2016 PERIODIC REVIEW REPORT

DeLaval Property 202-204 Rinaldi Boulevard Poughkeepsie, New York

New York State Department of Environmental Conservation Site Number: B00190

CHA Project Number: 30114

Prepared for:

City of Poughkeepsie 62 *Civic Center Plaza Poughkeepsie, NY 12601*

Prepared by:

III Winners Circle Albany, NY 12205 Phone: (518) 453-4500 Fax: (518) 453-4773

August 11, 2017

V:\Projects\ANY\K4\30114\Reports\PRR - 2016\DeLaval Property_Periodic Review Report_2016_r1.doc

TABLE OF CONTENTS

1.0	SITE	Overview	1
	1.1	Brief Site Background	2
	1.2	Nature and Extent of Contamination	
	1.3	Summary of Site Remedy	
2.0	Insti	TUTIONAL / ENGINEERING CONTROLS (IC/EC) PLAN COMPLIANCE REPORT	5
	2.1	IC/EC Plan Requirements and Compliance Status	5
		2.1.1 Inspection of Cover System	
		2.1.2 Inspection of Bulkheads	
		2.1.3 Inspection of Riprap Revetment	
		2.1.4 Inspection of Monitoring Well Network	
		2.1.5 Sub-Slab Depressurization Systems	
		2.1.6 Other Observations during Site-wide Inspection	
	2.2	IC/EC Certification	
3.0	Mon	ITORING PLAN COMPLIANCE REPORT	9
	3.1	Components of the Monitoring Plan	9
	3.2	Monitoring Completed During Reporting Period	
		3.2.1 Groundwater Monitoring Activities	
		3.2.2 Groundwater Monitoring Results	
	3.3	Compliance with Performance Standards	
4.0	Over	RALL PRR CONCLUSIONS AND RECOMMENDATIONS	15

LIST OF TABLES

Table 3-1 Analytical Summary Table 12	3
--	---

LIST OF FIGURES

Figure 1 Figure 2 Site Location Map Site Plan

LIST OF APPENDICES

- Appendix A Institutional & Engineering Controls Certification Forms
- Appendix B Site-wide Inspection Checklist
- Site Photographs Appendix C
- Appendix D
- Groundwater Sampling Logs Waste Disposal Documentation Laboratory Analytical Report
- Appendix E Appendix F

EXECUTIVE SUMMARY

The DeLaval Property (Site) is located in Dutchess County, New York and is identified as Tax Map Parcel (TMP) No. 131300-6061-43-752749-0000 on the City of Poughkeepsie Tax Map. The address for the Site is 202-204 Rinaldi Boulevard, Poughkeepsie, New York. The Site has a long history of former industrial use based upon review of available Sanborn Mapping and other historical documents. The DeLaval Separator Company reportedly started operations on the Site in 1890 and a review of aerial photographs indicated that operations likely ceased in the early 1960s, followed by the razing of the majority of the Site structures sometime between 1962 and 1967.

The following types of contaminants were identified on the DeLaval Site during the Site investigations and during the remedial action: volatile organic compounds (VOCs); semivolatile organic compounds (SVOCs); polychlorinated biphenyls (PCBs); heavy metals; and asbestos-containing materials (ACMs) [discovered during remedial action phase only]. The remedial action for the Site was completed in 2008 through 2011. This Periodic Review Report (PRR) is required as an element of the NYSDEC-approved Site Management Plan (SMP) developed for the Site, and documents the annual groundwater monitoring event and site-wide inspection completed at the Site during the summer of 2016.

The Remedial Action Objectives established for the Site were achieved through implementation/completion of the following general remedial components: removal of grosslycontaminated soils and other contaminated media encountered during construction activities; construction of steel sheet pile bulkheads and riprap revetment along the western property boundary (Hudson River shoreline); placement of a soil cover system across the Site; and installation of a postremediation groundwater monitoring well network to facilitate periodic groundwater sampling. In addition, the Site remedy required that an environmental easement be placed on the property to: implement, maintain and monitor the Engineering Controls (e.g. bulkheads, riprap revetment, soil cover system); prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and limit the use and development of the Site to commercial and passive recreational uses only.

The Site was observed to be in overall good condition at the time of the most recent site-wide inspection, conducted on July 13, 2016. Inspections were completed for the cover system, the bulkheads, the rip-rap revetment, the groundwater monitoring well network, and the site fencing.

No additional development of the Site has occurred since the last inspection in April 2015. It is

recommended that the current institutional and engineering controls in place at the Site remain in place, and the engineering controls continue to be inspected and monitored.

The groundwater analytical results from the July 2016 monitoring event indicate that concentrations of the contaminants of concern are below established New York State Ambient Groundwater Standards and/or Guidance Values with the exception of the following five SVOCs: benzo(b)fluoranthene; benzo(a)pyrene; benzo(k)fluoranthene; chrysene; and indeno(1,2,3-cd)pyrene; the following six metals: arsenic, cadmium, chromium, lead, mercury, and selenium; and a single polychlorinated biphenyl (PCB) compound (Aroclor 1260). It is recommended that the annual groundwater monitoring program be continued to evaluate groundwater quality on the Site and potential trends in residual contaminant concentrations.

No changes to the remedy, and/or monitoring or operation & maintenance plans are recommended at this time.

1.0 SITE OVERVIEW

The City of Poughkeepsie (City) entered into a State Assistance Contract (SAC) with the New York State Department of Environmental Conservation (NYSDEC) in November 2005 (SAC No. C302762) to allow the City to seek reimbursement for a portion of the costs required to perform an investigation and complete a remedial alternative analysis through the NYSDEC's Environmental Restoration Program (ERP) for a 14.04-acre property located in the City of Poughkeepsie, New York. The SAC was amended (Amendment No. 1) to include reimbursement of a portion of incurred costs for the remedial design and remedial action. The Hudson River Waterfront - DeLaval Property, hereinafter referred to as the "Site" (also referred to as NYSDEC Site No. B00190-3), was remediated to commercial-use levels only, which includes passive recreational uses. This Periodic Review Report (PRR) is required as an element of the NYSDEC-approved Site Management Plan (SMP) developed for the Site, and documents the annual groundwater monitoring event and site-wide inspection completed at the Site during the summer of 2016.

The Site is located in Dutchess County, New York and is identified as Tax Map Parcel (TMP) No. 131300-6061-43-752749-0000 on the City of Poughkeepsie Tax Map. The address for the Site is 202-204 Rinaldi Boulevard, Poughkeepsie, New York, 12601 and is accessed at the intersection of Pine Street and Rinaldi Boulevard. The approximate centroid of the Site is located at 41° 41' 40" N and 73° 56' 20" W. A vicinity location map of the Site is included as Figure 1. Figures showing the boundaries of the Site, along with post-remediation soil cover system components and monitoring well locations, are provided as Figures 2A and 2B.

It should be noted that the Site identified for investigation and remediation was originally a 13.95acre parcel; however, due to some design modifications during the course of construction that shifted the shoreline bulkheads further into the Hudson River, the City was required to obtain an additional approximately 0.09-acre of land from the State of New York Office of General Services (OGS) under a submerged land acquisition application process. Additionally, due to accessibility issues during construction (a steep slope on a rock outcrop near the northeast corner of the Site), the soil cover system could not be practically placed across the entire property, and thus, a portion of the property was left in its original state and is not included as part of the Site. Specifically, the "Site" includes the 14.04-acre parcel less 0.40-acre near the northeastern corner of the parcel, or a total of 13.64-acres. This exclusion area has been separated from the Site by a chain link fence to serve as a physical boundary. The Site is bounded by the Shadows on the Hudson restaurant/catering facility and The Grandview banquet facility (formerly the City Sewage Treatment Plant (STP) site) to the north; Love/Effron, a major oil storage facility (MOSF) to the south; a concrete retaining wall associated with an elevated railroad corridor to the east; and the Hudson River to the west.

1.1 BRIEF SITE BACKGROUND

The Site has a long history of former industrial use based upon review of available Sanborn Mapping and other historical documents. Early Sanborn maps indicate that much of the DeLaval Site was under water and part of the Hudson River in the late 1800s, but also indicate the industrial development had begun on the Site by that time (at least as early as 1887). The DeLaval Separator Company reportedly started operations on the Site in 1890 and a review of aerial photographs indicated that operations likely ceased in the early 1960s, followed by the razing of the majority of the Site structures sometime between 1962 and 1967.

1.2 NATURE AND EXTENT OF CONTAMINATION

The following types of contaminants were identified on the DeLaval Site during the Site investigations and during the remedial action:

- Volatile organic compounds (VOCs)
- Semivolatile organic compounds (SVOCs)
- Polychlorinated biphenyls (PCBs)
- Heavy metals
- Asbestos-containing materials (ACMs) [discovered during remedial action phase <u>only</u>]

The following areas of concern (AOCs) were identified at the Site:

- AOC-1: An area of petroleum-impacted soil and groundwater near the southern end of the Site that paralleled the Hudson River, approximately 0.8-acre in size. An industrial landfill/construction & demolition debris disposal area that extended eastward of the petroleum-impacted soils to a bedrock outcrop along the east side of the Site was located above the petroleum-impacted area.
- AOC-2/3: An area of petroleum-impacted soil and groundwater in the central portion of the Site that paralleled the Hudson River, approximately 2.4-acres in size. An abandoned 14-inch oil pipeline and an approximately 400-gallon underground

storage tank (UST) were also present in this AOC and likely contributed to the contamination in this area.

- AOC-4: An area adjacent to a former Paint Shop along the eastern border of the Site where solvent-like odors were observed during one of the investigations and several semivolatile organic compounds (SVOCs) were detected in the soil samples. Additional investigation in this area was unable to replicate these observations, so no remediation was completed in this area.
- AOC-4A: An area measuring approximately 32-feet wide by 50-feet long of petroleum contamination that was encountered adjacent to the western side of AOC-4 while investigating for the potential presence of additional oil pipelines extending southward on the Site from AOC-2/3 during the construction activities at the Site. Migration of the contamination in this area appeared to have been hindered by the presence of several subsurface concrete foundation walls.
- AOC-5: A small area of petroleum contamination encountered near the south end of the Site immediately adjacent to the eastern concrete retaining wall that runs parallel to the Site during the installation of Storm Manhole No. STMH-1. Sanborn mapping indicated the presence of a former "oil house" in this location which likely contributed to the contamination encountered in this area.
- Shoreline: Two small areas of petroleum contamination were encountered during the subgrade excavation for the revetment in Zone 2. Similarly, two small areas of petroleum contamination were also encountered in Zone 4 during the revetment subgrade excavation. The limits of the petroleum contamination were reached as the excavations were advanced inland.

1.3 SUMMARY OF SITE REMEDY

The selected remedy for the Site included the following major components:

- Removal of grossly-contaminated soils and other contaminated media;
- Construction of steel sheet pile bulkheads and riprap revetment along the western property boundary (Hudson River shoreline);
- Placement of a soil cover system across the Site; and
- Installation of a post-remediation groundwater monitoring well network to facilitate periodic groundwater sampling;

In addition, the Site remedy required that an environmental easement be placed on the property to (1)

implement, maintain and monitor the Engineering Controls (e.g. bulkheads, riprap revetment, soil cover system); (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the Site to commercial and passive recreational uses only. The environmental easement for the Site was executed by the Department on November 4, 2013, and recorded with the Dutchess County Clerk on November 27, 2013.

The remedial activities completed at the Site were described in detail in CHA's Final Engineering Report, dated December 18, 2013.

2.0 INSTITUTIONAL / ENGINEERING CONTROLS (IC/EC) PLAN COMPLIANCE REPORT

2.1 IC/EC PLAN REQUIREMENTS AND COMPLIANCE STATUS

Institutional controls implemented at the Site in the form of an environmental easement, and more specifically the Site Management Plan, require periodic inspection of the above-referenced engineering controls and an evaluation of Site use to ensure that exposure to remaining contamination is prevented and the use and development of the Site is limited to commercial and passive recreational uses only.

Engineering controls at the Site that are subject to periodic inspection consist of the sheet pile bulkheads in Zones 1 and 3, riprap revetment along the western property boundary (the Hudson River shoreline) in Zones 2 and 4 and the soil cover system across the Site. In addition, nine groundwater monitoring wells are evaluated (7 sampled and 2 gauged), during scheduled annual sampling events to verify they are in good condition and are being properly maintained to allow for periodic groundwater quality monitoring. The Institutional and Engineering Controls Certification Forms are included in Appendix A.

In the following subsections, CHA summarizes the major observations made during the July 13, 2016 Site inspection. The Sitewide Inspection Checklist is included in Appendix B. The next inspection of these controls is scheduled to occur in the summer of 2017.

2.1.1 Inspection of Cover System

Overall, the soil cover system was in good condition. The portions of the Site covered with Item 4 material run-of-crush material and other stone products had no evidence of disturbance or scour. Photographs documenting the site cover are included in Appendix C.

2.1.2 Inspection of Bulkheads

CHA observed the current condition of the bulkheads during low tide conditions from a boat provided by the City of Poughkeepsie. The above-water portions of the Zone 1 and Zone 3 bulkheads were observed to be in good condition. The concrete collars around the outfalls were also observed to be in good condition. The only other exception was the epoxy coating on the steel sheet piles, which continues to deteriorate. However, in accordance with the SMP, the steel is evaluated

as uncoated and the continued failure of the coating is not considered to be part of this engineering control.

On the landward side of the bulkheads, CHA observed an approximately 4-inch gap between the soil cover system and the concrete caps behind the northern 2/3 of the Zone 3 bulkhead. This gap was previously noted during a site inspection conducted in November 2013. It was determined at that time, through survey data and photographs, that no evidence of significant or progressive movement of the bulkhead was observed. The survey data indicated that the bulkhead movement was alternating between landward and waterward deflections, and that the limited movement/deflection was anticipated given that the structure is a cantilevered bulkhead system. The gap observed behind the bulkhead is associated with the settlement/consolidation of material behind the bulkhead that is exaggerated by the difficulty in achieving appropriate compaction between the "bellies" of the sheet piles. While this movement needs to be considered in the future development of the Site (including a proposed sidewalk along the waterfront), the bulkhead's ability to provide containment for residual contamination in Zone 3 has not been compromised.

Minor spalling of concrete was observed at a few locations along the concrete bulkhead caps, but overall, the caps were observed to be in relatively good condition.

Ultrasonic testing of the thickness of the steel sheet piles and underwater inspections of the bulkheads was not performed during this monitoring period, but will be completed during subsequent monitoring events in accordance with the schedule provided in the SMP.

2.1.3 Inspection of Riprap Revetment

All sections of riprap revetment stone appeared in good condition at the time of the sitewide inspection and there was no evidence of significant loss of material or scour.

2.1.4 Inspection of Monitoring Well Network

All monitoring wells were observed to be in generally good condition, except for MW-4. This monitoring well appeared to be have a damaged PVC riser below the ground surface. The decommissioning and subsequent new installation of this well will occur during the next monitoring period.

The permanent protective well casings have not yet been installed. The City is in possession of the permanent casings and will install them following the completion of final grading of the Site during

redevelopment. However, as indicated subsequently, the interim elevation of the well risers was not surveyed, and therefore, it is not possible to accurately compute groundwater elevations at each monitoring well.

2.1.5 Sub-Slab Depressurization Systems

Currently, there are no structures on the property, and therefore, a review of the operation of sub-slab depressurization systems is not required at this time.

2.1.6 Other Observations during Site-wide Inspection

- 1. **Weep Hole Drainage System:** The weep hole drainage system appeared operational and in good condition at the time of the Site inspection.
- 2. **Fencing:** The fencing system installed near the Site entrance and around the northeast bedrock outcropping utilized for delineating the limits of the environmental easement was observed to be in good condition. No repairs or modifications were recommended to the City. Additional fencing was installed along the northern entrance due to the site being used for temporary storage of supplies for the construction of modular homes to the northeast.
- 3. **Other:** Other observations made during the Site visit included:
 - a. No new development has occurred at the Site since the previous inspection was conducted in April 2014.
 - b. A large area of the Site was being used for storage of pre-fabricated modular homes at the time of the site reconnaissance.
 - c. There were no covers on the electrical vaults installed by the Developer and the annular spaces around the conduits installed in 2011 were not sealed. Therefore, some material around the vaults had sloughed into the structures and in one instance vegetation was growing inside the vault. While this will make future installation of electrical services difficult, it does not appear to have impacted the Site remedy.

2.2 IC/EC CERTIFICATION

The Institutional and Engineering Controls Certification Forms are included in Appendix A, as previously indicated. Engineering controls, consisting of the sheet pile bulkheads, riprap revetment and soil cover system, were in place and functioning properly during the reporting period. These controls have been and continue to be effective in preventing exposure of the public to remaining contaminants in soil and groundwater at the Site. The SMP is being implemented and based on this review, the remedy continues to be protective of public health and/or the environment and compliant

with the decision document. At this time, it is recommended that all controls for the Site remain in place.

3.0 MONITORING PLAN COMPLIANCE REPORT

3.1 COMPONENTS OF THE MONITORING PLAN

Components of the Monitoring Plan include:

- Site-Wide Inspection (detailed above)
- Inspection of the Bulkheads (detailed above)
- Groundwater Quality (detailed below)
- Sub-Slab Soil Vapor (not applicable, as the site is not developed)

3.2 MONITORING COMPLETED DURING REPORTING PERIOD

3.2.1 Groundwater Monitoring Activities

On July 12 and 13, 2016, CHA personnel visited the Site to conduct groundwater monitoring activities in accordance with the requirements of the SMP, including gauging, monitoring for the presence of light non-aqueous phase liquid (LNAPL), and groundwater sampling of the following monitoring wells: MW-1, MW-2, MW-5, MW-6, MW-8 and MW-9. In addition, wells MW-3 and MW-7 were gauged and monitored for the presence of LNAPL, but were not sampled. Given that MW-4 appeared to be broken and only a trace of water was observed, the well was not gauged or sampled.

Prior to conducting groundwater sampling activities on July 12, 2016, a photoionic detector (PID) was used to measure the concentration, if any, of organic vapors in the headspace of each well (immediately after removing the well gripper plug). An electronic oil/water interface probe was then used to monitor for the presence of LNAPL and measure water levels at each of the above-referenced well locations. On that day, the time of high tide for the Hudson River at Poughkeepsie was reported as 7:24 a.m. Water level data were collected between 9:15 a.m. and 10:45 a.m. At each location, the water level was measured from the top of the well casing.

Since top of well casing elevations have not been surveyed, water level measurements were not converted to groundwater elevations. Once the permanent protective well casings are installed, the top of well casing elevations will be surveyed and water level data collected during future groundwater monitoring events will be used to determine groundwater elevations. Based on the local topography and the Site's close proximity to the Hudson River, groundwater flow direction

across the Site is expected to be generally to the west, toward the river, although there is a localized decrease in depth to groundwater along the western portion of the Site when the tide is coming in.

Monitoring wells MW-1, MW-2, MW-5, MW-6, MW-8 and MW-9 were purged and sampled via low-flow/minimal drawdown methods, utilizing a submersible, pneumatic bladder pump with disposable bladders and polyethylene tubing. During well purging, at 5-minute intervals, CHA personnel monitored and recorded field parameters including temperature, pH, specific conductance, dissolved oxygen and turbidity. Wells were purged until stabilization of parameters was observed (three consecutive readings within 10 percent) and turbidity levels were below 50 Nephelometric turbidity units (NTUs). Upon stabilization, groundwater samples were collected in laboratory-provided, pre-preserved containers. Between each well, the submersible pump was decontaminated using a solution of potable water and Alconox[®] detergent followed by a potable water rinse.

For all wells, upon completion of sample collection, sample containers were labeled and stored in a rigid cooler with ice, pending delivery to the laboratory. Groundwater sampling logs are included in Appendix D. Purge water was containerized in a 55-gallon drum which was labeled and stored on site, pending waste characterization, profiling and off-site disposal arrangements.

For Quality Assurance/Quality Control purposes, one blind duplicate sample, identified as "CHA-1" was collected at well MW-2. A trip blank prepared by the laboratory accompanied the sample containers from the time of their preparation at the laboratory until the samples were delivered to the laboratory.

Upon completion of field activities, CHA transported the samples under chain-of-custody protocol to Alpha Analytical Inc.'s (Alpha) service center in Albany, New York. The samples were then transported by Alpha to their laboratory in Westborough, Massachusetts for analysis. All groundwater samples and the field blank sample were analyzed for TCL VOCs by EPA Method 8260, TCL SVOCs by EPA Method 8270, PCBs by EPA Method 8082 and RCRA 8 metals. The trip blank was analyzed for TCL VOCs only.

Environmental Products & Services of Vermont, Inc. (EPS) collected one (1) drum of containerized purge water from the Site on August 3, 2017 for off-site disposal. A copy of the waste disposal documentation (Bill of Lading) is included in Appendix E.

3.2.2 Groundwater Monitoring Results

No evidence of organic vapors, LNAPL or petroleum sheen was observed at any of the monitoring well locations during the July 2016 monitoring event.

Groundwater analytical results (detected compounds only) are summarized in Table 3-1 on the following page while the complete original laboratory data packages are included in Appendix F. Parameter detections at each well location are indicated in bold print.

As shown in Table 3-1, multiple SVOCs and metals were detected along with two detections of PCBs during this sampling event.

				e 3.			cal Sum					_				
			N-1		MW-2		CHA-1		MW-5		MW-6		MW-8		MW-9	
SAMPLING DATE	NY-AWQS Unit	ts 7/12	2016		7/12/201	16	7/12/201	16	7/13/202	16	7/12/201	l6	7/13/201	6	7/13/202	16
Volatile Organics																
Benzene	1 ug/l								0.16	J						
Toluene	5 ug/l	1.2	2 J	ſ	0.86	J	0.74	J	1.4	J	1.4	J				
p/m-Xylene	5 ug/l	1.1	J	ſ	0.83	J	0.73	J	1.3	J	1.5	J				
o-Xylene	5 ug/l								0.91	J	0.85	J				
Acetone	50 ug/l	2.5	; J	ſ	2.6	J	1.5	J	15		2.3	J			2.8	J
Semivolatile Organics	· · ·															
Acenaphthene	20 ug/l	0.3	9 J	ſ					0.19	J	0.1					
Fluoranthene	50 ug/l	4.2	2		0.28		4.6		4.4		0.14	J				
Naphthalene	10 ug/l	0.2	8 J	ſ	0.07	J			1.2		0.19	J	0.08	J	0.1	J
Benzo(a)anthracene	ug/l	1.6	5		0.16	J	2.2		1.8		0.06	J				
Benzo(a)pyrene	ug/l	1.5	i i		0.14	J	2		1.7		0.05	J				
Benzo(b)fluoranthene	0.002 ug/l	2			0.19	J	2.9		2.6		0.06	J				
Benzo(k)fluoranthene	0.002 ug/l	0.7	2 J	ſ	0.06	J	0.95	J	0.86							
Bis(2-ethylhexyl)phthalate	5 ug/l														1.2	J
Chrysene	0.002 ug/l	1.6	5		0.14	J	2		1.9		0.05	J				
Acenaphthylene	ug/l	0.3	8 J	ſ			0.34	J	0.49							
Anthracene	50 ug/l	0.7	5 J	ſ	0.04	J	0.59	J	0.68							
Benzo(ghi)perylene	ug/l	0.8	3 J	ſ	0.1	J	1.1		1.2							
Fluorene	50 ug/l	0.3	5 J	ſ			0.18	J	0.35	J	0.04	J				
Phenanthrene	50 ug/l	2.9)		0.09	J	1.6		2.5		0.07	J				
Dibenzo(a,h)anthracene	ug/l	0.2	4 J	ſ			0.38	J	0.34	J						
Indeno(1,2,3-cd)pyrene	0.002 ug/l	0.9	7 J	1	0.11	J	1.4		1.4							
Pyrene	50 ug/l	3.4	Ļ		0.24		3.6		3.6		0.14	J				
2-Methylnaphthalene	ug/l								0.21	J	0.11	J	0.09	J		
Polychlorinated Biphenyls																
Aroclor 1260	0.09 ug/l				0.082	J	0.066	J	0.176		0.091		0.062		J	
Total Metals																
Arsenic, Total	25 ug/l	28.	8		9.7		41.8		43.2		9.4		7.4		10	
Barium, Total	1000 ug/l	529)		88.5		569		726		69.9		68.7		58	
Cadmium, Total	5 ug/l	0.7	' J	ſ			6.2		5.5		0.7	J	3.8	J	3.1	J
Chromium, Total	50 ug/l	16			6	J	48		91		6.3	J	7.4	J	19	
Lead, Total	25 ug/l				61.7		1070		1180		57		3.4	J	5.5	J
Mercury, Total	0.7 ug/l		J	ſ	0.13	J	1.03		2.85		0.2				0.09	J
Selenium, Total	10 ug/l	55			64.5		539		284		27		21.1		291	
Silver, Total	50 ug/l								6.2	J						

Table 3-1 Analytical Summary Table

NOTES: Samples were collected by CHA Consulting, Inc. on July 12-13, 2016 and analyzed by Alpha Analytical

TOGS1.1.1 is a NYSDEC approved ambient water quality standard (AWQS).

