

August 26, 2010

Mr. Joshua P. Cook, P.E. Project Manager New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau C, 11th Floor 625 Broadway Albany, New York 12233-7014

RE: Post-Remedial Monitoring Well Network Installation Work Plan DeLaval ERP Project, City of Poughkeepsie, New York Site ID No. B00191-3 CHA Project Number: 14357.1009.1102

Dear Mr. Cook:

CHA has prepared this letter to serve as a Monitoring Well Installation Work Plan relative to the installation of the post-remediation monitoring well network at the DeLaval ERP Site, located off the intersection of Rinaldi Boulevard and Pine Street in the City of Poughkeepsie, Dutchess County, New York. As you are already aware, the monitoring wells originally installed at the Site during the previous subsurface investigations were abandoned at the beginning of the remedial construction due to the proposed grade changes at these locations as well as conflicts with the future redevelopment amenities. The monitoring network described herein is based upon CHA discussions with the Department and your comments on the Draft Site Management Plan (SMP) submitted via a letter to CHA, dated April 30, 2010.

The Monitoring Plan described the SMP for the Site outlines the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the Site. Specifically, one of the major elements of this monitoring plan includes annual groundwater sampling to monitor trends in contaminant levels in groundwater in the affected areas to determine if the remedy continues to be affective in achieving remedial goals. Prior to starting the groundwater monitoring program, however, a new network of wells must be installed, as further described below.

Monitoring Well Network Description

Specifically, the post-remediation monitoring well network will include the installation of nine (9) monitoring wells, as shown on the attached Figure 1 – Monitoring Well Location Map. The network layout of on-Site wells has been designed based upon the following criteria:

• One (1) monitoring well will be installed up-gradient of each AOC to provide monitoring of groundwater quality up-gradient of these areas. Specifically, well MW-4 will be installed up-gradient of AOC-1 and well MW-8 will be installed up-gradient of AOC-2/3.

- Two (2) monitoring wells will be installed down-gradient of each AOC, with one to be installed at each end (north and south) of each bulkhead. Given that the bulkheads were installed as containment structures, the wells will be placed near the bulkhead return walls where there is the greatest potential for groundwater migration around the bulkhead and into the Hudson River. Specifically, to monitor AOC-1, wells MW-1 and MW-2 will be installed at the south and north ends of the Zone 1 bulkhead, respectively. To monitor AOC-2/3, wells MW-5 and MW-6 will be installed at the south and north ends of the Zone 3 bulkhead, respectively.
- One (1) monitoring well will be installed near the center of each AOC. Specifically, well MW-3 will be installed near the center of AOC-1 and well MW-7 will be installed near the center of AOC-2/3. These wells will be used for gauging purposes and monitoring for the presence or absence of free product (NAPLs) only. These wells will <u>not</u> be sampled annually along with the other wells in the monitoring network.
- Well MW-9 was installed along the existing concrete retaining wall up-gradient of AOC-2/3. During remedial construction, contaminated soils were encountered in this area in close proximity to the retaining wall; however, the extent of the soil removal was terminated approximately 10-feet west of the retaining wall to avoid disturbance to the wall and foundation system. During the remediation, field evidence suggesting a potential additional up-gradient source or off-site source of contamination was observed in this area. The NYSDEC agreed with CHA that further excavation to the east during the remediation phase of the project may have undermined the foundation of the retaining wall; however, the State required that a well be installed at this location to monitor groundwater quality and to evaluate the need for future remediation up-gradient of this location.

Procedures for Installation of the Monitoring Wells

At each proposed well location, a borehole will be advanced using hollow stem auger methods (HSA) to facilitate penetration through the on-Site soils and materials. A truck-mounted HSA rig will be used to facilitate access to all areas. The boreholes will generally be advanced to a depth of approximately seven (7) to eight (8) feet into the groundwater table, such that when a ten (10)-foot long well screen in installed in the borehole, the screen will straddle the water table, but still have freeboard to accommodate a rise in the water table at high tide. However, this will not be possible for some of the shallower monitoring wells located near the waterfront, as described further in the procedures below. The maximum depth of each boring is expected to be 20 feet below ground surface.

The following procedure will be utilized for advancing each borehole:

1. CHA's subcontractor will call Dig Safely New York (1-800-962-7962) for utility clearance a minimum of three (3) working days prior to commencement of drilling activities.

- 2. All drilling appurtenances, including, but not limited to the augers, casings, rods, and samplers will be cleaned before initiating each boring and before leaving the Site utilizing a steam cleaner from a potable water source. While the split spoon sampler(s) will be steam cleaned between each boring, they will also washed with a mixture of low-phosphate detergent followed by a rinse of distilled water and air drying between each sample for a particular boring.
- 3. Each boring will be advanced using 4-1/4 inch diameter HSAs with a minimum outside diameter of 7-1/2 inches.
- 4. Soils samples will be collected continuously using a standard 1-3/8-inch diameter split spoon sampler, in accordance with ASTM D-1586, 1984.
- 5. The drive hammer assembly will consist of a hammer, manufactured specifically for standard penetration testing, with a nominal weight of 140 pounds, and a guide permitting a free fall of 30 inches in accordance with the requirements of ASTM D-1586, 1984. Special precaution will be taken to ensure that the energy of the falling hammer is not reduced by friction between the hammer and the guide.
- 6. With the sampler resting on the bottom of the borehole, the sampler will be driven with blows from the drive hammer falling 30 inches until a penetration of 24 inches has been achieved or one hundred (100) blows have been applied for a penetration of two (2) inches or less which will be considered refusal.
- 7. For each sample taken, the number of blows required for each 6 inches of penetration or fraction thereof will be recorded on the driller's log. If the penetration is less than 12 inches, the Driller's log will record the number of blows and the number of inches penetrated. If a sample is not recovered or is found unsatisfactory in size or condition, a second attempt will be made to obtain a satisfactory sample before advancing the borehole to a lower depth.
- 8. In additional to classifying the subsurface soils at each boring location, a CHA scientist or engineer will screen the soils for visual, olfactory and photoionic evidence of contamination. An example soil boring log has been included in Attachment A. However, given that these borings are not being installed for geotechnical purposes and that the site investigation and remedial action have already been completed (except for bulkhead coating repairs and soil cover system installation), no samples will be collected for analysis.
- 9. Unless there is evidence of gross-contamination in the drill cuttings, all cuttings will be left on-Site for re-use. These cuttings will be placed under the final soil cover system.

Once the boreholes have reached the target depth, as determined by CHA's site representative, a monitoring well will be installed at each location. The wells will be installed in accordance with the following procedures:

- 1. A ten (10) foot long section of two (2) inch diameter, Schedule 40 PVC, 0.010-inch factory slotted well screen attached to a solid-wall riser pipe will be emplaced into the borehole. The well screen will extend approximately seven (7) to eight (8) feet into the groundwater table or to a depth ordered by CHA. The riser pipe will consist of two (2) inch diameter, Schedule 40 PVC, solid wall pipe.
- 2. No. 00 Jersey Sand will be added to the annulus while the hollow stem auger casing is being slowly removed to a level of at least six (6) inches feet above the screen. While one (1) to two (2) feet is preferred, this will not be possible to achieve for some of the shallower wells near the waterfront.
- 3. A minimum of an eighteen (18) inch layer of sodium bentonite pellets will then be installed into the annulus, on top of sandpack. This seal will be hydrated with a potable water source. Again, while a two (2)-foot thick well seal is preferred over the sandpack, this will not be possible to achieve for some of the shallower wells near the waterfront.
- 4. A bentonite-cement grout will then be placed into the well bore with a tremie pipe concurrently with the removal of the hollow stem augers. The grouting will cease when the grout reaches a level approximately one (1) two (2) feet from the ground surface. In the case of shallower wells, the concrete surface seal will be placed directly on top of the bentonite seal and no grouting will be necessary. In most cases, well requiring grout will have a three (3) foot vertical annular space to grout or less, and the driller may be permitted to add additional bentonite pellets in lieu of mixing small batches of grout to fill this annular space.
- 5. The well will be finished with a flush-mounted casing installed near the final proposed developer elevation and set in a concrete surface seal pad. The flush-mount casing will be a minimum of six (6) inches in diameter and will include a bolt-on cap with a rubber seal to minimize the potential for surface water intrusion. The cap will indicate "Monitoring Well" and will be bolted on to the casing in at least two locations. The concrete pad around the well casting will be a minimum of 18-inches in total depth and will be poured with concrete having a 28-day strength of at least 3,000 PSI.

Since the final grades are anticipated to be higher than the current Site grades, the concrete surface seal will be poured in a twenty-four (24)-inch diameter SonoTube. While the overall depth of the concrete will be no less than eighteen (18) inches, the pads will also extend a minimum of six (6) inches beneath the current Site grades (based upon the topographic information provided by the future developer on February 9, 2010) and will extend to the final developer grades. The following table summarizes the current and proposed grades at each well location (all elevations are in feet above mean sea level (AMSL)), and show how much the wells will extend above the current ground surface:

	Proposed	Existing	Change in
Well No.	Elevation	Elevation	Elevation
MW-1	6.0	5.0	+1.0
MW-2	6.0	5.0	+1.0
MW-3	7.1	6.8	+0.3
MW-4	11.6	11.6	0.0
MW-5	6.0	5.0	+1.0
MW-6	6.0	5.0	+1.0
MW-7	10.7	7.0	+3.7
MW-8	11.6	11.2	+0.4
MW-9	11.5	11.0	+0.5

- 6. The PVC riser pipe will be extended to a height of one (1) to three (3) inches beneath the well cap. A "v-notch will be cut in the top of each riser to provide a consistent point for gauging the wells. A rubber gripper plug will be installed on top of the riser pipe and a weather-resistant padlock will secure each well. All locks will be keyed alike and a minimum of two keys should be provided to both the Engineer and the Owner.
- 7. Based on field conditions, should the groundwater elevation be too high to allow for the well construction in accordance with the above procedure, a modified well construction will be utilized to allow the best possible well seal. All pertinent monitoring well information will be recorded on well construction diagrams. An example well construction diagram log has been included in Attachment B for reference.

The table included in Attachment C provides a summary of anticipated well construction methodology based upon anticipated groundwater elevations. While the actual well construction will vary based upon actual conditions encountered in the field, the well construction scenarios presented in the table are based upon ground water levels observed during the remedial construction. As can be inferred from the table below, standard well construction is not anticipated to be feasible for wells located near the shoreline (e.g. wells MW-1, MW02, MW-3, MW-5 & MW-6).

- 8. Once the grout and wells seals are provided sufficient cure time, each well will be developed. The wells will be developed using several cycles of surging and water evacuation (using a bailer or purge pump) until the purge water has a turbidity of less than 50 Nephelometric Turbidity Units (NTUs) or for a maximum of two (2) hours.
- 9. All decon and purge water will be collected and placed into 55-gallon drums for future characterization and disposal. CHA will coordinate the characterization sampling and off-site disposal of this investigation derived material (IDM).
- 10. In accordance with the SMP for the Site, the wells will be sampled within eighteen (18) months of issuance of the Certificate of Completion (COC).

Monitoring Well Abandonment

In addition to the installation of the monitoring wells on the DeLaval Site, the NYSDEC has requested that the City abandon one existing monitoring well near the waterfront and approximately one-hundred feet north of the DeLaval property. This well was not previously abandoned during the DeLaval remedial construction, as it was an off-site well.

The well abandonment will be completed in accordance with NYSDEC's CP-43: Groundwater Monitoring Well Decommissioning Policy. The monitoring well is an overburden well constructed with two (2)-inch diameter PVC pipe and a ten (10)-foot long section of well screen. Although the groundwater around the well exhibits minor contamination, the well seal has not been compromised and was not installed into a confining layer. Thus, the well will be grouted in place. The following paragraphs provide the specific procedures that will be followed for abandoning this well:

- 1. The bentonite-cement grout mixture will be placed in the well by pumping the mixture down a tremie pipe of a least one-inch inside diameter which has been placed to the bottom of the well to avoid segregation or dilution of the sealing materials. The slurry will be applied in one continuous operation until the well is filled to within at least one (1) foot of the ground surface elevation. The bottom end of the tremie pipe will be submerged in the grout during grout placement.
- 2. The existing concrete surface seal and protective steel casing will be removed and disposed of off-site. The PVC well riser pipe will be cut to an elevation of approximately twelve (12) inches below the existing grade.
- 3. The drilling contractor will allow the grout mixture to settle a minimum of two (2) hours prior to placing the bentonite seal or backfill soils on the grout. Additional grout, if necessary, should be added to the well borehole to raise the grout level to within at least one foot of the ground surface elevation.
- 4. A one-foot thick bentonite seal consisting of 1/4-inch diameter sodium-bentonite chips hydrated with potable water will be placed at the top of the bentonite-cement grout to provide a secondary seal.
- 5. The area will be restored by placing soil over the surface of the bentonite seal.
- 6. CHA's on-site representative will complete a well decommissioning record for submittal to NYSDEC.

Drilling Subcontractor

Since this project is a public works project, the drilling subcontractor personnel will be paid prevailing wages. CHA has selected Aquifer Drilling & Testing, Inc. (ADT) of Troy, New York to provide subcontracted drilling services based upon their lowest responsive bid of three (3) bidders for performing the work. CHA can provide copies of these bids under a separate cover upon request.

Health & Safety

All drilling and CHA personnel will have a minimum of a 40-hour initial Hazardous Waste Operations and Emergency Response (HAZWOPER) training and a current 8-hour refresher course.

A site-specific health and safety plans (HASP) has been prepared for the well installation tasks and has been included in Attachment C. All CHA personnel, including our drilling subcontractor, will review and sign the plan prior to the commencement of the drilling activities. It should be noted that this plan does not include every possible hazard and associated analyses associated with the contractor's equipment or material safety data sheets (MSDSs) for every possible product they may bring on-site in their trucks. However, our subcontractor will have their own supplemental HASP onsite that address specific hazards they must be prepared to deal with (e.g. hot work permits for welding/repairing equipment, lockout/tagout for repair/maintenance activities on the drill rig, fall protection if working on a derrick, etc.) and additional MSDS for items such as miscellaneous lubricants for maintenance of the drill rig, marking paint, etc.

Community Air Monitoring Program

Air monitoring will be performed at the Site during the advancement of all soil borings and decontamination activities in accordance with the New York State Department of Health (NYSDOH) *Generic Community Air Monitoring Plan (CAMP)*, and DER-10. All air monitoring will be conducted continuously on a real-time basis using both hand-held field instruments and perimeter air monitoring stations. All air monitoring readings will be recorded in a logbook and/or recorded by data loggers, and made available for review by both the NYSDEC and NYSDOH (including instantaneous readings from handheld instruments used for decision making purposes). The CAMP developed for the Site consists of two primary components, including fugitive dust monitoring and organic vapor monitoring as described in subsequent sections of this letter.

Fugitive Dust Control

Fugitive dust control measures will be implemented during all intrusive activities, including the advancement of borings to install the wells and decontamination operations. The following particulate monitoring program and fugitive dust suppression program will be implemented at the DeLaval Site during all intrusive activities:

- 1. Reasonable fugitive dust suppression techniques will be employed during all Site activities which may generate fugitive dust.
- 2. Particulate monitoring will be employed during the handling of soil/materials on Site that may generate fugitive dust. Site activities may also include the excavation, grading, or placement of clean fill.
- 3. Particulate monitoring will be performed using a real-time particulate monitor, specifically the TSI Incorporated DustTrakTM Aerosol Monitor, Model No. 8520, which responds to particles ranging from 0.1 to 10 microns (μ m) in size and dust concentrations ranging from 0.001 to 100 mg/m³. The instrument will be placed in an environmental enclosure along with the vapor monitor. A transmitter will be installed in the enclosure that will be connected to a two-way radio system. By doing so, CHA's on-Site representative overseeing the well installation will immediately be notified of any alarms.

- 4. Particulate levels will be monitored immediately downwind at the working Site/exclusion zone and integrated over a period not to exceed 15 minutes.
- 5. The action level will be established at 150 μ g/m³ over the integrated period not to exceed 15 minutes. While conservative, this short-term interval will provide a real-time assessment of on-Site air quality to assure both health and safety. If particulate levels are detected in excess of 150 μ g/m³, the upwind background level will be measured immediately using the same portable monitor. If the working Site particulate measurement is greater than 100 μ g/m³ above the background level, additional dust suppression techniques will be implemented to reduce the generation of fugitive dust and corrective action taken to protect Site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-Site personnel and implementing additional dust suppression techniques (see Paragraph 7 below). Should the action level of150 μ g/m³ be exceeded, the NYSDEC's Division of Environmental Remediation (DER) will be notified verbally at the telephone numbers provided in this SMP within two (2) hours of occurrence followed by notice in writing within five (5) working days; the notification will include a description of the control measures implemented to prevent further exceedances.
- 6. CHA will also rely on visual observation to monitor dust. If dust is observed leaving the working site, additional dust suppression techniques will be employed.
- 7. The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:
 - Wetting equipment and drill cuttings.
 - Restricting vehicle speeds to ten (10) miles per hour (MPH) or less.
- 8. If the dust suppression techniques being utilized at the Site do not lower particulates to an acceptable level (that is, below 150 μ g/m³and no visible dust), work will be suspended until appropriate corrective measures are approved to remedy the situation.
- 9. CHA's on-Site representative will document calibration of the dust monitor. However, per the manufacturer's guidance, daily calibration of the dust monitor is not required. Rather, this instrument calibrated on a monthly basis by the rental supplier, and therefore, the initial calibration should be sufficient for the duration of the well installation and abandonment work.

Organic vapor monitoring will be conducted simultaneously with the dust monitoring program and is described further in the following section of the SMP.

Organic Vapor Control

Petroleum-contamination is known to remain at the Site following the remedial construction. Therefore, VOCs will be monitored at the downwind perimeter of the immediate work area (i.e. on a continuous basis when intrusive activities (e.g. borehole installation and decontamination) are performed. Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes.

The monitoring work will be performed using MiniRAE 2000 photoionization detector (PID) with data logging capability. The PID will be calibrated at least daily using isobutylene, as recommended by the manufacturer. The equipment will be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below. The PID instrument will be placed in an environmental enclosure equipped with a transmitter that will immediately notify CHA's on-Site representative of any exceedances of the action levels described below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but are less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but is no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level in the downwind work area perimeter exceeds 25 ppm, the borehole will be plugged and drilling activities will be halted until a modified work plan is submitted to and approved by NYSDEC for managing elevated vapor levels.

The location of the air monitoring station will be moved to be down-gradient of each particular borehole location as well as down-gradient of the decontamination area when decontamination is being conducted. Additionally, the location will be shifted from time to time based upon changes in wind direction.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers. Should the particulate action level of 150 μ g/m³ or the organic vapor concentration of 25 ppm be exceeded, the NYSDEC's Division of Environmental Remediation (DER) and the NYSDOH personnel will be notified within two (2) hours of occurrence followed by notice in writing within five (5) working days; the notification will include suspected causes of the exceedances along with a description of the control measures implemented to prevent further exceedances. Additionally, the written notification will include a description of the activities on-going at the time of the exceedance and a map depicting the location of the intrusive activities and the location of the air monitoring stations.

Reporting

CHA will prepare a brief letter summarizing our findings following the installation of the new monitoring well network. The letter will include boring logs, well construction diagrams, well development logs, and any other observations made during the installation. Records documenting the off-site disposal of the IDW will be submitted under a separate cover following receipt of the final bill of lading/manifest.

Project Schedule

CHA will schedule the drilling activities within two to three weeks following receipt of an approved work plan and a signed contract from the City of Poughkeepsie. CHA anticipates that this work will be completed in five (5) to seven (7) business days following commencement. CHA's summary letter will be issued within two (2) weeks following the completion of the field work.

If you should have any questions or comments at all, or require additional information, please do not hesitate to contact me at (315) 471-3920.

Very truly yours,

Scott M. Smith, P.E. Associate

SMS/bc

M:\14357\Rpts\MW Installation Work Plan\2010-08-16_CHA Submits MW Netowkr Work Plan to DEC.doc

Figure 1-

Monitoring Well Location Map

.

ЫМ 8/19/2010 3:13:37 ÷ PLott M 3: 12: 14 8/19/2010 ö Ŝ MAP.DWG LOCATION 2B_MW 2A-Ш PLAN\FIGURES\F WORK ALLATION NST Ë

.

Attachment A

Soil Boring Log

		H_				TEST B	ORING	BORING NO.			
PROJEC CLIENT:	T & LOCAT	ΓΙΟΝ:								PROJECT NO .:	
CONTRA	CTOR:]			CODE	SHEET NO .: 1 OF	
DATE			DEPTH TO	0 (FT.):	POTTOMOS	-	CASING	SAMPLER	BARREL	ELEVATION:	
DATE		WATER	CASIN	NOF E	BORING	TYPE:				START DATE	TIME
	+					HAMMER WT.:					
									l		
							DEPTH	1 INTRODUCED:			
						CHECKED BY:				DRILLER:	
DEPTH IN			SPT		<u> </u>	DATE:				INSPECTOR:	
FEET	NO.	LENGTH	BLOWS PER 6"	N/RQI	D	NOTES		FIE	ELD CLASSIF	FICATION	
	-										
	-										
— 5 —	-										
	-										
	-										
$-\frac{1}{0}$	-										
	-										
	1										
	-										
	4										
1											
5	1										
	-										
	-										
2-	-										
0											
BLOWS	/FT. - VE	DENSITY RY LOOSE		BLOWS	S/FT.	CONSISTENCY VERY SOFT	(S	AMPLE IDENT			
5-10 11-30	- LO - ME	OSE DIUM COMPAC	т	3-4 5-8	 } -	SOFT MEDIUM STIFF		T – THIN WAL			
31-50 51+	- CO - VE	RY COMPACT		9-15 16-3/		VERY STIFF		vv – vvash s	AWPLE		10.

	C	A			TEST B	ORING LOG		BORING NO.
PROJEC	T & LOCAT	TION:		1				
CONTRA	CTOR:			1				SHEET NO.: OF
DEPTH IN FEET	SAMPLE NO.	RECOVERY LENGTH	SPT BLOWS PER 6"	N/RQD	NOTES	FIELD	D CLASSI	FICATION
			T LIKO					
	-							
	-							
L _	-							
	-							
	-							
<u> </u>	-							
	-							
	-							
	-							
<u> </u>	-							
	-							
	-							
<u> </u>	-							
	-							
	-							
	-							
BLOWS 0-4	/FT. - VE	DENSITY RY LOOSE		BLOWS/FT 0-2	- VERY SOFT	SAMPLE IDENTIF	ICATION ON	
5-10 11-30	- LO - ME	OSE DIUM COMPA	ст	3-4 5-8	- SOFT - MEDIUM STIFF	T – THIN WALL T A – AUGER CUTT	UBE	
31-50 50+	- CC - VE	MPACT RY COMPACT		9-15 16-30	- STIFF - VERY STIFF	W – WASH SAM	PLE	

J:\07-envi\Forms\Boring Logs\Boring_Log2.doc

Attachment B

Well Construction Log

CHA	WELL CONSTRUCTION	ON LOG
ROJECT & LOCATION: IENT:		PROJECT NO.:
NTRACTOR:		SHEET NO.: 1 OF 1
		START DATE: TIME:
		FINISH DATE: TIME:
		DRILLER:
		INSPECTOR:
¥	<u> </u>	Type of Protective Casing: Inside Dia. Of Casing: Depth Below Ground of Casing:
Depth Below Ground to Top of Riser Pipe:		Type of Surface Seal: <u>Concrete</u>
		Thickness of Surface Seal:
Type of Backfill Around Riser Pipe: Inside Diameter of Riser Pipe:		
Depth to Top of Fine Sand		Type of Bentonite Seal: Depth to Top of Bentonite Seal:
Choke:		Type of Screen:
Type of Sand Pack: No Sand		Screen Diameter:
Depth to Top of Sand Pack		Screen Slot Size:
Depth to Bottom of Sand Pack		Depth to Top of Screen:
		Depth to Bottom of Screen:
Backfill (if any):		Depth to Bottom of Borobolo:
		Deptn to Bottom of Borehole:

V:\OH_Data\Divisions\CEP\Environmental\Forms\Environmental\Well Logs\Well Construction\Well_Construction_Log_Flush.doc

L

Attachment C

Estimated Well Construction Information

Attachment C Estimated Well Construction Information

													Temporary		Depth
				Anticipated				Height of			Bottom	Thickness	Concrete		Bentonite
			Anticipated	Top of	Anticipated	Anticipated	Тор	Sandpack	Top of		Concrete	Concrete	Penetration	Temporary	Seal to
	Proposed	Existing	Ave. High	Screen	Bottom of	Borehole	Sandpack	Above	Bentonite	Thickness	Surface	Surface	into Ground	Concrete	Bottom
Well No.	Elevation	Elevation	Tide	Elev.	Screen Elev	Depth (ft.)	Elev.	Screen	Seal	Bent Seal	Seal	Seal	(ft.)	Stickup (ft.)	Concrete
MW-1	6	5	1	2.5	-7.5	12.5	3	0.5	4.5	1.5	4.5	1.5	0.5	1	0
MW-2	6	5	1	2.5	-7.5	12.5	3	0.5	4.5	1.5	4.5	1.5	0.5	1	0
MW-3	7.1	6.8	1.5	3.5	-6.5	13.3	4	0.5	5.5	1.5	5.5	1.6	1.3	0.3	0
MW-4	11.6	11.6	2	4	-6	17.6	5.5	1.5	7.5	2	10.5	1.1	1.1	0	3
MW-5	6	5	1	2.5	-7.5	12.5	3	0.5	4.5	1.5	4.5	1.5	0.5	1	0
MW-6	6	5	1	2.5	-7.5	12.5	3	0.5	4.5	1.5	4.5	1.5	0.5	1	0
MW-7	10.7	7	1.5	3.5	-6.5	13.5	4	0.5	5.7	1.7	5.7	5	1.3	3.7	0
MW-8	11.6	11.2	2	4	-6	17.2	5.5	1.5	7.5	2	10	1.6	1.2	0.4	2.5
MW-9	11.5	11	2	4	-6	17	5.5	1.5	7.5	2	10	1.5	1	0.5	2.5

Attachment D

Health & Safety Plan

Health & Safety Plan Monitoring Well Installation

The DeLaval Property 202-204 Rinaldi Boulevard City of Poughkeepsie, Dutchess County, New York ERP Site No. B00190-3

CHA Project Number: 14357.1020.1102

City of Poughkeepsie 62 Civic Center Plaza

P.O. Box 300 Poughkeepsie, New York 12602-0300

Prepared by:

441 South Salina Street Syracuse, New York 13202 Phone: (315) 471-3920 Fax: (315) 471-3569

August 20, 2010

Revision No.	Submitted Date	Summary of Revision	DEC Approval Date

M:\14357\Rpts\HASP\14357_MW Install HASP.doc

DISCLAIMER

This Site Health & Safety Plan (HASP) has been written for the use of Clough Harbour & Associates LLP (CHA) and their employees. Properly trained and experienced CHA subcontractors may also use it as a guideline document. However, CHA does not guarantee the health and safety of any person entering the Site.

Due to the potentially hazardous nature of the project and the activity occurring thereon, it is not possible to discover, evaluate and provide protection for all possible hazards, which may be encountered. Strict adherence to the health and safety guidelines set forth herein will reduce, but not eliminate, the potential for injury at the project. The health and safety guidelines in this plan were prepared specifically for this project and should not be used on any other project without prior research by trained health and safety specialists.

CHA claims no responsibility for the use of this Plan by others. The Plan is written for the specific Site conditions; purpose, dates, and personnel specified and must be amended if these conditions change.

TABLE OF CONTENTS

DISCL	AIMER		II
TABLE	e of Coi	NTENTS I	ш
LIST O	FTABL	ES	V
LIST O	f Figur	RES	V
LIST O	F APPEN	NDICES	V
LIST O	F ACRO	NYMS & ABBREVIATIONS	VI
1.0	Intro	DUCTION & DESCRIPTION OF REMEDIAL PROGRAM	.1
2.0	Gener	RAL SITE INFORMATION	.2
3.0	Emero	GENCY CONTACTS	.3
4.0	Key P	ERSONNEL	.5
	4.1 4.2 4.3	Off-Site Personnel On-Site Personnel As-Needed Personnel	.5 .5 .6
5.0	SITE E	NTRY	.7
	5.1 5.2 5.3 5.4 5.5	Objectives Safety Meetings Safety Training Medical Surveillance Site Mapping	.7 .7 .7 .7 .8
6.0	SITE C	CHARACTERIZATION	.9
	6.1 6.2 6.3 6.4 6.5	Site Description Site History	.9 .9 .2 .2 .2 .2
7.0	HAZAI	rd Evaluation1	3
	7.1 7.2 7.3 7.4 7.5	Physical Hazards 1 Biological Hazards 1 Chemical Hazards 1 Flammable Hazards 1 Hazard Identification & Control 1	.3 .3 .3 .6 .6

8.0	AIR M	IONITORING & ACTION LEVELS	19
	8.1 8.2 8.3 8.4	Air Monitoring Equipment Action Levels Community Air Monitoring Requirements Environmental Sampling	19 19 20 21
9.0	PERSC	DNAL PROTECTIVE EQUIPMENT	22
	9.1 9.2	GEneral Information Task Specific Requirements	22
10.0	SITE C	Control Measures	25
	10.1 10.2 10.3	Work Zones Communication Site Security Measures	25 25 26
11.0	DECO	NTAMINATION	27
	11.1 11.2 11.3	Personal Protective Equipment Small Equipment & Hand Tools Heavy Equipment	27 27 27
12.0	Haza	RD COMMUNICATION	28
13.0	CONF	INED SPACE	29
14.0	Emer	GENCY PROCEDURES	30
	14.1 14.2 14.3 14.4 14.5	Personnel Injury Fire/Explosion PPE Failure Chemical Exposure Spill Containment	31 31 31 31 32
15.0	Emer	GENCY MEDICAL CARE	33
	15.1 15.2 15.3	Nearest Hospital On-Site First Aid Heat & Cold Stress	33 33 34 34 35
16.0	Stani	DARD OPERATING PROCEDURES	37
17.0	Certi	IFICATION & AGREEMENT	39

LIST OF TABLES

Table 7-1.	Exposure Limit Summary	14
Table 7-2.	Hazard Evaluation	17

LIST OF FIGURES

Figure 1. Vicinity Location Map

LIST OF APPENDICES

- Appendix A HAZWOPER Certifications
- Appendix B Analytical Summary Tables
- Appendix C Material Safety Data Sheets

LIST OF ACRONYMS & ABBREVIATIONS

AMSL	Above Mean Sea Level
AOC	Area of Concern
CAMP	Community Air Monitoring Program
CFR	Code of Federal Regulations
CHA	Clough Harbour & Associates LLP
ERP	Environmental Restoration Program
ESA	Environmental Site Assessment
HASP	Health and Safety Plan
HAZWOPER	Hazardous Waste Operations & Emergency Response
HSC	Health & Safety Coordinator
IDLH	Immediately Dangerous to Life and Health
MOSF	Major Oil Storage Facility
MSDS	Material Safety Data Sheet
MSHA	Mine Safety and Health Administration
MTA	Metropolitan Transportation Authority (of New York City)
NIOSH	National Institute for Occupational Safety and Health
NYSDEC	New York State Department of Environmental Conservation
NYSDOH	New York State Department of Health
OSHA	Occupational Safety and Health Administration
PAH	Polynuclear Aromatic Hydrocarbon
PCB	Polychlorinated Biphenyl
PEL	Permissible Exposure Level
PID	Photoionization Detector
PPE	Personal Protective Equipment
PPM	Parts per Million
REL	Recommended Exposure Limit
RI	Remedial Investigation
SCBA	Self-Contained Breathing Apparatus
SHSO	Site Health & Safety Officer
STP	Sewage Treatment Plant
SVOC	Semivolatile Organic Compound
TCC	The Chazen Companies
TWA	Time Weighted Average
USEPA	United States Environmental Protection Agency
VOC	Volatile Organic Chemical

1.0 INTRODUCTION & DESCRIPTION OF REMEDIAL PROGRAM

The following Health and Safety Plan (HASP) has been created for the protection of Clough Harbour & Associates LLP (CHA) staff on the Hudson River Waterfront - DeLaval Property, located 202-204 Rinaldi Boulevard, Poughkeepsie, New York, 12601 (see Figure 1). This project's various assignments require CHA employees to perform tasks where personal safety could be compromised due to chemical, physical, and biological hazards. While conducting fieldwork, CHA employees may be exposed to chemical contaminants including a wide variety of organic compounds and heavy metals. Additionally, CHA employees may be exposed to physical hazards, including but not limited to, heavy machinery, subsurface utilities, and trip/fall hazards. CHA employees may also be exposed to biological hazards, including but not limited to insects, poison ivy/oak/sumac, and animals.

