24 Davis Avenue, Poughkeepsie, New York 12603-2332

Scope of Work for Additional Sampling at northern portions of the Foster's Refrigeration Property Located at 119 North 2nd Street, City of Hudson, Columbia County, New York NYSDEC: B-00184 ESI File: MH04055.40 August 17, 2006

Introduction

This Scope of Work (SOW) is prepared by Ecosystems Strategies, Inc. (ESI) on behalf of the City of Hudson (CH) for the purpose of outlining procedures to be followed during additional sample collection activities on specified portions of the Foster's Refrigeration Property. The specific area of work is shown in Figure 1 of Attachment A.

Known Environmental Conditions

A previous environmental investigation (conducted by ESI) has identified elevated concentrations of lead in surface and subsurface soils on the northern portion of the property to the north, west, and east of the on-site structure. The elevated lead concentrations appear to be associated with ash-like fill material that is present across the northern portion of the Site. Previous testing documented levels of lead in excess of 1,000 mg/Kg at eight sample locations in the northern portion of the property with a peak concentration of 12,900 mg/Kg in sample TP-9 (1.5'). Subsequent TCLP analysis of samples TP-7 (1.5') and TP-9 (1.5') indicate the presence of hazardous concentrations of lead at these two sample locations. The vertical and lateral extent of lead contamination is not known.

PCB 1254 was detected above NYSDEC guidance levels at one boring location sample location B-8 (4'-8') beneath the floor of the building. The vertical and lateral extent of PCB contamination in this area is not known.

Previous testing results are summarized in Tables 1 through 3 of the Attachment B.

Health and Safety

Investigation activities will be conducted under a previously approved Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP). The HASP will address concerns relating to worker safety during sample collection; the CAMP will address concerns relating to the protection of residents from fugitive dust during sampling. The HASP and CAMP are included as Attachment C of this SOW.

Description of Proposed Additional Investigation Activities

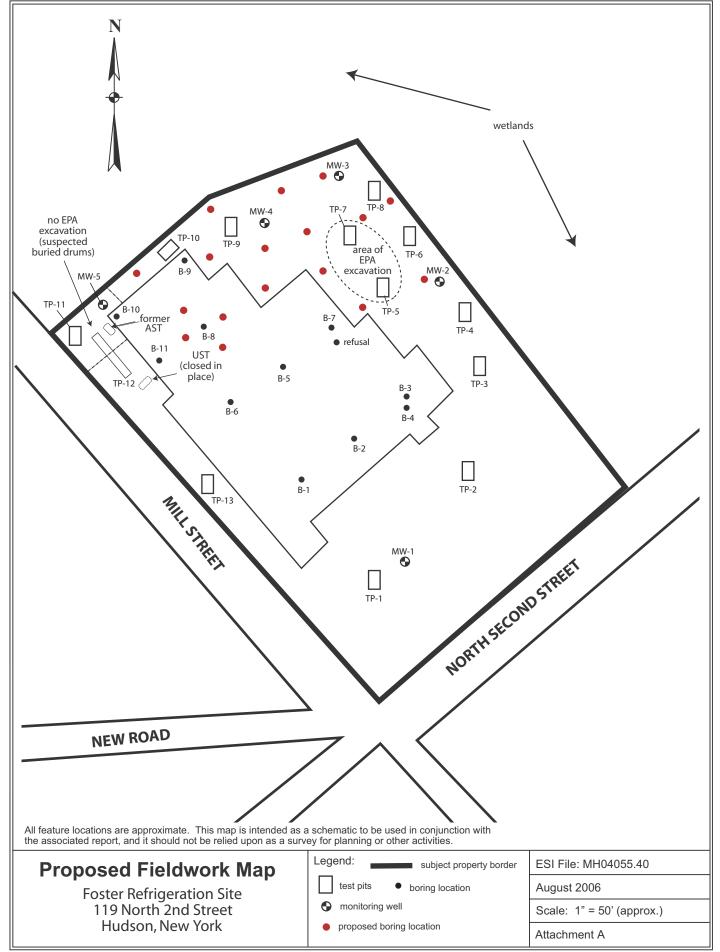
Additional investigative activities will consist of:

- The extension of 12 soil borings to north of the on-site structure to a maximum depth of 12' below surface grade and the collection of soil samples from 0-4', 4'-8' and 8'-12' depths. All 0-4' samples will be will be analyzed for lead. Deeper samples will be submitted for analysis of total weight lead where field evidence of ash is noted in the sample. A maximum of 36 soil samples will be analyzed for total weight lead. Five samples will be analyzed for TCLP lead.
- The extension of four soil borings in the vicinity of B-8 to a maximum depth of 12' below grade and the collection of samples from 0-4', 4-8' and 8-12'. All samples will be submitted for analysis of PCBs.