J - Result is less than the reporting limit but greater than or equal to the method detection limit and the concentration is an approximate value

Concentrations of the following five SVOCs were above their respective New York State Ambient Water Quality Standards and/or Guidance Values (Standard): benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; and indeno(1,2,3-cd)pyrene. PCB Aroclor 1260 was detected in MW-5 and MW-6. Metals detections above standards included arsenic, cadmium, chromium, lead, mercury, and selenium. In the samples collected from monitoring wells 8 and 9, the only detection that exceeded the Standard was selenium.

3.3 COMPLIANCE WITH PERFORMANCE STANDARDS

The groundwater analytical results from the July 2016 monitoring event indicate that there are several concentrations of the contaminants of concern that exceed the established New York State Ambient Groundwater Standards and/or Guidance Values. It is recommended that the annual groundwater monitoring program be continued to evaluate groundwater quality on the Site and potential trends in residual contaminant concentrations.

4.0 OVERALL PRR CONCLUSIONS AND RECOMMENDATIONS

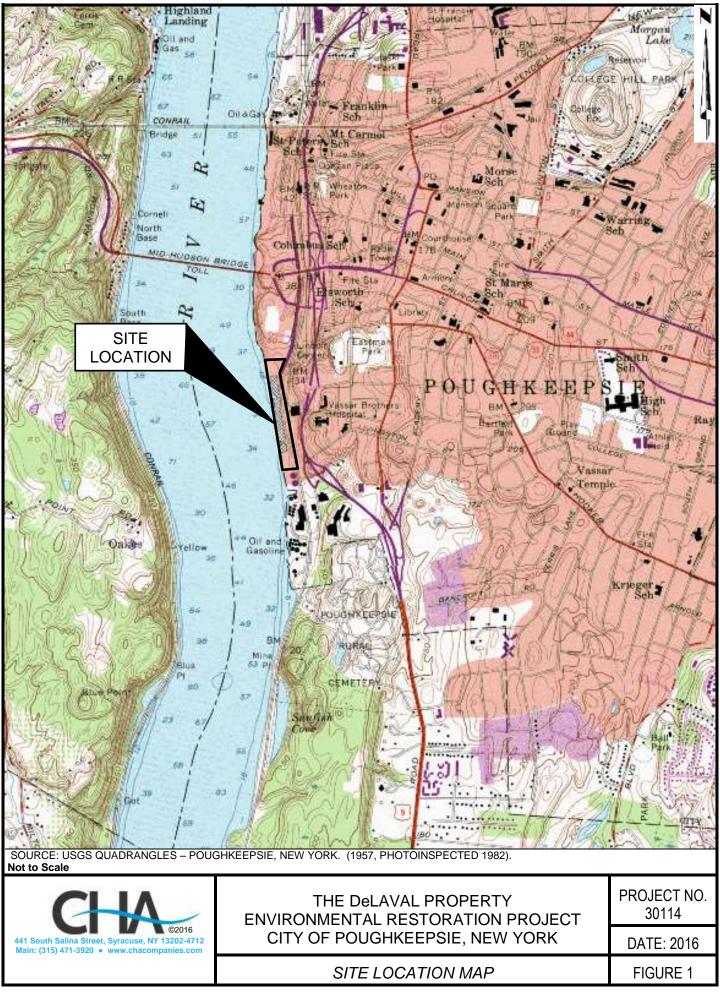
The Site was observed to be in overall good condition at the time of the most recent sitewide inspection, conducted on July 13, 2016. Specific observations are noted below:

- There were no deficiencies in the site cover system.
- The epoxy coating on the steel sheet piles continues to deteriorate. However, the coating is not integral to the design longevity for the sheet pile wall.
- Minor spalling of concrete was observed at a few locations along the concrete bulkhead caps, but overall, the caps were observed to be in relatively good condition.
- All sections of riprap revetment stone appeared in good condition at the time of the site-wide inspection and there was no evidence of significant loss of material or scour.

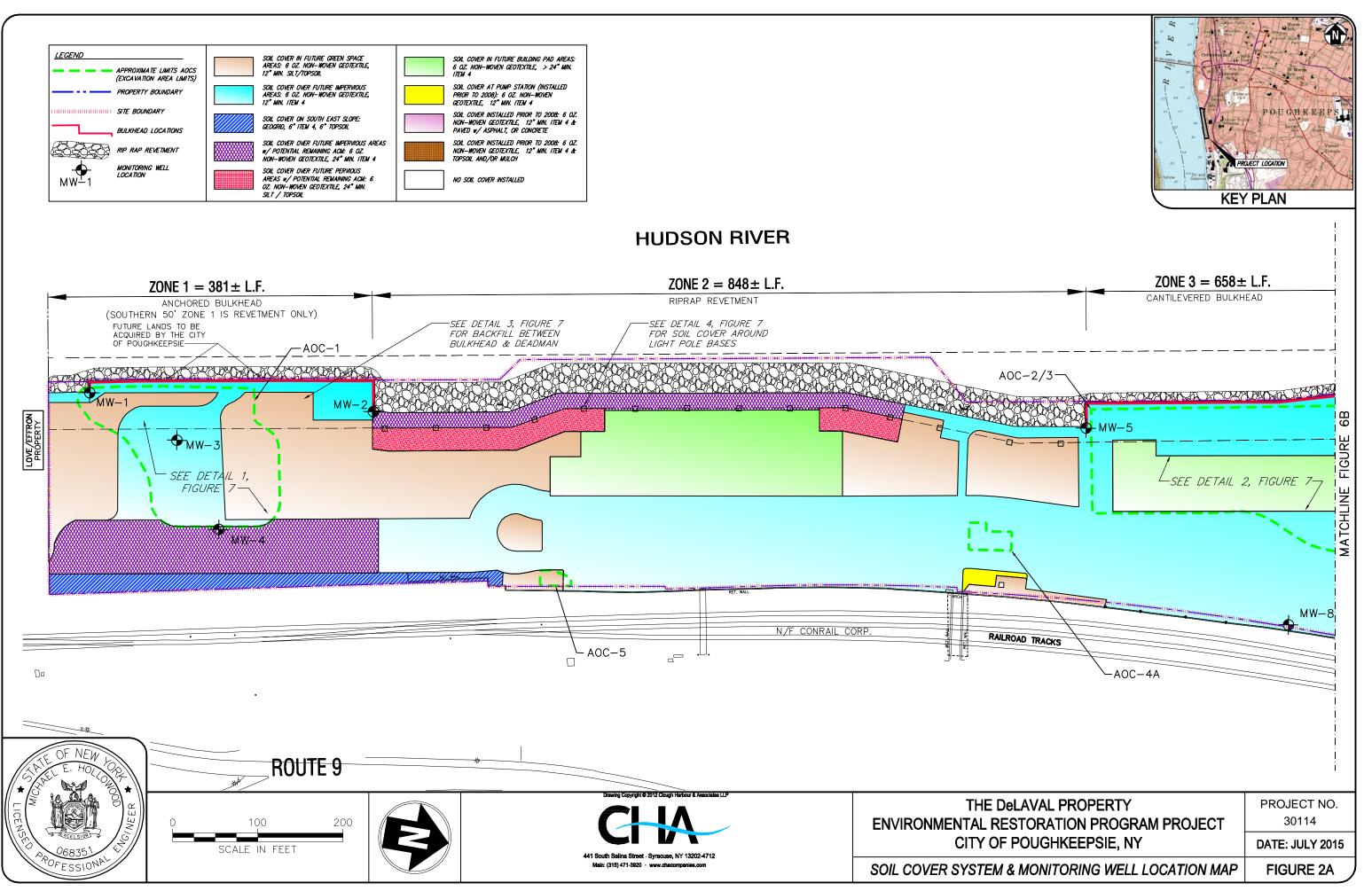
Issues identified during the sitewide inspection requiring corrective action were limited to the following:

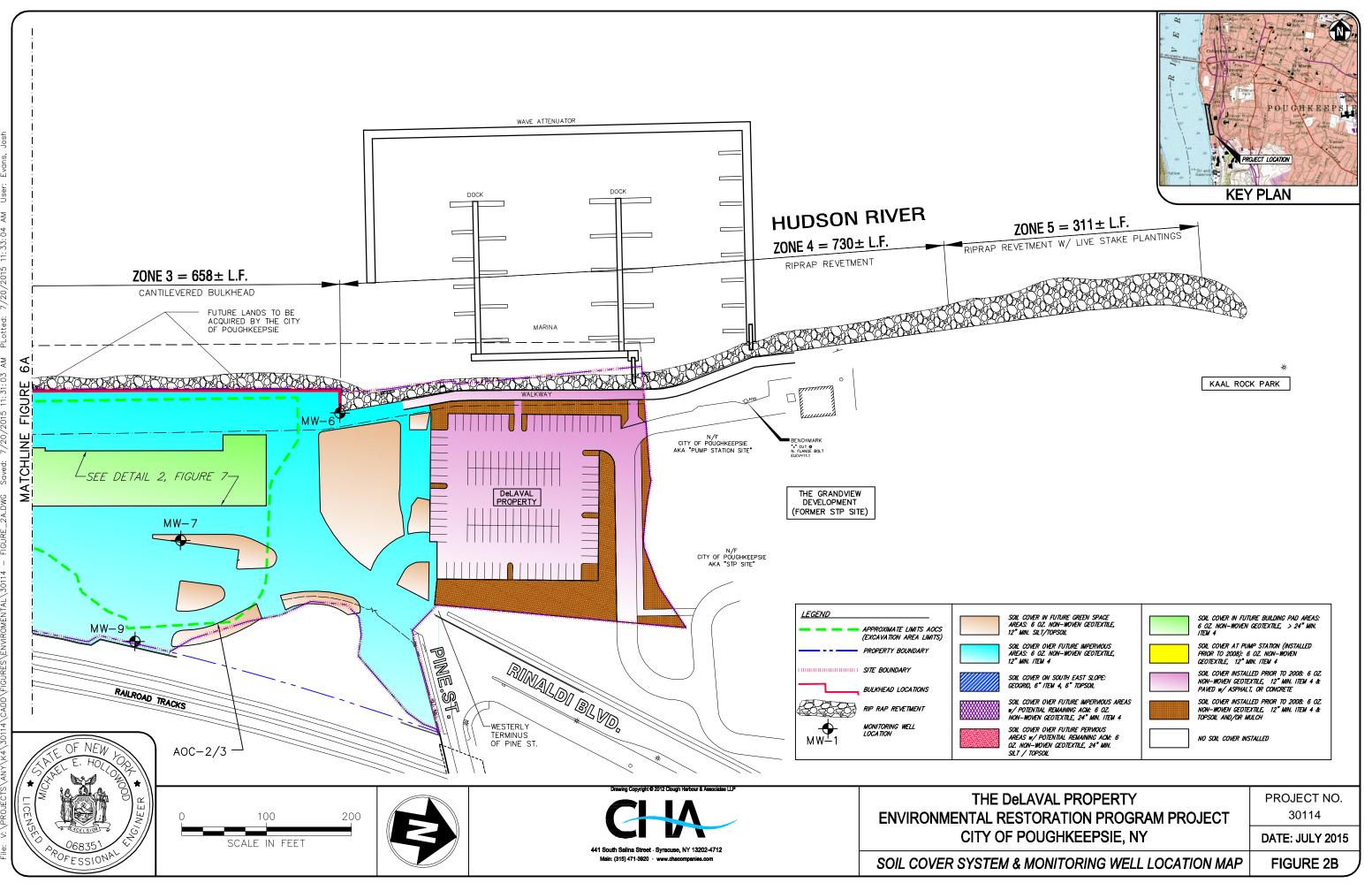
- Monitoring Well 4 was broken and is need of replacement.
- The wells still lack permanent protective casings; however, the casings will be installed after the site is developed.

No additional development of the Site has occurred since the last inspection in April 2015.


Evaluation of Remedy Performance, Effectiveness & Protectiveness

Based on the removal of contaminated soil and other contaminant sources, and post-remediation soil sampling, as described in the Final Engineering Report for the Site, the remedy has achieved the remedial action objectives (RAOs) for soil. Provided the Institutional Controls and Engineering Controls established for the Site remain in place and are maintained, it is expected that the remedy will continue to be effective in the protection of human health and the environment.


The results of groundwater sampling conducted in July 2016 (described in detail in Section 3.2) indicate that the remedy continues to be effective in achieving the RAOs for groundwater.


Recommendations

It is recommended that the current institutional and engineering controls in place at the Site remain in place, and the engineering controls continue to be inspected and monitored. The second round of monitoring did confirm some exceedances of groundwater standards in several monitoring wells. Therefore, it is recommended that the annual groundwater monitoring program continue. No changes to the remedy, and/or monitoring or operation & maintenance plans are recommended at this time. **FIGURES**

V:\Projects\ANY\K4\30114\Reports\PRR - 2016\Figures\Figure 1 - Site Location Map.doc

¥ 40 ≥ Š

APPENDIX A

Institutional & Engineering Controls Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Sit	Site Details ite No. B00190		Box 1				
Sit	e Name Hu	dson River Waterfron	t-DeLaval Property				
Cit Co			Zip Code: 12601-				
Re	porting Peric	od: January 24, 2014 to	o July 25, 2015				
				YES	NO		
1.	Is the inforr	nation above correct?		\checkmark			
	If NO, inclu	de handwritten above o	or on a separate sheet.				
2.		or all of the site propert nendment during this R	y been sold, subdivided, merged, or undergone a eporting Period?		×		
3.		peen any change of use RR 375-1.11(d))?	e at the site during this Reporting Period		\checkmark		
4.	Have any fe for or at the		\checkmark				
If you answered YES to questions 2 thru 4, include documentation or evidence							
5.	that docun		reviously submitted with this certification form		⊻		
5.	that docun	nentation has been p	reviously submitted with this certification form	1.			
5.	that docun	nentation has been p	reviously submitted with this certification form		NO		
	that docum Is the site of Is the curre	nentation has been pr	reviously submitted with this certification form	Box 2			
6.	Is the curre Commercia	nentation has been pre- surrently undergoing de	velopment?	Box 2	NO		
6.	that docum Is the site of Is the curre Commercia Are all ICs/	nentation has been pre- surrently undergoing de int site use consistent v al and Industrial ECs in place and function IE ANSWER TO EITHE	velopment?	Box 2 YES	NO		
6. 7.	that docum Is the site of Is the curre Commercia Are all ICs/	nentation has been pre- surrently undergoing de int site use consistent v and Industrial ECs in place and funct IE ANSWER TO EITHE DO NOT COMPLETE T	reviously submitted with this certification form evelopment? with the use(s) listed below? ioning as designed? R QUESTION 6 OR 7 IS NO, sign and date below a	Box 2 YES	NO		
6. 7. A (that docum Is the site of Is the curre Commercia Are all ICs/ IF TH Corrective Me	nentation has been pre- surrently undergoing de nt site use consistent v and Industrial ECs in place and funct IE ANSWER TO EITHE DO NOT COMPLETE T easures Work Plan mu	reviously submitted with this certification form evelopment? with the use(s) listed below? ioning as designed? R QUESTION 6 OR 7 IS NO, sign and date below a FHE REST OF THIS FORM. Otherwise continue.	Box 2 YES	NO		

SITE NO. B00190		Box 3
Description of Ins	stitutional Controls	
Parcel 131300-6061-43-752749	<u>Owner</u> City of Poughkeepsie	Institutional Control Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan O&M Plan
Annual groundwater monitorin Compliance with the Site Ma Groundwater use restriction Site use restricted to comme	anagement Plan, including the Exc	avation Work Plan
Description of En	gineering Controls	Box 4
Parcel 131300-6061-43-752749	Engineering Contro Vapor Mitigation Cover System Subsurface Barriers Fencing/Access Co	5
Soil Cover across the site Two steel-sheet pile bulkhea Fencing along the northeast Sub-slab depressurization sy		ed on-site

			Box 5
	Periodic Review Report (PRR) Certification Statements		
1.	I certify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dire reviewed by, the party making the certification; 	ction o	f, and
	b) to the best of my knowledge and belief, the work and conclusions described i are in accordance with the requirements of the site remedial program, and gener engineering practices; and the information presented is accurate and compete.	n this c rally ac	certification cepted
	engineering practices, and the mornation presented is accurate and compete.	YES	NO
		\checkmark	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below tha following statements are true:	each I t all of	nstitutional the
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is the date that the Control was put in-place, or was last approved by the Department	s uncha ent;	anged since
	(b) nothing has occurred that would impair the ability of such Control, to protect the environment;	public I	health and
	 (c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control; 	the rer	medy,
	(d) nothing has occurred that would constitute a violation or failure to comply wit Management Plan for this Control; and	h the S	ite
	(e) if a financial assurance mechanism is required by the oversight document for mechanism remains valid and sufficient for its intended purpose established in the	⁻ the sit e docu	e, the ment.
		YES	NO
		R	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
А	Corrective Measures Work Plan must be submitted along with this form to address th	ese iss	ues.
Si	ignature of Owner, Remedial Party or Designated Representative Date		

IC CERTIFICATIONS SITE NO. B00190	
	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210 Penal Law.	a false .45 of the
I JOSEPH T. KANE at 62 CIVIC CENTER PLAZA, POUGHKEEPSIE, N.Y. print name print business address	12601
am certifying as DESIGNATED REPLESENTATIVE (OWNER) (Owner or Ren	
for the Site named in the Site Details Section of this form.	
Signature of Owner, Remedial Party, or Designated Representative Date Date	

Qualif	ied Environmental Professional Signature	Box 7
certify that all information in Boxe ounishable as a Class "A" misdem	es 4 and 5 are true. I understand that a false stand neanor, pursuant to Section 210.45 of the Penal	atement made herein is Law.
Scott M. Smith	at 441 South Salina St., Syracuse, N	IY 13202
print name	print business address	, ,
am certifying as a Qualified Enviro	Owner or Reme	eepsie dial Party)
Bignature of Qualified Environmer	MA POFESSIONAL	<u>08/25/</u> 18 Date

APPENDIX B

Sitewide Inspection Checklist

	SIT	E-WI	DE	INSPECTION CHECKLIST
CHA		Repor Date:		
Site Name: DeLaval ERP Site				NYSDEC Site No. B00190-3
Address: 202-204 Rinalidi Blvd, Poughk	eensie	NY 1260		Project No. 30114
Inspector(s): Samantha Miller	cepsie,	111, 1200		Weather: Sunny
Justin King				Temp.: Hi 83F Low
Type of Inspection: X Routine Post S	overe (Condition		Time Low Tide: 14:30
SOIL COVER SYSTEM INSPECTION		Jonation		
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
There is no evidence of erosion of cover				
soils/materials from Site surface.				
There is no evidence of depressions in cover materials.	\boxtimes			
There is no evidence of significant cracks				
in cover materials.	\square			
There is no evidence of exposed or damaged demarcation barrier.	\boxtimes			
There is no evidence of vapors or odors				
emanating from the Site.				
VEGETATIVE INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
Vegetation is well established over	\square			
greenspace areas. There is no evidence of stressed				
vegetation.	\square			
There is no evidence of bare or thin	\boxtimes			
vegetative cover.				
There is no evidence of overgrowth or areas that need to be mowed.	\bowtie			
There is no evidence of recent areas of				
excavation or disturbed areas.	\square			
VECTOR INSPECTION	<u>.</u>			
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
No vectors or vector activity (e.g. tracks,				
droppings, dens, etc.) were observed.	\square			
There was no evidence of damage to the	\boxtimes			
soil cover system due to vector activity. DRAINAGE SYSTEM INSPECTION	<u> </u>	· · ·		
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
There is no evidence of erosion around				
drainage structures.	\square			
There is no evidence of settlement of	\boxtimes			
drainage structures				
Manhole covers present & in good condition.	\square			
There is no evidence of siltation, debris, or	\square			
other restrictions in the manholes.				
There are no exposed or damaged weep hole extension along retaining wall.	\square			
The backflow preventers in the 36-inch	\boxtimes			
outfall manhole are present/functional.	I			

