

2025 Periodic Review Report

(Reporting Period: September 15, 2024, to September 15, 2025)

Location:

Franczyk Park
550 and 564 New Babcock Street
City of Buffalo, New York, 14206
NYSDEC Site No. B00174-9

Prepared for:

City of Buffalo
Office of Strategic Planning
Division of Environmental Affairs
65 Niagara Square Room 901
Buffalo, New York 14202

LaBella Project No. 2254330

November 26, 2025 (Revised December 18, 2025)

Table of Contents

1.0	EXECUTIVE SUMMARY	1
1.1	Site Summary	1
1.2	Effectiveness of Remedial Program.....	2
1.3	Non-Compliance.....	2
1.4	Recommendations.....	2
2.0	SITE OVERVIEW	2
2.1	Site Background.....	2
3.0	EFFECTIVENESS OF THE REMEDIAL PROGRAM	2
4.0	INSTITUTIONAL/ENGINEERING CONTROLS (IC/EC)	3
4.1	Institutional Control Requirements and Compliance.....	3
4.2	Engineering Control Requirements and Compliance.....	4
4.2.1	<i>Site Cover System</i>	4
4.2.2	<i>Interceptor Trench System</i>	4
5.0	SITE MONITORING PLAN	4
5.1	Site Inspection and Certification.....	4
5.1.1	<i>Site-Wide Inspection</i>	5
5.1.2	<i>IC/EC Certification</i>	5
5.2	Groundwater Monitoring.....	5
5.2.1	<i>Groundwater Monitoring Procedures</i>	6
5.2.2	<i>Groundwater Monitoring Results</i>	6
5.2.3	<i>Data Usability Summary Report</i>	7
6.0	CONCLUSIONS AND RECOMMENDATIONS	7
7.0	LIMITATIONS	8
8.0	REFERENCES	9

TABLE OF CONTENTS

Continued

Figures	Figure 1 – Site Location Map Figure 2 – Site Map Figure 3 – Groundwater Contours Figure 9 from Site Management Plan: As-Built Cover Thicknesses
Tables	Table 1 – Summary of Field Measurements Table 2 – Summary of Groundwater Elevations Table 3 – Groundwater Analytical Results
Appendix 1	Inspection Form and Field Logs
Appendix 2	Photographs
Appendix 3	Site Management Periodic Review Report-Institutional and Engineering Controls Certification Form
Appendix 4	Laboratory Analytical Report
Appendix 5	Data Usability Summary Report
Appendix 6	Monitoring Well Concentration Versus Time Plots for Select Metals

1.0 EXECUTIVE SUMMARY

This Periodic Review Report (PRR) is a required element of the approved Site Management Plan (SMP) for the Franczyk Park Site located at 550 and 564 Babcock Street in the City of Buffalo, Erie County, New York (hereafter referred to as the “Site”). This PRR was prepared on behalf of the City of Buffalo to summarize the post remedial status of the New York State Department of Environmental Conservation (NYSDEC) Environmental Restoration Program (ERP) Site No. B00174. This PRR and associated Institutional and Engineering Controls (IC/EC) Certification Form have been completed for the post-remedial activities at the Site for the reporting period from September 15, 2024 to September 15, 2025.

1.1 Site Summary

The Site is a public park composed of two adjoining parcels totaling approximately 15.49 acres, located at 550 and 564 New Babcock Street in the City of Buffalo, Erie County, New York. The Site is bound by Lyman Street to the north, Fleming Street to the south, New Babcock Street to the east, and Lewis Street to the west. The Site area is characterized as a mixture of commercial, industrial, and residential.

The City of Buffalo entered into a State Assistance Contract (SAC) with the NYSDEC to complete a Site Investigation/Remedial Alternatives Report (SI/RAR) for the Site. The Site Investigation, performed in the fall of 2003 and the spring of 2004, identified contaminated subsurface soil/fill throughout the Site as well as a minor amount of contaminated surface soil/fill in some high traffic areas. Following the completion of the SI, an SI/RAR was prepared. Based on the SI/RAR, a Proposed Remedial Action Plan (PRAP) was prepared. The PRAP was finalized in the March 2005 Record of Decision (ROD) following receipt of public input. A Remedial Action Work Plan (RAWP) was prepared in March 2006 to describe the specific remedial activities that were proposed for the Site. December 2006, the City of Buffalo entered into an agreement with a contractor to implement the RAWP. The remedial activities completed at the Site included excavation and off-Site disposal of two hazardous contaminated soil/fill areas, installation of a groundwater interceptor trench along Fleming Street, demolition and replacement of all athletic facilities and the playground to facilitate the installation of the cover system, augmentation of the existing cover soil to achieve a minimum 24-inch cover thickness over all “active” areas of the Site, and a minimum of 12 inches over all “passive” areas, and covering non-vegetated areas by a paving system of asphalt or concrete of at least six inches in thickness.

On June 15, 2016, a Certificate of Completion was issued by the NYSDEC indicating approval of the Final Engineering Report and satisfactory completion of the remediation phase of the environmental restoration project.

Subsequent completion of the remedial work, some contamination remained in the subsurface of the Site, referred to as “remaining contamination.” A SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. The SMP addresses the means for implementing the ICs and ECs that are required by the Environmental Easement for the Site.

1.2 Effectiveness of Remedial Program

Based on a recent inspection of the Site, the Site cover system and the groundwater interceptor trench system are intact and functioning as designed on the Site. Additionally, the groundwater sampling results indicate limited semi-volatile organic compounds (SVOCs) and metals were detected in the groundwater samples collected in October 2025 at concentrations exceeding NYSDEC standards.

1.3 Non-Compliance

Areas of non-compliance regarding the major elements of the SMP were not identified during the preparation of this PRR.

1.4 Recommendations

Overall, the remedial program is viewed to be effective in achieving the remedial objectives for the Site. No changes to the SMP or the frequency of PRR submissions are recommended at this time.

2.0 SITE OVERVIEW

The Site is a public park encompasses approximately 15.49-acre area and is located at 550 and 560 Babcock Street in the City of Buffalo, Erie County, New York (see **Figure 1**). As shown in **Figure 2**, the Site is bounded by Lyman Street to the north, Fleming Street to the south, New Babcock Street to the east, and Lewis Street to the west. Figure 2 depicts the Site boundaries overlain on a current aerial image.

2.1 Site Background

The Site was first developed by Buffalo Fertilizing Chemicals Works, (L.L. Crocker) as an agricultural fertilizer manufacturing facility. These manufacturing operations lasted almost a century while the facility underwent a number of name changes during its tenure as a fertilizer manufacturing facility. The parcel adjoining the northwest corner of the Site was sold to the Thaddeus Joseph Dulski Community Center, Inc. in 1975. The following year, the remainder of the Site was sold to the Industrial Refining Corporation and then to Car Salvage World in 1977. The Site was used as an automobile junk yard in the final years until Car Salvage World went Bankrupt in 1981. The Brondy Real Estate Co. acquired the Site and later sold it to the City of Buffalo in 1984. The City of Buffalo redeveloped the Site into a park in 1987.

3.0 EFFECTIVENESS OF THE REMEDIAL PROGRAM

As detailed below in Section 5.1.1, the Site cover system, groundwater interceptor trench, and groundwater monitoring wells were inspected during the annual periodic review conducted October 1 2025. Additionally, annual groundwater samples were collected and submitted for laboratory analysis from four on-Site groundwater monitoring wells on October 1 and 2, 2025. Based on this inspection, the engineering controls are generally intact and functioning effectively; the cover system and groundwater interceptor trench system are intact and functioning effectively throughout the Site.

4.0 INSTITUTIONAL/ENGINEERING CONTROLS (IC/EC)

4.1 Institutional Control Requirements and Compliance

In accordance with the SMP, a series of Institutional Controls (ICs) have been established for the Site in the form of Site restrictions. Adherence to these ICs is required by the Environmental Easement and implemented under the SMP. The ICs include the following:

- Compliance with the Environmental Easement and the SMP by Owner and the Owner's successors and assigns;
- All Engineering Controls (ECs) must be operated and maintained as specified in the SMP;
- All ECs on the Site must be inspected at a frequency and in a manner defined in the SMP;
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;
- Data and information pertinent to site management of the Site must be reported at the frequency and in a manner defined in the SMP; and
- On-site environmental monitoring devices, including but not limited to, groundwater monitoring wells, must be protected and replaced as necessary to ensure the devices function in the manner specified in the SMP.

ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The Site has a series of ICs in the form of restrictions. Site restrictions that apply are as follows:

- The Site may only be used for public park use provided that the long-term ECs and ICs included in the SMP are employed;
- The Site may not be used for a higher level of use, such as unrestricted use without additional remediation and amendment of the Environmental Easement;
- All future activities on the Site that will disturb the cover system and/or remaining contaminated material must be conducted in accordance with the SMP;
- The use of groundwater underlying the Site is prohibited without treatment rendering it safe for intended use;
- Vegetable gardens and farming on the Site are prohibited; and
- The owner of the Site is required to provide an IC/EC certification, prepared and submitted by a professional engineer or environmental professional acceptable to the NYSDEC annually or for a period to be approved by the NYSDEC, which will certify that the ICs and ECs put in place are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC, and, nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP.

LaBella has concluded that the ICs are in force and are being adhered to with respect to the condition and use of the Sites and activities conducted thereon.

4.2 Engineering Control Requirements and Compliance

4.2.1 Site Cover System

Exposure to the remaining contamination in soil/fill at the Site is prevented by cover systems placed over the Site. The cover system is comprised of a minimum of 24 inches of clean soil cover, or a combination of asphalt or concrete pavement and clean soil cover that is a minimum 24 inches thick over all “active” areas of the Site, and a minimum of 12 inches over all “passive” areas. Figure 9 from the Site SMP, included in the Figures Appendix, depicts the post-construction cover thicknesses across the Site. The cover system is a permanent control and quality, and integrity of this system is inspected on an annual basis. The frequency of inspections will not change without the prior approval of the NYSDEC.

The final cover system shall be observed by traversing the cover on foot and making appropriate observations, notes, and photographic records. The overall integrity of the final cover system on the Site will be assessed during inspections. The following characteristics shall be inspected during the observation of the cover system:

- Sloughing of slopes;
- Large cracks in the soil or paved cover surface;
- Settlement of the cover system;
- Erosion;
- Distressed vegetation/turf;
- Damaged to park access controls; or
- Vehicular rutting

Repairs will be performed at all areas exhibiting deficiencies or potential problems. Remedies for deficiencies are described in the SMP.

4.2.2 Interceptor Trench System

Exposure to remaining contamination in groundwater at the Site is prevented by a groundwater interceptor trench installed along Fleming Street and Lewis Street. The groundwater interceptor trench is located along the downgradient boundary of the Site, parallel to Fleming Street and Lewis Street. A groundwater interceptor trench was also installed in between the northwestern playground and the Dulski Community Center to the north and connected to the existing interceptor trench along Lewis Street. Groundwater collected in the trench system is conveyed to the Buffalo Sewer Authority sewer system. The interceptor trench system is a permanent control, and the quality and integrity of this system is inspected on an annual basis.

5.0 SITE MONITORING PLAN

5.1 Site Inspection and Certification

This PRR provides the information necessary to document the IC/EC certification. The certification primarily consists of a Site inspection to complete the NYSDEC “Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form” and confirm the IC/ECs:

- Are in place, performing properly, and remain effective;
- Nothing has occurred that would impair the ability of the controls to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with the SMP for such controls; and
- That access is available to the Site to evaluate continued maintenance of such controls.

The Site inspection includes the inspection of the following components in accordance with the SMP.

- Final cover system;
- Interceptor trench;
- Site access controls; and
- Site monitoring wells

5.1.1 Site-Wide Inspection

Annual site-wide inspections along with annual monitoring of the performance of the remedy is conducted for the first 30 years post completion. An annual inspection was conducted by LaBella on October 1, 2025, which included traversing the Site on foot to observe current conditions. The Site is currently developed as a public park that includes vegetated soil cover, baseball diamonds, basketball courts, soccer fields, a playground, and asphalt-paved pedestrian/bicycle trails and parking areas. Areas of active and passive uses at the Site remain consistent. During the Site inspection, the cover systems were generally observed to be in good condition and performing as intended. Minor rutting caused by vehicular traffic was noted south of the playground area and stressed vegetation areas were observed near the dugouts of the baseball diamonds. These locations are identified in **Figure 2**. LaBella recommends filling the tire depressions with topsoil and seeding low vegetation areas. No significant deficiencies or damage to the engineered cover systems were observed. Woodchips within the playground areas were observed to be low at the time of the site inspection. Placement of additional woodchips is recommended. The fencing along the north portion of the park was generally observed to be intact and functioning as intended. The interceptor trench appeared to be in good condition and functioning as intended. Additionally, the Site monitoring wells were observed to be in good condition. The Site Inspection Form is included in **Appendix 1**. **Appendix 2** includes photographs taking during the Site Inspection.

5.1.2 IC/EC Certification

No excavations, change of use, or groundwater use has occurred at the Site during the Certifying Period. The NYSDEC's IC/EC Certification Form was completed in its entirety as all ICs/ECs are in place for the Site per the SMP. **Appendix 3** includes the NYSDEC "Site Management Periodic Review Report Notice-Institutional and Engineering Controls Certification Form."

5.2 Groundwater Monitoring

The SMP specifies that groundwater sampling shall be performed at four down-gradient monitoring wells (MW-03, MW-05R, MW-07, and MW-08) on an annual basis and include analysis of Target Compound List (TCL) SVOCs and Target Analyte List (TAL) metals. Sampling of the monitoring wells is to be conducted using low-flow sampling procedures. Trends in contaminant levels in groundwater are evaluated to determine if the remedy continues to be effective in achieving remedial goals.

5.2.1 *Groundwater Monitoring Procedures*

The annual groundwater monitoring activities were performed in general accordance with the SMP and included the following.

- Measure depth of groundwater from the top of the well riser to determine groundwater elevations for the sampled groundwater monitoring wells;
- Collection of groundwater samples from monitoring wells MW-03, MW-05R, MW-07, and MW-08 using low-flow sampling techniques;
- Record field parameters (pH, oxidation-reduction potential, temperature, turbidity, and specific conductivity) at each monitoring well during the low-flow sampling;
- Submit groundwater samples for laboratory analysis for TCL SVOCs and TAL Metals to Pace Analytical, a New York State Department of Health (NYSDOH) environmental laboratory approval program (ELAP)-certified laboratory;
- Inspection and documentation of the structural integrity of the monitoring wells; and
- Containerize groundwater generated during the sampling and discharge to the groundwater interceptor trench collection system.

Field measurements are summarized in **Table 1** and groundwater elevations are presented in **Table 2**. Groundwater monitoring well low-flow sampling logs are included in **Appendix 1**.

5.2.2 *Groundwater Monitoring Results*

During sample collection on October 1 and 2, 2025, no floating semi-clear slimy material with a rotten odor that was previously observed in 2023 and 2024 was noted on the groundwater in MW-07.

The analytical results for the groundwater samples are summarized on **Table 3**. The laboratory analytical results are compared to NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (AWQS) dated June 1998.

SVOCs were detected in the groundwater samples collected and submitted for laboratory analysis in three of the four monitoring wells. SVOCs detected at concentrations above NYSDEC TOGS 1.1.1 AWQS were identified in MW-03, MW-07, and MW-08 are listed below.

- MW-03: Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Indeno(1,2,3-cd) pyrene, Phenol, and Pentachlorophenol
- MW-07: Bis(2-ethylhexyl)phthalate, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Chrysene, Indeno(1,2,3-cd) pyrene, and Phenol
- MW-08: Benzo(a)anthracene, Benz(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Indeno(1,2,3-cd)pyrene, and Phenol,

Metals were detected in all four groundwater samples with four or more parameters detected at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS in each sample. Parameters detected in groundwater samples at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS are listed below.

- MW-03: Beryllium, Chromium, Iron, Magnesium, Manganese, Selenium, and Sodium
- MW-05R: Iron, Magnesium, Manganese, and Sodium
- MW-07: Iron, Magnesium, Manganese, and Sodium
- MW-08: Arsenic, Iron, Lead, Magnesium, Manganese and Sodium

The laboratory analytical reports are included in **Appendix 4**. Historical metals parameter concentration trends are plotted for each monitoring well on graphs included in **Appendix 6**.

The groundwater elevations within each monitoring well were measured prior to sampling and groundwater contours are depicted in **Figure 3**.

