanadium, Total	ND	ND	mg/l	NC	20	
Zinc, Total	0.01263	0.01301	mg/l	3	20	
Total Metals - Mansfield Lab Associated sample(s): 01-0	5 QC Batch ID:	WG1537734-4 QC Sample:	L2144605-05	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC	20	

Serial_No:08262120:04

Project Name: FRANCZYK PARK

Project Number: 221554

Lab Number: L2144691 **Report Date:** 08/26/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2144691-01A	Plastic 250ml HNO3 preserved	A	<2	<2	5.3	Υ	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),NI-6020T(180),CR-6020T(180),CA-6020T(180),CA-6020T(180),AS-6020T(180),AS-6020T(180),BE-6020T(180),AS-6020T(180),BE-6020T(180),AS-6020T(180),CD-6020T(180),HG-T(28),MG-6020T(180),AL-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180),CO-6020T(180)
L2144691-01B	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-01C	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-02A	Plastic 250ml HNO3 preserved	A	<2	<2	5.3	Y	Absent		FE-6020T(180),BA-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),NI-6020T(180),CR-6020T(180),CN-6020T(180),CU-6020T(180),PB-6020T(180),MN-6020T(180),SE-6020T(180),AS-6020T(180),SB-6020T(180),AS-6020T(180),SB-6020T(180),MG-6020T(180),AG-6020T(180),AL-6020T(180),CO-6020T(180),AL-6020T(180),CO-6020T(180)
L2144691-02B	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-02C	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-03A	Plastic 250ml HNO3 preserved	A	<2	<2	5.3	Y	Absent		TL-6020T(180),SE-6020T(180),FE-6020T(180),BA-6020T(180),CA-6020T(180),NI-6020T(180),CR-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),MN-6020T(180),SB-6020T(180),CD-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),AG-6020T(180),CO-6020T(180),HG-T(28),AL-6020T(180),CO-6020T(180),HG-T(28),AL-6020T(180),CO-6020T(180)
L2144691-03B	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-03C	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)

Serial_No:08262120:04

Lab Number: L2144691

Report Date: 08/26/21

Project Number: 221554

Project Name:

FRANCZYK PARK

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2144691-04A	Plastic 250ml HNO3 preserved	A	<2	<2	5.3	Y	Absent		SE-6020T(180),FE-6020T(180),TL-6020T(180),BA-6020T(180),CR-6020T(180),K-6020T(180),CA-6020T(180),NI-6020T(180),NA-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),V-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),AS-6020T(180),CD-6020T(180),HG-6020T(180),CD-6020T(180),HG-6020T(180),CO-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180),CD-6020T(180)
L2144691-04B	Amber 250ml unpreserved	Α	4	4	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-04C	Amber 250ml unpreserved	Α	4	4	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-05A	Plastic 250ml HNO3 preserved	A	<2	<2	5.3	Y	Absent		FE-6020T(180),TL-6020T(180),BA-6020T(180),SE-6020T(180),K-6020T(180),NI-6020T(180),CA-6020T(180),CA-6020T(180),CN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),SB-6020T(180),SB-6020T(180),CD-6020T(180),MO-6020T(180),AS-6020T(180),AG-6020T(180),AL-6020T(180),HG-T(28),CO-6020T(180)
L2144691-05B	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
L2144691-05C	Amber 250ml unpreserved	Α	7	7	5.3	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)

Project Name: Lab Number: FRANCZYK PARK L2144691

Report Date: Project Number: 221554 08/26/21

GLOSSARY

Acronyms

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes. LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:FRANCZYK PARKLab Number:L2144691Project Number:221554Report Date:08/26/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name:FRANCZYK PARKLab Number:L2144691Project Number:221554Report Date:08/26/21

Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:08262120:04

Project Name:FRANCZYK PARKLab Number:L2144691Project Number:221554Report Date:08/26/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08262120:04

