

CONSTRUCTION COMPLETION REPORT

FOSTER REFRIGERATION SITE

119 North 2nd Street Hudson, Columbia County, New York NYSDEC Site No. B-00184

July 26, 2019

Prepared For:

The New York State
Department of Environmental Conservation

Prepared By:

Precision Environmental Services, Inc. 831 NYS Route 67, Lot 38A Ballston Spa, New York 12020

CERTIFICATION

I, <u>DAVID K</u>, HANDINGTON, am currently a registered professional engineer licensed by the State of New York, I had primary direct responsibility for implementation of the remedial program activities, and I certify that the Record of Decision was implemented and that all construction activities were completed in substantial conformance with the Department-approved Remedial Design.

I certify that all data generated in support of this report have been submitted in accordance with the Department's electronic data deliverable and have been accepted by the Department. I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

NYS Professional Engineer #

7/29/19

Date

Signature

1.0 -INTRODUCTION:

Precision Environmental Services, Inc. (PES) has prepared this report of findings to document investigative and remedial work implemented at the Former Foster Refrigeration Site (hereafter referred to as the "site"). Based on historical use and contaminant assessment, the subject property was classified as an Environmental Restoration Project (ERP) and assigned NYS DEC Site No.: B00184. The site is physically located at 119 North 2nd Street, City of Hudson, Columbia County, New York. Figure 1 provides additional site location detail.

PES was contracted to implement the remedy of choice pursuant to and in conformance with the June 2007 Record of Decision (ROD) and the January 2019 Explanation of Significant Difference (ESD). The selected mitigation response was chosen in accordance with the New York State Environmental Conservation Law and Title 6 of the Official Compilation of Codes, Rules and Regulations of the State of New York (6 NYCRR) Part 375 and is consistent with the National Oil and Hazardous Substances Pollution Contingency Plan of March 8, 1990 (40CFR300), as amended.

A description of the <u>major</u> work elements tasked to PES, along with a brief executive summary of their implementation are as follows:

- Existing Structure Demolition and Debris Removal/Disposal (November 5 to December 2, 2015)

 PES supervised the demolition of existing site structures and removal of all associated debris.
 The demolition and disposal work was performed by Dan's Hauling and Demolition (DH&D) of Wynantskill, NY. A total of 920.95 tons of demolition debris were processed under manifest and delivered to the Albany Landfill.
- 2) Supplemental Subsurface Investigation (SSI) (2015/2016) PES completed an SSI to define shallow contaminant impacts and to provide for the collection of soil data to allow for waste characterization. Waste characterization was necessary for planning of contaminated soil transportation and off-site disposal. PES utilized in-house drilling equipment to collect soil samples for the refinement of the site's soil characterization. Seventy-six (76) shallow soil borings (SBs) were installed during the time frame spanning 12/28/15 through 1/6/16 via direct push methods in a general grid pattern within the northwest & southwest property quadrants to establish soil quality with respect to magnitude of impact and vertical/horizontal distribution of contaminants of concern. In addition, five (5) shallow borings were installed through the former factory slab on 8/24/16. All drilling activities were performed under the direction and supervision of qualified PES management staff. Grab samples were collected from each SB and composited to represent soil quality at each respective soil boring. In all cases, discrete soil samples were collected from each boring based on previously generated site-specific data that defined contaminant depth and location. The data collected was used to assist in planning and logistically implementing the proposed excavation work.
- 3) Site Clearing (12/17/17 12/21/17) PES mobilized heavy equipment and technical staff to the site for the purpose of removing existing trees and woody vegetative cover to facilitate access. Grubbing of the site was generally limited to areas required for access and/or areas within the footprint of the target excavation and clean soil cap.
- <u>4) Excavation/Off Site Disposal Metals Area (December 2017 to May 2018)</u> The selected corrective action remedy called for excavation and off-site disposal of shallow materials from select contaminant areas. These areas were targeted for remediation based on data generated

during the remedial investigation and feasibility studies (RI/FSs) performed by others as well as PES's 2015/2016 investigative efforts. Prior to the excavation process, engineering controls were established to facilitate safe soil removal and backfill activities at the site. Engineering controls consisted of:

- Removal of a portion of perimeter fencing to allow access and facilitate site work,
- Creation of temporary site construction roadways and associated soil stockpiling and equipment staging areas,
- Development of a community air monitoring program (CAMP),
- Creation of a truck/equipment decontamination pad and enclosure, and
- Establishment of a dust control system via hydrant and high-pressure hoses.

Completed engineering controls allowed for safe and practical excavation of contaminated soil. Impacted soils were excavated to pre-determined vertical and horizontal limits as established by others. PES construction and professional staff performed the required excavation work using removal and stage and/or progressive cut and fill methods. Removal of target soils from beneath concrete covered surfaces required concrete removal. Once characterized, contaminated soils were excavated, loaded and transported off site for disposal as non-RCRA waste. All subject soil disposal was facilitated by the Seneca Meadows Landfill (SML) located in Waterloo, New York. A total of 4,806.11 tons of impacted soil were removed. Waste concrete was sized, characterized and transported to R.J. Valente's facility in Halfmoon, NY where it was utilized as clean fill. A total of approximately 1,125 yds³ of waste concrete were processed and removed from the site.

Once previously defined termination depths/boundaries were reached, a physical demarcation layer consisting of geotextile fabric was placed along the floor of the excavation area prior to backfilling. Imported, clean, bank run sand and gravel (select fill) was applied to the general excavation to fill the void to within 6-inches of grade. Fill application occurred in approximately one-foot lifts and was machine compacted.

- <u>Site Grading/Cover System Installation (7/25/18 8/16/18)</u> The site was graded by PES personnel utilizing a low ground pressure dozer to minimize over compaction of surface soils. The site was contoured for aesthetic improvement and surface drainage control under the direction and supervision of NYSDEC representatives. Pursuant to specific requirements of the ROD, the surfaces of the excavated areas as well as existing subgrade (front portion of the site, north, south, and east of the former buildings and concrete slabs) were covered with a demarcation layer and capped using clean, virgin, imported topsoil. The upper (near surface) cover system was constructed of topsoil that met NYSDEC supplied specifications to establish vegetation growing media. The topsoil was emplaced systematically atop rows of the demarcation layer (felt fabric). 6-inches of topsoil were placed overtop all excavated areas and 12-inches were placed overtop all non-excavated areas within the fenced-in site boundary.
- 6) UST Closure/Petroleum Contaminated Soil (PCS) Removal (7/26/18 8/7/18) During the soil excavation process, three (3) underground storage tanks (USTs) were documented along the site's southwest property border perimeter. PES designated the tanks TK 001-003. The Department was notified of the discovery of the USTs and closure action was requested and incorporated into the authorized work scope. Associated PCS was removed and properly disposed of at Seneca Meadows Landfill (SML) located in Waterloo, New York. A total of 829.29

tons of PCS were removed. Contemporaneous with the PCS removal and subsequent to the equipment decontamination, an additional 11.85 tons of material from the decontamination pad were removed and transported to Seneca Meadows.

- <u>7)</u> Targeted Polychlorinated Biphenyls (PCBs) Excavation (7/26/18 8/7/18) Excavation of PCB impacted soil was performed along the southwest property border. The PCB target area existed within the foot print of the prescribed cut and the PCS excavation areas. Analytical analysis indicated the PCB levels to be non-TSCA thus allowing for disposal along with the removed PCS and metals contaminated soils.
- 8) <u>Site Restoration (8/17/18) The site received a hydro-seed mixture to enhance stabilization of the topsoil and cover system and expedite vegetative cover growth. This work was performed by Mazurowski Enterprises of East Greenbush, NY under PES supervision.</u>

In summary, PES was issued a Call Out to perform the remedial work at the site in the fall of 2015. Site work was carried out and/or overseen by PES in accordance with NYSDEC prime Standby Remedial Services Contract No.: C100614. General information about the site as well as details regarding the implementation of each remedial work scope element have been included below.

2.0 -SITE INFORMATION:

2.1 -Background/Site History:

According to information provided to PES, the former Foster Refrigeration properties primary usage was related to the production of refrigerators. Production spanned the time frame from 1946 to1994. The manufacturing process was performed within a 62,652 ft² single-story industrial structure. The structure was composed of steel framing, metal siding and slab on grade concrete floors.

Historic aerial image of the Foster facility sometime after 1994

In 1999, the United States Environmental Protection Agency (USEPA) performed a short-term federal Superfund cleanup action that reputedly involved the following:

- Performance of geophysical surveys at two (2) suspect drum burial locations,
- Removal of various drums from within the structure and on the site's surface,
- Underground storage tank (UST) closure (in-situ),
- Buried drum removal (northern portion of site and immediately north of the site structure),
- Limited soil removal, and
- Post excavation sampling.

In a letter dated April 14, 2000 to the Department, the USEPA stated that a "Removal Action" at the Foster Refrigeration site had been completed and concluded that the levels of contaminants found in soil samples obtained from the site did not warrant further removal action under CERCLA.

Subsequent to the EPAs actions, the City of Hudson entered into an agreement with the Department to assist with the identification of parties legally liable for contamination at the site. In addition, the City of Hudson completed a remedial investigation/feasibility study (RI/FS) in 2006. The investigative effort, performed by Ecosystems Strategies, Inc. (ESI) and Morris Associates of Poughkeepsie, NY, entailed the installation of twenty-six (26) soil borings, thirteen (13) test pits and five (5) groundwater monitoring wells. The results of this study documented the main categories of groundwater and soil impacts to be polychlorinated biphenyls (PCBs) and inorganic metals. Details of this investigation can be found in a summary report of findings published in February of 2007.

At some point between 2007 and November of 2011, demolition of existing site structures was initiated. The demolition effort was not completed and resulted in a partially razed structures and numerous surface piles of construction debris. According to information provided to PES, demolition of the former commercial/industrial facility was stopped by the Department when it was determined that a pre-demolition survey had not been performed. Crawford and Associates Engineering (C&AE) of Hudson, NY was contracted by the City of Hudson to characterize the demolition waste and partially demolished structures late in 2011. C&AE determined that the remnants of the buildings as well as the surface debris piles consisted in part or in whole of asbestos-containing materials (ACM). The recommendation was to process all subject construction debris as ACM.

In response to C&AE's findings and recommendations, Ambient Environmental (AE) of Albany NY was contracted to petition the New York State Department of Labor (NYS DOL) for a variance to allow for in-place demolition of the remaining structures. The request was granted on October 15, 2015.

2.2 -Site Location and Description:

The former Foster Refrigeration facility is located at 119 North 2nd Street, Columbia County, City of Hudson, New York (see Figure 1 for site location detail). The site, which comprises a parcel of approximately three acres is located in a mixed industrial and residential neighborhood. City of Hudson tax records identify the property as 109.8-1-17. Prior to razing, the former manufacturing buildings occupied most of the property. The Hudson River occurs approximately 3,000 feet to the north-west of the site. The site is zoned for commercial/industrial use and was inactive at the initiation of the site work described herein and remains inactive as of this reporting. The site is bordered to the west and north by undeveloped land comprised of woods, fields and wetland areas. Residential housing is developed to the east. Industrial facilities occupy areas to the south of the site. A survey completed for the City of

NYSDEC Site No.: B-00184 Construction Completion Report

Hudson by C&AE has been provided as Figure 2 to show approximate lot boundary details of the site and immediate surroundings. The site was observed to have been previously supplied with overhead power and telecommunications. The former site's water and sanitary sewer needs were served by underground publicly supplied services. Natural gas was previously provided via underground service and transects the western property boundary.

2.3 -Site Topography:

The subject area of the investigation and remedial activities described in this report of findings is relatively flat. Mapping information depicted on the United States Geographic Survey Topographic Map of the Hudson North, New York Quadrangle 1953, illustrates a localized slope to the west. The majority of the subject site exits at approximately ten (10) -feet above mean sea level. The site borders low-lying areas developed to the east that constitute the Hudson River flood plain. Site inspections confirmed the low-level relief of the site.

2.4 -Geology/Hydrogeology:

Review of published geological information indicates the site is located in the Hudson-Mohawk geological province and consists predominantly of deposits of fluvial origin. During the course of PES's intrusive work, extensive shallow non-indigenous fill soils and associated debris were observed and documented.

Bedrock beneath the site reportedly consists of slate and/or shale belonging to either Walloomsac Slate or Normanskill Shale and is of middle to upper Ordovician age. Bedrock was not encountered during the implementation of any of PES intrusive efforts.

Localized groundwater was encountered at general depths of four (4)-feet below the existing site grade. PES's work did not involve the establishment of localized groundwater flow. However, based on the sites proximity to the Hudson River coupled with the gentle localized slope of the surface topography from east to west, shallow groundwater flow in the vicinity of the subject property is suspected of being toward the west. Tidal influence is likely a factor with respect to groundwater flow direction and gradient. The groundwater appears to exist under unconfined conditions.

2.5 -Surface Water:

The nearest surface water body is the Hudson River, which is located to the northwest of the site. (See Figure 1 for detail). The Hudson River maintains a continuous annual flow from north to south.

3.0 - DEMOLITION/DEBRIS REMOVAL/DISPOSAL:

PES was tasked with developing a plan and securing a qualified contractor to demolish residual structures and remove all surface debris from the site. According to information provided to PES, demolition of the former commercial/industrial facility was stopped by the Department when it was determined that a pre-demolition survey had not been performed. PES was provided a report summarizing site conditions following a partial demolition effort authored by C&AE and entitled: *Foster's Refrigeration C&D Waste Clean Up Summary of Preliminary Findings and Recommendations*, January 20, 2012, as a guidance to site conditions. C&AE performed site inspections of remaining structures and piles of construction debris resulting from the initial demolition efforts and concluded that the debris and remaining building structure consisted in part or in whole of asbestos-containing materials (ACM).

Furthermore, C&AE recommended all debris be treated as ACM and be processed accordingly. In response to C&AE's report of finding and recommendations, Ambient Environmental (AE) of Albany NY petitioned the New York State – Department of Labor (NYS DOL) for a variance to allow for in-place demolition of the remaining structures. The request was granted on October 15, 2015 and the Decision document has been included in Attachment A.

PES performed solicitation of qualified demolition contractors that resulted in the award of the project to Dan's Hauling and Demolition (DH&D) of Wynantskill, NY. During the time frame spanning November 5 through December 2 of 2015, DH&D performed work at the site under PES's oversight and documentation. The demolition work was facilitated by the City of Hudson's condemnation of the property. In general DH&D's authorized scope included the following:

- Demolition of remaining site structures,
- Removal, transport and disposal of all C&D materials and ACM generated during the razing efforts,
- Remove, transport and disposal of any comingled material associated with the contractor's direct work, and
- Remove, transport and disposal of all existing debris piles as generated by previous demolition contractor.