5.2.3 Data Usability Summary Report

DATAVAL, Inc. completed the third-party data validation of the groundwater sample analytical results. The Data Usability Summary Report (DUSR) prepared by DATAVAL, Inc. is included in **Appendix 5**. The data validator indicated the results for the samples are considered technically defensible and completely usable in its present form. Some data has been qualified as usable estimations by the third-party validator and have been flagged accordingly on **Table 3**.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Annual inspection of the Site was performed on October 1, 2025, by LaBella Associates, DPC as prescribed in the SMP. As a result of this inspection, LaBella has determined that the Site is in compliance with the elements of the SMP.

As reflected by the signed Institutional and Engineering Controls Certification Form (**Appendix 3**), LaBella has concluded that:

- The required EC/ICs are in place, are performing properly, and remain effective;
- The SMP is being implemented; and
- The remedy continues to be protective of public health and the environment.

Based on the results of the annual groundwater monitoring, limited SVOCs were detected in MW-03, MW-07, and MW-08 at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS. Metals parameters exceeding NYSDEC TOGS 1.1.1 AWQS were identified in each groundwater sample analyzed. The SMP for the Site indicates that antimony, arsenic, beryllium, lead, nickel, and selenium were previously identified in Site groundwater at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS. Of these parameters only beryllium and selenium in MW-03 and arsenic and lead in MW-08 were detected at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS in the groundwater samples collected during this reporting period. These parameters in these monitoring wells were detected at concentrations similar to or below historical concentrations. Additional metals parameters including chromium, iron, magnesium, manganese, and sodium were detected in one or more of the groundwater samples during this reporting period at concentrations exceeding NYSDEC TOGS 1.1.1

AWQS. The SMP indicates that iron, magnesium, manganese, and sodium were previously detected at the Site at concentrations exceeding NYSDEC TOGS 1.1.1 AWQS and are commonly encountered in uncontaminated, natural environmental and are associated with groundwater aesthetics rather than toxicity. Chromium was detected in MW-03 at a concentration exceeding NYSDEC TOGS 1.1.1 AWQS. The concentration of chromium in MW-03 was similar to 2024 and review of historical data indicates these concentration are only slightly higher than the concentration detected in 2021. No apparent increasing trend was observed for chromium in MW-03. Chromium in MW-03 will continue to be monitored during future sampling events..

LaBella recommends the following:

- No changes to the inspection, reporting or certification frequency prescribed for the Site; and
- Groundwater monitoring should continue to be performed annually.
- Repair the cover in areas that were affected by vehicle rutting and foot traffic.
- Add additional wood chips to the playground areas.

7.0 LIMITATIONS

The conclusions presented in this report are based on information gathered in accordance with generally acceptable professional consulting principles and practices. All conclusions reflect observable conditions existing at the time of the Site inspection. Information provided by outside sources (individuals, agencies, laboratories, etc.) as cited herein, was used in the assessment of the Site. The accuracy of the conclusions drawn from this assessment is, therefore, dependent upon the accuracy of information provided by these sources. Furthermore, LaBella is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to the performance of services.

This report is based upon the application of scientific principles and professional judgment to certain facts with resultant subjective interpretations. Professional judgments expressed herein are based upon the facts currently available with the limits of the existing data, scope of services, budget, and schedule. To the extent that more definitive conclusions are desired by the Client than are warranted by the current available facts, it is specifically Labella's intent that the conclusions and recommendations stated herein will be intended as guidance and not necessarily a firm course of action except where explicitly stated as such. LaBella makes no warranties, expressed, or implied including without limitation, warranties as to merchantability or fitness of a particular purpose. Furthermore, the information provided in this report is not to be construed as legal advice.

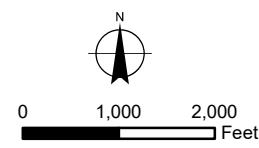
This assessment and report have been completed and prepared on behalf of and for the exclusive use of the City of Buffalo. Any reliance on this report by a third party is at sole risk.

8.0 REFERENCES

DER-10/Technical Guidance for Site Investigation and Remediation, NYSDEC, May 3, 2010

Site Management Plan, Franczyk Park Site Erie County, New York; KHEOPS Architecture, Engineering & Survey, DPC, Februruay 2015

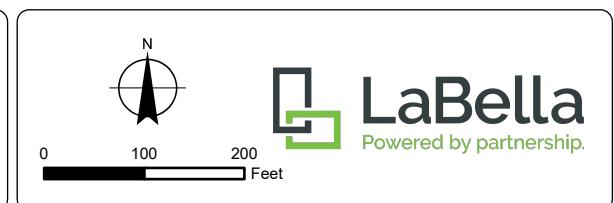
\\CASH.LAB\\U\\PROJECTS\\BUFFALO, CITY OF\\2254330 - 2025 2026 BCP LF MONITORING\\11_REPORTS\\FRANCZYK PARK 2024-2025 PRR\\UPDATED 2025 PPR_FRANCZYK PARK_B00174_12.2025.DOCX


FIGURES

PROJECT # / DRAWING # / DATE:	
<input type="checkbox"/> 2243532	
<input type="checkbox"/> Figure 1	
<input type="checkbox"/> 10/21/25	

DRAWING NAME:	
Site Location Map	

PROJECT: 2025 Periodic Review Report
550 & 564 New Babcock Street, Buffalo, New York
NYSDEC Site No. B00174-9


 LaBella
Powered by partnership.

PROJECT # / DRAWING # /
DATE:

DRAWING NAME:
Site Map

PROJECT:
2025 Periodic Review Report
550 & 564 New Babcock Street, Buffalo, New York
NYSDEC Site No. B00174-9

PROJECT # / DRAWING # /
DATE:

DRAWING NAME:
Site Map and locations of exposure

PROJECT:
**2025 Periodic
Review Report**
550 & 564 New Babcock
Street, Buffalo, New York
NYSDEC Site No. B00174-9

LaBella
Powered by partnership.

TABLES

TABLE 1
SUMMARY OF FIELD MEASUREMENTS
2024-2025 PERIODIC REVIEW REPORT
FRANCZYK PARK
CITY OF BUFFALO, NEW YORK

Location	Sampling Date	Sampling Time	Temp (°C)	pH (units)	Eh (MV)	Conductance (ms/cm) ²	Turbidity (NTU)	Diss. Oxygen (%)	Sample Appearance
MW-03	10/1/2025	12:05	16.2	3.88	52.8	10.78	34.01	62.2	Orange and sulfur odor
MW-05R	10/1/2025	9:40	15.8	7.41	63.14	1.24	2.78	NM	Clear, odorless and colorless
MW-07	10/2/2025	9:00	15.1	6.78	75.5	1.151	15.81	NM	Clear, odorless and colorless
MW-08	10/1/2025	13:45	17.1	6.81	2.0	3.223	14.1	75.8	Clear, odorless and colorless

Notes:

NS - Not Sampled

NM - Not Measured (meter malfunction)

TABLE 2
GROUNDWATER ELEVATIONS
2024-2025 PERIODIC REVIEW REPORT
FRANCZYK PARK
CITY OF BUFFALO, NEW YORK

Well Identification	Top of Casing Elevation ⁽¹⁾	Depth to Bottom ⁽¹⁾⁽³⁾	Depth to Water ⁽²⁾	Water Level Elevation
MW-03	597.30	16.1	6.2	591.1
MW-05R	597.12	11.9	3.87	593.25
MW-07	595.48	7.8	3.2	592.28
MW-08	597.14	7.8	5.2	591.94

Notes:

(1) Feet Above Mean Sea Level (AMSL). Casing elevation obtained via Eos Positioning System, Inc., Arrow Gold RTK GNSS GPS Unit

(2) Feet below top of casing

(3) Depth to bottom measured at time of sample collection

NM - Not Measured, well was not located

TABLE 3
SUMMARY OF ANNUAL GROUNDWATER SAMPLE ANALYTICAL RESULTS
FRANCZYK PARK 2024-2025 PRR
CITY OF BUFFALO, NEW YORK
(Detected Analytes Only)

MONITORING LOCATIONS	MW-03	MW-05R	MW-07	MW-08	Field Duplicate (MW-07)	NYSDEC TOGS 1.1.1 AWQS
Collection Date	10/1/2025	10/1/2025	10/2/2025	10/1/2025	10/2/2025	
Semi-Volatile Organic Compounds (µg/L)						
Phenol	11 J	<	3.9 J	3.5 J	<	1
3-Methylphenol/4-Methylphenol	20 J	<	<	<	<	NS
Naphthalene	0.06 J	<	<	0.09	<	13
Fluorene	<	<	<	0.14	<	50
Phenanthrene	0.09 J	<	0.19 J	1.2	0.12 J	50
Acenaphthylene	<	<	<	0.14	<	NS
Anthracene	0.03 J	<	<	0.37	<	NS
Bis(2-ethylhexyl)phthalate	<	<	62 J	<	<	5
Acenaphthene	<	<	<	0.19	<	20
Fluorene	0.03 J	<	<	0.14	<	50
Fluoranthene	0.06 J	<	0.22 J	2.4	0.12 J	50
Dibenzo(a,h)anthracene	<	<	<	0.36	<	NS
2-Methylnaphthalene	0.04 J	<	<	0.09	<	NS
Benzo(a)anthracene	0.04 J	<	0.15 J	1.4	0.10 J	0.002
Naphthalene	<	<	<	0.09	<	10
Di-n-butyl phthalate	<	<	7.9 J	<	<	50
Benzo(a)pyrene	0.04 J	<	0.12 J	1.8	<	ND
Benzo(b)fluoranthene	0.05 J	<	0.21 J	2.4	0.10 J	0.002
Benzo(k)fluoranthene	<	<	<	0.85	<	0.002
Acenaphthylene	<	<	<	0.14	<	NS
Chrysene	<	<	0.12 J	1.4	<	0.002
Anthracene	<	<	<	0.37	<	50
Benzo(ghi)perylene	0.04 J	<	0.15 J	1.8	<	NS
Dibenzo(a,h)anthracene	<	<	<	0.36	<	NS
Indeno(1,2,3-cd)pyrene	0.03 J	<	0.14 J	1.7	<	0.002
Pyrene	0.05 J	<	<	2.0	<	50
Benzoic Acid	12 J	< UJ	40 J	< UJ	28 J	NS
Pentachlorophenol	0.08 J	<	<	<	<	0.001
Metals (mg/L)						
Aluminum	396	0.277	0.698	1.29 J	0.517	NS
Antimony	<	<	<	0.00239 J	<	0.003
Arsenic	0.00227 J	0.00364	0.01706	0.02525	0.01324	0.025
Barium	0.02164	0.04411	0.03456	0.07818	0.02796	1
Beryllium	0.02598	<	<	<	<	0.003
Calcium	399	97.2 J	343	586	320	NS
Chromium	0.05117	0.00055 J	0.00248 J	0.00358 J	0.00346 J	0.05
Cobalt	0.00752	0.00058	0.00918	0.00174 J	0.00643	NS
Copper	<	0.00113	0.00595	0.0149	0.00598	0.2
Iron	2250	2.36	29.1	13.4	25.7	0.3
Lead	<	0.00075 J	0.01168	0.3247	0.01015	0.025
Magnesium	1170	92.7 J	86.8	154	87.7	35
Manganese	31.32	0.3216	4.337	0.7328	4.67	0.3
Mercury	<	<	<	0.00017 J	<	0.0007
Nickel	0.02145	<	0.00572 J	0.00474 J	0.00473 J	0.1
Potassium	160	4.57	18.6	44.7	18.2	NS
Selenium	0.0504	<	<	<	<	0.01
Sodium	155	46.9 J	43.5	24.5	44.5	20
Vanadium	0.06527	<	<	<	<	NS
Zinc	0.1231 J	0.08839 J	0.1272 J	0.2764 J	0.03914 J	2

NYSDEC TOGS 1.1.1 AWQS = New York State Department of Environmental Conservation (NYSDEC) Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998)

mg/L = Milligrams per liter

µg/L = Micrograms per liter

NS - Indicates the no regulatory value is noted within the NYSDEC TOGS 1.1.1 AWQS

NA - Not analyzed

<" - Indicates no detection

Shaded = Value exceeds NYSDEC TOGS 1.1.1 AWQS

J = Estimated value.

UJ= Not detected, but the detection limit is estimated because of interference from something in the sample.

APPENDIX 1

Inspection Form and Field Logs

What is the condition of the monitoring wells?

Well and functioning properly

ACTIVITY ON SITE

	Yes	No
7. Any activity on site that disturbed the soil cover?	_____	✓

ACCESS CONTROLS

	Yes	No
1. Is access controlled by barriers (i.e. fencing, boulders, etc?) Are there sections of the access controls damaged or missing?	✓	_____
2. Is there evidence of the operation of vehicles on the site? Is there evidence of damage to the cover or access controls resulting from vehicle use on the project site?	✓	_____

ADDITIONAL FACILITY INFORMATION

Has there been any any development on or near the site? (Specify size and type: e.g., residential, 40 acres, well and septic)

COMMENTS

Item #

Rutting in fields by cars

Add additional mulch to playgrounds

Add soil to ruts and soil to baseball diamond entrance

300 State Street
Rochester, New York 14614
Telephone: (585) 454-6110
Facsimile: (585) 454-3066

WELL I.D.: MW-03

Project Name: Franczyk Park
Location: Franczyk Park Buffalo New York
Project No.: 2254330
Sampled By: AJ Moskaluk
Date: 10/11/25
Weather: sunny cool

WELL SAMPLING INFORMATION

Well Diameter:

21

Depth of Well:

16.10

Measuring Point:

TOP
Der

**Measuring
Pump Type:**

Static Water Level:

Length of Well Screen:

Depth to Top of Pump:

Tubing Type:

FIELD PARAMETER MEASUREMENT

Total

Gallons Purged

Purge Time Start:

11:20

Purge Time End:

12:05

Final Static Water Level:

OBSERVATIONS

Strong odor, Balaout water, Orange + stinky water

300 State Street
Rochester, New York 14614
Telephone: (585) 454-6110
Facsimile: (585) 454-3066

WELL I.D.: MW-077

Project Name: Franczyk Park
Location: Franczyk Park Buffalo New York
Project No.: 2254330
Sampled By: AT Moskaluk
Date: 10/1/25 Sampled on 10/2/25
Weather: Sunny

WELL SAMPLING INFORMATION

Well Diameter: 2
Depth of Well: 7.8
Measuring Point: TOC
Pump Type: peristaltic

Static Water Level: _____
Length of Well Screen: _____
Depth to Top of Pump: _____
Tubing Type: _____

FIELD PARAMETER MEASUREMENT

Purge Time Start:

Purge Time End:

10:45

Final Static Water Level:

Day

OBSERVATIONS

Very dry + poor recharge.

300 State Street
Rochester, New York 14614
Telephone: (585) 454-6110
Facsimile: (585) 454-3066

WELL I.D.: MW-08

Project Name: Franczyk Park
Location: Franczyk Park Buffalo New York
Project No.: 2254330
Sampled By: AJ Moskaluk
Date: 10/01/25
Weather: Sunny cool

WELL SAMPLING INFORMATION

Well Diameter: 2"
Depth of Well: 7.80
Measuring Point: 101C
Pump Type: Peri

Static Water Level: _____
Length of Well Screen: _____
Depth to Top of Pump: _____
Tubing Type: _____

FIELD PARAMETER MEASUREMENT

Total

Gallons Purged

Purge Time Start

13.00

Purge Time End:

Final Static Water Level:

Ory

OBSERVATIONS

10. *What is the name of the author of the book you are reading?*

APPENDIX 2

Photographs

View of path

View of basketball courts

View of soccer field, looking north

View of path

View of parking lot looking east

View of hockey rink

View of Vehicle rutting, south of playground

View of Vehicle rutting, south of playground

View of Vehicle rutting, south of playground

View of playground

Northwest baseball diamond subsidence

View of Southeast Baseball diamond

APPENDIX 3

**Site Management Periodic Review Report Notice-Institutional and
Engineering Controls Certification Form**

Enclosure 2
NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION
Site Management Periodic Review Report Notice
Institutional and Engineering Controls Certification Form

Site No. B00174

Site Details

Box 1

Site Name Franczyk Park Investigation

Site Address: 550 and 564 New Babcock Street Zip Code: 14206-
City/Town: Buffalo (C)

County: Erie

Site Acreage: 15.490

Reporting Period: September 15, 2024 to September 15, 2025

YES NO

1. Is the information above correct?

If NO, include handwritten above or on a separate sheet.

2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?

3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?

4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?

If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.