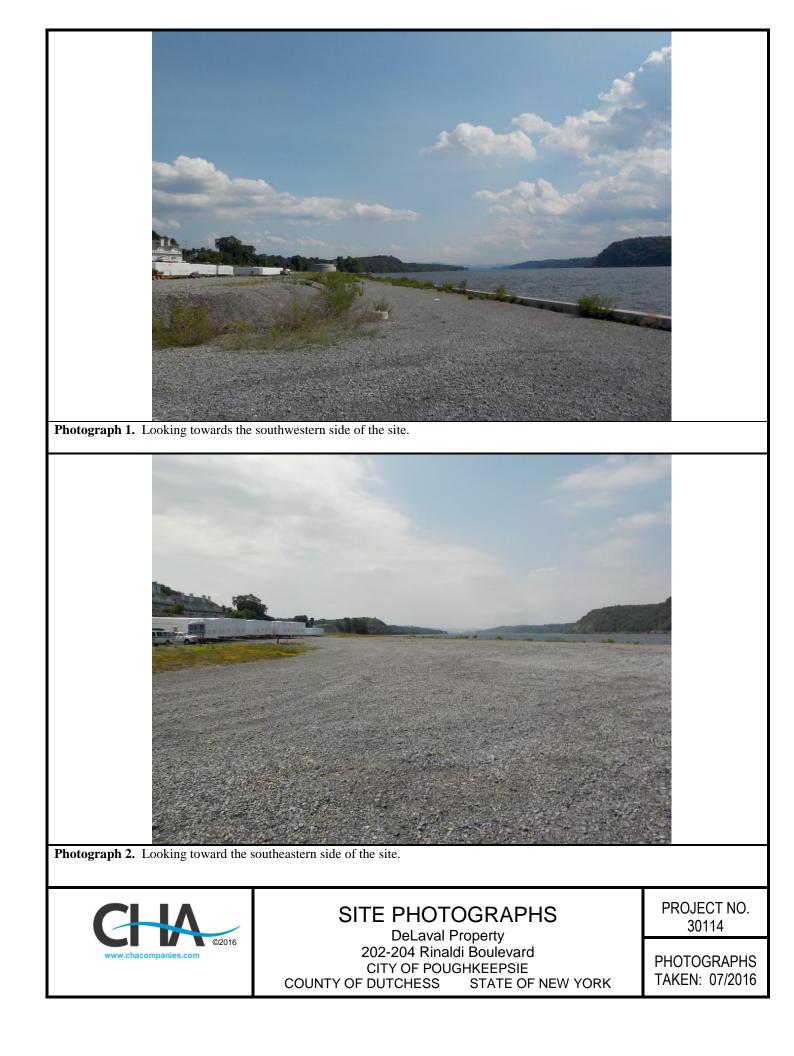
SITE-WIDE INSPECTION CHECKLIST

Report No. 002 Date: 7/13/2016

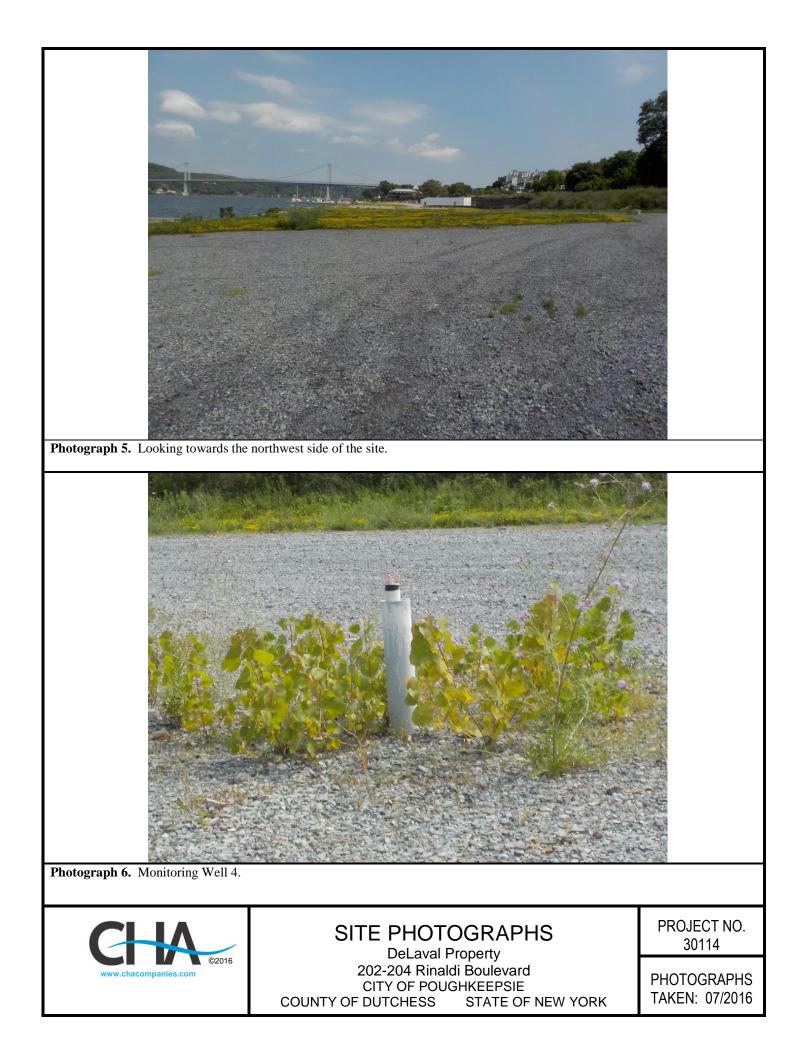
Tim

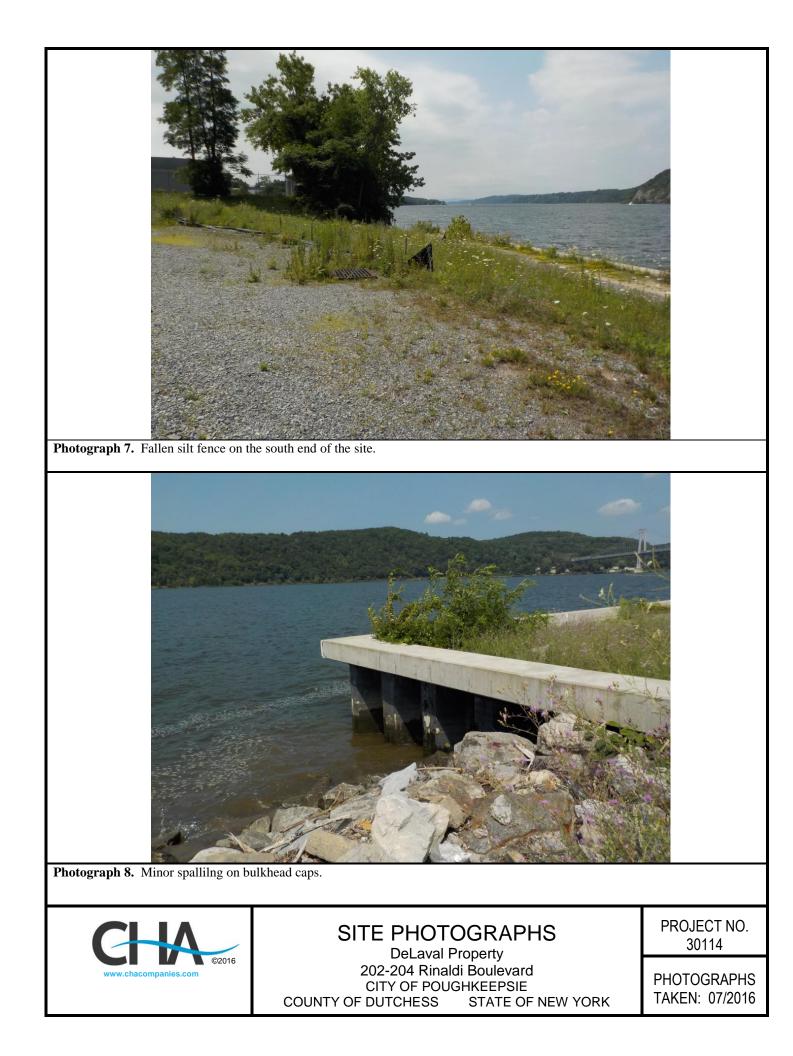
Time: 11:15AM

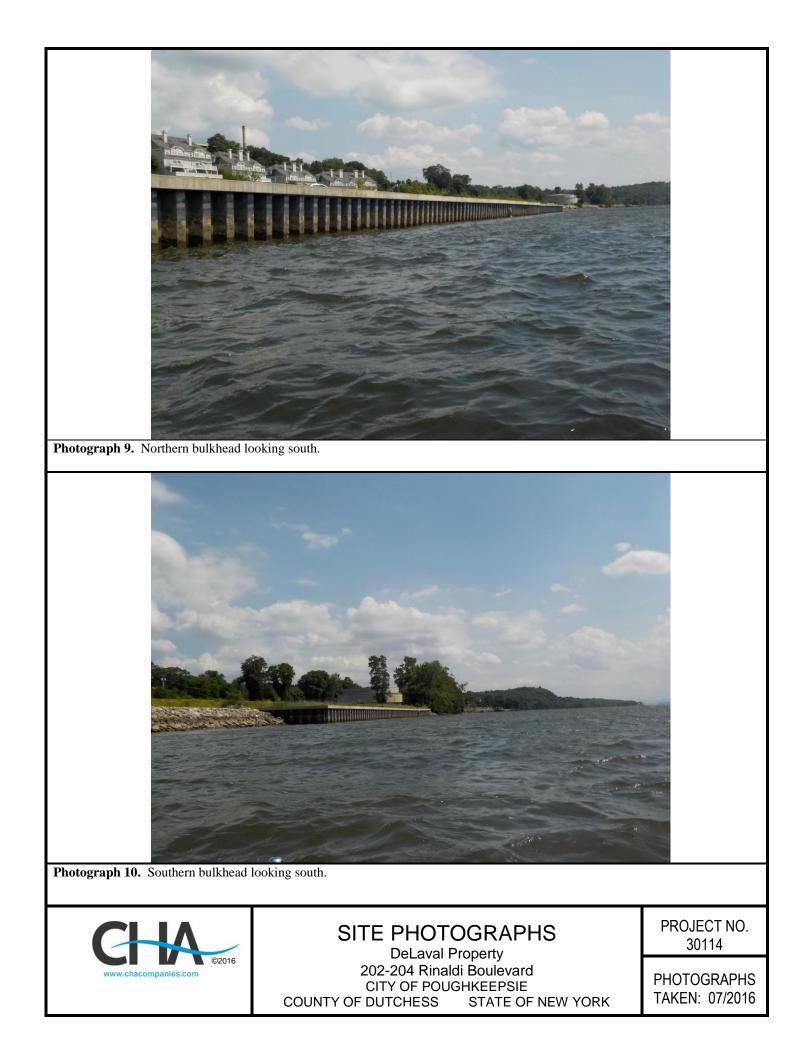
BULKHEAD INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
There is no evidence of significant movement or deflections of bulkheads.	\boxtimes			Some minor spalling was observed
There is no evidence of damage to the sheet piles through impacts from boats, ice, etc.	\boxtimes			
There is no evidence of leaks from interlocks.				
There is no evidence of significant coating damage.	\boxtimes			
There is no evidence of significant corrosion.				
There is no significant damage to the precast caps (e.g. cracks, spalling, etc.).				
There is no evidence of scour, erosion, cracks, or settlement behind the bulkheads.	\square			
There is no evidence of a loss of toe protection stone from the front of the bulkheads (to extent visible at surface).	\boxtimes			
There is no visible evidence of sheen in the vicinity of the bulkheads.	\boxtimes			
There is no evidence of significant damage to the stormwater outfalls or associated concrete collars.	\boxtimes			
There is no evidence of flow restriction at the outfalls	\bowtie			
There is no evidence of sheen emanating from the outfalls	\boxtimes			
REVETMENT INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
There are no large voids or evidence of significant stone loss in revetment areas.	\bowtie			
There is no evidence of significant settlement of the revetment sections.				
The concrete headwalls are in-place and in good condition.				
There is no evidence of flow restriction at the outfalls				
There is no evidence of sheen emanating from the outfalls				
MONITORING WELL INSPECTION	•			
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS
The monitoring wells are in generally good condition.		\boxtimes		Protective casings are not installed on any of the wells. MW4 moves around below grade, no water.
Well caps are installed on the wells.	\square			Except gauging wells
Locks present and secured.			\boxtimes	No Locks
SITE ACCESSIBILITY INSPECTION				
ITEM/CONDITION	TRUE	FALSE	N/A	COMMENTS


	SIT	E-WI	DE I	NSP	ECTION CHECK	LIST
CHA		Repor				
		Date:	7/13/20	016	Time: 11:15AM	
Site accessible and passable.	\square			New c	hain link fence	
INSTITUTIONAL CONTROL INSPECTION						
ITEM/CONDITION The Site continues to be utilized for	TRUE	FALSE	N/A	COMM	MENTS	
commercial and passive recreational uses only.	\boxtimes					
There is no evidence of groundwater extraction and/or use on Site.	\boxtimes					
ADDITIONAL NOTES & OBSERVATIONS	-	-		-		
down the street. Silt fence has fallen in all le						
Anna the Miller					Total Inspection Time: 1.5	hrs

Signature: Signature:


Page 3 of 3


APPENDIX C


Site Photographs

APPENDIX D

Groundwater Sampling Logs

Appendix D.1

Depth to Groundwater Measurements

Well ID	Measuring Point	Measurement Time	Depth To Water (ft.)	Gas Reading	Comments
MW-1	TOR	10:30	6.96	0.0 ppm	No NAPL observed.
MW-2	TOR	10:35	7.21	0.0 ppm	No NAPL observed.
MW-3	TOR	10:45	10.38	0.0 ppm	No NAPL observed.
MW-4	TOR				Well appears to be broken
MW-5	TOR	10:15	6.71	0.0 ppm	No NAPL observed.
MW-6	TOR	9:15	6.67	0.0 ppm	No NAPL observed.
MW-7	TOR	9:30	11.26	0.0 ppm	No NAPL observed.
MW-8	TOR	9:25	12.12	0.0 ppm	No NAPL observed.
MW-9	TOR	10:10	10.64	0.0 ppm	No NAPL observed.

DeLaval Property - July 2016 Groundwater Sampling Event CHA Project No.: 30114

Appendix D.2

Sampling Summary

DeLaval Property - July 2016 Groundwater Sampling Event CHA Project No.: 30114

Well ID	Sampling Date	Sampling Method	Sampling Time	Sampling Analyses	# Of Bottles	QA/QC Sample Id	QA/QC Sample Time
MW-1	7/12/2016	Submersible-Low Flow	11:38	VOCs, SVOCs, PCBs, Metals	8		
MW-2	7/12/2016	Submersible-Low Flow	13:15	VOCs, SVOCs, PCBs, Metals	8+8	CHA-1	12:30
MW-4							
MW-5	7/13/2016	Submersible-Low Flow	9:20	VOCs, SVOCs, PCBs, Metals	8		
MW-6	7/12/2016	Submersible-Low Flow	15:55	VOCs, SVOCs, PCBs, Metals	8		
MW-8	7/13/2016	Submersible-Low Flow	8:45	VOCs, SVOCs, PCBs, Metals	8		
MW-9	7/13/2016	Submersible-Low Flow	10:20	VOCs, SVOCs, PCBs, Metals	8		

Appendix D.3

Sample Purging Summary

DeLaval Property - July 2016 Groundwater Sampling Event CHA Project No.: 30114

Well ID	Start Time	Total Volume Purged (gal.)	Time	ORP/EH (mV)	РН	Conductivity (ms/cm)	DO (mg/L)	Turbidity (NTU)	Temperature (°C)	Depth To Water (ft.)	Description
			11:02	-227.0	8.16	0.690	1.19	1000	22.93	7.16	Water was slightly black with a slight sheen,
			11:08	-210.0	7.88	0.712	0.93	735	22.45	7.23	was mildly turbid with no odor, or
			11:13	-210.0	7.83	0.727	0.78	585	21.38	7.25	effervescence.
MW-1	11:00	4	11:19	-209.0	7.78	0.725	0.68	666	22.18	7.23]
			11:24	-212.0	8.02	0.729	0.63	461	22.53	7.27]
			11:29	-209.0	7.75	0.727	0.57	381	22.45	7.27	
			11:36	-214.0	7.79	0.727	0.53	236	23.77	7.28	
			13:33	30.0	7.21	1.090	8.30	>1000	22.14	8.04	Water was light brown with no odor, sheen
			13:38	36.0	7.22	1.030	7.37	>1000	22.05	8.08	or effervescence.
			13:44	33.0	7.28	1.040	6.73	>1000	22.75	8.13	
	12.20	4 -	13:50	31.0	7.25	1.020	6.17	610	22.94	8.00	
MW-2	13:30	4.5	13:55	25.0	7.29	1.040	5.98	708.0	23.03	8.07	
			13:59	26.0	7.32	1.020	5.62	261	22.99	8.07	
			14:04	19.0	7.32	1.010	5.24	>1000	23.02	8.05	
			14:09	16.0	7.31	1.030	4.90	470	23.32	8.07	
MW-4				N	1inimal w	vater (less than 12-incl	nes), unable to	purge or sample	e. Monitoring well app	ears to be brok	
MW-4 MW-5	14:53	0.25	14:55	₩ 46.0	1inimal w 7.18	vater (less than 12-incl 0.395	nes), unable to >1000	purge or sample	e. Monitoring well app 23.33	bears to be broke 10.83	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00
	14:53	0.25		46.0	7.18	0.395	>1000	0.82	23.33	10.83	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016.
	14:53	0.25	15:21	46.0 -6.0	7.18 7.43	0.395 0.368	>1000	0.82	23.33	10.83 9.00	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor,
	14:53	0.25	15:21 15:26	46.0 -6.0 0.0	7.18 7.43 7.47	0.395 0.368 0.368	>1000 0.62 0.66	0.82 1000 641	23.33 23.31 24.18	10.83 9.00 8.68	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016.
			15:21 15:26 15:32	46.0 -6.0 0.0 25.0	7.18 7.43 7.47 7.47	0.395 0.368 0.368 0.365	>1000 0.62 0.66 1.94	0.82 1000 641 186	23.33 23.31 24.18 23.94	10.83 9.00 8.68 10.04	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor,
MW-5	14:53 15:20	0.25	15:21 15:26 15:32 15:37	46.0 -6.0 0.0	7.18 7.43 7.47 7.47 7.36	0.395 0.368 0.368 0.365 0.363	>1000 0.62 0.66	0.82 1000 641 186 127	23.33 23.31 24.18 23.94 23.76	10.83 9.00 8.68 10.04 10.14	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor,
MW-5			15:21 15:26 15:32 15:37 15:42	46.0 -6.0 0.0 25.0 28.0 17.0	7.18 7.43 7.47 7.47 7.36 7.52	0.395 0.368 0.368 0.365 0.363 0.363 0.364	>1000 0.62 0.66 1.94 2.04 2.78	0.82 1000 641 186 127 66.2	23.33 23.31 24.18 23.94 23.76 23.88	10.83 9.00 8.68 10.04 10.14 10.27	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor,
MW-5			15:21 15:26 15:32 15:37	46.0 -6.0 0.0 25.0 28.0	7.18 7.43 7.47 7.47 7.36	0.395 0.368 0.368 0.365 0.363	>1000 0.62 0.66 1.94 2.04	0.82 1000 641 186 127	23.33 23.31 24.18 23.94 23.76	10.83 9.00 8.68 10.04 10.14	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor,
MW-5			15:21 15:26 15:32 15:37 15:42 15:47 15:52	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62	0.82 1000 641 186 127 66.2 60.5 45.7	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence.
MW-5			15:21 15:26 15:32 15:37 15:42 15:47	46.0 -6.0 0.0 25.0 28.0 17.0 14.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58	0.395 0.368 0.368 0.365 0.363 0.364 0.365	>1000 0.62 0.66 1.94 2.04 2.78 2.63	0.82 1000 641 186 127 66.2 60.5	23.33 23.31 24.18 23.94 23.76 23.88 23.91	10.83 9.00 8.68 10.04 10.14 10.27 10.22	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor,
MW-5			15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.365 0.366 0.366 0.681	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79	0.82 1000 641 186 127 66.2 60.5 45.7 >1000	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:22 8:27	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.366 0.681 0.680	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.63 2.62 4.79 4.04	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:27 8:27 8:32	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0 154.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89 6.94	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.366 0.681 0.680 0.681	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79 4.04 3.47	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000 951	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29 17.12	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64 12.68	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:27 8:32 8:37	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0 154.0 154.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89 6.94 6.95	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.366 0.681 0.681 0.681 0.679	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79 4.04 3.47 3.03	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000 951 314	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29 17.12 17.35	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64 12.68 12.58	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:27 8:32 8:37 8:32	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0 154.0 154.0 154.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89 6.94 6.95 6.90	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.366 0.681 0.680 0.681 0.679 0.679 0.679	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79 4.04 3.47 3.03 2.74	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000 951 314 203	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29 17.12 17.35 17.39	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64 12.68 12.58 12.56	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with no odor, sheen or effervescence.
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:27 8:32 8:37 8:32 8:37 8:42 9:57	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0 154.0 154.0 154.0 154.0 196.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89 6.94 6.95 6.90 7.07	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.366 0.681 0.681 0.680 0.681 0.679 0.679 0.679 1.000	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79 4.04 3.47 3.03 2.74 2.42	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000 951 314 203 533	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29 17.12 17.35 17.39 17.03	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64 12.58 12.56 10.45	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with no odor, sheen or effervescence. Water was light tan and mildly turbid with
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:27 8:32 8:37 8:32 8:37 8:42 9:57 10:02	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0 154.0 154.0 154.0 154.0 154.0 196.0 192.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89 6.94 6.95 6.90 7.07 7.19	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.366 0.681 0.681 0.681 0.681 0.679 0.679 1.000 0.886	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79 4.04 3.47 3.03 2.74 2.42 3.19	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000 951 314 203 533 305	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29 17.12 17.35 17.39 17.03 16.22	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64 12.68 12.58 12.56 10.45 10.81	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with no odor, sheen or effervescence. Water was light tan and mildly turbid with no odor, sheen or effervescence. Water was light tan and mildly turbid with no odor, sheen or effervescence.
MW-5 MW-6	15:20	4	15:21 15:26 15:32 15:37 15:42 15:47 15:52 8:22 8:27 8:32 8:37 8:42 9:57 10:02 10:05	46.0 -6.0 0.0 25.0 28.0 17.0 14.0 9.0 176.0 130.0 154.0 154.0 154.0 154.0 154.0 196.0 192.0 185.0	7.18 7.43 7.47 7.47 7.36 7.52 7.58 7.64 6.85 6.89 6.94 6.95 6.90 7.07 7.19 7.26	0.395 0.368 0.368 0.365 0.363 0.364 0.365 0.366 0.681 0.680 0.681 0.681 0.681 0.679 0.679 1.000 0.886 0.736	>1000 0.62 0.66 1.94 2.04 2.78 2.63 2.62 4.79 4.04 3.47 3.03 2.74 2.42 3.19 4.54	0.82 1000 641 186 127 66.2 60.5 45.7 >1000 >1000 951 314 203 533 305 61.5	23.33 23.31 24.18 23.94 23.76 23.88 23.91 23.90 17.56 17.29 17.12 17.35 17.39 17.03 16.22 16.32	10.83 9.00 8.68 10.04 10.14 10.27 10.22 10.15 12.52 12.64 12.68 12.58 12.56 10.45 10.81 10.80	Water was clear and colorless with no odor, sheen or effervescence. Purged dry at 15:00 on 7/12/2016. Water was clear and colorless with no odor, sheen or effervescence. Water was light tan and mildly turbid with no odor, sheen or effervescence. Water was light tan and mildly turbid with