SCOPE OF WORK FOR SOIL EXCAVATION ESI FILE: MH04055.40 – NYSDEC: B-00184

- The collection of a second round of 5 ground water samples from existing wells and laboratory analysis for total lead. If the soil samples collected from the vicinity of B-8 are found to contain PCBs in excess of 50 ppm, water samples from MW-2, MW-3, MW-4, and MW-5 will be analyzed for PCBs.
- The reporting of laboratory data with ASP Category B Deliverables; and, the data package for independent data validation.

Contingencies for Additional Work


Field observations of the adjoining property to the north indicate the presence of ash-like material on the surface. Additional sampling and analysis may be required if samples collected along the northern boundary of the subject property indicate the presence of elevated concentrations of lead. Additional sampling may also be required if PCBs are detected above guidance levels at sample locations around B-8.

Project Documentation

- The results of the above fieldwork will be included in the <u>Draft Remedial Investigation</u> <u>Report</u>
- Complete Laboratory Data Packages

ATTACHMENTS

- A Proposed Fieldwork Map
- B Data Tables

Ecosystems Strategies, Inc.

 Table 1: Target Analyte List (TAL) Metals in Soils from Borings

 Results provided in mg/kg (parts per million). Results shown in bold exceed guidance levels.

										S	ample Identific	cation					· · · · · · · · · · · · · · · · · · ·]
	Guidance		B-1			B-2		B-3	B-4	B	-5	В	-6	B	-7	B	-8	В	-9	B-10	B-	
RCRA Metal	Level	0-4'	4'-8'	8'-12'	1'-2'	2'-4'	4'-8'	0-3'	0-2'	0-4'	4'-5'	0-4'	4'-8'	0-4'	4'-8'	0-4'	4'-8'	0-4'	4'-8'	4'-6'	0-4'	4'-8'
Aluminum	SB**	12,100	12,300	8,170	4,510	13,900	9,550	13,500	9,680	2,610	7,380	14,400	5,040	11,700	9,190	4,790	7,090	6,920	4010	6990	2,160	9,160
Antimony	SB**	4.35	ND	ND	3.08	ND	ND	5.4	1.33	1.89	ND	3.89	ND	4.85	4.4	14.2	3.97	5.06	2,93	ND	3.84	3.43
Arsenic	7.4*	7.39	9.87	9.63	4.38	12.1	8.05	6.56	8.46	8.77	11.4	6.57	5.88	7.13	6.82	16.6	3,5	12	10.7	6.44	12.8	3.91
Barium	81.1*	157	90.1	64	280	174	82,5	111	549	88.9	108	222	29.4	189	82.8	466	30.1	540	85.5	55,5	43.8	62.9
Beryllium	0.75*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.35	ND	ND
Cadmium	0.22*	0.56	ND	ND	ND	ND	ND	ND	1.56	ND	ND	0.89	ND	0.56	ND	3.99	ND	1.28	ND	ND	ND	ND
Calcium	SB**	62,900	43,500	55,900	167,000	13,600	1,860	45,400	52,300	3,520	31,900	105,000	7,270	97,200	20,500	24,100	20,400	36,200	13,300	16,200	20,200	8,750
Chromium	20.9*	16.2	12.6	11.8	12.1	19.6	13.1	16.16	67.1	9.08	62.5	32.5	6.75	17.7	13.1	24.9	11.2	16.2	5.5	10.1	3,53	12.5
Cobalt	30 or SB**	8.32	5.4	6.8	4.13	11.7	10.5	9.05	9.26	5.38	6.05	8.56	5.51	7.52	10.4	6.91	7.75	9.01	5.07	7.22	6.28	9.83
Copper	23.4*	48.3	20.2	21.8	22.9	35.3	27.3	29.6	2,590	62.8	33,3	49	13.3	37.8	27.6	124	26.8	240	25.3	28.4	32.8	23.6
Iron	2.000 or SB**	19,700	14,800	15,200	12,000	26,900	19,300	24,400	27,500	9,950	20,200	212	8,790	18,900	17,100	60,100	16,200	35,000	8,790	17,300	6,760	16,100
Lead	72.5*	87.7	27	19	115	144	13	22.9	2,330	645	151	197	32.1	142	63.8	559	10.5	1,030	88.7	38	42.9	15.9
Magnesium	SB**	12,200	22,400	4,680	5,980	5,600	3,740	7,100	7,290	681	4,210	20,900	2,720	14,300	5,910	1,850	6,470	2,470	1,420	5,660	6.12	4,950
Manganese	SB**	628	855	295	363	931	458	786	605	104	361	1,010	137	702	287	416	376	530	159	416	61.6	346
Mercury	0.24*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.088	ND	ND
Nickel	21*	21.5	13.3	14.6	15.3	20.4	16	22.7	24.2	12	32.7	33.3	11.1	25.9	19.3	12	18.5	66.2	12.7	16.2	11.2	19.5
Potassium	SB**	1,680	1,020	707	921	1,650	444	1,320	1,110	420	906	2,010	398	1,440	943	675	755	829	514	928	209	864
Selenium	1*	ND	ND	ND	ND	ND	ND	ND	ND	1.53	ND	1.48	ND	1.04	ND	ND	ND	ND	1.06	ND	ND	ND
Silver	SB**	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.61	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sodium	SB**	699	576	192	713	200	59.5	481	1,110	361	468	836	60.4	715	420	1,610	437	891	452	83.8	393	376
Thallium	SB**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND -
Vanadium	150 or SB**	22.1	19.1	16.8	20.6	24.6	16.3	20.5	18	15.7	20.7	32,1	14.4	24.1	17	19.9	12.7	21.6	12.5	13,9	12.6	16.1
Zinc	87.1*	223	53	54.4	154	151	54.6	80.7	1,080	67	136	194	33.2	256	90.6	1,330	75.4	613	82.2	75.9	126	70.3
Notes: Guidance levels a					60 nnm																	