5. Is the site currently undergoing development?

Box 2

YES NO

6. Is the current site use consistent with the use(s) listed below?

Restricted-Residential, Commercial, and Industrial

7. Are all ICs in place and functioning as designed?

IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

Description of Institutional Controls

<u>Parcel</u>	<u>Owner</u>	<u>Institutional Control</u>
112.17-1-11	City of Buffalo	Ground Water Use Restriction Soil Management Plan
122.17-1-10	City of Buffalo	Landuse Restriction Monitoring Plan Site Management Plan
		Site Management Plan Landuse Restriction Monitoring Plan
		Ground Water Use Restriction Soil Management Plan

Description of Engineering Controls

<u>Parcel</u>	<u>Engineering Control</u>
112.17-1-11	Cover System
122.17-1-10	Groundwater Containment Cover System

Periodic Review Report (PRR) Certification Statements

1. I certify by checking "YES" below that:

- a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;
- b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.

YES NO

✓

2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:

- (a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;
- (b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;
- (c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;
- (d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and
- (e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.

YES NO

✓

**IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.**

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Signature of Owner, Remedial Party or Designated Representative

Date

IC CERTIFICATIONS
SITE NO. B00174

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I ANDREW BENKLEMAN at 300 PEARL ST. SUITE 130, BUFFALO, NY
print name print business address
am certifying as Owner Representative (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Signature of Owner, Remedial Party, or Designated Representative
Rendering Certification

10/21/25
Date

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

I Andrew Benkeman at 300 Pearl St, Suite 130, Buffalo, NY,
print name print business address

am certifying as a Qualified Environmental Professional for the Owner Representative
(Owner or Remedial Party)

Signature of Qualified Environmental Professional, for
the Owner or Remedial Party, Rendering Certification

Stamp
(Required for PE)

10/21/25
Date

APPENDIX 4

Laboratory Analytical Report

ANALYTICAL REPORT

Lab Number:	L2562293
Client:	LaBella Associates, P.C. 300 Pearl Street Suite 130 Buffalo, NY 14202
ATTN:	Andy Benkleman
Phone:	(716) 551-6281
Project Name:	FRANCZKY PARK
Project Number:	2254330
Report Date:	10/15/25

The original project report/data package is held by Pace Analytical Services. This report/data package is paginated and should be reproduced only in its entirety. Pace Analytical Services holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Eight Walkup Drive, Westborough, MA 01581-1019
508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Lab Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2562293-01	MW-05R	WATER	FRANCZKY PARK BUFFALO NY	10/01/25 09:40	10/02/25
L2562293-02	MW-03	WATER	FRANCZKY PARK BUFFALO NY	10/01/25 12:10	10/02/25
L2562293-03	MW-08	WATER	FRANCZKY PARK BUFFALO NY	10/01/25 13:45	10/02/25
L2562293-04	DUP	WATER	FRANCZKY PARK BUFFALO NY	10/02/25 00:00	10/02/25
L2562293-05	MW-07	WATER	FRANCZKY PARK BUFFALO NY	10/02/25 09:00	10/02/25

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Pace Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Pace's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Pace Project Manager and made arrangements for Pace to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

L2562293-04: The analyses performed and collection date/time were specified by the client.

Semivolatile Organics

L2562293-04 and -05: The sample has elevated detection limits due to limited sample volume available for analysis.

Semivolatile Organics by SIM

L2562293-04 and -05: The sample has elevated detection limits due to limited sample volume available for analysis.

Total Metals

L2562293-02 through -05: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the sample matrix.

The WG2124114-3/-4 MS/MSD recoveries performed on L2562293-01 do not apply for calcium (MSD 168%), magnesium (143%/133%) and sodium (MS 128%) because the sample concentrations are greater than four times the spike amounts added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Kelly O'Neill Kelly O'Neill

Title: Technical Director/Representative

Date: 10/15/25

ORGANICS

SEMIVOLATILES

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-01
Client ID: MW-05R
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/01/25 09:40
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E
Analytical Date: 10/07/25 17:43
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND	ug/l	5.0	0.98	1	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.39	1	
1,2-Dichlorobenzene	ND	ug/l	2.0	0.33	1	
1,3-Dichlorobenzene	ND	ug/l	2.0	0.32	1	
1,4-Dichlorobenzene	ND	ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND	ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND	ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND	ug/l	20	1.2	1	
Isophorone	ND	ug/l	5.0	0.86	1	
Nitrobenzene	ND	ug/l	2.0	0.20	1	
NDPA/DPA	ND	ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND	ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND	ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND	ug/l	5.0	2.3	1	
Diethyl phthalate	ND	ug/l	5.0	0.76	1	
Dimethyl phthalate	ND	ug/l	5.0	0.92	1	
Biphenyl	ND	ug/l	2.0	0.20	1	
4-Chloroaniline	ND	ug/l	5.0	0.47	1	
2-Nitroaniline	ND	ug/l	5.0	1.0	1	
3-Nitroaniline	ND	ug/l	5.0	1.2	1	
4-Nitroaniline	ND	ug/l	5.0	1.4	1	

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-01

Date Collected: 10/01/25 09:40

Client ID: MW-05R

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	ND		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Benzoic Acid	ND		ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.38	1
Carbazole	ND		ug/l	2.0	0.31	1
Surrogate		% Recovery		Qualifier		Acceptance Criteria
2-Fluorophenol		64				21-120
Phenol-d6		54				10-120
Nitrobenzene-d5		101				23-120
2-Fluorobiphenyl		83				15-120
2,4,6-Tribromophenol		94				10-120
4-Terphenyl-d14		82				41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-01
Client ID: MW-05R
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/01/25 09:40
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 15:48
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND	ug/l	0.10	0.02	1	
2-Chloronaphthalene	ND	ug/l	0.20	0.02	1	
Fluoranthene	ND	ug/l	0.10	0.03	1	
Hexachlorobutadiene	ND	ug/l	0.50	0.02	1	
Naphthalene	ND	ug/l	0.10	0.02	1	
Benzo(a)anthracene	ND	ug/l	0.10	0.03	1	
Benzo(a)pyrene	ND	ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND	ug/l	0.10	0.03	1	
Benzo(k)fluoranthene	ND	ug/l	0.10	0.03	1	
Chrysene	ND	ug/l	0.10	0.03	1	
Acenaphthylene	ND	ug/l	0.10	0.02	1	
Anthracene	ND	ug/l	0.10	0.02	1	
Benzo(ghi)perylene	ND	ug/l	0.10	0.02	1	
Fluorene	ND	ug/l	0.10	0.03	1	
Phenanthrene	ND	ug/l	0.10	0.04	1	
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.02	1	
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.02	1	
Pyrene	ND	ug/l	0.10	0.04	1	
2-Methylnaphthalene	ND	ug/l	0.10	0.03	1	
Pentachlorophenol	ND	ug/l	0.80	0.06	1	
Hexachlorobenzene	ND	ug/l	0.80	0.01	1	
Hexachloroethane	ND	ug/l	0.80	0.02	1	

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-01

Date Collected: 10/01/25 09:40

Client ID: MW-05R

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	60		21-120
Phenol-d6	46		10-120
Nitrobenzene-d5	86		23-120
2-Fluorobiphenyl	77		15-120
2,4,6-Tribromophenol	94		10-120
4-Terphenyl-d14	74		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-02
Client ID: MW-03
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/01/25 12:10
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E
Analytical Date: 10/07/25 18:48
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND	ug/l	5.0	0.98	1	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.39	1	
1,2-Dichlorobenzene	ND	ug/l	2.0	0.33	1	
1,3-Dichlorobenzene	ND	ug/l	2.0	0.32	1	
1,4-Dichlorobenzene	ND	ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND	ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND	ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND	ug/l	20	1.2	1	
Isophorone	ND	ug/l	5.0	0.86	1	
Nitrobenzene	ND	ug/l	2.0	0.20	1	
NDPA/DPA	ND	ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND	ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND	ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND	ug/l	5.0	2.3	1	
Diethyl phthalate	ND	ug/l	5.0	0.76	1	
Dimethyl phthalate	ND	ug/l	5.0	0.92	1	
Biphenyl	ND	ug/l	2.0	0.20	1	
4-Chloroaniline	ND	ug/l	5.0	0.47	1	
2-Nitroaniline	ND	ug/l	5.0	1.0	1	
3-Nitroaniline	ND	ug/l	5.0	1.2	1	
4-Nitroaniline	ND	ug/l	5.0	1.4	1	

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-02

Date Collected: 10/01/25 12:10

Client ID: MW-03

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	11.		ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	20.		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Benzoic Acid	12.	J	ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.38	1
Carbazole	ND		ug/l	2.0	0.31	1
Surrogate			% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol			75		21-120	
Phenol-d6			63		10-120	
Nitrobenzene-d5			121	Q	23-120	
2-Fluorobiphenyl			92		15-120	
2,4,6-Tribromophenol			118		10-120	
4-Terphenyl-d14			99		41-149	

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-02
Client ID: MW-03
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/01/25 12:10
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 16:38
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	0.06	J	ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	0.06	J	ug/l	0.10	0.02	1
Benzo(a)anthracene	0.04	J	ug/l	0.10	0.03	1
Benzo(a)pyrene	0.04	J	ug/l	0.10	0.02	1
Benzo(b)fluoranthene	0.05	J	ug/l	0.10	0.03	1
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1
Chrysene	ND		ug/l	0.10	0.03	1
Acenaphthylene	ND		ug/l	0.10	0.02	1
Anthracene	0.03	J	ug/l	0.10	0.02	1
Benzo(ghi)perylene	0.04	J	ug/l	0.10	0.02	1
Fluorene	0.03	J	ug/l	0.10	0.03	1
Phenanthrene	0.09	J	ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.02	1
Pyrene	0.05	J	ug/l	0.10	0.04	1
2-Methylnaphthalene	0.04	J	ug/l	0.10	0.03	1
Pentachlorophenol	0.08	J	ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-02

Date Collected: 10/01/25 12:10

Client ID: MW-03

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	67		21-120
Phenol-d6	53		10-120
Nitrobenzene-d5	98		23-120
2-Fluorobiphenyl	80		15-120
2,4,6-Tribromophenol	112		10-120
4-Terphenyl-d14	80		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

SAMPLE RESULTS

Lab ID: L2562293-03
Client ID: MW-08
Sample Location: FRANCZKY PARK BUFFALO NY

Lab Number: L2562293
Report Date: 10/15/25
Date Collected: 10/01/25 13:45
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E
Analytical Date: 10/07/25 19:09
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND	ug/l	5.0	0.98	1	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	0.39	1	
1,2-Dichlorobenzene	ND	ug/l	2.0	0.33	1	
1,3-Dichlorobenzene	ND	ug/l	2.0	0.32	1	
1,4-Dichlorobenzene	ND	ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND	ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND	ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND	ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND	ug/l	20	1.2	1	
Isophorone	ND	ug/l	5.0	0.86	1	
Nitrobenzene	ND	ug/l	2.0	0.20	1	
NDPA/DPA	ND	ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND	ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND	ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND	ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND	ug/l	5.0	2.3	1	
Diethyl phthalate	ND	ug/l	5.0	0.76	1	
Dimethyl phthalate	ND	ug/l	5.0	0.92	1	
Biphenyl	ND	ug/l	2.0	0.20	1	
4-Chloroaniline	ND	ug/l	5.0	0.47	1	
2-Nitroaniline	ND	ug/l	5.0	1.0	1	
3-Nitroaniline	ND	ug/l	5.0	1.2	1	
4-Nitroaniline	ND	ug/l	5.0	1.4	1	

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-03

Date Collected: 10/01/25 13:45

Client ID: MW-08

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Dibenzofuran	ND		ug/l	2.0	0.40	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1
Acetophenone	ND		ug/l	5.0	0.92	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1
2-Chlorophenol	ND		ug/l	2.0	0.65	1
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1
2-Nitrophenol	ND		ug/l	10	2.0	1
4-Nitrophenol	ND		ug/l	10	1.4	1
2,4-Dinitrophenol	ND		ug/l	20	5.4	1
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1
Phenol	3.5	J	ug/l	5.0	0.35	1
2-Methylphenol	ND		ug/l	5.0	2.3	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1
Benzoic Acid	ND		ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.38	1
Carbazole	ND		ug/l	2.0	0.31	1
Surrogate			% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol			63		21-120	
Phenol-d6			46		10-120	
Nitrobenzene-d5			89		23-120	
2-Fluorobiphenyl			75		15-120	
2,4,6-Tribromophenol			84		10-120	
4-Terphenyl-d14			76		41-149	

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-03
Client ID: MW-08
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/01/25 13:45
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 16:55
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	0.19		ug/l	0.10	0.02	1
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1
Fluoranthene	2.4		ug/l	0.10	0.03	1
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1
Naphthalene	0.09	J	ug/l	0.10	0.02	1
Benzo(a)anthracene	1.4		ug/l	0.10	0.03	1
Benzo(a)pyrene	1.8		ug/l	0.10	0.02	1
Benzo(b)fluoranthene	2.4		ug/l	0.10	0.03	1
Benzo(k)fluoranthene	0.85		ug/l	0.10	0.03	1
Chrysene	1.4		ug/l	0.10	0.03	1
Acenaphthylene	0.14		ug/l	0.10	0.02	1
Anthracene	0.37		ug/l	0.10	0.02	1
Benzo(ghi)perylene	1.8		ug/l	0.10	0.02	1
Fluorene	0.14		ug/l	0.10	0.03	1
Phenanthrene	1.2		ug/l	0.10	0.04	1
Dibenzo(a,h)anthracene	0.36		ug/l	0.10	0.02	1
Indeno(1,2,3-cd)pyrene	1.7		ug/l	0.10	0.02	1
Pyrene	2.0		ug/l	0.10	0.04	1
2-Methylnaphthalene	0.09	J	ug/l	0.10	0.03	1
Pentachlorophenol	ND		ug/l	0.80	0.06	1
Hexachlorobenzene	ND		ug/l	0.80	0.01	1
Hexachloroethane	ND		ug/l	0.80	0.02	1

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-03

Date Collected: 10/01/25 13:45

Client ID: MW-08

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	69		21-120
Phenol-d6	51		10-120
Nitrobenzene-d5	99		23-120
2-Fluorobiphenyl	88		15-120
2,4,6-Tribromophenol	115		10-120
4-Terphenyl-d14	81		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-04
Client ID: DUP
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/02/25 00:00
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E
Analytical Date: 10/07/25 19:30
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND	ug/l	12	2.4	1	
Bis(2-chloroethyl)ether	ND	ug/l	5.0	0.98	1	
1,2-Dichlorobenzene	ND	ug/l	5.0	0.82	1	
1,3-Dichlorobenzene	ND	ug/l	5.0	0.79	1	
1,4-Dichlorobenzene	ND	ug/l	5.0	0.98	1	
3,3'-Dichlorobenzidine	ND	ug/l	12	4.6	1	
2,4-Dinitrotoluene	ND	ug/l	12	1.4	1	
2,6-Dinitrotoluene	ND	ug/l	12	2.1	1	
4-Chlorophenyl phenyl ether	ND	ug/l	5.0	0.96	1	
4-Bromophenyl phenyl ether	ND	ug/l	5.0	0.61	1	
Bis(2-chloroisopropyl)ether	ND	ug/l	5.0	1.0	1	
Bis(2-chloroethoxy)methane	ND	ug/l	12	2.1	1	
Hexachlorocyclopentadiene	ND	ug/l	50	3.1	1	
Isophorone	ND	ug/l	12	2.2	1	
Nitrobenzene	ND	ug/l	5.0	0.51	1	
NDPA/DPA	ND	ug/l	5.0	2.3	1	
n-Nitrosodi-n-propylamine	ND	ug/l	12	2.3	1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	7.5	3.6	1	
Butyl benzyl phthalate	ND	ug/l	12	6.5	1	
Di-n-butylphthalate	ND	ug/l	12	2.4	1	
Di-n-octylphthalate	ND	ug/l	12	5.6	1	
Diethyl phthalate	ND	ug/l	12	1.9	1	
Dimethyl phthalate	ND	ug/l	12	2.3	1	
Biphenyl	ND	ug/l	5.0	0.49	1	
4-Chloroaniline	ND	ug/l	12	1.2	1	
2-Nitroaniline	ND	ug/l	12	2.6	1	
3-Nitroaniline	ND	ug/l	12	2.9	1	
4-Nitroaniline	ND	ug/l	12	3.6	1	