APPENDIX E

Waste Disposal Documentation

GENERATOR GENERATOR 15.50 16. GI	BILL OF LADING Seperator's Name and Mailing Address S2 ONIO CENTER PLACA POUGHIKEEPSIE NY 12602 Seperator's Phone (315) 471-3920 ransporter 1 Company Name I. L. PP JULA SYLLS CF T ransporter 2 Company Name esignated Facility Name and Site Address ENCINCUMENTAL PRODESSIONS CF VT, CALSTON NAME 11. Shipping Name 11. Shipping Name a. NON-RORA, NON-DOT, LIQUIDS, N.O. V(ATER) b. c. d. d. d. d. APP#:0915103-OT, GT X Materials Listed Above S a. APP#:0915103-OT, GT X Materials Listed Above S	8. 10. 	VITORING WEL	12 C No.	1 Do me t Sille Address 2 2 - 34 if POLIGHICE A. State Transporter 1 C State Transporter 2 E State Fac 3 C State Transporter 2 E State Fac 3 C State Transporter 2 E State Fac 3 C State Transporter 2 D Transporter 2 D Transporter 2 D Transporter 3 C State Transporter 3 D Transporter 4 D Transpor	PIG EPSEK phone	
GENERATOR GAD	CF.A. 52 OIVIO CENTER PLAZA POUGHIKEEPSIE IKY 12502 senerator's Phone (315) 471-3920 ransporter 1 Company Name E. L. L.P.P. ILGA SVCS C.F.T. ransporter 2 Company Name esignated Facility Name and Site Address E.K. JACON KENTAL FROD & SVCS C.F.V.T. 6.1 11. Shipping Name a. NON-RORA, NON-DOT, LIQUIDS, N.O V(ATER) b. c. d. d. d. d. d. d. d. APP#:0915103-0T, <u>01</u> X <u>31</u> GAL	8. 10. 		12 C No.	Sile Address 2 2 - 34 i POLIGHIE A. State Transporter 1 C. State Transporter 2 D. Transporter 2 E. State Fac 3 clift c. Proc. - 10 - 5 ontainers Type	EPSEK Phone Phone Phone Phone S ID 13 Total Quanti	-
S Tr S Tr P. D HIM GENERATOR G Ad E Printer Printer 15. 55 15. 55 15. 55 15. 55 15. 55	ransporter 1 Company Name I. L. P.P. JUER SYLESCE T ransporter 2 Company Name resignated Facility Name and Site Address E.K., P.D. KACHTAL FRODE SYOS CENT, STATE FAIR BLVD 11. Shipping Name 4. NON-RORA, NON-DOT, LIQUIDS, N.O V.A.TER) b. c. d. d. d. A.PP#:0915103-OT, <u>97</u> X <u>35</u> GAL	8. 10. 		12 C No.	B Transporter 1 C State Transport D Transporte 2 E State Fac C C Product C C C Product C C C C C C C C C C C C C C C C C C C	Phone orter's ID Phone 's ID 's ID ' 'S 'S 's ID 's 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S	-
GENERATOR GENERATOR 15.5%	ransporter 2 Company Name esignated Facility Name and Site Address ENV. HVD/SN/ENTAL FROD & SVOS OF VT, SNI STATE FAIR BLVD 11. Shipping Name 4. NON-RORA, NON-DOT, LIQUIDS, N.O V/ATER) b. c. d. d. d. d. APP#:0916103-OT, <u>014</u> X <u>316</u> GAL	8. 10. 		12 C No.	B Transporter 1 C State Transport D Transporte 2 E State Fac C C Product C C C Product C C C C C C C C C C C C C C C C C C C	Phone orter's ID Phone 's ID 's ID ' 'S 'S 's ID 's 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S	-
GENERATOR GENERATOR 15.55 16. GI	esignated Facility Name and Site Address ENVIRON WENTAL FROD & SVOS OF VT, ENT STATE FAIR BUVD 11. Shipping Name a. NON-RORA, NON-DOT, LIQUIDS, N.O VARTER) b. c. d. d. d. d. d. d. d. d. APP#:0915103-OT, <u>01</u> X <u>31</u> GAL	 10. 	C.		D Transporte 2 E State Fac	Phone is ID 13 Total Ovanti	Un
GENERATOR GENERATOR 15.55 16. GI	STITE F4 (R BLVD) 11. Shipping Name a. NON-RORA, NON-DOT, LIQUIDS, N.O (A. TER) b. c. d. d. d. d. A. PP#:0916103-OT, 01 X 32 GAL		C.		E State Fac	is ID 15 13 Total Ovanti	Un
GENERATOR GENERATOR 15.54 15.54 15.54 15.54	STITE F4 (R BLVD) 11. Shipping Name a. NON-RORA, NON-DOT, LIQUIDS, N.O (A. TER) b. c. d. d. d. d. A. PP#:0916103-OT, 01 X 32 GAL		C.		ality s Pros	13 Total Ovanti	Un
GENERATOR GAD 15.50 16. GI 15. St	11. Shipping Name 4. NOM-RORA, NON-DOT, LIQUIDS, N.O 0. 0. c. d. d. d. d. d. d. d. GAL	D.S. (IDW MO)	C.		CIC EST	13 Total Quanti	Ur
GENERATOR GAD 15.50 16. GI 15. St	11. Shipping Name 4. NOM-RORA, NON-DOT, LIQUIDS, N.O 0. 0. c. d. d. d. d. d. d. d. GAL	D.S. (IDV/ MO)	C.		Туре	Total Quanti	Ur
E N E R A T O R G Ad E I I I I I I I I I I I I I I I I I I	b. c. d. d. d. d. d. d. d. d. d. d	D.S. (IDV/ MC)	C.				
E N E R A T O R G Ad E I I I I I I I I I I I I I I I I I I	b. c. d. d. d. d. d. d. d. d. d. d		C.		Dha	35	
E N E R A T O R G Ad E I I I I I I I I I I I I I I I I I I	d. d. d. d. d. d. d. d. d. d. d. d. d. d						
N ERATOR GADE 15.5p 15.5p 15.5p	d. dditional Descriptions for Materials Listed Above S APP#:0915103-0T, 01 X 31 GAL						
R A T O R G A d E I I S S F I I S S F I I S S F I I S S F I I S S F I I S I I S I I S I I S I I S I I S I I S I I S I I S S I S S I S S I S I S	d. dditional Descriptions for Materials Listed Above S APP#:0915103-0T, 01 X 31 GAL						
A T O R G Ad E 15. Sp 15. Sp 15. Cf rest	dditional Descriptions for Materials Listed Above S APP#:0915103-07, 21 X 33 GAL						
G Ad G Ad E 15. 5r 16. Gl Re Printec	dditional Descriptions for Materials Listed Above S APP#:0915103-07, 21 X 33 GAL						
R G Ad E 15. 5p 15. c F I E I E I E I E	dditional Descriptions for Materials Listed Above S APP#:0915103-07, 21 X 33 GAL						
15. Sp 15. Sp 16. Gl res Printec J.D r 17. Tra	Ł APP#:0916103-OT, <u>01</u> X <u>35</u> GAL						
15. Sp 15. Sp 16. Gl res Printec J.D r 17. Tra	Ł APP#:0916103-OT, <u>01</u> X <u>35</u> GAL						
Printec 25 T 17. Tra				JOE A (اروز هنچها	4	
Printer Jo 17. Tra	pecial Handling Instructions and Additional Information		100 allo (1)				
17. Tra	ENERATOR'S CERTIFICATION: hereby certify that the contents of spects in proper condition for transport. The materials described on	s of this shipment are fi on this document are n	ully and accurately descr of subject to federal man	ribed and are in a lifest requiremen	ell ts.	·	
17. Tra	d/Typed Name	Sign	ature			Month	Date
2	SEPH T. KANE	grid	Nol.	AS		Month C	Day Day
Drinted	ansporter 1 Acknowledgement of Receipt of Materials		1-1	IX			Date
1 I. I.	ENALETH W Mills	Signa	iture	É W.	Acill	Month	Day
	ENALETH W_ Whiles		Rechard	4 00.	10000	06	03 6
2	I/Typed Name	Signa	lure			Month	Date Day
						wonth	Day
19. Dis	crepancy Indication Space						
Printed	lity Owner or Operator; Certification of receipt of the materials cove	vered by this bill of ladi	ng except as noted in Ite	im 19.			Date

1

APPENDIX F

Laboratory Analytical Report

ANALYTICAL REPORT

L1621632
CHA Companies
441 South Salina Street
Syracuse, NY 13202
Samantha Miller
(315) 471-3920
DELAVAL GROUNDWATER
30114.1002.31000
07/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:07221615:57

Project Name:DELAVAL GROUNDWATERProject Number:30114.1002.31000

Lab Number:	L1621632
Report Date:	07/22/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1621632-01	MW-1	WATER	NY	07/12/16 11:38	07/13/16
L1621632-02	MW-6	WATER	NY	07/12/16 15:55	07/13/16
L1621632-03	MW-2	WATER	NY	07/12/16 13:15	07/13/16
L1621632-04	CHA-1	WATER	NY	07/12/16 12:30	07/13/16
L1621632-05	MW-8	WATER	NY	07/13/16 08:45	07/13/16
L1621632-06	MW-5	WATER	NY	07/13/16 09:20	07/13/16
L1621632-07	MW-9	WATER	NY	07/13/16 10:20	07/13/16
L1621632-08	WC-1	WATER	NY	07/13/16 10:35	07/13/16
L1621632-09	TRIP BLANK	WATER	NY	07/13/16 00:00	07/13/16

Project Name:DELAVAL GROUNDWATERProject Number:30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: DELAVAL GROUNDWATER Project Number: 30114.1002.31000
 Lab Number:
 L1621632

 Report Date:
 07/22/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L1621632-08: The sample has elevated detection limits due to the dilution required by the sample matrix.

Semivolatile Organics

L1621632-01: The sample has elevated detection limits due to the dilution required by the sample matrix.

Semivolatile Organics by SIM

L1621632-01, -04, -06 and -08: The sample has elevated detection limits due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Michelle M. Monig Michelle M. Morris

Title: Technical Director/Representative

Date: 07/22/16

ORGANICS

VOLATILES

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-01	Date Collected: 07/12/16 11:38
Client ID:	MW-1	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	07/17/16 01:42	
Analyst:	PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westb	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	1.2	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					S	Serial_No	p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMP		5	-		
Lab ID: Client ID: Sample Location:	L1621632-01 MW-1 NY				Date Col Date Rec Field Pre	eived:	07/12/16 11:38 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		1.1	J	ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		2.5	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	98		70-130	

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-02	Date Collected: 07/12/16 15:55
Client ID:	MW-6	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	
Analytical Method:	1,8260C	
Analytical Date:	07/17/16 02:14	
Analyst:	PD	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	1.4	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					5	Serial_No	p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMP		6	-		
Lab ID: Client ID: Sample Location:	L1621632-02 MW-6 NY				Date Coll Date Rec Field Pre	eived:	07/12/16 15:55 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		1.5	J	ug/l	2.5	0.70	1
o-Xylene		0.85	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		2.3	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	107		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	100		70-130	
Dibromofluoromethane	98		70-130	

		Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-03	Date Collected:	07/12/16 13:15
Client ID:	MW-2	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	07/17/16 02:47		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	0.86	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					S	Serial_No	p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMP		6	-		
Lab ID: Client ID: Sample Location:	L1621632-03 MW-2 NY				Date Coll Date Rec Field Pre	eived:	07/12/16 13:15 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborougł	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		0.83	J	ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		2.6	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	108		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	99		70-130	
Dibromofluoromethane	98		70-130	

		Serial_No:07221615:57	
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632	
Project Number:	30114.1002.31000	Report Date: 07/22/16	
	SAMPLE RESULTS		
Lab ID:	L1621632-04	Date Collected: 07/12/16 12:30	
Client ID:	CHA-1	Date Received: 07/13/16	
Sample Location:	NY	Field Prep: Not Specified	
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	07/17/16 21:28		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	0.74	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					S	Serial_No	p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMP		6	-		
Lab ID: Client ID: Sample Location:	L1621632-04 CHA-1 NY				Date Coll Date Rec Field Pre	eived:	07/12/16 12:30 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		0.73	J	ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		1.5	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	96		70-130	

		Serial_No:07221615:57			
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632			
Project Number:	30114.1002.31000	Report Date: 07/22/16			
	SAMPLE RESULTS				
Lab ID:	L1621632-05	Date Collected: 07/13/16 08:45			
Client ID:	MW-8	Date Received: 07/13/16			
Sample Location:	NY	Field Prep: Not Specified			
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	07/17/16 21:56				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:07221615:57					p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMPI	E RESULTS	6	-		
Lab ID: Client ID: Sample Location:	L1621632-05 MW-8 NY				Date Col Date Rec Field Pre	eived:	07/13/16 08:45 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		ND		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	97		70-130	

		Serial_No:07221615:57			
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632			
Project Number:	30114.1002.31000	Report Date: 07/22/16			
	SAMPLE RESULTS				
Lab ID:	L1621632-06	Date Collected: 07/13/16 09:20			
Client ID:	MW-5	Date Received: 07/13/16			
Sample Location:	NY	Field Prep: Not Specified			
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	07/17/16 22:24				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	0.16	J	ug/l	0.50	0.16	1
Toluene	1.4	J	ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

	Serial_No:07221615:57					p:07221615:57	
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMP		6	-		
Lab ID: Client ID: Sample Location:	L1621632-06 MW-5 NY				Date Col Date Rec Field Pre	eived:	07/13/16 09:20 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		1.3	J	ug/l	2.5	0.70	1
o-Xylene		0.91	J	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		15		ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	89		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	97		70-130	

		Serial_No:07221615:57			
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632			
Project Number:	30114.1002.31000	Report Date: 07/22/16			
	SAMPLE RESULTS				
Lab ID:	L1621632-07	Date Collected: 07/13/16 10:20			
Client ID:	MW-9	Date Received: 07/13/16			
Sample Location:	NY	Field Prep: Not Specified			
Matrix:	Water				
Analytical Method:	1,8260C				
Analytical Date:	07/17/16 22:52				
Analyst:	PD				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
rans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

		Serial_No:07221615:57					p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMPI		5	-		
Lab ID: Client ID: Sample Location:	L1621632-07 MW-9 NY				Date Col Date Rec Field Pre	eived:	07/13/16 10:20 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		2.8	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	91		70-130	
Toluene-d8	101		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	97		70-130	

			Serial_N	o:07221615:57
Project Name:	DELAVAL GROUND	WATER	Lab Number:	L1621632
Project Number:	30114.1002.31000		Report Date:	07/22/16
		SAMPLE RESULTS	5	
Lab ID:	L1621632-08	D	Date Collected:	07/13/16 10:35
Client ID:	WC-1		Date Received:	07/13/16
Sample Location:	NY		Field Prep:	Not Specified
Matrix:	Water			
Analytical Method:	1,8260C			
Analytical Date:	07/18/16 10:20			
Analyst:	KD			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	tborough Lab					
Methylene chloride	ND		ug/l	50	14.	20
1,1-Dichloroethane	ND		ug/l	50	14.	20
Chloroform	ND		ug/l	50	14.	20
Carbon tetrachloride	ND		ug/l	10	2.7	20
1,2-Dichloropropane	ND		ug/l	20	2.7	20
Dibromochloromethane	ND		ug/l	10	3.0	20
1,1,2-Trichloroethane	ND		ug/l	30	10.	20
Tetrachloroethene	ND		ug/l	10	3.6	20
Chlorobenzene	ND		ug/l	50	14.	20
Trichlorofluoromethane	ND		ug/l	50	14.	20
1,2-Dichloroethane	ND		ug/l	10	2.6	20
1,1,1-Trichloroethane	ND		ug/l	50	14.	20
Bromodichloromethane	ND		ug/l	10	3.8	20
trans-1,3-Dichloropropene	ND		ug/l	10	3.3	20
cis-1,3-Dichloropropene	ND		ug/l	10	2.9	20
Bromoform	ND		ug/l	40	13.	20
1,1,2,2-Tetrachloroethane	ND		ug/l	10	2.9	20
Benzene	ND		ug/l	10	3.2	20
Toluene	ND		ug/l	50	14.	20
Ethylbenzene	ND		ug/l	50	14.	20
Chloromethane	ND		ug/l	50	14.	20
Bromomethane	ND		ug/l	50	14.	20
Vinyl chloride	ND		ug/l	20	1.4	20
Chloroethane	ND		ug/l	50	14.	20
1,1-Dichloroethene	ND		ug/l	10	2.8	20
trans-1,2-Dichloroethene	ND		ug/l	50	14.	20
Trichloroethene	ND		ug/l	10	3.5	20
1,2-Dichlorobenzene	ND		ug/l	50	14.	20
1,3-Dichlorobenzene	ND		ug/l	50	14.	20
1,4-Dichlorobenzene	ND		ug/l	50	14.	20

					S	Serial_N	p:07221615:57
Project Name:	DELAVAL GROUND	WATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMPL	E RESULTS	5			
Lab ID: Client ID: Sample Location:	L1621632-08 WC-1 NY	D			Date Col Date Rec Field Pre	eived:	07/13/16 10:35 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborou	gh Lab					
Methyl tert butyl ether		ND		ug/l	50	14.	20
p/m-Xylene		ND		ug/l	50	14.	20
o-Xylene		ND		ug/l	50	14.	20
cis-1,2-Dichloroethene		ND		ug/l	50	14.	20
Styrene		ND		ug/l	50	14.	20
Dichlorodifluoromethane		ND		ug/l	100	20.	20
Acetone		ND		ug/l	100	29.	20
Carbon disulfide		ND		ug/l	100	20.	20
2-Butanone		ND		ug/l	100	39.	20
4-Methyl-2-pentanone		ND		ug/l	100	20.	20
2-Hexanone		ND		ug/l	100	20.	20
Bromochloromethane		ND		ug/l	50	14.	20
1,2-Dibromoethane		ND		ug/l	40	13.	20
1,2-Dibromo-3-chloroprop	bane	ND		ug/l	50	14.	20
Isopropylbenzene		ND		ug/l	50	14.	20
1,2,3-Trichlorobenzene		ND		ug/l	50	14.	20
1,2,4-Trichlorobenzene		ND		ug/l	50	14.	20
Methyl Acetate		ND		ug/l	40	4.7	20
Cyclohexane		ND		ug/l	200	5.4	20
1,4-Dioxane		ND		ug/l	5000	820	20
Freon-113		ND		ug/l	50	14.	20
Methyl cyclohexane		ND		ug/l	200	7.9	20

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	110		70-130	
4-Bromofluorobenzene	110		70-130	
Dibromofluoromethane	93		70-130	

		Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-09	Date Collected:	07/13/16 00:00
Client ID:	TRIP BLANK	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water		
Analytical Method:	1,8260C		
Analytical Date:	07/17/16 20:59		
Analyst:	PD		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.13	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.14	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1

					S	Serial_No	p:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
-		SAMPI		5			
Lab ID: Client ID: Sample Location:	L1621632-09 TRIP BLANK NY				Date Col Date Rec Field Pre	ceived:	07/13/16 00:00 07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics b	y GC/MS - Westborough	n Lab					
Methyl tert butyl ether		ND		ug/l	2.5	0.70	1
p/m-Xylene		ND		ug/l	2.5	0.70	1
o-Xylene		ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene		ND		ug/l	2.5	0.70	1
Styrene		ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane		ND		ug/l	5.0	1.0	1
Acetone		1.9	J	ug/l	5.0	1.5	1
Carbon disulfide		ND		ug/l	5.0	1.0	1
2-Butanone		ND		ug/l	5.0	1.9	1
4-Methyl-2-pentanone		ND		ug/l	5.0	1.0	1
2-Hexanone		ND		ug/l	5.0	1.0	1
Bromochloromethane		ND		ug/l	2.5	0.70	1
1,2-Dibromoethane		ND		ug/l	2.0	0.65	1
1,2-Dibromo-3-chloroprop	pane	ND		ug/l	2.5	0.70	1
Isopropylbenzene		ND		ug/l	2.5	0.70	1
1,2,3-Trichlorobenzene		ND		ug/l	2.5	0.70	1
1,2,4-Trichlorobenzene		ND		ug/l	2.5	0.70	1
Methyl Acetate		ND		ug/l	2.0	0.23	1
Cyclohexane		ND		ug/l	10	0.27	1
1,4-Dioxane		ND		ug/l	250	41.	1
Freon-113		ND		ug/l	2.5	0.70	1
Methyl cyclohexane		ND		ug/l	10	0.40	1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	90		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	102		70-130	
Dibromofluoromethane	95		70-130	

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8260C
Analytical Date:	07/16/16 17:29
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
blatile Organics by GC/MS -	Westborough La	b for sample(s): 01-03	Batch:	WG914625-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.13
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.14
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16

Analytical Method:	1,8260C
Analytical Date:	07/16/16 17:29
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lat	o for sample(s):	01-03 Batch:	WG914625-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	41.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632	
Project Number:	30114.1002.31000	Report Date:	07/22/16	
Method Blank Analysis				

Analytical Method:	1,8260C
Analytical Date:	07/16/16 17:29
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sample	e(s): 01-03	Batch:	WG914625-5	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1.2-Dichloroethane-d4	104		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	105		70-130	
Dibromofluoromethane	97		70-130	

L1621632 07/22/16

Project Name:	DELAVAL GROUNDWATER	Lab Number:
Project Number:	30114.1002.31000	Report Date:

Analytical Method:	1,8260C
Analytical Date:	07/17/16 20:31
Analyst:	PD

arameter	Result	Qualifier	Units	RL		MDL
olatile Organics by GC/MS -	Westborough Lal	b for sample	(s):	04-07,09	Batch:	WG914628-5
Methylene chloride	ND		ug/l	2.5		0.70
1,1-Dichloroethane	ND		ug/l	2.5		0.70
Chloroform	ND		ug/l	2.5		0.70
Carbon tetrachloride	ND		ug/l	0.5	C	0.13
1,2-Dichloropropane	ND		ug/l	1.0)	0.13
Dibromochloromethane	ND		ug/l	0.5	C	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5		0.50
Tetrachloroethene	ND		ug/l	0.5	C	0.18
Chlorobenzene	ND		ug/l	2.5		0.70
Trichlorofluoromethane	ND		ug/l	2.5		0.70
1,2-Dichloroethane	ND		ug/l	0.5	C	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5		0.70
Bromodichloromethane	ND		ug/l	0.5	C	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.5	C	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.5	C	0.14
Bromoform	ND		ug/l	2.0)	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.5	C	0.14
Benzene	ND		ug/l	0.5	C	0.16
Toluene	ND		ug/l	2.5		0.70
Ethylbenzene	ND		ug/l	2.5		0.70
Chloromethane	ND		ug/l	2.5		0.70
Bromomethane	ND		ug/l	2.5		0.70
Vinyl chloride	ND		ug/l	1.0)	0.07
Chloroethane	ND		ug/l	2.5		0.70
1,1-Dichloroethene	ND		ug/l	0.5	0	0.14
trans-1,2-Dichloroethene	ND		ug/l	2.5		0.70
Trichloroethene	ND		ug/l	0.5	0	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5		0.70
1,3-Dichlorobenzene	ND		ug/l	2.5		0.70

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16

Analytical Method:	1,8260C
Analytical Date:	07/17/16 20:31
Analyst:	PD

arameter	Result	Qualifier Units	s RL	MDL
olatile Organics by GC/MS - V	Nestborough Lal	o for sample(s):	04-07,09	Batch: WG914628-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250) 41.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632	
Project Number:	30114.1002.31000	Report Date:	07/22/16	
Method Blank Analysis				

Analytical Method:	1,8260C
Analytical Date:	07/17/16 20:31
Analyst:	PD

Parameter	Result	Qualifier	Units	R	L	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sample	e(s):	04-07,09	Batch:	WG914628-5	