Pre-demolition view of site

Post demolition aerial view of site

All work was performed in accordance with applicable local, state and federal regulations concerning the handling and abatement of ACM. Community Air Monitoring Plan procedures were implemented during each day of demolition and on-site processing of debris. Ambient Environmental of Albany, NY performed third party oversight and asbestos-related air monitoring during the controlled demolition and debris removal efforts. Their report, which includes air monitoring results, is included in Attachment A. A total of 920.95 tons of demolition debris were processed under manifest and delivered to the Albany Landfill. Waste manifests are included as Attachment B.

4.0 -SUPPLEMENTAL SUBSURFACE INVESTIGATIONS:

PES performed two (2) supplemental subsurface investigations (SSIs) at the site at the request of the Department. The initial effort was implemented during the time span of 12/28/15 through 1/6/16 and involved the installation of a grid network of seventy-six (76) soil borings (SBs) within the northwest/southwest quadrants of the site. The second effort constituted a single day event conducted on 8/24/16 and entailed the installation of five (5) SBs, through the slab of the previous factory floor. Figure 3 depicts the location and identification/designation of all resulting SBs.

Both events involved the installation of shallow overburden SBs utilizing PES's special access, direct push, geoprobe. In general, SBs were advanced to a maximum depth of twelve (12) -feet below grade. The primary purposes of the investigative efforts were to:

- Define vertical/horizontal contaminant impacts,
- Establish the lithologic nature of the surface soils at the site,
- Confirm groundwater elevations, and
- Facilitate the collection of samples for waste disposal characterization.

Concrete slabs penetrated during SI work

Classifying soils during SI work

4.1 - Soil Boring Installation/Field Screening:

The SB equipment utilized retrieves relatively undisturbed soil samples across a four-foot stratigraphic interval. SBs were installed using direct-push, macro core, steel, samplers equipped with disposable acetate sleeves (used to prevent the cross contamination of soil samples). Continuous soil samples were collected during boring advancement for subsequent visual classification and field screened utilizing a calibrated photo-ionization detector (PID) to qualitatively determine the presence of volatile organic compounds (VOCs). Field screening was performed using head space methods whereby representative portions of the acquired sample were sealed in clean plastic bags, agitated, allowed time to equilibrate, and then the air space above the soil was scanned with the PID. Prior to the initiation of fieldwork, the PID was properly calibrated to read parts per million calibration gas equivalents (ppm-cge) of isobutylene in accordance with protocols set forth by the equipment manufacturer.

Subsurface soil characteristics, including soil type, the presence of foreign materials, field indications of contamination (e.g., staining and/or odors), and instrument responses (i.e.: PID readings) were logged by PES professional staff during the installation of each respective SB. PES personnel maintained independent field geologic logs documenting the obtained field information for all encountered material at each boring location. Relevant information from PES logs for each boring is summarized on respective boring logs included in Attachment C.

Decontamination procedures were performed on all soil sampling equipment prior to and between each sample acquisition.

4.2 -Site Geology:

Urban fill consisting of ash, slag, brick, concrete and other materials was encountered at most SB locations. The documented fill dominated the upper six to nine (6-9) feet of the stratigraphic column. Geologic material consisting of a mixture of fine-medium sand and/or silt and clay was encountered below depths of nine feet. This material is interpreted to be native and is consistent with the published lithologies for this study area. Thin layers of organic rich peat were also documented at depth. The presence of peat substantiates the published fluvial type depositional environment for the study area. Groundwater was estimated to occur from approximately four to six feet (4-6') below the existing site grade. For details regarding the geologic profile for individual SBs – please refer to Attachment C – Boring Logs.

4.3 -SSI Soil Sampling:

All collected soil samples were obtained in a manner consistent with NYSDEC sampling protocols. Samples were collected by PES professional staff, classified, field screened and placed in clean glass sample jars supplied by the analytical facility. Representative samples were labeled, sealed, and placed immediately in iced storage for transport to Test America Laboratories, Inc. (Test America) of Amherst, NY. Appropriate chain-of-custody procedures were followed. Resulting analytical reports are included as Attachment D.

Collected soil samples were submitted for analyses for: Metals (EPA Method 6010/7471) and PCBs (EPA Method 8082). Results are tabulated in Tables 1 and 1A and graphically displayed on Figures 4 & 5.

4.4 –SSI Soil Sampling Results:

The term "soil cleanup objective," (SCO) herein refers to the concentration of a particular constituent of concern above which remedial actions are considered more likely. In general, the objective of establishing guidance levels is to aid with the assessment of the integrity of on-site media relative to conditions which are likely to present a threat to public health or the environment. This is often further influenced by the given and/or probable future uses of the site. In general, conditions where contaminant levels exceed these guidance levels are considered more likely to warrant remediation.

SCOs considered during the data analysis for this site originated in the NYSDEC's regulation 6 NYCRR Subpart 375 document.

As Tables 1 and 1A summarize and Figure 4 illustrates, impact to the subsurface by metals contamination was prevalent across the entire area targeted by the SSI. As the data base indicates,

Construction Completion Report

metals exceeding residential use (both un-restricted and restricted) included arsenic, barium, cadmium, chromium, lead and mercury. Arsenic and lead had the most exceedances of SCOs with respect to extent and magnitude of impact. Figures 6 and 7 illustrate the distribution of arsenic and lead over the study area. In contrast, PCB exceedances were limited to SBs 3, 66, 69, 77, and a surface soil/debris sample that was collected at the base of a concrete pedestal and pad that are believed to have been associated with an electrical transformer (see Table 1 and Figure 5).

Surficial staining present at Surface Pedestal sample location where PCBs were detected

Based on the collected data, excavation limits with respect to vertical and horizontal extent were developed and presented to the Department for approval and implementation authorization. Figure 8 illustrates the approved target excavation area as defined by the soil analytical results.

5.0 -SITE CLEARING:

From 12/17/17 to 12/21/17 PES performed site clearing work including cutting down and processing trees and woody vegetation. PES cut and processed all accessible trees within the area designated for access and/or excavation. The site was grubbed of all trees and undergrowth using chain saws, a bobcat loader and an excavator equipped with a hydraulic thumb. Tree trunks and limbs were cut into manageable sizes for on-site chipping. Resulting wood chips were used at various areas of the site.

Trees, brush and woody debris that required processing and relocating to facilitate excavation work

6.0 -SOIL EXCAVATION, STAGING, BACKFILLING AND DISPOSAL:

Results of the SSI confirmed the need to implement the recommended remedy of mass excavation and off-site disposal of surficial contaminants to accommodate the prescribed cap. Figure 8 graphically displays the targeted excavation area as established by the resulting SB lab analysis and direction from the Department. Completed engineering controls allowed for safe and practical excavation of contaminated soil. Soils were excavated pursuant to pre-determined horizontal and vertical extents as established by previous investigative efforts performed by PES and others. As Figure 8 illustrates, the target area consisted of bare surface soil as well as areas beneath existing concrete.

6.1 -Soil Excavation/Staging:

PES utilized tracked excavators, a backhoe/loader and an articulated frontend loader to remove and stage contaminated soils. In general, the approved work scope consisted of the removal of the upper two (2) -feet of soil from the excavation foot print.

PES used traditional "cut and fill" method to accomplish the removal effort. In general, the excavation proceeded from the rear (northwest) to the front (southeast) of the site in a windrow pattern from west to east. Target soil was first removed by the excavator then subsequently transported by a frontend articulated loader to the staging area. Groundwater was not encountered in the shallow excavation.

Employing cut and fill methods to remove the top 2-ft of existing soil and apply 1.5-ft of select fill over Demarcation layer and beneath topsoil cover

Contaminated soil was removed and staged for final characterization. The soil was polyencapsulated and staged on the existing concrete pad to prevent the infiltration of precipitation and limit exposure. In general, soil was removed within the physical constraints of the site and/or until the predetermined end of excavation limits were reached. Soil samples were collected during pre-excavation subsurface investigations to characterize the vertical and horizontal contaminant extent. For this reason, end of excavation samples were not required or collected subsequent to the soil removal action by PES.

Poly-encapsulated cut soils

6.2 - Concrete Removal/Sizing:

To facilitate concrete removal and sizing from areas targeted for excavation, PES used hydraulic pin hammers. The removed concrete was sized maximum 2' X 2' dimensions to meet disposal requirements.

Initial 2-ft cut at SW corner of site

Processed concrete

6.3 -General Backfilling:

As indicated previously, PES utilized "cut and fill" methods during the removal action at the rear of the site where excavation work was planned. A physical demarcation layer consisting of black, permeable, woven geotextile was emplaced along the floor of the excavation prior to the application of select fill. This same demarcation layer was also spread at existing grade and beneath 12-inches of topsoil at areas in the front of the site in between the security fence and building slabs that remain.

Demarcation layer placed along the southwest Perimeter at the excavation and removal area

Demarcation layer placed beneath topsoil and on top of existing grade in the NE corner of the site

Select fill consisting of bank run gravel was supplied by A. Colarusso and Son, Inc. of Hudson, New York (ACS) from their native, virgin pit located at Blue Hill Road, Hudson, NY. A total of 8,346.13 tons of select fill were procured and applied to complete the initial fill course at the rear of the site where 2-ft of native material was cut. In general fill was applied in one (1) -foot lifts and machine compacted. Specific compaction testing was not a part of the requested work scope.

Final cut and select fill application at rear cut area

Select fill applied over demarcation layer

Representative samples of the select fill were collected prior to procurement and were analyzed as per DER 10 and 6 NYCRR Part 375. A summary outlining the analytical methods used and results from this effort are attached as Table 2. Laboratory analytical reports for the fill samples are included in Attachment D. As Table 2 indicates, the fill source was confirmed to meet the requirements of the site.

6.4 -Waste Disposal:

6.4.1 -Concrete:

Pre-disposal sample collection and associated testing was performed to assess potential contaminant impacts prior to removal of concrete debris from the site. Representative samples were collected in clean laboratory supplied glassware, labeled, sealed, and placed immediately in iced storage for transport to Test America Laboratories, Inc. (Test America) of Amherst, NY. The collected samples were analyzed for VOCs (EPA 8260), SVOCs (EPA 8270), PCBs (EPA 8082), metals (EPA 6010/7471), herbicides (EPA 8151) and organochlorine Pesticides (EPA 8081). Resulting analytical reports are included as Attachment D.

Table 3 presents a summary of the collected concrete data. As Table 3 indicates, VOCs, SVOCs, PCBs, herbicides, and metal constituents -selenium/silver/mercury were <u>not</u> detected in the analyzed samples above the respective method's laboratory detection limits. Constituents of concern indigenous to EPA method 6010 were detected in characterization samples 1-5. However, detected concentrations were all below the residential soil cleanup objectives (SCOs) presented in NYSDEC Regulation 6 NYCRR Subpart 375.

Waste concrete was sized, protruding rebar removed, loaded and transported by RJ Valenti of Troy, NY to their Halfmoon, NY facility where it was processed. A total of 1,125 yd³ of waste concrete was removed and processed during the remedy application.

6.4.2 -Impacted Soil:

Soil removed from the main excavation was staged on-site on the existing concrete pad and was secured on and covered with poly sheeting.

The resulting staged soil cell was sampled for characterization to obtain disposal approval. Representative samples were collected from the soil cell and submitted for analyses for: TCLP Metals (EPA Method 6010 and 7470), TCLP VOCs (EPA Method 8260), TCLP SVOCs (EPA Method 8270), PCBs (EPA Method 8082), TCLP Pesticides (EPA Method 8081), TCLP Herbicides (EPA Method 8151) & general chemistry parameters paint filter, pH, and flashpoint. Samples were collected by PES professional staff and placed in clean glass sample jars supplied by the analytical facility. Representative samples were labeled, sealed, and placed immediately in iced storage for transport to Test America Laboratories, Inc. (Test America) of Amherst, NY. Resulting analytical is summarized in Table 4 and associated lab reports are included as Attachment D.

Subsequent to approval, all staged soil was loaded and transported under manifest by MC Environmental Services of Queensbury, NY (MCES) to Seneca Meadows, Waterloo, NY for proper disposal. A copy of the resulting manifests are included as Attachment B. During the course of the project, 4,806.11 tons of contaminated soil were removed and disposed of off-site.

Community air monitoring was performed during all invasive site work. Dust control measures were implemented that consisted of the application of clean water to surfaces within the construction zone. Air monitoring data is presented in Attachment E.

7.0 -UST CLOSURE:

During the soil excavation process, three (3) underground storage tanks (USTs) were documented along the site's southwest property border perimeter (see Figure 9). PES designated the tanks TK 001-003. The Department was notified of the discovery of the USTs and closure action was requested and incorporated into the authorized work scope.

A review of provided information indicated the USEPA documented and addressed two (2) of the three (3) USTs during their active site work. The EPA concluded the tanks contained petroleum products

Construction Completion Report

and supervised the closure of the tanks via vacuum extraction of residual fluids, triple washing of the respective tank's interiors and filling of the tank cavities with clean inert sand. Subsequent work performed by PES confirmed the EPA information.

Requested closure activities at the site comprised the permanent removal of three (3) USTs. Specifics regarding these three (3) USTs are as follows:

UST Ref. #	Product	Capacity (Gallons)	Construction	Residual Product (Inches/gallons)	UST Condition
TK-001	Fuel Oil	4,000	Single Wall Bare Steel	5.25/196	Advanced Rusting/Pitting – holes noted
TK-002	Unknown – reported (EPA) as petroleum	2,000	Single Wall Bare Steel	Previously removed - filled with sand	Advanced Rusting/Pitting – holes noted
TK-003	Unknown – reported (EPA) as petroleum	2,000	Single Wall Bare Steel	Previously removed - filled with sand	Advanced Rusting/Pitting – holes noted

7.1 -UST Closure (overview):

On July 26, 2018, PES field construction staff performed excavation of surficial soil to expose the tops of the USTs to allow for dismantling of associated piping and access for cleaning. PES professional staff provided oversight and documentation for the closure process. As stated previously, the EPA and their contractors performed decommissioning of TKs – 002 & 003. In contrast, TK-001 required access and cleaning for proper closure. Oversight tasks performed by PES in association with the decommissioning of TK-001 included: supervision of the removal of residual fluids, tank atmosphere monitoring, vapor purging and interior access/cleaning. The closure of the USTs was performed in accordance with 6 NYCRR 613 -2.6.

PES's oversight documentation responsibilities consisted of examining the USTs for condition, screening soils with a PID, collecting samples for field/laboratory analysis, and providing written and photographic documentation of the work. Screening allowed for the efficient segregation of excavated soil.

Approximately 200 gallons of residual tank and rinse liquids were generated during the UST closure process. Albany Tank Services (ATS) of Selkirk NY performed the UST cleaning as well as the removal and proper disposal of residual tank fluids. In addition, the presence of shallow impacted groundwater necessitated the need to perform limited construction dewatering during removal of petroleum contaminated soil (PCS). An additional volume of 3,907 gallons of impacted groundwater were extracted and disposed off-site during the PCS removal. The construction dewatering effort was performed by ATS and Albany, NY based Environmental Products and Services (EPS) of Vermont. All fluids collected were transported for disposal at Industrial Oil, Oriskany, NY. Waste disposal documentation has been provided in Attachment B. The cleaned USTs were transported to NH Kelman's Scrap Yard in Cohoes, NY as clean scrap steel for recycling.