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дерна	NEW YORK CHAIN OF CUSTODY	Albany, NY 12205: 14 Walker	vice Centers nwah, NJ 07430: 35 Whitney Rd, Suite 5 any, NY 12205: 14 Walker Way nawanda, NY 14150: 275 Cooper Ave, Suite 105			Page \			ec'd 8/20/21				ALPHA Job# L 2144691		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliverables					Billing Information	-		
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: Francisk Park						ASP-A		ASP-	В	Same as Client Info			
FAX: 508-898-9193	FAX: 508-822-3288	Project Location: (34)			ew York			EQuIS	(1 File)		EQui	S (4 File)	PO#		
Client Information Project # 201554								Other							
Client: LABella Associates (Use Project name as Project #)							Regulatory Requirement					Valle in	Disposal Site Information	Mile	
Address: 300 Peacl		Project Manager: A. Beokleman					NY TOGS NY P				NY Pa	rt 375	Please identify below location	of	
Buffalo, NY 1		ALPHAQuote #:					1 🗇	AWQ St	andards		NY CE	P-51	applicable disposal facilities.	Code:	
Phone: 716 551		Turn-Around Time						NY Rest	ricted Use	. \Box	Other		Disposal Facility:		
Fax: hae oghegen elabella ocum Standard Due Date:								NY Unre	stricted U	se			□ NJ □ NY		
Email: Qu henklem and labella oc. (on Rush (only if pre approved) # of Days:							NYC Sewer Discharge					Other:			
These samples have been previously analyzed by Alpha							ANALYSIS					Sample Filtration	Т		
Other project specific									-1	1			TABLE TARGET AND THE STATE OF T	- 0	
NYSDEC. AST	Category B	Daliverables					SVOCS	S					☐ Done ☐ Lab to do Preservation	a	
Please specify Metals or TAL.							ĕ	P					Lab to do	В	
ricase specify metals	OI TAL.						5	Metals						0	
			1		_		ر			1			(Please Specify below)	t	
ALPHA Lab ID (Lab Use Only)		mple ID		Collection		Sampler's	2	Toll IPL					- 7		
		W	Date	Time	Matrix	Initials	1						Sample Specific Comments		
44691 - 01	MW-05R		8/19/21	1000	water	HG	X	Y					1 bottle sty Full. Amber	-	
702	MW-7		8/19/21	105	Water	H6	X	X							
703	MW-8 mw-3		8/19/21	1150	Water	HG	×	×							
-04			8/19/21	120	WATE	H6	×	×							
-05 Field Duplica		2	8/19/21	_	water	46	×	×							
	147														
DENLES SE														\neg	
Preservative Code:	Container Code	Westboro: Certification I	No: MA935			ntainer Type							Diagra print algority less		
A = None B = HCl	P = Plastic A = Amber Glass	ic											Please print clearly, leg and completely. Sample		
C = HNO ₃	V = Vial	mananara caranadan i				_	1			not be logged in and					
D = H ₂ SO ₄	G = Glass B = Bacteria Cup				- 1	reservative		1 1		1			turnaround time clock v		
E = NaOH F = MeOH	C = Cube	77(C) (C) (C) (C) (C) (C) (C) (C) (C) (C)						Received By: Date/Time					start until any ambiguities are resolved. BY EXECUTING		
G = NaHSO ₄						Received By:			11/2	1/2.I	13:23				
H = Na ₂ S ₂ O ₃	E = Encore 5/19/200 D = BOD Bottle AAC 8/19/21				_	$\overline{}$	MAC	200				HAS READ AND AGRE	EES		
C/E = Zn Ac/NaOH O = Other		Am Ar AAL 8/19/21			14:25	1	MI K	7	100	XIIIX	(0830)	TO BE BOUND BY ALI			
		7				1110			1)				TERMS & CONDITION (See reverse side.)	15.	
Form No: 01-25 HC (rev. 3) ge 57 of 57	0-Sept-2013)					1		- 6					(000 1010100 0100.)		