		Acceptance				
Surrogate	%Recovery	Qualifier	Criteria			
1,2-Dichloroethane-d4	91		70-130			
Toluene-d8	100		70-130			
4-Bromofluorobenzene	100		70-130			
Dibromofluoromethane	95		70-130			

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16

Analytical Method:	1,8260C
Analytical Date:	07/18/16 09:39
Analyst:	PD

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sampl	e(s): 08	Batch:	WG914671-5
Methylene chloride	ND		ug/l	2.5	0.70
1,1-Dichloroethane	ND		ug/l	2.5	0.70
Chloroform	ND		ug/l	2.5	0.70
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.0	0.13
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	2.5	0.70
Trichlorofluoromethane	ND		ug/l	2.5	0.70
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
Bromoform	ND		ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.14
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	2.5	0.70
Ethylbenzene	ND		ug/l	2.5	0.70
Chloromethane	ND		ug/l	2.5	0.70
Bromomethane	ND		ug/l	2.5	0.70
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	2.5	0.70
1,1-Dichloroethene	ND		ug/l	0.50	0.14
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16

Analytical Method:	1,8260C
Analytical Date:	07/18/16 09:39
Analyst:	PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	o for sample(s): 08	Batch:	WG914671-5
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
Methyl Acetate	ND	ug/l	2.0	0.23
Cyclohexane	ND	ug/l	10	0.27
1,4-Dioxane	ND	ug/l	250	41.
Freon-113	ND	ug/l	2.5	0.70
Methyl cyclohexane	ND	ug/l	10	0.40

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632	
Project Number:	30114.1002.31000	Report Date:	07/22/16	
Method Blank Analysis				

Analytical Method:	1,8260C
Analytical Date:	07/18/16 09:39
Analyst:	PD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sampl	e(s): 08	Batch:	WG914671-5	

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	104		70-130
Toluene-d8	107		70-130
4-Bromofluorobenzene	111		70-130
Dibromofluoromethane	93		70-130

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG914625-3	WG914625-4			
Methylene chloride	100		99		70-130	1		20
1,1-Dichloroethane	110		100		70-130	10		20
Chloroform	110		100		70-130	10		20
2-Chloroethylvinyl ether	74		110		70-130	39	Q	20
Carbon tetrachloride	100		97		63-132	3		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	110		100		63-130	10		20
1,1,2-Trichloroethane	120		120		70-130	0		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	110		110		75-130	0		20
Trichlorofluoromethane	100		96		62-150	4		20
1,2-Dichloroethane	100		99		70-130	1		20
1,1,1-Trichloroethane	110		100		67-130	10		20
Bromodichloromethane	110		100		67-130	10		20
trans-1,3-Dichloropropene	100		96		70-130	4		20
cis-1,3-Dichloropropene	95		92		70-130	3		20
1,1-Dichloropropene	110		100		70-130	10		20
Bromoform	120		120		54-136	0		20
1,1,2,2-Tetrachloroethane	120		120		67-130	0		20
Benzene	100		100		70-130	0		20
Toluene	110		110		70-130	0		20

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03 Batch:	WG914625-3	WG914625-4			
Ethylbenzene	120		110		70-130	9	20	
Chloromethane	77		70		64-130	10	20	
Bromomethane	86		77		39-139	11	20	
Vinyl chloride	92		87		55-140	6	20	
Chloroethane	93		90		55-138	3	20	
1,1-Dichloroethene	110		98		61-145	12	20	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	100		100		70-130	0	20	
1,2-Dichlorobenzene	110		110		70-130	0	20	
1,3-Dichlorobenzene	110		110		70-130	0	20	
1,4-Dichlorobenzene	110		110		70-130	0	20	
Methyl tert butyl ether	110		110		63-130	0	20	
p/m-Xylene	115		110		70-130	4	20	
o-Xylene	115		110		70-130	4	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Dibromomethane	110		100		70-130	10	20	
1,2,3-Trichloropropane	120		120		64-130	0	20	
Acrylonitrile	97		100		70-130	3	20	
Isopropyl Ether	100		99		70-130	1	20	
tert-Butyl Alcohol	92		90		70-130	2	20	
Styrene	115		115		70-130	0	20	

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	' Qual	%Recovery Limits	RPD		PD nits
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	01-03 Batch:	WG914625-3	WG914625-4			
Dichlorodifluoromethane	81		76		36-147	6	:	20
Acetone	96		92		58-148	4	2	20
Carbon disulfide	92		84		51-130	9	2	20
2-Butanone	96		100		63-138	4	2	20
Vinyl acetate	84		84		70-130	0	2	20
4-Methyl-2-pentanone	110		110		59-130	0	2	20
2-Hexanone	120		120		57-130	0	2	20
Acrolein	87		87		40-160	0	2	20
Bromochloromethane	110		100		70-130	10	2	20
2,2-Dichloropropane	98		93		63-133	5	2	20
1,2-Dibromoethane	120		120		70-130	0	2	20
1,3-Dichloropropane	120		110		70-130	9	2	20
1,1,1,2-Tetrachloroethane	120		120		64-130	0	2	20
Bromobenzene	110		110		70-130	0	2	20
n-Butylbenzene	120		110		53-136	9	2	20
sec-Butylbenzene	120		110		70-130	9	2	20
tert-Butylbenzene	120		110		70-130	9	2	20
o-Chlorotoluene	110		110		70-130	0	2	20
p-Chlorotoluene	110		110		70-130	0	2	20
1,2-Dibromo-3-chloropropane	110		110		41-144	0	2	20
Hexachlorobutadiene	120		120		63-130	0	2	20

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01-03	Batch:	WG914625-3	WG914625-4			
Isopropylbenzene	120			120		70-130	0		20
p-Isopropyltoluene	120			110		70-130	9		20
Naphthalene	110			110		70-130	0		20
n-Propylbenzene	120			120		69-130	0		20
1,2,3-Trichlorobenzene	120			120		70-130	0		20
1,2,4-Trichlorobenzene	120			110		70-130	9		20
1,3,5-Trimethylbenzene	110			110		64-130	0		20
1,2,4-Trimethylbenzene	120			110		70-130	9		20
Methyl Acetate	90			78		70-130	14		20
Ethyl Acetate	96			95		70-130	1		20
Cyclohexane	110			100		70-130	10		20
Ethyl-Tert-Butyl-Ether	110			100		70-130	10		20
Tertiary-Amyl Methyl Ether	110			100		66-130	10		20
1,4-Dioxane	112			120		56-162	7		20
Freon-113	110			100		70-130	10		20
1,4-Diethylbenzene	120			110		70-130	9		20
4-Ethyltoluene	120			120		70-130	0		20
1,2,4,5-Tetramethylbenzene	120			110		70-130	9		20
Tetrahydrofuran	87			88		58-130	1		20
Ethyl ether	100			100		59-134	0		20
trans-1,4-Dichloro-2-butene	110			100		70-130	10		20

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

Pa	rameter	LCS %Recoverv	Qual		LCSD ecoverv	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
<u>1 a</u>	Tameter	/maccovery	Quui	,,,,,		Quai	Emito	N D	Quai	Emility	
Vo	latile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03	Batch:	WG914625-3	WG914625-4				
	lodomethane	37	Q		42	Q	70-130	13		20	
	Methyl cyclohexane	110			100		70-130	10		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	98		98		70-130	
Toluene-d8	102		102		70-130	
4-Bromofluorobenzene	98		100		70-130	
Dibromofluoromethane	100		98		70-130	

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recove Qual Limits		RPD Qual Limit	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	04-07,09 Batch:	WG914628-3 WG91	4628-4		
Methylene chloride	88		97	70-130	10	20	
1,1-Dichloroethane	91		100	70-130	9	20	
Chloroform	91		100	70-130	9	20	
2-Chloroethylvinyl ether	68	Q	79	70-130	15	20	
Carbon tetrachloride	88		100	63-132	13	20	
1,2-Dichloropropane	92		100	70-130	8	20	
Dibromochloromethane	79		90	63-130	13	20	
1,1,2-Trichloroethane	83		94	70-130	12	20	
Tetrachloroethene	90		100	70-130	11	20	
Chlorobenzene	93		100	75-130	7	20	
Trichlorofluoromethane	83		95	62-150	13	20	
1,2-Dichloroethane	85		95	70-130	11	20	
1,1,1-Trichloroethane	88		99	67-130	12	20	
Bromodichloromethane	85		95	67-130	11	20	
trans-1,3-Dichloropropene	79		91	70-130	14	20	
cis-1,3-Dichloropropene	83		93	70-130	11	20	
1,1-Dichloropropene	90		100	70-130	11	20	
Bromoform	73		90	54-136	21	Q 20	
1,1,2,2-Tetrachloroethane	81		96	67-130	17	20	
Benzene	89		100	70-130	12	20	
Toluene	91		100	70-130	9	20	

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCS %Reco		% Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04-07,09	Batch:	WG914628-3	WG914628-4			
Ethylbenzene	94		10	0		70-130	6		20
Chloromethane	80		9	1		64-130	13		20
Bromomethane	67		68	8		39-139	1		20
Vinyl chloride	78		88	8		55-140	12		20
Chloroethane	82		9:	3		55-138	13		20
1,1-Dichloroethene	82		9:	3		61-145	13		20
trans-1,2-Dichloroethene	87		98	8		70-130	12		20
Trichloroethene	90		10	0		70-130	11		20
1,2-Dichlorobenzene	90		10	0		70-130	11		20
1,3-Dichlorobenzene	93		10	0		70-130	7		20
1,4-Dichlorobenzene	91		10	0		70-130	9		20
Methyl tert butyl ether	76		90	C		63-130	17		20
p/m-Xylene	95		10	15		70-130	10		20
o-Xylene	95		10	0		70-130	5		20
cis-1,2-Dichloroethene	89		10	0		70-130	12		20
Dibromomethane	81		90	C		70-130	11		20
1,2,3-Trichloropropane	82		90	6		64-130	16		20
Acrylonitrile	81		90	C		70-130	11		20
Isopropyl Ether	90		10	0		70-130	11		20
tert-Butyl Alcohol	98		11	8		70-130	19		20
Styrene	90		10	0		70-130	11		20

Project Number: 30114.1002.31000

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westbor	ough Lab Associated sample	e(s): 04-07,09 Batch:	WG914628-3 WG914628-4		
Dichlorodifluoromethane	75	85	36-147	13	20
Acetone	96	100	58-148	4	20
Carbon disulfide	72	82	51-130	13	20
2-Butanone	90	100	63-138	11	20
Vinyl acetate	81	92	70-130	13	20
4-Methyl-2-pentanone	78	90	59-130	14	20
2-Hexanone	77	89	57-130	14	20
Acrolein	79	87	40-160	10	20
Bromochloromethane	86	95	70-130	10	20
2,2-Dichloropropane	87	100	63-133	14	20
1,2-Dibromoethane	81	90	70-130	11	20
1,3-Dichloropropane	84	96	70-130	13	20
1,1,1,2-Tetrachloroethane	87	100	64-130	14	20
Bromobenzene	87	97	70-130	11	20
n-Butylbenzene	100	100	53-136	0	20
sec-Butylbenzene	100	110	70-130	10	20
tert-Butylbenzene	85	92	70-130	8	20
o-Chlorotoluene	97	100	70-130	3	20
p-Chlorotoluene	94	100	70-130	6	20
1,2-Dibromo-3-chloropropane	69	82	41-144	17	20
Hexachlorobutadiene	98	110	63-130	12	20

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCS %Reco		gual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	04-07,09	Batch:	WG914628-3	3 WG914628-4			
Isopropylbenzene	94		10	00		70-130	6		20
p-Isopropyltoluene	98		10	00		70-130	2		20
Naphthalene	72		8	1		70-130	12		20
n-Propylbenzene	98		11	0		69-130	12		20
1,2,3-Trichlorobenzene	84		9	5		70-130	12		20
1,2,4-Trichlorobenzene	87		9	6		70-130	10		20
1,3,5-Trimethylbenzene	96		10	00		64-130	4		20
1,2,4-Trimethylbenzene	93		9	9		70-130	6		20
Methyl Acetate	79		9	2		70-130	15		20
Ethyl Acetate	81		9	5		70-130	16		20
Cyclohexane	95		11	0		70-130	15		20
Ethyl-Tert-Butyl-Ether	83		9	6		70-130	15		20
Tertiary-Amyl Methyl Ether	77		9	0		66-130	16		20
1,4-Dioxane	82		10	00		56-162	20		20
Freon-113	88		9	8		70-130	11		20
1,4-Diethylbenzene	96		10	00		70-130	4		20
4-Ethyltoluene	95		10	00		70-130	5		20
1,2,4,5-Tetramethylbenzene	95		10	00		70-130	5		20
Tetrahydrofuran	73		9	7		58-130	28	Q	20
Ethyl ether	76		8	9		59-134	16		20
trans-1,4-Dichloro-2-butene	75		8	7		70-130	15		20

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

	LCS		LCSD	9	6Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	04-07,09 Batch:	WG914628-3	3 WG914628-4				
lodomethane	39	Q	49	Q	70-130	23	Q	20	
Methyl cyclohexane	97		110		70-130	13		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	90		91		70-130	
Toluene-d8	100		100		70-130	
4-Bromofluorobenzene	96		97		70-130	
Dibromofluoromethane	95		95		70-130	

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 08	Batch: WGS	914671-3	WG914671-4			
Methylene chloride	110		110		70-130	0	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		100		70-130	0	20	
2-Chloroethylvinyl ether	60	Q	63	Q	70-130	5	20	
Carbon tetrachloride	85		84		63-132	1	20	
1,2-Dichloropropane	110		110		70-130	0	20	
Dibromochloromethane	100		100		63-130	0	20	
1,1,2-Trichloroethane	110		120		70-130	9	20	
Tetrachloroethene	94		95		70-130	1	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	73		71		62-150	3	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	100		100		67-130	0	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	93		95		70-130	2	20	
cis-1,3-Dichloropropene	91		93		70-130	2	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	74		77		54-136	4	20	
1,1,2,2-Tetrachloroethane	110		110		67-130	0	20	
Benzene	110		100		70-130	10	20	
Toluene	110		110		70-130	0	20	

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 08	Batch: WGS	914671-3	WG914671-4		
Ethylbenzene	110		110		70-130	0	20
Chloromethane	100		100		64-130	0	20
Bromomethane	79		72		39-139	9	20
Vinyl chloride	94		93		55-140	1	20
Chloroethane	73		72		55-138	1	20
1,1-Dichloroethene	94		91		61-145	3	 20
trans-1,2-Dichloroethene	98		96		70-130	2	 20
Trichloroethene	98		97		70-130	1	 20
1,2-Dichlorobenzene	100		100		70-130	0	 20
1,3-Dichlorobenzene	100		100		70-130	0	20
1,4-Dichlorobenzene	98		99		70-130	1	20
Methyl tert butyl ether	110		110		63-130	0	20
p/m-Xylene	110		110		70-130	0	20
o-Xylene	110		110		70-130	0	20
cis-1,2-Dichloroethene	100		99		70-130	1	20
Dibromomethane	95		96		70-130	1	20
1,2,3-Trichloropropane	120		120		64-130	0	20
Acrylonitrile	120		120		70-130	0	20
Isopropyl Ether	120		120		70-130	0	20
tert-Butyl Alcohol	134	Q	140	Q	70-130	4	20
Styrene	115		115		70-130	0	20

Lab Control Sample Analysis

Batch Quality Control

Project Number: 30114.1002.31000

Lab Number: L1621632 Report Date: 07/22/16

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 08 Batch: WG914671-3 WG914671-4 Dichlorodifluoromethane 62 60 20 36-147 3 Acetone 110 110 58-148 0 20 Carbon disulfide 100 98 51-130 20 2 20 2-Butanone 100 120 63-138 18 Vinyl acetate 100 100 70-130 20 0 4-Methyl-2-pentanone 20 110 120 59-130 9 2-Hexanone 100 110 57-130 10 20 Acrolein 90 95 40-160 20 5 Bromochloromethane 70-130 20 90 90 0 63-133 20 2,2-Dichloropropane 94 94 0 100 100 70-130 20 1.2-Dibromoethane 0 1,3-Dichloropropane 120 120 70-130 0 20 1,1,1,2-Tetrachloroethane 100 64-130 20 99 1 96 70-130 20 Bromobenzene 95 1 n-Butylbenzene 53-136 20 120 120 0 sec-Butylbenzene 120 70-130 20 110 9 tert-Butylbenzene 93 93 70-130 0 20 o-Chlorotoluene 120 120 70-130 0 20 70-130 20 p-Chlorotoluene 110 110 0 41-144 20 1,2-Dibromo-3-chloropropane 90 94 4 Hexachlorobutadiene 110 110 63-130 20 0

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 08	Batch: WGS	914671-3	WG914671-4			
Isopropylbenzene	110		110		70-130	0	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	100		110		70-130	10	20	
n-Propylbenzene	110		110		69-130	0	20	
1,2,3-Trichlorobenzene	130		140	Q	70-130	7	20	
1,2,4-Trichlorobenzene	120		120		70-130	0	20	
1,3,5-Trimethylbenzene	110		110		64-130	0	20	
1,2,4-Trimethylbenzene	110		110		70-130	0	20	
Methyl Acetate	110		120		70-130	9	20	
Ethyl Acetate	110		110		70-130	0	20	
Cyclohexane	110		110		70-130	0	20	
Ethyl-Tert-Butyl-Ether	120		120		70-130	0	20	
Tertiary-Amyl Methyl Ether	97		100		66-130	3	20	
1,4-Dioxane	124		124		56-162	0	20	
Freon-113	88		86		70-130	2	20	
1,4-Diethylbenzene	100		100		70-130	0	20	
4-Ethyltoluene	110		120		70-130	9	20	
1,2,4,5-Tetramethylbenzene	100		100		70-130	0	20	
Tetrahydrofuran	120		130		58-130	8	20	
Ethyl ether	93		84		59-134	10	20	
trans-1,4-Dichloro-2-butene	82		87		70-130	6	20	

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

Pa	rameter	LCS %Recoverv	Qual	LCSE %Recov		%Recovery Limits	RPD		RPD Limits
<u>1 a</u>		, in (coor or y	Quui	,	ery quui	Emito	NID	quui	
Vo	latile Organics by GC/MS - Westborough L	ab Associated	sample(s): (08 Batch:	WG914671-3	WG914671-4			
	lodomethane	34	Q	37	Q	70-130	8		20
	Methyl cyclohexane	110		110		70-130	0		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
	100					
1,2-Dichloroethane-d4	100		101		70-130	
Toluene-d8	108		109		70-130	
4-Bromofluorobenzene	109		110		70-130	
Dibromofluoromethane	97		96		70-130	

SEMIVOLATILES

				Serial_N	o:07221615:57
Project Name:	DELAVAL GROUND	OWAT	ER	Lab Number:	L1621632
Project Number:	30114.1002.31000			Report Date:	07/22/16
			SAMPLE RESULTS		
Lab ID:	L1621632-01	D		Date Collected:	07/12/16 11:38
Client ID:	MW-1			Date Received:	07/13/16
Sample Location:	NY			Field Prep:	Not Specified
Matrix:	Water			Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D			Extraction Date:	07/16/16 09:36
Analytical Date:	07/22/16 13:20				
Analyst:	RC				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - West	borough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	10	3.3	5
3,3'-Dichlorobenzidine	ND		ug/l	25	7.0	5
2,4-Dinitrotoluene	ND		ug/l	25	4.2	5
2,6-Dinitrotoluene	ND		ug/l	25	5.6	5
4-Chlorophenyl phenyl ether	ND		ug/l	10	3.1	5
4-Bromophenyl phenyl ether	ND		ug/l	10	3.6	5
Bis(2-chloroisopropyl)ether	ND		ug/l	10	3.5	5
Bis(2-chloroethoxy)methane	ND		ug/l	25	3.1	5
Hexachlorocyclopentadiene	ND		ug/l	100	39.	5
Isophorone	ND		ug/l	25	3.0	5
Nitrobenzene	ND		ug/l	10	3.8	5
NDPA/DPA	ND		ug/l	10	3.2	5
n-Nitrosodi-n-propylamine	ND		ug/l	25	3.5	5
Bis(2-ethylhexyl)phthalate	ND		ug/l	15	4.6	5
Butyl benzyl phthalate	ND		ug/l	25	6.3	5
Di-n-butylphthalate	ND		ug/l	25	3.4	5
Di-n-octylphthalate	ND		ug/l	25	5.7	5
Diethyl phthalate	ND		ug/l	25	3.1	5
Dimethyl phthalate	ND		ug/l	25	3.2	5
Biphenyl	ND		ug/l	10	3.8	5
4-Chloroaniline	ND		ug/l	25	3.2	5
2-Nitroaniline	ND		ug/l	25	5.7	5
3-Nitroaniline	ND		ug/l	25	5.7	5
4-Nitroaniline	ND		ug/l	25	6.5	5
Dibenzofuran	ND		ug/l	10	3.3	5
1,2,4,5-Tetrachlorobenzene	ND		ug/l	50	3.3	5
Acetophenone	ND		ug/l	25	4.2	5
2,4,6-Trichlorophenol	ND		ug/l	25	3.4	5
p-Chloro-m-cresol	ND		ug/l	10	3.1	5
2-Chlorophenol	ND		ug/l	10	3.2	5

						Serial_N	0:07221615:57
Project Name:	DELAVAL GROUN	NDWATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000)			Report	Date:	07/22/16
		SAMP		6			
Lab ID:	L1621632-01	D			Date Co		07/12/16 11:38
Client ID: Sample Location:	MW-1 NY				Date Re Field Pre		07/13/16 Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Wes	stborough Lab					
2,4-Dichlorophenol		ND		ug/l	25	3.8	5
2,4-Dimethylphenol		ND		ug/l	25	8.2	5
2-Nitrophenol		ND		ug/l	50	7.6	5
4-Nitrophenol		ND		ug/l	50	8.8	5
2,4-Dinitrophenol		ND		ug/l	100	27.	5
4,6-Dinitro-o-cresol		ND		ug/l	50	10.	5
Phenol		ND		ug/l	25	9.4	5
3-Methylphenol/4-Methyl	phenol	ND		ug/l	25	5.6	5
2,4,5-Trichlorophenol		ND		ug/l	25	3.6	5
Carbazole		ND		ug/l	10	3.1	5
Atrazine		ND		ug/l	50	9.2	5
Benzaldehyde		ND		ug/l	25	5.4	5
Caprolactam		ND		ug/l	50	18.	5
2,3,4,6-Tetrachlorophenc	bl	ND		ug/l	25	4.6	5

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	24	21-120	
Phenol-d6	25	10-120	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	84	15-120	
2,4,6-Tribromophenol	29	10-120	
4-Terphenyl-d14	89	41-149	