7.2 -Post UST Removal Soil Screening:

Upon completion of the UST cleaning and inspection process, PES assessed soil quality in geologic material occurring adjacent to and beneath each respective UST. Representative samples were secured from multiple locations along each UST grave sidewall as well as the excavation bottom for field screening using headspace methods and a calibrated PID (model MiniRAE 3000). The PID was calibrated with an isobutylene standard gas. Collected soil samples were field screened using head space methods. Field screening and visual observations confirmed negative impacts in areas adjacent to and beneath all three (3) respective USTs. Resulting PID responses ranged from 0.0 ppm to 300 (+). In response to the documented negative impacts, PES under direction of the Department initiated removal of petroleum contaminated soil (PCS). PCS removal was performed within the physical limits of the site and/or until field data suggested adequate removal.

7.3 -Post UST Removal – End of Excavation Soil Sampling:

PCS was removed within the physical constraints of the site and/or until field screening indicated adequate reduction in impact magnitude. Field screening methods were deployed by PES professional staff throughout the excavation phase. Under direction of the Department, end of excavation soil samples were collected to gauge the effectiveness of the removal action. Two (2) bottom and seven (7) sidewall samples were collected from the resulting excavation. All collected soil samples were obtained in a manner consistent with NYSDEC sampling protocols. Samples were collected by PES professional staff, field screened and placed in clean glass sample jars supplied by the analytical facility. Representative samples were labeled, sealed, and placed immediately in iced storage for transport to Phoenix Environmental Laboratories, Inc. (PEL) of Manchester, Ct. for VOC (EPA 8260) and SVOC (EPA 8270) analysis. Appropriate chain-of-custody procedures were followed.

The results of the end of excavation sampling is summarized in Table 5. As Table 5 indicates, constituents of concern indigenous to Method 8260 were detected above the laboratory detection limit in five (5) of the submitted end of excavation soil sample (specifically – S.Wall#1 4-6', S.Wall#2 4-6', BTM-2 8', W.Wall#1 4-6' & N.Wall#2 4-6'). In all cases, compounds detected were at concentration below soil cleanup objectives presented in the Departments - NYS DEC Final Commissioner Policy, CP-51, indicating compliance. The distribution of end point sample locations for the UST closure/PCS

removal event are depicted on Figure 10. The analytical reports for the submitted soil samples are included within Attachment D – Laboratory Analytical Report.

7.4 -PCS Disposal:

During the course of the PCS removal action, 829.29 tons of soil were removed and staged on poly sheeting pending characterization and disposal. Removed PCS was generally stockpiled on the adjacent concrete slab.

All PCS was transported by MCES under manifest (see Attachment B) to the Seneca Meadows Landfill for disposal.

8.0 -SITE SURFACE COVER SYSTEM – (includes) Equipment Removal:

8.1 -Site Grading/Capping Action:

Pursuant to the ROD, PES imported clean sandy loam, which was utilized for the top soil cover system (cap) and to establish vegetative growth, as supplied by Carver Sand and Gravel, LLC from their pit located on Button Road, Waterford, NY. A total of 4,623.13 tons of top soil were procured and imported to the site. Approximately 6-inches of topsoil were placed over the select fill at the rear cut area and 12-inches were applied at all other areas within the fenced site boundary to the north, east and south of the existing concrete slabs that remain at grade. Additional detail regarding location and thickness of cap cover material has been provided in Figure 11.

Topsoil applied to rear of site at cut areas

Topsoil applied to north side and front of site

Prior to delivery to the site the material was sampled in accordance with DER 10 and 6 NYCRR Part 375. A summary of the analytical results from this effort are attached as Table 6. The laboratory analytical report has been included in Attachment D. In general, the material was placed in a single lift and lightly compacted using a dozer equipped with low ground pressure tracks.

The surface completion was performed in accordance with the minimum of one-foot placement of material as set forth in 6 NYCRR Part 375-6.7(d).

8.2 - Equipment Removal/Decontamination:

PES performed decontamination of all equipment prior to demobilization from the site. An equipment decontamination pad was constructed at the beginning of the project to facilitate equipment cleaning.

Decontamination involved the physical removal of all sediment from machinery surfaces followed by an alconox/potable water rinse. Rinse fluids were captured and containerized for contaminant assessment. Representative samples were collected from the containerized fluids for Metals (EPA 6010 and 7470), VOCs (EPA 8260) and PCBs (EPA Method 8082). Samples were collected by PES professional staff and placed in clean glass sample jars supplied by the analytical facility. Representative samples were labeled, sealed, and placed immediately in iced storage for transport to Test America Laboratories, Inc. (Test America) of Amherst, NY. Resulting analytical lab reports are included as Attachment D. With the exception of a single constituent of concern (barium at 0.098 mg/l), non -detect responses were obtained for all compounds of concern. The residual water was

documented as meeting Department groundwater standards and was subsequently decanted on site per NYSDEC directive.

8.3 - Site Hydro Seeding Action:

Subsequent to the application of the top soil cover, hydro seeding was performed on 8/17/18 by Mazurowski Enterprises of East Greenbush, New York. This effort was performed to quickly stabilize the site surface through the promotion of growth of a vegetative cover. Approximately 135,907 ft² of the restored site was treated via hydro-seeding. PES's authorized scope included the hydro seeding effort only. Required watering and long-term maintenance were tasked to others.

Select site-specific aerial images taken by PES to document the site subsequent to the ROD implementation are included below.

9.0 -DISCLAIMER:

Construction Completion Report

Any statement or opinion contained in this Report prepared by Precision Environmental Services, Inc. (PES) shall not be construed to create any warranty or representation that the real or personal property on which the investigation was conducted is free of pollution or complies with any or all applicable regulatory or statutory requirements, or that the property is fit for any particular purpose. Unless otherwise indicated in this Report, PES did not independently determine the compliance of present or past owners of the site with federal, state or local laws and regulations. The conclusions presented in this Report were based upon the services described, within the time and budgetary constraints imposed by the client, and not on scientific tasks or procedures beyond the scope of those described services. PES shall not be responsible for conditions or consequences arising from any facts that were concealed, withheld or not fully disclosed by any person at the time the evaluation was performed.

Any person or entity considering the acquisition, use or other involvement or activity concerning the property that is the subject of this Report shall be solely responsible for determining the adequacy of the property for any and all such purposes. The person or entity should enter into any such acquisition or use relying solely on its own judgment and personal investigation of the property, and not upon reliance of any representation by PES regarding the property or the character, quality or value thereof.

John Johnson, P.G. Hydrogeologist

the ben

Stephen M. Phelps, P.G. Project Manager

Enclosures:

Figures:

- 1 Site Location Map.
- 2 -Site and surrounding properties survey
- 3 Soil Boring Location/Identification Map.
- 4 Metals in Soil Distribution Map.
- 5 PCBs in Soil Distribution Map.
- 6 Distribution of Arsenic SCO Exceedances.
- 7 Distribution of Lead SCO Exceedances.
- 8 Target Soil Excavation Area.
- 9 UST and PCS Detail Map
- 10 UST End of Excavation Soil Sample Map
- 11 Cap Detail

Tables:

- 1 & 1A Soil Boring Sampling Results (soil)
- 2 Fill Import Sampling Summary (bank run gravel)
- 3 Waste Concrete Disposal Sampling Results
- 4 Disposal Characterization Analytical Summary (soil)
- 5 UST End of Excavation Sampling Summary (soil)
- 6 Fill Import Sampling Summary (topsoil)

Attachments:

- A. Variance Permit Information and ACM oversight and air monitoring report
- B. Waste Disposal Documentation
- C. Geologic Logs
- D. Laboratory Analytical Reports
- E. Summary of CAMP Data

FIGURES

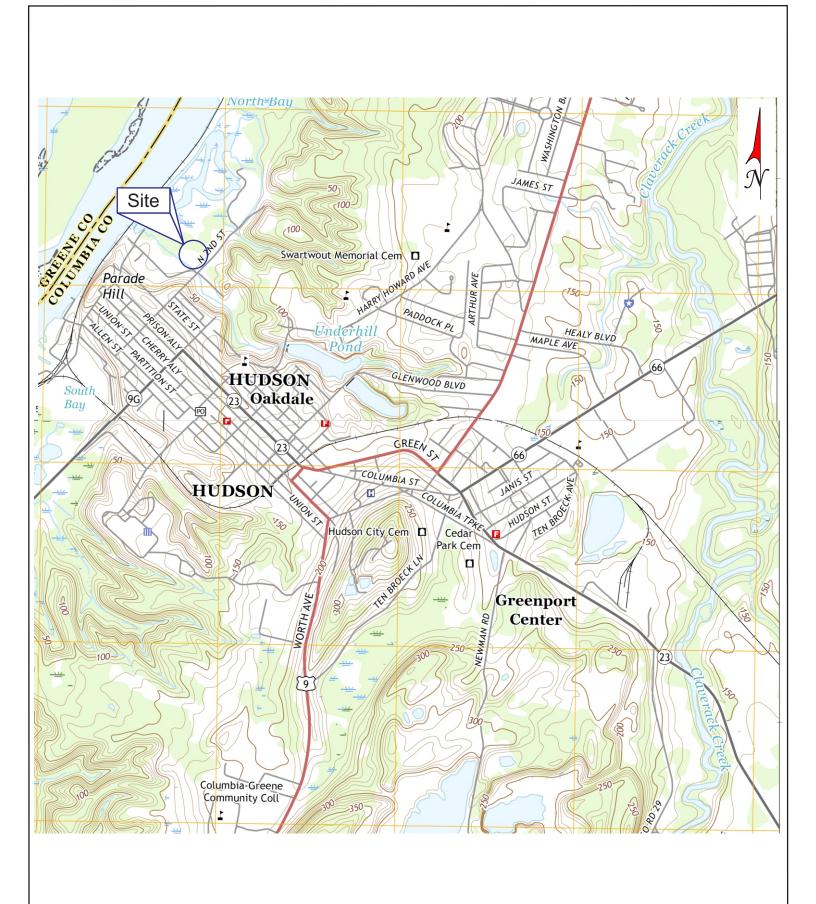
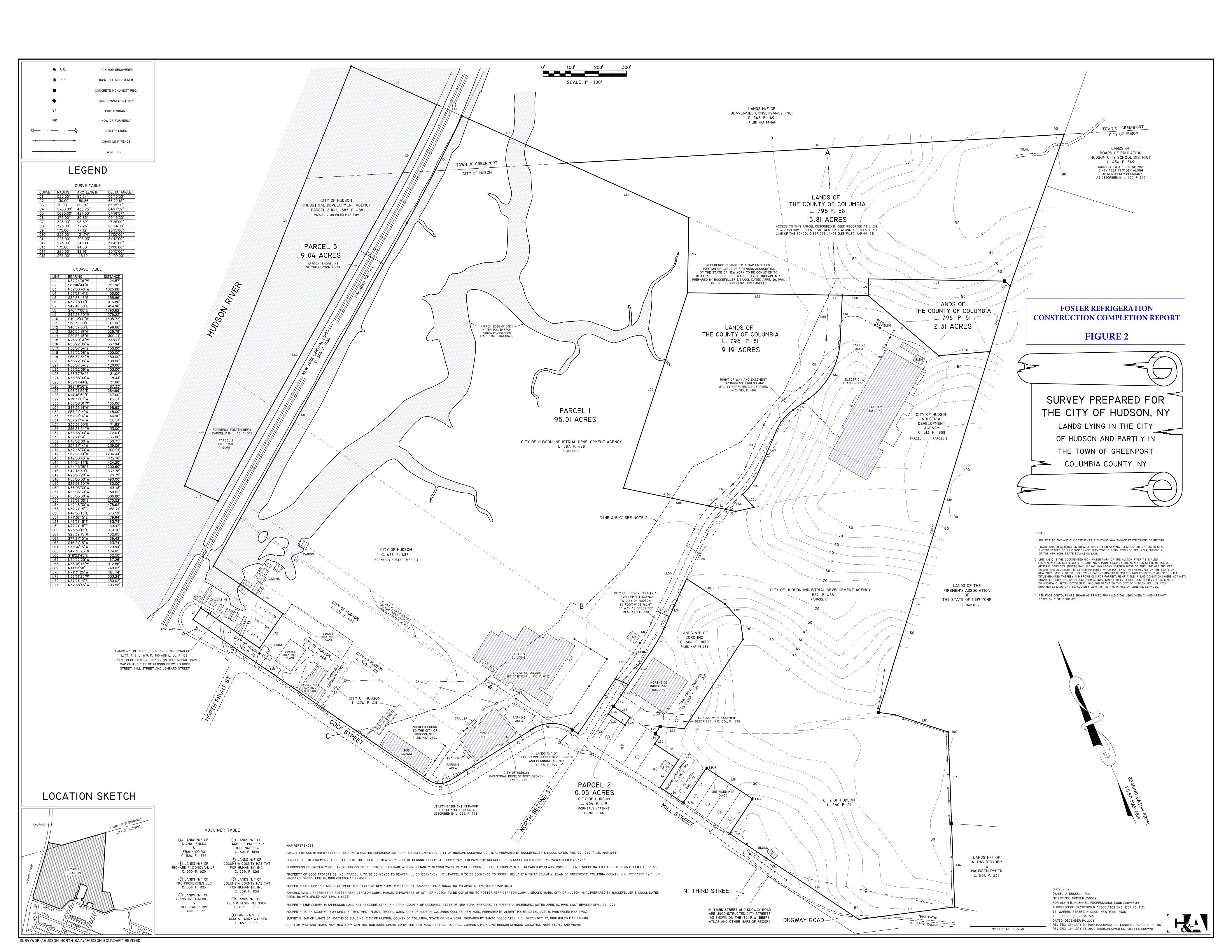



Image Courtesy of the U.S. Geological Survey: Hudson South and Hudson North, NY 7.5' Quadrangles 2016

Fmr Foster Refrigeration Site
Site Location Detail

Location: 119 N. 2nd St., Hudson, NY	Date: March 2019
Client: NYSDEC	Scale: NTS
Drawn By: SMP	Figure: 1