APPENDIX 5

Data Usability Summary Report

Data Validation Services

120 Cobble Creek Road P. O. Box 208 North Creek, NY 12853 Phone (518) 251-4429 harry@frontiernet.net

October 8, 2021

Andrew Benkleman Labella Associates 300 Pearl St Suite 130 Buffalo, NY 14202

RE: Franczyk Park 2021 Annual Monitoring

Validation of Analytical Laboratory Data; Data Usability Summary Report (DUSR)

Alpha Analytical SDG No. L2144691

Dear Mr. Benkleman:

Review has been completed for the data package generated by that pertains to aqueous samples collected 08/19/21 as part of the 2021 Franczyk Park Annual Monitoring event. Four samples and a field duplicate were processed for TCL semivolatiles and TAL metals. Analytical methodologies utilized are USEPA SW846.

The data packages submitted by the laboratory contain full deliverables for validation, and this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Calibration and Preparation Blanks
- * Blind Field Duplicate Correlations
- * Laboratory Control Sample (LCS)
- * Instrumental Tunes
- * Initial and Continuing Calibration Standards
- * Method Compliance
- * Sample Result Verification

Those items listed above which show deficiencies are discussed within the text of this narrative. All of the other items were determined to be acceptable for the DUSR level review, as discussed in NYS DER-10 Appendix B Section 2.0 (c). Documentation of the outlying parameters cited in this report can be found in the laboratory data package.

In summary, results for the samples are usable either as reported or with minor qualification/edit. No matrix spikes were submitted or processed, and the effect of matrix on the analyte recovery has not been determined. Data completeness, representativeness, reproducibility, and comparability are acceptable.

The validation qualifier definitions and client sample identifications are attached to this text. Also included in this report is the client EQuIS EDD of the processed samples with recommended qualifiers/edits applied in red.

Blind Field Duplicate Evaluation

The blind field duplicate evaluation of MW-7 shows outlying recoveries for all except six of the elements. The concentrations in the parent sample exceed those of its duplicate, with the variance as high as an order of magnitude (for aluminum, cobalt, and nickel). Results for all of the metals except the following have been qualified in that parent sample and its duplicate as estimated in value: antimony, beryllium, cadmium, selenium, silver, and thallium.

TCL Semivolatile Analyses by EPA8270D

Holding times were met, and surrogate and internal standard recoveries are compliant. LCS recoveries are within laboratory ranges.

Calibration standards showed responses within validation guidelines, and blanks show no contamination.

TAL Metals by 6020B/7470A

Detected results for thallium in the samples are considered external contamination due to presence in associated blanks.

Instrument performance and LCS recoveries are compliant.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Judy Harry

Attachments: Validation Data Qualifier Definitions

Client and Laboratory Identifications

Qualified EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible

 Concentration of the analyte in the sample.

Sample Summaries

Project Name: FRANCZYK PARK

Lab Number: L2144691 Project Number: Report Date: 08/26/21 221554

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2144691-01	MW-05R	WATER	CITY OF BUFFALO, NEW YORK	08/19/21 10:00	08/19/21
L2144691-02	MW-7	WATER	CITY OF BUFFALO, NEW YORK	08/19/21 11:05	08/19/21
L2144691-03	MW-8	WATER	CITY OF BUFFALO, NEW YORK	08/19/21 11:50	08/19/21
L2144691-04	MW-3	WATER	CITY OF BUFFALO, NEW YORK	08/19/21 12:50	08/19/21
L2144691-05	FIELD DUPLICATE	WATER	CITY OF BUFFALO, NEW YORK	08/19/21 00:00	08/19/21

APPENDIX 6

MW-05R Installation Documentation

LaBella

300 Pearl Street, Suite 130, Buffalo, NY 14202

TEST BORING LOG

Franczyk Park Well Installation Soil Sampling 564 Babcock Street

Buffalo, New York

BORING: SB-MW-

5R

Sheet 1 of 1 JOB: 2211700

TIME:8:45 to 9:00

DATUM:

CONTRACTOR: LaBella Associates, D.P.C.