				Serial_N	o:07221615:57
Project Name:	DELAVAL GROUND	WATER		Lab Number:	L1621632
Project Number:	30114.1002.31000			Report Date:	07/22/16
		SAMPLE RES	SULTS		
Lab ID:	L1621632-01	D		Date Collected:	07/12/16 11:38
Client ID:	MW-1			Date Received:	07/13/16
Sample Location:	NY			Field Prep:	Not Specified
Matrix:	Water			Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM			Extraction Date:	07/16/16 09:25
Analytical Date:	07/18/16 19:21				
Analyst:	KV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - V	Nestborough La	ab				
Acenaphthene	0.39	J	ug/l	0.50	0.18	5
2-Chloronaphthalene	ND		ug/l	1.0	0.18	5
Fluoranthene	4.2		ug/l	1.0	0.19	5
Hexachlorobutadiene	ND		ug/l	2.5	0.18	5
Naphthalene	0.28	J	ug/l	1.0	0.22	5
Benzo(a)anthracene	1.6		ug/l	1.0	0.08	5
Benzo(a)pyrene	1.5		ug/l	1.0	0.20	5
Benzo(b)fluoranthene	2.0		ug/l	1.0	0.08	5
Benzo(k)fluoranthene	0.72	J	ug/l	1.0	0.21	5
Chrysene	1.6		ug/l	1.0	0.19	5
Acenaphthylene	0.38	J	ug/l	1.0	0.18	5
Anthracene	0.76	J	ug/l	1.0	0.18	5
Benzo(ghi)perylene	0.83	J	ug/l	1.0	0.21	5
Fluorene	0.36	J	ug/l	1.0	0.18	5
Phenanthrene	2.9		ug/l	1.0	0.08	5
Dibenzo(a,h)anthracene	0.24	J	ug/l	1.0	0.20	5
Indeno(1,2,3-cd)pyrene	0.97	J	ug/l	1.0	0.20	5
Pyrene	3.4		ug/l	1.0	0.20	5
2-Methylnaphthalene	ND		ug/l	1.0	0.22	5
Pentachlorophenol	ND		ug/l	4.0	1.1	5
Hexachlorobenzene	ND		ug/l	4.0	0.16	5
Hexachloroethane	ND		ug/l	4.0	0.15	5

					5	Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDV	VATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULT	6			
Lab ID:	L1621632-01	D			Date Coll	lected:	07/12/16 11:38
Client ID:	MW-1				Date Rec	eived:	07/13/16
Sample Location:	NY				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS-SIM - We	estborough L	ab				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	42		21-120	
Phenol-d6	25		10-120	
Nitrobenzene-d5	71		23-120	
2-Fluorobiphenyl	81		15-120	
2,4,6-Tribromophenol	77		10-120	
4-Terphenyl-d14	88		41-149	

		Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-02	Date Collected:	07/12/16 15:55
Client ID:	MW-6	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	07/16/16 09:36
Analytical Date:	07/21/16 06:11		
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

		Serial_No:07221615					0:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621632-02				Date Co	llected:	07/12/16 15:55
Client ID:	MW-6				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/l	5.0	0.93	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	89	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	68	10-120
4-Terphenyl-d14	82	41-149

		Serial_N	o:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-02	Date Collected:	07/12/16 15:55
Client ID:	MW-6	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	07/16/16 09:25
Analytical Date:	07/17/16 08:23		
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough L	ab				
Acenaphthene	0.10		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.14	J	ug/l	0.20	0.04	1
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	0.19	J	ug/l	0.20	0.04	1
Benzo(a)anthracene	0.06	J	ug/l	0.20	0.02	1
Benzo(a)pyrene	0.05	J	ug/l	0.20	0.04	1
Benzo(b)fluoranthene	0.06	J	ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	0.05	J	ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	ND		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	0.04	J	ug/l	0.20	0.04	1
Phenanthrene	0.07	J	ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	0.14	J	ug/l	0.20	0.04	1
2-Methylnaphthalene	0.11	J	ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

					:	Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDWA	ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMPL	E RESULTS	5			
Lab ID:	L1621632-02				Date Col	lected:	07/12/16 15:55
Client ID:	MW-6				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organ	ics by GC/MS-SIM - Wes	tborough La	b				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	28		10-120	
Nitrobenzene-d5	94		23-120	
2-Fluorobiphenyl	83		15-120	
2,4,6-Tribromophenol	81		10-120	
4-Terphenyl-d14	71		41-149	

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-03	Date Collected: 07/12/16 13:15
Client ID:	MW-2	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D	Extraction Date: 07/16/16 09:36
Analytical Date:	07/21/16 06:38	
Analyst:	MW	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
o-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

			Serial_No:07221615:57				
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID: Client ID: Sample Location:	L1621632-03 MW-2 NY			Date Collected: Date Received: Field Prep:		07/12/16 13:15 07/13/16 Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/l	5.0	0.93	1

% Recovery	Qualifier	Acceptance Criteria
43		21-120
37		10-120
97		23-120
86		15-120
58		10-120
88		41-149
	43 37 97 86 58	43 37 97 86 58

		Serial_N	o:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-03	Date Collected:	07/12/16 13:15
Client ID:	MW-2	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	07/16/16 09:25
Analytical Date:	07/17/16 08:53		
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1
Fluoranthene	0.28			0.20	0.04	1
Hexachlorobutadiene	ND		ug/l			
			ug/l	0.50	0.04	1
Naphthalene	0.07	J	ug/l	0.20	0.04	1
Benzo(a)anthracene	0.16	J	ug/l	0.20	0.02	1
Benzo(a)pyrene	0.14	J	ug/l	0.20	0.04	1
Benzo(b)fluoranthene	0.19	J	ug/l	0.20	0.02	1
Benzo(k)fluoranthene	0.06	J	ug/l	0.20	0.04	1
Chrysene	0.14	J	ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	0.04	J	ug/l	0.20	0.04	1
Benzo(ghi)perylene	0.10	J	ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	0.09	J	ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	0.11	J	ug/l	0.20	0.04	1
Pyrene	0.24		ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

					e e	0:07221615:57	
Project Name:	DELAVAL GROUNDW	ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMPL	E RESULTS	5			
Lab ID:	L1621632-03				Date Col	lected:	07/12/16 13:15
Client ID:	MW-2				Date Red	ceived:	07/13/16
Sample Location:	NY				Field Pre	p:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS-SIM - Wes	tborough La	b				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	30		10-120	
Nitrobenzene-d5	92		23-120	
2-Fluorobiphenyl	80		15-120	
2,4,6-Tribromophenol	78		10-120	
4-Terphenyl-d14	72		41-149	

		Serial_No:0	7221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-04	Date Collected: 0	7/12/16 12:30
Client ID:	CHA-1	Date Received: 0	7/13/16
Sample Location:	NY	Field Prep: N	lot Specified
Matrix:	Water	Extraction Method:E	PA 3510C
Analytical Method:	1,8270D	Extraction Date: 0	7/16/16 09:36
Analytical Date:	07/21/16 07:04		
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

						Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	5			
Lab ID:	L1621632-04				Date Co	llected:	07/12/16 12:30
Client ID:	CHA-1				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/l	5.0	0.93	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	36	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	76	23-120
2-Fluorobiphenyl	72	15-120
2,4,6-Tribromophenol	49	10-120
4-Terphenyl-d14	81	41-149

			Serial_N	0:07221615:57
Project Name:	DELAVAL GROUND	WATER	Lab Number:	L1621632
Project Number:	30114.1002.31000		Report Date:	07/22/16
		SAMPLE RESU	LTS	
Lab ID:	L1621632-04	D	Date Collected:	07/12/16 12:30
Client ID:	CHA-1		Date Received:	07/13/16
Sample Location:	NY		Field Prep:	Not Specified
Matrix:	Water		Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM		Extraction Date:	07/16/16 09:25
Analytical Date:	07/18/16 19:51			
Analyst:	KV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough La	b				
Acenaphthene	ND		ug/l	0.50	0.18	5
2-Chloronaphthalene	ND		ug/l	1.0	0.18	5
Fluoranthene	4.6		ug/l	1.0	0.19	5
Hexachlorobutadiene	ND		ug/l	2.5	0.18	5
Naphthalene	ND		ug/l	1.0	0.22	5
Benzo(a)anthracene	2.2		ug/l	1.0	0.08	5
Benzo(a)pyrene	2.0		ug/l	1.0	0.20	5
Benzo(b)fluoranthene	2.9		ug/l	1.0	0.08	5
Benzo(k)fluoranthene	0.95	J	ug/l	1.0	0.21	5
Chrysene	2.0		ug/l	1.0	0.19	5
Acenaphthylene	0.34	J	ug/l	1.0	0.18	5
Anthracene	0.59	J	ug/l	1.0	0.18	5
Benzo(ghi)perylene	1.1		ug/l	1.0	0.21	5
Fluorene	0.18	J	ug/l	1.0	0.18	5
Phenanthrene	1.6		ug/l	1.0	0.08	5
Dibenzo(a,h)anthracene	0.38	J	ug/l	1.0	0.20	5
Indeno(1,2,3-cd)pyrene	1.4		ug/l	1.0	0.20	5
Pyrene	3.6		ug/l	1.0	0.20	5
2-Methylnaphthalene	ND		ug/l	1.0	0.22	5
Pentachlorophenol	ND		ug/l	4.0	1.1	5
Hexachlorobenzene	ND		ug/l	4.0	0.16	5
Hexachloroethane	ND		ug/l	4.0	0.15	5

					S	erial_N	0:07221615:57
Project Name:	DELAVAL GROUND	VATER			Lab Nur	nber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621632-04	D			Date Colle	ected:	07/12/16 12:30
Client ID:	CHA-1				Date Rec	eived:	07/13/16
Sample Location:	NY				Field Prep	D:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS-SIM - We	estborough La	ab				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	27	21-120	
Phenol-d6	20	10-120	
Nitrobenzene-d5	56	23-120	
2-Fluorobiphenyl	63	15-120	
2,4,6-Tribromophenol	56	10-120	
4-Terphenyl-d14	70	41-149	

		Serial_N	o:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-05	Date Collected:	07/13/16 08:45
Client ID:	MW-8	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	07/16/16 09:36
Analytical Date:	07/21/16 07:31		
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
o-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

						Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621632-05				Date Co	llected:	07/13/16 08:45
Client ID:	MW-8				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/l	5.0	0.93	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	53	21-120
Phenol-d6	38	10-120
Nitrobenzene-d5	95	23-120
2-Fluorobiphenyl	87	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	87	41-149

		Serial_N	o:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-05	Date Collected:	07/13/16 08:45
Client ID:	MW-8	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	07/16/16 09:25
Analytical Date:	07/17/16 09:24		
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	ND		ug/l	0.10	0.04	1				
2-Chloronaphthalene	ND		ug/l	0.10	0.04	1				
Fluoranthene	ND		-	0.20	0.04	1				
Hexachlorobutadiene	ND		ug/l	0.20	0.04					
			ug/l			1				
Naphthalene	0.08	J	ug/l	0.20	0.04	1				
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1				
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1				
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1				
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1				
Chrysene	ND		ug/l	0.20	0.04	1				
Acenaphthylene	ND		ug/l	0.20	0.04	1				
Anthracene	ND		ug/l	0.20	0.04	1				
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1				
Fluorene	ND		ug/l	0.20	0.04	1				
Phenanthrene	ND		ug/l	0.20	0.02	1				
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1				
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1				
Pyrene	ND		ug/l	0.20	0.04	1				
2-Methylnaphthalene	0.09	J	ug/l	0.20	0.05	1				
Pentachlorophenol	ND		ug/l	0.80	0.22	1				
Hexachlorobenzene	ND		ug/l	0.80	0.03	1				
Hexachloroethane	ND		ug/l	0.80	0.03	1				

				:	Serial_N	0:07221615:57					
Project Name:	Project Name: DELAVAL GROUNDWATER			Lab Nu	imber:	L1621632					
Project Number:	30114.1002.31000			Report	Date:	07/22/16					
	SAMPLE RESULTS										
Lab ID:	L1621632-05				Date Co	llected:	07/13/16 08:45				
Client ID:	MW-8				Date Re	ceived:	07/13/16				
Sample Location:	NY				Field Pre	ep:	Not Specified				
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organ	ics by GC/MS-SIM - Wes	tborough Lal	b								

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	39		21-120	
Phenol-d6	29		10-120	
Nitrobenzene-d5	90		23-120	
2-Fluorobiphenyl	78		15-120	
2,4,6-Tribromophenol	79		10-120	
4-Terphenyl-d14	70		41-149	

		Serial_No:07221615:57	
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632	
Project Number:	30114.1002.31000	Report Date: 07/22/16	
	SAMPLE RESULTS		
Lab ID:	L1621632-06	Date Collected: 07/13/16 09:2	20
Client ID:	MW-5	Date Received: 07/13/16	
Sample Location:	NY	Field Prep: Not Specified	
Matrix:	Water	Extraction Method: EPA 3510C	
Analytical Method:	1,8270D	Extraction Date: 07/16/16 09:3	36
Analytical Date:	07/21/16 07:57		
Analyst:	MW		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1			
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1			
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1			
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1			
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1			
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1			
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1			
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1			
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1			
Isophorone	ND		ug/l	5.0	0.60	1			
Nitrobenzene	ND		ug/l	2.0	0.75	1			
NDPA/DPA	ND		ug/l	2.0	0.64	1			
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1			
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	0.91	1			
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1			
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1			
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1			
Diethyl phthalate	ND		ug/l	5.0	0.63	1			
Dimethyl phthalate	ND		ug/l	5.0	0.65	1			
Biphenyl	ND		ug/l	2.0	0.76	1			
4-Chloroaniline	ND		ug/l	5.0	0.63	1			
2-Nitroaniline	ND		ug/l	5.0	1.1	1			
3-Nitroaniline	ND		ug/l	5.0	1.1	1			
4-Nitroaniline	ND		ug/l	5.0	1.3	1			
Dibenzofuran	ND		ug/l	2.0	0.66	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1			
Acetophenone	ND		ug/l	5.0	0.85	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1			
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1			
2-Chlorophenol	ND		ug/l	2.0	0.63	1			

		Serial_No:07221615:57					
Project Name:	DELAVAL GROUNDWATER			Lab Nu	mber:	L1621632	
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP		6			
Lab ID:	L1621632-06				Date Co	llected:	07/13/16 09:20
Client ID:	MW-5				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/l	5.0	0.93	1

% Recovery	Qualifier	Acceptance Criteria
21		21-120
23		10-120
77		23-120
76		15-120
28		10-120
87		41-149
	21 23 77 76 28	21 23 77 76 28

				Serial_N	0:07221615:57
Project Name:	DELAVAL GROUND	WATER		Lab Number:	L1621632
Project Number:	30114.1002.31000			Report Date:	07/22/16
		SAMPLE	RESULTS		
Lab ID:	L1621632-06	D		Date Collected:	07/13/16 09:20
Client ID:	MW-5			Date Received:	07/13/16
Sample Location:	NY			Field Prep:	Not Specified
Matrix:	Water			Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM			Extraction Date:	07/16/16 09:25
Analytical Date:	07/18/16 18:51				
Analyst:	KV				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	0.19	J	ug/l	0.20	0.07	2				
2-Chloronaphthalene	ND		ug/l	0.40	0.07	2				
Fluoranthene	4.4		ug/l	0.40	0.08	2				
Hexachlorobutadiene	ND		ug/l	1.0	0.07	2				
Naphthalene	1.2		ug/l	0.40	0.09	2				
Benzo(a)anthracene	1.8		ug/l	0.40	0.03	2				
Benzo(a)pyrene	1.7		ug/l	0.40	0.08	2				
Benzo(b)fluoranthene	2.6		ug/l	0.40	0.03	2				
Benzo(k)fluoranthene	0.86		ug/l	0.40	0.08	2				
Chrysene	1.9		ug/l	0.40	0.08	2				
Acenaphthylene	0.49		ug/l	0.40	0.07	2				
Anthracene	0.68		ug/l	0.40	0.07	2				
Benzo(ghi)perylene	1.2		ug/l	0.40	0.08	2				
Fluorene	0.35	J	ug/l	0.40	0.07	2				
Phenanthrene	2.5		ug/l	0.40	0.03	2				
Dibenzo(a,h)anthracene	0.34	J	ug/l	0.40	0.08	2				
Indeno(1,2,3-cd)pyrene	1.4		ug/l	0.40	0.08	2				
Pyrene	3.6		ug/l	0.40	0.08	2				
2-Methylnaphthalene	0.21	J	ug/l	0.40	0.09	2				
Pentachlorophenol	ND		ug/l	1.6	0.44	2				
Hexachlorobenzene	ND		ug/l	1.6	0.06	2				
Hexachloroethane	ND		ug/l	1.6	0.06	2				

					S	Serial_N	0:07221615:57			
Project Name:	DELAVAL GROUNDWATER			Lab Nu	mber:	L1621632				
Project Number:	30114.1002.31000				Report	Date:	07/22/16			
	SAMPLE RESULTS									
Lab ID:	L1621632-06	D			Date Col	lected:	07/13/16 09:20			
Client ID:	MW-5				Date Rec	ceived:	07/13/16			
Sample Location:	NY				Field Pre	p:	Not Specified			
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Orgar	nics by GC/MS-SIM - We	estborough L	ab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	21		21-120	
Phenol-d6	19		10-120	
Nitrobenzene-d5	67		23-120	
2-Fluorobiphenyl	76		15-120	
2,4,6-Tribromophenol	43		10-120	
4-Terphenyl-d14	96		41-149	

		Serial_N	o:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-07	Date Collected:	07/13/16 10:20
Client ID:	MW-9	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D	Extraction Date:	07/16/16 09:36
Analytical Date:	07/21/16 17:19		
Analyst:	HL		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - \	Nestborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2.6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	1.2	J	ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

						Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDW	/ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621632-07				Date Co	llected:	07/13/16 10:20
Client ID:	MW-9				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachloropheno	bl	ND		ug/l	5.0	0.93	1

% Recovery	Acceptance Qualifier Criteria
33	21-120
28	10-120
87	23-120
91	15-120
62	10-120
98	41-149
	33 28 87 91 62

		Serial_N	o:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	SAMPLE RESULTS		
Lab ID:	L1621632-07	Date Collected:	07/13/16 10:20
Client ID:	MW-9	Date Received:	07/13/16
Sample Location:	NY	Field Prep:	Not Specified
Matrix:	Water	Extraction Metho	d:EPA 3510C
Analytical Method:	1,8270D-SIM	Extraction Date:	07/16/16 09:25
Analytical Date:	07/17/16 09:54		
Analyst:	KV		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-S	IM - Westborough La	ıb				
Acenaphthene	ND		ug/l	0.10	0.04	1
2-Chloronaphthalene	ND		ug/l	0.10	0.04	1
Fluoranthene	ND			0.20	0.04	1
			ug/l			
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1
Naphthalene	0.10	J	ug/l	0.20	0.04	1
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1
Chrysene	ND		ug/l	0.20	0.04	1
Acenaphthylene	ND		ug/l	0.20	0.04	1
Anthracene	ND		ug/l	0.20	0.04	1
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1
Fluorene	ND		ug/l	0.20	0.04	1
Phenanthrene	ND		ug/l	0.20	0.02	1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1
Pyrene	ND		ug/l	0.20	0.04	1
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1
Pentachlorophenol	ND		ug/l	0.80	0.22	1
Hexachlorobenzene	ND		ug/l	0.80	0.03	1
Hexachloroethane	ND		ug/l	0.80	0.03	1

					Ş	Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDW	ATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMPL	E RESULTS	5			
Lab ID:	L1621632-07				Date Col	lected:	07/13/16 10:20
Client ID:	MW-9				Date Red	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS-SIM - Wes	tborough La	b				

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	26		21-120
Phenol-d6	22		10-120
Nitrobenzene-d5	88		23-120
2-Fluorobiphenyl	79		15-120
2,4,6-Tribromophenol	58		10-120
4-Terphenyl-d14	71		41-149

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-08	Date Collected: 07/13/16 10:35
Client ID:	WC-1	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8270D	Extraction Date: 07/16/16 09:36
Analytical Date:	07/21/16 17:43	
Analyst:	HL	

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.67	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.4	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.84	1
2,6-Dinitrotoluene	ND		ug/l	5.0	1.1	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.62	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.73	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.70	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.63	1
Hexachlorocyclopentadiene	ND		ug/l	20	7.8	1
Isophorone	ND		ug/l	5.0	0.60	1
Nitrobenzene	ND		ug/l	2.0	0.75	1
NDPA/DPA	ND		ug/l	2.0	0.64	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.70	1
Bis(2-ethylhexyl)phthalate	3.4		ug/l	3.0	0.91	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.3	1
Di-n-butylphthalate	ND		ug/l	5.0	0.69	1
Di-n-octylphthalate	ND		ug/l	5.0	1.1	1
Diethyl phthalate	ND		ug/l	5.0	0.63	1
Dimethyl phthalate	ND		ug/l	5.0	0.65	1
Biphenyl	ND		ug/l	2.0	0.76	1
4-Chloroaniline	ND		ug/l	5.0	0.63	1
2-Nitroaniline	ND		ug/l	5.0	1.1	1
3-Nitroaniline	ND		ug/l	5.0	1.1	1
4-Nitroaniline	ND		ug/l	5.0	1.3	1
Dibenzofuran	ND		ug/l	2.0	0.66	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.67	1
Acetophenone	ND		ug/l	5.0	0.85	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1
2-Chlorophenol	ND		ug/l	2.0	0.63	1

						Serial_N	0:07221615:57
Project Name:	DELAVAL GROUNDW	VATER			Lab Nu	mber:	L1621632
Project Number:	30114.1002.31000				Report	Date:	07/22/16
		SAMP	LE RESULTS	6			
Lab ID:	L1621632-08				Date Co	llected:	07/13/16 10:35
Client ID:	WC-1				Date Re	ceived:	07/13/16
Sample Location:	NY				Field Pre	ep:	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Orgar	nics by GC/MS - Westbo	rough Lab					
2,4-Dichlorophenol		ND		ug/l	5.0	0.77	1
2,4-Dimethylphenol		ND		ug/l	5.0	1.6	1
2-Nitrophenol		ND		ug/l	10	1.5	1
4-Nitrophenol		ND		ug/l	10	1.8	1
2,4-Dinitrophenol		ND		ug/l	20	5.5	1
4,6-Dinitro-o-cresol		ND		ug/l	10	2.1	1
Phenol		ND		ug/l	5.0	1.9	1
3-Methylphenol/4-Methyl	phenol	ND		ug/l	5.0	1.1	1
2,4,5-Trichlorophenol		ND		ug/l	5.0	0.72	1
Carbazole		ND		ug/l	2.0	0.63	1
Atrazine		ND		ug/l	10	1.8	1
Benzaldehyde		ND		ug/l	5.0	1.1	1
Caprolactam		ND		ug/l	10	3.6	1
2,3,4,6-Tetrachlorophenc	bl	ND		ug/l	5.0	0.93	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	38		21-120
Phenol-d6	30		10-120
Nitrobenzene-d5	71		23-120
2-Fluorobiphenyl	70		15-120
2,4,6-Tribromophenol	74		10-120
4-Terphenyl-d14	71		41-149

			Serial_N	Serial_No:07221615:57		
Project Name:	DELAVAL GROUND	WATER	Lab Number:	L1621632		
Project Number:	30114.1002.31000		Report Date:	07/22/16		
		SAMPLE RESU	LTS			
Lab ID:	L1621632-08	D	Date Collected:	07/13/16 10:35		
Client ID:	WC-1		Date Received:	07/13/16		
Sample Location:	NY		Field Prep:	Not Specified		
Matrix:	Water		Extraction Metho	d:EPA 3510C		
Analytical Method:	1,8270D-SIM		Extraction Date:	07/16/16 09:25		
Analytical Date:	07/18/16 18:22					
Analyst:	KV					