CERTIFIED WOMEN-OWNED BUSINESS ENTERPRISE

SOIL BORING LOCATION MAP

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 03/06/19

REVISED BY: SMP

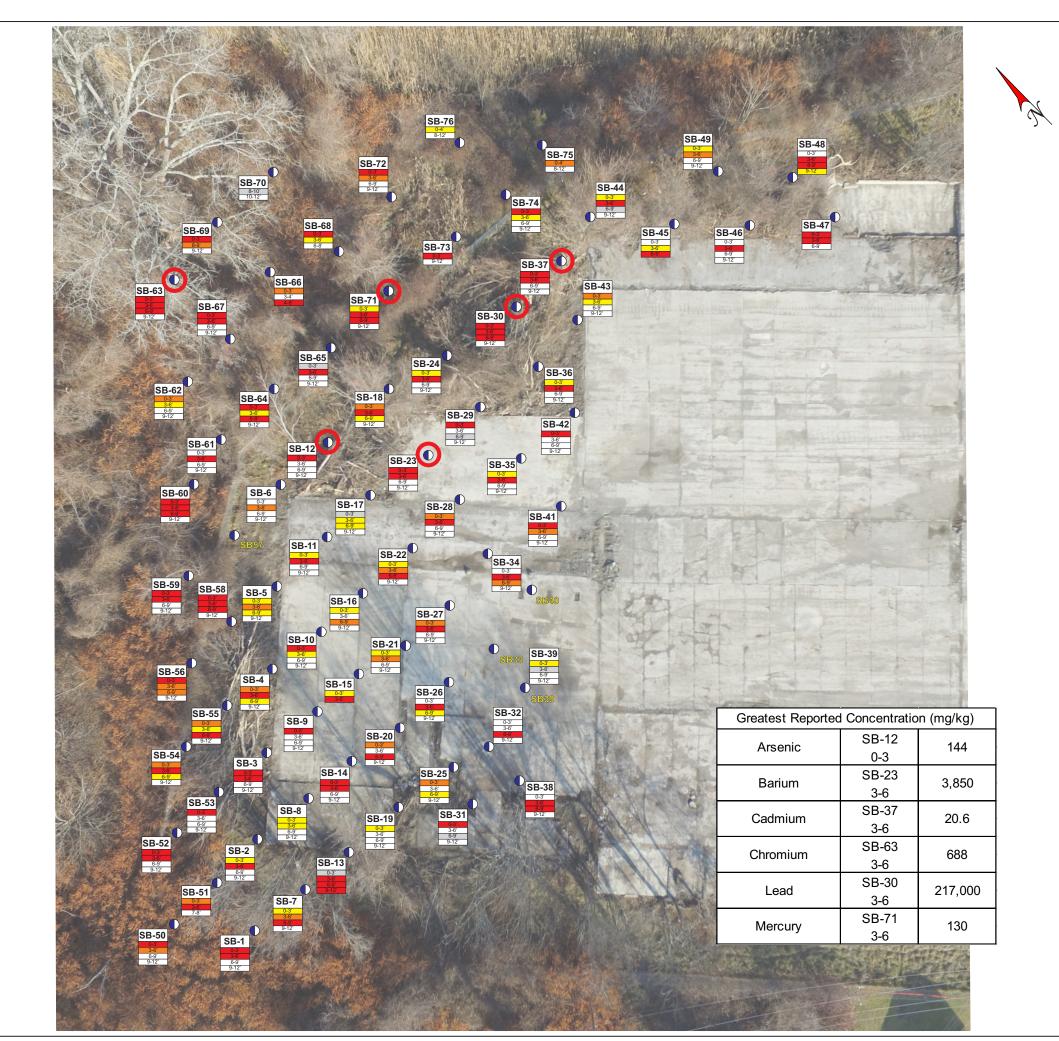
FIGURE: 3

SCALE: AS SHOWN

LEGEND

INSTALLED SOIL BORING

PERCEIVED FOOTPRINT OF ORIGINAL STRUCTURE AS DEPICTED IN 1952 AERIAL IMAGE BY ERS


PROPOSED EXCAVATION & SELECT FILL COVER BOUNDARY

PROPOSED TOPSOIL COVER BOUNDARY

APPROXIMATE SCALE:

NOTES:

METALS IN SOILS DISTRIBUTION MAP

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 03/06/19

REVISED BY: SMP

FIGURE: 4

SCALE: AS SHOWN

LEGEND

SOIL BORING

SB-55

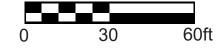
BORING & SAMPLE ID

DEPTH INTERVAL OF SAMPLE

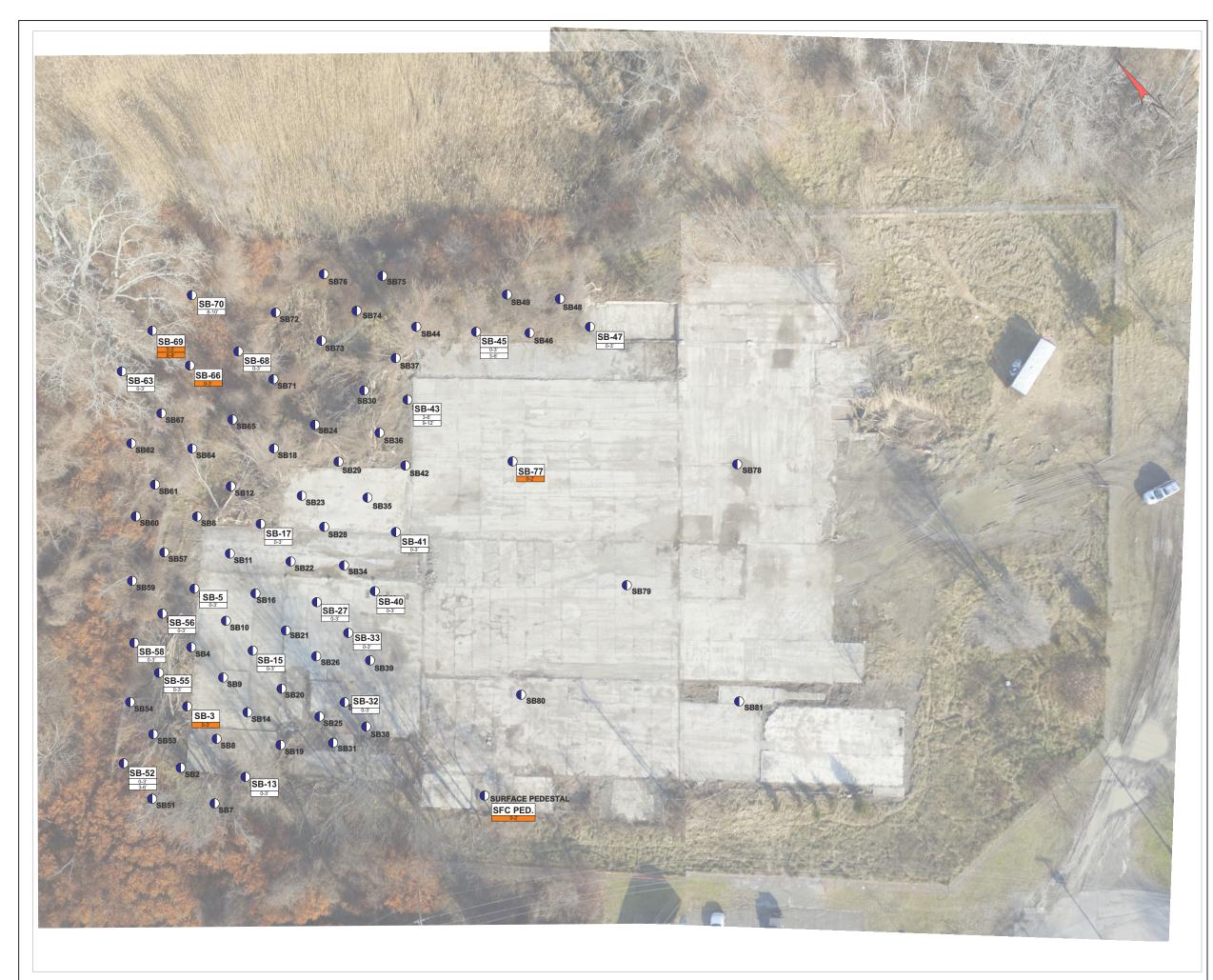
HIGH CONCENTRATION OF METALS & PROPOSED TCLP SAMPLE POINT FOR IN-SITU CHARACTERIZATION

CONCENTRATION OF METALS IN SOILS (MG/KG) RESIDENTIAL USE SCO

>/= >/= >/=


>/= RESIDENTIAL USE SCO

>/= RESTRICTED RESIDENTIAL USE SCO


>/= COMMERCIAL USE SCO

>/= INDUSTRIAL USE SCO

APPROXIMATE SCALE:

NOTES:

PCBs IN SOIL

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 03/06/19

REVISED BY: SMP

FIGURE: 5

SCALE: AS SHOWN

LEGEND

lacktriangle

INSTALLED SOIL BORING

SB-5

BORING & SAMPLE ID

0-3' 3-6' 6-9' 9-12'

DEPTH INTERVAL OF SAMPLE

8-9'

CONCENTRATION OF PCBs IN SOIL EXCEEDS COMMERCIAL USE SCO

APPROXIMATE SCALE:

NOTES:

SCO EXCEEDENCES ARSENIC IN SOILS

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 10/6/2016

REVISED BY: JJJ

FIGURE: 6

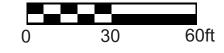
SCALE: AS SHOWN

LEGEND

SOIL BORING

SB-55 BORING & SAMPLE ID

0-3 3-6 6-9 9-12


DEPTH INTERVAL OF SAMPLE

CONCENTRATION OF METALS IN SOILS (MG/KG)

>/= RESTRICTED RESIDENTIAL USE SCO >/= COMMERCIAL USE SCO

>/= INDUSTRIAL USE SCO

APPROXIMATE SCALE:

NOTES:

CERTIFIED WOMEN-OWNED BUSINESS ENTERPRISE

SCO EXCEEDENCES -LEAD IN SOILS

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 10/6/2016

REVISED BY: SMP

FIGURE: 7

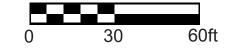
SCALE: AS SHOWN

LEGEND

SOIL BORING

SB-55 BORING & SAMPLE ID

DEPTH INTERVAL OF SAMPLE


CONCENTRATION OF METALS IN SOILS (MG/KG)

< RESIDENTIAL USE SCO >/= RESIDENTIAL USE SCO

>/= RESTRICTED RESIDENTIAL USE SCO

>/= COMMERCIAL USE SCO >/= INDUSTRIAL USE SCO

APPROXIMATE SCALE:

NOTES:

PROPOSED EXCAVATION AREA

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 3/6/19

REVISED BY: SMP

FIGURE: 8

SCALE: AS SHOWN

LEGEND

INSTALLED SOIL BORING

PERCEIVED FOOTPRINT OF ORIGINAL STRUCTURE AS DEPICTED IN 1952 AERIAL IMAGE BY ERS

PROPOSED EXCAVATION, SELECT FILL & TOPSOIL COVER BOUNDARY

PROPOSED TOPSOIL COVER BOUNDARY

APPROXIMATE LOT (109.08-1-17) AND FORMER SITE BOUDARY

APPROXIMATE SCALE:

NOTES:

USTs AND PCS EXCAVATION AREA

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 03/06/19

REVISED BY: SMP

FIGURE: 9

SCALE: AS SHOWN

LEGEND

PROPOSED PRIMARY EXCAVATION & SELECT FILL COVER BOUNDARY

PROPOSED TOPSOIL COVER BOUNDARY

UST AREA AND SOIL REMOVAL LIMITS

UST IDENTIFICATION/LOCATION

APPROXIMATE SCALE:

NOTES:

UST - POST EXCAVATION SAMPLE IDENTIFICATION

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 03/06/19

REVISED BY: SMP

FIGURE: 10

SCALE: AS SHOWN

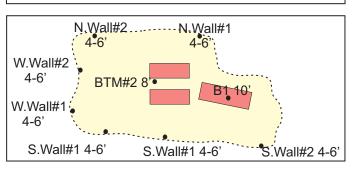
LEGEND

PROPOSED PRIMARY EXCAVATION & SELECT FILL COVER BOUNDARY

PROPOSED TOPSOIL COVER BOUNDARY

UST AREA AND SOIL REMOVAL LIMITS

UST IDENTIFICATION/LOCATION


•

POST EXC. SAMPLE LOCATION

*All Locations are approximate

APPROXIMATE SCALE:

CAP Detail

FOSTER REFRIGERATION

PROJECT #: NYSDEC SITE NO.: B00184

LOCATION: 119 NORTH 2ND ST., HUDSON, NY

DATE: 07/25/19

REVISED BY: SMP

FIGURE: 11

SCALE: AS SHOWN

LEGEND

2 FT CUT AREA & SELECT FILL COVER BOUNDARY

TOPSOIL COVER BOUNDARY

1.5 FT OF SELECT FILL AND 0.5 FT OF TOPSOIL APPLIED AS CAP

1.0 FT OF TOPSOIL APPLIED AS CAP

APPROXIMATE SCALE:

NOTES:

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SE	3-1			SE	3-2			SI	3-3			S	B-4			SI	B-5	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		12/28	/2015	•		12/28	/2015			12/28	3/2015			12/28	3/2015			12/28	3/2015	
RCRA Metals																				
Arsenic	19.7	22	2.8	2.9	13	13.8	3.3	1.4	19.2	18.5	4.1	2.7	10.2	78.4	6.7	1.8	11.4	14.4	8.7	2.9
Barium	781	188	51.6	65.2	328	264	133	36.2	607	400	99.9	47.3	278	92.7	78.6	48.2	246	359	111	75.1
Cadmium	1	1.3	ND	ND	0.92	2.4	ND	ND	15.7	ND	ND	ND	0.8	0.26	0.044	ND	2	0.5	ND	ND
Chromium	26.2	94.9	10.5	13.6	23.3	19.9	19.6	8.3	57.5	7.5	17.5	10.4	21.8	11.6	6.6	9.8	24	18.8	26.9	12.3
Lead	903	2,380	13	11	628	698	16.3	3	1,480	319	21.2	4.9	776	267	120	4.6	438	1,490	132	19.9
Selenium	1	ND	ND	ND	ND	ND	ND	ND	1	2	ND	ND	ND	ND	2.5	ND	0.85	0.85	0.66	ND
Silver	0.7	ND	ND	ND	0.28	0.39	ND	ND	ND	ND	ND	ND	0.39	ND	ND	ND	0.84	ND	0.56	ND
Mercury	1	0.31	0.057	0.028	0.72	77.5	0.054	0.011	0.59	0.22	0.035	0.018	0.32	0.16	1.6	0.019	0.36	0.21	0.24	0.022
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	0.18	ND	ND	ND	0.73	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	1	ND	ND	ND	0.3	ND	ND	ND	0.73	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			d Use Soil C ion of Public	•	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	5.7	0.2	4	
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SE	3-6			SE	3-7			SI	B-8			SE	3-9			SB	-10	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		12/28	3/2015			12/28	/2015			12/28	3/2015	•		12/28	3/2015			12/28	/2015	
RCRA Metals																				
Arsenic	9.6	6.4	5.1	2	14.8	10.9	25.5	1.5	9.6	13.4	13.2	1.5	17.6	13.5	5	6.6	60.4	13.4	13.2	2.5
Barium	131	894	63.3	51.5	289	248	105	31.7	251	334	210	39.8	356	206	76.5	100	263	284	237	48.3
Cadmium	0.16	0.95	0.048	ND	0.85	3.4	ND	ND	0.4	0.18	ND	ND	0.37	ND	0.17	ND	1	1.2	0.05	ND
Chromium	17.2	9.9	8.3	9.7	27.2	262	21	7.2	23.2	12.1	13.9	9.4	24.2	10.9	10.1	18	25.5	21.6	16.3	8.8
Lead	224	308	17.4	4.4	510	425	96	2.9	708	490	384	10.4	585	278	78.6	28	565	594	286	9.8
Selenium	ND	ND	ND	ND	1.3	0.92	ND	ND	0.67	1.1	2.1	ND	1.4	2	ND	ND	0.5	1.4	1.3	ND
Silver	0.22	ND	ND	ND	1.6	0.56	ND	ND	9.6	ND	ND	ND	0.69	ND	ND	ND	0.56	1.4	0.33	ND
Mercury	0.48	0.32	0.13	0.017	2.3	3.1	2.2	0.014	0.43	1.7	0.54	0.021	2.3	0.27	0.37	0.084	0.35	0.71	0.75	0.13
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			d Use Soil C ion of Public		RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	B-11			SE	3-12			SE	3-13			SE	3-14		SB	-15
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6
Sample Date		12/28	3/2015	1		12/28	3/2015			12/28	3/2015	•		12/28	3/2015	•	12/28	3/2015
RCRA Metals																		
Arsenic	8.2	18.4	14.2	2	144	7.7	4	2.5	14.2	21.9	10.4	4.9	30.7	38.2	5.4	2.9	14.4	29.3
Barium	151	353	93.8	48.8	276	142	37.1	64.7	291	1,060	61	70.3	2,080	515	81	45.3	277	242
Cadmium	ND	0.8	0.22	0.056	3.1	0.19	ND	0.099	0.85	3.3	0.61	0.12	4.7	6.7	0.16	0.061	1.1	4.2
Chromium	22.5	29.7	16	9.9	213	14.5	4.5	14.2	39.1	24.6	8.1	12.6	117	89.3	15.2	9.6	19.5	64.6
Lead	510	1,510	86.9	4.7	900	122	39.9	7.7	337	1,590	88.6	171	3,990	3,440	40.6	4.1	807	1,020
Selenium	ND	1.9	0.65	ND	38.5	1.7	ND	ND	ND	1.3	0.58	ND	1.7	2.7	ND	ND	0.88	3.3
Silver	0.25	ND	ND	ND	0.6	ND	ND	ND	ND	ND	ND	ND	0.57	ND	ND	ND	ND	ND
Mercury	0.36	0.13	0.1	0.015	1.4	0.062	0.13	ND	0.07	0.25	7.2	6.2	4.7	2.2	0.24	ND	0.081	0.018
PCBs																		
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	0.28	ND	ND	ND	ND	ND	ND	ND	0.25	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	0.46	ND	ND	ND	ND	ND	ND	ND	0.25	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	•	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	-16			SI	3-17			s	B-18			SB	-19			SB	-20	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		12/28	/2015	•		12/2	9/2015			12/2	29/2015	1		12/29	/2015			12/29	/2015	
RCRA Metals																				
Arsenic	11.7	9.1	13	2.8	12.6	8.9	15.1	3.4	12.3	31.8	12.3	2.2	8.8	9.8	5.6	3	15.2	14.8	17.6	2.2
Barium	182	94	228	76.3	155	157	117	62.3	435	220	204	49.2	225	202	124	48.4	793	232	226	40.1
Cadmium	0.68	0.2	ND	ND	0.98	0.25	0.15	0.21	1.1	0.74	0.35	0.083	0.98	1	0.18	0.066	3.5	0.5	0.67	0.064
Chromium	13.7	7	9.4	16	24.9	16.8	9.9	11.5	105	11.9	12	10.9	19.1	21.3	21	9.5	35.2	11.4	26.5	8.8
Lead	634	89	1,700	6.7	370	517	454	16.7	501	294	427	4.8	435	386	57	7.8	2,600	544	3,960	4.6
Selenium	ND	0.95	0.68	ND	1.3	1.1	1.2	ND	1.2	9.3	0.91	ND	0.53	ND	ND	ND	0.59	1.5	ND	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.58	ND	ND	ND
Mercury	0.052	0.033	0.41	0.02	0.37	0.24	0.2	0.015	0.43	0.45	0.15	ND	0.7	0.67	0.11	0.011	4	0.52	7	0.022
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	0.55	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	0.29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	0.84	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	-21			SB	3-22			SE	3-23			SB	-24			s	B-25	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		12/29)/2015	•		12/29	9/2015	•		12/29	9/2015	•		12/29	/2015			12/2	29/2015	
RCRA Metals																				
Arsenic	15.1	141	8.7	2.4	10.1	9.7	25.7	3.6	18.2	21.9	11.1	1.8	10.5	22.8	6.5	3	14.1	11.1	9.3	3
Barium	303	1,500	95.6	60.8	203	169	82.7	85.5	523	3850	88.6	38.6	143	149	85	50.3	571	148	101	54.1
Cadmium	2	0.27	0.16	0.081	1.6	0.61	2.3	0.17	2.3	5.3	0.18	0.051	0.59	0.23	0.19	0.083	2.6	0.25	0.32	0.081
Chromium	20.7	32.4	18	11.3	14.8	16.3	10.3	14.6	32.3	35.4	14.9	8.8	14.4	11.2	18.7	11.5	28.5	15.5	12	9.4
Lead	491	879	33.2	8.2	484	344	159	10.8	837	1620	134	3.1	650	117	50.6	5	1450	303	300	4.4
Selenium	ND	ND	ND	ND	5.6	ND	1.8	ND	0.92	0.75	0.92	ND	1.3	1.3	ND	ND	1.1	1.8	1.6	ND
Silver	ND	ND	ND	ND	ND	ND	ND	ND	0.39	3.5	ND	ND	ND	ND	ND	ND	0.58	ND	ND	ND
Mercury	0.61	0.69	0.041	0.012	0.39	3.1	0.53	0.026	0.51	0.49	0.19	0.014	0.74	0.25	0.034	ND	0.44	0.64	2.2	ND
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	-26			SB	-27			SE	3-28			SB	3-29			SB	3-30	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		12/29	/2015	•		12/29	/2015			12/29	9/2015	•		12/30)/2015	•		12/30)/2015	
RCRA Metals																				
Arsenic	8.6	31.4	6.5	2.1	12.7	41.4	4.8	2.6	13.8	37.6	11.5	2.4	50.3	13.6	10.2	3.6	14.9	38.7	13	2.3
Barium	105	473	135	38.5	1630	425	106	44.8	256	433	40.3	59.8	1470	246	230	75.1	204	94.4	127	41.8
Cadmium	0.15	1.3	0.12	0.083	1.4	1.1	0.17	0.048	0.69	1.5	0.079	0.083	2.1	0.22	0.7	0.1	4.6	0.99	0.48	0.074
Chromium	12	25.3	9.1	8.7	21.2	84.1	18.7	10.9	42.1	21.3	8.1	13.3	35.8	15.7	25.5	14.9	26	13.3	17.7	10.2
Lead	49.4	1550	627	6.7	1020	2010	14.4	4.4	689	6710	68.8	6.5	1370	271	231	38.4	313	217000	8530	6.8
Selenium	ND	ND	ND	ND	ND	2.9	ND	ND	0.79	ND	0.63	ND	2.2	1.1	1.1	ND	5.1	0.9	1.4	ND
Silver	ND	ND	ND	ND	0.51	ND	ND	ND	ND	ND	ND	ND	0.55	ND	ND	ND	0.81	0.83	ND	ND
Mercury	0.068	0.34	0.43	0.012	0.27	0.36	0.036	0.01	0.97	0.23	0.25	0.013	0.69	0.1	0.26	0.22	6.9	0.32	0.3	ND
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	0.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	0.16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	3-31			SB	-32			SE	3-33			SB-34			SB	-35	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	0-3	3-6	6-9	9-12
Sample Date		12/30)/2015	•		12/30)/2015			12/30)/2015	•		12/30/2015	•		12/30)/2015	
RCRA Metals																			
Arsenic	16.5	6.5	6.3	1.6	8.1	7.3	9.1	2.2	7.5	15.5	4.6	2	7.5	46.2	14.9	10.4	26.3	3.2	2.4
Barium	690	135	152	47.9	150	156	64.9	48	145	157	74.5	45.3	144	501	574	331	222	55.5	41.3
Cadmium	3	0.37	0.2	0.09	0.27	0.12	0.2	0.13	0.49	0.16	0.1	0.098	0.3	ND	0.44	0.89	1.8	0.11	0.068
Chromium	30.5	12	23.2	9.1	16.3	6.5	10.8	10.4	18.4	18.2	15.8	10.4	15.2	22.8	16.2	17.2	51.7	11.5	8.4
Lead	1250	327	84.9	18.2	119	153	4290	37.7	126	137	26.8	4.8	120	528	353	487	4550	38.5	3.7
Selenium	0.83	1.5	ND	ND	0.51	1.6	1.2	0.62	ND	0.83	0.66	ND	ND	ND	0.69	ND	ND	0.66	ND
Silver	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27	2.6	8.7	ND	2	ND	ND
Mercury	0.44	0.33	0.25	0.012	0.13	0.17	6.8	0.016	0.21	0.16	0.035	0.011	0.21	0.24	0.24	0.19	0.98	0.14	ND
PCBs																			
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	0.13	ND	ND	ND	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	0.13	ND	ND	ND	0.44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	•	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SE	3-36			SB	-37			SE	3-38			SE	3-39			SB	3-40	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		12/30)/2015	•		12/30	/2015	•		12/30	0/2015	•		12/30)/2015			12/30)/2015	
RCRA Metals																				
Arsenic	14.3	17.8	6.4	2.7	35.6	26.5	3.1	2.3	10.2	9.9	23.9	2.8	14.5	6.5	3.9	1.5	9.5	4.8	4.5	2.7
Barium	383	307	97.4	66.9	725	305	71.9	54.9	179	150	112	46.5	332	157	59.8	40.4	279	99.7	92.1	62.1
Cadmium	1.5	0.62	0.13	0.11	2.4	20.6	0.08	0.098	0.55	0.27	0.45	0.068	0.52	0.16	0.093	ND	0.4	0.07	0.11	0.052
Chromium	20.6	12.5	17.9	11.9	46.8	34.2	11.7	13	9.2	19.7	20.1	10.3	12.2	22.8	9.8	8.4	16.6	8.9	20.3	12.3
Lead	871	610	23.9	13.2	2300	874	7.4	8.4	204	355	201	7.1	669	53.6	277	4.2	204	97.8	27.3	6.3
Selenium	2.2	1.6	0.59	0.54	1.7	4	ND	0.56	1	0.69	2.6	ND	1.3	ND	1.8	ND	ND	1.1	ND	ND
Silver	0.38	ND	ND	ND	1.8	0.46	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	0.55	0.056	0.027	ND	1.6	4.4	0.016	0.024	0.36	10.8	1.3	ND	0.42	0.27	0.28	ND	0.13	0.11	0.2	ND
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.88	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health		RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SE	B-41			SE	3-42			SF	3-43			SF	3-44			SB-45	
oampie ib			, -, .	T			, <u>-</u>	1			, 40			,	,	•		05 40	Т
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9
Sample Date		1/5/	2016			1/5/	2016			1/5/	2016			1/5/	2016			1/5/2016	
RCRA Metals																			
Arsenic	19.5	8.6	6.9	2.8	13.6	9	7.4	2.8	12.9	12.2	3	2.5	7.4	16.9	11.4	3	7	9.4	16.4
Barium	527	800	74.8	47.5	404	132	150	56	446	343	56.5	63	146	161	140	67	146	336	152
Cadmium	2.4	2.1	0.15	0.067	1.1	0.23	0.11	0.058	1.4	1.2	0.069	0.075	4.9	2.2	0.99	0.11	0.43	0.83	0.4
Chromium	30	13.3	17.3	10.5	21.4	13.9	20.9	12.7	26.9	51.8	11.9	10.8	20.2	27.1	30.5	15.1	18.8	29.3	22.3
Lead	891	105	40.5	4.5	1190	246	20.5	5.3	685	545	6.2	5.5	113	281	102	7.3	99	519	233
Selenium	1.2	1.9	0.55	ND	0.86	0.6	0.65	ND	1.3	1.1	ND	ND	0.49	1.7	ND	ND	ND	1.2	ND
Silver	ND	ND	ND	ND	0.3	ND	ND	ND	ND	0.61	ND	ND	ND	1.2	ND	ND	ND	ND	ND
Mercury	0.41	0.62	0.08	ND	0.5	0.61	0.054	ND	0.3	0.76	0.025	ND	0.18	0.51	0.74	ND	0.55	2.6	0.7
PCBs																			
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	0.12	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.22	ND	ND	ND	ND	0.17	0.12	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	0.12	ND	ND	ND	ND	ND	ND	ND	ND	0.13	ND	0.22	ND	ND	ND	ND	0.17	0.12	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SE	3-46			SB-47			SB	3-48			SB	-49			SE	3-50	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		1/5/	2016	1		1/5/2016	•		1/5/	2016	•		1/5/2	2016	•		1/5/	2016	
RCRA Metals																			
Arsenic	7.1	42.7	7.8	3.6	17.1	8.6	3.3	9	17.4	19.2	15.8	12.6	14.6	5.7	2.4	24	6.7	4.7	3.9
Barium	146	397	70.1	75.3	265	129	74.2	176	403	1380	144	375	778	59.6	57.8	660	532	114	67
Cadmium	0.4	1.3	0.22	0.22	1.9	0.38	0.18	0.49	2.6	7.4	1.1	0.85	2.5	0.2	0.15	2.5	0.63	0.28	0.23
Chromium	18.3	36.8	16.2	17.5	24.7	13.5	13.8	16	29.5	41.7	36.6	21	35.9	17.1	12.8	29	13.6	17.3	13.3
Lead	74.4	210	56.5	13.7	807	549	23.1	166	1490	960	235	510	2400	26	14.4	2170	681	354	12.2
Selenium	0.62	ND	0.77	ND	0.62	0.92	ND	ND	1.4	2.2	ND	ND	1.8	ND	ND	3.5	0.78	ND	ND
Silver	0.22	2.9	ND	ND	1.8	ND	ND	ND	0.93	2.2	0.72	0.36	1.4	ND	ND	1.2	0.29	ND	ND
Mercury	0.32	5.1	0.22	0.033	3	15.3	0.14	0.61	0.88	1.7	1.6	0.52	0.17	0.19	0.032	0.56	0.25	0.17	0.025
PCBs																			
PCB-1016	ND	ND	ND	ND	0.12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	0.12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB-51			SB	-52			SE	3-53			SB	-54			SE	3-55	
Depth Interval	0-3	3-6	7-8	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		1/5/2016	•		1/5/2	2016	1		1/5/	2016	1		1/5/	2016	1		1/5/	2016	
RCRA Metals																			
Arsenic	13.3	20.1	7.6	28.1	23.4	4.9	1.7	16.1	6.9	6.6	2.5	12.9	28.3	13.8	3.4	14.5	11.6	56.1	1.5
Barium	378	470	102	994	1200	88.2	45.2	392	119	89.3	65.1	333	2370	161	51.5	1450	262	212	40.7
Cadmium	1.4	1.7	0.23	7.3	7.9	0.26	0.08	2.7	0.24	0.23	0.11	3.6	18.3	0.88	0.1	2.4	1.3	0.86	0.073
Chromium	28.8	14.4	18.6	54.8	54.7	16.5	9.7	35.9	12.1	10.5	13.7	27.2	45.6	12.2	9.2	23.8	33	13.6	9.1
Lead	1190	3600	18.2	849	2380	27.9	5.6	3160	283	176	8.5	1710	59800	426	31.1	1260	734	438	3.8
Selenium	1.7	2.1	ND	1.1	3.1	ND	ND	1	1.2	0.64	ND	1.5	2.8	3.1	ND	1.1	0.89	8.4	0.68
Silver	0.39	0.63	ND	3.6	0.68	ND	ND	ND	ND	ND	ND	0.29	1.1	ND	ND	14.4	ND	ND	ND
Mercury	1.1	0.21	0.036	1.7	1.5	0.058	0.018	1	0.24	0.46	0.026	0.91	0.37	0.23	0.019	1.6	1.5	0.48	ND
PCBs																			
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	0.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	0.22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	0.18	0.92	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	-56			SB	-57			SE	3-58			SB	-59			SE	3-60	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		1/5/2	2016			1/5/2	2016			1/6/	/2016			1/6/2	2016			1/6/	2016	
RCRA Metals																				
Arsenic	20.5	11.1	10.8	2.9	4.5	10.9	6	2	16.6	16	16.5	1.9	22.8	16.2	10.2	1.1	16.8	29	25.8	4.3
Barium	928	934	596	48.6	135	130	111	55	599	212	174	53.1	776	613	105	49.4	463	378	83.7	55.2
Cadmium	6.5	0.89	1	0.096	0.59	0.22	0.14	0.1	3.3	3.1	0.41	0.092	3.9	6.8	0.27	0.093	1.5	2.9	0.26	0.14
Chromium	35.5	28	18.9	10.1	10.8	6.7	8.9	11.3	39.5	21.2	25.6	10.9	40.5	22.5	11.7	10.2	31.6	59.5	16.5	11.5
Lead	1690	1540	1150	4.3	157	34.7	137	6	1130	328	330	12.1	2710	712	81	4.7	2010	441	3940	19.8
Selenium	1.6	0.63	1.3	ND	ND	ND	1.3	ND	1.8	1.3	1.3	ND	1.2	0.91	1.2	ND	1.5	ND	ND	ND
Silver	0.42	0.33	ND	ND	ND	ND	ND	ND	0.27	ND	ND	ND	0.72	ND	ND	ND	0.68	ND	ND	ND
Mercury	1.5	0.36	0.51	0.025	0.085	0.25	0.051	0.014	1.6	0.35	0.66	ND	2.8	0.17	0.17	0.013	0.88	0.073	0.94	0.02
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	Nd	Nd	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	0.67	ND	ND	ND	ND	ND	ND	ND	0.18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	0.17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	0.67	ND	ND	ND	ND	ND	ND	ND	0.35	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	•	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	3-61			SB	-62			SB	3-63			SB	i-64			SE	3-65	
Depth Interval	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12	0-3	3-6	6-9	9-12
Sample Date		1/6/	2016			1/6/2	2016			1/6/	2016			1/6/2	2016			1/6/	2016	
RCRA Metals																				
Arsenic	4.2	17.3	4.1	1.8	8.9	6.4	5.9	2.8	25	21.5	22.3	2.8	18.2	15.2	19.8	1.8	8.9	26.2	5.8	2.7
Barium	107	971	89.7	40	514	135	93.2	66.1	546	820	166	57.8	1740	378	168	49.2	209	526	86.2	44.9
Cadmium	0.36	2.9	0.23	0.098	0.71	0.27	0.73	0.17	3.1	4.9	0.93	0.18	1.5	1.1	0.59	0.12	1.1	2.2	0.26	0.12
Chromium	16.3	35.7	13.1	9	20.2	11.8	15.2	12.8	32.3	688	38.3	12.1	53.6	18	36.4	10.5	38.4	42.7	15.5	9.6
Lead	107	1610	59.7	3.8	3270	882	105	7.9	1120	10200	420	9.1	978	884	169	9.8	213	1970	75.7	11.1
Selenium	0.81	2.4	ND	ND	1.3	ND	2.1	ND	1	4.2	1.7	ND	0.95	2.1	ND	ND	ND	1.8	ND	ND
Silver	ND	0.46	ND	ND	ND	ND	ND	ND	1.1	2.9	0.73	ND	0.82	ND	0.42	ND	ND	1.7	ND	ND
Mercury	0.56	2.5	0.66	ND	0.42	0.53	0.13	0.015	0.95	1.4	5.7	0.041	8.0	2.5	0.86	ND	0.07	1.6	0.013	ND
PCBs																				
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	0.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	0.45	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB-66			SE	3-67			SB-68			SB-69		SE	3-70		SE	3-71	
Depth Interval	0-3	3-4	4-8	0-3	3-6	6-9	9-12	0-3	3-6	6-8	0-3	8-9	9-12	8-10	10-12	0-3	3-6	6-9	9-12
Sample Date		1/6/2016	1		1/6/	2016	1		1/6/2016			1/6/2016	•		1		1/6/	2016	
RCRA Metals																			
Arsenic	14.9	6.3	22	20.7	20.2	5.1	1.8	16.2	15.8	4.1	17.9	13.8	2.2	9.4	1.4	12.4	43.1	10.9	2.5
Barium	843	144	179	2040	577	109	45.9	404	377	84.8	1290	1450	36.6	150	39.3	217	1520	1430	59.6
Cadmium	3.2	1.2	2.8	2.3	1.7	0.58	0.062	12.7	2.5	0.13	6.6	7.9	0.07	4.1	0.1	1.1	16.8	2	0.11
Chromium	33.2	12.7	46.1	39.5	53.6	17.1	9.9	31	38.3	16.7	95	57.8	9.2	23.9	8.7	26.2	117	139	12.4
Lead	917	147	1350	2040	1570	124	17.3	665	911	20.2	893	783	25.4	240	5.2	366	13500	14000	56.3
Selenium	ND	ND	2.5	2.5	2.2	ND	ND	0.88	2.2	ND	1.1	1.6	ND	ND	ND	1.5	ND	ND	ND
Silver	1.5	ND	1.7	0.44	ND	ND	ND	2.4	0.42	ND	ND	2	ND	1	ND	ND	ND	ND	ND
Mercury	3.1	0.27	1.2	1	0.95	0.35	ND	8.0	1	0.022	0.81	0.57	ND	0.45	0.031	0.83	130	0.6	0.01
PCBs																			
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	0.73	ND	ND	ND	ND	ND	ND	0.69	ND	ND	1.2	22	ND	0.59	ND	ND	ND	ND	ND
PCB-1260	0.43	ND	ND	ND	ND	ND	ND	0.26	ND	ND	0.51	ND	ND	0.17	ND	ND	ND	ND	ND
TOTAL PCBs	1.16	ND	ND	ND	ND	ND	ND	0.95	ND	ND	1.71	22	ND	0.76	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	,	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