DRILLER: LaBella Env., LLC

AUGER SIZE AND TYPE:

LABELLA REPRESENTITIVE: J Dombrowski

TYPE OF DRILL RIG: Geoprobe 6620

START DATE: 6/8/2021

END DATE:6/8/2021

DRIVE SAMPLER TYPE:

INSIDE DIAMETER: ~ 1.8-Inch OTHER:

OVERBURDEN SAMPLING METHOD: Direct Push

JVLIND	ONDER	SHIALL FLIAG L	VILITIOD. D	11000100	***			
			SAMP	LE				
	EPTH (FT)	SAMPLE RECOVERY	PID FIELD SCREEN (Parts per Million)	RAD COUNT (Counts per Minute)	STRATA CHANGE	REMAR		VISUAL CLASSIFICATION
	0-1	104	0,0	-	0.3	Nosta		O - 0.0 Grass q 4 apos
	1-2	104	0.0	-	21	0	6.6	(LP, L8, M)
	2-3	1011	0.0	-	31	()	1.1	0.31-21 Brown Sittly closely
	3-4	10"	0.0	-	Capp	4	u	LUP USIN).
	4-5	10"	0.0	-	-	c)	u	21-3' Brain Suity clay wid
	5-6	12"	00	-	-	U	ŧ,	trace rack, brick, & graves
	6-7	12"	0.0	-	-	ů		SI-10' Brown Svily way CAP.
	7-8	12"	0.0	-		d	4	101-141 Branish group 8vol
	8-9	12"	0.0	-	-	d	L)	clay 24P. LS. Wet).
	9-10	120	0.0	-	101	d	Ŋ	
1	10-11	12"	0.0	-		J	10	Bonning turninated out 141t
1	11-12	120	0.0	-		u	49	
1	12-13	12"	0.0	-	-	4		
1	13-14	1211	0:0		141	4	-1	
	14-15							
GRO	DUNDW	ATER ENCOL	JNTERED	NOTES	 i:			
DATE	DEPTH	WELL INSTALLED	WELL ID	LP = Lo	w Plastic	city Plasticity		Low Stiffness = Medium Stiffness
0181	141	Yes	MO-5R		igh Plasticity HS = High Stiffness			

PROJECT Well ID: MW-5R LaBella Franczyk Park Well Replacement SHEET 1 OF 1 Buffalo, New York JOB #2211700 Well Replacement CHKD. BY: CONTRACTOR: LaBella LLC BORING LOCATION: SB-MW-5R DRILLER: Matt Pepe GROUND SURFACE ELEVATION: DATUM: Top of Riser LABELLA REPRESENTATIVE: Jessica Dombrowsk START DATE:6/8/2021 END DATE: 6/8/2021 WATER LEVEL DATA TYPE OF DRILL RIG: 45 DT Track Haunted Rig DATE
AUGER SIZE AND TYPE: 4.5" RE-Fary drilling
OVERBURDEN SAMPLING METHOD:5-foot MacroCore® sampler TIME WATER REMARKS ROCK DRILLING METHOD: N/A Surface Completion Stick Up (Flush) Casting Diameter Well Casing Type SCH 40 PVC 121 Total Depth Casing Length Seal Type Bentonite Screen Slot Size 0.01" Screen Length NA-Not Applicable GENERAL NOTES:

1) STRATIFICATION LINES REPRESENT APPROXIMATE BOUNDARY BETWEEN SOIL TYPES, TRANSITIONS MAY BE GRADUAL
2) WATER LEVEL READINGS HAVE BEEN MADE AT TIMES AND UNDER CONDITIONS STATED, FLUCTUATIONS OF GROUNDWATER
MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS WERE MADE.