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	0.10	J	ug/l	0.20	0.07	2		
2-Chloronaphthalene	ND		ug/l	0.40	0.07	2		
Fluoranthene	0.44		ug/l	0.40	0.08	2		
Hexachlorobutadiene	ND		ug/l	1.0	0.07	2		
Naphthalene	0.10	J	ug/l	0.40	0.09	2		
Benzo(a)anthracene	0.20	J	ug/l	0.40	0.03	2		
Benzo(a)pyrene	0.26	J	ug/l	0.40	0.08	2		
Benzo(b)fluoranthene	0.30	J	ug/l	0.40	0.03	2		
Benzo(k)fluoranthene	0.10	J	ug/l	0.40	0.08	2		
Chrysene	0.19	J	ug/l	0.40	0.08	2		
Acenaphthylene	0.09	J	ug/l	0.40	0.07	2		
Anthracene	0.11	J	ug/l	0.40	0.07	2		
Benzo(ghi)perylene	0.15	J	ug/l	0.40	0.08	2		
Fluorene	0.08	J	ug/l	0.40	0.07	2		
Phenanthrene	0.27	J	ug/l	0.40	0.03	2		
Dibenzo(a,h)anthracene	ND		ug/l	0.40	0.08	2		
Indeno(1,2,3-cd)pyrene	0.18	J	ug/l	0.40	0.08	2		
Pyrene	0.38	J	ug/l	0.40	0.08	2		
2-Methylnaphthalene	ND		ug/l	0.40	0.09	2		
Pentachlorophenol	ND		ug/l	1.6	0.44	2		
Hexachlorobenzene	ND		ug/l	1.6	0.06	2		
Hexachloroethane	ND		ug/l	1.6	0.06	2		

				Serial_No:07221615:57			
Project Name:	DELAVAL GROUNDWATER			Lab Nun	nber:	L1621632	
Project Number:	30114.1002.31000				Report I	Date:	07/22/16
SAMPLE RESULTS							
Lab ID:	L1621632-08	D			Date Colle	ected:	07/13/16 10:35
Client ID:	WC-1				Date Rece	eived:	07/13/16
Sample Location:	NY				Field Prep):	Not Specified
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab							

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	35		21-120	
Phenol-d6	23		10-120	
Nitrobenzene-d5	58		23-120	
2-Fluorobiphenyl	67		15-120	
2,4,6-Tribromophenol	74		10-120	
4-Terphenyl-d14	68		41-149	

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632		
Project Number:	30114.1002.31000	Report Date:	07/22/16		
Mothod Blank Analysis					

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	
Analytical Date:	07/18/16 15:49	
Analyst:	RC	

Extraction Method: EPA 3510C Extraction Date: 07/16/16 09:36

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/N	/IS - Westborough	Lab for s	ample(s):	01-08	Batch:	WG914216-1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.67
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.4
2,4-Dinitrotoluene	ND		ug/l	5.0		0.84
2,6-Dinitrotoluene	ND		ug/l	5.0		1.1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.62
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.73
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.70
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.63
Hexachlorocyclopentadiene	ND		ug/l	20		7.8
Isophorone	ND		ug/l	5.0		0.60
Nitrobenzene	ND		ug/l	2.0		0.75
NDPA/DPA	ND		ug/l	2.0		0.64
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.70
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		0.91
Butyl benzyl phthalate	ND		ug/l	5.0		1.3
Di-n-butylphthalate	ND		ug/l	5.0		0.69
Di-n-octylphthalate	ND		ug/l	5.0		1.1
Diethyl phthalate	ND		ug/l	5.0		0.63
Dimethyl phthalate	ND		ug/l	5.0		0.65
Biphenyl	ND		ug/l	2.0		0.76
4-Chloroaniline	ND		ug/l	5.0		0.63
2-Nitroaniline	ND		ug/l	5.0		1.1
3-Nitroaniline	ND		ug/l	5.0		1.1
4-Nitroaniline	ND		ug/l	5.0		1.3
Dibenzofuran	ND		ug/l	2.0		0.66
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.67
Acetophenone	ND		ug/l	5.0		0.85
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.68
p-Chloro-m-cresol	ND		ug/l	2.0		0.62
			~9′'	2.5		5.02

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632			
Project Number:	30114.1002.31000	Report Date:	07/22/16			
Method Blank Analysis						

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D	Extraction Method:	EPA 3510C
Analytical Date:	07/18/16 15:49	Extraction Date:	07/16/16 09:36
Analyst:	RC		

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01-08	Batch:	WG914216-1
2-Chlorophenol	ND		ug/l	2.0		0.63
2,4-Dichlorophenol	ND		ug/l	5.0		0.77
2,4-Dimethylphenol	ND		ug/l	5.0		1.6
2-Nitrophenol	ND		ug/l	10		1.5
4-Nitrophenol	ND		ug/l	10		1.8
2,4-Dinitrophenol	ND		ug/l	20		5.5
4,6-Dinitro-o-cresol	ND		ug/l	10		2.1
Phenol	ND		ug/l	5.0		1.9
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1.1
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.72
Carbazole	ND		ug/l	2.0		0.63
Atrazine	ND		ug/l	10		1.8
Caprolactam	ND		ug/l	10		3.6

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	92	15-120
2,4,6-Tribromophenol	96	10-120
4-Terphenyl-d14	102	41-149

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632			
Project Number:	30114.1002.31000	Report Date:	07/22/16			
Method Blank Analysis						

Method Blank Analysis Batch Quality Control

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	07/17/16 13:04	Extraction Date:	07/16/16 09:25
Analyst:	KL		

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC	/MS-SIM - Westb	orough Lab for sample	(s): 01-08	Batch:	WG914217-1
Acenaphthene	ND	ug/l	0.10	0.04	ŀ
2-Chloronaphthalene	ND	ug/l	0.20	0.04	ŀ
Fluoranthene	ND	ug/l	0.20	0.04	Ļ
Hexachlorobutadiene	ND	ug/l	0.50	0.04	Ļ
Naphthalene	ND	ug/l	0.20	0.04	Ļ
Benzo(a)anthracene	ND	ug/l	0.20	0.02	2
Benzo(a)pyrene	ND	ug/l	0.20	0.04	Ļ
Benzo(b)fluoranthene	ND	ug/l	0.20	0.02	2
Benzo(k)fluoranthene	ND	ug/l	0.20	0.04	Ļ
Chrysene	ND	ug/l	0.20	0.04	Ļ
Acenaphthylene	ND	ug/l	0.20	0.04	Ļ
Anthracene	ND	ug/l	0.20	0.04	Ļ
Benzo(ghi)perylene	ND	ug/l	0.20	0.04	Ļ
Fluorene	ND	ug/l	0.20	0.04	Ļ
Phenanthrene	ND	ug/l	0.20	0.02	2
Dibenzo(a,h)anthracene	ND	ug/l	0.20	0.04	Ļ
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.20	0.04	Ļ
Pyrene	ND	ug/l	0.20	0.04	Ļ
2-Methylnaphthalene	ND	ug/l	0.20	0.05	5
Pentachlorophenol	ND	ug/l	0.80	0.22	2
Hexachlorobenzene	ND	ug/l	0.80	0.03	3
Hexachloroethane	ND	ug/l	0.80	0.03	3

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632
Project Number:	30114.1002.31000	Report Date:	07/22/16
	Method Blank Analysis Batch Quality Control		

Analytical Method:	1,8270D-SIM	Extraction Method:	EPA 3510C
Analytical Date:	07/17/16 13:04	Extraction Date:	07/16/16 09:25
Analyst:	KL		

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample(s):	01-08	Batch: WG914217-1	

Surrogate	%Recovery	Acceptance Qualifier Criteria
	-	04.400
2-Fluorophenol	34	21-120
Phenol-d6	23	10-120
Nitrobenzene-d5	58	23-120
2-Fluorobiphenyl	63	15-120
2,4,6-Tribromophenol	93	10-120
4-Terphenyl-d14	82	41-149

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbor	ough Lab Associ	ated sample(s)	: 01-08 Batch	n: WG914	216-2 WG914216-	3		
Benzidine	1	Q	1	Q	10-75	24	30	
1,2,4-Trichlorobenzene	84		80		39-98	5	30	
Bis(2-chloroethyl)ether	88		87		40-140	1	30	
1,2-Dichlorobenzene	78		77		40-140	1	30	
1,3-Dichlorobenzene	79		78		40-140	1	30	
1,4-Dichlorobenzene	78		77		36-97	1	30	
3,3'-Dichlorobenzidine	78		77		40-140	1	30	
2,4-Dinitrotoluene	100	Q	99	Q	24-96	1	30	
2,6-Dinitrotoluene	101		98		40-140	3	30	
Azobenzene	98		97		40-140	1	30	
4-Chlorophenyl phenyl ether	93		89		40-140	4	30	
4-Bromophenyl phenyl ether	94		94		40-140	0	30	
Bis(2-chloroisopropyl)ether	86		84		40-140	2	30	
Bis(2-chloroethoxy)methane	96		92		40-140	4	30	
Hexachlorocyclopentadiene	69		67		40-140	3	30	
Isophorone	95		93		40-140	2	30	
Nitrobenzene	94		90		40-140	4	30	
NitrosoDiPhenylAmine(NDPA)/DPA	93		92		40-140	1	30	
n-Nitrosodi-n-propylamine	97		94		29-132	3	30	
Bis(2-Ethylhexyl)phthalate	96		94		40-140	2	30	
Butyl benzyl phthalate	98		94		40-140	4	30	

Project Number: 30114.1002.31000

arameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	6Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Wes	stborough Lab Associ	ated sample(s):	01-08 Batch	: WG914216	-2 WG914216-3	3		
Di-n-butylphthalate	99		94		40-140	5		30
Di-n-octylphthalate	100		96		40-140	4		30
Diethyl phthalate	94		91		40-140	3		30
Dimethyl phthalate	95		92		40-140	3		30
Biphenyl	96		92		40-140	4		30
4-Chloroaniline	68		57		40-140	18		30
2-Nitroaniline	104		100		52-143	4		30
3-Nitroaniline	87		80		25-145	8		30
4-Nitroaniline	86		83		51-143	4		30
Dibenzofuran	94		92		40-140	2		30
1,2,4,5-Tetrachlorobenzene	89		86		2-134	3		30
Acetophenone	98		95		39-129	3		30
n-Nitrosodimethylamine	46		44		22-74	4		30
2,4,6-Trichlorophenol	99		98		30-130	1		30
P-Chloro-M-Cresol	101	Q	99	Q	23-97	2		30
2-Chlorophenol	87		87		27-123	0		30
2,4-Dichlorophenol	100		97		30-130	3		30
2,4-Dimethylphenol	66		56		30-130	16		30
2-Nitrophenol	100		102		30-130	2		30
4-Nitrophenol	60		62		10-80	3		30
2,4-Dinitrophenol	90		86		20-130	5		30

Project Number: 30114.1002.31000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Associ	ated sample(s):	01-08 Batc	n: WG9142	16-2 WG914216	-3		
4,6-Dinitro-o-cresol	94		93		20-164	1		30
Phenol	42		42		12-110	0		30
2-Methylphenol	77		77		30-130	0		30
3-Methylphenol/4-Methylphenol	77		76		30-130	1		30
2,4,5-Trichlorophenol	100		99		30-130	1		30
Benzoic Acid	40		52		10-164	26		30
Benzyl Alcohol	83		77		26-116	8		30
Carbazole	100		96		55-144	4		30
Parathion, ethyl	118		117		40-140	1		30
Atrazine	105		106		40-140	1		30
Caprolactam	33		28		10-130	16		30

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	54		57		21-120	
Phenol-d6	39		43		10-120	
Nitrobenzene-d5	93		92		23-120	
2-Fluorobiphenyl	91		91		15-120	
2,4,6-Tribromophenol	94		94		10-120	
4-Terphenyl-d14	93		93		41-149	

Project Number: 30114.1002.31000

Parameter	LCS %Recovery		.CSD ecovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Wo	estborough Lab Ass	sociated sample(s):	01-08	Batch: WG	914217-2 WG9	14217-3		
Acenaphthene	79		88		37-111	11		40
2-Chloronaphthalene	84		90		40-140	7		40
Fluoranthene	82		91		40-140	10		40
Hexachlorobutadiene	70		78		40-140	11		40
Naphthalene	74		82		40-140	10		40
Benzo(a)anthracene	84		96		40-140	13		40
Benzo(a)pyrene	77		88		40-140	13		40
Benzo(b)fluoranthene	80		88		40-140	10		40
Benzo(k)fluoranthene	77		84		40-140	9		40
Chrysene	76		86		40-140	12		40
Acenaphthylene	91		97		40-140	6		40
Anthracene	82		92		40-140	11		40
Benzo(ghi)perylene	76		85		40-140	11		40
Fluorene	82		90		40-140	9		40
Phenanthrene	74		83		40-140	11		40
Dibenzo(a,h)anthracene	82		95		40-140	15		40
Indeno(1,2,3-cd)pyrene	82		90		40-140	9		40
Pyrene	74		84		26-127	13		40
1-Methylnaphthalene	80		87		40-140	8		40
2-Methylnaphthalene	78		86		40-140	10		40
Pentachlorophenol	86		99		9-103	14		40

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

Ра	rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Se	mivolatile Organics by GC/MS-SIM - West	porough Lab As	ssociated samp	ole(s): 01-08	Batch: WG	914217-2 WG914	217-3			
	Hexachlorobenzene	76		89		40-140	16		40	
	Hexachloroethane	72		78		40-140	8		40	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
2-Fluorophenol	36		44		21-120	
Phenol-d6	23		29		10-120	
Nitrobenzene-d5	63		75		23-120	
2-Fluorobiphenyl	75		78		15-120	
2,4,6-Tribromophenol	94		108		10-120	
4-Terphenyl-d14	80		88		41-149	

PCBS

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-01	Date Collected: 07/12/16 11:38
Client ID:	MW-1	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	Extraction Method:EPA 3510C
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11
Analytical Date:	07/17/16 20:36	Cleanup Method: EPA 3665A
Analyst:	WL	Cleanup Date: 07/16/16
		Cleanup Method: EPA 3660B
		Cleanup Date: 07/16/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	/estborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.055	1	A
Aroclor 1221	ND		ug/l	0.083	0.053	1	А
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	ND		ug/l	0.083	0.032	1	А
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	А
PCBs, Total	ND		ug/l	0.083	0.029	1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		30-150	А
Decachlorobiphenyl	27	Q	30-150	А
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	36		30-150	В

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-02	Date Collected: 07/12/16 15:55
Client ID:	MW-6	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11
Analytical Date:	07/17/16 20:49	Cleanup Method: EPA 3665A
Analyst:	WL	Cleanup Date: 07/16/16
		Cleanup Method: EPA 3660B
		Cleanup Date: 07/16/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.055	1	А
Aroclor 1221	ND		ug/l	0.083	0.053	1	A
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	0.091		ug/l	0.083	0.032	1	В
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	А
PCBs, Total	0.091		ug/l	0.083	0.029	1	А

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	А
Decachlorobiphenyl	48		30-150	А
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	49		30-150	В

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-03	Date Collected: 07/12/16 13:15
Client ID:	MW-2	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	Extraction Method:EPA 3510C
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11
Analytical Date:	07/17/16 21:03	Cleanup Method: EPA 3665A
Analyst:	WL	Cleanup Date: 07/16/16
		Cleanup Method: EPA 3660B
		Cleanup Date: 07/16/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	Westborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.055	1	А
Aroclor 1221	ND		ug/l	0.083	0.053	1	А
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	0.082	J	ug/l	0.083	0.032	1	А
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	А
PCBs, Total	0.082	J	ug/l	0.083	0.029	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		30-150	А
Decachlorobiphenyl	51		30-150	А
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	53		30-150	В

		Serial_No:07221615:57
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632
Project Number:	30114.1002.31000	Report Date: 07/22/16
	SAMPLE RESULTS	
Lab ID:	L1621632-04	Date Collected: 07/12/16 12:30
Client ID:	CHA-1	Date Received: 07/13/16
Sample Location:	NY	Field Prep: Not Specified
Matrix:	Water	Extraction Method: EPA 3510C
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11
Analytical Date:	07/17/16 21:16	Cleanup Method: EPA 3665A
Analyst:	WL	Cleanup Date: 07/16/16
		Cleanup Method: EPA 3660B
		Cleanup Date: 07/16/16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.055	1	А
Aroclor 1221	ND		ug/l	0.083	0.053	1	А
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	0.066	J	ug/l	0.083	0.032	1	В
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	А
PCBs, Total	0.066	J	ug/l	0.083	0.029	1	А

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	А
Decachlorobiphenyl	45		30-150	А
2,4,5,6-Tetrachloro-m-xylene	71		30-150	В
Decachlorobiphenyl	47		30-150	В

		Serial_No:07221615:57		
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632		
Project Number:	30114.1002.31000	Report Date: 07/22/16		
	SAMPLE RESULTS			
Lab ID:	L1621632-05	Date Collected: 07/13/16 08:45		
Client ID:	MW-8	Date Received: 07/13/16		
Sample Location:	NY	Field Prep: Not Specified		
Matrix:	Water	Extraction Method:EPA 3510C		
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11		
Analytical Date:	07/17/16 21:30	Cleanup Method: EPA 3665A		
Analyst:	WL	Cleanup Date: 07/16/16		
		Cleanup Method: EPA 3660B		
		Cleanup Date: 07/16/16		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC -	- Westborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.055	1	А
Aroclor 1221	ND		ug/l	0.083	0.053	1	A
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	0.062	J	ug/l	0.083	0.032	1	В
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	Α
PCBs, Total	0.062	J	ug/l	0.083	0.029	1	А

Surrogate	% Recovery	Column	
2,4,5,6-Tetrachloro-m-xylene	70	30-150	А
Decachlorobiphenyl	52	30-150	А
2,4,5,6-Tetrachloro-m-xylene	75	30-150	В
Decachlorobiphenyl	53	30-150	В

		Serial_No:07221615:57		
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632		
Project Number:	30114.1002.31000	Report Date: 07/22/16		
	SAMPLE RESULTS			
Lab ID:	L1621632-06	Date Collected: 07/13/16 09:20		
Client ID:	MW-5	Date Received: 07/13/16		
Sample Location:	NY	Field Prep: Not Specified		
Matrix:	Water	Extraction Method:EPA 3510C		
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11		
Analytical Date:	07/17/16 21:44	Cleanup Method: EPA 3665A		
Analyst:	WL	Cleanup Date: 07/16/16		
		Cleanup Method: EPA 3660B		
		Cleanup Date: 07/16/16		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		ug/l	0.083	0.055	1	А	
Aroclor 1221	ND		ug/l	0.083	0.053	1	A	
Aroclor 1232	ND		ug/l	0.083	0.031	1	А	
Aroclor 1242	ND		ug/l	0.083	0.060	1	А	
Aroclor 1248	ND		ug/l	0.083	0.051	1	А	
Aroclor 1254	ND		ug/l	0.083	0.034	1	А	
Aroclor 1260	0.176		ug/l	0.083	0.032	1	В	
Aroclor 1262	ND		ug/l	0.083	0.029	1	А	
Aroclor 1268	ND		ug/l	0.083	0.038	1	А	
PCBs, Total	0.176		ug/l	0.083	0.029	1	А	

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	76		30-150	А			
Decachlorobiphenyl	51		30-150	А			
2,4,5,6-Tetrachloro-m-xylene	78		30-150	В			
Decachlorobiphenyl	56		30-150	В			

	Serial_No:07221615:57					
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632				
Project Number:	30114.1002.31000	Report Date: 07/22/16				
	SAMPLE RESULTS					
Lab ID:	L1621632-07	Date Collected: 07/13/16 10:20				
Client ID:	MW-9	Date Received: 07/13/16				
Sample Location:	NY	Field Prep: Not Specified				
Matrix:	Water	Extraction Method: EPA 3510C				
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11				
Analytical Date:	07/17/16 21:58	Cleanup Method: EPA 3665A				
Analyst:	WL	Cleanup Date: 07/16/16				
		Cleanup Method: EPA 3660B				
		Cleanup Date: 07/16/16				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/l	0.083	0.055	1	А
Aroclor 1221	ND		ug/l	0.083	0.053	1	А
Aroclor 1232	ND		ug/l	0.083	0.031	1	А
Aroclor 1242	ND		ug/l	0.083	0.060	1	А
Aroclor 1248	ND		ug/l	0.083	0.051	1	А
Aroclor 1254	ND		ug/l	0.083	0.034	1	А
Aroclor 1260	ND		ug/l	0.083	0.032	1	А
Aroclor 1262	ND		ug/l	0.083	0.029	1	А
Aroclor 1268	ND		ug/l	0.083	0.038	1	А
PCBs, Total	ND		ug/l	0.083	0.029	1	А

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	77		30-150	A				
Decachlorobiphenyl	52		30-150	А				
2,4,5,6-Tetrachloro-m-xylene	81		30-150	В				
Decachlorobiphenyl	55		30-150	В				

	Serial_No:07221615:57					
Project Name:	DELAVAL GROUNDWATER	Lab Number: L1621632				
Project Number:	30114.1002.31000	Report Date: 07/22/16				
	SAMPLE RESULTS					
Lab ID:	L1621632-08	Date Collected: 07/13/16 10:35				
Client ID:	WC-1	Date Received: 07/13/16				
Sample Location:	NY	Field Prep: Not Specified				
Matrix:	Water	Extraction Method:EPA 3510C				
Analytical Method:	1,8082A	Extraction Date: 07/16/16 16:11				
Analytical Date:	07/17/16 22:39	Cleanup Method: EPA 3665A				
Analyst:	WL	Cleanup Date: 07/17/16				
		Cleanup Method: EPA 3660B				
		Cleanup Date: 07/17/16				

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column				
Polychlorinated Biphenyls by GC - Westborough Lab											
Aroclor 1016	ND		ug/l	0.083	0.055	1	А				
Aroclor 1221	ND		ug/l	0.083	0.053	1	А				
Aroclor 1232	ND		ug/l	0.083	0.031	1	А				
Aroclor 1242	ND		ug/l	0.083	0.060	1	А				
Aroclor 1248	ND		ug/l	0.083	0.051	1	А				
Aroclor 1254	ND		ug/l	0.083	0.034	1	А				
Aroclor 1260	0.077	J	ug/l	0.083	0.032	1	В				
Aroclor 1262	ND		ug/l	0.083	0.029	1	А				
Aroclor 1268	ND		ug/l	0.083	0.038	1	А				
PCBs, Total	0.077	J	ug/l	0.083	0.029	1	А				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	A
Decachlorobiphenyl	60		30-150	А
2,4,5,6-Tetrachloro-m-xylene	83		30-150	В
Decachlorobiphenyl	68		30-150	В

Project Name:	DELAVAL GROUNDWATER	Lab Number:	L1621632				
Project Number:	30114.1002.31000	Report Date:	07/22/16				
Mothod Blank Analysis							