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID:	L2562293-04	Date Collected:	10/02/25 00:00
Client ID:	DUP	Date Received:	10/02/25
Sample Location:	FRANCZKY PARK BUFFALO NY	Field Prep:	Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Dibenzofuran	ND		ug/l	5.0	1.0	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	25	0.60	1
Acetophenone	ND		ug/l	12	2.3	1
2,4,6-Trichlorophenol	ND		ug/l	12	5.2	1
p-Chloro-m-cresol	ND		ug/l	5.0	1.5	1
2-Chlorophenol	ND		ug/l	5.0	1.6	1
2,4-Dichlorophenol	ND		ug/l	12	4.2	1
2,4-Dimethylphenol	ND		ug/l	12	5.1	1
2-Nitrophenol	ND		ug/l	25	4.9	1
4-Nitrophenol	ND		ug/l	25	3.6	1
2,4-Dinitrophenol	ND		ug/l	50	14.	1
4,6-Dinitro-o-cresol	ND		ug/l	25	5.8	1
Phenol	ND		ug/l	12	0.88	1
2-Methylphenol	ND		ug/l	12	5.8	1
3-Methylphenol/4-Methylphenol	ND		ug/l	12	3.5	1
2,4,5-Trichlorophenol	ND		ug/l	12	5.2	1
Benzoic Acid	28.	J	ug/l	120	6.6	1
Benzyl Alcohol	ND		ug/l	5.0	0.95	1
Carbazole	ND		ug/l	5.0	0.77	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	61		21-120
Phenol-d6	49		10-120
Nitrobenzene-d5	97		23-120
2-Fluorobiphenyl	75		15-120
2,4,6-Tribromophenol	88		10-120
4-Terphenyl-d14	69		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-04
Client ID: DUP
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/02/25 00:00
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 17:12
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.25	0.06	1
2-Chloronaphthalene	ND		ug/l	0.50	0.06	1
Fluoranthene	0.12	J	ug/l	0.25	0.07	1
Hexachlorobutadiene	ND		ug/l	1.2	0.05	1
Naphthalene	ND		ug/l	0.25	0.06	1
Benzo(a)anthracene	0.10	J	ug/l	0.25	0.07	1
Benzo(a)pyrene	ND		ug/l	0.25	0.06	1
Benzo(b)fluoranthene	0.10	J	ug/l	0.25	0.07	1
Benzo(k)fluoranthene	ND		ug/l	0.25	0.08	1
Chrysene	ND		ug/l	0.25	0.08	1
Acenaphthylene	ND		ug/l	0.25	0.05	1
Anthracene	ND		ug/l	0.25	0.06	1
Benzo(ghi)perylene	ND		ug/l	0.25	0.06	1
Fluorene	ND		ug/l	0.25	0.06	1
Phenanthrene	0.12	J	ug/l	0.25	0.10	1
Dibenzo(a,h)anthracene	ND		ug/l	0.25	0.06	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.25	0.06	1
Pyrene	ND		ug/l	0.25	0.11	1
2-Methylnaphthalene	ND		ug/l	0.25	0.07	1
Pentachlorophenol	ND		ug/l	2.0	0.14	1
Hexachlorobenzene	ND		ug/l	2.0	0.03	1
Hexachloroethane	ND		ug/l	2.0	0.06	1

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-04

Date Collected: 10/02/25 00:00

Client ID: DUP

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	56		21-120
Phenol-d6	46		10-120
Nitrobenzene-d5	85		23-120
2-Fluorobiphenyl	75		15-120
2,4,6-Tribromophenol	90		10-120
4-Terphenyl-d14	70		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

SAMPLE RESULTS

Lab ID: L2562293-05
Client ID: MW-07
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/02/25 09:00
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E
Analytical Date: 10/07/25 19:52
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	18	3.6	1
Bis(2-chloroethyl)ether	ND		ug/l	7.4	1.4	1
1,2-Dichlorobenzene	ND		ug/l	7.4	1.2	1
1,3-Dichlorobenzene	ND		ug/l	7.4	1.2	1
1,4-Dichlorobenzene	ND		ug/l	7.4	1.4	1
3,3'-Dichlorobenzidine	ND		ug/l	18	6.8	1
2,4-Dinitrotoluene	ND		ug/l	18	2.0	1
2,6-Dinitrotoluene	ND		ug/l	18	3.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	7.4	1.4	1
4-Bromophenyl phenyl ether	ND		ug/l	7.4	0.90	1
Bis(2-chloroisopropyl)ether	ND		ug/l	7.4	1.5	1
Bis(2-chloroethoxy)methane	ND		ug/l	18	3.1	1
Hexachlorocyclopentadiene	ND		ug/l	74	4.6	1
Isophorone	ND		ug/l	18	3.2	1
Nitrobenzene	ND		ug/l	7.4	0.76	1
NDPA/DPA	ND		ug/l	7.4	3.4	1
n-Nitrosodi-n-propylamine	ND		ug/l	18	3.4	1
Bis(2-ethylhexyl)phthalate	62.		ug/l	11	5.2	1
Butyl benzyl phthalate	ND		ug/l	18	9.7	1
Di-n-butylphthalate	7.9	J	ug/l	18	3.5	1
Di-n-octylphthalate	ND		ug/l	18	8.4	1
Diethyl phthalate	ND		ug/l	18	2.8	1
Dimethyl phthalate	ND		ug/l	18	3.4	1
Biphenyl	ND		ug/l	7.4	0.72	1
4-Chloroaniline	ND		ug/l	18	1.7	1
2-Nitroaniline	ND		ug/l	18	3.8	1
3-Nitroaniline	ND		ug/l	18	4.3	1
4-Nitroaniline	ND		ug/l	18	5.4	1

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-05

Date Collected: 10/02/25 09:00

Client ID: MW-07

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Dibenzofuran	ND		ug/l	7.4	1.5	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	37	0.88	1
Acetophenone	ND		ug/l	18	3.4	1
2,4,6-Trichlorophenol	ND		ug/l	18	7.7	1
p-Chloro-m-cresol	ND		ug/l	7.4	2.2	1
2-Chlorophenol	ND		ug/l	7.4	2.4	1
2,4-Dichlorophenol	ND		ug/l	18	6.3	1
2,4-Dimethylphenol	ND		ug/l	18	7.6	1
2-Nitrophenol	ND		ug/l	37	7.2	1
4-Nitrophenol	ND		ug/l	37	5.2	1
2,4-Dinitrophenol	ND		ug/l	74	20.	1
4,6-Dinitro-o-cresol	ND		ug/l	37	8.6	1
Phenol	3.9	J	ug/l	18	1.3	1
2-Methylphenol	ND		ug/l	18	8.6	1
3-Methylphenol/4-Methylphenol	ND		ug/l	18	5.1	1
2,4,5-Trichlorophenol	ND		ug/l	18	7.7	1
Benzoic Acid	40.	J	ug/l	180	9.7	1
Benzyl Alcohol	ND		ug/l	7.4	1.4	1
Carbazole	ND		ug/l	7.4	1.1	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	54		21-120
Phenol-d6	43		10-120
Nitrobenzene-d5	89		23-120
2-Fluorobiphenyl	74		15-120
2,4,6-Tribromophenol	82		10-120
4-Terphenyl-d14	70		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Serial_No:10152520:23

Lab Number: L2562293
Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-05
Client ID: MW-07
Sample Location: FRANCZKY PARK BUFFALO NY

Date Collected: 10/02/25 09:00
Date Received: 10/02/25
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 17:29
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.37	0.09	1
2-Chloronaphthalene	ND		ug/l	0.74	0.08	1
Fluoranthene	0.22	J	ug/l	0.37	0.10	1
Hexachlorobutadiene	ND		ug/l	1.8	0.07	1
Naphthalene	ND		ug/l	0.37	0.09	1
Benzo(a)anthracene	0.15	J	ug/l	0.37	0.11	1
Benzo(a)pyrene	0.12	J	ug/l	0.37	0.09	1
Benzo(b)fluoranthene	0.21	J	ug/l	0.37	0.10	1
Benzo(k)fluoranthene	ND		ug/l	0.37	0.12	1
Chrysene	0.12	J	ug/l	0.37	0.11	1
Acenaphthylene	ND		ug/l	0.37	0.08	1
Anthracene	ND		ug/l	0.37	0.09	1
Benzo(ghi)perylene	0.15	J	ug/l	0.37	0.09	1
Fluorene	ND		ug/l	0.37	0.09	1
Phenanthrene	0.19	J	ug/l	0.37	0.14	1
Dibenzo(a,h)anthracene	ND		ug/l	0.37	0.09	1
Indeno(1,2,3-cd)pyrene	0.14	J	ug/l	0.37	0.08	1
Pyrene	ND		ug/l	0.37	0.16	1
2-Methylnaphthalene	ND		ug/l	0.37	0.10	1
Pentachlorophenol	ND		ug/l	3.0	0.21	1
Hexachlorobenzene	ND		ug/l	3.0	0.05	1
Hexachloroethane	ND		ug/l	3.0	0.08	1

Project Name: FRANCZKY PARK

Lab Number: L2562293

Project Number: 2254330

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID: L2562293-05

Date Collected: 10/02/25 09:00

Client ID: MW-07

Date Received: 10/02/25

Sample Location: FRANCZKY PARK BUFFALO NY

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	42		21-120
Phenol-d6	41		10-120
Nitrobenzene-d5	82		23-120
2-Fluorobiphenyl	75		15-120
2,4,6-Tribromophenol	70		10-120
4-Terphenyl-d14	69		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E
Analytical Date: 10/07/25 13:05
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - Westborough Lab for sample(s):	01-05		Batch:	WG2123839-1	
Acenaphthene	ND		ug/l	2.0	0.40
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.98
Hexachlorobenzene	ND		ug/l	2.0	0.45
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39
2-Chloronaphthalene	ND		ug/l	2.0	0.35
1,2-Dichlorobenzene	ND		ug/l	2.0	0.33
1,3-Dichlorobenzene	ND		ug/l	2.0	0.32
1,4-Dichlorobenzene	ND		ug/l	2.0	0.39
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84
Fluoranthene	ND		ug/l	2.0	0.41
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84
Hexachlorobutadiene	ND		ug/l	2.0	0.36
Hexachlorocyclopentadiene	ND		ug/l	20	1.2
Hexachloroethane	ND		ug/l	2.0	0.20
Isophorone	ND		ug/l	5.0	0.86
Naphthalene	ND		ug/l	2.0	0.54
Nitrobenzene	ND		ug/l	2.0	0.20
NDPA/DPA	ND		ug/l	2.0	0.92
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E
Analytical Date: 10/07/25 13:05
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - Westborough Lab for sample(s):	01-05		Batch:	WG2123839-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4
Butyl benzyl phthalate	ND		ug/l	5.0	2.6
Di-n-butylphthalate	ND		ug/l	5.0	0.96
Di-n-octylphthalate	ND		ug/l	5.0	2.3
Diethyl phthalate	ND		ug/l	5.0	0.76
Dimethyl phthalate	ND		ug/l	5.0	0.92
Benzo(a)anthracene	ND		ug/l	2.0	0.32
Benzo(a)pyrene	ND		ug/l	2.0	0.37
Benzo(b)fluoranthene	ND		ug/l	2.0	0.53
Benzo(k)fluoranthene	ND		ug/l	2.0	0.62
Chrysene	ND		ug/l	2.0	0.22
Acenaphthylene	ND		ug/l	2.0	0.32
Anthracene	ND		ug/l	2.0	0.47
Benzo(ghi)perylene	ND		ug/l	2.0	0.37
Fluorene	ND		ug/l	2.0	0.44
Phenanthrene	ND		ug/l	2.0	0.42
Dibenzo(a,h)anthracene	ND		ug/l	2.0	0.29
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0	0.48
Pyrene	ND		ug/l	2.0	0.41
Biphenyl	ND		ug/l	2.0	0.20
4-Chloroaniline	ND		ug/l	5.0	0.47
2-Nitroaniline	ND		ug/l	5.0	1.0
3-Nitroaniline	ND		ug/l	5.0	1.2
4-Nitroaniline	ND		ug/l	5.0	1.4

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E
Analytical Date: 10/07/25 13:05
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-05				Batch: WG2123839-1	
Dibenzofuran	ND		ug/l	2.0	0.40
2-Methylnaphthalene	ND		ug/l	2.0	0.37
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24
Acetophenone	ND		ug/l	5.0	0.92
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1
p-Chloro-m-cresol	ND		ug/l	2.0	0.61
2-Chlorophenol	ND		ug/l	2.0	0.65
2,4-Dichlorophenol	ND		ug/l	5.0	1.7
2,4-Dimethylphenol	ND		ug/l	5.0	2.0
2-Nitrophenol	ND		ug/l	10	2.0
4-Nitrophenol	ND		ug/l	10	1.4
2,4-Dinitrophenol	ND		ug/l	20	5.4
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3
Pentachlorophenol	ND		ug/l	10	2.5
Phenol	ND		ug/l	5.0	0.35
2-Methylphenol	ND		ug/l	5.0	2.3
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1
Benzoic Acid	ND		ug/l	50	2.6
Benzyl Alcohol	ND		ug/l	2.0	0.38
Carbazole	ND		ug/l	2.0	0.31

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E
Analytical Date: 10/07/25 13:05
Analyst: SMZ

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-05 Batch: WG2123839-1					

Surrogate	%Recovery	Acceptance Criteria	
		Qualifier	Criteria
2-Fluorophenol	61		21-120
Phenol-d6	46		10-120
Nitrobenzene-d5	99		23-120
2-Fluorobiphenyl	74		15-120
2,4,6-Tribromophenol	77		10-120
4-Terphenyl-d14	75		41-149

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 13:18
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):	01-05		Batch:	WG2123840-1	
Acenaphthene	ND		ug/l	0.10	0.02
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	ND		ug/l	0.10	0.03
Hexachlorobutadiene	ND		ug/l	0.50	0.02
Naphthalene	ND		ug/l	0.10	0.02
Benzo(a)anthracene	ND		ug/l	0.10	0.03
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03
Chrysene	ND		ug/l	0.10	0.03
Acenaphthylene	ND		ug/l	0.10	0.02
Anthracene	ND		ug/l	0.10	0.02
Benzo(ghi)perylene	ND		ug/l	0.10	0.02
Fluorene	ND		ug/l	0.10	0.03
Phenanthrene	ND		ug/l	0.10	0.04
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02
Pyrene	ND		ug/l	0.10	0.04
2-Methylnaphthalene	ND		ug/l	0.10	0.03
Pentachlorophenol	ND		ug/l	0.80	0.06
Hexachlorobenzene	ND		ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.02

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM
Analytical Date: 10/10/25 13:18
Analyst: JJW

Extraction Method: EPA 3510C
Extraction Date: 10/06/25 06:03

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-05 Batch: WG2123840-1					

Surrogate	%Recovery	Acceptance Criteria	
		Qualifier	Criteria
2-Fluorophenol	62		21-120
Phenol-d6	49		10-120
Nitrobenzene-d5	92		23-120
2-Fluorobiphenyl	84		15-120
2,4,6-Tribromophenol	97		10-120
4-Terphenyl-d14	87		41-149

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG2123839-2 WG2123839-3								
Acenaphthene	67		73		37-111	9		30
1,2,4-Trichlorobenzene	56		65		39-98	15		30
Hexachlorobenzene	81		84		40-140	4		30
Bis(2-chloroethyl)ether	72		78		40-140	8		30
2-Chloronaphthalene	67		70		40-140	4		30
1,2-Dichlorobenzene	53		59		40-140	11		30
1,3-Dichlorobenzene	53		56		40-140	6		30
1,4-Dichlorobenzene	52		57		36-97	9		30
3,3'-Dichlorobenzidine	67		79		40-140	16		30
2,4-Dinitrotoluene	80		86		48-143	7		30
2,6-Dinitrotoluene	81		84		40-140	4		30
Fluoranthene	72		76		40-140	5		30
4-Chlorophenyl phenyl ether	72		83		40-140	14		30
4-Bromophenyl phenyl ether	78		83		40-140	6		30
Bis(2-chloroisopropyl)ether	65		68		40-140	5		30
Bis(2-chloroethoxy)methane	73		78		40-140	7		30
Hexachlorobutadiene	65		76		40-140	16		30
Hexachlorocyclopentadiene	54		61		40-140	12		30
Hexachloroethane	58		65		40-140	11		30

Lab Control Sample Analysis

Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG2123839-2 WG2123839-3								
Isophorone	82		83		40-140	1		30
Naphthalene	62		65		40-140	5		30
Nitrobenzene	80		86		40-140	7		30
NDPA/DPA	73		78		40-140	7		30
n-Nitrosodi-n-propylamine	86		91		29-132	6		30
Bis(2-ethylhexyl)phthalate	87		96		40-140	10		30
Butyl benzyl phthalate	89		94		40-140	5		30
Di-n-butylphthalate	82		88		40-140	7		30
Di-n-octylphthalate	87		95		40-140	9		30
Diethyl phthalate	81		87		40-140	7		30
Dimethyl phthalate	80		83		40-140	4		30
Benzo(a)anthracene	73		81		40-140	10		30
Benzo(a)pyrene	74		82		40-140	10		30
Benzo(b)fluoranthene	74		83		40-140	11		30
Benzo(k)fluoranthene	71		79		40-140	11		30
Chrysene	70		77		40-140	10		30
Acenaphthylene	72		73		45-123	1		30
Anthracene	67		72		40-140	7		30
Benzo(ghi)perylene	65		68		40-140	5		30