PID Readings in PPM

Readings conducted in 15-minute intervals in Work Zone

Date	Time	Reading
6/8/2021	845	0.0
6/8/2021	900	0.0
6/8/2021	915	0.0
6/8/2021	930	0.0
6/8/2021	945	0.0
6/8/2021	1000	0.0
6/8/2021	1015	0.0
6/8/2021	1030	0.0
6/8/2021	1045	0.0
6/8/2021	1100	0.0
6/8/2021	1115	0.0
6/8/2021	1130	0.0
6/8/2021	1145	0.0
6/8/2021	1200	0.0
6/8/2021	1215	0.0
6/8/2021	1230	0.0
6/8/2021	1245	0.0
6/8/2021	1300	0.0

Comments: No PID readings were observed in the work zone at the time of well installation.

TrackPro Report Page 1 of 1

Test 001

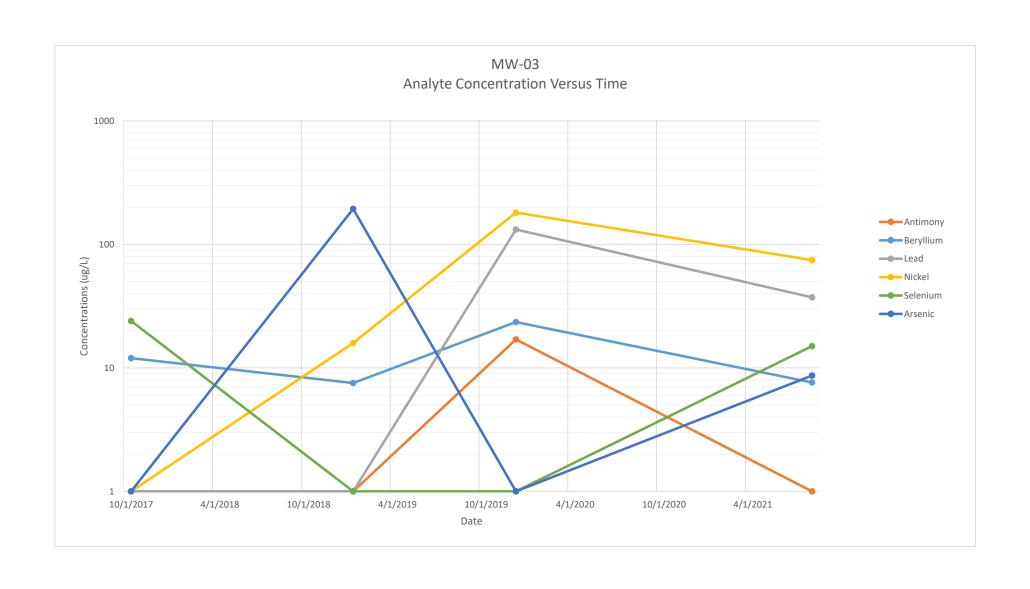
Instru	iment	Data Properties			
Model	DustTrak II	Start Date	06/08/2021		
Instrument S/N	8530104410	Start Time	09:52:56		
			06/08/2021		
			12:07:56		
			0:02:15:00		
		Logging Interval	900 seconds		