** Background lead concentrations in urban settings typically range from 200 to 500 ppm.

ND = Not Detected NP = Not Provided SB = Site Background

Ecosystems Strategies, Inc.

 Table 2: Target Analyte List (TAL) Metals in Soils from Test Pits

 Results provided in mg/kg (parts per million). Results shown in bold exceed guidance levels.

								Sample Ide	entification				· · · · ·		
	Guidance	TP-1	TP-2	TP-3	TP-4	TP-5	TP-6	TP-7	TP-8	TI	p-9	TP-10	TP-11	TP-12	TP-13
RCRA Metal	Level	0-4"	4'-5'	6'	5.5'	5.5'	6'	1.5'	5'	2"-6"	1.5'	2'	0-6"	1'	
Aluminum	SB**	9,430	2,630	19,500	6,430	7,800	5,580	9,000	6,120	5,480	1,320	3,910	9,340	6,720	Pending
Antimony	SB**	6.73	1.23	8.16	6.47	32.7	ND	ND	3.62	ND	2.95	ND	ND	ND	Pending
Arsenic	7.4*	11.8	1.42	7.79	14.1	23.5	19.2	21.8	24.4	17	4.85	7.27	33.3	17.0	8.52
Barium	81.1*	210	38.8	166	279	459	146	2,080	615	591	1,100	524	871	255	120
Beryllium	0.75*	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.68	ND	Pending
Cadmium	0.22*	1.47	ND	ND	1.09	1.8	1.09	1.27	1.98	1.23	2.79	ND	4.43	0.71	Pending
Calcium	SB**	33,300	2,930	18,900	20,800	4,190	2,350	9,680	4,790	4,140	24,200	2,990	10,500	25,00	Pending
Chromium	20.9*	19.1	3.51	22.6	17.7	22.6	26.3	40.4	29.3	112	7.1	6.47	34.0	15.6	4.88
Cobalt	30 or SB**	8.75	3.11	14.1	7.71	13.4	6.08	10.9	7.92	7.97	1.71	7.82	13.1	9.08	Pending
Copper	23.4*	78.5	28.7	28.2	87.3	142	139	172	147	198	27	44	238	89.2	Pending
Iron	2,000 or SB**	21,400	3,430	30,200	24,700	36,000	46,700	51,200	19,200	28,900	3,330	7,360	42,300	30,600	Pending
Lead	72.5*	407	93.6	13	1,080	2,540	339	2,600	1,770	2,820	12,900	273	2,460	1,440	1,440
Magnesium	SB**	4,960	529	8,800	2,700	2,600	1,440	2,020	1,430	788	7,560	245	2,270	3,520	Pending
Manganese	SB**	486	31.8	551	378	710	200	692	388	220	111	238	675	479	Pending
Mercury	0.24*	ND	0.21	ND	ND	0.78	ND	0.766	ND	ND .	0.25	ND .	ND	0.31	ND
Nickel	21*	20.4	8.78	31.8	17.9	13.7	4.28	25.3	17.9	13.1	5.82	17.9	19.9	15.4	Pending
Potassium	SB**	1,410	238	2,960	627	632	439	1,160	419	653	246	271	953	658	Pending
Selenium	1*	ND	ND	ND	ND	ND	ND	3.12	ND	ND	ND	ND	ND	ND	ND
Silver	SB**	ND	ND	ND	ND	1.28	1.77	ND	2.16	5.78	ND	ND	1.69	ND	ND
Sodium	SB**	916	314	553	791	343	409	837	431	349	366	144	638	307	Pending
Thallium	SB**	ND	ND	ND	ND	ND	ND	1.31	ND	ND	ND	ND	ND	ND	Pending
Vanadium	150 or SB**	20.7	10.2	30.6	22.1	22.9	15.1	50.8	21.3	24.6	4.23	17	36.7	25.0	Pending
Zinc	87.1*	654	56.3	89	464	996	1,140	1,490	1,200	950	1,690	301	1,730	608	Pending
Notes: Guidance levels a ND = Not Detecte			NYSDEC Backg	round Concentr	ations of Lower	Hudson Valley	Soils* and NYS	DEC <u>TAGM 40</u>)46**						