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG2123839-2 WG2123839-3								
Fluorene	70		75		40-140	7		30
Phenanthrene	67		72		40-140	7		30
Dibenzo(a,h)anthracene	65		70		40-140	7		30
Indeno(1,2,3-cd)pyrene	69		71		40-140	3		30
Pyrene	71		76		26-127	7		30
Biphenyl	64		66		40-140	3		30
4-Chloroaniline	57		54		40-140	5		30
2-Nitroaniline	85		87		52-143	2		30
3-Nitroaniline	71		75		25-145	5		30
4-Nitroaniline	72		82		51-143	13		30
Dibenzofuran	70		73		40-140	4		30
2-Methylnaphthalene	64		69		40-140	8		30
1,2,4,5-Tetrachlorobenzene	66		72		2-134	9		30
Acetophenone	71		78		39-129	9		30
2,4,6-Trichlorophenol	93		98		30-130	5		30
p-Chloro-m-cresol	90		90		23-97	0		30
2-Chlorophenol	68		70		27-123	3		30
2,4-Dichlorophenol	71		76		30-130	7		30
2,4-Dimethylphenol	50		47		30-130	6		30

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG2123839-2 WG2123839-3								
2-Nitrophenol	67		80		30-130	18		30
4-Nitrophenol	83	Q	87	Q	10-80	5		30
2,4-Dinitrophenol	70		70		20-130	0		30
4,6-Dinitro-o-cresol	81		86		20-164	6		30
Pentachlorophenol	65		68		9-103	5		30
Phenol	49		50		12-110	2		30
2-Methylphenol	65		71		30-130	9		30
3-Methylphenol/4-Methylphenol	64		72		30-130	12		30
2,4,5-Trichlorophenol	87		94		30-130	8		30
Benzoic Acid	86		87		10-164	1		30
Benzyl Alcohol	77		86		26-116	11		30
Carbazole	72		76		55-144	5		30

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	<i>LCS</i> <i>%Recovery</i>	<i>Qual</i>	<i>LCSD</i> <i>%Recovery</i>	<i>Qual</i>	<i>%Recovery</i> <i>Limits</i>	<i>RPD</i>	<i>Qual</i>	<i>RPD</i> <i>Limits</i>
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 Batch: WG2123839-2 WG2123839-3								
Surrogate	<i>LCS</i> <i>%Recovery</i>	<i>Qual</i>	<i>LCSD</i> <i>%Recovery</i>	<i>Qual</i>	<i>Acceptance</i> <i>Criteria</i>			
2-Fluorophenol	52		57		21-120			
Phenol-d6	42		45		10-120			
Nitrobenzene-d5	83		80		23-120			
2-Fluorobiphenyl	65		66		15-120			
2,4,6-Tribromophenol	77		79		10-120			
4-Terphenyl-d14	62		68		41-149			

Lab Control Sample Analysis

Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 Batch: WG2123840-2 WG2123840-3								
Acenaphthene	82		68		40-140	19		40
2-Chloronaphthalene	81		68		40-140	17		40
Fluoranthene	86		72		40-140	18		40
Hexachlorobutadiene	63		54		40-140	15		40
Naphthalene	73		61		40-140	18		40
Benzo(a)anthracene	91		78		40-140	15		40
Benzo(a)pyrene	99		82		40-140	19		40
Benzo(b)fluoranthene	94		78		40-140	19		40
Benzo(k)fluoranthene	97		81		40-140	18		40
Chrysene	97		79		40-140	20		40
Acenaphthylene	89		74		40-140	18		40
Anthracene	88		73		40-140	19		40
Benzo(ghi)perylene	98		81		40-140	19		40
Fluorene	88		73		40-140	19		40
Phenanthrene	87		71		40-140	20		40
Dibenzo(a,h)anthracene	98		81		40-140	19		40
Indeno(1,2,3-cd)pyrene	104		86		40-140	19		40
Pyrene	85		71		40-140	18		40
2-Methylnaphthalene	78		66		40-140	17		40

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 Batch: WG2123840-2 WG2123840-3								
Pentachlorophenol	113		100		40-140	12		40
Hexachlorobenzene	92		77		40-140	18		40
Hexachloroethane	64		55		40-140	15		40

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	68		55		21-120
Phenol-d6	54		44		10-120
Nitrobenzene-d5	89		72		23-120
2-Fluorobiphenyl	78		65		15-120
2,4,6-Tribromophenol	103		84		10-120
4-Terphenyl-d14	76		63		41-149

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD	RPD Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2123839-4 WG2123839-5 QC Sample: L2562293-01 Client ID: MW-05R												
1,2,4-Trichlorobenzene	ND	20	14	70		14	70		39-98	0		30
Bis(2-chloroethyl)ether	ND	20	17	85		17	85		40-140	0		30
1,2-Dichlorobenzene	ND	20	13	65		13	65		40-140	0		30
1,3-Dichlorobenzene	ND	20	13	65		13	65		40-140	0		30
1,4-Dichlorobenzene	ND	20	14	70		13	65		36-97	7		30
3,3'-Dichlorobenzidine	ND	20	14	70		11	55		40-140	24		30
2,4-Dinitrotoluene	ND	20	19	95		18	90		48-143	5		30
2,6-Dinitrotoluene	ND	20	19	95		18	90		40-140	5		30
4-Chlorophenyl phenyl ether	ND	20	17	85		17	85		40-140	0		30
4-Bromophenyl phenyl ether	ND	20	18	90		17	85		40-140	6		30
Bis(2-chloroisopropyl)ether	ND	20	15	75		16	80		40-140	6		30
Bis(2-chloroethoxy)methane	ND	20	18	90		18	90		40-140	0		30
Hexachlorocyclopentadiene	ND	20	16.J	80		14.J	70		40-140	13		30
Isophorone	ND	20	18	90		18	90		40-140	0		30
Nitrobenzene	ND	20	19	95		20	100		40-140	5		30
NDPA/DPA	ND	20	16	80		16	80		40-140	0		30
n-Nitrosodi-n-propylamine	ND	20	20	100		21	110		29-132	5		30
Bis(2-ethylhexyl)phthalate	ND	20	21	110		21	110		40-140	0		30
Butyl benzyl phthalate	ND	20	20	100		19	95		40-140	5		30

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD	RPD Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2123839-4 WG2123839-5 QC Sample: L2562293-01 Client ID: MW-05R												
Di-n-butylphthalate	ND	20	19	95		19	95		40-140	0		30
Di-n-octylphthalate	ND	20	21	110		21	110		40-140	0		30
Diethyl phthalate	ND	20	18	90		18	90		40-140	0		30
Dimethyl phthalate	ND	20	18	90		18	90		40-140	0		30
Biphenyl	ND	20	15	75		15	75		40-140	0		30
4-Chloroaniline	ND	20	13	65		12	60		40-140	8		30
2-Nitroaniline	ND	20	19	95		18	90		52-143	5		30
3-Nitroaniline	ND	20	16	80		14	70		25-145	13		30
4-Nitroaniline	ND	20	17	85		16	80		51-143	6		30
Dibenzofuran	ND	20	16	80		16	80		40-140	0		30
1,2,4,5-Tetrachlorobenzene	ND	20	16	80		16	80		2-134	0		30
Acetophenone	ND	20	17	85		18	90		39-129	6		30
2,4,6-Trichlorophenol	ND	20	21	110		19	95		30-130	10		30
p-Chloro-m-cresol	ND	20	20	100	Q	19	95		23-97	5		30
2-Chlorophenol	ND	20	15	75		15	75		27-123	0		30
2,4-Dichlorophenol	ND	20	16	80		16	80		30-130	0		30
2,4-Dimethylphenol	ND	20	14	70		12	60		30-130	15		30
2-Nitrophenol	ND	20	16	80		18	90		30-130	12		30
4-Nitrophenol	ND	20	19	95	Q	16	80		10-80	17		30

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual	Limits	RPD	Qual	RPD
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2123839-4 WG2123839-5 QC Sample: L2562293-01 Client ID: MW-05R												
2,4-Dinitrophenol	ND	20	17.J	85		16.J	80		20-130	6		30
4,6-Dinitro-o-cresol	ND	20	20	100		17	85		20-164	16		30
Phenol	ND	20	13	65		12	60		12-110	8		30
2-Methylphenol	ND	20	15	75		14	70		30-130	7		30
3-Methylphenol/4-Methylphenol	ND	20	15	75		14	70		30-130	7		30
2,4,5-Trichlorophenol	ND	20	21	110		20	100		30-130	5		30
Benzoic Acid	ND	20	20.J	100		19.J	95		10-164	5		30
Benzyl Alcohol	ND	20	19	95		18	90		26-116	5		30
Carbazole	ND	20	16	80		15	75		55-144	6		30

Surrogate	MS		MSD		Acceptance Criteria
	% Recovery	Qualifier	% Recovery	Qualifier	
2,4,6-Tribromophenol	86		83		10-120
2-Fluorobiphenyl	73		80		15-120
2-Fluorophenol	61		59		21-120
4-Terphenyl-d14	71		71		41-149
Nitrobenzene-d5	92		94		23-120
Phenol-d6	51		46		10-120

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD	RPD Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2123840-4 WG2123840-5 QC Sample: L2562293-01 Client ID: MW-05R												
Acenaphthene	ND	20	14	70		16	80		40-140	13		40
2-Chloronaphthalene	ND	20	15	75		16	80		40-140	6		40
Fluoranthene	ND	20	15	75		16	80		40-140	6		40
Hexachlorobutadiene	ND	20	12	60		13	65		40-140	8		40
Naphthalene	ND	20	13	65		14	70		40-140	7		40
Benzo(a)anthracene	ND	20	16	80		17	85		40-140	6		40
Benzo(a)pyrene	ND	20	17	85		18	90		40-140	6		40
Benzo(b)fluoranthene	ND	20	16	80		18	90		40-140	12		40
Benzo(k)fluoranthene	ND	20	16	80		17	85		40-140	6		40
Chrysene	ND	20	16	80		18	90		40-140	12		40
Acenaphthylene	ND	20	16	80		17	85		40-140	6		40
Anthracene	ND	20	15	75		16	80		40-140	6		40
Benzo(ghi)perylene	ND	20	17	85		19	95		40-140	11		40
Fluorene	ND	20	15	75		17	85		40-140	13		40
Phenanthrene	ND	20	15	75		16	80		40-140	6		40
Dibenzo(a,h)anthracene	ND	20	17	85		19	95		40-140	11		40
Indeno(1,2,3-cd)pyrene	ND	20	18	90		20	100		40-140	11		40
Pyrene	ND	20	15	75		16	80		40-140	6		40
2-Methylnaphthalene	ND	20	14	70		16	80		40-140	13		40

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual	RPD	RPD Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-05 QC Batch ID: WG2123840-4 WG2123840-5 QC Sample: L2562293-01 Client ID: MW-05R											
Pentachlorophenol	ND	20	21	110		22	110	40-140	5		40
Hexachlorobenzene	ND	20	16	80		18	90	40-140	12		40
Hexachloroethane	ND	20	12	60		13	65	40-140	8		40

Surrogate	MS % Recovery	MS Qualifier	MSD % Recovery	MSD Qualifier	Acceptance Criteria
2,4,6-Tribromophenol	88		97		10-120
2-Fluorobiphenyl	69		79		15-120
2-Fluorophenol	58		63		21-120
4-Terphenyl-d14	64		73		41-149
Nitrobenzene-d5	76		87		23-120
Phenol-d6	46		49		10-120

METALS

Project Name: FRANCZKY PARK

Project Number: 2254330

Lab Number: L2562293

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID:	L2562293-01	Date Collected:	10/01/25 09:40
Client ID:	MW-05R	Date Received:	10/02/25
Sample Location:	FRANCZKY PARK BUFFALO NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	0.277		mg/l	0.0100	0.00327	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Antimony, Total	ND		mg/l	0.00400	0.00042	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Arsenic, Total	0.00364		mg/l	0.00050	0.00016	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Barium, Total	0.04411		mg/l	0.00050	0.00017	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Beryllium, Total	ND		mg/l	0.00050	0.00010	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Calcium, Total	97.2		mg/l	0.100	0.0394	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Chromium, Total	0.00055	J	mg/l	0.00100	0.00017	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Cobalt, Total	0.00058		mg/l	0.00050	0.00016	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Copper, Total	0.00113		mg/l	0.00100	0.00038	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Iron, Total	2.36		mg/l	0.0500	0.0191	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Lead, Total	0.00075	J	mg/l	0.00100	0.00034	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Magnesium, Total	92.7		mg/l	0.700	0.242	10	10/06/25 15:42	10/13/25 19:49	EPA 3005A	1,6020B	BLR
Manganese, Total	0.3216		mg/l	0.00100	0.00044	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Mercury, Total	ND		mg/l	0.00020	0.00009	1	10/06/25 19:28	10/10/25 17:08	EPA 7470A	1,7470A	RDB
Nickel, Total	ND		mg/l	0.00200	0.00055	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Potassium, Total	4.57		mg/l	0.100	0.0309	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Selenium, Total	ND		mg/l	0.00500	0.00173	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Silver, Total	ND		mg/l	0.00040	0.00016	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Sodium, Total	46.9		mg/l	5.00	0.293	10	10/06/25 15:42	10/13/25 19:49	EPA 3005A	1,6020B	BLR
Thallium, Total	ND		mg/l	0.00100	0.00014	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Vanadium, Total	ND		mg/l	0.00500	0.00157	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR
Zinc, Total	0.08839		mg/l	0.01000	0.00341	1	10/06/25 15:42	10/13/25 13:55	EPA 3005A	1,6020B	BLR

Project Name: FRANCZKY PARK

Project Number: 2254330

Lab Number: L2562293

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID:	L2562293-02	Date Collected:	10/01/25 12:10
Client ID:	MW-03	Date Received:	10/02/25
Sample Location:	FRANCZKY PARK BUFFALO NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	396.		mg/l	0.0500	0.0164	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Antimony, Total	ND		mg/l	0.02000	0.00214	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Arsenic, Total	0.00227	J	mg/l	0.00250	0.00082	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Barium, Total	0.02164		mg/l	0.00250	0.00086	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Beryllium, Total	0.02598		mg/l	0.01250	0.00267	25	10/06/25 15:42	10/15/25 11:55	EPA 3005A	1,6020B	DHL
Cadmium, Total	ND		mg/l	0.00100	0.00029	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Calcium, Total	399.		mg/l	0.500	0.197	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Chromium, Total	0.05117		mg/l	0.00500	0.00089	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Cobalt, Total	0.00752		mg/l	0.00250	0.00081	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Copper, Total	ND		mg/l	0.00500	0.00192	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Iron, Total	2250		mg/l	1.25	0.478	25	10/06/25 15:42	10/15/25 13:52	EPA 3005A	1,6020B	DHL
Lead, Total	ND		mg/l	0.00500	0.00171	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Magnesium, Total	1170		mg/l	1.75	0.605	25	10/06/25 15:42	10/15/25 13:52	EPA 3005A	1,6020B	DHL
Manganese, Total	31.32		mg/l	0.00500	0.00220	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Mercury, Total	ND		mg/l	0.00020	0.00009	1	10/06/25 19:28	10/10/25 17:19	EPA 7470A	1,7470A	RDB
Nickel, Total	0.02145		mg/l	0.01000	0.00278	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Potassium, Total	160.		mg/l	0.500	0.154	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Selenium, Total	0.0504		mg/l	0.0250	0.00865	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Silver, Total	ND		mg/l	0.00200	0.00081	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Sodium, Total	155.		mg/l	2.50	0.146	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Thallium, Total	ND		mg/l	0.00500	0.00071	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Vanadium, Total	0.06527		mg/l	0.02500	0.00785	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL
Zinc, Total	0.1231		mg/l	0.05000	0.01705	5	10/06/25 15:42	10/15/25 11:10	EPA 3005A	1,6020B	DHL