SSI Soil sampling Results Foster Refrigeration Site 119 North 2nd St., Hudson, NY

Sample ID		SB	-72		SB	-73		SE	3-74		SE	3-75	SB	3-76
Depth Interval	0-3	3-6	6-9	9-12	0-3	9-12	0-3	3-6	6-9	9-12	0-4	8-12	0-4	8-12
Sample Date		1/6/2	2016		1/6/2	2016		1/6/	/2016		1/6/	2016	1/6/2	2016
RCRA Metals														
Arsenic	17.3	12.8	3.4	2.3	16.5	2.5	49.5	9.4	3.9	3.3	14	3.3	9.8	2.5
Barium	591	874	95.1	52.1	514	52.2	479	243	92	64.7	424	53.3	256	65.4
Cadmium	3.2	3.9	0.13	0.082	2	0.079	3.6	1.7	0.2	0.14	1.5	0.17	1.3	0.14
Chromium	33.7	134	18.1	8.5	30.1	12.1	149	24	16.7	14.1	25.1	12.3	20.6	14.8
Lead	2050	720	17.9	4.4	905	4.8	843	755	174	7.7	568	14.2	439	9
Selenium	1.4	2	ND	ND	0.89	ND	3.3	ND	ND	ND	1.8	ND	ND	ND
Silver	0.61	0.42	ND	ND	0.85	ND	ND	ND	ND	ND	0.25	ND	0.66	ND
Mercury	0.96	1.4	0.024	ND	1.2	ND	5.1	0.27	0.018	0.015	0.32	0.052	0.34	0.055
PCBs														
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1254	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCB-1260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOTAL PCBs	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

Contaminant			Soil Cleanup Public Health	•	RCRA Ha	z Potential
	Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	16	16	16	16	5	100
Barium	350	400	400	10,000	100	2000
Cadmium	2.5	4.3	9.3	60	1	2 0
Chromium	22	110	400	800	5	100
Lead	400	400	1,000	3,900	5	100
Selenium	36	180	1,500	6,800	1	2 0
Silver	36	180	1,500	6,800	5	100
Mercury	0.81	0.81	2.8	5.7	0.2	4
TOTAL PCBs	1	1	1	25	N/A	N/A

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

TABLE - 1A

Additional Borings Soil Analytical Summary Foster Refrigeration Site

Sample ID	SB-77	SB	-78	SB	-80	SB	-81	Surface Pedestal	NYSDE	C Restricte	d Use Soil (Cleanup		
Depth Interval	0-2	0-3	3-6	0-4	4-8	0-3	3-5	Surface			ion of Public	•	RCRA Ha	z Potential
Sample Date	8/24/2016	8/24/	2016	8/24/	2016	8/24/	/2016	8/24/2016						
RCRA Metals									Residential	Restricted Residential	Commercial	Industrial	TCLP Haz Conc.	20x
Arsenic	21.5	7.6	6.6	7.8	42.4	7.4	5.2	N/A	16	16	16	16	5	100
Barium	340	187	89.8	124	98.9	99.1	81.7	N/A	350	400	400	10,000	100	2000
Cadmium	1.9	0.4	0.16	0.26	0.27	0.28	0.14	N/A	2.5	4.3	60	1	2 0	
Chromium	57.8	22.1	17.2	15.9	11.2	16.6	20.4	N/A	22	110	400	800	5	100
Lead	750	90.5	49.7	150	555	27.6	15.3	N/A	400	400	1,000	3,900	5	100
Selenium	ND	ND	ND	ND	14.2	ND	ND	N/A	, , , , , , , , , , , , , , , , , , , ,				1	20
Silver	0.85	ND	0.28	ND	ND	0.29	ND	N/A	36	180	1,500	6,800	5	100
Mercury	0.33	0.24	0.045	0.099	0.11	0.036	0.041	N/A	0.81	0.81	2.8	5.7	0.2	4
PCBs														
PCB-1016	ND	ND	ND	ND	ND	ND	ND	ND	1	1	1	25	N/A	N/A
PCB-1221	ND	ND	ND	ND	ND	ND	ND	ND	1	1	1	25	N/A	N/A
PCB-1232	ND	ND	ND	ND	ND	ND	ND	ND	1	1	1	25	N/A	N/A
PCB-1242	ND	ND	ND	ND	ND	ND	ND	ND	1	1	1	25	N/A	N/A
PCB-1248	ND	ND	ND	ND	ND	ND	ND	ND	1	1	1	25	N/A	N/A
PCB-1254	5.8	ND	ND	ND	ND	ND	ND	27	1	1	1	25	N/A	N/A
PCB-1260	ND	ND	ND	ND	ND	ND	ND	6.9	1	1	1	25	N/A	N/A
TOTAL PCBs	5.8	ND	ND	ND	ND	ND	ND	33.9	N/A	N/A	N/A	N/A	N/A	N/A

All results reported in mg/kg (parts per million)

Highlighted Values Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

^{*1 =} NYSDEC Regulation 6 NYCRR Subpart 375

Summary of Select Fill Analysis

						SOIL LA	BORATORY AI	NALYTICAL SU	IMMARY							
Footon Refuies notion					Camerala ID						NYSDEC	Subpart 375-6 R	Remedial Progran	n Soil Cleanup	Objectives	
Foster Refrigeration					Sample ID								Restric	ted Use		
Colarusso Blue Hill Rd. Fill	C 1	C 2	C 2	C 1	Cuals 1	Corello 2	Contract	Cook 4	Cook 5			Protection o	f Public Health			
Characterization	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5	Unrestricted Use					Protection of Ecological	Protection of
Sample Date	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017		Residential	Restricted Residential	Commercial	Industrial	Resources	Groundwater
Parameter					Result											
Volatile Organic Compounds EPA	\ 8260 - mg/kg															
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	47	52	190	380	NS	3.6
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	47	52	190	380	NS	8.4
1,1-Dichlorethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.33	100	100	500	1,000	NS	0.33
1,1-Dichlorethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27	19	26	240	480	NS	0.27
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68	100	100	500	1,000	NS	0.68
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	2.3	3.1	30	60	10	0.02
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	100	100	500	1,000	NS	1.1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	17	49	280	560	NS	2.4
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	9.8	13	130	250	20	1.8
1,4-Dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	9.8	13	130	250	0.1	0.1
2-Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	100	100	500	1,000	100	0.3
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	100	100	500	1,000	2.2	0.05
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	2.9	4.8	44	89	70	0.06
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.76	1.4	2.4	22	44	NS	0.76
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	59	100	500	1,000	NS	0.25
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	100	100	500	1,000	40	1.1
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.37	10	49	350	700	12	0.37
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	30	41	390	780	NS	1
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	51	100	500	1,000	12	0.05
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93	62	100	500	1,000	NS	0.93
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	100	100	500	1,000	NS	
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	100	100	500	1,000	NS	3.9
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	100	100	500	1,000	NS	11
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	100	100	500	1,000	NS	5.9
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	5.5	19	150	300	2	1.3
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	100	100	500	1,000	36	0.7
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19	100	100	500	1,000	NS	0.19
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47	10	21	200	400	2	0.47
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.21	0.9	13	27	NS	0.02
All colors are assessed in a colling and a										<u>_</u>						

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

Values in **BOLD** indicate values reported above the laboratory minimum detection limits

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Summary of Select Fill Analysis