The requirements and guidelines in this HASP are based on a review of information collected to date and an evaluation of potential on-Site hazards identified from this information. The plan procedures will be updated as any new or previously unknown information becomes available with regard to the actual Site conditions.

This HASP will be discussed with Site personnel and will be available on-Site for review while work is underway. All personnel conducting site activities must be familiar with the procedures, requirements and provision of this plan, and in the event of conflicting plans/requirements, personnel must implement those safety practices which afford the highest level of protection. CHA personnel will report to the CHA Health and Safety Coordinator (HSC) in matters of health and safety. While the HSC is responsible for ensuring compliance with this HASP and stopping work when necessary, the Field Team Leader is responsible for implementation of this HASP into daily site activities.

Non-intrusive activities within CHA's Scope of work are those that do NOT have the potential to jeopardize the health and safety of site workers, the public, or the environment with respect to Site contaminants. Intrusive activities within CHA's Scope of work are those that have the potential to cause health and safety concerns to site workers, the public, or the environment. All on-Site activities, intrusive or otherwise, require training per 29 CFR 1910.120 *Hazardous Waste Operations and Emergency Response, Final Rule*, which govern work on hazardous waste sites.

2.0 GENERAL SITE INFORMATION

CHA Project Number:	14357.1020.1102			
Client	City of Poughkeepsie			
Client Contact:	Mr. Joseph Chenier – (845) 451-4074			
Site Name:	Hudson River Waterfront - DeLaval Property			
Site Address:	202-204 Rinaldi Boulevard Poughkeepsie, New York 12601			
Site Size:	13.95± acres			
Site Status:	Site remediation is on-going under the New York State Department of Environmental Conservation's (NYSDEC's) Environmental Restoration Program (ERP). All elements of the remedy have been implemented with the exception of the final soil cover system. Elevated heavy metal concentrations are known to be present in the surface soils at the Site and there is also known remaining petroleum contamination impacting the subsurface soil and groundwater beneath the Ste.			
Work Tasks/Duration:	-New Monitoring Well Installation:Approximately 5 days-Monitoring Well Abandonment:Approximately 1 day			
Subcontractor(s):	A drilling subcontractor will be employed to advance the proposed soil borings, install and develop the new monitoring wells, and to abandon one existing well. The drilling subcontractor for this project will be:			
	Aquifer Drilling & Testing, Inc. 9 Monroe Street Troy, New York 12180 Phone: (518) 274-3949			

3.0 EMERGENCY CONTACTS

Ambulance:	911
Police Department:	911
Fire Department:	911
Hazardous Materials Response:	911
City of Poughkeepsie Police:	(845)-451-4000
NYS Police – Troop K:	(845) 677-7300
NYSDEC Spills Hotline:	1-800-457-7362 (24 hours a day)
USEPA Region 2:	(212) 637-3360
Spill/Cleanup Contractor: (EPS of Vermont)	(518) 465-4000 1-800-5-Spills (Toll Free)
Poison Control:	1-800-222-1222
Utility Clearance:	1-800-DIG-SAFE (1-800-344-7233)
CHA Contact:	Scott M. Smith, P.E. (315) 471-3920 – Office (315) 427-1033 – Cell
Client Contact:	Mr. Joseph Chenier (845) 451-4074
NYSDEC Project Manager:	Mr. Joshua Cook, P.E. (518) 402-9662
Nearest Hospital:	Vassar Brothers Medical Center 45 Reade Place Poughkeepsie, New York 12601 Phone: (845) 454-8500

Directions to the Hospital: (see below for a map of directions to hospital)

- 1. Drive east on Pine Street, going under railroad overpass.
- 2. Turn right onto Pine Street Spur.
- 3. Turn left onto Columbia Street.
- 4. Cross over Route 9 and turn right onto Young Street
- 5. Turn right onto Reade Place
- 6. Hospital on left. Follow signs to Emergency entrance.

Total Estimated Distance:	0.5 miles
Total Estimated Time:	2 minutes

Source: Google Maps – City of Poughkeepsie, NY, 2009.

4.0 KEY PERSONNEL

4.1 OFF-SITE PERSONNEL

<u>Title:</u> <u>Description:</u> Contact:	Senior Level Management Responsible for defining project objectives, allocating resources, determining the chain of command, and evaluating program outcome. Scott M. Smith, P.E. @ (315) 471-3920
Title	Project Team Leader
Description:	Reports to upper level management, has authority to direct response
Contact:	Scott M. Smith, P.E. @ (315) 471-3920
Title:	Scientific Advisor
Description:	Guides the Project Team Leader in scientific matters.
Contact:	Christopher A. Burns, Ph.D., P.G. @ (315) 322-1567
Title:	CHA Company Health & Safety Coordinator (HSC)
Description:	Overall responsibility for implementing company-wide health and safety
	standards, procuring appropriate personal protective clothing and equipment,
	staff training, etc.
Contact:	Margaret M. Rudzinski @ (518) 453-2830

4.2 ON-SITE PERSONNEL

Title:	Site Health & Safety Officer (SHSO)
Description:	Advises the field team on all aspects of health and safety issues, recommends stopping work if any operation threatens worker or public health and safety.
Contact:	TBD @ (518) xxx-xxxx
<u>Title:</u>	Field Team Leader
Description:	Responsible for field team operations.
Contact:	TBD @ (518) xxx-xxxx
<u>Title:</u>	Work Party
Description:	Performs field operations
Contact:	TBD @ (518) xxx-xxxx

4.3 AS-NEEDED PERSONNEL

<u>Title:</u> Description:	Fire Department Responds to fires, performs rescues, and maintains hazardous material responders.
Contact:	911
<u>Title:</u> Description: <u>Contact:</u>	Hazardous Chemical Cleanup Contractor Contaminant control methods and emergency response. Environmental Products & Services of Vermont, Inc. Jeff Colletta @ (518) 465-4000

5.0 SITE ENTRY

5.1 **OBJECTIVES**

The objectives of the Site entry are to install nine (9) monitoring wells at the Site that will be used as part of the post-remediation monitoring system as well as abandon one (1) existing monitoring well. Based upon the investigations and remedial activities performed at the Site to date, contamination is known to remain in the soils and groundwater at the Site. This plan was developed due the potential that personnel installing/abandoning the monitoring wells will come into contact with contaminated soil and/or groundwater.

5.2 SAFETY MEETINGS

To ensure that the HASP is being followed, the task Site Health & Safety Officer (SHSO) shall conduct a safety meeting prior to entry to the Site or the initiation of any Site activity, if any conditions change, and before each work day.

5.3 SAFETY TRAINING

The task SHSO will confirm that every person assigned to a task has had adequate training for that task and that the training is up-to-date by checking with the CHA Health & Safety Coordinator. On-Site CHA staff working on this project shall have a minimum of a 40-hour initial Hazardous Waste Operations and Emergency Response (HAZWOPER) training and a current 8-hour refresher course. Additionally, CHA will confirm that all subcontractor's on-Site personnel have the HAZWOPER training and a current 8-hour refresher course. Certificates will be included in Appendix A of this HASP prior to the commencement of intrusive activities.

All training will have been conducted and certified in accordance with the Occupational Safety and Health Administration (OSHA) regulations as outlined in 29 CFR 1910.120.

5.4 MEDICAL SURVEILLANCE

All on-Site CHA personnel (including CHA subcontractors) will have had a medical surveillance physical consistent with OSHA regulations in 29 CFR 1910.120 and performed by a qualified occupational health physician. The SHSO shall confirm prior to initiation of work on this Site that

every person assigned to a task has had an annual physical, has passed the medical examination and has been determined medically fit by the occupational health physician for this type of work.

5.5 SITE MAPPING

A map depicting the proposed locations of the new monitoring wells to be installed as well as the well scheduled for abandonment has been provided as Figure 2 in the Post-Remedial Monitoring Well Network Installation Work Plan, in which this HASP is attached to.

6.0 SITE CHARACTERIZATION

6.1 SITE DESCRIPTION

The Site is approximately 13.95-acres in size and is located in the City of Poughkeepsie, County of Dutchess, New York. The Site is currently a vacant parcel of land located immediately adjacent to the Hudson River. The Site was historically used for industrial operations from the late 1800s through the 1960s. The property remained vacant until 2008, at which time remediation of the Site began. While a final soil cover system has not been placed across the Site surface to isolate the remaining contamination for human and environmental exposure, most of the remedial construction is complete. The monitoring well installation work covered under this HASP will be part of the future monitoring of the Site.

6.2 SITE HISTORY

The following summary of the Site history was prepared based upon review of available Sanborn Mapping, historical railroad mapping provided by the Metropolitan Transportation Authority (MTA) of New York City, and review of historical documents on DeLaval, Inc.'s website (<u>http://www.delaval-us.com</u>):

1887 Sanborn Map: Development of the Site had already commenced and it was occupied by a tannery, carpentry shop, two coal sheds, and a pair of homes at that time. Much of the current Site was underwater and part of the Hudson River at that time, particularly towards the southern end of the Site. Rinaldi Boulevard was known as South Water Street at that time.

1890 – DeLaval Website: According to DeLaval's website, they began operations in Poughkeepsie, New York in 1890.

1895 Sanborn Map: The approximately northern half of the Site was occupied by E.B. Taylor. E.B. Taylor had several structures on the Site that were utilized for the storage of umber, lime, cement and coal. There was also one coal shed occupied by J.G. Martin and two coal sheds occupied by A. Doughty's located at the north end of the Site (north of the intersection between Pine Street and Rinaldi Boulevard). In addition, there was a small office building, a "hides" structure associated with the former tannery, and a hay storage shed located near the northern boundary of the Site. Approximately 250 north of the existing tunnel beneath the MTA railroad tracks and adjacent to the railroad tracks, there was a "switchman's tower."

Moving southward, there were three structures present that appeared to be associated with The DeLaval Separator Company, which was identified as a manufacturer of cream separators used in the
dairy industry. The northernmost structure was labeled as "packaging, assembly and shipping" and was located east of the existing tunnel beneath the MTA railroad tracks. Further south was another structure labeled "Iron Works & Offices." A coal-fired power/steam plant with two engines was situated between the main two structures and immediately adjacent to the MTA tracks. Additionally, one small ice house was present east of the iron works and offices building and additional ice houses were located at the south end of the Site.

1907 Railroad Map: This map indicated that the northern half of the Site was still occupied by lumber sheds, store houses, and a barn. The DeLaval Separator Company had expanded, adding a store house between the shipping building and the railroad tracks, and a paint shop between the iron works building and the railroad tracks. A rail spur running northward across most of the length of the DeLaval Site from the south end was present at that time and was labeled as being operated by the "Standard Oil Company." The southern end of the DeLaval property was occupied by the Poughkeepsie Yacht Club.

1913 Sanborn Map: The DeLaval Separator Company had expanded its operations significantly, and occupied most of the Site. In fact, based upon the map, it appeared that DeLaval had constructed bulkheads along the riverfront and had encroached further westward upon the Hudson River. The DeLaval Separator Company manufactured milking machines, centrifuges to separate milk and cream, and other stainless steel farming equipment by this timeframe.

The railroad spur near the center of the Site split into two spurs near the north end of the Site and extended to near the intersection of South Water Street (Rinaldi Boulevard) and Pine Street. Structures located between the railroad spur and the Hudson River included a pressed steel room, a pickling room, a tinning room, an annealing room, a relatively large engine and dyno room (an "independent electric plant") with what appears to possible by three horizontal oil storage tanks, a large smoke stack, a clarifying room, a bowl department, a tool room, and inspecting room, a finished stock room, an assembly room, a machine shop, castings storage, metal storage, and a scrap metal building.

An acetylene gas house, house/fire house, a forge shop, storage buildings, a packing/shipping/box building room, offices (including drafting areas and a blueprint room), a bicycle room, and an oil storage structured were present between the railroad spur and the existing railroad tracks along the east side of the Site. The oil storage structured was located approximately 450 feet south of the tunnel going beneath the MTA railroad tracks.

While the coal sheds at the north end of the Site (north of the Site entrance) changed little, these structures were now owned by DeLaval Separator Company was well. DeLaval also owned structures northeast of the intersection of Pine Street and Rinaldi Boulevard and east of the railroad tracks. A large dwelling was visible on top of the rock outcropping present near the northeast corner of the Site.

The south end of the DeLaval Site was undeveloped and much of it was still under water as part of the Hudson River. However, the far south end of the Site was labeled as the "DeLaval Separator Co. Storage Yard."

The surrounding areas remained relatively unchanged; however, a total of six sets of tracks were visible along the east side of the Site.

1917 Railroad Map: The map indicates that the Site was occupied by several structures and the Site was labeled as the DeLaval Separator Company. The map shows the presence of the rail spur on the Site and the presence of a gasoline tank located immediately west of the spur, approximately 200 feet north of the southern Site boundary. There are no other visible structures shown at the south end of the Site, so the purpose of this tank is unclear. The parcel of land north of the DeLaval Site was labeled Moline Plow Company.

1913 to 1950 Sanborn Maps: The Site continued to be controlled by the DeLaval Separator Company as well as the former D.H. Burrell & Co. and the Lane Bros. Co. foundries located east of the railroad tracks and west of Prospect Street (now partially occupied by US Route 9 corridor). However, the eastern expansion beyond the railroad tracks is not part of the Site.

One of the coal storage sheds located near the entrance to the Site had been removed and replaced with an "auto parking" area. Towards the south end of the Site, the machine shop had been significantly expanded. A note indicates this addition was constructed in 1918. Additionally, a steam shop had been added to the southern end of the oil storage structure adjacent to the railroad retaining wall and an "oil research laboratory" was located approximately 750 feet south of the tunnel beneath the railroad tracks.

1952 Sanborn Map: The map revealed the presence of two underground storage tanks and oil storage building which are suspected to have contributed to the Site contamination.

A review of historical aerial photography was completed by The Chazen Companies (TCC) during December 1999, as part of a Phase I Environmental Site Assessment (ESA). While a 1962 aerial photograph of the Site indicated that most of the Site was still occupied by the DeLaval Separator Company structures, a 1967 aerial photograph revealed that the DeLaval Site was vacant and largely un-vegetated, with the exception of one small structure (e.g. a shed) which was not visible in the 1970 aerial photograph. Some vegetation was visible on the Site by the 1980 aerial photograph. A 1995 aerial photograph as well as Site assessment work that began in 1999 indicates that the Site remained vacant between the 1960s and 2007.

According to the title search performed by TCC at the Dutchess County Real Property Tax Office, the DeLaval Separator Company sold the Site to the Robert H. Corbetta Corporation in December of 1965, who in turn sold the land to the City of Poughkeepsie in 1968.

The specific waste disposal practices related to the aforementioned operations on the Site are not definitively known. However, Site investigations have revealed a landfill area on the southern portion of the property. This area is also located in the area that was historically identified as a DeLaval storage area between 1913 and 1950.

6.3 NEIGHBORING PROPERTIES

The Site is bounded by the Shadows on the Hudson restaurant/catering facility and The Grandview banquet facility (formerly the City Sewage Treatment Plant (STP) site) to the north, Love/Effron, a major oil storage facility (MOSF) to the south, a Metropolitan Transportation Authority (MTA) of New York City-owned concrete wall with an elevated railroad corridor utilized by Metro North, Amtrak and Conrail to the east, and the Hudson River to the west.

6.4 SITE TOPOGRAPHY

Based upon a survey map provided for the area, elevations in the vicinity of the project range from approximately 5 to 18 feet above mean sea level (AMSL). The project area is relatively flat and generally slopes westward towards the Hudson River.

6.5 METEOROLOGICAL DATA

The fieldwork for the proposed investigation will be completed in late summer to early fall. Therefore, temperatures are expected to range from approximately 50 degrees Fahrenheit to 90 degrees Fahrenheit on average. However, the weather and temperature throughout the year will vary from hot and humid in the summer months to cold and dry in the winter months. Prior to each day's activities, the daily forecast will be monitored for indications of adverse work conditions. If poor weather hinders the continuation of the day's activities or poses unsafe work conditions, the Field Team Leader may stop work for the day.

7.0 HAZARD EVALUATION

7.1 PHYSICAL HAZARDS

Physical hazards such as the following may be encountered on Site:

- Slip/Trip/Fall (e.g. from animal burrows, debris, steep topography, ice, etc.)
- Ultraviolet rays
- Lifting strains (e.g. from generators, drums, equipment)
- Heavy machinery and vehicles (e.g. drill rigs)
- Flying debris (e.g. debris from drilling equipment)
- Noise (e.g. elevated noise levels associated with drilling equipment)
- Heat/cold stress

7.2 BIOLOGICAL HAZARDS

Biological hazards such as the following may be encountered on Site:

- Poisonous plants poison ivy, poison oak, poison sumac
- Insects/animals deer ticks, mosquitoes, rabid animals, snakes, stray animals

7.3 CHEMICAL HAZARDS

Based upon analytical data available for the Site to date, the following primary categories of contaminations are known to exist at the Site:

- Volatile Organic Compounds (VOCs), particularly chlorinated solvents
- Semivolatile Organic Compounds (SVOCs), namely polynuclear aromatic hydrocarbons (PAHs)
- Polychlorinated Biphenyls (PCBs)
- Metals

OSHA Permissible Exposure Levels (PELs) and the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limits-time weighted average (REL-TWA) concentrations are provided in the following table for contaminants detected at the Site:

OSHA PEL _ NIOSH REL			
	TWA (mg/m ³	TWA	
Chemical	or nnm)	$(mg/m^3 \text{ or } nnm)$	
Acetone	1 000	250	
Benzene	1,000	0.1	
sec-Butylbenzene		0.1	
Carbon Disulfide	20	1	
Chlorobenzene	75	75	
cis 1.2 Dichloroathana	200	200	
Ethylbonzono	200	200	
Mathylana Chlorida	25	100	
Toluono	23		
Totrachlaraethana	200	100	
Trichlereethere	100		
Inchloroethene X_1	100	25	
Xylene	100	100	
Acenaphthylene			
Acenaphthene			
Anthracene	0.2	0.1	
Benzo(a)anthracene			
Benzo(a)pyrene	0.2	0.1	
Benzo(b)fluoranthene			
Benzo(g,h,i)perylene			
Benzo(k)fluoranthene			
Bis(2-Ethylhexyl)phthalate			
Carbazole			
Chrysene	0.2	0.1	
Dibenz(a,h)anthracene			
Dibenzofuran			
Fluoranthene			
Fluorene			
Indeno(1,2,3-cd)pyrene			
2-Methylnapthalene			
Naphthalene	10	10	
Phenanthrene	0.2	0.1	
Pyrene	0.2	0.1	
PCBs	0.5	0.001	
4,4'-DDT	1	0.5	
Aluminum	15	10	
Antimony	0.5	0.5	
Arsenic	0.01		
Barium			
Bervllium	0.002	0.0005	
Cadmium	0.005		

Table 7-1. Exposure Limit Summary

DeLaval Property – Site No. B00190-3 Page 14

	OSHA PEL- TWA (mg/m ³	NIOSH REL- TWA
Chemical	or ppm)	(mg/m [°] or ppm)
Calcium		
Chromium	0.5	0.5
Cobalt	0.1	0.05
Copper	1	1
Iron	10	5
Lead	0.05	0.05
Magnesium		
Manganese	5	1
Mercury	0.1	0.05
Nickel	1	0.015
Potassium		
Selenium	0.2	0.2
Silver	0.01	0.01
Sodium		
Thallium	0.1	0.1
Vanadium	0.05	0.05
Zinc		
Asbestos	0.1 fiber/cm^3	0.1 fiber/cm^3

Analytical data from CHA's Supplemental Investigation Summary Report data January 2005 as well as the analytical data from confirmatory samples collected following the excavation and off-site disposal of several thousand tons of petroleum-contaminated soils has been summarized in tabular format in Appendix X. It should be noted that the data from the investigative report may not be representative of current conditions given the recent remedial action activities. Additionally, the confirmatory samples were collected in areas where the soil removal took place and in close proximity to the location of the proposed new monitoring wells, but this data only provides coverage for source removal areas.

The potential exposure mechanism that can transport particulates and contaminants from the project area to other areas of the facility as well as beyond the boundaries of the facility are:

- Failure to adhere to proper decontamination procedures
- Failure to properly managed water generated from decontamination processes
- Contact with groundwater

• Contaminated dust projected by air currents (although will be minimal giving the limited area of disturbance resulting from the drilling of the boreholes).

7.4 FLAMMABLE HAZARDS

As a precautionary measure the following will be implemented to address flammable hazards.

- Use a fire extinguisher only to escape or to fight very small fires. Do not attempt to fight large fires.
- Field vehicles must have at least one ABC rated fire extinguisher.
- Explosive or flammable materials and liquids will be stored only in approved facilities.
- Smoking is not permitted on the Site within any work areas involving intrusive activities.
- All food and drink (including items such as chewing gum, chewing tobacco, etc.) will be prohibited in the exclusion zones or contamination-reduction zones at the Site.
- Hot work (i.e.: cutting, grinding, welding, torching) shall not be allowed in the work area(s) unless a comprehensive Hot Work Permit is completed and authorized.

7.5 HAZARD IDENTIFICATION & CONTROL

Hazard controls generally consist of the following specific safety procedures: training, engineering controls, air monitoring and personal protective equipment (PPE) selection. CHA employees are required to use the PPE appropriate to their work task and potential exposures as outlined in the HASP. The levels of PPE assigned to each activity are based on available information on the estimation of exposure potential associated with each work task. For the installation/abandonment of monitoring wells, the following hazards and controls have been identified.

HAZARDS	HAZARD CONTROL/PRECAUTION	
Potential Chemical exposure to volatile, semi-volatile, heavy metals, PAHs.	 Exposure to chemical hazards: All on-Site personnel will be properly trained in accordance with 29 CFR 1910.120 Conduct air monitoring throughout the investigation (See Section 9.2 for action levels Stand upwind when possible and minimize direct contact Avoid walking through discolored areas, puddles, leaning on drums or contacting anything that may; be contaminated. Don appropriate PPE (Level D minimum) to avoid skin and eye contact. Wear chemical resistant gloves and safety glasses to prevent skin/eye contact. If necessary, upgrade level of respiratory protection to avoid inhalation of volatile organic vapors in excess of action levels. Keep airborne dust levels to a minimum by wetting down surfaces as necessary No eating or smoking will be allowed in the exclusion zone and hand to mouth contact should be avoided to minimize potential ingestion of contaminants. 	
Physical injuries, such as abrasions, insect bites, back injuries, slips, trips, falls.	 Avoid slippery surfaces when possible. Practice good-housekeeping and keeps area free of obstructions and tripping hazards to extent practical. Practice safe lifting techniques. Use mechanical lifting device when possible Use buddy system when lifting heavy or awkward objects Do not jerk or twist body while lifting Know the location of other site workers at all times, especially before moving and/or starting up heavy equipment such as drill rig or truck. Do not climb on equipment. If repairs or maintenance is required, ensure that equipment is turned off, any wheels are appropriately chocked, all safety devices are in place, and appropriate PPE is donned. Use fall protection equipment if working on equipment where a fall from an unprotected height of 6 feet or more is possible. Drilling contractor shall ensure that all safety equipment is in place and operational. Safety devices should never be bypassed or tampered with. Be observant of possible insect nesting areas Have a first aid kit on hand Apply sun block and insect repellant as appropriate 	

Table 7-2. Hazard Evaluation.

HAZARDS	HAZARD CONTROL/PRECAUTION	
Noise exposure	- Wear hearing protection if you must shout to hear someone who is standing one foot or less away. At a minimum, hearing protection should be worn whenever the hammer utilized to advance the soil sampler is utilized.	
Contact with moving parts of drill rig and/or flying debris	 Do not stand unnecessarily close to the drill rig when it is operating. Know the location of the emergency shut-off switch. Don a hard hat and safety glasses (Level D) 	
Contact with overhead power lines and/or buried utilities/debris while drilling.	 Do not move drill rig when mast is up. Do not drill within 20 feet of overhead power lines. Call a utility locator to check for location of underground utilities. Use common sense when choosing drilling locations. 	
Inclement weather	 Cease site activities during electrical storm or other extreme weather Cease site activities in extreme temperatures 	
Heat and cold stress	 Dress appropriately, wear dry clothing. Take frequent breaks during extreme weather conditions. Refer to the section on heat stress or cold stress, as appropriate for additional precautions. 	
Fire	 Have a fire extinguisher on hand. Keep ignition sources away from flammable materials and atmospheres. 	
Security	- Stay alert to facility/neighborhood activities	
Flammable Hazards	 At least one ABC rated fire extinguisher will be kept in the exclusion zone at all times. Explosive/flammable materials (e.g. fuel) will be stored only in approved facilities or containers. Smoking is not permitted on the Site or in any work areas. Do not use equipment that may generate a spark where there is a potential of explosive gases or vapors. Hot work (e.g. cutting, welding, torching) will only be permitted in the work area with a completed and authorized Hot Work Permit 	

8.0 AIR MONITORING & ACTION LEVELS

8.1 AIR MONITORING EQUIPMENT

The following environmental monitoring instruments shall be used on Site at the specified intervals.

Photoionization Detector (PID)

A PID with a 10.6 eV lamp shall be used during tasks that require any intrusive activities and/or as ordered by CHA personnel. At a minimum, the PID should be utilized at the start of all intrusive activities, whenever obvious contamination is noted, and at least every 15 to 30 minutes through the duration of the intrusive activities. PID measurements shall be taken in the breathing zone of on-Site personnel, in low areas where flammable vapor may accumulate, in the headspace of soil and water samples, downwind of intrusive activities, and around the perimeter of the exclusion zone, as appropriate.

The PID shall be calibrated daily following manufacturers recommendations. Calibration data shall be recorded in daily logs by the Field Team Leader.

Dust

Dust levels shall be visibly monitored. If it appears dust levels are increasing, a particulate meter shall be utilized following the manufacturer's recommendations.

Temperature

Ambient temperature should be monitored throughout the work day for potential heat stress or cold stress conditions. Based upon observed weather forecasts, a thermometer shall be utilized to monitor on-Site temperatures whenever the expected low temperature for the day is anticipated to be less than 20° Fahrenheit or the anticipated high temperature is anticipated to be in excess of 90° Fahrenheit.

8.2 ACTION LEVELS

An action level is a point at which increased protection is required due to the concentration of contaminants in the work area or other environmental conditions. Each action level is determined by

the concentration level (above background level) and the ability of the personal protective equipment to protect against that specific contaminant. The action levels are based on concentrations in the breathing zone.

Should action levels be reached, work operations shall cease until further evaluation is performed and safe levels are prevalent. If ambient levels are measured which exceed the action levels in areas accessible to the public or unprotected personnel, necessary site control measures (barricades, warning signs, and mitigative actions, etc.) must be implemented before commencing activities at the specific work site. If through engineering controls and monitoring, safe levels (below action levels) cannot be achieved, an upgrade in personal protection equipment shall be mandated by the task SHSO, or operations shall cease in that portion of the Site. The action levels at the landfill are as follows:

- Organic vapors (PID monitor) = consistent readings of:
 - <5 parts per million (ppm), Level D</p>
 - >5 ppm and <25 ppm sustained for 5 minutes, upgrade to Level C</p>
 - > 25 ppm, stop work activities generating organic vapors, investigate cause of elevated readings, and re-evaluate corrective measures prior to resuming work.
- Temperature = body core temperature of $< 36^{\circ}$ C (96.8°F) for cold stress

An upgrade to Level B or Level A PPE is not permitted for this project. If organic vapors concentrations cannot be reduced below 25 ppm, the drilling activities will be discontinued until a further evaluation of Site conditions can be completed.

8.3 COMMUNITY AIR MONITORING REQUIREMENTS

Air monitoring will be performed at the Site during the advancement of all soil borings and decontamination activities in accordance with the New York State Department of Health (NYSDOH) *Generic Community Air Monitoring Plan (CAMP)*, and DER-10. The CAMP provides requirements for perimeter monitoring of the work area to provide protection to the community and environment and is different than the monitoring performed in the work zone for health and safety purposes. The CAMP for the monitoring well installation/abandonment tasks is further described in CHA's Post-Remedial Monitoring Well Network Installation Work Plan, of which this HASP is an attachment to.

8.4 ENVIRONMENTAL SAMPLING

While advancing the borings for the monitoring wells, soil samples will be collected in split-spoon samplers. These samples will be classified for lithology and evaluated for evidence of visual, olfactory, and photoionic evidence of contamination using field screening techniques as the samples are collected. No samples will be collected for laboratory analysis as part of the well installation/abandonment tasks. While groundwater samples will be collected from these wells for laboratory analysis with eighteen (18) months following receipt of the Certification of Completion for the project, groundwater sampling will not be performed at this time.