Project Name: FRANCZKY PARK

Project Number: 2254330

Lab Number: L2562293

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID:	L2562293-03	Date Collected:	10/01/25 13:45
Client ID:	MW-08	Date Received:	10/02/25
Sample Location:	FRANCZKY PARK BUFFALO NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	1.29		mg/l	0.0500	0.0164	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Antimony, Total	0.00239	J	mg/l	0.02000	0.00214	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Arsenic, Total	0.02525		mg/l	0.00250	0.00082	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Barium, Total	0.07818		mg/l	0.00250	0.00086	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Beryllium, Total	ND		mg/l	0.00250	0.00053	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Cadmium, Total	ND		mg/l	0.00100	0.00029	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Calcium, Total	586.		mg/l	0.500	0.197	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Chromium, Total	0.00358	J	mg/l	0.00500	0.00089	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Cobalt, Total	0.00174	J	mg/l	0.00250	0.00081	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Copper, Total	0.01490		mg/l	0.00500	0.00192	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Iron, Total	13.4		mg/l	0.250	0.0955	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Lead, Total	0.3247		mg/l	0.00500	0.00171	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Magnesium, Total	154.		mg/l	0.350	0.121	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Manganese, Total	0.7328		mg/l	0.00500	0.00220	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Mercury, Total	0.00017	J	mg/l	0.00020	0.00009	1	10/06/25 19:28	10/10/25 17:22	EPA 7470A	1,7470A	RDB
Nickel, Total	0.00474	J	mg/l	0.01000	0.00278	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Potassium, Total	44.7		mg/l	0.500	0.154	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Selenium, Total	ND		mg/l	0.0250	0.00865	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Silver, Total	ND		mg/l	0.00200	0.00081	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Sodium, Total	24.5		mg/l	2.50	0.146	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Thallium, Total	ND		mg/l	0.00500	0.00071	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Vanadium, Total	ND		mg/l	0.02500	0.00785	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL
Zinc, Total	0.2764		mg/l	0.05000	0.01705	5	10/06/25 15:42	10/15/25 13:57	EPA 3005A	1,6020B	DHL

Project Name: FRANCZKY PARK

Project Number: 2254330

Lab Number: L2562293

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID:	L2562293-04	Date Collected:	10/02/25 00:00
Client ID:	DUP	Date Received:	10/02/25
Sample Location:	FRANCZKY PARK BUFFALO NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	0.517		mg/l	0.0500	0.0164	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Antimony, Total	ND		mg/l	0.02000	0.00214	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Arsenic, Total	0.01324		mg/l	0.00250	0.00082	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Barium, Total	0.02796		mg/l	0.00250	0.00086	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Beryllium, Total	ND		mg/l	0.00500	0.00107	10	10/06/25 15:42	10/15/25 14:14	EPA 3005A	1,6020B	DHL
Cadmium, Total	ND		mg/l	0.00100	0.00029	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Calcium, Total	320.		mg/l	0.500	0.197	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Chromium, Total	0.00346	J	mg/l	0.00500	0.00089	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Cobalt, Total	0.00643		mg/l	0.00250	0.00081	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Copper, Total	0.00598		mg/l	0.00500	0.00192	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Iron, Total	25.7		mg/l	0.250	0.0955	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Lead, Total	0.01015		mg/l	0.00500	0.00171	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Magnesium, Total	87.7		mg/l	0.350	0.121	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Manganese, Total	4.670		mg/l	0.00500	0.00220	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Mercury, Total	ND		mg/l	0.00020	0.00009	1	10/06/25 19:28	10/10/25 17:25	EPA 7470A	1,7470A	RDB
Nickel, Total	0.00473	J	mg/l	0.01000	0.00278	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Potassium, Total	18.2		mg/l	0.500	0.154	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Selenium, Total	ND		mg/l	0.0250	0.00865	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Silver, Total	ND		mg/l	0.00200	0.00081	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Sodium, Total	44.5		mg/l	2.50	0.146	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Thallium, Total	ND		mg/l	0.00500	0.00071	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Vanadium, Total	ND		mg/l	0.02500	0.00785	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL
Zinc, Total	0.03914	J	mg/l	0.05000	0.01705	5	10/06/25 15:42	10/15/25 14:02	EPA 3005A	1,6020B	DHL

Project Name: FRANCZKY PARK

Project Number: 2254330

Lab Number: L2562293

Report Date: 10/15/25

SAMPLE RESULTS

Lab ID:	L2562293-05	Date Collected:	10/02/25 09:00
Client ID:	MW-07	Date Received:	10/02/25
Sample Location:	FRANCZKY PARK BUFFALO NY	Field Prep:	Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Aluminum, Total	0.698		mg/l	0.0500	0.0164	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Antimony, Total	ND		mg/l	0.02000	0.00214	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Arsenic, Total	0.01706		mg/l	0.00250	0.00082	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Barium, Total	0.03456		mg/l	0.00250	0.00086	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Beryllium, Total	ND		mg/l	0.00250	0.00053	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Cadmium, Total	ND		mg/l	0.00100	0.00029	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Calcium, Total	343.		mg/l	0.500	0.197	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Chromium, Total	0.00248	J	mg/l	0.00500	0.00089	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Cobalt, Total	0.00918		mg/l	0.00250	0.00081	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Copper, Total	0.00595		mg/l	0.00500	0.00192	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Iron, Total	29.1		mg/l	0.250	0.0955	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Lead, Total	0.01168		mg/l	0.00500	0.00171	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Magnesium, Total	86.8		mg/l	0.350	0.121	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Manganese, Total	4.337		mg/l	0.00500	0.00220	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Mercury, Total	ND		mg/l	0.00020	0.00009	1	10/06/25 19:28	10/10/25 17:28	EPA 7470A	1,7470A	RDB
Nickel, Total	0.00572	J	mg/l	0.01000	0.00278	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Potassium, Total	18.6		mg/l	0.500	0.154	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Selenium, Total	ND		mg/l	0.0250	0.00865	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Silver, Total	ND		mg/l	0.00200	0.00081	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Sodium, Total	43.5		mg/l	2.50	0.146	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Thallium, Total	ND		mg/l	0.00500	0.00071	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Vanadium, Total	ND		mg/l	0.02500	0.00785	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL
Zinc, Total	0.1272		mg/l	0.05000	0.01705	5	10/06/25 15:42	10/15/25 12:34	EPA 3005A	1,6020B	DHL

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
Total Metals - Mansfield Lab for sample(s): 01-05 Batch: WG2124114-1										
Aluminum, Total	ND	mg/l	0.0100	0.00327	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Antimony, Total	ND	mg/l	0.00400	0.00042	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Arsenic, Total	ND	mg/l	0.00050	0.00016	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Barium, Total	ND	mg/l	0.00050	0.00017	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Beryllium, Total	ND	mg/l	0.00050	0.00010	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Cadmium, Total	ND	mg/l	0.00020	0.00005	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Calcium, Total	ND	mg/l	0.100	0.0394	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Chromium, Total	0.00029	J	mg/l	0.00100	0.00017	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR
Cobalt, Total	ND	mg/l	0.00050	0.00016	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Copper, Total	ND	mg/l	0.00100	0.00038	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Iron, Total	ND	mg/l	0.0500	0.0191	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Lead, Total	ND	mg/l	0.00100	0.00034	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Magnesium, Total	ND	mg/l	0.0700	0.0242	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Manganese, Total	ND	mg/l	0.00100	0.00044	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Nickel, Total	ND	mg/l	0.00200	0.00055	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Potassium, Total	ND	mg/l	0.100	0.0309	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Selenium, Total	ND	mg/l	0.00500	0.00173	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Silver, Total	ND	mg/l	0.00040	0.00016	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Sodium, Total	ND	mg/l	0.500	0.0293	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Thallium, Total	ND	mg/l	0.00100	0.00014	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Vanadium, Total	ND	mg/l	0.00500	0.00157	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	
Zinc, Total	ND	mg/l	0.01000	0.00341	1	10/06/25 15:42	10/13/25 13:45	1,6020B	BLR	

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01-05 Batch: WG2124124-1									
Mercury, Total	ND	mg/l	0.00020	0.00009	1	10/06/25 19:28	10/10/25 17:02	1,7470A	RDB

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-05 Batch: WG2124114-2								
Aluminum, Total	98		-		80-120	-		
Antimony, Total	90		-		80-120	-		
Arsenic, Total	97		-		80-120	-		
Barium, Total	100		-		80-120	-		
Beryllium, Total	100		-		80-120	-		
Cadmium, Total	96		-		80-120	-		
Calcium, Total	96		-		80-120	-		
Chromium, Total	100		-		80-120	-		
Cobalt, Total	99		-		80-120	-		
Copper, Total	100		-		80-120	-		
Iron, Total	102		-		80-120	-		
Lead, Total	98		-		80-120	-		
Magnesium, Total	99		-		80-120	-		
Manganese, Total	101		-		80-120	-		
Nickel, Total	102		-		80-120	-		
Potassium, Total	101		-		80-120	-		
Selenium, Total	102		-		80-120	-		
Silver, Total	97		-		80-120	-		
Sodium, Total	103		-		80-120	-		
Thallium, Total	102		-		80-120	-		
Vanadium, Total	102		-		80-120	-		

Lab Control Sample Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-05 Batch: WG2124114-2					
Zinc, Total	100	-	80-120	-	
Total Metals - Mansfield Lab Associated sample(s): 01-05 Batch: WG2124124-2					
Mercury, Total	86	-	80-120	-	20

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD	Limits
Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2124114-3 WG2124114-4 QC Sample: L2562293-01 Client ID: MW-05R													
Aluminum, Total	0.277	2	2.24	98		2.48	110		75-125	10		20	
Antimony, Total	ND	0.5	0.4963	99		0.5243	105		75-125	5		20	
Arsenic, Total	0.00364	0.12	0.1262	102		0.1324	107		75-125	5		20	
Barium, Total	0.04411	2	2.099	103		2.230	109		75-125	6		20	
Beryllium, Total	ND	0.05	0.04773	95		0.05287	106		75-125	10		20	
Cadmium, Total	ND	0.053	0.05256	99		0.05579	105		75-125	6		20	
Calcium, Total	97.2	10	106	88		114	168	Q	75-125	7		20	
Chromium, Total	0.00055J	0.2	0.2027	101		0.2158	108		75-125	6		20	
Cobalt, Total	0.00058	0.5	0.4931	98		0.5240	105		75-125	6		20	
Copper, Total	0.00113	0.25	0.2473	98		0.2716	108		75-125	9		20	
Iron, Total	2.36	1	3.36	100		3.51	115		75-125	4		20	
Lead, Total	0.00075J	0.53	0.5471	103		0.5738	108		75-125	5		20	
Magnesium, Total	92.7	10	107	143	Q	106	133	Q	75-125	1		20	
Manganese, Total	0.3216	0.5	0.8334	102		0.8882	113		75-125	6		20	
Nickel, Total	ND	0.5	0.5208	104		0.5380	108		75-125	3		20	
Potassium, Total	4.57	10	15.0	104		15.7	111		75-125	5		20	
Selenium, Total	ND	0.12	0.0922	77		0.102	85		75-125	10		20	
Silver, Total	ND	0.05	0.05086	102		0.05341	107		75-125	5		20	
Sodium, Total	46.9	10	59.7	128	Q	59.2	123		75-125	1		20	

Matrix Spike Analysis
Batch Quality Control

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2124114-3 WG2124114-4 QC Sample: L2562293-01 Client ID: MW-05R												
Thallium, Total	ND	0.12	0.1173	98	0.1265	105	75-125	8				20
Vanadium, Total	ND	0.5	0.5260	105	0.5592	112	75-125	6				20
Zinc, Total	0.08839	0.5	0.5986	102	0.6342	109	75-125	6				20
Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2124124-3 WG2124124-4 QC Sample: L2562293-01 Client ID: MW-05R												
Mercury, Total	ND	0.005	0.00445	89	0.00442	88	75-125	1				20
Total Metals - Mansfield Lab Associated sample(s): 01-05 QC Batch ID: WG2124124-5 WG2124124-6 QC Sample: L2562394-03 Client ID: MS Sample												
Mercury, Total	0.00011J	0.005	0.00475	95	0.00468	94	75-125	1				20

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L2562293-01A	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		SE-6020T(180),TL-6020T(180),BA-6020T(180),FE-6020T(180),CA-6020T(180),CR-6020T(180),NI-6020T(180),K-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),SB-6020T(180),AS-6020T(180),V-6020T(180),HG-T(28),MG-6020T(180),AL-6020T(180),CD-6020T(180),AG-6020T(180),CO-6020T(180)
L2562293-01A1	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		SE-6020T(180),TL-6020T(180),NI-6020T(180),ZN-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),SB-6020T(180),V-6020T(180)
L2562293-01A2	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		SE-6020T(180),TL-6020T(180),NI-6020T(180),ZN-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),SB-6020T(180),V-6020T(180)
L2562293-01B	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-01B1	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-01B2	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-01C	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-01C1	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-01C2	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)

*Values in parentheses indicate holding time in days

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L2562293-02A	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		FE-6020T(180),BA-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),CR-6020T(180),NI-6020T(180),K-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),V-6020T(180),SB-6020T(180),AS-6020T(180),MG-6020T(180),AL-6020T(180),CD-6020T(180),AG-6020T(180),HG-T(28),CO-6020T(180)
L2562293-02B	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-02C	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-03A	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		BA-6020T(180),FE-6020T(180),SE-6020T(180),TL-6020T(180),CA-6020T(180),NI-6020T(180),K-6020T(180),CR-6020T(180),CU-6020T(180),ZN-6020T(180),NA-6020T(180),PB-6020T(180),MN-6020T(180),BE-6020T(180),SB-6020T(180),AS-6020T(180),V-6020T(180),MG-6020T(180),HG-T(28),AG-6020T(180),CD-6020T(180),AL-6020T(180),CO-6020T(180)
L2562293-03B	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-03C	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-04A	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		FE-6020T(180),TL-6020T(180),BA-6020T(180),SE-6020T(180),NI-6020T(180),CR-6020T(180),CA-6020T(180),K-6020T(180),ZN-6020T(180),CU-6020T(180),NA-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),V-6020T(180),SB-6020T(180),AL-6020T(180),CD-6020T(180),AG-6020T(180),HG-T(28),MG-6020T(180),CO-6020T(180)
L2562293-04B	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-04C	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)

*Values in parentheses indicate holding time in days

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L2562293-05A	Plastic 250ml HNO3 preserved	NA	<2	<2		Y	Absent		SE-6020T(180),BA-6020T(180),FE-6020T(180),TL-6020T(180),K-6020T(180),CA-6020T(180),NI-6020T(180),CR-6020T(180),NA-6020T(180),CU-6020T(180),ZN-6020T(180),PB-6020T(180),BE-6020T(180),MN-6020T(180),AS-6020T(180),V-6020T(180),SB-6020T(180),MG-6020T(180),CD-6020T(180),HG-T(28),AG-6020T(180),AL-6020T(180),CO-6020T(180)
L2562293-05B	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
L2562293-05C	Amber 100ml unpreserved	NA	NA			Y	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)

*Values in parentheses indicate holding time in days

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
NR	- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A** - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B** - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F** - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G** - The concentration may be biased high due to matrix interferences (i.e. co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- J** - Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were

Report Format: DU Report with 'J' Qualifiers

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

Data Qualifiers

estimated.

- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND** - Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ** - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P** - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q** - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R** - Analytical results are from sample re-analysis.
- RE** - Analytical results are from sample re-extraction.
- S** - Analytical results are from modified screening analysis.
- V** - The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z** - The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name: FRANCZKY PARK
Project Number: 2254330

Lab Number: L2562293
Report Date: 10/15/25

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Pace Analytical Services performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Pace Analytical Services shall be to re-perform the work at its own expense. In no event shall Pace Analytical Services be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Pace Analytical Services.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO₂, NO₃.

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

MADEP-APH.

Nonpotable Water: **EPA RSK-175 Dissolved Gases**

Biological Tissue Matrix: EPA 3050B

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: **EPA RSK-175 Dissolved Gases**

The following test method is not included in our New Jersey Secondary NELAP Scope of Accreditation:

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Determination of Selected Perfluorinated Alkyl Substances by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry Isotope Dilution (via Alpha SOP 23528)

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500Cl-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B**

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: **SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.**

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, **SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, SM4500CL-G, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.**

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: **SM9223B-Colilert-QT; Enterolert-QT.**

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Ca, Cr, Cu, Fe, Pb, Mg, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1: Hg. **EPA 245.7: Hg.**

SM2340B

Certification IDs:

Westborough Facility – 8 Walkup Dr. Westborough, MA 01581

CT PH-0826, IL 200077, IN C-MA-03, KY KY98045, ME MA00086, MD 348, MA M-MA086, NH 2064, NJ MA935, NY 11148, NC (DW) 25700, NC (NPW/SCM) 666, OR MA-1316, PA 68-03671, RI LAO00065, TX T104704476, VT VT-0935, VA 460195

Mansfield Facility – 320 Forbes Blvd. Mansfield, MA 02048

MA M-MA00030, CT PH-0825, ANAB/DoD L2474, IL 200081, IN C-MA-04, KY KY98046, LA 85084, ME MA00030, MI 9110, MN 025-999-495, NH 2062, NJ MA015, NY 11627, NC (NPW/SCM) 685, OR MA-0262, PA 68-02089, RI LAO00299, TX T-104704419, VT VT-0015, VA 460194, WA C954

Mansfield Facility – 120 Forbes Blvd. Mansfield, MA 02048

ANAB/DoD L2474, LA 245052, ME MA01156, MN 025-999-498, NH 2249, NJ MA025, NY 12191, OR 4203, TX T104704583, VA 460311, WA C1104.