Ecesystems Strategies, Inc.

get Analyte List (TAL) Metals in Water	d in ug/L. Results in bold exceed designated guidance levels.
Fable 3: Target	ovide
	ts pr
ble	All results
Ц	All

TAL Level um 100 ny 3 ny 33 n 1,000 um 3 um 3 um 5 um 50 t 50	MW-1 MW-1 (Dup) 70.9 60.4 ND ND ND ND ND ND ND ND 89.2 89.3 ND ND ND ND 12,000 111,000 5.7 5 ND ND	MW-2 767 ND 375 ND ND	MW-2 MW-3 767 323	MW-4	-7-MM
100 3 25 3 3 3 3 000 5 5 5 5 5 5 5 1 2 000 5 5 5 1 2 000 5 5 5 0 1 2 5 5 1 2 5 5 1 2 5 5 1 2 5 5 2 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 1 2 5 5 5 5		767 ND 375 ND	323	001	
3 25 1,000 3 3 3 8 50 50 50 50 50		ND 375 ND		163	559
25 1,000 3 3 8 5 0 5 5 5 5 5 1		375 375 ND	DN	QN	QN
1,000 3 5 5 5 0 1 2 0 0 1 2 0 0 1 2 0 0 1 2 0 0 1 1 2 0 0 1 2 1 2		375 ND	DN	11.9	QN
3 50 50 50 50 50 50 50 50 50 50 50 50 50		QN 2	415	396	219
5 50 50 200 200 200 200 200 200 200 200			DN	DN	DN
50 200 200 200 200		N	DN	DN	ŪN.
5 5 200		143,000	86,600	83,700	67,500
5 200		11.7	QN	an	CIN
200		QN	DN	an	an
		gy	6.8	8.1	7.9
	3,570 3,640	11,800	30,600	47,300	31,300
25		10.7	56	7.3	g
0		24,600	22,900	22,400	14,500
300	705 702	1,460	2,060	2,310	1,750
0.7		QN	DN	QN	an
	7 6	7.3	an	5.1	ŋ
Potassium NE 5,130		11,000	1,620	2,060	661
		QN	DN	DN	Q
Silver 50 ND	DN D	QN	an	ND	DN
Sodium 20,000 29,	29,200 29,000	27,300	24,600	30,400	16,900
0.5	DN DN	QN	ND	DN	QN
		QN	10	QN	DN
Zinc 2,000 N	DN ND	29.6	48.7	41.1	32.9
Notes:					
	DEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1	al Guidance Ser	ies (TOGS) 1.1.1	_i	
Ambient Water Quality Standards And Guidance Value	is And Guidance Values And Groundwater Effluent Limitations (June 1988 edition)	lent Limitations	(June 1988 edition	(ua	
ND = Not Detected					

•