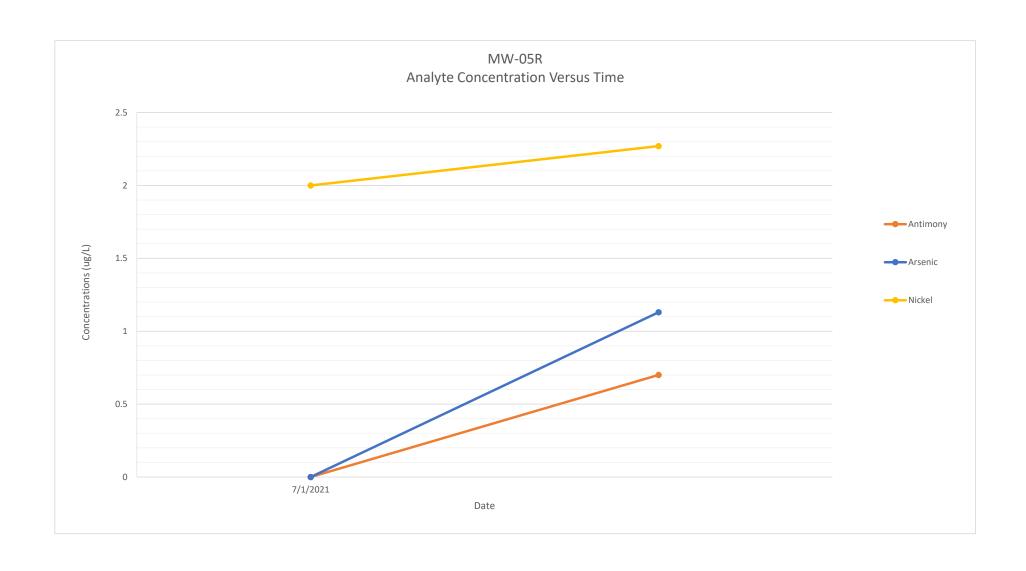
Statistics					
	AEROSOL				
Avg	0.022 mg/m^3				
Max	0.023 mg/m^3				
Max Date	06/08/2021				
Max Time	10:07:56				
Min	0.020 mg/m^3				
Min Date	06/08/2021				
Min Time	10:37:56				
TWA (8 hr)	0.006				
TWA Start Date	06/08/2021				
TWA Start Time	09:52:56				
TWA End Time	12:07:56				

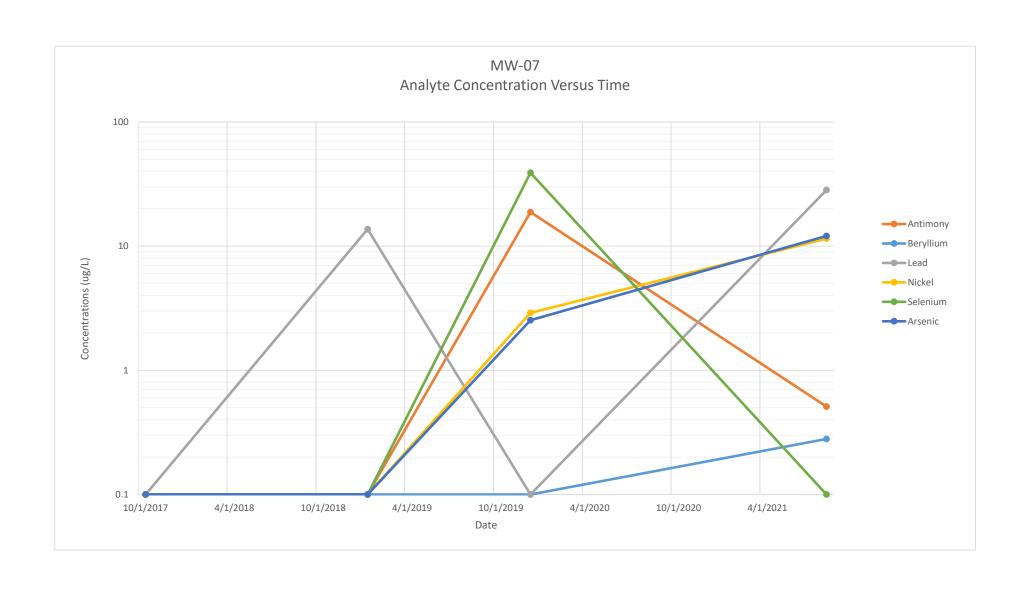
Test Data									
Data Point	Date	Time	AEROSOL mg/m^3						
1	06/08/2021	10:07:56	0.023						
2	06/08/2021	10:22:56	0.022						
3	06/08/2021	10:37:56	0.020						
4	06/08/2021	10:52:56	0.020						
5	06/08/2021	11:07:56	0.022						
6	06/08/2021	11:22:56	0.022						
7	06/08/2021	11:37:56	0.023						
8	06/08/2021	11:52:56	0.022						
9	06/08/2021	12:07:56	0.021						