For a complete listing of analytes and methods, please contact your Project Manager.

<p>NEW YORK CHAIN OF CUSTODY</p> <p>Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193</p> <p>Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288</p>		<p>Service Centers</p> <p>Woodcliff Lake, NJ 07677: 123 Tice Blvd, Suite 101 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105</p>		<p>Page 1 of 1</p>	<p>Date Rec'd in Lab <u>10/3/25</u></p>	<p>Pace Job # <u>L2562293</u></p>																																																																														
		<p>Project Information</p> <p>Project Name: <u>Franczky Park</u> Project Location: <u>Franczky Park Buffalo NY</u> Project # <u>2254330</u></p>																																																																																		
<p>Client Information</p> <p>Client: <u>Labella Associates</u> Address: <u>300 Pearl Street</u> <u>Buffalo NY</u> Phone: <u>716-622-1244</u> Fax: Email: <u>amoskajuk@LabellaPC.com</u></p>		<p>Deliverables</p> <p><input type="checkbox"/> ASP-A <input type="checkbox"/> ASP-B <input type="checkbox"/> EQuIS (1 File) <input type="checkbox"/> EQuIS (4 File) <input type="checkbox"/> Other</p>	<p>Billing Information</p> <p><input type="checkbox"/> Same as Client Info PO #</p>																																																																																	
<p>(Use Project name as Project #) <input type="checkbox"/></p>		<p>Regulatory Requirement:</p> <p><input type="checkbox"/> NY TOGS <input type="checkbox"/> NY Part 375 <input type="checkbox"/> AWQ Standards <input type="checkbox"/> NY CP-51 <input type="checkbox"/> NY Restricted Use <input type="checkbox"/> Other <input type="checkbox"/> NY Unrestricted Use <input type="checkbox"/> NYC Sewer Discharge</p>	<p>Disposal Site Information</p> <p>Please identify below location of applicable disposal facilities.</p>																																																																																	
<p>Project Manager: <u>Andrew Berklaen</u> PACE Quote #:</p>		<p>Turn-Around Time</p> <p>Standard <input checked="" type="checkbox"/> Due Date: Rush (only if pre approved) <input type="checkbox"/> # of Days:</p>	<p>Disposal Facility:</p> <p><input type="checkbox"/> NJ <input type="checkbox"/> NY <input type="checkbox"/> Other:</p>																																																																																	
<p>These samples have been previously analyzed by Pace <input type="checkbox"/></p>		<p>ANALYSIS</p>	<p>Sample Filtration</p> <p><input type="checkbox"/> Done <input type="checkbox"/> Lab to do Preservation <input type="checkbox"/> Lab to do</p>																																																																																	
<p>Other project specific requirements/comments:</p>			<p>(Please Specify below)</p>																																																																																	
<p>Please specify Metals or TAL.</p>			<p>Sample Specific Comments</p>																																																																																	
<table border="1"> <thead> <tr> <th rowspan="2">PACE Lab ID (Lab Use Only)</th> <th rowspan="2">Sample ID</th> <th colspan="2">Collection</th> <th rowspan="2">Sample Matrix</th> <th rowspan="2">Sampler's Initials</th> <th rowspan="2">SVOCS</th> <th rowspan="2">Metals TAL</th> </tr> <tr> <th>Date</th> <th>Time</th> </tr> </thead> <tbody> <tr> <td>62293-01</td> <td>MW-052</td> <td>10/1</td> <td>9:40</td> <td>water</td> <td>ATM</td> <td>X</td> <td>X</td> </tr> <tr> <td>02</td> <td>MW-03</td> <td>10/1</td> <td>12:10</td> <td>water</td> <td>ATM</td> <td>X</td> <td>X</td> </tr> <tr> <td>03</td> <td>MW-08</td> <td>10/1</td> <td>13:45</td> <td>water</td> <td>ATM</td> <td>X</td> <td>X</td> </tr> <tr> <td></td> <td>ATM</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>01</td> <td>MS</td> <td>10/1</td> <td>9:40</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>00</td> <td>MSD</td> <td>10/1</td> <td>9:40</td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>04</td> <td>Dup</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td>05</td> <td>MW-07</td> <td>10/2</td> <td>9:00</td> <td>water</td> <td>ATM</td> <td>X</td> <td>X</td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>		PACE Lab ID (Lab Use Only)	Sample ID	Collection		Sample Matrix	Sampler's Initials	SVOCS	Metals TAL	Date	Time	62293-01	MW-052	10/1	9:40	water	ATM	X	X	02	MW-03	10/1	12:10	water	ATM	X	X	03	MW-08	10/1	13:45	water	ATM	X	X		ATM							01	MS	10/1	9:40					00	MSD	10/1	9:40					04	Dup							05	MW-07	10/2	9:00	water	ATM	X	X									
PACE Lab ID (Lab Use Only)	Sample ID			Collection						Sample Matrix	Sampler's Initials	SVOCS	Metals TAL																																																																							
		Date	Time																																																																																	
62293-01	MW-052	10/1	9:40	water	ATM	X	X																																																																													
02	MW-03	10/1	12:10	water	ATM	X	X																																																																													
03	MW-08	10/1	13:45	water	ATM	X	X																																																																													
	ATM																																																																																			
01	MS	10/1	9:40																																																																																	
00	MSD	10/1	9:40																																																																																	
04	Dup																																																																																			
05	MW-07	10/2	9:00	water	ATM	X	X																																																																													
<p>Preservative Code:</p> <p>A = None B = HCl C = HNO₃ D = H₂SO₄ E = NaOH F = MeOH G = NaHSO₄ H = Na₂S₂O₃ K/E = Zn Ac/NaOH O = Other</p>		<p>Container Code</p> <p>P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle</p>	<p>Westboro: Certification No: MA935 Mansfield: Certification No: MA015</p>	<p>Container Type</p>	<p>Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY PACE'S TERMS & CONDITIONS. (See reverse side.)</p>																																																																															
<p>Relinquished By:</p> <p><u>Andy J. Jankoski</u> <u>Charles Pace</u> <u>Russell B. Bily</u></p>		<p>Date/Time</p> <p><u>10/2/25 2:45</u> <u>10-2-25 2:47</u> <u>10-2-25 16:11</u></p>	<p>Received By:</p> <p><u>Charles Pace</u> <u>Buffalo Sk</u> <u>2</u></p>	<p>Date/Time</p> <p><u>10-2-25 2:45</u> <u>10-2-25 2:47</u> <u>10/2 2300</u></p>																																																																																

Sample Delivery Group Summary

Pace Job Number : L2562293

Received : 02-OCT-2025

Reviewer : Chris Tebeau

Account Name : LaBella Associates, P.C.

Project Number : 2254330

Project Name : FRANCZKY PARK

Delivery Information

Samples Delivered By : Pace Courier

Chain of Custody : Present

Cooler Information

Cooler	Seal/Seal#	Preservation	Temperature(°C)	Additional Information
A	Absent/	Ice	2.8	

Condition Information

1) All samples on COC received?	YES
2) Extra samples received?	NO
3) Are there any sample container discrepancies?	NO
4) Are there any discrepancies between COC & sample labels?	NO
5) Are samples in appropriate containers for requested analysis?	YES
6) Are samples properly preserved for requested analysis?	YES
7) Are samples within holding time for requested analysis?	YES
8) All sampling equipment returned?	NA

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?	NA
--	-----------

APPENDIX 5

Data Usability Summary Report

DATA USABILITY SUMMARY REPORT

for

LABELLA ASSOCIATES, P.C.

300 Pearl Street

Buffalo, NY 14202

FRANCZYK PARK
Aqueous Samples
SDG: L2562293
Sampled 10/01/2025

SEMIVOLATILE ORGANICS, METALS
SEMIVOLATILE ORGANICS-SIM

MW-05R	(L2562293-01)
MW-03	(L2562293-02)
MW-08	(L2562293-03)
DUP	(L2562293-04)
MW-07	(L2562293-05)

DATA ASSESSMENT

An ASP Category B data package containing analytical results for four aqueous samples and a blind duplicate was received from Labella Associates on 28Oct25. The deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Franczyk Park Site, were identified by Chain of Custody documents and traceable through the work of Pace Analytical Services, the laboratory contracted for analysis. Analyses, performed according to SW-846 methods, addressed determinations of semivolatile organics, semivolatile organics-SIM and metals. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-35, Rev.#2, March 2013, Semivolatile Data Validation; and SOP HW-2a, Rev. 15, Dec. 2012, ICP-AES Data Validation) were used as a technical references.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed strict QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. Dataval, Inc. guarantees the quality of this data assessment. However, Dataval, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin
Dataval Inc.

Date: 04 Nov 25

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation, or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the time of sample collection. Samples must remain chilled to $4\pm2^{\circ}\text{C}$ between the time of collection and the time of analysis. Acid preserved VOC samples must be analyzed within 14 days, unpreserved VOC samples within 7 days. The holding time for VOC soils is 14 days. Aqueous semivolatile organics, pesticide and PCB samples must be extracted within seven days of collection. Soils must be extracted within 14 days. The extracts must then be analyzed within forty days of extraction. The holding times for cyanide and mercury samples are 14 and 28 days, respectively. Metals samples must be analyzed within six months.

This delivery group contained four aqueous samples and a blind duplicate that were collected from the Franczyk Park site on 01Oct25. The samples were packaged with ice and shipped to the laboratory, via a laboratory courier, on 02Oct25. The cooler of samples was received intact and packed with ice on 03Oct25. A cooler temperature of 2.8°C was recorded at the time of receipt. Although proper sample preservation was not documented in the field custody record, it was verified in the laboratory at the time of receipt.

SEMIVOLATILE ORGANICS

This group of samples was extracted for SVOC analysis on 06Oct25, and the extracts were analyzed on 07Oct25. The program holding time requirements were satisfied.

Blanks

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank produced acceptable chromatography and was free of targeted analyte contamination.

Although not found in the associated blanks, di-n-butyl phthalate and bis(2-ethylhexyl)phthalate were detected in MW-07. These concentrations have been qualified as estimations because low levels of phthalate frequently represent laboratory artifacts. Di-n-butylphthalate and bis(2-ethylhexyl)phthalate could not be removed from the affected sample report because they were not found in the associated blanks.

MS Tuning

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to

accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of DFTPP was analyzed prior to each analytical sequence that contained samples from this program. An Instrument Performance Check Form is present for each DFTPP evaluation. Each DFTPP tune associated with this group of samples satisfied the program acceptance criteria.

Calibration

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

Initial instrument calibrations were performed on 27Aug25. Concentrations of 0.1, 0.2, 0.5, 1.0, 2.5, 5.0, 10, 25 and 50 $\mu\text{g}/\text{ml}$ were included. Each analyte targeted by this program produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A calibration verification standard was analyzed on 07Oct25, prior to the 12-hour period of instrument operation that included samples from this program. When compared to the initial instrument calibration, an unacceptable shift were observed in the instrument response of benzyl alcohol. Based on this performance, the benzyl alcohol results from this project have been qualified as estimations.

Surrogates

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared, based on the laboratory's statistical acceptance criteria. When compared to the program requirements, however, an unacceptably high recovery was reported for the nitrobenzene addition to MW-03. Based on this indication of positive bias, the positive result from MW-03 has been qualified as an estimation.

Internal Standards

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than a factor of two. When compared to the preceding

calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to these limits, acceptable performance was indicated for the internal standard additions to each program sample.

Matrix Spikes

Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

MW-05R was selected for matrix spiking. Each targeted SVOC analyte was added to two aliquots of this sample. The recoveries reported for these spikes demonstrated acceptable levels of measurement precision and accuracy.

A pair of spiked blanks (LCS/LCSD) was extracted and analyzed with this group of samples. The recoveries reported from these LCS samples included elevated results for 4-nitrophenol (83%, 87%). These indications of positive bias, however, warrant no concern because 4-nitrophenol was not detected in this group of samples.

Duplicates

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. The results produced by this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

A field split duplicate sample of MW-07 was included in this delivery group. MW-07 and its duplicate produced no recoveries where the results from both samples exceeded the laboratory's reporting limit.

Reported Analytes

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument print-outs. Reference mass spectra were provided to confirm the identification of each analyte that was found in this group of samples. Tentatively identified compounds (TIC) were not reported.

SEMIVOLATILE ORGANICS-SEM

This group of samples was extracted for SVOC-SIM analysis on 06Oct25, and the extracts were analyzed on 10Oct25. The program holding time requirements were satisfied.

Blanks

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks

are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blank was analyzed with this group of samples. This blank produced acceptable chromatography and was free of targeted analyte contamination.

MS Tuning

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of DFTPP was analyzed prior to each analytical sequence that contained samples from this program. An Instrument Performance Check Form is present for each DFTPP evaluation. Each DFTPP tune associated with this group of samples satisfied the program acceptance criteria.

Calibration

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 27Aug25. Concentrations of 5.0, 2.5, 1.0, 0.5, 0.1, 0.040, 0.010, 0.005, 0.002.0 and 0.001 $\mu\text{g}/\text{ml}$ were included. Each analyte targeted by this program produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A calibration verification was performed on 07Oct25, prior to the 12-hour period of instrument operation that included samples from this program. When compared to the initial instrument calibration, an unacceptable shift was observed in the instrument response of benzyl alcohol (22.7%). Based on this performance, the benzyl alcohol results from this project have been qualified as estimations.

Surrogates

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared, based on the laboratory's statistical acceptance criteria. When compared to the program requirements, however, an acceptable recovery was reported for each surrogate addition to this group of samples.

Internal Standards

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than a factor of two. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to these limits, acceptable performance was indicated for the internal standard additions to each program sample.

Matrix Spikes

Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

MW-05R was selected for matrix spiking. Each targeted SVOC-SIM analyte was added to two aliquots of this sample. The recoveries obtained from these spikes demonstrated acceptable levels of measurement precision.

Duplicates

A field split duplicate sample of MW-07 was included in this delivery group. MW-07 and its duplicate produced recoveries of benzoic acid that differed by 35%. Based on this performance, the benzoic acid results from this project have been qualified as estimations.

Reported Analytes

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument print-outs. Reference mass spectra were provided to confirm the identification of each analyte that was found in this group of samples. Tentatively identified compounds (TIC) were not reported.

METALS

This group of samples was digested for ICP metals and mercury analysis on 06Oct25. The digestates were then analyzed for ICP metals on 13Oct25 and 15Oct25. Mercury determinations were completed on 10Oct25. The SW-846 holding time limitations were satisfied.

Calibrations

Calibration curves are constructed, using certified materials, to define the linear range of each analytical instrument.

Beyond this range, measurements cannot be made with confidence. The calibration curve is immediately tested by analyzing an initial calibration verification standard (ICV). Continuing verifications (CCV) must bracket each group of up to ten samples. ICV and CCV recoveries must meet established criteria.

Each instrument calibration was immediately verified by the analysis of an ICV standard. Continuing calibration checks were made following each group of 10 samples. With the exception of the 14:22 CCV on 15Oct25, only aluminum failed to produce an acceptable recovery. The aluminum concentration from MW-08 has been qualified as an estimation.

Blanks

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Preparation blanks are carried through the digestion process with each group of samples to evaluate general laboratory technique. Calibration blanks are run periodically to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

An initial blank (ICB) was analyzed following the calibration in each analytical sequence. Additional blanks were analyzed after every ten samples (CCB) and at the end of each sequence. Preparation blanks were digested and analyzed with this group of samples. Each of these laboratory prepared blanks was free of targeted analyte contamination exceeding the laboratory's reporting limit.

Predigestion Spikes

The recovery of spike concentrations added to samples prior to digestion and analysis demonstrates measurement bias caused by sample matrix effects. Predigestion spikes must be recovered within control limits of 75% - 125%.

MW-05R was selected for matrix spiking. Each targeted metal was added to two aliquots of this sample. The recoveries reported for these spikes included high results of calcium (168%), magnesium (143%, 133%) and sodium (128%). Based on these indications of positive bias, the calcium, magnesium and sodium results from MW-05R have been qualified as estimations.

Laboratory Control Standard

Laboratory control samples are prepared by adding analytes to clean sand or reagent water. Analyte concentrations are then determined without interferences caused by sample matrix effects.

A spiked blank (LCS) was digested and analyzed for mercury and each ICP metal. Each of these LCS samples produced acceptable analyte recoveries.