						SOIL LA	BORATORY AN	NALYTICAL SU	MMARY							
Foster Refrigeration					Camarala ID						NYSDEC	Subpart 375-6 F	Remedial Progran	n Soil Cleanup	Objectives	
Foster Refrigeration					Sample ID								Restric	ted Use		
Colarusso Blue Hill Rd. Fill	Carra 1	Campa 2	Campa 2	Camara 4	Cuah 1	Cuah 2	Cuah 2	Crah 1	Cuah F			Protection o	of Public Health			
Characterization	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5	Unrestricted Use					Protection of Ecological	Protection of
Sample Date	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017		Residential	Restricted Residential	Commercial	Industrial	Resources	Ground-water
Parameter					Result											
Semi Volatile Organic Compounds	s EPA 8270 - n	ng/kg														
Acenaphthene	ND	ND	ND	ND	•	-	-	-	1	20	100	100	500	1,000	20	98
Acenaphthylene	ND	ND	ND	ND	•	-	-	-	1	100	100	100	500	1,000	NS	107
Anthracene	ND	ND	ND	ND	•	-	-	-	1	100	100	100	500	1,000	NS	1,000
Benzo(a)anthracene	ND	ND	ND	ND	•	-	-	-	1	1	1	1	5.6	11	NS	1
Benzo(a)pyrene	ND	ND	ND	ND	•	-	-	-	1	1	1	1	1	1.1	2.6	22
Benzo(b)fluoranthene	ND	ND	ND	ND	•	-	-	-	1	1	1	1	5.6	11	NS	1.7
Benzo(g,h,i)perylene	ND	ND	ND	ND	•	-	-	-	1	100	100	100	500	1,000	NS	1,000
Benzo(k)fluoranthene	ND	ND	ND	ND	•	-	-	-	1	0.8	1	3.9	56	110	NS	1.7
Chrysene	ND	ND	ND	ND	•	-	-	-	1	1	1	3.9	56	110	NS	1
Dibenzo(a,h)anthracene	ND	ND	ND	ND	•	-	-	-	1	0.33	0.33	0.33	0.56	1.1	NS	1,000
Dibenzofuran	ND	ND	ND	ND	1	-	-	-	ı	7	14	59	350	1,000	NS	210
Fluoranthene	ND	ND	ND	ND	•	-	-	-	1	100	100	100	500	1,000	NS	1,000
Fluorene	ND	ND	ND	ND	-	-	-	-	•	30	100	100	500	1,000	30	386
Hexachlorobenzene	ND	ND	ND	ND	•	-	-	-	1	0.33	0.33	1.2	6	12	NS	3.2
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	-	-	-	-	•	0.5	0.5	0.5	5.6	11	NS	8.2
m-Cresol	ND	ND	ND	ND	1	-	-	-	ı	0.33	100	100	500	1,000	NS	0.33
o-Cresol	ND	ND	ND	ND	•	-	-	-	1	0.33	100	100	500	1,000	NS	0.33
p-Cresol	ND	ND	ND	ND	1	-	-	-	ı	0.33	34	100	500	1,000	NS	0.33
Pentachlorophenol	ND	ND	ND	ND	-	-	-	-	-	0.8	2.4	6.7	6.7	55	0.8	0.8
Phenol	ND	ND	ND	ND	-	-	-	-	-	0.33	100	100	500	1,000	30	0.33
Naphthalene	ND	ND	ND	ND	-	-	-	-	-	12	100	100	500	1,000	NS	12
Phenanthrene	ND	ND	ND	ND	-	-	-	-	-	100	100	100	500	1,000	NS	1,000
Pyrene	ND	ND	ND	ND	-	-	-	-	-	100	100	100	500	1,000	NS	1,000

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

Values in **BOLD** indicate values reported above the laboratory minimum detection limits

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Summary of Select Fill Analysis

						SOIL LA	BORATORY AN	NALYTICAL SU	MMARY							
Foster Refrigeration					Sample ID						NYSDEC	Subpart 375-6 R	Remedial Progran	n Soil Cleanup	Objectives	
roster Kerrigeration					Sample 1D								Restric	ted Use		
Colarusso Blue Hill Rd. Fill	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5			Protection o	f Public Health			
Characterization		· ·	<u>'</u>							Unrestricted Use		Restricted			Protection of Ecological	Protection of
Sample Date	12/13/2017	12/13/2017	12/13/2017	12/13/2017		12/13/2017	12/13/2017	12/13/2017	12/13/2017		Residential	Residential	Commercial	Industrial	Resources	Ground-water
Parameter					Result											
Organochlorine Pesticides EPA 80)81B - mg/kg															
4,4´-DDD	ND	ND	ND	ND	-	-	-	-	-	0.0033	2.6	13	92	180	0.0033	14
4,4´-DDE	ND	ND	ND	0.0037	-	-	-	-	-	0.0033	1.8	8.9	62	120	0.0033	17
4,4´-DDT	0.00075	0.00063	0.00072	0.0011	-	-	-	-	-	0.0033	1.7	7.9	47	94	0.0033	136
Aldrin	ND	ND	ND	ND	-	-	-	-	-	0.005	0.019	0.097	0.68	1.4	0.14	0.19
alpha-BHC	ND	ND	ND	ND	-	-	-	-	-	0.02	0.097	0.48	3.4	6.8	0.04	0.02
alpha-Chlordane	ND	ND	ND	ND	-	-	-	-	-	0.094	0.91	4.2	24	47	1.3	2.9
beta-BHC	ND	ND	ND	ND	-	-	-	-	-	0.036	0.072	0.36	3	14	0.6	0.09
delta-BHC	ND	ND	ND	ND	-	-	-	-	-	0.04	100	100	500	1,000	0.04	0.25
Dieldrin	ND	ND	ND	ND	-	-	-	-	-	0.005	0.039	0.2	1.4	2.8	0.006	0.1
Endosulfan I	ND	ND	ND	ND	-	-	-	-	-	2.4	<i>4</i> .8	24	200	920	NS	102
Endosulfan II	ND	ND	ND	ND	-	-	-	-	-	2.4	4.8	24	200	920	NS	102
Endosulfan sulfate	ND	ND	ND	ND	-	-	-		-	2.4	4.8	24	200	920	NS	1,000
Endrin	ND	ND	ND	ND	-	-	-		-	0.014	2.2	11	89	410	0.014	0.06
Lindane (gamma-BHC)	ND	ND	ND	ND	-	-	-		-	0.1	0.28	1.3	9.2	23	6	0.1
Heptachlor	ND	ND	ND	ND	-	-	-	-	-	0.042	0.42	2.1	15	29	0.14	0.38

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

Values in **BOLD** indicate values reported above the laboratory minimum detection limits

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Summary of Select Fill Analysis

						SOIL LA	BORATORY AN	NALYTICAL SU	MMARY							
Foster Refrigeration					Sample ID						NYSDEC	Subpart 375-6 F	Remedial Prograi	n Soil Cleanup	Objectives	
Foster Keingeration					Sample ID								Restric	ted Use		
Colarusso Blue Hill Rd. Fill	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5			Protection o	of Public Health			
Characterization	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Grab I	Grab 2	Grab 3	Grab 4	Grab 5	Unrestricted Use		Restricted			Protection of Ecological	Protection of
Sample Date	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017	12/13/2017		Residential	Residential	Commercial	Industrial	Resources	Ground-water
Parameter					Result											
Chlorinated Herbicides Mod. EP	A 8151A - mg/	kg														
2,4,5-TP (Silvex)	ND	ND	ND	ND	-	-	-	-	-	3.8	58	100	500	1,000	NS	3.8
Polychlorinated Biphenyls EPA 8	082A - mg/Kg															
Total PCBs	ND	ND	ND	ND	-	-	-	-	-	0.1	1	1	1	25	1	3.2
Metals mg/kg																
Arsenic	5.2	6.6	6.5	7.4	-	-	-	-	-	13	16	16	16	16	13	16
Barium	87.4	113	89.5	109	-	-	-	-	-	350	350	400	400	10,000	433	820
Beryllium	0.76	0.69	0.74	0.71	-	-	-	-	-	7.2	14	72	590	2,700	10	47
Cadmium	0.23	0.27	0.27	0.4	-	-	-	-	-	2.5	2.5	4.3	9.3	60	4	7.5
Chromium	21.8	18.6	19.7	18	-	-	-	-	-	30	36	180	1500	6800	41	NS
Copper	30	31.4	31.4	31.6	-	-	-	-	-	50	270	270	270	10,000	50	1,720
Lead	11.7	13.4	14.2	15	-	-	-	-	-	63	400	400	1,000	3,900	63	4 50
Manganese	548	1150	634	858	-	-	-	-	-	1600	2,000	2,000	10,000	10,000	1600	2,000
Nickel	30.9	31.9	52.5	37.1	-	-	-	-	-	30	140	310	310	10,000	30	130
Selenium	ND	ND	ND	ND	-	-	-	-	-	3.9	36	180	1,500	6,800	3.9	4
Silver	ND	ND	ND	ND	-	-	-	-	-	2	36	180	1,500	6,800	2	8.3
Zinc	84	87.3	86	100	-	-	-	-	-	109	2200	10,000	10,000	10,000	109	2,480
Mercury	0.057	0.039	0.043	0.039	-	-	-	-	-	0.18	0.81	0.81	2.8	5.7	0.18	0.73
Trivalent Chromium	21.8	18.6	19.7	18	-	-	-	-	-	30	36	180	1500	6800	41	NS
Hexavalent Chromium	ND	ND	ND	ND	-	-	-	-	-	1	22	110	400	800	1	19
	_	_		1		<u> </u>	_	1	1					_		
Cyanide	0.56	ND	ND	ND	-		-	-	-	27	27	27	27	10,000	NS	40

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

Values in **BOLD** indicate values reported above the laboratory minimum detection limits

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

Summary of Concrete Analysis

Foster Refrigeration Site, NYSDEC Site No.: B00184

Parameter			Sample ID					
Parameter	Characterization-01	Characterization-02	Characterization-03	Characterization-04	Characterization-05	Composite 1	Composite 2	Part 375 Un-
Sample Date	12/18/2017	12/18/2017	12/18/2017	12/18/2017	12/18/2017	12/19/2018	12/19/2018	Restricted SCO
				Result				
Volatiles - 8260								
Total	ND	ND	ND	ND	ND	ND	ND	Various
Semi-Volatiles- 8270								
Total	ND	ND	ND	ND	ND	ND	ND	Various
Metals - 6010/7471								
Arsenic	7.1	9	8.7	6.5	7.7	NA	NA	13
Barium	176	149	161	105	261	NA	NA	350
Cadmium	0.26	0.13	0.12	0.75	0.3	NA	NA	2.5
Chromium	24.5	17.5	15.1	18.4	10.5	NA	NA	30
Lead	19.8	19.6	17.2	13.6	8.9	NA	NA	63
Selenium	ND	ND	ND	ND	ND	NA	NA	3.9
Silver	ND	ND	ND	ND	ND	NA	NA	2
Mercury	NA	NA	NA	NA	NA	ND	ND	0.18
PCBs - 8082								
Various	ND	ND	ND	ND	ND	NA	NA	1
Organochlorine Pesticides - 8081								
Endrin	NA	NA	NA	NA	NA	0.023	ND	0.014
gamma-BHC (Lindane)	NA	NA	NA	NA	NA	ND	0.00081	0.1
Methoxychlor	NA	NA	NA	NA	NA	0.011	0.0056	N/A
Herbicides - 8151								
Various	NA	NA	NA	NA	NA	ND	ND	Various

All results reported in mg/kg (parts per million)

*1 = NYSDEC Regulation 6 NYCRR Subpart 375 (residential SCOs)
Highlighted Values (RED) Concentration Exceeds Corresponding Soil Cleanup Objective

ND = Not detected below the laboratories method detection limit

TABLE - 4

Disposal Characterization Analytical Summary

Soil Disposal Characterization Summary Table

Foster Refrigeration Site, NYSDEC Site No.: B00184

	Cite 146.: Bee 161	Sample ID												
Parameter	Characterization-01	Characterization-02	Characterization-03	Characterization-04	Characterization-05	Characterization-06	Regulatory Level							
Sample Date	1/9/2018	1/9/2018	1/11/2018	1/11/2018	1/12/2018	1/12/2018	(mg/L)							
			Re	sult										
Volatiles - TCLP (mg/L)														
Total	ND	ND	ND	ND	ND	ND	Various							
Semi-Volatiles- TCLP (mg/L)														
Total	ND	ND	ND	ND	ND	ND	Various							
	1	T=	T=		T=	I=								
Pesticide - TCLP (mg/L)	ND	ND	ND	ND	ND	ND	Various							
	1	T=			1 . .	.								
Herbicide - TCLP (mg/L)	ND	ND	ND	ND	ND	ND	Various							
Metals - TCLP (mg/l)					· · -									
Arsenic	ND	ND	ND	ND	ND	ND	5							
Barium	1.5	1.8	1.3	1.2	1.4	1.4	100							
Cadmium	0.034	0.08	0.018	0.027	0.019	0.023	11							
Chromium	ND	ND . =	ND	ND	ND	ND	5							
Lead	1.3	1.7	1.1	1.1	0.99	0.76	5							
Selenium	ND	ND ND	ND ND	ND	ND ND	ND	1							
Silver	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	5							
Mercury	ND	ND	ND	ND	ND	ND	0.2							
Paint Filter	Passed	Passed	Passed	Passed	Passed	Passed	Passed (No Free Liquid)							
Ignitability (Flashpoint)	>180	>180	>176	>176	>176	>176	140							
pH	7.9	8	8.2	8.1	8.2	8.1	<2 or >12.5							
PCBs (Total)	ND	0.14	ND	0.97	0.14	0.11	Various							

TABLE - 5Post Excavation Soil Sample Results Summary - UST Area

Foster Refri	_			San	nple Ide	ntificat	tion & D	ate			NYSDEC CP-5
Hudson	, NY	B-1 10'	N. Wall#1 4	S. Wall#1 4-	S. Wall #2 4-	DTM 2 01	S. Wall#3 4-	W. Wall#1	W. Wall#2	N. Wall#2 4	Soil Cleanup
		P-1 10	6'	6'	6'	BTM-2 8'	6'	4-6'	4-6'	6'	Jon Cleanup
Sample I	Date	8/3/2018	8/7/2018	8/7/2018	8/7/2018	8/7/2018	8/7/2018	8/7/2018	8/7/2018	8/7/2018	
Parameter	Method										Objectives
1,2,4-Trimethylbenzene	8260	ND	ND	11	7.4	ND	ND	ND	3.9	ND	3,600
1,3,5-Trimethylbenzne	8260	ND	ND	ND	ND	ND	ND	ND	ND	ND	8,400
Benzene	8260	ND	ND	ND	ND	ND	ND	ND	ND	ND	60
Ethylbenzene	8260	ND	ND	2.7	1.7	8.7	ND	ND	ND	ND	1,000
Isopropylbenzene	8260	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,300
m,p-Xylene	8260	ND	ND	11	5.9	42	ND	ND	ND	ND	260
Methyl tert-butyl ether	8260	ND	ND	ND	ND	9	ND	3	ND	1.8	930
Napthalene	8260	ND	ND	11	ND	ND	ND	ND	ND	ND	12,000
n-Butylbenzene	8260	ND	ND	5.9	ND	ND	ND	ND	ND	ND	12,000
n-Propylbenzene	8260	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,900
o-Xylene	8260	ND	ND	4.6	ND	16	ND	ND	ND	ND	260
4-Isopropyltoluene	8260	ND	ND	ND	ND	ND	ND	ND	ND	ND	10,000
sec-Butylbenzene	8260	ND	ND	14	ND	ND	ND	ND	ND	ND	11,000
tert-Butylbenzene	8260	ND	ND	6.7	ND	ND	ND	ND	ND	ND	5,900
Toluene	8260	ND	ND	3.5	1.9	11	ND	ND	ND	ND	700
Total Compounds	8260	ND	ND	70	17	87	ND	ND	3.9	ND	
BTEX	8260	ND	ND	21.8	9.5	77.7	ND	ND	ND	ND	
MTBE	8260	ND	ND	ND	ND	9	ND	3	ND	1.8	
Parameter	Method										
Acenaphthene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	20,000
Acenaphthylene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000
Anthracence	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000
Benzo(a)anthracene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	330
Benzo(a)pyrene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000
Benzo(b)fluoranthene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000
Benzo(g,h,i)perylene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000
Benzo(k)fluoranthene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	800
Chrysene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,000
Dibenz(a,h)anthracene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	330
Fluoranthene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000
Fluorene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	30,000
Indeno(1,2,3-cd)pyrene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	500
Napthalene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	12,000
Phenanthrene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000
Pyrene	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	100,000
Total Compounds	8270	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Sampling performed by Precision Environmental Services, Inc.