9.0 PERSONAL PROTECTIVE EQUIPMENT

9.1 GENERAL INFORMATION

The purpose of personal protective clothing and equipment is to shield or isolate individuals from the chemical and physical hazards that may be encountered during work activities. The level of protection required must correspond to the level of hazard known, or suspected, in the specific work area.

There are four basic levels (A, B, C, and D) of personal protection as established by the United States Environmental Protection Agency (USEPA). Level A provides the highest level of protection and Level D provides the lowest.

- *Level D* will consist of field clothes, outer gloves (if soil/water contact is likely), steel toe and shank safety boots, safety glasses (for splash hazards), a hard hat, earplugs or similar hearing protection equipment, and reflective vests. Hearing protection shall be required at the discretion of the SHSO, but at a minimum, must be utilized by all on-Site personnel when the drill rig hammer is being utilized to advance the soil sampler.
- *Modified Level D* will consist of Tyvek coverall, safety glasses (for dust/splash hazards) outer gloves with disposable inner gloves, steel toe and shank work boots, overboots if free product is encountered or as otherwise specified, hearing protection and, if overhead hazards are present, such as during drilling, a hard hat. Safety glasses must also be worn during drilling.
- *Level C* will consist of the same equipment as listed for modified Level D with the addition of a full faced air purifying cartridge equipped respirator.
- *Level B*, if required for working on this project Site, consists of the same equipment as listed for Level C with the substitution of a full faced Self-Contained Breathing Apparatus (SCBA) in place of a full faced air purifying respirator.
- *Level A* is not anticipated for this project.

When wearing Level C, B, or A, all junctures between the chemical protective coverall (i.e., Tyvek suit) and boots, gloves, and respirator must be taped. The suit must be placed over the boots and gloves. When taping, remember to leave a tab for easy removal. Stress spots in the suit must also be taped, such as under the arms, down the zipper, and up or across the back.

Personal protective equipment has been selected consistent with the hazards associated with the expected field activities. Personal protective equipment (PPE) is available in various sizes to provide a good fit for all personnel. PPE must be stored in a clean location with access by site workers. Site workers are responsible for maintenance and storage of equipment at the Site.

9.2 TASK SPECIFIC REQUIREMENTS

Based on evaluation of the potential hazards for the Site, the initial levels of PPE have been designated as a **Level D** based on the potential route of contact and the potential contaminants. It should be noted that much of the petroleum-contaminated soils have previously been removed from the Site and many of the borings will be installed fill placed as part of the remedial action. Only the three (3) borings along the eastern side of the Site are located in previously undistributed areas, Two of these wells are being installed as up-gradient wells to where major soil removal was previously conducted and one (1) of the borings (well MW-9) is located in an area where completed removal of grossly-impacted soils was not feasible due to the proximity to the MTA retaining wall and the potential that further excavation would undermine this structure.

No changes to the specified levels of PPE shall be made without first obtaining approval of the SHSO and the Project Team leader. If action levels are reached, work shall cease and the SSO and his advisors shall perform further evaluations. If necessary, an upgrade in PPE shall be mandated.

If an upgrade to Level C PPE is required, air purifying respirators equipped with organic vapor/acid gas/HEPA cartridges will be utilized. Organic vapor/acid gas/HEPA cartridges are the appropriate canister for use with the involved substances. All respirators used will be approved by NIOSH and/or the Mine Safety and Health Administration (MSHA) and their use shall be consistent with OSHA regulations in 29 CFR 1910.134. All on-Site personnel wearing a respirator shall have respirator clearance from a qualified occupational health physician. In addition, the respirator wearers on Site shall perform qualitative fit tests to ensure proper fit of the face seal of the respirator.

Inspection logs shall be completed, signed and kept with the HASP. Filter cartridges used shall be of the same manufacturer as the respirator and shall be changed on a daily basis at a minimum and/or if

breathing becomes difficult. Air purifying respirators shall not be used if any of the following conditions exist:

- Oxygen deficiency
- Immediately Dangerous to Life or Health (IDLH) concentrations of specific substances
- Entry into an unventilated or confined area which has not been characterized
- Presence or potential presence of unidentified contaminants
- Contaminant concentrations are unknown or exceed designated maximum use specifications
- Identified gases or vapors have inadequate warning properties
- High relative humidity, may reduce protection offered by sorbent

The need for Level A or Level B PPE is not anticipated for tasks covered by this HASP. Should Level C PPE be deemed insufficient based upon the conditions encountered in the field, all work activities will temporarily cease and the HASP will be updated prior to continuing any on-Site activities.

Personnel should also be able to upgrade or downgrade their level of protection with the concurrence of the SSO and task manager based upon air monitoring results and the following:

Reasons to upgrade:

- Known or suspected presence of dermal hazards.
- Occurrence or likely occurrence of gas, vapor or dust emission.
- Change in work task that will increase the exposure or potential exposure with hazardous materials.

Reasons to downgrade:

- New information indicating that the situation is less hazardous than was originally suspected.
- Change in Site conditions that decrease the potential hazard.
- Change in work task that will reduce exposure to hazardous materials.

10.0 SITE CONTROL MEASURES

10.1 WORK ZONES

All Site work zones will be marked as applicable and discussed with all on-Site personnel. CHA's subcontractor(s) will be responsible for delineating and maintaining the work zones. Site work zones shall consist of the exclusion, support, and contamination reduction zones as required

The **exclusion zone** is the zone which contamination is most likely to be encountered. For the geotechnical investigation, the exclusion zone is considered to be a minimum of a 20-foot radius surrounding the drill rig. Flow of personnel and equipment into and out of the zone will be monitored throughout the investigation. While in the exclusion zone all personnel must wear the specified PPE.

The **contamination reduction zone** will be established between the exclusion zone and support zones prior to commencement of the drilling. Personnel working inside the exclusion zone will decontaminate or dispose all soiled clothing in the contamination reduction zone each time the exclusion zone is exited, if the clothing worn becomes soiled. Appropriate equipment, supplies, and personal PPE will be made available in the contamination reduction zone to facilitate the protection and decontamination of personnel working in the exclusion zone. All disposable PPE will be double-bagged in garbage bags for disposal. All wash water generated from decontamination processes will be collected and placed into 55-galon drums for future characterization and disposal.

A support zone will be established in close proximity to the Contamination Reduction Zone. This area will be used for operational direction and support facilities, emergency response, supplies/equipment, and worker rest areas.

10.2 COMMUNICATION

Communication shall be accomplished by a combination of person to person verbal correspondence, the use of cellular phones (for off-site/support personnel), and by verbal signals or hand signals depending on the pre-design programming task. Communication procedures will be reviewed at the Safety Meeting before entering the exclusion zone.

10.3 SITE SECURITY MEASURES

The contamination reduction zone and support zone shall be marked as appropriate and reviewed at the Safety Meeting. All personnel shall report to the field team leader upon entering and exiting the Site so that everyone will be accounted for.

11.0 DECONTAMINATION

All decontamination activities will be performed on a temporary decontamination pad constructed in the contamination reduction zone. All wash water generated from decontamination processes will be collected and containerized for future characterization and disposal.

11.1 PERSONAL PROTECTIVE EQUIPMENT

At a minimum, all non-disposable personnel protective clothing will be decontaminated by first washing the soiled items with a non-phosphate detergent and potable water mixture, followed by potable water and distilled water rinses. All disposable/expendable PPE and clothing will be placed into plastic trash bags for off-site disposal. At a minimum, all equipment that comes into contact with contaminated soil and groundwater will be decontaminated with a high-pressure steam cleaner.

11.2 SMALL EQUIPMENT & HAND TOOLS

Small hand tools and equipment (e.g. split spoons) will be decontaminated as appropriate, but, at a minimum, prior to removal from the Site. The recommended decontamination procedure for equipment used during the performance of the pre-design programming tasks is:

- Wash and scrub with tap water and low phosphate detergent (e.g. Alconox)
- Tap water rinse
- De-ionized water rinse

11.3 HEAVY EQUIPMENT

Heavy equipment (e.g. a drill rig) is anticipated to be utilized during the monitoring well installation/abandonment. It is anticipated that the hollow-stem augers will require decontamination between each borehole location. The decontamination procedure for the augers will include washing with a steam/hot water pressure washer. Following the completion of the last boring, the augers will be decontaminated one final time and the drill rig will be decontaminated as well if necessary (e.g. soiled tires). Decontamination will take place on the temporary containment pad in the contamination reduction zone.

12.0 HAZARD COMMUNICATION

In compliance with 29 CFR 1910.1200, any hazardous materials brought on Site by any personnel (CHA or contractors) shall be accompanied with an appropriate Material Safety Data Sheet (MSDS). The SHSO provided by the Contractor shall be responsible for maintaining the MSDSs on Site, reviewing them for hazards that working personnel may be exposed to, and evaluating their use on Site with respect to compatibility with other materials including personal protective equipment, and their hazards. MSDSs for typical fuels and lubricants associated with a drill rig have been included in Appendix C. Additional MSDSs for other substances brought on to the Site will be provided by the drilling subcontractor. Should the SSO deem the material too hazardous for use on Site, the party responsible for bringing the material on Site shall remove it from the Site.

13.0 CONFINED SPACE

Confined space entry is not anticipated during this project; however, in the event that a confined space entry is necessary then all confined space entry procedures, techniques, and equipment shall be consistent with OSHA regulations in 29 CFR 1910.146.

14.0 EMERGENCY PROCEDURES

On-Site emergencies can range in intensity from minor to serious conditions. Various procedures for responding to Site emergencies are listed in this section. The designated SHSO is responsible for contacting local emergency services in emergency situations (however, others must assume responsibility if the situation warrants). An injured person shall be accompanied by another worker at all times.

The following emergency procedures will be used by on-Site personnel. The SHSO shall be notified of any on-Site emergencies and be responsible for ensuring that the appropriate measures are followed. Non-emergencies will be treated on Site and documented and then directed to seek further medical attention. All occupational injuries and illnesses will be reported, recorded, and investigated.

CHA personnel will be equipped with a cellular telephone for communication. Other emergency equipment, including a first aid kit will be on Site at all times. In the case of a medical emergency, CHA personnel and Contractor SHSO will communicate to determine the nature of the emergency and the location. After it is determined whether there is an actual emergency, he/she will instruct someone to call for an ambulance. Cellular telephones would to be used to place such a call.

If an emergency evacuation of the Site must take place, all personnel on Site will immediately stop work, shut off all equipment, and assemble at the entrance to the Site. After assembly of all personnel, the Site will be evacuated using vehicles parked in the support zone. All vehicles will be parked facing out to enable a quick exit from the Site. If time permits, as determined by the SHSO, emergency decontamination will take place. This will consist of a wash and rinse of overboots, removal of disposable clothing, and washing of hands and face. After exiting the work area, all personnel will reassemble near the parking lot entrance onto Delaware Avenue. If the head count reveals someone is still on Site, the SHSO and his/her assistant will look for the person(s), using appropriate personal protection.

14.1 PERSONNEL INJURY

Upon notification of personnel injury the nature of the injury will be assessed, the appropriate first aid shall be initiated and, if necessary, contact shall be made for an ambulance and with the designated medical facility. If the injury increases the risk to others, activities on Site will stop until the added risk is removed or minimized.

14.2 FIRE/EXPLOSION

Upon notification of fire or explosion, all Site personnel shall assemble at a safe distance upwind of the involved area. The SHSO shall alert the appropriate fire department.

14.3 PPE FAILURE

If any Site worker experiences a failure or alteration of PPE that affects the protection factor that person and his/her buddy shall immediately exit the exclusion zone. Re-entry shall not be permitted until the equipment has been repaired or replaced.

14.4 CHEMICAL EXPOSURE

If any Site worker experiences adverse effects due to chemical exposure, the appropriate first aid procedures shall be followed according to the MSDS for that chemical. The person shall at a minimum be moved to fresh air. Whenever possible, personnel should be decontaminated before administering first aid.

Workers should go to the support zone as soon as any of the follow acute symptoms of exposure are experienced:

- Rotten egg odor (indicates hydrogen sulfide)
- Sweet almond-like odor (indicates cyanide presence)
- Headache
- Nausea or vomiting
- Fatigue
- Weakness
- Confusion
- Dizziness
- Irritation of eyes, nose, throat
- Dermatitis
- Chills
- Chest tightness
- Cough

- Muscle spasms
- Staggered gait
- Increased salivation
- Indigestion
- Diarrhea
- Irritability
- Metallic taste in mouth

14.5 SPILL CONTAINMENT

If onsite work results in the accidental spill or release of oil or hazardous materials, containment to the extent possible will be required by onsite personnel (in proper PPE). Containment should include the use of absorbent pads or materials, diking with soils, covering and/or diverting spills from sewers, drains, surface water bodies, etc. For spills that cannot be controlled by onsite personnel or are above the reportable quantities, the SSO or designee will secure the area and notify the NYSDEC Spills hotline and notify appropriate emergency personnel through the 9-1-1 system.

15.0 EMERGENCY MEDICAL CARE

15.1 NEAREST HOSPITAL

See Section 3.0 for directions to the nearest hospital.

15.2 ON-SITE FIRST AID

A first aid kit shall be maintained and stored within the Contamination Reduction Zone. General

first aid procedures are identified in the list below:

Skin/Eye Contact:	Flush eyes and/or skin thoroughly with water for 15 minutes. Remove contaminated clothing. If skin was contacted with a dry material, brush it off first, then flush with water. Seek medical attention if irritation develops.
Ingestion:	Do not induce vomiting. Call the Poison Control Center. Tell them what was swallowed, if possible. Follow instructions. Arrange for transport of the victim to the hospital by calling for an ambulance.
Inhalation:	Remove person from contaminated environment without risking your own safety. DO NOT ENTER A CONFINED SPACE UNLESS WEARING LEVEL B AND A STANDBY PERSON IS PRESENT. DO NOT ENTER EXCLUSION ZONE UNLESS WEARING ONE LEVEL HIGHER PROTECTION THAN VICTIM WAS WEARING. Administer CPR, if necessary. Bring victim to hospital or call ambulance.
Injuries:	Do not move a victim who may have a back injury. Cover them with coats, blankets, or other appropriate items to keep them warm. Call an ambulance.
	Apply pressure to bleeding wounds. If the victim is able, have the victim apply pressure to the wound. If they are not able, wear gloves to protect from exposure to blood. Put gauze bandages or other clean cloth over the wound. Do not remove blood-soaked bandages or cloth - instead put additional bandages or cloths over the blood-soaked bandages. Elevate the limb with the injury above the heart.
	Administer CPR if victim does not have a pulse and if you are currently certified in CPR. Have someone call for an ambulance immediately if there is any possibility that the victim is having or had a heart attack.

	Shock is likely to develop in any serious injury or illness. The following are signals of shock: restlessness or irritability; altered consciousness; pale, cool, moist skin; rapid breathing; and/or rapid pulse. In the event of shock, do the following: Immediately have someone call for an ambulance; have the victim lie down; elevate legs 12 inches unless you suspect head, neck, or back injuries; if victim is cool, cover the victim to prevent chilling; do not give the victim anything to drink, even if thirsty.
Collapses:	If site personnel have unexplainably collapsed, all personnel must evacuate work area. Rescue personnel must don a level of protection higher than the victim was in before evacuating victim from work area. Confined space rescue always requires Level B protection. No one will re-enter the work area until the cause has been determined and the SHSO has determined that the area is safe to re-enter.

15.3 HEAT & COLD STRESS

15.3.1 Heat Stress

Heat Stress Symptoms and Remedies

Acclimatization and frequent rest periods must be established for conducting activities where heat

stress may occur. Symptoms of heat stress and appropriate responses include:

- Heat Rash redness of skin. Remedy frequent rest and change of clothing.
- Heat Cramp painful muscle spasms in hands feet, and/or abdomen. Remedy administer lightly salted water (1/4 teaspoon per gallon) orally unless there are medical restrictions.
- Heat Exhaustion clammy, moist, pale skin; dizziness, nausea rapid pulse, fainting. Remedy remove to cooler area and administer fluids orally or have physician administer saline solution intravenously.
- Heat Stroke hot dry skin; red, spotted or bluish; high body temperature of 104°F or greater, mental confusion, loss of consciousness, convulsions or coma. Remedy -immediately cool victim by immersion in cool water. Wrap in wet sheet while fanning, sponge with cool liquid. While fanning, treat for shock. Call for an ambulance. DO NOT DELAY TREATMENT. COOL BODY WHILE AWAITING AMBULANCE.

Heat Stress - Precautions

Precautions to take to reduce the possibility of heat stress include the following:

- Avoid caffeine and alcohol both during work hours and 24 hours before onsite activity.
- Drink water before feeling thirsty.
- Watch for signs and symptoms of heat stress.
- Rest in cool/dry areas, such as air conditioned vehicle or building or in the shade.
- Use cooling devices such as water sprays or fans to cool off.

15.3.2 Cold Stress Cold Stress Symptoms

Cold Stress symptoms may include any or all of the following:

- Excessive fatigue
- Irritability
- Euphoria
- Drowsiness
- Uncontrollable shivering
- Frost nip
- Medical assistance is necessary if these symptoms persist.

Cold Stress Treatment

Cold stress and frostbite emergency care:

- Remove the patient to a warm, dry place.
- If clothing is wet, remove and replace with dry clothing.
- Keep patient warm. Re-warming of the patient should be gradual to avoid heat stroke symptoms.

- Dehydration or the loss of body fluids may result in cold injury due to a significant change in blood flow to the extremities. If patient is conscious and alert, warm sweet drinks should be provided.
- Extremities affected by frostbite should be gradually warmed up and returned to normal temperature. Moist compresses should be applied; begin with lukewarm compresses and slowly increase the temperature as changes in skin temperature are detected.
- Keep patient warm and calm, remove to a medical facility as soon as possible.

Cold Stress - Prevention

- Take breaks in heated shelters at frequent intervals when working in temperatures below 20°F, including wind chill.
- Remove outer layer of clothing when entering the shelter. Loosen other layers to allow sweat to evaporate.
- Drink warm, sweet liquids or soups to reduce possibility of cold injury. Avoid caffeine and alcohol.

16.0 STANDARD OPERATING PROCEDURES

The following standard operating procedures shall be implemented during this project:

- All construction activities shall be performed in compliance with all OSHA Construction Industry Standards and Regulations. Following the procedures, requirements, and provisions of this plan, all personnel who may be potentially exposed to hazardous materials or wastes shall be in compliance with federal/state regulations, OSHA 29 CFR 1910.120.
- Horseplay will NOT be tolerated under any circumstances.
- All work conducted on-Site shall be coordinated through the Project Team Leader and the SHSO.
- Minimize contact with hazardous substances.
- Use remote sampling, handling, and container-opening techniques whenever possible.
- Any container or vessel discovered onsite shall <u>not</u> be sampled, opened, or handled until an appropriate task specific plan for unknown drum/tank sampling has been implemented.
- Samples from areas known, or suspected, to be contaminated with hazardous substances shall be handled with appropriate personal protective equipment.
- The discovery of any condition that would suggest the existence of a situation more hazardous than anticipated shall result in evacuation of site personnel and reevaluation of the hazards and the level of protection. Contact the Company Health and Safety Coordinator to determine the appropriate actions to take.
- Protect monitoring and sampling instruments by bagging.
- Wear disposable outer garments and use disposable equipment where appropriate.
- Use proper dressing procedures before entering the Exclusion Zone and use all fasteners (zippers, snaps, buttons, etc.).

- All personal protective equipment and skin surfaces should be checked for cuts and/or punctures.
- All equipment used in site operations shall be properly cleaned and maintained in good working order. Equipment shall be inspected for signs of defect and/or contamination before and after use.
- Do not eat, smoke, chew gum, or drink on Site. Avoid any practice that may increase the probability of hand-to-mouth transfer and ingestion of material. Avoid any application of cosmetics. Personnel shall wash thoroughly before initiating any of the aforementioned activities.
- Avoid brushy areas to minimize allergic reactions to poison ivy, deer ticks, etc.
- Prescribed drugs should not be taken by personnel where the potential for absorption, inhalation, or ingestion of toxic substances exists unless specifically approved by a qualified person. Alcoholic beverages intake should be avoided.
- The "buddy system" must always be used and enforced. At a minimum, two persons who are in constant communication with each other shall be on Site at all times during any activity conducted on-Site in which the potential exists for exposure to hazardous materials, or accident or injury.
- Personnel entering the Contamination Reduction Zone and/or the Exclusion Zone must check in and out at the Access Control Points.
- All subcontractors shall abide by this Health & Safety Plan or provide one that is equivalent, at a minimum, to the conditions specified in this Health & Safety Plan.
- No workers with beards or heavy side burns are allowed to wear respirators.

17.0 CERTIFICATION & AGREEMENT

This agreement must be signed by all CHA employees, subcontractors, and visitors before conducting field activities at this Site and/or entering the exclusion or decontamination zones.

I have read this Health and Safety Plan and I understand the requirements of the Plan. I will conduct work at this Site in accordance with the requirements of the Health and Safety Plan.

Date	Company
Date	Company
	Date Date Date Date Date Date Date Date

Health & Safety Plan – Monitoring Well Installation CHA Project No. 14357 DeLaval Property – Site No. B00190-3 Page 39

FIGURE

APPENDIX A

HAZWOPER Certifications

APPENDIX B

Analytical Summary Tables

Figures

Summary of Analytical Results

Summary of Analytical Results for Surficial Soils DeLaval Property Supplemental Investigation, July 2004

	Standard, Criteria and		Frequency of Samples
Contaminant of Concern	Guidance Value	Concentration Range Detected ¹	Exceeding
SVOCs (units in micrograms	per kilogram (u	g/kg))	5005
Acenaphthylene	41.000	140-8.000	0 of 30
Acenaphthene	50.000	120-430	0 of 30
Anthracene	50.000	74-18.000	0 of 30
Benzo(a)anthracene	224	85-150.000	23 of 30
Benzo(a)pyrene	61	160-100,000	24 of 30
Benzo(b)fluoranthene	1,100	85-180,000	18 of 30
Benzo(g,h,i)perylene	50,000	110-25,000	0 of 30
Benzo(k)fluoranthene	1,100	150-64,000	10 of 30
Bis(2-Ethylhexyl)phthalate	50,000	220-6,100	0 of 30
Carbazole		79-490	Detected in 7
			of 30
Chrysene	400	81-130,000	21 of 30
Dibenz(a,h)anthracene	14	100-120	2 of 30
Dibenzofuran	6,200	110-230	0 of 30
Fluoranthene	50,000	140-320,000	2 of 30
Fluorene	50,000	80-280	0 of 30
Indeno(1,2,3-cd)pyrene	3,200	88-16,000	2 of 30
2-Methylnapthalene	36,400	160-310	0 of 30
Naphthalene	13,000	250-420	0 of 30
Phenanthrene	50,000	130-92,000	1 of 30
Pyrene	50,000	130-260,000	2 of 30
PCBs (units in micrograms p	er kilogram (µg/	(kg))	
Aroclor-1260	1,000	50-3600	3 of 30
METALS (units in milligram	ns per liter (mg/L	L))	
Arsenic	7.5	4.89-24.8	20 of 30
Barium	300	15.1-374	2 of 30
Cadmium	1 or SB (1.93)) 0.973-8.7	25 of 30
Chromium	10 or SB (15.8	3) 5.94-627	17 of 30
Lead	500	22.8-908	22 of 30
Selenium	2	0.602-3.20	6 of 30
Silver	SB (0.117)	0.149-240	12 of 30
Mercury	0.1	0.02-1.30	21 of 30

Note: 1. If a single value is noted, the referenced parameter was detected either only one time, or multiple times at the same concentration.

Summary of Analytical Results for Subsurface Soils Supplemental Investigation of the DeLaval Property, July & August 2004

	Standard,		Frequency of
	Criteria and	C	Samples
Contant of Contant	Guidance	Concentration $\mathbf{D}_{\text{concentration}}$	Exceeding
Contaminant of Concern		Range Detected	SCGS
VOCs (units in microgram	is per kilogram (µg/	^(kg))	4 6 2 2
Acetone	200	34-3,500	4 of 22
Benzene	60	43-2,300	2 of 22
Carbon Disulfide	2,700	1.6-56	0 of 22
Chlorobenzene	1,700	13,000	1 of 22
Ethylbenzene	5,500	3.5-530	0 of 22
Methylene Chloride	100	2.6-67	0 of 22
Toluene	1,500	2.8-320	0 of 22
Tetrachloroethene	1,400	4.1-110	0 of 22
m/p-Xylene (Total)	1,200	1.1-4,900	2 of 22
o-Xylene	1,200	0.47-1300	1 of 22
SVOCs (units in microgra	ms per kilogram (µ	g/kg))	
Acenaphthylene	41,000	210-850	0 of 21
Acenaphthene	50,000	140-1500	0 of 21
Anthracene	50,000	62-3,300	0 of 21
Benzo(a)anthracene	224	130-11,000	13 of 21
Benzo(a)pyrene	61	96-14,000	11 of 21
Benzo(b)fluoranthene	1,100	77-19,000	5 of 21
Benzo(g,h,i)perylene	50,000	48-3,200	0 of 21
Benzo(k)fluoranthene	1,100	65-7,100	4 of 21
Bis(2-Ethylhexyl)phthalate	e 50,000	44-280	0 of 21
Carbazole		100-550	Detected in 4
			of 21
Chrysene	400	120-13,000	10 of 21
Dibenz(a,h)anthracene	14	95-420	3 of 21
Dibenzofuran	6,200	59-160	of 21
Fluoranthene	50,000	250-18,000	of 21
Fluorene	50,000	49-1,800	of 21
Indeno(1,2,3-cd)pyrene	3,200	56-2,200	0 of 21
2-Methylnapthalene	36,400	54-7,500	of 21
Naphthalene	13,000	91-490	0 of 21
Phenanthrene	50,000	180-10	0 of 21
Pyrene	50,000	61-18,000	0 of 21
PCBs (units in microgram	s per kilogram (µg/	kg))	
Aroclor-1254	10,000	97-11,000	1 of 21
Aroclor-1260	10,000	60-340	0 of 21
METALS (units in millig	ams per liter (mg/L	.))	
Arsenic	7.5	0.306-35.5	12 of 21
Barium	300	10.1-1,900	4 of 21
Cadmium	1 or SB (1.93)	0.307-21.7	11 of 21

Contaminant of Concern	Standard, Criteria and Guidance Value	Concentration Range Detected ¹	Frequency of Samples Exceeding SCGs
Chromium	10 or SB (15.8)	4.17-1,730	13 of 21
Lead	500	16.4-17,200	12 of 21
Selenium	2	0.564-9.18	7 of 21
Silver	SB (0.11)	0.206-1.13	7 of 21
Mercury	0.1	0.01-1.4	7 of 21

Note: 1. If a single value is noted, the referenced parameter was detected either only one time, or multiple times at the same concentration.

Summary of Analytical Results for Groundwater Supplemental Investigation of the DeLaval Property, August & October 2004

Contaminant of Concern	Standard, Criteria and Guidance Value	Concentration Range Detected ¹	Frequency of Samples Exceeding SCGs
VOCs (units in micrograms p	er kilogram (µg	/kg))	
cis-1,2-Dichloroethene	5	0.77 - 49	1 of 8
Trichloroethene	5	0.67 - 5.0	1 of 8
SVOCs (units in micrograms	per kilogram (µ	.g/kg))	
Acenaphthene	20^{2}	2.6	0 of 8
Bis(2-Ethylhexyl)phthalate	5	1.2-1.8	0 of 8
Di-n-butylphthalate	50^{2}	3.9	0 of 8
Fluorene	50^{2}	2.2	0 of 8
Naphthalene	10	1.5	0 of 8
Phenanthrene	50^{2}	1.1	0 of 8
PCBs (units in micrograms p	er kilogram (µg/	(kg))	
Aroclor-1260	0.09	0.31 - 4.7	2 of 9
METALS (units in milligram	ns per liter (mg/I	L))	
Barium	1,000	16.1-204	0 of 8
Chromium	50	1.8-3.1	0 of 8
Lead	25	21-39.2	1 of 8
Mercury	0.7	0.03-0.08	0 of 8

Note: 1. If a single value is noted, the referenced parameter was detected either only one time, or multiple times at the same concentration.