Duplicates

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. The results produced by this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

A field split duplicate sample of MW-07 was included in this delivery group. MW-07 and its duplicate produced recoveries of mercury and each ICP metal except zinc that agreed within 10%. The zinc results, however, differed by 26.5%. Based on this performance, the zinc results from this project have been qualified as estimations.

Serial Dilution Sample

Possible matrix effects are verified by the process of serial dilutions. Samples are diluted 1:5 to reduce matrix contributions that might bias measurements. The original sample result, and the corrected concentration of the diluted sample are compared. Sample data is qualified if the original concentrations are not recovered within 10%. Analytes with initial concentrations below 50 times IDL are not considered.

A serial dilution sample was not prepared and included in the laboratory's analysis sequence.

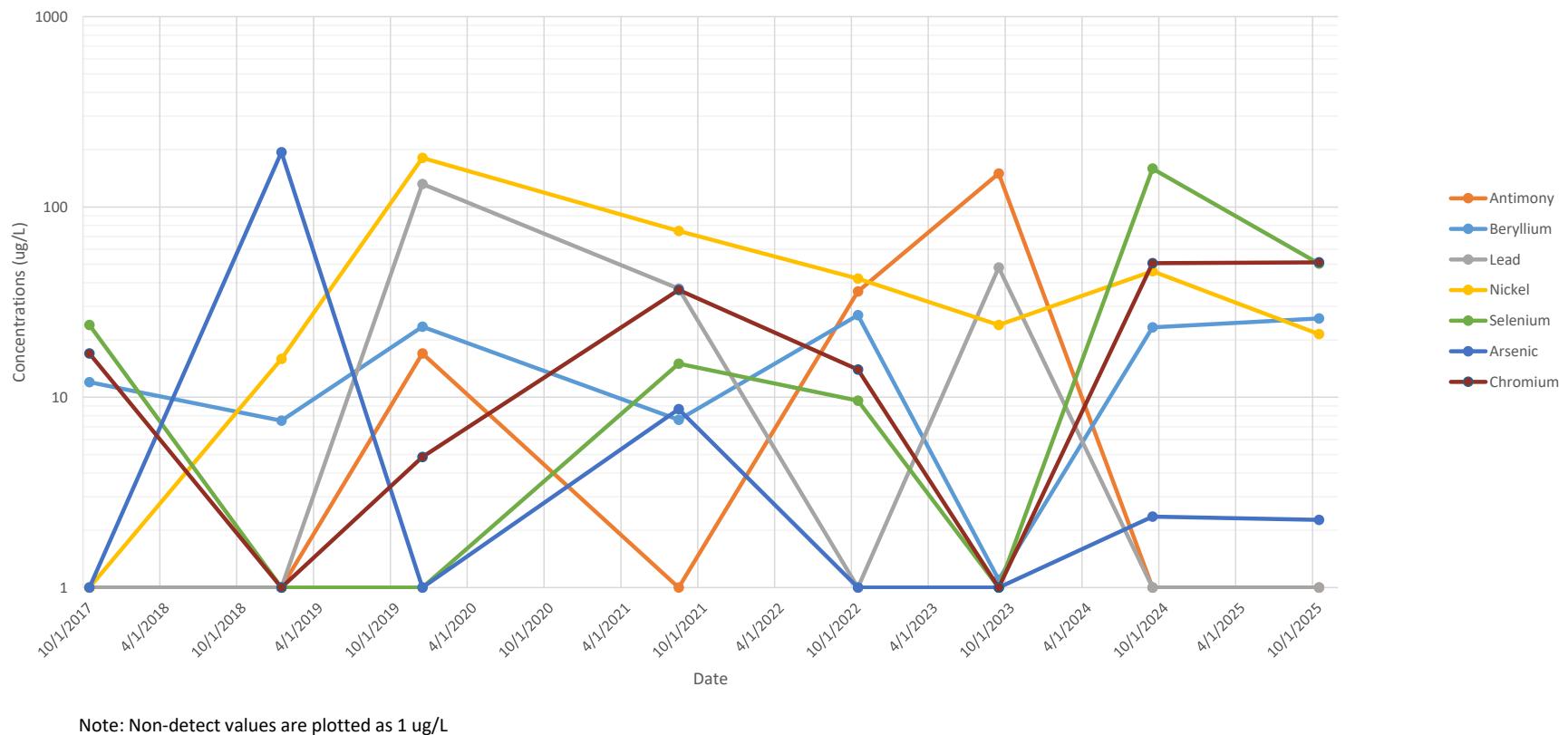
SUMMARY OF QUALIFIED DATA

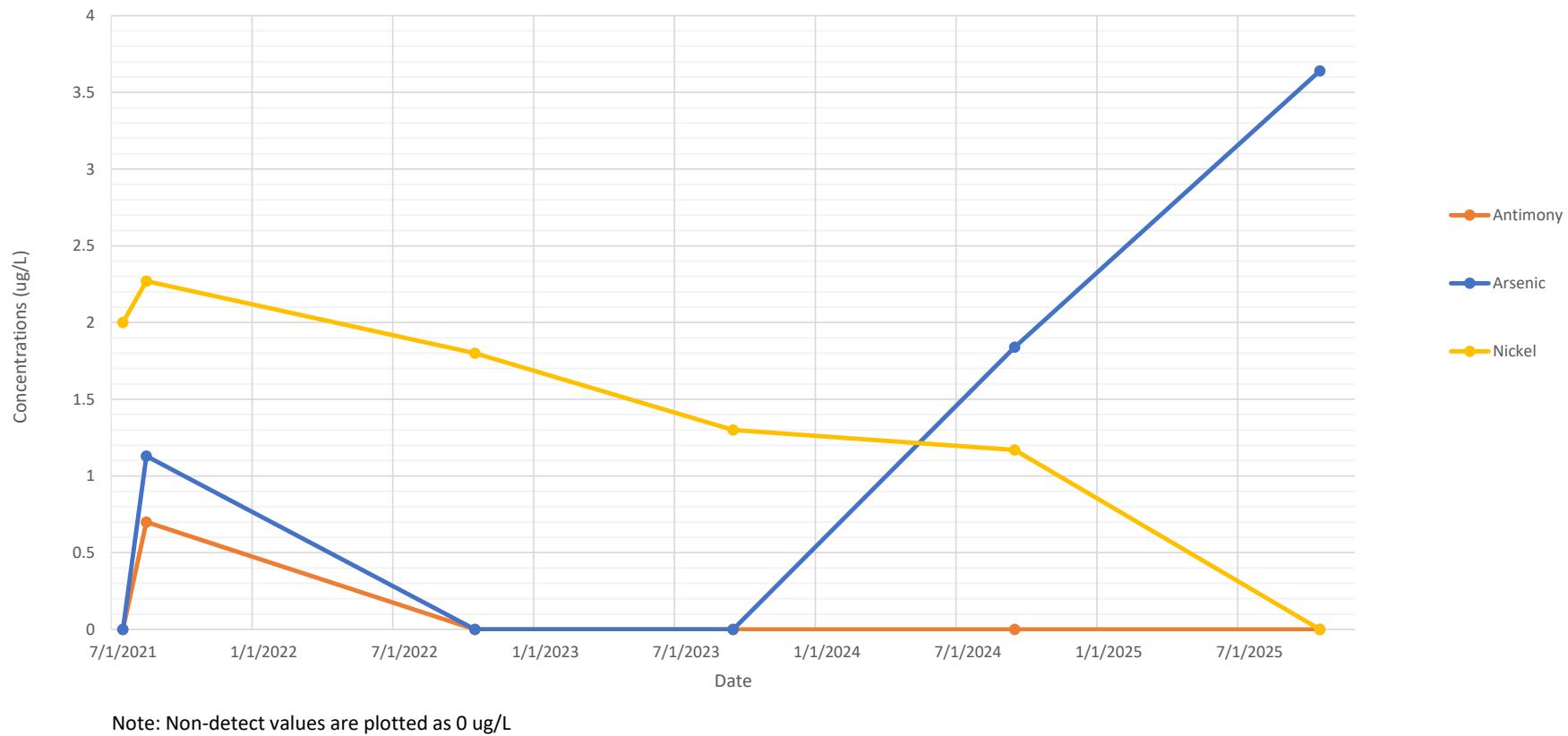
FRANCZYK PARK

SAMPLED: 10/01/2025

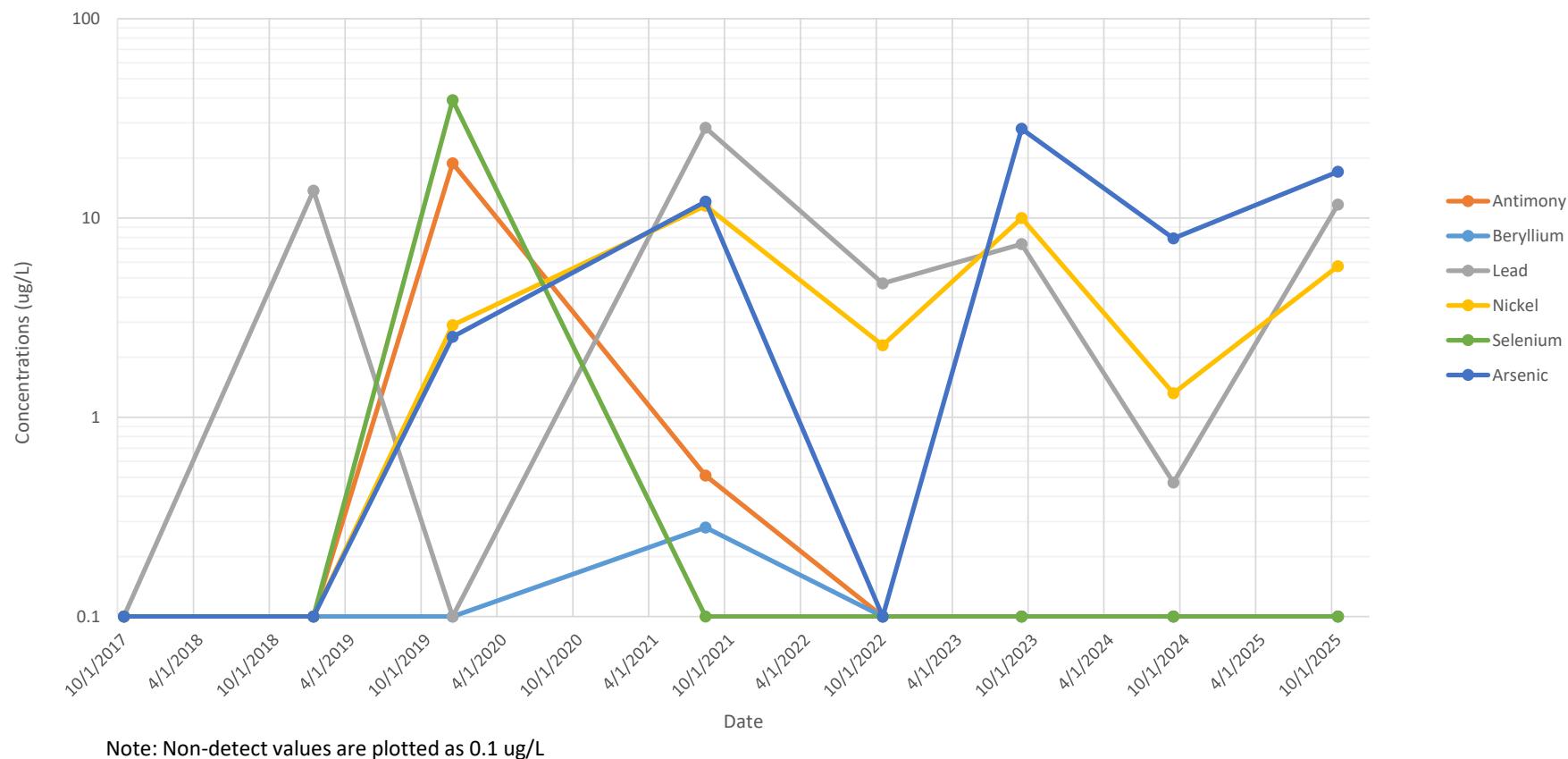
	BLANK PHTHALATE*	CALIBRATE BENZYL ALCOHOL	SURROGATE SVOC	CALIBRATE ALUMINUM	SPIKES MS1*	DUPPLICATES ZINC
MW-05R (L2562293-01)		2.0UJ			ALL J	0.08839J
MW-03 (L2562293-02)		2.0UJ	ALL POS J			0.1231J
MW-08 (L2562293-03)		2.0UJ		1.29J		0.2764J
DUP (L2562293-04)		5.0UJ				0.03914J
MW-07 (L2562293-05)	ALL J	7.4UJ				0.1272J

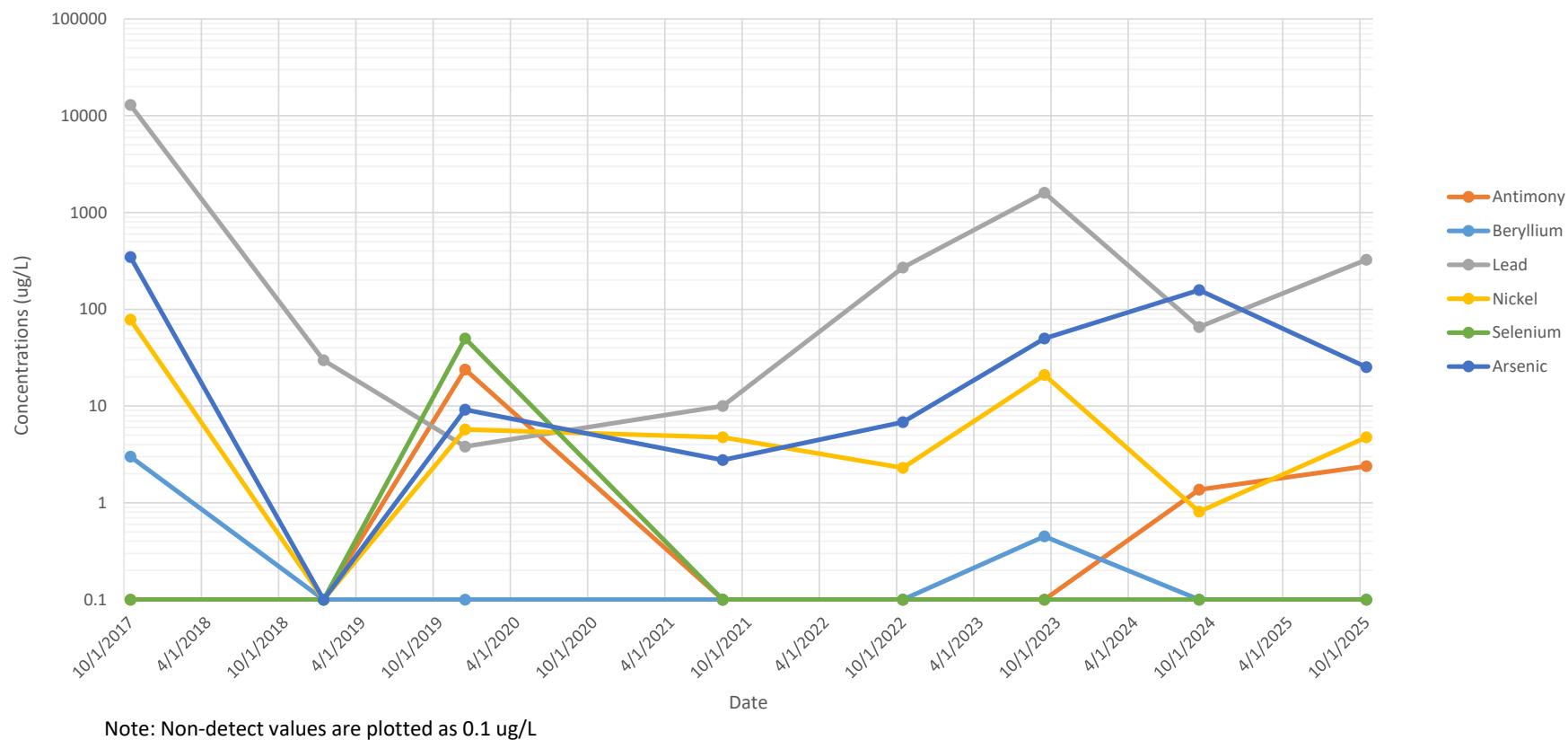
PHTHALATE* = di-n-butylphthalate, bis(2-ethylhexyl)phthalate


MS1* = calcium, magnesium, sodium


APPENDIX 6

Monitoring Well Concentration Versus Time Plots for Select Metals


MW-03
Analyte Concentration Versus Time


MW-05R
Analyte Concentration Versus Time

MW-07
Analyte Concentration Versus Time

MW-08
Analyte Concentration Versus Time