All values are reported in ug/L - parts per billions (ppb)

Analytical Facility - Phoenix Envir. Labs, manchester, CT

ND indicates values reported below the laboratory minimum detection limits

Values in **BOLD** indicate values reported above the laboratory minimum detection limits

Values in RED reported at or above guidance values established by NYSDEC CP-51 Soil Cleanup Objectives

NS inidicates no standard for given constituent

TABLE - 6Summary of Top Soil Analysis

						SOI	IL LABORATO	RY ANALYTICA	L SUMMARY							
					c 1 15						NYSDEC	Subpart 375-6 F	Remedial Prograi	m Soil Cleanup	Objectives	
Foster Refrigeration					Sample ID							·	Restric	cted Use		
Carver Button Rd. Top												Protection o	f Public Health			
Soil Characterization	Comp. 1	Comp. 2	Comp. 3	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5	Grab 6	Unrestricted Use		Restricted			Protection of Ecological	Protection of
Sample Date	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018		Residential	Residential	Commercial	Industrial	Resources	Groundwater
Parameter					Result											
Volatile Organic Compou	ınds EPA 8260	0 - mg/kg														
1,2,4-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.6	47	52	190	380	NS	3.6
1,3,5-Trimethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.4	47	52	190	380	NS	8.4
1,1-Dichlorethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.33	100	100	500	1,000	NS	0.33
1,1-Dichlorethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.27	19	26	240	480	NS	0.27
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68	100	100	500	1,000	NS	0.68
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	2.3	3.1	30	60	10	0.02
1,2-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	100	100	500	1,000	NS	1.1
1,3-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.4	17	49	280	560	NS	2.4
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	9.8	13	130	250	20	1.8
1,4-Dioxane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	9.8	13	130	250	0.1	0.1
2-Butanone	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.12	100	100	500	1,000	100	0.3
Acetone	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	100	100	500	1,000	2.2	0.05
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	2.9	4.8	44	89	70	0.06
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.76	1.4	2.4	22	44	NS	0.76
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.25	59	100	500	1,000	NS	0.25
Chlorobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	100	100	500	1,000	40	1.1
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.37	10	49	350	700	12	0.37
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1	30	41	390	780	NS	1
Methylene Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	51	100	500	1,000	12	0.05
MTBE	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.93	62	100	500	1,000	NS	0.93
n-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	100	100	500	1,000	NS	
n-Propylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.9	100	100	500	1,000	NS	3.9
sec-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	11	100	100	500	1,000	NS	11
tert-Butylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.9	100	100	500	1,000	NS	5.9
Tetrachloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.3	5.5	19	150	300	2	1.3
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.7	100	100	500	1,000	36	0.7
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.19	100	100	500	1,000	NS	0.19
Trichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47	10	21	200	400	2	0.47
Vinyl Chloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.21	0.9	13	27	NS	0.02
Notes:		•			_				_				•	•		

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

 $\label{lem:values} \mbox{Values in $BOLD$ indicate values reported above the laboratory minimum detection limits}$

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

TABLE - 6Summary of Top Soil Analysis

						SO	IL LABORATO	RY ANALYTICA	L SUMMARY								
Factor Deficiency tion					Camarda ID						NYSDEC	Subpart 375-6 R	Remedial Progran	n Soil Cleanup	Objectives		
Foster Refrigeration					Sample ID						Restricted Use						
Carver Button Rd. Top	6 1			6 1 4	6 1 2	6 1 3		6 1 5	6 1 6			Protection o	f Public Health				
Soil Characterization	Comp. 1	Comp. 2	Comp. 3	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5	Grab 6	Unrestricted Use		B. dalahad			Protection of Ecological	Protection of	
Sample Date	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018		Residential	Restricted Residential	Commercial	Industrial	Resources	Ground-water	
Parameter					Result												
Semi Volatile Organic Co	mpounds EPA	8270 - mg/k	g														
Acenaphthene	ND	ND	ND	-	-	-	-	-	-	20	100	100	500	1,000	20	98	
Acenaphthylene	ND	ND	ND	-	-	-	-	-	-	100	100	100	500	1,000	NS	107	
Anthracene	ND	ND	ND	-	-	-	-	-	-	100	100	100	500	1,000	NS	1,000	
Benzo(a)anthracene	ND	ND	ND	-	-	-	-	-	-	1	1	1	5.6	11	NS	1	
Benzo(a)pyrene	0.29	ND	ND	-	-	-	-	-	-	1	1	1	1	1.1	2.6	22	
Benzo(b)fluoranthene	ND	ND	ND	-	-	-	-	-	-	1	1	1	5.6	11	NS	1.7	
Benzo(g,h,i)perylene	ND	ND	ND	-	-	-	-	-	-	100	100	100	500	1,000	NS	1,000	
Benzo(k)fluoranthene	ND	ND	ND	-	-	-	-	-	-	0.8	1	3.9	56	110	NS	1.7	
Chrysene	ND	ND	ND	-	-	-	-	-	-	1	1	3.9	56	110	NS	1	
Dibenzo(a,h)anthracene	ND	ND	ND	-	-	-	-	-	-	0.33	0.33	0.33	0.56	1.1	NS	1,000	
Dibenzofuran	ND	ND	ND	-	-	-	-	-	-	7	14	59	350	1,000	NS	210	
Fluoranthene	ND	ND	0.29	-	-	-	-	-	-	100	100	100	500	1,000	NS	1,000	
Fluorene	ND	ND	ND	-	-	-	-	-	-	30	100	100	500	1,000	30	386	
Hexachlorobenzene	ND	ND	ND	-	-	-	-	-	-	0.33	0.33	1.2	6	12	NS	3.2	
Indeno(1,2,3-cd)pyrene	ND	ND	ND	-	-	-	-	-	-	0.5	0.5	0.5	5.6	11	NS	8.2	
m-Cresol	ND	ND	ND	-	-	-	-	-	-	0.33	100	100	500	1,000	NS	0.33	
o-Cresol	ND	ND	ND	-	-	-	-	-	-	0.33	100	100	500	1,000	NS	0.33	
p-Cresol	ND	ND	ND	-	-	-	-	-	-	0.33	34	100	500	1,000	NS	0.33	
Pentachlorophenol	ND	ND	ND	-	-	-	-	-	-	0.8	2.4	6.7	6.7	55	0.8	0.8	
Phenol	ND	ND	ND	-	-	-	-	-	-	0.33	100	100	500	1,000	30	0.33	
Naphthalene	ND	ND	ND	-	-	-	-	-	-	12	100	100	500	1,000	NS	12	
Phenanthrene	ND	ND	ND	-	-	-	-	-	-	100	100	100	500	1,000	NS	1,000	
Pyrene	ND	ND	ND	-	-	-	-	-	-	100	100	100	500	1,000	NS	1,000	
Notes:																	

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

 $\label{lem:values} \mbox{Values in $BOLD$ indicate values reported above the laboratory minimum detection limits}$

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

TABLE - 6Summary of Top Soil Analysis

						SO	L LABORATOR	RY ANALYTICA	L SUMMARY								
Factor Defriceration					Campula ID					NYSDEC Subpart 375-6 Remedial Program Soil Cleanup Objectives							
Foster Refrigeration					Sample ID						Restricted Use						
Carver Button Rd. Top	Comp. 1	Comp. 2	Comp. 3	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5	Core le C		Protection of Public Health						
Soil Characterization	Comp. 1	Comp. 2	Comp. 5	Glab I	GIAD Z	Glab 5	Grab 4	Glab 5	Grab 6	Unrestricted Use		Destricted			Protection of Ecological	Protection of	
Sample Date	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018		Residential	Restricted Residential	Commercial	Industrial	Resources	Ground-water	
Parameter					Result												
Organochlorine Pesticide	s EPA 8081B	- mg/kg															
4,4´-DDD	ND	ND	ND	-	-	-	-	1	-	0.0033	2.6	13	92	180	0.0033	14	
4,4´-DDE	ND	ND	ND	-	-	-	-	1	-	0.0033	1.8	8.9	62	120	0.0033	17	
4,4´-DDT	ND	0.0031	ND	-	-	-	-	1	-	0.0033	1.7	7.9	47	94	0.0033	136	
Aldrin	ND	ND	ND	-	-	-	-	1	-	0.005	0.019	0.097	0.68	1.4	0.14	0.19	
alpha-BHC	ND	ND	ND	-	-	-	-	1	-	0.02	0.097	0.48	3.4	6.8	0.04	0.02	
alpha-Chlordane	ND	ND	ND	-	-	-	-	-	-	0.094	0.91	4.2	24	47	1.3	2.9	
beta-BHC	ND	ND	ND	-	-	-	-	-	-	0.036	0.072	0.36	3	14	0.6	0.09	
delta-BHC	ND	ND	ND	-	-	-	-	1	-	0.04	100	100	500	1,000	0.04	0.25	
Dieldrin	ND	ND	ND	-	-	-	-	1	-	0.005	0.039	0.2	1.4	2.8	0.006	0.1	
Endosulfan I	ND	ND	ND	-	-	-	-	1	-	2.4	4.8	24	200	920	NS	102	
Endosulfan II	ND	ND	ND	-	-	-	-	1	-	2.4	4.8	24	200	920	NS	102	
Endosulfan sulfate	ND	ND	ND	-	-	-	-	-	-	2.4	4.8	24	200	920	NS	1,000	
Endrin	ND	ND	ND	-	-	-	-	-	-	0.014	2.2	11	89	410	0.014	0.06	
Lindane (gamma-BHC)	ND	ND	ND	-	-	-	-	-	-	0.1	0.28	1.3	9.2	23	6	0.1	
Heptachlor	ND	ND	ND	-	-	-	-	-	-	0.042	0.42	2.1	15	29	0.14	0.38	
Notes:												<u> </u>					

All values are reported in mg/kg - parts per millions (ppm)

Analytical Facility - Phoenix Environmental Laboratories, Inc- Manchester, CT

ND indicates values reported below the laboratory minimum detection limits

Values in **BOLD** indicate values reported above the laboratory minimum detection limits

J= Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

TABLE - 6Summary of Top Soil Analysis

						SO	IL LABORATOF	ry analytica	L SUMMARY							
Foster Refrigeration					Sample ID						NYSDEC	Subpart 375-6 R	emedial Progra	m Soil Cleanup	Objectives	
roster kerrigeration				Sample 15					Restricted Use							
Carver Button Rd. Top Soil Characterization	Comp. 1	Comp. 2	Comp. 3	Grab 1	Grab 2	Grab 3	Grab 4	Grab 5	Grab 6	Unrestricted Use		Protection o	f Public Health		Protection of	Protection of
Sample Date	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018	6/14/2018		Residential	Restricted Residential Cor	Commercial	Industrial	Ecological Resources	Ground-water
Parameter		1			Result					Residential			1100011000			
Chlorinated Herbicides N	/lod. EPA 8151	IA - mg/kg														
2,4,5-TP (Silvex)	ND	ND	ND	-	-	-	-	-	-	3.8	58	100	500	1,000	NS	3.8
Polychlorinated Biphenyl	ls EPA 8082A	- mg/Kg														
Total PCBs	ND	ND	ND	-	-	-	-	-	-	0.1	1	1	1	25	1	3.2
Metals mg/kg																
Arsenic	6.89	5.9	5.26	-	-	-	-	-	-	13	16	16	16	16	13	16
Barium	21.1	23.4	20.3	-	-	-	-	-	-	350	350	400	400	10,000	433	820
Beryllium	<0.29	0.4	<.31	-	-	-	-	-	-	7.2	14	72	590	2,700	10	47
Cadmium	<0.37	<.42	<.38	-	-	-	-	-	-	2.5	2.5	4.3	9.3	60	4	7.5
Chromium	5.78	6.74	5.98	-	-	-	-	-	-	30	36	180	1500	6800	41	NS
Copper	8.72	9.75	8.56	-	-	-	-	-	-	50	270	270	270	10,000	50	1,720
Lead	14.3	14.1	12.7	•	-	-	-	-	-	63	400	400	1,000	3,900	63	450
Manganese	148	173	146	•	-	-	-	-	-	1600	2,000	2,000	10,000	10,000	1600	2,000
Nickel	7.01	7.89	6.78	1	-	-	-	-	-	30	140	310	310	10,000	30	130
Selenium	<1.5	<1.7	<1.5		-	-	-	-	-	3.9	36	180	1,500	6,800	3.9	4
Silver	<0.37	<.42	<.38		-	-	-	-	-	2	36	180	1,500	6,800	2	8.3
Zinc	33.3	33.4	32.5	-	-	-	-	-	-	109	2200	10,000	10,000	10,000	109	2,480
Mercury	<0.03	<.03	<.03	-	-	-	-	-	-	0.18	0.81	0.81	2.8	5.7	0.18	0.73
Trivalent Chromium	5.78	6.74	5.98	-	-	-	-	-	-	30	36	180	1500	6800	41	NS
Hexavalent Chromium	<0.46	<.47	<.56	-	-	-	-	-	-	1	22	110	400	800	1	19
Cyanide	<.59	<0.6	<.56	-	-	-	-	-	-	27	27	27	27	10,000	NS	40
Notes:																
All values are reported in mg/k _l Analytical Facility - Phoenix Env	•		anchester, CT					•	•	nimum detection li		ximate value				

B- Compound was found in the blank and sample

ND indicates values reported below the laboratory minimum detection limits

ATTACHMENT A ACM Demolition Documentation

ATTACHMENT B
Waste Manifest Documentation

ATTACHMENT C Boring Logs

ATTACHMENT D Laboratory Analytical Reports

ATTACHMENT E Summary of CAMP Data