2. Indicates value is a guidance value rather than a standard.

Analytical Summary Tables

Semivolatile Organics								
Sample ID		SS-1	SS-1DL	SS-2	SS-3	SS-3DL	SS-4	SS-5
Laboratory Sample No.		S3753-01	S3753-01DL	S3753-02	S3753-03	S3753-03DL	S3753-04	S3753-05
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor	NYSDEC	1.0	5.0	1.0	1.0	5.0	1.0	1.0
Units	Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	Cleanup Objective							
COMPOUND	Concentration ¹							
bis(2-Chloroethyl)ether		38 U	190 UD	36 U	35 U	180 UD	37 U	230 U
1,2-Dichlorobenzene	7,900	42 U	210 UD	40 U	39 U	200 UD	40 U	250 U
1,3-Dichlorobenzene	1,600	29 U	140 UD	27 U	27 U	130 UD	27 U	170 U
1,4-Dichlorobenzene	8,500	32 U	160 UD	31 U	30 U	150 UD	31 U	200 U
2,2-oxybis(1-Chloropropane)		42 U	210 UD	40 U	39 U	190 UD	40 U	250 U
N-Nitroso-di-n-propylamine		34 U	170 UD	32 U	32 U	160 UD	33 U	210 U
Hexachloroethane		37 U	190 UD	35 U	34 U	170 UD	36 U	220 U
Nitrobenzene	200	39 U	200 UD	37 U	37 U	180 UD	38 U	240 U
Isophorone	4,400	29 U	140 UD	27 U	27 U	130 UD	28 U	170 U
DIS(2-Chioroethoxy)methane	2 400	35 U	180 UD	34 U	33 U	160 UD	34 U	210 U
	3,400	22 U	110 UD	21 U	21 U	100 UD	21 U	130 U
A-Chloroaniline	220 or MDI	280 J	420 JD	270 11	270 11	1300 UD	16 U 280 U	1700 U
Hexachlorobutadiene	220 OF IVIDE	290 0	1400 00	26 11	25 11	130 UD	260 0	160 U
2-Methylnaphthalene	36.400	160 .1	67 UD	13 U	12 11	62 UD	13 U	81 U
Hexachlorocyclopentadiene		19 U	97 UD	18 U	18 U	90 UD	19 U	120 U
2-Chloronaphthalene		16 U	81 UD	15 U	15 U	75 UD	16 U	98 U
2-Nitroaniline	430 or MDL	28 U	140 UD	27 U	26 U	130 UD	27 U	170 U
Dimethylphthalate	2,000	19 U	93 UD	18 U	17 U	86 UD	18 U	110 U
Acenaphthylene	41,000	140 J	120 UD	22 U	22 U	110 UD	22 U	140 U
2,6-Dinitrotoluene	1,000	33 U	170 UD	31 U	31 U	150 UD	32 U	200 U
3-Nitroaniline	500 or MDL	130 U	630 UD	120 U	120 U	580 UD	120 U	760 U
Acenaphthene	50,000**	430 J	530 JD	120 J	16 U	79 UD	16 U	100 U
Dibenzofuran	6,200	230 J	130 UD	24 U	24 U	120 UD	24 U	150 U
2,4-Dinitrotoluene		15 U	77 UD	15 U	14 U	72 UD	15 U	93 U
Diethylphthalate	71,000	24 U	120 UD	23 U	23 U	110 UD	23 U	150 U
4-Chlorophenyl-phenylether	50.000**	19 U	96 UD	18 U	18 U	89 UD	18 U	120 U
A Nitroapiling	50,000	200 J	200 UD	60 J	20 0	280 UD	21 U 59 U	270 11
N-Nitrosodinbenylamine		20 11	98 UD	10 11	18 11	200 OD	10 11	120 11
4-Bromophenyl-phenylether		20 U	100 UD	19 U	10 U	95 UD	20 U	120 U
Hexachlorobenzene	410	15 U	73 UD	14 U	13 U	67 UD	14 U	88 U
Phenanthrene	50,000**	6300 EJ	4500 D	970	330 J	80 UD	290 J	1100 J
Anthracene	50,000**	830	1100 JD	230 J	74 J	86 UD	18 U	110 U
Carbazole		380 J	490 JD	79 J	16 U	79 UD	16 U	100 U
Di-n-butylphthalate	8,100	10 U	52 UD	9.8 U	9.6 U	48 UD	9.9 U	62 U
Fluoranthene	50,000**	8500 EJ	6800 D	1600	630 J	540 JD	540 J	3000 J
Pyrene	50,000**	7700 EJ	6600 D	1500	530 J	490 JD	560 J	2500 J
Butylbenzylphthalate	50,000**	26 U	130 UD	25 U	24 U	120 UD	25 U	160 U
3,3-Dichlorobenzidine		120 U	620 UD	120 U	120 U	580 UD	120 U	750 U
Benzo(a)anthracene	224 or MDL	3300	3200 JD	900	320 J	54 UD	320 J	1600 J
Chrysene	400	2800	2400 JD	790	300 J	110 UD	350 J	1600 J
Dis(2-Ethylnexyl)phthalate	50,000**	18 U	89 UD	17 U	6100 EJ	4900 D	220 J	110 U
Benzo(b)fluoranthene	1 100	4600	3600 0	1600	450	190 UD	510	2000
Benzo(k)fluoranthene	1,100	2300	1900 JD	720 J	290 J	120 UD	360 J	840 J
Benzo(a)pyrene	61 or MDL	3000	2600 JD	940	260 J	62 UD	310 J	1300 J
Indeno(1,2,3-cd)pyrene	3,200	420 J	500 JD	180 J	96 J	87 UD	88 J	800 J
Dibenz(a,h)anthracene	14 or MDL	100 <mark>J</mark>	110 UD	22 U	21 U	110 UD	22 U	140 U
Benzo(g,h,i)perylene	50,000**	940	920 JD	370 J	110 J	160 UD	160 J	770 J
Total Confident Conc. SVOC		42,690	35,560	10,079	9,490	5,930	3,708	15,510
Total TICs		23,830	0	25,350	17,870	0	7,690	53,900

Qualifiers & Notes: U - The compour

The compound was not detected at the indicated concentration.

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

В-The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of

the environmental sample. Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40%. Value exceeds calibration range.

Ε-D -

Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Semivolatile Organics								
Sample ID		SS-6	SS-7	SS-8	SS-9	SS-10	SS-11	SS-12
Laboratory Sample No.		S3753-06	S3753-07	S3753-08	S3753-09	S3753-10	S3753-11	S3753-12
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor		1.0	5.0	1.0	1.0	5.0	1.0	1.0
Units	NYSDEC Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	Cleanup Objective							
COMPOUND	Concentration ¹							
bis(2-Chloroethyl)ether		200 U	220 U	38 U	190 U	200 U	39 U	180 U
1,2-Dichlorobenzene	7,900	220 U	240 U	42 U	210 U	220 U	43 U	200 U
1,3-Dichlorobenzene	1,600	150 U	160 U	28 U	140 U	150 U	29 U	140 U
1,4-Dichlorobenzene	8,500	170 U	190 U	32 U	160 U	170 U	33 U	150 U
2,2-oxybis(1-Chloropropane)		220 U	240 U	42 U	200 U	220 U	43 U	200 U
N-Nitroso-di-n-propylamine		180 U	200 U	34 U	170 U	180 U	35 U	160 U
Hexachloroethane		200 U	210 U	37 U	180 U	190 U	38 U	170 U
Nitrobenzene	200	210 U	230 U	39 U	190 U	200 U	40 U	190 U
Isophorone	4,400	150 U	170 U	29 U	140 U	150 U	29 U	140 U
bis(2-Chloroethoxy)methane		190 U	200 U	35 U	170 U	180 U	36 U	170 U
1,2,4-Trichlorobenzene	3,400	120 U	130 U	22 U	110 U	110 U	23 U	110 U
Naphthalene	13,000	89 U	97 U	17 U	82 U	87 U	17 U	80 U
4-Chloroaniline	220 or MDL	1500 U	1600 U	290 U	1400 U	1500 U	290 U	1400 U
Hexachlorobutadiene		140 U	160 U	27 U	130 U	140 U	28 U	130 U
2-Methylnaphthalene	36,400	71 U	77 U	13 U	65 U	69 U	14 U	63 U
Hexachlorocyclopentadiene		100 U	110 U	19 U	95 U	100 U	20 U	92 U
2-Chloronaphthalene		86 U	93 U	16 U	79 U	83 U	16 U	76 U
2-Nitroaniline	430 or MDL	150 U	160 U	28 U	140 U	140 U	29 U	130 U
Dimethylphthalate	2,000	98 U	110 U	18 U	90 U	95 U	19 U	87 U
Acenaphthylene	41,000	120 U	130 U	23 U	110 U	1700 J	24 U	110 U
2,6-Dinitrotoluene	1,000	170 U	190 U	33 U	160 U	170 U	34 U	160 U
3-Nitroaniline	500 or MDL	660 U	720 U	120 U	610 U	650 U	130 U	590 U
Acenaphthene	50,000**	91 U	98 U	17 U	83 U	88 U	17 U	81 U
Dibenzofuran	6,200	140 U	150 U	25 U	120 U	130 U	26 U	120 U
2,4-Dinitrotoluene	74.000	82 U	89 U	15 U	75 U	80 U	16 U	73 U
Diethylphthalate	71,000	130 U	140 U	24 U	120 U	130 U	25 U	120 U
4-Chlorophenyl-phenylether	50 000**	100 U	110 U	19 U	94 U	99 U	20 U	91 U
A Nitroapiling	50,000	120 0	250 U	22 U	200 11	210 U	62 11	200 11
4-Nitroaniine		320 0	350 0	20 U	300 0	310 0	62 0	290 0
4-Bromonbenyl-nbenylether		110 U	120 11	20 0	90 0	110 U	20 0	93 0
Hevachlorobenzene	410	77 11	83.11	14 11	71 11	75 11	15 11	60 11
Phenanthrene	50.000**	1500 1	3100 1	130 1	980 1	6500	18 11	2200 1
Anthracene	50,000**	470 .1	810 .1	18 U	90 U	1600 .1	10 0	580 .1
Carbazole		91 U	98 U	17 U	83 U	460 J	17 U	81 U
Di-n-butylphthalate	8.100	55 U	59 U	10 U	50 U	53 U	10 U	49 U
Fluoranthene	50,000**	3300 J	5700	300 J	2200 J	24000	140 J	2800 J
Pyrene	50,000**	2600 J	5100	270 J	1800 J	15000	130 J	2500 J
Butylbenzylphthalate	50,000**	140 U	150 U	26 U	130 U	130 U	26 U	120 U
3,3-Dichlorobenzidine		660 U	710 U	120 U	610 U	640 U	130 U	590 U
Benzo(a)anthracene	224 or MDL	1800 <mark>J</mark>	3400 J	200 J	1200 <mark>J</mark>	10000	85 J	1400 <mark>J</mark>
Chrysene	400	1500 J	2400 J	200 J	1200 J	7200	81 J	1200 J
bis(2-Ethylhexyl)phthalate	50,000**	94 U	100 U	18 U	87 U	92 U	18 U	84 U
Di-n-octyl phthalate	50,000**	98 U	110 U	18 U	90 U	95 U	19 U	87 U
Benzo(b)fluoranthene	1,100	1700 <mark>J</mark>	3800 <mark>J</mark>	200 J	1500 <mark>J</mark>	11000 <mark>J</mark>	85 J	1300 <mark>J</mark>
Benzo(k)fluoranthene	1,100	1000 J	1400 <mark>J</mark>	150 J	640 J	7500	27 U	500 J
Benzo(a)pyrene	61 or MDL	1300 J	2300 <mark>J</mark>	160 <mark>J</mark>	720 J	6900	14 U	900 <mark>J</mark>
Indeno(1,2,3-cd)pyrene	3,200	460 J	490 J	19 U	410 J	1100 J	19 U	380 J
Dibenz(a,h)anthracene	14 or MDL	120 U	130 U	23 U	110 U	120 U	23 U	110 U
Benzo(g,h,i)perylene	50,000**	490 J	680 J	34 U	420 J	1800 J	34 U	370 J
Total Confident Conc. SVOC		16,120	29,180	1,610	11,070	94,760	521	14,130
Total TICs		3,100	6,510	7,290	4,080	19,100	6,680	6,680

Qualifiers & Notes: U - The compour

The compound was not detected at the indicated concentration.

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

В-The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of

the environmental sample. Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

Value exceeds calibration range. Ε-

D -

Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference. MA-not analyzed MDL - Method Detection Limit ** - As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm. 1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

2 of 10

Semivolatile Organics								
Sample ID		SS-13	SS-14	SS-14B	SS-14BDL	SS-15	SS-16	SS-17
Laboratory Sample No.		S3753-13	S3753-14	S3753-15	S3753-15DL	S3753-16	S3753-17	S3753-18
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor	NYSDEC	5.0	1.0	1.0	5.0	1.0	1.0	5.0
Units	Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	Cleanup Objective							
COMPOUND	Concentration ¹							
bis(2-Chloroethyl)ether		920 U	34 U	35 U	170 UD	39 U	170 U	200 U
1,2-Dichlorobenzene	7,900	1000 U	38 U	39 U	190 UD	43 U	190 U	220 U
1,3-Dichlorobenzene	1,600	690 U	26 U	26 U	130 UD	29 U	130 U	150 U
1,4-Dichlorobenzene	8,500	780 U	29 U	30 U	150 UD	33 U	150 U	170 U
2,2-oxybis(1-Chloropropane)		1000 U	38 U	38 U	190 UD	43 U	190 U	220 U
N-Nitroso-di-n-propylamine		830 U	31 U	31 U	160 UD	35 U	160 U	180 U
Hexachloroethane		890 U	33 U	34 U	170 UD	38 U	170 U	190 U
Nitrobenzene	200	950 U	35 U	36 U	180 UD	41 U	180 U	200 U
Isophorone	4,400	700 U	26 U	26 U	130 UD	30 U	130 U	150 U
bis(2-Chloroethoxy)methane	0.000	850 U	32 U	32 U	160 UD	36 U	160 U	180 U
1,2,4-1 richlorobenzene	3,400	540 U	20 U	20 U	100 UD	23 U	100 U	110 U
	13,000	410 U	15 U	15 U	77 UD	17 U	77 U	87 U
4-Chioroaniline	220 or MDL	6900 U	260 U	260 U	1300 UD	300 U	1300 U	140 U
	26.400	220 11	24 0	23 0	120 UD	28 0	61 11	60 11
	30,400	470 U	17 U	12.0	89 UD	20 11	89.11	100 U
2-Chloronaphthalene		390 U	14 U	15 U	74 UD	17 U	74 U	83 U
2-Nitroaniline	430 or MDL	680 U	25 U	26 U	130 UD	29 U	130 U	150 U
Dimethylphthalate	2,000	450 U	17 U	17 U	85 UD	19 U	84 U	96 U
Acenaphthylene	41,000	6600 J	370 J	540 J	420 JD	24 U	110 U	1100 J
2,6-Dinitrotoluene	1,000	800 U	30 U	30 U	150 UD	34 U	150 U	170 U
3-Nitroaniline	500 or MDL	3000 U	110 U	110 U	570 UD	130 U	570 U	650 U
Acenaphthene	50,000**	410 U	15 U	16 U	78 UD	18 U	78 U	88 U
Dibenzofuran	6,200	620 U	23 U	23 U	120 UD	26 U	120 U	130 U
2,4-Dinitrotoluene		370 U	14 U	14 U	71 UD	16 U	71 U	80 U
Diethylphthalate	71,000	590 U	22 U	22 U	110 UD	25 U	110 U	130 U
4-Chlorophenyl-phenylether		460 U	17 U	18 U	88 UD	20 U	88 U	99 U
Fluorene	50,000**	530 U	20 U	20 U	100 UD	23 U	100 U	110 U
4-Nitroaniine		1500 0	54 U	56 U	260 UD	63 U	260 0	310 0
4-Bromonbenyl-nbenylether		480 0	18 U	19 []	90 UD 93 UD	20 0	90 0	110 U
Hexachlorobenzene	410	350 U	13 U	13 U	66 UD	15 U	66 U	75 U
Phenanthrene	50.000**	22000	1200	1800	1300 JD	290 J	3100 J	6900 J
Anthracene	50,000**	5500 J	270 J	370 J	360 JD	120 J	790 J	1300 J
Carbazole		410 U	86 J	110 J	78 UD	18 U	78 U	450 J
Di-n-butylphthalate	8,100	250 U	9.2 U	9.4 U	47 UD	11 U	47 U	53 U
Fluoranthene	50,000**	88000	4600	6500 EJ	4600 D	910	8000	19000
Pyrene	50,000**	54000	2900	4000	3200 JD	910	5800	11000
Butylbenzylphthalate	50,000**	630 U	23 U	24 U	120 UD	27 U	120 U	130 U
3,3-Dichlorobenzidine		3000 U	110 U	110 U	570 UD	130 U	570 U	640 U
Benzo(a)anthracene	224 or MDL	42000	2200	3100	2500 JD	680 J	3800	8100
Chrysene	400	31000	1500	2200	2000 JD	570 J	3200 J	6000
Dis(2-Ethylnexyl)phthalate	50,000**	430 U	16 U	16 U	81 UD	18 U	81 U	92 U
Di-n-octyl phthalate	50,000	450 0	2000	5200 L	2000 ID	19 0	64 U	96 0
Benzo(k)fluoranthene	1,100	25000 5	1300	2100	1200 JD	900 J 430 J	1900 1	3600
Benzo(a)pyrene	61 or MDI	26000	1400	2100	1600 JD	610 J	3100 J	5200
Indeno(1,2,3-cd)pyrene	3,200	5200 J	340 J	370 J	610 JD	120 J	810 J	1400 J
Dibenz(a,h)anthracene	14 or MDL	550 U	20 U	120 J	100 UD	23 U	100 U	120 U
Benzo(g,h,i)perylene	50,000**	7700 J	450 J	540 J	610 JD	170 J	1100 J	1600 J
Total Confident Conc. SVOC		362,000	19,516	29,150	21,300	5,710	36,700	75,650
Total TICs		29,600	4,080	10,530	0	6,100	5,870	8,300

Qualifiers & Notes: U - The compour

The compound was not detected at the indicated concentration.

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

В-The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

Value exceeds calibration range. Ε-

D -

Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Semivolatile Organics								
Sample ID		SS-18	SS-19	SS-20	SS-21	SS-22	SS-23	SS-24
Laboratory Sample No.		S3753-19	S3754-10	S3754-01	S3754-02	S3754-03	S3754-04	S3754-05
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor		5.0	1.0	1.0	10.0	1.0	1.0	1.0
Units	NYSDEC Recommended Soil	ug/Kg						
	Cleanup Objective							
COMPOUND	Concentration ¹							
bis(2-Chloroethyl)ether		190 U	190 U	190 U	1800 U	190 U	210 U	180 U
1,2-Dichlorobenzene	7,900	210 U	210 U	210 U	2000 U	210 U	230 U	200 U
1,3-Dichlorobenzene	1,600	140 U	140 U	140 U	1400 U	140 U	150 U	140 U
1,4-Dichlorobenzene	8,500	160 U	160 U	160 U	1500 U	160 U	170 U	160 U
2,2-oxybis(1-Chloropropane)		210 U	210 U	200 U	2000 U	210 U	230 U	200 U
N-Nitroso-di-n-propylamine		170 U	170 U	170 U	1600 U	170 U	180 U	170 U
Hexachloroethane		180 U	190 U	180 U	1800 U	180 U	200 U	180 U
Nitrobenzene	200	200 U	200 U	190 U	1900 U	200 U	210 U	190 U
Isophorone	4,400	140 U	140 U	140 U	1400 U	140 U	160 U	140 U
bis(2-Chloroethoxy)methane		180 U	180 U	170 U	1700 U	180 U	190 U	170 U
1,2,4-Trichlorobenzene	3,400	110 U	110 U	110 U	1100 U	110 U	120 U	110 U
Naphthalene	13,000	84 U	85 U	82 U	810 U	84 U	91 U	82 U
4-Chloroaniline	220 or MDL	1400 U	1400 U	1400 U	14000 U	1400 U	1500 U	1400 U
Hexachlorobutadiene		130 U	140 U	130 U	1300 U	140 U	150 U	130 U
2-Methylnaphthalene	36,400	66 U	67 U	65 U	640 U	67 U	72 U	65 U
Hexachlorocyclopentadiene		96 U	98 U	95 U	930 U	97 U	100 U	94 U
2-Chloronaphthalene		80 U	81 U	79 U	770 U	81 U	87 U	78 U
2-Nitroaniline	430 or MDL	140 U	140 U	140 U	1300 U	140 U	150 U	140 U
Dimethylphthalate	2,000	92 U	93 U	90 U	880 U	92 U	100 U	90 U
Acenaphthylene	41,000	120 U	120 U	110 U	1100 U	120 U	130 U	110 U
2,6-Dinitrotoluene	1,000	160 U	170 U	160 U	1600 U	160 U	180 U	160 U
3-Nitroaniline	500 or MDL	620 U	630 U	610 U	6000 U	620 U	680 U	610 U
Acenaphthene	50,000**	85 U	86 U	83 U	820 U	85 U	92 U	83 U
Dibenzofuran	6,200	130 U	130 U	120 U	1200 U	130 U	140 U	120 U
2,4-Dinitrotoluene		77 U	78 U	75 U	740 U	77 U	83 U	75 U
Diethylphthalate	71,000	120 U	120 U	120 U	1200 U	120 U	130 U	120 U
4-Chlorophenyl-phenylether		95 U	97 U	94 U	920 U	96 U	100 U	93 U
Fluorene	50,000**	110 U	110 U	110 U	1100 U	110 U	120 U	110 U
4-Nitroaniline		300 U	310 U	300 U	2900 U	300 U	330 U	290 U
N-Nitrosodiphenylamine		98 U	99 U	96 U	940 U	98 U	110 U	95 U
4-Bromophenyl-phenylether		100 U	100 U	99 U	970 U	100 U	110 U	99 0
Hexachlorobenzene	410	72 U	73 U	71 U	690 U	72 U	78 U	70 0
	50,000**	630 J	610 J	500 J	830 0	820 J	94 U	420 J
Carbazala	50,000	92 0	93 0	90.0	820 11	92 0	100 0	90 0
	8 100	51 U	52 11	50 11	490 11	51 U	92 U	50 11
Fluoranthene	50.000**	1500 1	1500 1	1100 1	3000 1	1300 1	660 1	630 1
Pyrene	50,000	1300 J	1400 1	1100 J	3800 1	1300 J	700 1	670 1
Butylbenzylphthalate	50.000**	130 U	130 U	130 U	1200 U	130 U	140 U	130 U
3 3-Dichlorobenzidine	00,000	620 U	630 U	610 U	5900 U	620 U	670 U	600 U
Benzo(a)anthracene	224 or MDL	950 J	740 J	640 J	560 U	630 J	63 U	57 U
Chrysene	400	840 J	900 J	630 J	1200 U	670 J	130 U	120 U
bis(2-Ethylhexyl)phthalate	50,000**	88 U	90 U	87 U	850 U	89 U	96 U	86 U
Di-n-octyl phthalate	50,000**	92 U	93 U	90 U	880 U	92 U	100 U	90 U
Benzo(b)fluoranthene	1,100	1200 J	770 J	700 J	3800 J	670 J	220 U	200 U
Benzo(k)fluoranthene	1,100	540 J	540 J	500 J	1300 U	130 U	140 U	130 U
Benzo(a)pyrene	61 or MDL	800 J	720 J	600 J	640 U	510 J	72 U	65 U
Indeno(1,2,3-cd)pyrene	3,200	93 U	540 J	91 U	900 U	93 U	100 U	91 U
Dibenz(a,h)anthracene	14 or MDL	110 U	110 U	110 U	1100 U	110 U	120 U	110 U
Benzo(g,h,i)perylene	50,000**	170 U	510 J	160 U	1600 U	170 U	180 U	160 U
Total Confident Conc. SVOC		7,760	8,230	5,770	11,500	5,900	1,360	1,720
Total TICs		3,890	5,720	12,830	0	2,570	7,000	20,900

Qualifiers & Notes: U - The compour

The compound was not detected at the indicated concentration.

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

В-

The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

Value exceeds calibration range. E -

D -

Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference. MA-not analyzed MDL - Method Detection Limit ** - As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm. 1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Semivolatile Organics						
Sample ID		SS-25	SS-26	SS-27	SS-28	SS-29
Laboratory Sample No		\$3754-06	\$3753-20	\$3754-07	\$3754-08	\$3754-09
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor		10	10	10.0	10.0	2.0
Unite	NYSDEC	ug/Kg	1.0 11/Ka	10.0	10.0 ug/Kg	1.0 110/Ka
onits	Recommended Soil	ug/ng	ug/ng	ug/Ng	ugnig	ug/Ng
COMPOUND	Cleanup Objective					
bis(2 Chloreethyl)ether	Concentration	170 11	40.11	2100 11	1900 11	260 11
1 2 Disklasshanzana	7 000	170 0	40 0	2100 0	2000 11	300 U
	1,900	120 11	20 11	2300 0	1200 U	270 11
	9,500	140 11	30 0	1300 U	1500 U	210 U
2.2 eventie(4 Chlerenzenene)	8,500	140 0	34 0	2200 11	1000 U	310 0
N Nitroso di p propylamino		150 U	26 11	2300 0	1900 0	400 0
N-Nitroso-di-n-propylamine		150 U	36 U	1800 U	1700 U	320 0
Hexachioroethane	000	160 0	39 0	2000 U	1700 0	350 U
Nitrobenzene	200	170 0	410	2100 U	1000 U	370 U
his/2 Chloreethew?	4,400	130 0	30 0	1500 0	1300 0	2/0 0
d 2 4 Tricklershansons	2.400	150 U	37 U	1900 U	1600 U	340 U
	3,400	97.0	23 U	1200 U	1000 0	210 U
	13,000	74 U	250 J	910 U	780 U	160 U
	220 or MDL	1300 U	300 U	15000 U	13000 U	2700 U
Hexachlorobutadiene		120 U	29 0	1500 U	1300 U	260 U
2-Methylnaphthalene	36,400	58 U	310 J	720 U	620 U	130 U
Hexachlorocyclopentadiene		85 U	20 0	1000 U	900 U	180 U
2-Chloronaphthalene	100 1101	71 U	17 U	870 U	750 U	150 U
2-Nitroaniline	430 or MDL	120 U	30 U	1500 U	1300 U	270 U
Dimethylphthalate	2,000	81 U	19 0	990 U	860 U	180 U
Acenaphthylene	41,000	100 U	130 J	8000 J	1100 U	220 U
2,6-Dinitrotoluene	1,000	140 U	35 U	1800 U	1500 U	310 U
3-Nitroaniline	500 or MDL	550 U	130 U	6700 U	5800 U	1200 U
Acenaphthene	50,000**	75 U	18 U	920 U	790 U	160 U
Dibenzoturan	6,200	110 U	110 J	1400 U	1200 U	240 U
2,4-Dinitrotoluene		67 U	16 U	830 U	720 U	150 U
Diethylphthalate	71,000	110 U	26 U	1300 U	1100 U	230 U
4-Chlorophenyl-phenylether	50.000	84 U	20 U	1000 U	890 U	180 U
Fluorene	50,000**	96 U	23 U	1200 U	1000 U	210 U
		260 U	64 U	3300 U	2800 U	580 U
N-Nitrosodiphenylamine		86 U	21 U	1100 U	910 U	190 U
4-Bromopnenyi-pnenyietner		89 0	21 0	1100 U	940 0	190 U
Hexachlorobenzene	410	63 U	15 U	780 U	670 0	140 U
	50,000**	76 U	1200	92000	4200 J	160 U
Anthracene Osek assis	50,000	31 U	170 J	18000 J	000 U	160 U
	0.100	75 0	120 J	920 0	790 0	160 0
Di-n-butyiphthalate	6,100	45 0	1000	550 0	460 0	96 U
Putoranthene	50,000	47 0	1900	320000	12000 J	100 U
Pyrene Putulbonzulahthalato	50,000	110 U	27.11	260000	1200 U	250 U
	50,000	F40 U	120 11	6700 11	F800 LL	1200 U
Benzo(a)anthracene	224 or MDI	540 0	660 1	150000	7300 1	1200 0
Chrysona	224 OF WIDE	110 11	700 1	130000	7300 J	220 11
bic(2 Ethylboxyl)phthalata	400	79.11	10 U	130000	920 LL	230 0
Di-n-octyl phthalate	50,000**	81 11	19 0	900 0	860 11	180 11
Benzo(b)fluoranthene	1 100	180 11	1200	180000	8100	300 11
Benzo(k)fluoranthene	1,100	120 11	470 1	64000	6800	250 U
Benzo(a)pyrene	61 or MDI	58 11	460	10000	6800	130 U
Indeno(1.2.3-cd)pyrene	3 200	82 11	160 1	16000	870 11	180 11
Dibenz(a h)anthracene	14 or MDI	99.11	24 []	1200 U	1100 []	220 11
Benzo(a h i)perviere	50.000**	150 11	24 0	25000 1	3000 1	320 11
Deuro(Builthei Nelle	30,000	150 0	200 J	23000 J	3900 3	320 0
Total Confident Conc. SVOC		0	9 530	1 363 000	67 500	0
Total TICs		0	13 530	265.000	70,000	0

Qualifiers & Notes:
U - The compound was not detected at the indicated concentration.
J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the
quantitation limit, but greater than zero. The concentration given is an approximate value.
B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory
contamination of the environmental sample.
P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is
greater than 40%.
E - Value exceeds calibration range.
D - Compound identified in analysis at a secondary dilution factor.
* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
NA-not analyzed
MDL - Method Detection Limit
** - As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm.

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

PCBs and Metals Sample ID Laboratory Sample No. Sampling Date Dilution Factor Units COMPOUND	NYSDEC Recommended Soil Cleanup Objective Concentration ¹	SS-1 S3753-01 07/22/04 1.0 ug/Kg	SS-2 S3753-02 07/22/04 1.0 ug/Kg	SS-3 S3753-03 07/22/04 1.0 ug/Kg	SS-4 S3753-04 07/22/04 1.0 ug/Kg	SS-5 S3753-05 07/22/04 1.0 ug/Kg	SS-5DL S3753-05DL 07/22/04 10.0 ug/Kg	SS-6 S3753-06 07/22/04 1.0 ug/Kg
Aroclor-1016	1,000	6.1 U	5.7 U	5.7 U	5.9 U	7.4 U	74 UD	6.4 U
Aroclor-1221	1,000	4.1 U	3.9 U	3.9 U	4.0 U	5.0 U	50 UD	4.4 U
Aroclor-1232	1,000	2.8 U	2.6 U	2.6 U	2.7 U	3.4 U	34 UD	3.0 U
Aroclor-1242	1,000	3.6 U	3.4 U	3.4 U	3.5 U	4.4 U	44 UD	3.8 U
Aroclor-1248	1,000	4.3 U	4.0 U	4.0 U	4.1 U	5.2 U	52 UD	4.5 U
Aroclor-1254	1,000	1.6 U	1.5 U	1.5 U	1.5 U	1.9 U	19 UD	1.7 U
Aroclor-1260	1,000	3.4 U	3.2 U	3.2 U	3.3 U	1200 EJ	1000 D	1700 EJ
Units COMPOUND		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		mg/Kg
Arsenic	7.5 or SB/(5.89)	15.6	7.430	11.5	24.8	4.890		9.240
Barium	300 or SB/(52.5)	170	68.0	175	85.7	127		159
Cadmium	1 or SB/(1.93)	2.440	8.700	2.760	3.310	2.190		2.710
Chromium	10 or SB/(15.8)	88.7	58.2	18.2	74.3	14.6		27.0
Lead	SB/(87.9)	908 <mark>J</mark>	78.4 J	185 J	414 J	210 J		265 J
Selenium	2 or SB/(1.25)	2.500	1.400	1.030 J	3.210	2.150		1.100 J
Silver	SB/(0.117)	1.120 J	240	0.534 J	2.070	0.149 U		0.262 J
Mercury	0.1	0.40	0.13	0.11	0.18	0.34		0.39

Qualifiers & Notes:

The compound was not detected at the indicated concentration. U -

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

в The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40%. Ε-

Value exceeds calibration range. D -Compound identified in analysis at a secondary dilution factor

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NA-not analyzed

PCBs and Metals								
Sample ID		SS-6DL	SS-7	SS-7DL	SS-8	SS-9	SS-10	SS-11
Laboratory Sample No.		S3753-06DL	S3753-07	S3753-07DL	S3753-08	S3753-09	S3753-10	S3753-11
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor	NYSDEC	10.0	1.0	10.0	1.0	1.0	1.0	1.0
Units	Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
	Cleanup Objective							
COMPOUND	Concentration ¹							
Aroclor-1016	1,000	64 UD	6.9 U	69 UD	6.1 U	5.9 U	6.2 U	6.2 U
Aroclor-1221	1,000	44 UD	4.7 U	47 UD	4.2 U	4.0 U	4.2 U	4.2 U
Aroclor-1232	1,000	30 UD	3.2 U	32 UD	2.8 U	2.7 U	2.9 U	2.9 U
Aroclor-1242	1,000	38 UD	4.1 U	41 UD	3.6 U	3.5 U	3.7 U	3.7 U
Aroclor-1248	1,000	45 UD	4.9 U	49 UD	4.3 U	4.1 U	4.4 U	4.3 U
Aroclor-1254	1,000	17 UD	1.8 U	18 UD	1.6 U	1.5 U	1.6 U	1.6 U
Aroclor-1260	1,000	1500 D	3600 EJ	3400 D	3.4 U	3.3 U	3.5 U	3.5 U
Units			ma/Ka		ma/Ka	ma/Ka	ma/Ka	ma/Ka
COMPOUND								
Arsenic	7.5 or SB/(5.89)		19.2		8.800	9.990	10.2	6.780
Barium	300 or SB/(52.5)		318		70.6	134	179	38.4
Cadmium	1 or SB/(1.93)		3.730		2.290	2.800	2.900	2.080
Chromium	10 or SB/(15.8)		146		15.4	21.3	18.9	12.6
Lead	SB/(87.9)		456 J		58.8 J	289 J	657 J	25.4 J
Selenium	2 or SB/(1.25)		2.820		1.860	1.140	1.760	1.130 J
Silver	SB/(0.117)		2.020		0.123 U	0.119 U	0.524 J	0.126 U
Mercury	0.1		1.3		0.07	0.11	0.22	0.02

Qualifiers & Notes:

The compound was not detected at the indicated concentration. U -

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

В The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40%. Ε-Value exceeds calibration range.