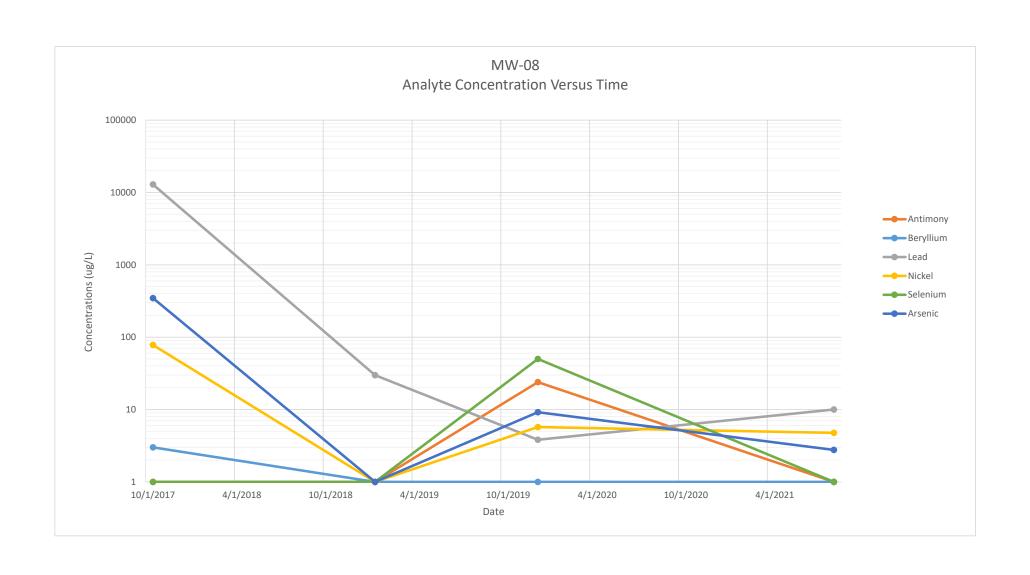
about:blank 6/10/2021

AMERICAN RECYCLERS COMPANY Waste Profile Report (WPR)


177 Wales . Tonawanda, Nev <i>Phone (716) 695-6720</i> .	APPROVAL NUMBER: A-18765L EXPIRATION DATE: 8/24/2023 HANDLING CODE: L					
Generator: Franczyk Park - C	ity of Buffalo	DPW	EPAID#:			2
Address: 1 Babcock Street			Contact: Andrew Be	enklemar	1	
City Buffalo STA	ATE: NY ZI	IP: 14206	Phone: 716-768-31	84F	ах:	
Waste Name: Soil Cuttings			Shipping Name:Nor	RCRA N	on DOT F	Regulated
Generating Process: Monitoring	well installation	on				
			Rate of Generation:	Once		
			Container Type: 55		1 1A2	
	W. CAMMIETO AL		Container Type, co		20000	
Composition of Waste	%			%	Pha	The state of the s
Soil cuttings and Debris (PPE)	- 100				Solids Liquid	
Debilo (FFE)					Sludge	
					Debris	
		AL - L - L - L - L - L - L - L - L - L -	1		Un in the second	
is the material RCRA listed of		and the second s			YES	ĭ NO
Does the material contain M Does the material contain et			IEST		YES	ĭ NO
Does the material contain, o			with PCB's?		YES	X NO
is the material radioactive?	1145 11 551115				YES	X NO
Does the material contain se	ptic or dome	stic sewage	9?		YES	NO X
is the material Non-Hazardo				X	YES	□ NO
Check all below which apply	<i>y</i> :					
Material is to be shipped and re	ecycled as Uni	iversal Wast	e		YES	NO NO
Material is to be shipped and re		6 NYCRR F	art 371.1(g)(1)(ii)(b)		YES	⊠ NO
Material is being shipped for dis		ia facility tran	sfer/consolidation per	mit 🗵	YES	□ NO
Material is a Labpack and all co	ontents are CE	RŢIFIED as	Non-RCRA		YES	X NO
List all Lab Pack Container N	lumbers:					
(Attach packing slips to p	rofile)					
I certify that the above submitted in accurate and complete to the best and suspected hazards have been Non-RCRA.	of my knowledge	e and ability a	and that all known Sign	ier Title <u>fa</u> ipan <u>y ZaB</u> i		CINSTBUTALO
Signed:	1_	P	Print: ANDREW BENK	LEMAN	Date:	8/24/2021
ARC Presonel Reviewed and	Approved by:					
Approved by:		P	rint: Tom Martin		Date:	