Method Blank Analysis Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

1,8082A 07/18/16 00:29 JW Extraction Method:EPA 3510CExtraction Date:07/16/16 16:11Cleanup Method:EPA 3665ACleanup Date:07/16/16Cleanup Method:EPA 3660BCleanup Date:07/16/16

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01-08	Batch:	WG914	288-1
Aroclor 1016	ND		ug/l	0.083		0.055	А
Aroclor 1221	ND		ug/l	0.083		0.053	А
Aroclor 1232	ND		ug/l	0.083		0.031	А
Aroclor 1242	ND		ug/l	0.083		0.060	А
Aroclor 1248	ND		ug/l	0.083		0.051	А
Aroclor 1254	ND		ug/l	0.083		0.034	А
Aroclor 1260	ND		ug/l	0.083		0.032	А
Aroclor 1262	ND		ug/l	0.083		0.029	А
Aroclor 1268	ND		ug/l	0.083		0.038	А
PCBs, Total	ND		ug/l	0.083		0.029	А

			Acceptance	;
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	50		30-150	A
Decachlorobiphenyl	66		30-150	А
2,4,5,6-Tetrachloro-m-xylene	51		30-150	В
Decachlorobiphenyl	60		30-150	В

Lab Control Sample Analysis Batch Quality Control

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

	LCS		LCSD	c 2	%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s)	: 01-08 Batch	: WG914288	8-2 WG914288-3	3			
Aroclor 1016	100		96		40-140	4		50	А
Aroclor 1260	89		89		40-140	0		50	А

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		70		30-150	A
Decachlorobiphenyl	72		69		30-150	А
2,4,5,6-Tetrachloro-m-xylene	78		71		30-150	В
Decachlorobiphenyl	65		62		30-150	В

METALS

1,6010C

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

PS

AB

AB

ΕA

AB

AB

Project Name:	DELA\	/AL GROU	JNDWAT	TER			Lab Nu	mber:	L16216	32	
Project Number:	30114.	1002.310	00				Report	Date:	07/22/1	6	
				SAMPL	E RESI	JLTS					
Lab ID:	L16216	632-01					Date Co	ollected:	07/12/1	6 11:38	
Client ID:	MW-1						Date Re	eceived:	07/13/1	6	
Sample Location:	NY						Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	field Lab										
Arsenic, Total	0.0288		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/19/16 00:27	EPA 3005A	1,6010C	AB
Barium, Total	0.529		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/19/16 00:27	EPA 3005A	1,6010C	AB

0.0007

0.0020

0.0020

0.0030

0.0020

1

1

1

1

1

1

07/15/16 09:50 07/19/16 15:01 EPA 3005A

07/15/16 09:50 07/19/16 00:27 EPA 3005A

07/15/16 09:50 07/19/16 00:27 EPA 3005A

07/15/16 13:47 07/15/16 20:13 EPA 7470A

07/15/16 09:50 07/19/16 00:27 EPA 3005A

07/15/16 09:50 07/19/16 00:27 EPA 3005A

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

0.0050

0.010

0.0100

0.0100

0.0070

0.00020 0.00006

J

J

0.0007

0.016

0.0550

0.00010

0.0550

ND

Cadmium, Total

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

1,6010C

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

AB

AB

AB

ΕA

AB

AB

Project Name: Project Number:		/AL GROU		ER			Lab Nur Report I		L16216		
-				SAMPL	E RESI	JLTS					
Lab ID:	L16216	632-02					Date Co	llected:	07/12/10	6 15:55	
Client ID:	MW-6						Date Re	ceived:	07/13/10	6	
Sample Location:	NY						Field Pre	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	field Lab										
Arsenic, Total	0.0094		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/18/16 22:48	EPA 3005A	1,6010C	AB
Barium, Total	0.0699		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/18/16 22:48	EPA 3005A	1,6010C	AB

0.0007

0.0020

0.0020

0.0030

0.0020

1

1

1

1

1

1

07/15/16 09:50 07/18/16 22:48 EPA 3005A

07/15/16 09:50 07/18/16 22:48 EPA 3005A

07/15/16 09:50 07/18/16 22:48 EPA 3005A

07/15/16 13:47 07/15/16 20:15 EPA 7470A

07/15/16 09:50 07/18/16 22:48 EPA 3005A

07/15/16 09:50 07/18/16 22:48 EPA 3005A

0.0050

0.010

0.0100

0.0100

0.0070

0.00020 0.00006

Cadmium, Total

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

0.0007

0.0063

0.0570

0.00020

0.0270

ND

J

J

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

1,6010C

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

PS

AB

AB

ΕA

AB

AB

Project Name: Project Number:		VAL GROU		TER			Lab Nu Report		L16216		
-				SAMPL	E RESI	JLTS	-				
Lab ID:	L1621	632-03					Date Co	ollected:	07/12/1	6 13:15	
Client ID:	MW-2						Date Re	eceived:	07/13/1	6	
Sample Location:	NY						Field Pr	ep:	Not Spe	cified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Arsenic, Total	0.0097		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/19/16 00:31	EPA 3005A	1,6010C	AB
Barium, Total	0.0885		mg/l	0.0100	0.0030	1	07/15/16 09:50) 07/19/16 00:31	EPA 3005A	1,6010C	AB

0.0007

0.0020

0.0020

0.0030

0.0020

1

1

1

1

1

1

07/15/16 09:50 07/19/16 15:05 EPA 3005A

07/15/16 09:50 07/19/16 00:31 EPA 3005A

07/15/16 09:50 07/19/16 00:31 EPA 3005A

07/15/16 13:47 07/15/16 20:16 EPA 7470A

07/15/16 09:50 07/19/16 00:31 EPA 3005A

07/15/16 09:50 07/19/16 00:31 EPA 3005A

0.0050

0.0100

0.0100

0.0100

0.0070

0.00020 0.00006

mg/l

mg/l

mg/l

mg/l

mg/l

mg/l

J

J

Cadmium, Total

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

ND

0.0060

0.0617

0.00013

0.0645

ND

Project Name:	DELA	VAL GROU	JNDWA	TER			Lab Nu	mber:	L16216	32	
Project Number:	30114	.1002.310	00				Report	Date:	07/22/1	6	
				SAMPL	E RESI	JLTS					
Lab ID:	L1621	632-04					Date Co	ollected:	07/12/1	6 12:30	
Client ID:	CHA-1						Date Re	eceived:	07/13/1	6	
Sample Location:	NY						Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0418		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/19/16 00:36	EPA 3005A	1,6010C	AB
Barium, Total	0.569		mg/l	0.0100	0.0030	1	07/15/16 09:50) 07/19/16 00:36	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0062		mg/l	0.0050	0.0007	1	07/15/16 09:50	07/19/16 15:10	EPA 3005A	1,6010C	PS
			J.								

1

1

1

1

1

07/15/16 09:50 07/19/16 00:36 EPA 3005A

07/15/16 09:50 07/19/16 00:36 EPA 3005A

07/15/16 13:47 07/15/16 20:18 EPA 7470A

07/15/16 09:50 07/19/16 00:36 EPA 3005A

07/15/16 09:50 07/19/16 00:36 EPA 3005A

mg/l

mg/l

mg/l

mg/l

mg/l

0.010

0.0100

0.0100

0.0070

0.00020 0.00006

0.0020

0.0020

0.0030

0.0020

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

AB

AB

ΕA

AB

AB

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

0.048

1.07

0.00103

0.539

ND

Project Name:	DELA	VAL GROU	JNDWA	TER			Lab Nu	mber:	L16216	32	
Project Number:	30114	.1002.310	00				Report	Date:	07/22/1	6	
				SAMPL	E RESI	JLTS					
Lab ID:	L1621	632-05					Date Co	ollected:	07/13/1	6 08:45	
Client ID:	MW-8						Date Re	eceived:	07/13/1	6	
Sample Location:	NY						Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0074		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/19/16 00:40	EPA 3005A	1,6010C	AB
Barium, Total	0.0687		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/19/16 00:40	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0038	J	mg/l	0.0050	0.0007	1	07/15/16 09:50) 07/19/16 00:40	EPA 3005A	1,6010C	AB
			3.								

1

1

1

1

1

07/15/16 09:50 07/19/16 00:40 EPA 3005A

07/15/16 09:50 07/19/16 00:40 EPA 3005A

07/15/16 13:47 07/15/16 20:20 EPA 7470A

07/15/16 09:50 07/19/16 00:40 EPA 3005A

07/15/16 09:50 07/19/16 00:40 EPA 3005A

0.0020

0.0020

0.0030

0.0020

J

J

mg/l

mg/l

mg/l

mg/l

mg/l

0.0100

0.0100

0.0100

0.0070

0.00020 0.00006

0.0074

0.0034

0.0211

ND

ND

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

AB

AB

ΕA

AB

AB

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

Project Name:	DELA	VAL GROU	JNDWA	TER			Lab Nu	mber:	L16216	32	
Project Number:	30114	.1002.3100	00				Report	Date:	07/22/1	6	
				SAMPL	E RESI	JLTS					
Lab ID:	L16210	632-06					Date Co	llected:	07/13/1	6 09:20	
Client ID:	MW-5						Date Re	ceived:	07/13/1	6	
Sample Location:	NY						Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analys
Total Metals - Mans	field Lab										
Arsenic, Total	0.0432		mg/l	0.0050	0.0020	1	07/15/16 09:50) 07/19/16 00:44	EPA 3005A	1,6010C	AB
Barium, Total	0.726		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/19/16 00:44	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0055		mg/l	0.0050	0.0007	1	07/15/16 09:50) 07/19/16 15:14	EPA 3005A	1,6010C	PS
				0.040						4 00400	

Chromium, Total	0.091		mg/l	0.010	0.0020	1	07/15/16 09:50 07/19/16 00:44 EPA 3005A	1,6010C	AB
Lead, Total	1.18		mg/l	0.0100	0.0020	1	07/15/16 09:50 07/19/16 00:44 EPA 3005A	1,6010C	AB
Mercury, Total	0.00285		mg/l	0.00020	0.00006	1	07/15/16 13:47 07/15/16 20:22 EPA 7470A	1,7470A	EA
Selenium, Total	0.284		mg/l	0.0100	0.0030	1	07/15/16 09:50 07/19/16 00:44 EPA 3005A	1,6010C	AB
Silver, Total	0.0062	J	mg/l	0.0070	0.0020	1	07/15/16 09:50 07/19/16 00:44 EPA 3005A	1,6010C	AB

07/15/16 09:50 07/19/16 00:49 EPA 3005A

07/15/16 09:50 07/19/16 00:49 EPA 3005A

07/15/16 13:47 07/15/16 20:24 EPA 7470A

07/15/16 09:50 07/19/16 00:49 EPA 3005A

07/15/16 09:50 07/19/16 00:49 EPA 3005A

Project Name:	DELA	VAL GROL	JNDWA	TER			Lab Nu	mber:	L16216	32	
Project Number:	30114	.1002.3100	00				Report	Date:	07/22/1	6	
				SAMPL	E RESI	JLTS					
Lab ID:	L1621	632-07					Date Co	llected:	07/13/1	6 10:20	
Client ID:	MW-9						Date Re	eceived:	07/13/1	6	
Sample Location:	NY						Field Pre	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Manst	field Lab										
Arsenic, Total	0.0100		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/19/16 00:49	EPA 3005A	1,6010C	AB
Barium, Total	0.0580		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/19/16 00:49	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0031	J	mg/l	0.0050	0.0007	1	07/15/16 09:50) 07/19/16 00:49	EPA 3005A	1,6010C	AB

0.010

0.0100

0.0100

0.0070

0.00020 0.00006

mg/l

mg/l

mg/l

mg/l

mg/l

J

J

0.0020

0.0020

0.0030

0.0020

1

1

1

1

1

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

AB

AB

ΕA

AB

AB

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

0.019

0.0055

0.00009

0.291

ND

Project Name:	DELA	VAL GROI	JNDWA	TER			Lab Nu	mber:	L16216	32	
Project Number:	30114	.1002.310	00				Report	Date:	07/22/1	6	
				SAMPL	E RESI	JLTS					
Lab ID:	L1621	632-08					Date Co	ollected:	07/13/1	6 10:35	
Client ID:	WC-1						Date Re	eceived:	07/13/1	6	
Sample Location:	NY						Field Pr	ep:	Not Spe	ecified	
Matrix:	Water										
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0354		mg/l	0.0050	0.0020	1	07/15/16 09:50	07/19/16 00:53	EPA 3005A	1,6010C	AB
Barium, Total	0.358		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/19/16 00:53	EPA 3005A	1,6010C	AB
Cadmium, Total	0.0032	J	mg/l	0.0050	0.0007	1	07/15/16 09:50	07/19/16 00:53	EPA 3005A	1,6010C	AB
			3.								

0.0100

0.0100

0.0100

0.0070

0.00020 0.00006

mg/l

mg/l

mg/l

mg/l

mg/l

0.0020

0.0020

0.0030

0.0020

1

1

1

1

1

07/15/16 09:50 07/19/16 00:53 EPA 3005A

07/15/16 09:50 07/19/16 00:53 EPA 3005A

07/15/16 13:47 07/15/16 20:26 EPA 7470A

07/15/16 09:50 07/19/16 00:53 EPA 3005A

07/15/16 09:50 07/19/16 00:53 EPA 3005A

1,6010C

1,6010C

1,7470A

1,6010C

1,6010C

AB

AB

ΕA

AB

AB

Chromium, Total

Lead, Total

Mercury, Total

Selenium, Total

Silver, Total

0.0140

0.162

0.299

ND

0.00025

Project Name:DELAVAL GROUNDWATERProject Number:30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sa	mple(s):	01-08 E	Batch: WO	G91384	3-1				
Arsenic, Total	0.0049	J	mg/l	0.0050	0.0020	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB
Barium, Total	ND		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB
Cadmium, Total	ND		mg/l	0.0050	0.0007	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB
Chromium, Total	ND		mg/l	0.010	0.0020	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB
Lead, Total	ND		mg/l	0.0100	0.0020	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB
Selenium, Total	ND		mg/l	0.0100	0.0030	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB
Silver, Total	ND		mg/l	0.0070	0.0020	1	07/15/16 09:50	07/18/16 23:35	1,6010C	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01-08 E	Batch: WC	G913980)-1				
Mercury, Total	ND	mg/l	0.00020	0.00006	1	07/15/16 13:47	07/15/16 19:58	1,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Lab Control Sample Analysis Batch Quality Control

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000 Lab Number: L1621632 Report Date: 07/22/16

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sampl	e(s): 01-08 Bate	ch: WG91	3843-2					
Arsenic, Total	110		-		80-120	-		
Barium, Total	96		-		80-120	-		
Cadmium, Total	108		-		80-120	-		
Chromium, Total	95		-		80-120	-		
Lead, Total	102		-		80-120	-		
Selenium, Total	115		-		80-120	-		
Silver, Total	101		-		80-120	-		
otal Metals - Mansfield Lab Associated sampl	e(s): 01-08 Bate	ch: WG91	3980-2					
Mercury, Total	116		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD C	RPD Qual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-08	QC Bate	ch ID: WG913	843-4	QC Samp	le: L1621632-02	2 Client ID: MW	-6	
Arsenic, Total	0.0094	0.12	0.135	105		-	-	75-125	-	20
Barium, Total	0.0699	2	1.99	96		-	-	75-125	-	20
Cadmium, Total	0.0007J	0.051	0.0545	107		-	-	75-125	-	20
Chromium, Total	0.0063J	0.2	0.20	100		-	-	75-125	-	20
Lead, Total	0.0570	0.51	0.563	99		-	-	75-125	-	20
Selenium, Total	0.0270	0.12	0.169	118		-	-	75-125	-	20
Silver, Total	ND	0.05	0.0504	101		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated san	nple(s): 01-08	QC Bate	ch ID: WG913	980-4	QC Samp	le: L1621668-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00536	107		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DELAVAL GROUNDWATER Project Number: 30114.1002.31000

Lab Number: Report Date:

L1621632 07/22/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-08	3 QC Batch ID: WG913	3843-3 QC Sample:	L1621632-02	Client ID:	MW-6	
Arsenic, Total	0.0094	0.0111	mg/l	17		20
Barium, Total	0.0699	0.0689	mg/l	1		20
Cadmium, Total	0.0007J	ND	mg/l	NC		20
Chromium, Total	0.0063J	0.0054J	mg/l	NC		20
Lead, Total	0.0570	0.0572	mg/l	0		20
Selenium, Total	0.0270	0.0281	mg/l	4		20
Silver, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-08	3 QC Batch ID: WG913	3980-3 QC Sample:	L1621668-01	Client ID:	DUP Sample	9
Mercury, Total	ND	ND	mg/l	NC		20

Project Name: DELAVAL GROUNDWATER Project Number: 30114.1002.31000

Lab Number: L1621632 Report Date: 07/22/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information	Custody Seal
Cooler	
А	Absent
В	Absent
С	Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1621632-01A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-01B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-01C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-01D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)
L1621632-01E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)
L1621632-01F	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1621632-01G	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1621632-01H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1621632-02A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-02B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-02C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-02D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)
L1621632-02E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)
L1621632-02F	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1621632-02G	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)
L1621632-02H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)
L1621632-03A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-03B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-03C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)
L1621632-03D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)
L1621632-03E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)
L1621632-03F	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)

Project Name:DELAVAL GROUNDWATERProject Number:30114.1002.31000

Lab Number: L1621632 Report Date: 07/22/16

Container Information Temp									
Container ID	D Container Type		рΗ		Pres	Seal	Analysis(*)		
L1621632-03G	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-03H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)		
L1621632-04A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-04B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-04C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-04D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-04E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-04F	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-04G	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-04H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)		
L1621632-05A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-05B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-05C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-05D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-05E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-05F	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-05G	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-05H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)		
L1621632-06A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-06B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-06C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-06D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-06E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-06F	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-06G	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-06H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)		
L1621632-07A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		

Project Name:DELAVAL GROUNDWATERProject Number:30114.1002.31000

Lab Number: L1621632 Report Date: 07/22/16

Container Information Temp									
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)		
L1621632-07B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-07C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-07D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-07E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-07F	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-07G	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-07H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)		
L1621632-08A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-08B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-08C	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-08D	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-08E	Amber 1000ml unpreserved	А	7	4.6	Y	Absent	NYTCL-8082-1200ML(7)		
L1621632-08F	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-08G	Amber 1000ml unpreserved	A	7	4.6	Y	Absent	NYTCL-8270(7),NYTCL-8270- SIM(7)		
L1621632-08H	Plastic 250ml HNO3 preserved	A	<2	4.6	Y	Absent	AS-TI(180),BA-TI(180),AG- TI(180),CR-TI(180),PB- TI(180),SE-TI(180),HG- T(28),CD-TI(180)		
L1621632-09A	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		
L1621632-09B	Vial HCI preserved	А	N/A	4.6	Y	Absent	NYTCL-8260-R2(14)		

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

Lab Number: L1621632

Report Date: 07/22/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	 Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able to explore the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: DELAVAL GROUNDWATER

Project Number: 30114.1002.31000

Lab Number: L1621632

Report Date: 07/22/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:DELAVAL GROUNDWATERProject Number:30114.1002.31000

 Lab Number:
 L1621632

 Report Date:
 07/22/16

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation: Westborough Facility EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol. EPA 1010A: NPW: Ignitability EPA 6010C: NPW: Strontium; SCM: Strontium EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate (soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 9010: <u>NPW:</u> Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: <u>NPW:</u> Sulfate EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. SM5310C: DW: Dissolved Organic Carbon **Mansfield Facility** EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane SM 2540D: TSS SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene. EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA 8270-SIM: NPW and SCM: Alkylated PAHs. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene. Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol. The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility: Drinking Water EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury; EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT. Non-Potable Water EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn; EPA 200.7: AI,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,TI,V,Zn; EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

. 9.

ALPHA	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	05	Pag	e 1 of 1		Date Rec'd in Lab			7/14/16				L 1621632 ALPHA JOD # L1621565 Jk		
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Del	iverabl	es						Billing Information	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	DeLaval Gro	undwater			ĪĒ	ASF	P-A			ASP-	·B		✓ Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-3288	Project Location:	NY					EQu	IS (1	File)		EQui	S (4 File	*) ·	PO#	
Client Information		Project # 30114.	1002.31	000				Othe	ər							
Client: CHA		(Use Project name as Pr					Rec	julator	/ Req	uireme	nt		1000		Disposal Site Information	
Address: 441 South	Salina Street	Project Manager:	Candace Fo	x			Γ	NYT	OGS			NY Pa	rt 375	T	Please identify below location of	
Syracuse, NY 13202		ALPHAQuote #:							AWQ Standards NY CP-51						applicable disposal facilities.	
Phone: 315-471-39	920	Turn-Around Time						NY R	estricte	ed Use		Other			Disposal Facility:	
Fax: 315-471-3	569	Standard		Due Date	:			_] ny u	nrestrie	cted Us	e			ſ		
And and a second state of the s	acompanies.com	Rush (only if pre approved)	-	# of Days				NYC	Sewer	Discha	rge			ſ	Other: NA	
	een previously analyze	ed by Alpha	and our and the same statement			And the second	AN/				<u> </u>	ada e pad			Sample Eiltration	
Other project specific								T	T	T	1			-+		
						NYTLC-8260	NYTCL-8270	NYTCL-8082	TRCRA8 Metals					Done Lab to do <i>Preservation</i> Lab to do <i>Reservation Crease Specify below</i>	1	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		ection	Sample Matrix	Sampler's Initials			-					Ļ		
			Date	Time			<u> </u>			<u> </u>					Sample Specific Comments	
2156856 01	MW-1		7/12/2016	1138	Water	SM/JK	1	X	X	X						3
21632-02	mw-6	<u> </u>	7/12/2016		Water	5m/JK		X	X	X				\rightarrow	8	B
03	mw-2		7/12/2016		Water	Sm/JK	X	Х	x	X				$ \rightarrow $		3
oy	CHA-L		7/12/2016		Water	SM/TK	Х	Х	Х	X					8	3
R	MW-8		7/13/2016	845	Water	5m/JK	_	Х	X	X					8	3
06	mw-5		7/13/2016	920	Water	SM/JK	x	x	x	X					8	3
07	mw-9	7	7/13/2016		Water	SMJK	Х	x	x	Х						3
OS	WC./		7/13/2010	1035	Water	Sm/JK	Х	x	х	Х					8	3
					Water		х	x	х	x					8	3
69	Trip Blank				DI Water		Х	X	х	Х				Т	Trip Blank 2	2
Preservative Code: Container Code Westboro: Certification No: MA935 A = None P = Plastic Mansfield: Certification No: MA015 B = HCl A = Amber Glass Mansfield: Certification No: MA015 C = HNO ₃ V = Vial Mansfield: Certification No: MA015 D = H ₂ SO ₄ G = Glass E = NaOH -					Container Type Preservative		<u>а</u>			P					Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not	
F = MeOH	C = Cube	Relinguished E	By:	/ Date/	Time	F F	Recei	ved By				Date/	Time	-	start until any ambiguities are	
0 = Other	O = Other E = Encore D = BOD Bottle	Robert Hair			e= 134C		- CH	lity,	14 K	72		3-16	13:4	0	resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.	
orm No: 01-25 (rev. 30-Se	pt-2013)									1						1