D -Compound identified in analysis at a secondary dilution factor

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NA-not analyzed

PCBs and Metals								
Sample ID		SS-12	SS-13	SS-14	SS-14B	SS-15	SS-16	SS-17
Laboratory Sample No.		S3753-12	S3753-13	S3753-14	S3753-15	S3753-16	S3753-17	S3753-18
Sampling Date		07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04	07/22/04
Dilution Factor	NYSDEC	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	Recommended Soil	ug/Kg						
	Cleanup Objective							
COMPOUND	Concentration ¹							
Aroclor-1016	1,000	5.7 U	5.9 U	5.5 U	5.6 U	6.2 U	5.5 U	6.3 U
Aroclor-1221	1,000	3.9 U	4.0 U	3.7 U	3.8 U	4.3 U	3.8 U	4.3 U
Aroclor-1232	1,000	2.7 U	2.7 U	2.5 U	2.6 U	2.9 U	2.6 U	2.9 U
Aroclor-1242	1,000	3.4 U	3.5 U	3.2 U	3.3 U	3.7 U	3.3 U	3.7 U
Aroclor-1248	1,000	4.0 U	4.2 U	3.8 U	3.9 U	4.4 U	3.9 U	4.4 U
Aroclor-1254	1,000	1.5 U	1.5 U	1.4 U	1.4 U	1.6 U	1.4 U	1.6 U
Aroclor-1260	1,000	3.2 U	3.4 U	3.1 U	3.2 U	3.5 U	3.1 U	3.6 U
Units		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg		
COMPOUND								
Arsenic	7.5 or SB/(5.89)	6.770	7.340	7.550	6.570	6.580	5.070	8.840
Barium	300 or SB/(52.5)	66.1	121	83.5	72.2	78.9	374	164
Cadmium	1 or SB/(1.93)	2.090	1.720	2.060	1.570	2.240	1.610	2.620
Chromium	10 or SB/(15.8)	13.2	10.9	12.8	8.790	15.3	11.3	15.2
Lead	SB/(87.9)	80.6 J	447 J	166 J	141 J	71.6 J	262 J	793 J
Selenium	2 or SB/(1.25)	1.060 J	1.470	1.350	1.170	1.740	0.777 J	1.390
Silver	SB/(0.117)	0.115 U	0.121 U	0.112 U	0.113 U	0.621 J	0.113 U	0.127 U
Mercury	0.1	0.03	0.13	0.07	0.13	0.07	0.12	0.10

Qualifiers & Notes:

U - The compound was not detected at the indicated concentration.

J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

 than 40%.

 E Value exceeds calibration range.

D - Compound identified in analysis at a secondary dilution factor
 Early dialogue and the second secon

* - For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NA-not analyzed

MDL - Method Detection Limit ** - As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

PCBs and Metals Sample ID Laboratory Sample No. Sampling Date Dilution Factor Units	NYSDEC Recommended Soil Cleanup Objective	SS-18 S3753-19 07/22/04 1.0 ug/Kg	SS-19 S3754-10 07/22/04 1.0 ug/Kg	SS-20 S3754-01 07/22/04 1.0 ug/Kg	SS-21 S3754-02 07/22/04 1.0 ug/Kg	SS-22 S3754-03 07/22/04 1.0 ug/Kg	SS-23 S3754-04 07/22/04 1.0 ug/Kg	SS-24 S3754-05 07/22/04 1.0 ug/Kg
COMPOUND	Concentration							
Aroclor-1016	1,000	6.0 U	6.2 U	6.0 U	5.8 U	6.1 U	6.5 U	5.9 U
Aroclor-1221	1,000	4.1 U	4.2 U	4.1 U	3.9 U	4.2 U	4.5 U	4.0 U
Aroclor-1232	1,000	2.8 U	2.9 U	2.8 U	2.7 U	2.8 U	3.0 U	2.7 U
Aroclor-1242	1,000	3.6 U	3.7 U	3.5 U	3.4 U	3.6 U	3.9 U	3.5 U
Aroclor-1248	1,000	4.2 U	4.3 U	4.2 U	4.1 U	4.3 U	4.6 U	4.2 U
Aroclor-1254	1,000	1.6 U	1.6 U	1.5 U	1.5 U	1.6 U	1.7 U	1.5 U
Aroclor-1260	1,000	3.4 U	140	83	67	290	3.7 U	140
Units COMPOUND			mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Arsenic	7.5 or SB/(5.89)	8.980	21.5	9.450	8.460	15.1	8.790	8.870
Barium	300 or SB/(52.5)	130	92.7	123	57.6	80.4	51.7	62.1
Cadmium	1 or SB/(1.93)	2.500	2.340	2.920	2.100	2.500	3.400	2.460
Chromium	10 or SB/(15.8)	17.0	123 J	90.0 J	14.4 J	24.4 J	44.9 <mark>J</mark>	16.1 J
Lead	SB/(87.9)	273 J	245 J	261 J	73.7 J	130 J	139 J	192 J
Selenium	2 or SB/(1.25)	0.930 J	1.140 J	1.300	1.510	1.720	1.940	1.580
Silver	SB/(0.117)	0.124 U	0.683 J	0.120 U	0.119 U	0.124 U	1.130 J	0.120 U
Mercury	0.1	0.08	0.57 J	0.27 J	0.11 J	0.11 J	0.10 J	0.08 J

Qualifiers & Notes:

The compound was not detected at the indicated concentration. U -

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

в The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40%. Ε-Value exceeds calibration range.

D -Compound identified in analysis at a secondary dilution factor

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NA-not analyzed

PCBs and Metals Sample ID Laboratory Sample No. Sampling Date Dilution Factor Units COMPOUND	NYSDEC Recommended Soil Cleanup Objective Concentration ¹	SS-25 S3754-06 07/22/04 1.0 ug/Kg	SS-26 S3753-20 07/22/04 1.0 ug/Kg	SS-27 S3754-07 07/22/04 1.0 ug/Kg	SS-28 S3754-08 07/22/04 1.0 ug/Kg	SS-29 S3754-09 07/22/04 1.0 ug/Kg
Aroclor-1016	1,000	5.3 U	6.4 U	6.6 U	5.6 U	5.7 U
Aroclor-1221	1,000	3.6 U	4.4 U	4.5 U	3.8 U	3.9 U
Aroclor-1232	1,000	2.5 U	3.0 U	3.0 U	2.6 U	2.6 U
Aroclor-1242	1,000	3.2 U	3.8 U	3.9 U	3.3 U	3.4 U
Aroclor-1248	1,000	3.7 U	4.5 U	4.6 U	3.9 U	4.0 U
Aroclor-1254	1,000	1.4 U	1.7 U	1.7 U	1.4 U	1.5 U
Aroclor-1260	1,000	50 PJ	3.6 U	99 PJ	86	3.2 U
Units COMPOUND		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Arsenic	7.5 or SB/(5.89)	5.540	22.1	20.1	9.680	5.890
Barium	300 or SB/(52.5)	15.1 J	123	101	41.6	52.5
Cadmium	1 or SB/(1.93)	0.973	2.220	3.220	2.480	1.930
Chromium	10 or SB/(15.8)	5.940 J	627	32.7 J	15.6 J	15.8 J
Lead	SB/(87.9)	22.8 J	189 J	406 J	138 J	87.9 J
Selenium	2 or SB/(1.25)	0.320 U	3.050	2.120	0.602 J	1.250
Silver	SB/(0.117)	0.107 U	1.960	0.809 J	0.114 U	0.117 U
Mercury	0.1	0.03 J	0.18	0.27 J	0.24 J	0.04 J

Qualifiers & Notes:

The compound was not detected at the indicated concentration. U -

J -

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. В The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory

contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

E -

Value exceeds calibration range. Compound identified in analysis at a secondary dilution factor D -

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NA-not analyzed

Volatile Organics											
Sample ID		TD 18 1	TD 55 1	TD 65 1	TD 95 1	TD OS 1	TD OS 1DE	TD 165 1	TD 105 1	TD 205 1	TD 205 1DE
Laboratory Sample No.		S2070.01	S2070.02	S2070.02	S2070.04	\$2070.05	\$2070.05PE	S2070.06	S2070-07	S2070.09	\$2070.09PE
Sampling Date		08/02/04	08/02/04	08/02/04	08/02/04	08/02/04	08/02/04	08/03/04	08/04/04	08/04/04	08/04/04
Dilution Easter		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	NYSDEC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
onns	Recommended Soil	ug/Kg	ug/kg	ug/kg	ug/Kg	ug/kg	ug/Kg	ug/kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND	Cleanup Objective Concentration ¹										
Chloromethane		110 U	0.42 U	0.37 U	130 U	0.36 U	0.36 U	120 U	100 U	0.44 U	110 U
Vinyl Chloride	200	44 U	0.30 U	0.26 U	49 U	0.26 U	0.26 U	45 U	40 U	0.31 U	44 U
Bromomethane		130 U	0.90 U	0.80 U	140 U	0.77 U	0.77 U	130 U	120 U	0.94 U	130 U
Chloroethane	1,900	150 U	0.66 U	0.59 U	160 U	0.57 U	0.57 U	150 U	130 U	0.70 U	150 U
1,1-Dichloroethene	200	53 U	0.27 U	0.24 U	59 U	0.23 U	0.23 U	54 U	48 U	0.29 U	54 U
Acetone	200	540 U	34 J	8.4 U	610 U	8.1 U	8.1 U	3500 J	500 U	63	550 U
Carbon Disulfide	2,700	64 U	0.13 U	1.6 J	72 U	0.11 U	0.11 U	66 U	59 U	0.13 U	65 U
Methylene Chloride	100	100 U	4.4 J	4.5 J	110 U	2.6 J	1.8 J	110 U	94 U	0.91 U	100 U
trans-1,2-Dichloroethene	300	85 U	0.47 U	0.42 U	94 U	0.40 U	0.40 U	87 U	77 U	0.49 U	86 U
1,1-Dichloroethane	200	35 U	0.45 U	0.40 U	40 U	0.38 U	0.38 U	36 U	32 U	0.47 U	36 U
2-Butanone	300	470 U	2.9 U	2.6 U	520 U	2.5 U	2.5 U	480 U	430 U	3.0 U	470 U
Carbon Tetrachloride	600	77 U	0.38 U	0.33 U	86 U	0.32 U	0.32 U	79 U	71 U	0.40 U	78 U
cis-1,2-Dichloroethene		130 U	0.45 U	0.40 U	140 U	0.38 U	0.38 U	130 U	120 U	0.47 U	130 U
Chloroform	300	95 U	0.30 U	0.27 U	110 U	0.26 U	0.26 U	97 U	87 U	0.32 U	96 U
1,1,1-Trichloroethane	800	67 U	0.34 U	0.30 U	75 U	0.29 U	0.29 U	69 U	61 U	0.36 U	68 U
Benzene	60	40 U	0.26 U	0.23 U	44 U	0.22 U	0.22 U	2300	36 U	0.27 U	40 U
1,2-Dichloroethane	100	53 U	3.9 U	3.5 U	59 U	3.3 U	3.3 U	54 U	48 U	4.1 U	53 U
Trichloroethene	700	110 U	0.41 U	0.36 U	120 U	0.35 U	0.35 U	110 U	100 U	0.43 U	110 U
1,2-Dichloropropane		52 U	0.42 U	0.38 U	58 U	0.36 U	0.36 U	54 U	48 U	0.45 U	53 U
Bromodichloromethane		57 U	0.42 U	0.37 U	64 U	0.36 U	0.36 U	59 U	52 U	0.44 U	58 U
4-Methyl-2-Pentanone	1,000	220 U	3.0 U	2.7 U	240 U	2.6 U	2.6 U	220 U	200 U	3.2 U	220 U
loluene	1,500	64 U	0.33 U	0.29 U	290 J	3.2 J	2.8 J	150 J	200 J	0.35 U	64 U
t-1,3-Dichloropropene		70 U	0.32 U	0.29 U	78 U	0.28 U	0.28 U	72 U	64 U	0.34 U	71 U
cis-1,3-Dichloropropene		25 U	0.25 U	0.22 U	28 U	0.21 U	0.21 U	26 U	23 U	0.26 U	25 U
1,1,2-I richloroethane		85 U	0.64 0	0.57 U	95 U	0.55 U	0.55 U	87 U	78 U	0.67 0	86 U
2-Hexanone		110 0	4.0 0	3.6 U	120 0	3.5 U	3.5 U	110 U	99 0	4.3 U	110 0
Tetrachlasaethana	1 400	62 U	0.37 0	0.33 U	69 U	0.32 0	0.32 0	64 U	57 U	0.39 0	63 U
Chlorobonzono	1,400	54 U	0.60 0	0.71 0	69 11	0.89 U	0.89 U	12000	50 0	9.6	55 U
Ethyl Bonzono	5,500	67 11	0.45 0	0.40 0	520 L	0.38 0	0.38 0	13000	420 1	0.47 0	69 11
m/n-Xvlenes	1 200	560 .1	0.65 U	11.1	4900	33.1	28.1	160 U	1200 .1	0.69 U	160 U
o-Xvlene	1,200	60 11	0.55 U	0.49.11	610	0.47 11	0.47	62 11	1300	0.58 11	61 11
Styrene	1,200	56 U	0.40 U	0.35 U	63 11	0.34 11	0.34 11	58 11	52 11	0.42 11	57 U
Bromoform		41 11	0.38 11	0.34 11	46 11	0.32 11	0.32 11	43 11	38 11	0.40 11	42 11
1,1,2,2-Tetrachloroethane	600	81 U	0.67 U	0.59 U	91 U	0.57 U	0.57 U	84 U	75 U	0.71 U	83 U
Total Confident Conc. VOC		560	38.4	7.2	6330	9.1	7.4	18950	3120	72.6	0
Total TICs		22400	0	385	235000	299	0	101300	99700	4140	0

Qualifiers & Notes:

The compound was not detected at the indicated concentration. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. U -J -

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%. Value exceeds calibration range. E٠

D -

Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA-not analyzed

Volatilo Organice												
		TD 000 4	TD 040 4	TD 000 4	TD 000 4	TR 0 (0 (TD 050 4	TD 070 4	TD 000 4	TD 000 4	TD (10) (TD (00 (
Sample ID		TP-235-1	TP-245-1	TP-285-1	TP-305-1	TP-345-1	TP-355-1	TP-375-1	TP-385-1	TP-395-1	TP-415-1	TP-425-1
Laboratory Sample No.		53970-09	53970-10	54063-01	54063-02	54063-03	54063-04	54063-05	54063-06	54063-07	54063-06	54063-09
Sampling Date		08/04/04	08/04/04	08/08/04	08/08/04	08/08/04	08/08/04	08/06/04	08/06/04	08/06/04	08/06/04	08/06/04
Dilution Factor	NYSDEC	1.0	1.0	1.0	10.0	1.0	1.0	5.0	1.0	1.0	1.0	1.0
Units	Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND	Cleanup Objective											
Chloromethane	Conconduction	120 11	0.48.11	0.40.11	3911	0.39.11	0.41.11	2011	0.43.11	0.39.11	0.42.11	0.41.11
Vinvl Chloride	200	46 U	0.34 U	0.28 U	2.8 U	0.28 U	0.29 U	1.4 U	0.31 U	0.28 U	0.30 U	0.29 U
Bromomethane		130 U	1.0 U	0.85 U	8.4 U	0.83 U	0.87 U	4.3 U	0.92 U	0.83 U	0.91 U	0.87 U
Chloroethane	1,900	150 U	0.76 U	0.63 U	6.2 U	0.62 U	0.65 U	3.2 U	0.68 U	0.62 U	0.67 U	0.65 U
1,1-Dichloroethene	200	55 U	0.31 U	0.26 U	2.6 U	0.25 U	0.27 U	1.3 U	0.28 U	0.25 U	0.28 U	0.27 U
Acetone	200	570 U	100	9.0 U	270 J	8.8 U	9.2 U	250 J	61 J	8.8 U	9.6 U	9.2 U
Carbon Disulfide	2,700	67 U	5.2 J	0.12 U	1.2 U	0.12 U	0.12 U	56	0.13 U	0.12 U	0.13 U	0.12 U
Methylene Chloride	100	110 U	4.3 J	0.82 U	8.1 U	0.80 U	0.84 U	4.1 U	0.88 U	0.80 U	0.87 U	0.84 U
trans-1,2-Dichloroethene	300	88 U	0.54 U	0.45 U	4.4 U	0.44 U	0.46 U	2.3 U	0.48 U	0.44 U	0.48 U	0.46 U
1,1-Dichloroethane	200	37 U	0.51 U	0.43 U	4.2 U	0.42 U	0.44 U	2.2 U	0.46 U	0.42 U	0.45 U	0.44 U
2-Butanone	300	480 U	16 J	2.7 U	27 U	2.7 U	2.8 U	14 U	3.0 U	2.7 U	2.9 U	2.8 U
Carbon Tetrachloride	600	80 U	0.43 U	0.36 U	3.5 U	0.35 U	0.37 U	1.8 U	0.39 U	0.35 U	0.38 U	0.37 U
cis-1,2-Dichloroethene		130 U	0.51 U	0.42 U	4.2 U	0.41 U	0.43 U	2.1 U	0.46 U	0.41 U	0.45 U	0.43 U
Chloroform	300	98 U	0.34 U	0.29 U	2.8 U	0.28 U	0.29 U	1.4 U	0.31 U	0.28 U	0.30 U	0.29 U
1,1,1-Trichloroethane	800	70 U	0.39 U	0.33 U	3.2 U	0.32 U	0.33 U	1.7 U	0.35 U	0.32 U	0.35 U	0.33 U
Benzene	60	41 U	0.29 U	0.24 U	43 J	0.24 U	0.25 U	1.2 U	0.26 U	0.24 U	0.26 U	0.25 U
1,2-Dichloroethane	100	55 U	4.5 U	3.7 U	37 U	3.6 U	3.8 U	19 U	4.0 U	3.6 U	3.9 U	3.8 U
Trichloroethene	700	110 U	0.46 U	0.39 U	3.8 U	0.38 U	0.40 U	2.0 U	0.42 U	0.38 U	0.41 U	0.40 U
1,2-Dichloropropane		54 U	0.49 U	0.40 U	4.0 U	0.39 U	0.41 U	2.0 U	0.44 U	0.39 U	0.43 U	0.41 U
Bromodichloromethane		60 U	0.48 U	0.40 U	4.0 U	0.39 U	0.41 U	2.0 U	0.43 U	0.39 U	0.43 U	0.41 U
4-Methyl-2-Pentanone	1,000	230 U	3.5 U	2.9 U	29 U	2.8 U	3.0 U	15 U	3.1 U	2.8 U	3.1 U	3.0 U
Toluene	1,500	66 U	0.38 U	0.31 U	320	0.30 U	0.32 U	1.6 U	0.34 U	0.30 U	0.33 U	0.32 U
t-1,3-Dichloropropene		73 U	0.37 U	0.31 U	3.0 U	0.30 U	0.32 U	1.6 U	0.33 U	0.30 U	0.33 U	0.32 U
cis-1,3-Dichloropropene		26 U	0.28 U	0.23 U	2.3 U	0.23 U	0.24 U	1.2 U	0.25 U	0.23 U	0.25 U	0.24 U
1,1,2-1 richloroethane		89 0	0.73 U	0.61 U	6.0 U	0.60 0	0.62 U	3.1 U	0.66 U	0.60 U	0.65 0	0.62 U
2-Hexanone		110 0	4.6 U	3.9 U	38 U	3.8 U	3.9 U	19 U	4.2 U	3.8 U	4.1 U	3.9 U
Tetreshleresthere	1 400	65 U	0.42 0	0.35 0	3.5 0	0.34 0	0.36 0	1.6 U	0.36 0	0.34 0	0.37 0	0.36 0
Chlorobonzono	1,400	57 U	0.92 0	0.77 U	4211	0.75 U	9.5	3.9 0	0.46.11	0.75 0	5.0 J	4.1 J
Ethyl Benzene	5 500	70 11	0.36 U	0.30 U	350	0.29.11	0.45 0	1511	0.32 11	0.29.11	0.32 11	351
m/n-Xylenes	1 200	170 U	0.30 0	0.62 11	970	0.60 U	0.63 U	31 11	0.67 U	0.60 U	0.66 U	31.1
o-Xvlene	1,200	63 U	0.63 U	0.52 U	1100	0.51 U	0.53 U	2611	0.56 U	0.51 U	0.55 U	26.1
Styrepe	1,200	59 11	0.45 11	0.38 11	3.7 11	0.37 11	0.39 11	1.9 1	0.41 11	0.37 11	0.40 11	0.39 11
Bromoform		43 U	0.43 U	0.36 U	3.6 U	0.35 U	0.37 U	1.8 U	0.39 U	0.35 U	0.38 U	0.37 U
1,1,2,2-Tetrachloroethane	600	85 U	0.77 U	0.64 U	6.3 U	0.62 U	0.65 U	3.2 U	0.69 U	0.62 U	0.68 U	0.65 U
Total Confident Conc. VOC		0	125.5	0	3163	0	9.3	306	72	0	5	13.3
Total TICs		103700	0	0	22400	3551	2460	13520	2000	1980	7320	225

Qualifiers & Notes:

 U - The compound was not detected at the indicated concentration.

 J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

Value exceeds calibration range. E٠

D -Compound identified in analysis at a secondary dilution factor.

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA-not analyzed

Veletile Organice					
volatile Organics					
Sample ID		AT-7S-1	B-7(14-16)	B-7(14-16)RE	TRIPBLANK
Laboratory Sample No.		S3897-01	S4313-01	S4313-01RE	S4063-10
Sampling Date		07/29/04	08/18/04	08/18/04	08/08/04
Dilution Factor	NYSDEC	1.0	10.0	10.0	1.0
Units	Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/L
	Cleanup Objective				
COMPOUND	Concentration ¹				
Chloromethane		0.38 U	3.9 U	3.9 U	0.68 U
Vinyl Chloride	200	0.27 U	2.8 U	2.8 U	0.27 U
Bromomethane		0.82 U	8.4 U	8.4 U	0.78 U
Chloroethane	1,900	0.61 U	6.2 U	6.2 U	0.88 U
1,1-Dichloroethene	200	0.25 U	2.6 U	2.6 U	0.32 U
Acetone	200	8.7 U	420	360	3.3 U
Carbon Disulfide	2,700	0.12 U	1.2 U	1.2 U	0.39 U
Methylene Chloride	100	0.79 U	67	48 J	0.62 U
trans-1,2-Dichloroethene	300	0.43 U	4.4 U	4.4 U	0.51 U
1,1-Dichloroethane	200	0.41 U	4.2 U	4.2 U	0.22 U
2-Butanone	300	2.6 U	27 U	27 U	2.8 U
Carbon Tetrachloride	600	0.35 U	3.5 U	3.5 U	0.47 U
cis-1,2-Dichloroethene		0.41 U	4.2 U	4.2 U	0.77 U
Chloroform	300	0.28 U	2.8 U	2.8 U	0.58 U
1,1,1-Trichloroethane	800	0.32 U	3.2 U	3.2 U	0.41 U
Benzene	60	0.23 U	2.4 U	2.4 U	0.24 U
1,2-Dichloroethane	100	3.6 U	37 U	37 U	0.32 U
Trichloroethene	700	0.37 U	3.8 U	3.8 U	0.67 U
1,2-Dichloropropane		0.39 U	4.0 U	4.0 U	0.63 U
Bromodichloromethane		0.39 U	4.0 U	4.0 U	0.35 U
4-Methyl-2-Pentanone	1,000	2.8 U	29 U	29 U	1.3 U
Toluene	1,500	0.30 U	3.1 U	3.1 U	0.39 U
t-1,3-Dichloropropene		0.30 U	3.0 U	3.0 U	0.42 U
cis-1,3-Dichloropropene		0.23 U	2.3 U	2.3 U	0.15 U
1,1,2-Trichloroethane		0.59 U	6.0 U	6.0 U	0.52 U
2-Hexanone		3.7 U	38 U	38 U	0.66 U
Dibromochloromethane		0.34 U	3.5 U	3.5 U	0.38 U
Tetrachloroethene	1,400	0.74 U	7.6 U	7.6 U	0.33 U
Chlorobenzene	1,700	0.41 U	4.2 U	4.2 U	0.37 U
Ethyl Benzene	5,500	0.29 U	3.0 U	3.0 U	0.41 U
m/p-Xylenes	1,200	0.60 U	55 J	26 J	0.96 U
o-Xylene	1,200	0.50 U	5.1 U	5.1 U	0.37 U
Styrene		0.36 U	3.7 U	3.7 U	0.34 U
Bromoform		0.35 U	3.6 U	3.6 U	0.25 U
1,1,2,2-Tetrachloroethane	600	0.62 U	6.3 U	6.3 U	0.50 U
Tatal Carfidant Cana MOC		0	540	424	0
Total Confident Conc. VUC		0	542	434	U
I OTAL I IUS		18	16860	0	

Qualifiers & Notes:

The compound was not detected at the indicated concentration. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. U -J -

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

Value exceeds calibration range. E٠

D -Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA-not analyzed

Semivolatile Organics Sample ID		TP-1S-1	TP-1S-1RE	TP-5S-1	TP-6S-1	TP-6S-1DL	TP-8S-1	TP-8S-1RE	TP-9S-1	TP-9S-1RE	TP-16S-1
Laboratory Sample No.		S3970-01	S3970-01RE	S3970-02	S3970-03	S3970-03DL	S3970-04	S3970-04RE	S3970-05	S3970-05RE	S3970-06
Sampling Date	NVEDEC	08/02/04	08/02/04	08/02/04	08/02/04	08/02/04	08/03/04	08/03/04	08/03/04	08/03/04	08/03/04
Unite	Recommended Soil	1.0	1.0	1.0 ug/Kg	1.0	5.0 ug/Kg	1.0	1.0	1.0	1.0	1.0
onita	Cleanup Objective	ugnig	ug/kg	ug/tg	ug/itg	ug/ng	ug/itg	ug/itg	ug/itg	ug/itg	ugnig
COMPOUND	Concentration ¹										
bis(2-Chloroethyl)ether		21 U	21 U	20 U	36 U	180 UD	48 U	48 U	180 U	180 U	220 U
1,2-Dichlorobenzene	7,900	23 U	23 U	22 U	40 U	200 UD	53 U	53 U	190 U	190 U	240 U
1,3-Dichlorobenzene	1,600	16 U	16 U	15 U	27 U	140 UD	36 U	36 U	130 U	130 U	160 U
1,4-Dichlorobenzene	8,500	18 U	18 U	17 U	31 U	150 UD	40 U	40 U	150 U	150 U	180 U
2,2-oxybis(1-Chloropropane)		23 U	23 U	22 U	40 U	200 UD	53 U	53 U	190 U	190 U	240 U
N-Nitroso-di-n-propylamine		19 U	19 U	18 U	32 U	160 UD	43 U	43 U	160 U	160 U	200 U
Hexachloroethane		21 U	21 U	20 U	35 U	180 UD	46 U	46 U	170 U	170 U	210 U
Nitrobenzene	200	22 U	22 U	21 U	37 U	190 UD	49 U	49 U	180 U	180 U	220 U
Isophorone	4,400	16 U	16 U	15 U	27 U	140 UD	36 U	36 U	130 U	130 U	160 U
bis(2-Chloroethoxy)methane		20 U	20 U	19 U	33 U	170 UD	44 U	44 U	160 U	160 U	200 U
1,2,4-Trichlorobenzene	3,400	12 U	12 U	12 U	21 U	110 UD	28 U	28 U	100 U	100 U	130 U
Naphthalene	13,000	9.4 U	9.4 U	91 J	16 U	80 UD	320 J	340 J	78 U	78 U	96 U
4-Chloroaniline	220 or MDL	160 U	160 U	150 U	270 U	1400 UD	360 U	360 U	1300 U	1300 U	1600 U
Hexachlorobutadiene		15 U	15 U	14 U	26 U	130 UD	34 U	34 U	130 U	130 U	160 U
2-Methylnaphthalene	36,400	57 J	54 J	7.1 U	13 U	63 UD	130 J	130 J	62 U	62 U	76 U
Hexachlorocyclopentadiene		11 U	11 U	10 U	18 U	92 UD	24 U	24 U	90 U	90 U	110 U
2-Chloronaphthalene		9.0 U	9.0 U	8.6 U	15 U	76 UD	20 U	20 U	75 U	75 U	92 U
2-Nitroaniline	430 or MDL	16 U	16 U	15 U	27 U	130 UD	35 U	35 U	130 U	130 U	160 U
Dimethylphthalate	2,000	10 U	10 U	9.9 U	18 U	88 UD	23 U	23 U	85 U	85 U	110 U
Acenaphthylene	41,000	13 U	13 U	12 U	850	640 JD	300 J	350 J	110 U	110 U	130 U
2,6-Dinitrotoluene	1,000	18 U	18 U	18 U	31 U	160 UD	41 U	41 U	150 U	150 U	190 U
3-Nitroaniline	500 or MDL	70 U	70 U	67 U	120 U	590 UD	160 U	160 U	580 U	580 U	710 U
Acenaphthene	50,000**	9.5 U	9.5 U	9.1 U	16 U	81 UD	780 J	760 J	79 U	79 U	98 U
Dibenzofuran	6,200	14 U	14 U	59 J	24 U	120 UD	150 J	160 J	120 U	120 U	150 U
2,4-Dinitrotoluene		8.6 U	8.6 U	8.2 U	15 U	73 UD	19 U	19 U	71 U	71 U	88 U
Diethylphthalate	71,000	14 U	14 U	13 U	23 U	120 UD	31 U	31 U	110 U	110 U	140 U
4-Chlorophenyl-phenylether		11 U	11 U	10 U	18 U	91 UD	24 U	24 U	89 U	89 U	110 U
Fluorene	50,000**	49 J	48 J	68 J	190 J	100 UD	910 J	830 J	100 U	100 U	130 U
4-Nitroaniline		34 U	34 U	32 0	57 U	290 UD	76 U	76 U	280 U	280 U	350 U
N-Nitrosodiphenylamine		11 U	11 U	10 U	19 U	93 UD	25 U	25 U	91 U	91 U	110 U
4-Bromophenyl-phenylether		11 U	11 U	11 U	19 U	96 UD	26 U	26 U	94 U	94 U	120 U
Hexachlorobenzene	410	8.1 U	8.1 U	7.7 0	14 U	69 UD	18 U	18 U	67 U	67 U	83 U
Phenanthrene	50,000	240 J	230 J	1400	3300	2100 JD	4200 J	4300 J	80 0	80 U	1000 J
Carbozala	50,000	62 J	69 J	100 J	710 J	570 JD	670 J	920 J	85 U	85 U	450 J
Carbazole	8 100	9.5 0	9.5 0	100 J	16 U	40 UD	420 J	400 J	79 0	79 0	96 U
Eluoranthono	50,000**	250 1	250 1	2100	12000 E I	49 0D	4400 1	6100 L	48 0	40 U	2100 1
Pyrene	50,000**	200 J	230 J 320 J	2100	7700 EJ	4300 D	4400 J 6300	5600	64 11	360 1	2400 1
Butylbenzylphthalate	50,000**	14 11	14 11	14 11	25 11	120 UD	33 11	33 11	120 11	120 11	150 11
3 3-Dichlorobenzidine	00,000	69.11	69.11	66 11	120 11	590 UD	160 U	160 U	570 11	570 11	710 11
Benzo(a)anthracene	224 or MDI	130 .1	130 .1	630	3800	3100 JD	1400	1400	54 11	54 11	1800 .1
Chrysene	400	150 J	160 J	1100	4000	3300 JD	2600	2700	110 U	110 U	2400 .1
bis(2-Ethylhexyl)phthalate	50.000**	9.9 U	9.9 U	9.5 U	17 U	84 UD	22 U	22 U	82 U	82 U	100 U
Di-n-octyl phthalate	50.000**	10 U	10 U	9.9 U	18 U	88 UD	23 U	23 U	85 U	85 U	110 U
Benzo(b)fluoranthene	1,100	85 J	77 J	720	3700	2300 JD	1800	1400	190 U	190 U	2200 J
Benzo(k)fluoranthene	1,100	55 J	65 J	290 J	1400	990 JD	1700	1500	120 U	120 U	1000 J
Benzo(a)pyrene	61 or MDL	96 J	98 J	530	2500	1900 JD	1400	1400	62 U	62 U	1700 J
Indeno(1,2,3-cd)pyrene	3,200	73 J	50 J	460	530 J	1100 JD	23 U	130 J	87 U	87 U	1000 J
Dibenz(a,h)anthracene	14 or MDL	13 U	13 U	12 U	95 J	110 UD	28 U	28 U	100 U	100 U	130 U
Benzo(g,h,i)perylene	50,000**	48 J	19 U	340 J	500 J	760 JD	42 U	120 J	160 U	160 U	810 J
Total Confident Conc. SVOC		1585	1551	10388	21575	26460	27480	28600	0	360	16860
Total TICs		2670	0	2770	12300	0	69100	0	39100	0	100000

Qualifiers & Notes:

 $\frac{U}{J} - \frac{U}{D}$ The compound was not detected at the indicated concentration. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value.
B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample. P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%. Value exceeds calibration range. Ε-Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference. <u>D</u>-NA-not analyzed MDL - Method Detection Limit
** - As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm.
1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Sol.