A	NON-HAZARDOUS WASTE MANIFEST					39947				
	Franczyk Park - (1 Babcock Street Buffalo, NY 1420									
	Generator's Phone: 6. Transporter 1 Company Na	716-768-3184 ame					U.S. EPA ID	Number		
Environmental Service Group, Inc. 716.695.6720 NYD986903904									904	
	7. Transporter 2 Company Name U.S. EPA ID Number									
8. Designated Facility Name and Site Address U.S. EPA ID Number										
American Recyclers Compan 177 Wales Avenue										
Wannamada 207 14150						0030	809			
10		9. Waste Shipping Name and Description					11. Total	12. Unit		
	1				No.	Туре	Quantity	Wt./Vol.		
GENERATOR	Non RCRA (Cuttings)	Non DOT Regulated,	(Soil		001	PW	400	4	EST	
- GENE	2.									
	3,									
	4.:									
	13. Special Handling Instructi	ions and Additional Information			II.					
П		Approval #	Ha 4.	endling Code: - None	4-4 44		ergency			
Ш		1 - A- 18765L 2 -	2	- NOME	ESG)	TRAC (Caller M	mst I	D	
Ш	_	3 -	3	-						
	14. GENERATOR'S/OFFER	OR'S CERTIFICATION: I hereby declare the arded, and are in all respects in proper con	nat the contents of this c	consignment are fully	and accurately de	escribed above	by the proper sh	ipping name	e, and are classified, packaged,	
	Generator's/Offeror's Printed/	arueu, ariu are iii aii respects iii proper cor	ultion for transport acco	Signa n re	emational and ha	ational governm	l entai regulations		Month Day Year	
٧	JAMES FOLKSON	AS AGENT FOR LIABB	LLA ASS		no	De	4		15 50 60	
INT	15. International Shipments	Import to U.S.		Export from U.S.		entry/exit:				
-	Transporter Signature (for ex 16. Transporter Acknowledgn				Date lea	aving U.S.:				
TRANSPORTER	Transporter 1 Printed/Typed	Hame SAGON		Signature	/	1-			Month Day Year	
NSP	Transporter 2 Printed/Typed I	Name		Signature	N /				69 07 Z / Month Day Year	
TRA										
A	17. Discrepancy 17a. Discrepancy Indication S	Space		V						
	Tra. Discrepancy indication S	Quantity	Пуре	[Residue		Partial Re	jection	Full Rejection	
Ц				Ma	nifest Reference	Number:				
ξĺ	17b. Alternate Facility (or Ger	nerator)					U.S. EPA ID	Number		
PAC	Facility's Phone:						1			
DESIGNATED FACILITY	17c. Signature of Alternate Fa	acility (or Generator)					4		Month Day Year	
DESIG									* * * 1. 1	
	19 Designated Facility O	or or Operators Contification of account of a	torinle governd buth	applicat cuses to a set	nd in them 47-			- 4		
	18. Designated Facility Owne Printed/Typed Name	er or Operator: Certification of receipt of ma		nanifest except as note Signature	eu in item 1/a	-	71	1	Month Day Year	
∦		Kainsi 1/2		1	11	il	M	2	109/07/21	
*	Qualin	Jany111X			Just	7		_		




APPENDIX 7

Monitoring Well Concentration Versus Time Plots for Select Metals