Semivolatile Organics		TD 405 4	TD 405 4DE	TD 205 4	TD 225 4	TD 226 4DE	TD 246.4	TD 246 4DE	TD 2005 4	TD 205 4	TD 245.4	TD 250 4
Sample ID Laboratory Sample No		1P-195-1 \$3970-07	1P-195-1RE \$3970-07RE	1P-205-1 \$3970-08	1P-235-1 \$3970-09	1P-235-1RE \$3970-09RE	1P-245-1 \$3970-10	1P-245-1RE \$3970-10RE	1P-285-1 \$4063-01	1P-305-1 \$4063-02	1P-345-1 \$4063-03	1P-355-1 \$4063-04
Sampling Date		08/04/04	08/04/04	08/04/04	08/04/04	08/04/04	08/04/04	08/04/04	08/08/04	08/08/04	08/08/04	08/08/04
Dilution Factor	NYSDEC	10.0	10.0	1.0	1.0	1.0	1.0	1.0	1.0	5.0	1.0	1.0
Units	Recommended Soil	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
COMPOUND	Cleanup Objective											
bis(2-Chloroethyl)ether	Concontration	1900 []	1900 []	43 []	44 11	44	23 []	23 []	39.11	960 11	38 []	20.11
1.2-Dichlorobenzene	7.900	2100 U	2100 U	48 U	49 U	49 U	26 U	26 U	43 U	1100 U	42 U	20 U
1 3-Dichlorobenzene	1 600	1500 U	1500 LL	32 11	33 []	33 11	17 11	17	29.11	720 U	29.11	15 U
1.4-Dichlorobenzene	8.500	1600 U	1600 U	36 U	38 U	38 U	20 U	20 U	33 U	810 U	32 U	17 U
2.2-oxybis(1-Chloropropane)	0,000	2100 U	2100 U	47 U	49 U	49 U	26 U	26 U	43 U	1100 U	42 U	22 U
N-Nitroso-di-n-propylamine		1700 U	1700 U	39 U	40 U	40 U	21 U	21 U	35 U	860 U	34 U	18 U
Hexachloroethane		1900 U	1900 U	42 U	43 U	43 U	23 U	23 U	38 U	930 U	37 U	19 U
Nitrobenzene	200	2000 U	2000 U	44 U	46 U	46 U	24 U	24 U	40 U	990 U	39 U	21 U
Isophorone	4.400	1500 U	1500 U	32 U	34 U	34 U	18 U	18 U	29 U	720 U	29 U	15 U
bis(2-Chloroethoxy)methane	1.11	1800 U	1800 U	40 U	41 U	41 U	22 U	22 U	36 U	890 U	35 U	18 U
1.2.4-Trichlorobenzene	3.400	1100 U	1100 U	25 U	26 U	26 U	14 U	14 U	23 U	560 U	22 U	12 U
Naphthalene	13.000	860 U	860 U	19 U	20 U	20 U	10 U	10 U	150 J	420 U	240 J	8.8 U
4-Chloroaniline	220 or MDL	15000 U	15000 U	320 U	330 U	330 U	180 U	180 U	290 U	7200 U	290 U	150 U
Hexachlorobutadiene		1400 U	1400 U	31 U	32 U	32 U	17 U	17 U	28 U	680 U	27 U	14 U
2-Methylnaphthalene	36,400	680 U	680 U	15 U	16 U	16 U	8.2 U	8.2 U	14 U	7500 J	110 J	7.0 U
Hexachlorocyclopentadiene		990 U	990 U	22 U	23 U	23 U	12 U	12 U	20 U	490 U	19 U	10 U
2-Chloronaphthalene		820 U	820 U	18 U	19 U	19 U	9.9 U	9.9 U	16 U	410 U	16 U	8.4 U
2-Nitroaniline	430 or MDL	1400 U	1400 U	32 U	33 U	33 U	17 U	17 U	29 U	710 U	28 U	15 U
Dimethylphthalate	2,000	940 U	940 U	21 U	22 U	22 U	11 U	11 U	19 U	460 U	19 U	9.7 U
Acenaphthylene	41,000	1200 U	1200 U	26 U	27 U	27 U	14 U	14 U	280 J	580 U	210 J	12 U
2,6-Dinitrotoluene	1,000	1700 U	1700 U	37 U	38 U	38 U	20 U	20 U	34 U	830 U	33 U	17 U
3-Nitroaniline	500 or MDL	6400 U	6400 U	140 U	150 U	150 U	77 U	77 U	130 U	3100 U	130 U	65 U
Acenaphthene	50,000**	870 U	870 U	19 U	20 U	20 U	10 U	10 U	170 J	430 U	140 J	8.9 U
Dibenzofuran	6,200	1300 U	1300 U	29 U	30 U	30 U	16 U	16 U	140 J	640 U	26 U	13 U
2,4-Dinitrotoluene		790 U	790 U	17 U	18 U	18 U	9.5 U	9.5 U	16 U	390 U	15 U	8.1 U
Diethylphthalate	71,000	1200 U	1200 U	27 U	28 U	28 U	15 U	15 U	25 U	610 U	24 U	13 U
4-Chlorophenyl-phenylether		980 U	980 U	22 U	22 U	22 U	12 U	12 U	20 U	480 U	19 U	10 U
Fluorene	50,000**	1100 U	1100 U	25 U	26 U	26 U	13 U	13 U	160 J	550 U	260 J	11 U
4-Nitroaniline		3100 U	3100 U	68 U	71 U	71 U	37 U	37 U	62 U	1500 U	61 U	32 U
N-Nitrosodiphenylamine		1000 U	1000 U	22 U	23 U	23 U	12 U	12 U	20 U	490 U	20 U	10 U
4-Bromophenyl-phenylether		1000 U	1000 U	23 U	24 U	24 U	12 U	12 U	21 U	510 U	20 U	11 U
Hexachlorobenzene	410	740 U	740 U	16 U	17 U	17 U	8.9 U	8.9 U	15 U	360 U	15 U	7.6 U
Phenanthrene	50,000**	880 U	880 U	450 J	340 J	320 J	11 U	11 U	2700	5100 J	740 J	9.1 U
Anthracene	50,000**	940 U	940 U	95 J	22 U	91 J	11 U	11 U	590 J	460 U	290 J	9.7 U
Carbazole		870 U	870 U	19 U	20 U	20 U	10 U	10 U	410 J	430 U	17 U	8.9 U
Di-n-butylphthalate	8,100	520 U	520 U	12 U	12 0	12 U	6.3 U	6.3 U	10 0	260 U	10 0	5.4 U
Puropo	50,000**	550 U	550 U	510 J	510 J	530 J	6.6 U	6.6 U	4900	270 U	2900	5.6 U
Pyrene Butudh annu dhabth alata	50,000	1200 U	700 0	050 J	030 J	650 J	8.5 U	6.5 U	4900	350 0	3100	61 J
Butylbenzylphtnalate	50,000	1300 0	1300 0	29 0	30 0	30 0	76 U	76 U	20 U	650 U	26 0	14 0
3,3-Dichlorobenzialne	224 or MDI	6300 U	6300 U	200	220	220 1	76 0	70 0	2100	3100 0	1100	61 11
Chrysono	224 01 MDL	1200 11	1200 11	290 J	420 J	320 J	1.2 0	1.2 0	3100	2300 J	1100	12 11
bic/2 Ethylhoxyl)phthalato	400	1200 0	1200 0	300 J	430 J	410 J	15 U	15 U	2600	3800 J	120	76 1
Dis(2-Ethymexy)philialate	50,000	900 0	900 0	20 0	21.0	210	11 U	11 U	140 J	450 0	10 1	0711
Benzo(b)fluoranthene	1 100	2100 11	2100 11	260 1	450 1	480 1	25 11	25 11	2600	1000 U	1000	22 11
Benzo(k)fluoranthene	1,100	1300 U	1300 U	110	210 .1	210 .1	16 U	16 11	1300	670 11	370 -1	14 11
Benzo(a)pyrene	61 or MDI	680 11	680 11	220 1	330 .1	350 .1	8,2 11	8,2 11	2100	340 11	580 1	7.0 11
Indeno(1,2,3-cd)pyrene	3,200	950 U	950 U	21 U	120 J	22 U	11 U	11 U	1200	470 U	310 J	9.8 U
Dibenz(a,h)anthracene	14 or MDL	1200 U	1200 U	26 U	26 U	26 U	14 U	14 U	180 J	570 U	23 U	12 U
Benzo(g,h,i)perylene	50,000**	1700 U	1700 U	38 U	110 J	100 J	21 U	21 U	1100	850 U	280 J	18 U
											10000	
Total Confident Conc. SVOC		0	0	2945	3460	3461	0	0	28720	18900	12860	137
TOTAL LICS		7900	0	4900	39400	0	590	0	/580	260000	7590	9130

Qualifiers & Notes: $\frac{U}{J} - \frac{U}{D}$ The compound was not detected at the indicated concentration. Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample.

P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%. Е-Value exceeds calibration range. Compound identified in analysis at a secondary dilution factor. For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference. <u>D</u> -FOT QUAL (UNITY analyzed
MDL - Method Detection Limit
 As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm.
 Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Semivolatile Organics Sample ID		TP-37S-1	TP-38S-1	TP-39S-1	TP-41S-1	TP-42S-1	AT-7S-1	B-7(14-16)	B-7(14-16)DL
Laboratory Sample No.		S4063-05	S4063-06	S4063-07	S4063-08	S4063-09	S3897-01	S4313-01	S4313-01RE
Sampling Date		08/06/04	08/06/04	08/06/04	08/06/04	08/06/04	07/29/04	08/18/04	08/18/04
Dilution Factor	NYSDEC Recommonded Soil	1.0	1.0	1.0	1.0	1.0	1.0	2.0	10.0
Units	Cleanup Objective	ug/Kg	ug/Kg						
COMPOUND	Concentration ¹								
bis(2-Chloroethyl)ether		20 U	42 U	19 U	21 U	40 U	190 U	77 U	390 UD
1,2-Dichlorobenzene	7,900	22 U	46 U	21 U	23 U	44 U	210 U	85 U	430 UD
1,3-Dichlorobenzene	1,600	15 U	31 U	14 U	16 U	30 U	140 U	58 U	290 UD
1,4-Dichlorobenzene	8,500	17 U	35 U	16 U	18 U	34 U	160 U	65 U	330 UD
2,2-oxybis(1-Chloropropane)		22 U	46 U	21 U	23 U	44 U	210 U	85 U	420 UD
N-Nitroso-di-n-propylamine		18 U	37 U	17 U	19 U	36 U	170 U	69 U	340 UD
Hexachloroethane		19 U	40 U	18 U	20 U	39 U	180 U	75 U	370 UD
Nitrobenzene	200	20 U	43 U	19 U	22 U	41 U	190 U	79 U	400 UD
Isophorone	4,400	15 U	32 U	14 U	16 U	30 U	140 U	58 U	290 UD
bis(2-Chloroethoxy)methane		18 U	39 U	17 U	19 U	37 U	180 U	71 U	360 UD
1,2,4-Trichlorobenzene	3,400	12 U	24 U	11 U	12 U	23 U	110 U	45 U	220 UD
Naphthalene	13,000	8.7 U	110 J	8.3 U	9.2 U	18 U	84 U	490 J	170 UD
4-Chloroaniline	220 or MDL	150 U	310 U	140 U	160 U	300 U	1400 U	580 U	2900 UD
Hexachlorobutadiene		14 U	30 U	13 U	15 U	28 U	130 U	55 U	270 UD
2-Methylnaphthalene	36,400	6.9 U	190 J	6.6 U	7.3 U	14 U	66 U	300 J	130 UD
Hexachlorocyclopentadiene		10 U	21 U	9.6 U	11 U	20 U	96 U	39 U	200 UD
2-Chloronaphthalene		8.4 U	18 U	8.0 U	8.8 U	17 U	80 U	33 U	160 UD
2-Nitroaniline	430 or MDL	15 U	31 U	14 U	15 U	29 U	140 U	57 U	280 UD
Dimethylphthalate	2,000	9.6 U	20 U	9.1 U	10 U	19 U	92 U	37 U	190 UD
Acenaphthylene	41,000	12 U	25 U	11 U	13 U	24 U	110 U	47 0	230 UD
2,6-Dinitrotoluene	1,000	17 U	36 U	16 U	18 U	34 U	160 U	67 U	330 UD
3-Nitroaniline	500 OF MDL	65 U	140 U	62 U	68 U	130 0	620 0	250 0	1300 UD
Dihensefuren	50,000	0.0 U	19 U	6.4 U	9.3 U	18 U	85 U	1400 J	1500 JD
2 4-Dinitrotoluene	0,200	8011	17 11	76 11	8511	16 U	77 11	31 U	160 UD
Diethylphthalate	71.000	13 11	27 11	12 11	13 11	25 11	120 11	49.11	250 LID
4-Chlorophenyl-phenylether	11,000	9.9 U	21 U	9.5 U	10 U	20 U	95 U	39 U	190 UD
Fluorene	50.000**	11 U	24 U	11 U	12 U	23 U	110 U	1600	1800 JD
4-Nitroaniline		31 U	66 U	30 U	33 U	63 U	300 U	120 U	610 UD
N-Nitrosodiphenvlamine		10 U	22 U	9.7 U	11 U	21 U	97 U	40 U	200 UD
4-Bromophenyl-phenylether		11 U	22 U	10 U	11 U	21 U	100 U	41 U	210 UD
Hexachlorobenzene	410	7.5 U	16 U	7.2 U	7.9 U	15 U	72 U	29 U	150 UD
Phenanthrene	50,000**	9.0 U	180 J	8.6 U	9.5 U	410 J	86 U	8900	10000 D
Anthracene	50,000**	9.6 U	20 U	9.1 U	10 U	120 J	92 U	3200	3300 JD
Carbazole		8.8 U	19 U	8.4 U	9.3 U	18 U	85 U	550 J	170 UD
Di-n-butylphthalate	8,100	5.3 U	11 U	5.1 U	5.6 U	11 U	51 U	21 U	100 UD
Fluoranthene	50,000**	5.6 U	12 U	5.3 U	5.9 U	500 J	420 J	11000	18000 D
Pyrene	50,000**	7.1 U	15 U	6.8 U	7.6 U	500 J	670 J	16000 E	18000 D
Butylbenzylphthalate	50,000**	13 U	28 U	13 U	14 U	27 U	130 U	52 U	260 UD
3,3-Dichlorobenzidine		64 U	140 U	61 U	68 U	130 U	620 U	260 J	1300 UD
Benzo(a)anthracene	224 or MDL	6.1 U	13 U	5.8 U	6.4 U	240 J	58 U	11000	14000 D
Chrysene	400	13 U	120 J	12 U	13 U	270 J	120 U	11000	13000 D
bis(2-Ethylhexyl)phthalate	50,000**	44 J	19 U	52 J	74 J	19 U	88 U	280 J	180 UD
Di-n-octyl phthalate	50,000**	9.6 U	20 U	9.1 U	10 U	19 U	92 U	37 U	190 UD
Benzo(b)fluorantnene	1,100	21 U	45 U	20 0	23 U	200 J	200 U	19000 E	18000 D
Benzo(a)pyropo	1,100	14 U	29 U	13 U	14 U	100 J	130 U	12000	7500 JD
Indeno(1 2 3-cd)pyrene	3 200	0.9 0	15 U	0.0 U	7.3 U	170 J	05 U	12000	2200 D
Dibenz(a b)anthracene	14 or MDI	12 11	25 11	9.3 0	12 11	24 11	110 11	420 .1	2200 JD
Benzo(g.h.i)pervlene	50.000**	17 11	37 11	17 11	12 0	35 11	170 11	3200	3300 JD
					.50				
Total Confident Conc. SVOC		44	600	52	74	2600	1090	109500	122600
Total TICs		6660	16200	4970	4450	2050	5410	53600	0

Qualifiers & Notes:

The compound was not detected at the indicated concentration.
 J - Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation
 limit, but greater than zero. The concentration given is an approximate value.
 The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of
 the environmental sample.
 P - For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater
 than 40%.
 Compound identified in analysis at a secondary dilution factor.
 · For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
 NA-not analyzed
 MDL - Method Detection Limit
 · As per TAGM #4046, Total VOCs<500ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm.
 Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Sol.

PCBs and Metals Sample ID Laboratory Sample No. Sampling Date Dilution Factor Units COMPOUND	NYSDEC Recommended Soil Cleanup Objective Concentration ¹	TP-1S-1 S3970-01 08/02/04 1.0 ug/Kg	TP-5S-1 S3970-02 08/02/04 1.0 ug/Kg	TP-6S-1 S3970-03 08/02/04 1.0 ug/Kg	TP-8S-1 S3970-04 08/03/04 1.0 ug/Kg	TP-8S-1DL S3970-04DL 08/03/04 100.0 ug/Kg	TP-9S-1 S3970-05 08/03/04 1.0 ug/Kg	TP-9S-1DL S3970-05DL 08/03/04 10.0 ug/Kg	TP-16S-1 S3970-06 08/03/04 1.0 ug/Kg	TP-16S-1DL S3970-06DL 08/03/04 100.0 ug/Kg	TP-19S-1 S3970-07 08/04/04 1.0 ug/Kg
Aroclor-1016	10,000	6.8 U	6.5 U	5.8 U	7.6 U	760 UD	5.6 U	56 UD	7.0 U	700 UD	6.2 U.
Aroclor-1221	10,000	4.6 U	4.4 U	3.9 U	5.2 U	520 UD	3.8 U	38 UD	4.7 U	470 UD	4.2 U.
Aroclor-1232	10,000	3.1 U	3.0 U	2.7 U	3.5 U	350 UD	2.6 U	26 UD	3.2 U	320 UD	2.8 U.
Aroclor-1242	10,000	4.0 U	3.9 U	3.4 U	4.5 U	450 UD	3.3 U	33 UD	4.1 U	410 UD	3.7 U.
Aroclor-1248	10,000	4.8 U	4.6 U	4.1 U	5.4 U	540 UD	3.9 U	39 UD	4.9 U	490 UD	4.3 U.
Aroclor-1254	10,000	1.8 U	1.7 U	1.5 U	11000 EP.	6000 DPJ	1000 EJ	390 DPJ	5700 EP	2400 DPJ	1.6 U.
Aroclor-1260	10,000	3.8 U	3.7 U	60	4.3 U	430 UD	3.2 U	32 UD	3.9 U	390 UD	3.5 U.
Units COMPOUND		mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Mercury	0.1	0.17 J	0.36 <mark>J</mark>	0.23 J	0.09 J	NA	0.01 J	NA	0.06 J	NA	0.22 J
Arsenic	7.5 or SB/(5.89)	6.810	7.500	10.7	35.5	NA	1.090 J	NA	15.5	NA	8.630
Barium	300 or SB/(52.5)	77.5	103	81.2	778	NA	10.1 J	NA	48.1	NA	325
Cadmium	1 or SB/(1.93)	3.090	2.330	4.350	21.7	NA	0.358 J	NA	3.880	NA	3.280
Chromium	10 or SB/(15.8)	14.4	9.830	33.7	1730	NA	4.170	NA	33.8	NA	54.3
Lead	SB/(87.9)	155	229	445	17200 D	NA	21.3	NA	104	NA	303
Selenium	2 or SB/(1.25)	1.220 J	0.857 J	1.310	9.180	NA	0.341 U	NA	2.480	NA	0.711 J
Silver	SB/(0.117)	0.385 <mark>J</mark>	0.133 U	0.640 <mark>J</mark>	40.6	NA	0.115 U	NA	1.090 J	NA	0.126 U

Qualifiers & Notes:

U - The compound was not detected at the indicated concentration.

J-Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of the environmental sample

P For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40%.

E٠

Value exceeds calibration range. Compound identified in analysis at a secondary dilution factor. D٠ For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference

NA-not analyzed MDL - Method Detection Limit

PCBs and Metals												
Sample ID		TP-20S-1	TP-23S-1	TP-24S-1	TP-28S-1	TP-30S-1	TP-34S-1	TP-35S-1	TP-37S-1	TP-38S-1	TP-39S-1	TP-41S-1
Laboratory Sample No.		S3970-08	S3970-09	S3970-10	S4063-01	S4063-02	S4063-03	S4063-04	S4063-05	S4063-06	S4063-07	S4063-08
Sampling Date	NYSDEC	08/04/04	08/04/04	08/04/04	08/08/04	08/08/04	08/08/04	08/08/04	08/06/04	08/06/04	08/06/04	08/06/04
Dilution Factor	Recommended Soil	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	Cleanup Objective	ug/Kg										
COMPOUND	Concentration ¹											
Aroclor-1016	10,000	6.8 U	7.1 U	7.4 U	6.2 U	6.1 UJ	6.0 UJ	6.4 UJ	6.3 UJ	6.7 UJ	6.0 UJ	6.5 UJ
Aroclor-1221	10,000	4.7 U	4.8 U	5.1 U	4.2 U	4.2 UJ	4.1 UJ	4.4 UJ	4.3 UJ	4.5 UJ	4.1 UJ	4.5 UJ
Aroclor-1232	10,000	3.2 U	3.3 U	3.4 U	2.9 U	2.8 UJ	2.8 UJ	3.0 UJ	2.9 UJ	3.1 UJ	2.8 UJ	3.0 UJ
Aroclor-1242	10,000	4.1 U	4.2 U	4.4 U	3.7 U	3.6 UJ	3.6 UJ	3.8 UJ	3.7 UJ	4.0 UJ	3.6 UJ	3.9 UJ
Aroclor-1248	10,000	4.8 U	5.0 U	5.2 U	4.4 U	4.3 UJ	4.2 UJ	4.5 UJ	4.4 UJ	4.7 UJ	4.2 UJ	4.6 UJ
Aroclor-1254	10,000	1.8 U	97 PJ	1.9 U	1.6 U	1.6 UJ	1.6 UJ	1.7 UJ	1.6 UJ	1.7 UJ	1.6 UJ	1.7 UJ
Aroclor-1260	10,000	3.9 U	4.0 U	4.2 U	180 PJ	3.5 UJ	3.4 UJ	3.6 UJ	3.5 UJ	3.8 UJ	3.4 UJ	3.7 UJ
Units COMPOUND				mg/Kg								
Mercury	0.1	0.45 J	0.01 U	0.03 J	0.01	1.4	0.17	0.03	0.06	0.05	0.03	0.04
Arsenic	7.5 or SB/(5.89)	14.9	12.2	5.800	6.020	16.6	5.550	7.670	6.430	6.790	6.350	8.700
Barium	300 or SB/(52.5)	66.3	328	70.9	177	1900	147	33.8	52.7	59.2	50.5	45.7
Cadmium	1 or SB/(1.93)	13.5	3.020	2.330	0.684	7.220	1.760	1.260	0.652	1.030	0.733	1.370
Chromium	10 or SB/(15.8)	55.5	19.8	16.8	13.6	85.0	89.5	36.2	14.0	17.1	13.0	18.3
Lead	SB/(87.9)	199	137	16.4	244	2930	518	31.1	17.5	55.4	43.1	23.7
Selenium	2 or SB/(1.25)	3.450	2.040	0.916 J	1.920	2.250	1.240	1.690	1.010 J	0.564 J	0.831 J	2.070
Silver	SB/(0.117)	1.130 J	0.144 U	0.206 J	0.124 U	0.124 U	0.123 U	0.130 U	0.128 U	0.137 U	0.122 U	0.134 U

Qualifiers & Notes: U - The compound was not detected at the indicated concentration.

J-Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of

the environmental sample For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40%.

Value exceeds calibration range. Compound identified in analysis at a secondary dilution factor. Ε-D٠

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

Ρ-

Volatile Organics											
Sample ID		MW-1	CHA-1	CHA-2	CHA-2	CHA-3	CHA-4	CHA-5	CHA-6	CHA-10	TRIPBLANK
		S4507-01	S4507-02	S4507-03	S5229-01	S4507-04	S4507-07	S4507-08	S4507-09	S4507-10	S4507-11
Sampling Date	TOGS 1.1.1	09/01/04	09/01/04	09/01/04	10/15/2004	09/01/04	09/01/04	09/01/04	09/01/04	09/01/04	09/01/04
Dilution Factor	Standard or	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	Guidance	ug/L	ua/L	ug/L	ua/L	ua/L	ua/L	ug/L	ua/L	ua/L	ua/L
COMPOUND	Value ¹										
Chloromethane		0.68 U	0.68 U	0.68 U	NA	0.68 U					
Vinyl Chloride	2	0.27 U	0.27 U	0.27 U	NA	0.27 U					
Bromomethane	5	0.78 U	0.78 U	0.78 U	NA	0.78 U					
Chloroethane	5	0.88 U	0.88 U	0.88 U	NA	0.88 U					
1,1-Dichloroethene	5	0.32 U	0.32 U	0.32 U	NA	0.32 U					
Acetone	50 ²	3.3 U	3.3 U	3.3 U	NA	3.3 U					
Carbon Disulfide		0.39 U	0.39 U	0.39 U	NA	0.39 U					
Methylene Chloride	5	0.62 U	0.62 U	0.62 U	NA	0.62 U					
trans-1,2-Dichloroethene	5	0.51 U	0.51 U	0.51 U	NA	0.51 U					
1,1-Dichloroethane	5	0.22 U	0.22 U	0.22 U	NA	0.22 U					
2-Butanone		2.8 U	2.8 U	2.8 U	NA	2.8 U					
Carbon Tetrachloride	5	0.47 U	0.47 U	0.47 U	NA	0.47 U					
cis-1,2-Dichloroethene	5	0.77 U	0.77 U	0.77 U	NA	0.77 U	49	0.77 U	0.77 U	0.77 U	0.77 U
Chloroform	7	0.58 U	0.58 U	0.58 U	NA	0.58 U					
1,1,1-Trichloroethane	5	0.41 U	0.41 U	0.41 U	NA	0.41 U					
Benzene	0.7	0.24 U	0.24 U	0.24 U	NA	0.24 U					
1,2-Dichloroethane	0.6	0.32 U	0.32 U	0.32 U	NA	0.32 U					
Trichloroethene	5	0.67 U	5.0	0.67 U	NA	0.67 U					
1,2-Dichloropropane	1	0.63 U	0.63 U	0.63 U	NA	0.63 U					
Bromodichloromethane	50 ²	0.35 U	0.35 U	0.35 U	NA	0.35 U					
4-Methyl-2-Pentanone		1.3 U	1.3 U	1.3 U	NA	1.3 U					
Toluene	5	0.39 U	0.39 U	0.39 U	NA	0.39 U					
t-1,3-Dichloropropene	0.4	0.42 U	0.42 U	0.42 U	NA	0.42 U					
cis-1,3-Dichloropropene	0.4	0.15 U	0.15 U	0.15 U	NA	0.15 U					
1,1,2-Trichloroethane	1	0.52 U	0.52 U	0.52 U	NA	0.52 U					
2-Hexanone	50 ²	0.66 U	0.66 U	0.66 U	NA	0.66 U					
Dibromochloromethane	50²	0.38 U	0.38 U	0.38 U	NA	0.38 U					
Tetrachloroethene	5	0.33 U	0.33 U	0.33 U	NA	0.33 U					
Chlorobenzene	5	0.37 U	0.37 U	0.37 U	NA	0.37 U					
Ethyl Benzene	5	0.41 U	0.41 U	0.41 U	NA	0.41 U					
m/p-Xylenes	5	0.96 U	0.96 U	0.96 U	NA	0.96 U					
o-Xylene	5	0.37 U	0.37 U	0.37 U	NA	0.37 U					
Styrene	5	0.34 U	0.34 U	0.34 U	NA	0.34 U					
Bromoform	50-	0.25 U	0.25 U	0.25 U	NA	0.25 U					
1,1,2,2-Tetrachloroethane	5	0.50 U	0.50 U	0.50 U	NA	0.50 U					
Total Confident Conc. VOC		0	5	0		0	49	0	0	0	0
Total TICs		0	0	19		0	0	0	0	0	0

Qualifiers & Notes:

U -The compound was not detected at the indicated concentration.

J -Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation

limit, but greater than zero. The concentration given is an approximate value.

В The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of

the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40% * -

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA-not analyzed

1. Shaded values exceed TOGS 1.1.1 Standard or Guidance Value for Class GA Groundwater.
 2. Indicates value is a guidance value rather than a standard.

Semivolatile Organics Sample ID Laboratory Sample No.	T000444	MW-1 S4507-01	CHA-1 S4507-02	CHA-2 S4507-03	CHA-2 S5229-01	CHA-3 S4507-04	CHA-4 S4507-07	CHA-5 S4507-08	CHA-6 S4507-09	CHA-10 S4507-10
Sampling Date	TOGS 1.1.1 Standard or	09/01/04	09/01/04	09/01/04	10/15/2004	09/01/04	09/01/04	09/01/04	09/01/04	09/01/04
Unite	Guidance	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
COMPOUND	Value ¹	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
his(2-Chloroethyl)ether	1	0 330 11	0 330 11	0 330 11	NA	0 330 11	0 330 11	0 330 11	0 330 11	0 330 11
1.2-Dichlorobenzene	3	0.590 U	0.590 U	0.590 U	NA	0.590 U				
1.3-Dichlorobenzene	3	1.0 U	1.0 U	1.0 U	NA	1.0 U				
1,4-Dichlorobenzene	3	0.670 U	0.680 U	0.680 U	NA	0.670 U	0.670 U	0.680 U	0.670 U	0.670 U
2,2-oxybis(1-Chloropropane)		0.830 U	0.840 U	0.840 U	NA	0.830 U	0.830 U	0.840 U	0.830 U	0.830 U
N-Nitroso-di-n-propylamine		0.770 U	0.770 U	0.770 U	NA	0.770 U				
Hexachloroethane	5	0.910 U	0.920 U	0.920 U	NA	0.910 U	0.910 U	0.920 U	0.910 U	0.910 U
Nitrobenzene	0.4	0.380 U	0.380 U	0.380 U	NA	0.380 U				
Isophorone	50 ²	0.480 U	0.480 U	0.480 U	NA	0.480 U				
bis(2-Chloroethoxy)methane	5	0.440 U	0.450 U	0.450 U	NA	0.440 U	0.440 U	0.450 U	0.440 U	0.440 U
1,2,4-Trichlorobenzene	5	0.410 U	0.410 U	0.410 U	NA	0.410 U				
Naphthalene	10	0.270 U	0.270 U	1.5 J	NA	0.270 U				
4-Chloroaniline	5	4.1 U	4.1 U	4.1 U	NA	4.1 U				
Hexachiorobutadiene	0.5 50 ²	0.380 U	0.380 U	0.380 U	NA	0.380 U				
z-metnyinaphthalene	50	0.500 0	0.500 U	0.500 U	NA NA	0.500 0	0.500 U	0.500 U	0.500 0	0.500 U
2-Chloronanhthalene	10 ²	0.450 0	0.400 0	0.400 0	NA	0.450 0	0.450 0	0.400 0	0.450 0	0.430 0
2-Nitroaniline	5	0.300 U	0.300 U	0.300 U	NA	0.300 U				
Dimethylphthalate	50 ²	0.260 U	0.260 U	0.260 U	NA	0.260 U				
Acenaphthylene	20	0.430 U	0.440 U	0.440 U	NA	0.430 U	0.430 U	0.440 U	0.430 U	0.430 U
2.6-Dinitrotoluene	5	0.410 U	0.420 U	0.420 U	NA	0.410 U	0.410 U	0.420 U	0.410 U	0.410 U
3-Nitroaniline	5	1.0 U	1.1 U	1.1 U	NA	1.0 U	1.0 U	1.1 U	1.0 U	1.0 U
Acenaphthene	20 ²	0.240 U	0.240 U	0.240 U	NA	0.240 U	0.240 U	0.240 U	2.6 J	0.240 U
Dibenzofuran		0.310 U	0.320 U	0.320 U	NA	0.310 U	0.310 U	0.320 U	0.310 U	0.310 U
2,4-Dinitrotoluene	5	0.340 U	0.340 U	0.340 U	NA	0.340 U				
Diethylphthalate	50 ²	0.340 U	0.340 U	0.340 U	NA	0.340 U				
4-Chlorophenyl-phenylether		0.360 U	0.370 U	0.370 U	NA	0.360 U	0.360 U	0.370 U	0.360 U	0.360 U
Fluorene	50²	0.170 U	0.170 U	0.170 U	NA	0.170 U	0.170 U	0.170 U	2.2 J	0.170 U
4-Nitroaniline	5	0.830 U	0.840 U	0.840 U	NA	0.830 U	0.830 U	0.840 U	0.830 U	0.830 U
N-Nitrosodiphenylamine	50	0.280 U	0.280 U	0.280 U	NA	0.280 U				
4-Bromophenyi-phenyiether	0.04	0.170 0	0.170 U	0.170 U	NA NA	0.170 0	0.170 0	0.170 0	0.170 0	0.170 U
Phenanthrene	50 ²	0.230 0	0.230 0	0.230 0	NA	0.230 0	0.230 0	0.230 0	0.230 0	0.230 0
Anthracene	50 ²	0.270 U	0.200 U	0.200 U	NA	0.160 U	0.160 U	0.160 U	0 160 U	0.160 U
Carbazole		0.310 U	0.310 U	0.310 U	NA	0.310 U				
Di-n-butylphthalate	50 ²	0.098 U	0.099 U	0.099 U	NA	3.9 J	0.098 U	0.099 U	0.098 U	0.098 U
Fluoranthene	50 ²	0.210 U	0.210 U	0.210 U	NA	0.210 U				
Pyrene	50 ²	0.250 U	0.250 U	0.250 U	NA	0.250 U				
Butylbenzylphthalate	50 ²	0.300 U	0.300 U	0.300 U	NA	0.300 U				
3,3-Dichlorobenzidine	5	1.6 U	1.6 U	1.6 U	NA	1.6 U				
Benzo(a)anthracene	0.0022	0.220 U	0.230 U	0.230 U	NA	0.220 U	0.220 U	0.230 U	0.220 U	0.220 U
Chrysene	0.002-	0.380 U	0.390 U	0.390 U	NA	0.380 U	0.380 U	0.390 U	0.380 U	0.380 U
bis(2-Ethylhexyl)phthalate	5 50 ²	0.340 U	0.350 U	1.7 J	NA	0.340 U	0.340 U	1.2 J	1.8 J	0.340 U
Di-n-octyl phthalate	50 0.002 ²	0.170 U	0.170 U	0.170 U	NA	0.170 U				
Benzo(k)fluoranthene	0.002°	0.230 U	0.230 U	0.230 U	NA NA	0.230 U				
Benzo(a)pyrene	ND	0.350 0	0.450 U	0.350 0	NA	0.350 U	0.300 0	0.450 11	0.350 0	0.350 0
Indeno(1.2.3-cd)pyrene	0.0022	0.290 11	0.290 11	0.290 11	NA	0.290 11	0.290 11	0.290 11	0.290 11	0.290 U
Dibenz(a,h)anthracene	50	0.290 U	0.290 U	0.290 U	NA	0.290 U				
Benzo(g,h,i)perylene		0.420 U	0.430 U	0.430 U	NA	0.420 U	0.420 U	0.430 U	0.420 U	0.420 U
Total Confident Conc. SVOC		0	0	3.2		3.9	0	1.2	7.7	0
Total TICs		6.6	6.2	131		8	6.6	24.1	311	7.4

Qualifiers & Notes:

U -The compound was not detected at the indicated concentration.

J -Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation

limit, but greater than zero. The concentration given is an approximate value.

B - The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of

the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater than 40% For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

NA-not analyzed 1. Shaded values exceed TOGS 1.1.1 Standard or Guidance Value for Class GA Groundwater

2. Indicates value is a guidance value rather than a standard.

Sample ID		MW-1	CHA-1	CHA-2	CHA-2	CHA-3	CHA-4	CHA-5	CHA-6	CHA-10
		S4507-01	S4507-02	S4507-03	S5229-01	S4507-04	S4507-07	S4507-08	S4507-09	S4507-10
Sampling Date	TOGS 1.1.1	9/1/04	9/1/04	9/1/04	10/15/2004	9/1/04	9/1/04	9/1/04	9/1/04	9/1/04
Dilution Factor	Standard or	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Units	Guidance	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND	Value ¹									
Aroclor-1016	0.09	0.130 U	0.130 U	0.130 U	0.130 U	0.130 U	0.130 U	0.130 U	0.130 U	0.130 U
Aroclor-1221	0.09	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
Aroclor-1232	0.09	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U
Aroclor-1242	0.09	0.140 U	0.140 U	0.140 U	0.140 U	0.140 U	0.140 U	0.140 U	0.140 U	0.140 U
Aroclor-1248	0.09	0.060 U	0.060 U	0.060 U	0.060 U	0.060 U	0.060 U	0.060 U	0.060 U	0.060 U
Aroclor-1254	0.09	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U	0.030 U
Aroclor-1260	0.09	0.0630 U	0.0620 U	4.7 P	0.31 <mark>J</mark>	0.0640 U	0.0620 U	0.0640 U	0.0620 U	0.0630 U
Units		ug/L	ug/L	ug/L		ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND										
Arsenic	25	4.8 U	4.8 U	4.8 U	NA	4.8 U				
Barium	1,000	67.3 J	78.8 J	204	NA	16.1 J	117 J	46.8 J	81.4 J	80.1 J
Cadmium	5	0.99 U	0.99 U	0.99 U	NA	0.99 U				
Chromium	50	1.2 U	2.7 J	1.2 U	NA	3.1 J	2.4 J	1.8 J	1.2 U	1.2 U
Lead	25	1.8 U	22.2	1.8 U	NA	21.0	1.8 U	39.2	1.8 U	1.8 U
Selenium	10	5.2 U	5.2 U	5.2 U	NA	5.2 U				
Silver	50	3.4 U	3.4 U	3.4 U	NA	3.4 U				
Mercury	0.7	0.06 J	0.03 J	0.03 U	NA	0.04 J	0.03 U	0.08 J	0.04 J	0.03 U

Qualifiers & Notes: U The compound was not detected at the indicated concentration.

Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit, but greater than zero. The concentration given is an approximate value. J -

в -The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of

the environmental sample.

Ρ-For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater

than 40%.

For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.

 NA-not analyzed

 1. Shaded values exceed TOGS 1.1.1 Standard or Guidance Value for Class GA Groundwater.

 2. Indicates value is a guidance value rather than a standard.

Table 2. Subsurface Soil Sample Laboratory Results Summary DeLaval Property Pine Street and Rinaldi Boulevard

PCBs and Metals Sample ID Laboratory Sample No. Sampling Date Dilution Factor Units COMPOUND	NYSDEC Recommended Soil Cleanup Objective Concentration ¹	TP-42S-1 S4063-09 08/06/04 1.0 ug/Kg	AT-7S-1 S3897-01 07/29/04 1.0 ug/Kg	B-7(14-16) S4313-01 8/18/04 1.0 ug/Kg
Aroclor-1016	10,000	6.4 UJ	6.0 U	6.2 U
Aroclor-1221	10,000	4.4 UJ	4.1 U	4.2 U
Aroclor-1232	10,000	3.0 UJ	2.8 U	2.8 U
Aroclor-1242	10,000	3.8 UJ	3.6 U	3.7 U
Aroclor-1248	10,000	4.5 UJ	4.2 U	4.3 U
Aroclor-1254	10,000	1.7 UJ	1.6 U	1.6 U
Aroclor-1260	10,000	3.6 UJ	3.4 U	340
Units COMPOUND		mg/Kg	mg/Kg	mg/Kg
Mercury	0.1	0.01 U	0.01 UJ	0.01 U
Arsenic	7.5 or SB/(5.89)	8.140	18.8	0.306 J
Barium	300 or SB/(52.5)	126	75.7	11.4 J
Cadmium	1 or SB/(1.93)	0.712	2.280	0.307 J
Chromium	10 or SB/(15.8)	8.880	29.2	5.840 J
Lead	SB/(87.9)	71.1	119	26.8
Selenium	2 or SB/(1.25)	1.020 J	2.690	1.200 J
Silver	SB/(0.117)	0.127 U	0.777 J	0.125 U

Qua	lifiers & Notes:
U -	The compound was not detected at the indicated concentration.
J -	Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation
	limit, but greater than zero. The concentration given is an approximate value.
В-	The analyte was found in the laboratory blank as well as the sample. This indicates possible laboratory contamination of
	the environmental sample.
Ρ-	For dual column analysis, the percent difference between the quantitated concentrations on the two columns is greater
	than 40%.
Ε-	Value exceeds calibration range.
D -	Compound identified in analysis at a secondary dilution factor.
* -	For dual column analysis, the lowest quantitated concentration is being reported due to coeluting interference.
NA-I	not analyzed
MDL	- Method Detection Limit
** - /	As per TAGM #4046, Total VOCs<10ppm., Total Semi-VOCs<500ppm., and Individual Semi-VOCs<50ppm.
1.0	

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Sample ID			AOC 1 (Zone 5)	AOC 1 (Zone 1)	AOC 1 (Zone 6)	AOC 1 (Zone 5)	AOC 1 (Zone 3)	AOC 1 (Sample 6)	AOC 1 (Sample 7)	AOC 1 (Sample 8)	AOC 1 (Sample 9)	AOC 1 (Sample 10)	AOC 1 (Sample 11)	AOC 1 (Sample 12)
Laboratory Sample No.			09061029-01	09060750-01	09060750-02	09060750-03	09060750-04	09070468-02	09070468-03	09070468-04	09070468-05	09070468-06	09070468-07	09070468-08
Sample No. on Figure		NYSDEC Recommended Soil	6/20/2000	£/18/2000	2 6/18/2000	6/19/2000	6/18/2000	6 7/12/2000	7/12/2000	8 7/12/2000	7/12/2000	10 7/12/2009	11 7/12/2009	7/12/2000
Sampling Date		Cleanup Objective	0/25/2005	0/18/2009	0/18/2009	0/18/2009	0/18/2009	1113/2009	7/13/2009	1113/2009	1/13/2009	1113/2009	1113/2009	7/13/2009
COMPOUND	Units	Concentration ¹												
Volatile Organic Compounds (VOCs)														
1,1,1,2-Tetrachloroethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	μg/Kg	800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-I etrachioroethane	µg/Kg	600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1.2-Trichlorotrifluoroethane	μg/Kg	6.000		ND		ND	ND	ND	110	ND	ND	nb	ND	
1,1-Dichloroethane	μg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	μg/Kg	200	ļ!	$ \longrightarrow $		I								
1,1-Dichloropropylene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	μα/Κα	3 400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2.4-Trimethylbenzene	μg/Kg	0,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-Chloropropane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethylene (cis)	μg/Kg		J	┝────┼		·								ł
1,2-Dichloroethylene (trans)	μα/Κα		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/Kg	├ ────┤	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	μg/Kg	├ ────┤	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	ND	ND
2-Chlorotoluene	µg/ng µa/Ka	łł	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Butanone	μg/Kg	300	·····											
2-Hexanone	μg/Kg		<u> </u>]	
4-Methyl-2-Pentanone	μg/Kg	1,000												
Acetone	μg/Kg	200	[_]	\square										
Benzene	μg/Kg	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	μg/Kg	├ ────┤	NU	ND	NU	ND	NU			NU	NU	ND	NU	
Bromocnioromethane	ua/Ka		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	μg/Kg	2,700												
Carbon Tetrachloride	μg/Kg	600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/Kg	1,700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/Kg	1,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	μα/Κα	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.3-Dichloropropene	μg/Kg			ND	110	ND	ND	ND	110	ND	ND	NB	ND	
cis-1,3-Dichloropropylene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromofluoromethane	μg/Kg		ļ!	$ \longrightarrow $		I								
Dibromomethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Etnyibenzene Hevachlorobutadiene	µg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	μg/Kg	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	92	ND
n-Butylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	µg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-lsopropyltoluene	μg/Kg μα/Kα		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	72	ND
Styrene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	μg/Kg	1,400	<u>ا</u>											
Tetrachloroethylene	ua/Ka	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID			AOC 1 (Zone 5)	AOC 1 (Zone 1)	AOC 1 (Zone 6)	AOC 1 (Zone 5)	AOC 1 (Zone 3)	AOC 1 (Sample 6)	AOC 1 (Sample 7)	AOC 1 (Sample 8)	AOC 1 (Sample 9)	AOC 1 (Sample 10)	AOC 1 (Sample 11)	AOC 1 (Sample 12)
Laboratory Sample No.			09061029-01	09060750-01	09060750-02	09060750-03	09060750-04	09070468-02	09070468-03	09070468-04	09070468-05	09070468-06	09070468-07	09070468-08
Sample No. on Figure		NYSDEC Recommended Soil	6/20/2000	6/18/2009	6/18/2009	6/18/2009	6/18/2009	5 7/13/2009	7/13/2009	8 7/13/2009	9 7/13/2009	10 7/13/2009	11 7/13/2009	12 7/13/2009
Samping Date		Cleanup Objective	0/23/2003	0/10/2003	0/10/2003	0/10/2003	0/10/2003	1113/2003	1113/2003	1113/2003	1113/2003	1/13/2003	1/13/2003	1113/2003
COMPOUND	Units	Concentration ¹												
Toluene	μg/Kg	1,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropylene	μα/Κα	700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl Chloride	μg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	μg/Kg	1,200												
Semivolatile Organic Compounds (SV	OCs)	2 400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μα/Κα	7,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	μg/Kg	1,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/Kg	8,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	µg/Kg	400	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
2.4-Dinitrophenol	μg/Kg μg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	μg/Kg	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	μg/Kg	00.400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	μα/Κα	36,400 100 or MDI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	μg/Kg	430 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	μg/Kg	330 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	μg/Kg	500 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl-phenylether	μα/Κα		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	μg/Kg	220 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	μg/Kg	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	μα/Κα	100 or MDI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	μg/Kg	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aniline	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Anthracene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine	μg/Kg	224 or MDI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND 200	ND	ND 220
Benzo(a)pyrene	μα/Κα	61 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND		370	ND
Benzo(b)fluoranthene	μg/Kg	1,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	360	ND
Benzo(g,h,i)perylene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(k)fluoranthene	μg/Kg	1,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	330	ND
Benzoic acid	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroethoxy)methane	μα/Κα		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND ND	ND
bis(2-Chloroethyl)ether	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroisopropyl)ether	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylhexyl)phthalate	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene Dibenz(a b)anthracene	µg/Kg	400 14 or MDI	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	340 ND	ND
Dibenzofuran	μg/Kg μg/Kg	6,200	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND
Diethylphthalate	μg/Kg	71,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	μg/Kg	2,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	μg/Kg	8,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluorene	μg/Kg μg/Ka	50,000**	ND ND	370 ND		ND		ND	ND ND	ND ND	390 ND	450 ND	930 חא	320 ND
Hexachlorobenzene	μg/Kg	410	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	ua/Ka		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID			AOC 1 (Zone 5)	AOC 1 (Zone 1)	AOC 1 (Zone 6)	AOC 1 (Zone 5)	AOC 1 (Zone 3)	AOC 1 (Sample 6)	AOC 1 (Sample 7)	AOC 1 (Sample 8)	AOC 1 (Sample 9)	AOC 1 (Sample 10)	AOC 1 (Sample 11)	AOC 1 (Sample 12)
Laboratory Sample No.			09061029-01	09060750-01	09060750-02	09060750-03	09060750-04	09070468-02	09070468-03	09070468-04	09070468-05	09070468-06	09070468-07	09070468-08
Sample No. on Figure		NYSDEC Recommended Soil	5	6/19/2000	2 6/19/2000	6/19/2000	6/19/2000	6 7/12/2000	7/12/2000	7/12/2000	9 7/12/2000	10 7/12/2000	7/12/2000	7/12/2000
Sampling Date		Cleanup Objective	6/29/2009	6/16/2009	6/16/2009	6/16/2009	6/16/2009	//13/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009
COMPOUND	Units	Concentration ¹												
Indeno(1,2,3-cd)pyrene	μg/Kg	3,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	μg/Kg	4,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	μg/Kg	13,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitropenzene	µg/Кд	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodinhenylamine	μα/Κα		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	μg/Kg	1000 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	220
Phenol	μg/Kg	30 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	μg/Kg	50,000**	ND	390	ND	ND	ND	ND	ND	ND	360	470	780	290
Pyridine	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PCBs			1			-	-	1	-	-		1		
Aroclor-1016	μg/Kg	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1221	μg/Kg	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor 1232	µg/Kg	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND
Aroclor-1248	ца/Ка	10,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aroclor-1254	μg/Kg	10,000	ND	ND	ND	ND	ND	ND	ND	ND	0.289	0.054	ND	ND
Aroclor-1260	μg/Kg	10,000	ND	ND	ND	ND	ND	ND	ND	ND	0.538	0.089	ND	ND
Herbicides														
2,3,5-TP Silvex	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-D	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pesticides		•	1											•
4,4'-DDD	μg/Kg	2900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDE	μg/Kg	2100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,4'-DDT	μg/Kg	2100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
aloba Chlordane	μα/Κα	540	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
alpha BHC	μg/Kg	110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
beta BHC	μg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
delta BHC	μg/Kg	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dieldrin	μg/Kg	44	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan I	μg/Kg	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosulfan II	μg/Kg	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endosultan sultate	µg/Кд	1000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Endrin Endrin aldebyde	μα/Κα	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma Chlordane	μg/Kg	540	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
gamma-BHC (Lindane)	μg/Kg	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Heptachlor epoxide	μg/Kg	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methoxychlor	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toxaphene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Metals														
Aluminum	mg/Kg	0.1	UNU	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Antimony	ma/Ka	SB	0.92	ND	ND	1.08	0 94	11	1 12	0.81	3 38	1 46	1 38	1 12
Arsenic	mg/Kg	7.5 or SB/(5.89)	5.04	6.09	4.04	11.00	11.9	7	6.19	6.46	7.53	3.05	4.26	3.3
Barium	mg/Kg	300 or SB/(52.5)	42.9	71.8		78.6	75.9	26.8	38.2	25.3	84.5	33.6	29	29.4
Beryllium	mg/Kg	0.16 (HEAST) or SB	0.36	ND	ND	0.12	0.1	0.4	0.26	0.36	ND	ND	0.13	ND
Cadmium	mg/Kg	1 or SB/(1.93)	ND	0.43	ND	0.65	0.62	ND	ND	ND	0.72	0.37	ND	0.3
Calcium	mg/Kg	SB												
Cabalt	mg/Kg	10 or SB/(15.8)	16.7	15.4	12.2	26	25.8	14.4	11.7	13.2	121	47.5	13.1	27.1
Copper	mg/Kg	25 or SB	47.5	88.4	12.1	570	623	123	212	00 /	800	2050	70.7	1740
ron	ma/Ka	2000 or SB	47.5	30.4	12.1	570	023	125	212	55.4	690	2030	10.1	1740
Lead	mg/Kg	SB	45.6	95.6	8.22	167	187	37.3	70.4	37.4	201	192	19.9	135
Magnesium	mg/Kg	SB												
Manganese	mg/Kg	SB												
Nickel	mg/Kg	13 or SB	32	16.6	15.7	22.6	22	36.9	46.3	28.1	180	347	51.1	323
Potassium	mg/Kg	SB												
Selenium	mg/Kg	2 or SB/(1.25)	ND	ND	ND	ND	ND	1.04	1.49	1.07	1.33	1.02	ND	1.05
Sodium	mg/Kg	SB	UNU	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	0.33
Thallium	mg/Kg	SB	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	mg/Kg	150 or SB		110	110	110	nib.		110	110	110	110	115	110
Zinc	mg/Kg	20 or SB/(0.117)	108	325	50	264	281	98	220	86.3	362	476	75	352

Sample ID Laboratory Sample No.			AOC 1 (Zone 5) 09061029-01	AOC 1 (Zone 1) 09060750-01	AOC 1 (Zone 6) 09060750-02	AOC 1 (Zone 5) 09060750-03	AOC 1 (Zone 3) 09060750-04	AOC 1 (Sample 6) 09070468-02	AOC 1 (Sample 7) 09070468-03	AOC 1 (Sample 8) 09070468-04	AOC 1 (Sample 9) 09070468-05	AOC 1 (Sample 10) 09070468-06	AOC 1 (Sample 11) 09070468-07	AOC 1 (Sample 12) 09070468-08
Sample No. on Figure Sampling Date		NYSDEC Recommended Soil Cleanup Objective	5 6/29/2009	1 6/18/2009	2 6/18/2009	3 6/18/2009	4 6/18/2009	6 7/13/2009	7 7/13/2009	8 7/13/2009	9 7/13/2009	10 7/13/2009	11 7/13/2009	12 7/13/2009
COMPOUND	Units	Concentration ¹												
Hazardous Waste Characterisitics														
Conductivity	umhos/cm		55	2.42	1.72	5.59	6.49	17.7	10.2	17.3	44.2	48.5	14.9	41.2
Flash Point	°F		>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200	>200
Reactivity - Cyanide	mg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Reactivity - Sulfide	mg/Kg		16	39	20	34	43	25	20	ND	31	ND	ND	ND
Ignitability														
Total Petroleum Hyrocarbons-DRO	mg/Kg		ND	39	ND	140	131	ND	ND	43.9	410	114	182	59.5
Total Petroleum Hyrocarbons-GRO	mg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	35	4	35	4
pH	S.U.		8.59	7.2	7.51	6.74	6.58	6.85	6.88	7.05	7.35	8.09	6.65	7.47

Qualifiers & Notes:

ND - The compound was not detected at the indicated concentration.

SB - Site Background

Blank cells indicate that that compound was not analyzed.

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Sample ID			AOC 2/3 1	AOC 2/3 2	AOC 2/3 3	#23 Bottom	#18 Side	#18 Bottom	#13 Bottom	#10 Side	#7 Bottom	AOC 2/3 Grid 19	AOC 2/3 Grid 11	AOC 2/3 Grid 4
Laboratory Comple No.		NVODEO	00020540.04	00000540.00	00020540.02	#23 Dottom	#10 Olde	#10 Doctom	#13 Doctori	#10 Olde	#1 Doctom	00040999.04	00040999 02	00040999 02
Laboratory Sample No.		NYSDEC Recommonded Soil	09020549-01	09020549-02	09020549-03	2/42/2000	2/48/2000	09040050-03	09040050-04	09040050-05	09040050-06	09040666-01	09040666-02	09040666-03
Sampling Date		Cleanup Objective	2/13/2009	2/13/2009	2/13/2009	3/12/2009	3/18/2009	3/13/2009	3/13/2009	3/18/2009	3/18/2009	4/23/2009	4/23/2009	4/23/2009
COMPOUND	Unite	Cleanup Objective												
	onna	Concentration												
Volatile Organic Compounds (VOCs)	1								1	1			1	
1,1,1,2-Tetrachloroethane	μg/Kg					ND	ND	ND	ND	ND	ND			
1,1,1-Trichloroethane	μg/Kg	800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	μg/Kg	600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichlorotrifluoroethane	μg/Kg	6,000	ND	ND	ND							ND	ND	ND
1,1-Dichloroethane	μg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.1-Dichloroethylene	μg/Kg					ND	ND	ND	ND	ND	ND			
1 1-Dichloroethene	μα/Κα	200	ND	ND	ND							ND	ND	ND
1 1-Dichloropropylene	µg/Kg	200	110			ND	ND	ND	ND	ND	ND			115
1,2.2 Triphlarahanana	µg/Kg					ND	ND	ND	ND	ND	ND			
1,2,3-Thchlorobenzene	µg/Kg					ND	ND	ND	ND	ND	ND			
1,2,3-Thchloropropane	µg/Kg					ND	ND	ND	ND	ND	ND			110
1,2,4-I richlorobenzene	µg/kg	3,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	μg/Kg					ND	ND	ND	ND	ND	ND			
1,2-Dibromo-3-Chloropropane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromoethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethylene (cis)	μg/Kg		ND	ND	ND							ND	ND	ND
1,2-Dichloroethylene (trans)	μg/Kg		ND	ND	ND							ND	ND	ND
1,2-Dichloroethylene (total)	μg/Ka					ND	ND	ND	ND	ND	ND			
1.2-Dichloropropane	μg/Ka		ND	ND	חוא	ND	ND	ND	ND	ND	ND	ЛИ	ND	ND
1 3 5-Trimethylbenzene	ug/Kg		ND	UN.	ND			ND	ND	ND		ND	ND.	ND
1.2 Dichlorohonzono	µg/Kg	-	ND	ND		ND		ND	ND	ND	UN ND		ND	ND
1,3-Dichlorobenzene	µg/Kg		IND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	μg/Kg					ND	ND	ND	ND	ND	ND			
1,4-Dichlorobenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	μg/Kg					ND	ND	ND	ND	ND	ND			
2-Chlorotoluene	μg/Kg					ND	ND	ND	ND	ND	ND			
4-Chlorotoluene	μg/Kg					ND	ND	ND	ND	ND	ND			
2-Butanone	μg/Kg	300	ND	ND	ND							ND	ND	ND
2-Hexanone	μg/Kg		ND	ND	ND							ND	ND	ND
4-Methyl-2-Pentanone	ua/Ka	1.000	ND	ND	ND							ND	ND	ND
Acetone	μα/Κα	200	ND	ND	ND							ND	ND	ND
Benzene	ua/Ka	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromohonzono	µg/Kg	00	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bioinobenzene	µg/Kg					ND	ND	ND	ND	ND	ND			
Bromochioromethane	µg/Kg					ND	ND	ND	ND	ND	ND			110
Bromodichloromethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon Disulfide	μg/Kg	2,700	ND	ND	ND							ND	ND	ND
Carbon Tetrachloride	μg/Kg	600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	μg/Kg	1,700	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	μg/Kg	1,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	μg/Kg	300	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	μg/Ka		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1.3-Dichloropropene	μα/Κα		ND	ND	ND	115		115			110	ND	ND	ND
cis-1 3-Dichloropropylene	ug/Kg					ND	ND	ND	ND	ND	ND			.10
Dibromochloromethese	10 ¹ /20		NO.	ND	20	ND		ND	ND	ND	ND	10	ND	10
Dibromochiorometriane	µg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	μg/κg		ND	ND	ND							ND	ND	ND
Dipromomethane	μg/Kg					ND	ND	ND	ND	ND	ND			
Dichlorodifluoromethane	μg/Kg					ND	ND	ND	ND	ND	ND			
Ethylbenzene	μg/Kg					ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	μg/Kg					ND	ND	ND	ND	ND	ND			
Isopropylbenzene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl Ether	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene Chloride	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Napthalene	μg/Kg	13,000				ND	ND	ND	630	ND	ND			
n-Butylbenzene	μg/Kg					ND	ND	ND	ND	ND	ND			
n-Propylbenzene	μα/Κα	1				ND	ND	ND	ND	ND	ND			
o-Xvlene	ug/Kg						ND	ND	ND	ND				
n R m Yulonon	µg/Kg					ND		ND	ND	ND	ND			
	µg/Kg					ND	ND	ND	ND	ND	ND			
p-isopropyitoiuene	μg/Kg					ND	ND	ND	ND	ND .	ND			
sec-Butylbenzene	μg/Kg					ND	ND	ND	ND	ND	ND			
Styrene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	μg/Kg					ND	ND	ND	ND	ND	ND			
Tetrachloroethene	μg/Kg	1,400	ND	ND	ND							36	ND	ND
Tetrachloroethylene	μg/Kg					ND	ND	ND	ND	ND	ND			
Confirmatory Soil Sample Laboratory Results AOC 2/3 Summary DeLaval Property Pine Street and Rinaldi Boulevard

Sample ID Laboratory Sample No. Sampling Date		NYSDEC Recommended Soil	AOC 2/3 1 09020549-01 2/13/2009	AOC 2/3 2 09020549-02 2/13/2009	AOC 2/3 3 09020549-03 2/13/2009	#23 Bottom 09040050-01 3/12/2009	#18 Side 09040050-02 3/18/2009	#18 Bottom 09040050-03 3/13/2009	#13 Bottom 09040050-04 3/13/2009	#10 Side 09040050-05 3/18/2009	#7 Bottom 09040050-06 3/18/2009	AOC 2/3 Grid 19 09040888-01 4/23/2009	AOC 2/3 Grid 11 09040888-02 4/23/2009	AOC 2/3 Grid 4 09040888-03 4/23/2009
COMPOUND	Units	Cleanup Objective Concentration ¹												
Toluene	μg/Kg	1,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	μg/Kg		ND	ND	ND							ND	ND	ND
trans-1,3-Dichloropropylene	μg/Kg					ND	ND	ND	ND	ND	ND			
Trichloroethene	μg/Kg	700	ND	ND	ND							ND	ND	ND
Trichloroethylene	μg/Kg		10	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	h D
I richlorofluoromethane	µg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vilgi Chloride Xvlenes	μα/Κα	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semivolatile Organic Compounds (SV	0005)	1,200	110		110						1	110	110	
1,2,4-Trichlorobenzene	μg/Kg	3,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	μg/Kg	7,900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	μg/Kg	1,600	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	μg/Kg	8,500	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,5-Trichlorophenol	μg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dichlorophenol	μg/Kg	400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	µg/Kg	200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2.4-Dinitrotoluene	μα/Κα	200	ND	ND ND	ND DIA	ND ND			ND ND	ND	ND	ND	ND ND	ND
2.6-Dinitrotoluene	μg/Kg μg/Ka	1.000	ND	ND			ND	ND	ND	ND		ND	ND	ND
2-Chloronaphthalene	ua/Ka	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	μg/Kg	36,400	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	μg/Kg	100 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	μg/Kg	430 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	μg/Kg	330 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3,3-Dichlorobenzidine	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Methylphenol	μg/Kg	500 MDI	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	µg/Kg	500 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,8-Dinitio-2-methylphenol	µg/Kg µg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	μg/Kg μα/Ka		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	μg/Kg	220 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	μg/Kg	900	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	μg/Kg	100 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	μg/Kg	41,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Aniline	µg/Kg	100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Renzidine	µg/Kg	50,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo(a)anthracene	ua/Ka	224 or MDI	ND	ND	ND	ND	ND	ND	ND	1900	ND	ND	ND	380
Benzo(a)pyrene	μg/Kg	61 or MDL	ND	ND	ND	ND	ND	ND	ND	1500	ND	ND	ND	780
Benzo(b)fluoranthene	μg/Kg	1,100	ND	ND	ND	ND	ND	ND	ND	790	ND	ND	ND	510
Benzo(g,h,i)perylene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	1400	ND	ND	ND	590
Benzo(k)fluoranthene	μg/Kg	1,100	ND	ND	ND	ND	ND	ND	ND	800	ND	ND	ND	520
Benzoic acid	μg/Kg		ND	ND	ND							ND	ND	ND
Benzyl alcohol	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroethoxy)methane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Chloroetnyi)ether	µg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
bis(2-Ethylbeyy))pthalate	µg/Kg	50.000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	ua/Ka	50.000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chrysene	μg/Kg	400	ND	ND	ND	ND	ND	ND	ND	1800	ND	ND	ND	400
Dibenz(a,h)anthracene	μg/Kg	14 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	μg/Kg	6,200	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Diethylphthalate	μg/Kg	71,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	μg/Kg	2,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	μg/Kg	8,100	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-octyl phthalate	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	µg/Kg	50,000**	ND	ND	ND	ND	ND	ND	ND	3200	ND	ND	ND	330
Hevechlorobenzene	µg/Kg	50,000**	ND	ND		ND	ND ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	μg/Ka	710	ND	ND			ND	ND	ND	ND	ND	ND		ND
Hexachlorocyclopentadiene	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	μg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Confirmatory Soil Sample Laboratory Results AOC 2/3 Summary DeLaval Property Pine Street and Rinaldi Boulevard

Sample ID			AOC 2/3 1	AOC 2/3 2	AOC 2/3 3	#23 Bottom	#18 Side	#18 Bottom	#13 Bottom	#10 Side	#7 Bottom	AOC 2/3 Grid 19	AOC 2/3 Grid 11	AOC 2/3 Grid 4
Laboratory Sample No.		NYSDEC	09020549-01	09020549-02	09020549-03	09040050-01	09040050-02	09040050-03	09040050-04	09040050-05	09040050-06	09040888-01	09040888-02	09040888-03
Sampling Date		Cleanup Objective	2/13/2009	2/13/2009	2/13/2009	3/12/2009	3/18/2009	3/13/2009	3/13/2009	3/18/2009	3/18/2009	4/23/2009	4/23/2009	4/23/2009
COMPOUND	Units	Concentration ¹												
Indeno(1,2,3-cd)pyrene	μg/Kg	3,200	ND	1400	ND	ND	ND	450						
Isophorone	μg/Kg	4,400	ND	ND	ND									
Naphthalene	μg/Kg	13,000	ND	ND	ND									
Nitrobenzene	µg/Кд	200	ND	ND	ND									
N-Nitrosodiphenylamine	μα/Κα		ND	ND	ND									
Pentachlorophenol	μg/Kg	1000 or MDL	ND	ND	ND									
Phenanthrene	μg/Kg	50,000**	ND	1800	ND	ND	ND	ND						
Phenol	μg/Kg	30 or MDL	ND	ND	ND									
Pyrene	μg/Kg	50,000**	ND	ND	ND	ND	ND	ND	800	2700	ND	ND	ND	670
Pyridine	µg/кg					ND	ND	ND	ND	ND	ND			
PCBS		10.000	ND	ND	ND									
Aroclor-1018	μα/Κα	10,000	ND	ND	ND									
Aroclor-1232	µд/Кд	10,000	ND	ND	ND									
Aroclor-1242	μg/Kg	10,000	ND	ND	ND									
Aroclor-1248	μg/Kg	10,000	ND	ND	ND									
Aroclor-1254	μg/Kg	10,000	ND	30	ND	ND	ND							
Aroclor-1260	µg/Кg	10,000	ND	30	ND	ND	ND	ND	240	120	ND	ND	0.02	0.02
Herbicides		1		1										
2,3,5-1P Silvex	μg/Kg μg/Kg					ND	ND	ND	ND	ND	ND			
2,4-D Posticidos	μg/itg					ND	ND	ND	ND	ND	ND			
1 4'-DDD	ua/Ka	2900				ND	ND	ND	ND	ND	ND			
4,4'-DDF	µд/Кд	2100				ND	ND	ND	ND	ND	ND			
4,4'-DDT	μg/Kg	2100				ND	ND	ND	ND	ND	124			
Aldrin	μg/Kg	41				ND	ND	ND	ND	ND	ND			
alpha Chlordane	μg/Kg	540				ND	ND	ND	ND	ND	ND			
alpha BHC	μg/Kg	110				ND	ND	ND	ND	ND	ND			
beta BHC	μg/Kg	200				ND	ND	ND	ND	ND	ND			
Dieldrin	µg/Кд	44				ND	ND	ND	ND	ND	ND			
Endosulfan I	μg/Kg	900				ND	ND	ND	ND	ND	ND			
Endosulfan II	μg/Kg	900				ND	ND	ND	ND	ND	ND			
Endosulfan sulfate	μg/Kg	1000				ND	ND	ND	ND	ND	ND			
Endrin	μg/Kg	100				ND	ND	ND	ND	ND	ND			
Endrin aldehyde	μg/Kg	540				ND	ND	ND	ND	ND	ND			
gamma Chlordane	µg/Кд	540				ND	ND	ND	ND	ND	ND			
Hentachlor	μα/Κα	100				ND	ND	ND	ND	ND	ND			
Heptachlor epoxide	μg/Kg	20				ND	ND	ND	ND	ND	ND			
Methoxychlor	μg/Kg					ND	ND	ND	ND	ND	ND			
Toxaphene	μg/Kg					ND	ND	ND	ND	ND	ND			
Metals														
Mercury	mg/Kg	0.1	ND	ND	ND									
Aluminum	mg/Kg	SB	9220	10200	25400							13900	16400	12400
Antimony	mg/Kg	5B 7.5 or SB/(5.80)	ND 3.25	1.38	ND E E	ND	ND	ND 37	ND	ND	ND	ND	ND	1.95
Barium	mg/Kg mg/Ka	300 or SB/(52.5)	28.3	41.9	5.5 116	41 9	14.7	133	72.3	309	36.9	132	136	58.9
Beryllium	mg/Kg	0.16 (HEAST) or SB	ND	1.04	3.5	ND	0.13	ND	0.3	0.32	0.54	0.5	ND	ND
Cadmium	mg/Kg	1 or SB/(1.93)	ND	1.31	2.45	0.65	0.67	1.03	0.77	0.92	0.54	0.56	0.52	0.68
Calcium	mg/Kg	SB	19600	27300	61600							20300	33600	39800
Chromium	mg/Kg	10 or SB/(15.8)	13.3	35.6	20.9	14.7	11.5	19.6	19.6	22.1	21.9	15	26.9	68
Coppor	mg/Kg	30 or SB	8.05	7.33	8.36	20.0		0.70			20.4	7.41	8.13	9.02
Iron	mg/Kg	20 UF SB 2000 or SB	20600	265	15.7	20.2	28	b./3	62.3	117	36.4	45.8	33.5 16100	28000
Lead	mg/Kg	SB	9,59	24900	9,23	25.3	97.9	21	105	199	23.4	52.4	36.9	79.4
Magnesium	mg/Kg	SB	4450	9190	26400	25.0		21	100			12400	15200	5960
Manganese	mg/Kg	SB	442	545	938							975	730	346
Nickel	mg/Kg	13 or SB	19.8	55	27.6	19.8	14.8	16.3	27.6	28	35.8	16.6	24.4	58.7
Potassium	mg/Kg	SB	980	774	1050							1110	856	790
Selenium	mg/Kg	2 or SB/(1.25)	ND	3.21	5.87	ND	ND	1.82	ND	ND	ND	ND	ND	ND
Sodium	mg/Kg mg/Kg	SB	ND 82.8	ND 380	ND 501	ND	ND	ND	ND	ND	ND	ND 283	ND 427	176
Thallium	mg/Kg	SB	ND	427 ND	ND									
Vanadium	mg/Kg	150 or SB	15.5	222	12.1			115				14.4	12	15.4
Zinc	mg/Kg	20 or SB/(0.117)	57.4	379	286	109	72.7	451	292	317	99.9	261	192	252

Confirmatory Soil Sample Laboratory Results AOC 2/3 Summary DeLaval Property Pine Street and Rinaldi Boulevard

Sample ID Laboratory Sample No. Sampling Date COMPOUND Hazardous Waste Characterisitics	Units	NYSDEC Recommended Soil Cleanup Objective Concentration ¹	AOC 2/3 1 09020549-01 2/13/2009	AOC 2/3 2 09020549-02 2/13/2009	AOC 2/3 3 09020549-03 2/13/2009	#23 Bottom 09040050-01 3/12/2009	#18 Side 09040050-02 3/18/2009	#18 Bottom 09040050-03 3/13/2009	#13 Bottom 09040050-04 3/13/2009	#10 Side 09040050-05 3/18/2009	#7 Bottom 09040050-06 3/18/2009	AOC 2/3 Grid 19 09040888-01 4/23/2009	AOC 2/3 Grid 11 09040888-02 4/23/2009	AOC 2/3 Grid 4 09040888-03 4/23/2009
Conductivity	umhos/cm					8.94	22.6	8.7	24.2	24.5	6.46			
Flash Point	°F					>200	>200	>200	>200	>200	>200			
Reactivity - Cyanide	mg/Kg		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Reactivity - Sulfide	mg/Kg		ND	ND	44	ND	24.6	53.6	53.6	ND	53.6	68.1	23.8	28.4
Ignitability			Passed	Passed	Passed							Passed	Passed	Passed
Total Petroleum Hyrocarbons-DRO	mg/Kg					460	ND	80	8500	344	10.4			
Total Petroleum Hyrocarbons-GRO	mg/Kg					ND	ND	ND	ND	ND	ND			
pН	S.U.		8.82	9.15	8.33	6.68	9.38	8.75	8.61	9.09	8.77	7.63	8.54	9.57

Qualifiers & Notes:

ND - The compound was not detected at the indicated concentration.

SB - Site Background

Blank cells indicate that that compound was not analyzed.

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Confirmatory Soil Sample Summary of Exceedences for AOC-1 DeLaval Property Pine Street and Rinaldi Boulevard

Sample ID			AOC 1 (Zone 5)	AOC 1 (Zone 1)	AOC 1 (Zone 6)	AOC 1 (Zone 5)	AOC 1 (Zone 3)	AOC 1 (Sample 6)	AOC 1 (Sample 7)	AOC 1 (Sample 8)	AOC 1 (Sample 9)	AOC 1 (Sample 10)	AOC 1 (Sample 11)	AOC 1 (Sample 12)
Laboratory Sample No.			09061029-01	09060750-01	09060750-02	09060750-03	09060750-04	09070468-02	09070468-03	09070468-04	09070468-05	09070468-06	09070468-07	09070468-08
Sample No. on Figure		NYSDEC	5	1	2	3	4	6	7	8	9	10	11	12
Sampling Date		Recommended Soil	6/29/2009	6/18/2009	6/18/2009	6/18/2009	6/18/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009	7/13/2009
COMPOUND	Unito	Cleanup Objective												
COMPOUND	Units	Concentration												
Semivolatile Organic Con	npounds (SV	OCs)												
Benzo(a)anthracene	μg/Kg	224 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	300	470	230
Benzo(a)pyrene	μg/Kg	61 or MDL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	370	ND
Metals														
Arsenic	mg/Kg	7.5 or SB/(5.89)	5.04	6.09	4.04	11.7	11.9	7	6.19	6.46	7.53	3.05	4.26	3.3
Barium	mg/Kg	300 or SB/(52.5)	42.9	71.8		78.6	75.9	26.8	38.2	25.3	84.5	33.6	29	29.4
Beryllium	mg/Kg	0.16 (HEAST) or SB	0.36	ND	ND	0.12	0.1	0.4	0.26	0.36	ND	ND	0.13	ND
Cadmium	mg/Kg	1 or SB/(1.93)	ND	0.43	ND	0.65	0.62	ND	ND	ND	0.72	0.37	ND	0.3
Chromium	mg/Kg	10 or SB/(15.8)	16.7	15.4	12.2	26	25.8	14.4	11.7	13.2	121	47.5	13.1	27.1
Cobalt	mg/Kg	30 or SB												
Copper	mg/Kg	25 or SB	47.5	88.4	12.1	570	623	123	212	99.4	890	2050	70.7	1740
Iron	mg/Kg	2000 or SB												
Nickel	mg/Kg	13 or SB	32	16.6	15.7	22.6	22	36.9	46.3	28.1	180	347	51.1	323
Selenium	mg/Kg	2 or SB/(1.25)	ND	ND	ND	ND	ND	1.04	1.49	1.07	1.33	1.02	ND	1.05
Vanadium	mg/Kg	150 or SB												
Zinc	mg/Kg	20 or SB/(0.117)	108	325	50	264	281	98	220	86.3	362	476	75	352

Qualifiers & Notes:

ND - The compound was not detected at the indicated concentration.

SB - Site Background

Blank cells indicate that that compound was not analyzed.

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Confirmatory Soil Sample Summary of Exceedences for AOC-2/3 DeLaval Property Pine Street and Rinaldi Boulevard

Sample ID Laboratory Sample No. Sampling Date COMPOUND	Units	NYSDEC Recommended Soil Cleanup Objective Concentration ¹	AOC 2/3 1 09020549-01 2/13/2009	AOC 2/3 2 09020549-02 2/13/2009	AOC 2/3 3 09020549-03 2/13/2009	#23 Bottom 09040050-01 3/12/2009	#18 Side 09040050-02 3/18/2009	#18 Bottom 09040050-03 3/13/2009	#13 Bottom 09040050-04 3/13/2009	#10 Side 09040050-05 3/18/2009	#7 Bottom 09040050-06 3/18/2009	AOC 2/3 Grid 19 09040888-01 4/23/2009	AOC 2/3 Grid 11 09040888-02 4/23/2009	AOC 2/3 Grid 4 09040888-03 4/23/2009
Semivolatile Organic Compounds	(SVOCs)													
Benzo(a)anthracene	μg/Kg	224 or MDL	ND	ND	ND	ND	ND	ND	ND	1900	ND	ND	ND	380
Benzo(a)pyrene	μg/Kg	61 or MDL	ND	ND	ND	ND	ND	ND	ND	1500	ND	ND	ND	780
Chrysene	μg/Kg	400	ND	ND	ND	ND	ND	ND	ND	1800	ND	ND	ND	400
Metals														
Arsenic	mg/Kg	7.5 or SB/(5.89)	3.35	41.9	5.5	5.31	14.7	27	10.9	13	7.52	16.8	17.2	7.27
Barium	mg/Kg	300 or SB/(52.5)	28.3	126	116	41.9	107	133	72.3	309	36.9	132	136	58.9
Beryllium	mg/Kg	0.16 (HEAST) or SB	ND	1.04	3.5	ND	0.13	ND	0.3	0.32	0.54	0.5	ND	ID
Cadmium	mg/Kg	1 or SB/(1.93)	ND	1.31	2.45	0.65	0.67	1.03	0.77	0.92	0.54	0.56	0.52	0.68
Chromium	mg/Kg	10 or SB/(15.8)	13.3	35.6	20.9	14.7	11.5	19.6	19.6	22.1	21.9	15	26.9	68
Cobalt	mg/Kg	30 or SB	8.05	7.33	8.36							7.41	8.13	9.02
Copper	mg/Kg	25 or SB	18.9	265	15.7	20.2	28	6.73	62.3	117	36.4	45.8	33.5	67.7
Iron	mg/Kg	2000 or SB	20600	24900	20000							14300	16100	28900
Nickel	mg/Kg	13 or SB	19.8	55	27.6	19.8	14.8	16.3	27.6	28	35.8	16.6	24.4	58.7
Selenium	mg/Kg	2 or SB/(1.25)	ND	3.21	5.87	ND	ND	1.82	ND	ND	ND	ND	ND	D
Vanadium	mg/Kg	150 or SB	15.5	222	12.1							14.4	12	15.4
Zinc	mg/Kg	20 or SB/(0.117)	57.4	379	286	109	72.7	451	292	317	99.9	261	192	252

Qualifiers & Notes:

ND - The compound was not detected at the indicated concentration.

SB - Site Background

Blank cells indicate that that compound was not analyzed.

1. Shaded values exceed TAGM 4046 Recommended Cleanup Objectives for Subsurface Soil.

Confirmatory Soil Sample Laboratory Results Statistical Summary DeLaval Property Pine Street and Rinaldi Boulevard

Sample ID NYSDEC Recommended Soil MIN MAX MIN Frequency of exceeding TAGM Frequency of exceeding TAGM Sampling Date Units Concentration ¹ AOC 1 AOC 2/3 AOC 2/3 AOC 1	equency of eding TAGM AOC 2/3
Laboratory Sample No. Sampling Date COMPOUND Units Concentration ¹ AOC 1 AOC 1 AOC 1 AOC 2/3 AOC 2/3 AOC 2/3 AOC 2/3 AOC 1	equency of eding TAGM AOC 2/3
Recommended Soil MAX MIN MAX MIN Sampling Date Units Concentration ¹ AOC 1 AOC 1 AOC 2/3 AOC 2/3 AOC 1	equency of eding TAGM AOC 2/3
COMPOUND Units Concentration ¹ AOC 1 AOC 1 AOC 2/3 AOC 2/3 AOC 1	AOC 2/3
	AUC 2/3
Volatile Organic Compounds (VOCs)	
Napthalene µg/Kg 13,000 92 92 630 630 0	0
sec-Butylbenzene µg/Kg /2 /2 0 0 0	0
Tetrachloroethene μg/Kg 1,400 36 36	0
Semivolatile Organic Compounds (SVOCs)	
Benzo(a)anthracene μg/Kg 224 or MDL 470 230 1900 380 2	2
Benzo(a)pyrene μg/Kg 61 or MDL 370 370 1500 780 2	2
Benzo(b)fluoranthene μg/Kg 1,100 360 360 790 510 0	0
Benzo(g,h,i)perylene µg/Kg 50,000** 0 0 1400 590 0	0
Benzo(k)fluoranthene μg/Kg 1,100 330 330 800 520 0	0
Chrysene µg/Kg 400 340 340 1800 400 0	1
Fluoranthene µg/Kg 50,000** 930 320 3200 330 0	0
Indeno(1,2,3-cd)pyrene µg/Kg 3,200 0 0 1400 450 0	0
Phenanthrene μg/Kg 50,000** 220 220 1800 1800 0	0
Pyrene µg/Kg 50,000** 780 290 2700 670 0	0
PCBs	
Aroclor-1254 μg/Kg 10,000 0.289 0.054 30 30 0	0
Aroclor-1260 µg/Kg 10,000 0.538 0.089 240 0.02 0	0
Pesticides	
	0
Metals	-
Aluminum ma/Ka SB 25400 9220	0
Antimony marka SB 3.38 0.81 1.95 1.38 0	0
Arcenic mg/Kg 7.5 or SR/(5.80) 11.9 3.05 41.9 3.35 7	8
niselite ing/Kg 7.50150/(5.55) 84.5 25.3 300 28.3 4	7
Bandlinn mg/Kg 0060600000 000 2000 2000 7	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
	0
Chromium mg/Kg 10 or SB/(15.8) 121 11.7 68 11.5 8	9
Cabalt mg/Kg 30 05 SB 902 7.33	0
Conner mg/Kg 25 or SB 2050 12 1 265 6 73 6	6
ron marka 2000 or SB 28900 14300	3
Lead marka SB 201 8.22 306 9.23 0	0
Magnesium ma/Kg SB 26400 4450	0
Mananese marka SB 975 346	0
Nickel Mar/Ka 13 or SB 347 15.7 58.7 14.8 13	12
Potassium mg/Kg SB 1110 774	0
Selenium mar/Ka 2 or SB/(1.25) 1.49 1.02 5.87 1.82 2	2
Silver ma/Ka SB 0.5 0.33 0 0 0	0
Sodium ma/Ka SB 591 82.8	0
Thallium mg/Kg SB 0 0 0 0 0	0
Vanadium mg/Kg 150 or SB 222 12	1
Zinc mg/Kg 20 or SB/(0.117) 476 50 451 57.4 13	12
Hazardous Waste Characterisitics	
Conductivity umbos/cm 55 1.72 24.5 6.46 0	0
Flash Point °F 0 0 0 0 0	0
Reactivity - Cvanide mg/Kg 0 0 0 0 0	0
Reactivity - Sulfide mg/Kg 43 16 68.1 23.8 0	0
	0
Total Petroleum Hyrocarbons-DRO mg/Kg 410 39 8500 10.4 0	0
Total Petroleum Hyrocarbons-GRO mg/Kg 35 4 0 0 0	0
рн S.U. 8.59 6.58 9.57 6.68 0	0

Notes:

SB - Site Background

Blank cells indicate that that compound was not analyzed.

APPENDIX C

Material Safety Data Sheets

Gasoline, All Grades

MSDS No. 9950

EMERGENCY OVERVIEW DANGER! EXTREMELY FLAMMABLE - EYE AND MUCOUS MEMBRANE IRRITANT - EFFECTS CENTRAL NERVOUS SYSTEM - HARMFUL OR FATAL IF SWALLOWED - ASPIRATION HAZARD

High fire hazard. Keep away from heat, spark, open flame, and other ignition sources.

If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs). Contact may cause eye, skin and mucous membrane irritation. Harmful if absorbed through the skin. Avoid prolonged breathing of vapors or mists. Inhalation may cause irritation, anesthetic effects (dizziness, nausea, headache, intoxication), and respiratory system effects.

Long-term exposure may cause effects to specific organs, such as to the liver, kidneys, blood, nervous system, and skin. Contains benzene, which can cause blood disease, including anemia and leukemia.

1. CHEMICAL PRODUCT and COMPANY INFORMATION Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): COMPANY CONTACT (business hours): MSDS (Environment, Health, Safety) Internet Website **CHEMTREC (800)424-9300** Corporate Safety (732)750-6000 www.hess.com

SYNONYMS: Hess Conventional (Oxygenated and Non-oxygenated) Gasoline; Reformulated Gasoline (RFG); Reformulated Gasoline Blendstock for Oxygenate Blending (RBOB); Unleaded Motor or Automotive Gasoline

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and INFORMATION ON INGRED	IENTS *
INGREDIENT NAME (CAS No.)	CONCENTRATION PERCENT BY WEIGHT
Gasoline (86290-81-5)	100
Benzene (71-43-2)	0.1 - 4.9 (0.1 - 1.3 reformulated gasoline)
n-Butane (106-97-8)	< 10
Ethyl Alcohol (Ethanol) (64-17-5)	0 - 10
Ethyl benzene (100-41-4)	< 3
n-Hexane (110-54-3)	0.5 to 4
Methyl-tertiary butyl ether (MTBE) (1634-04-4)	0 to 15.0
Tertiary-amyl methyl ether (TAME) (994-05-8)	0 to 17.2
Toluene (108-88-3)	1 - 25
1,2,4- Trimethylbenzene (95-63-6)	< 6
Xylene, mixed isomers (1330-20-7)	1 - 15

A complex blend of petroleum-derived normal and branched-chain alkane, cycloalkane, alkene, and aromatic hydrocarbons. May contain antioxidant and multifunctional additives. Non-oxygenated Conventional Gasoline and RBOB do not have oxygenates (Ethanol or MTBE and/or TAME).

Gasoline, All Grades

MSDS No. 9950

Oxygenated Conventional and Reformulated Gasoline will have oxygenates for octane enhancement or as legally required.

3. HAZARDS IDENTIFICATION

<u>EYES</u>

Moderate irritant. Contact with liquid or vapor may cause irritation.

<u>SKIN</u>

Practically non-toxic if absorbed following acute (single) exposure. May cause skin irritation with prolonged or repeated contact. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are exposed repeatedly.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Contains benzene, a regulated human carcinogen. Benzene has the potential to cause anemia and other blood diseases, including leukemia, after repeated and prolonged exposure. Exposure to light hydrocarbons in the same boiling range as this product has been associated in animal studies with systemic toxicity. See also Section 11 - Toxicological Information.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash). Chronic respiratory disease, liver or kidney dysfunction, or pre-existing central nervous system disorders may be aggravated by exposure.

4. FIRST AID MEASURES

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold eyelids open to ensure adequate flushing. Seek medical attention.

<u>SKIN</u>

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

Gasoline, All Grades

MSDS No. 9950

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing, ensure an open airway and provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES:

FLASH POINT: AUTOIGNITION TEMPERATURE: OSHA/NFPA FLAMMABILITY CLASS: LOWER EXPLOSIVE LIMIT (%): UPPER EXPLOSIVE LIMIT (%): -45 °F (-43°C) highly variable; > 530 °F (>280 °C) 1A (flammable liquid) 1.4% 7.6%

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. Flowing product may be ignited by self-generated static electricity. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

During certain times of the year and/or in certain geographical locations, gasoline may contain MTBE and/or TAME. Firefighting foam suitable for polar solvents is recommended for fuel with greater than 10% oxygenate concentration - refer to NFPA 11 "Low Expansion Foam - 1994 Edition."

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

Gasoline, All Grades

MSDS No. 9950

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY SPILL CONTINGENCY or EMERGENCY PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE HANDLING PRECAUTIONS

******USE ONLY AS A MOTOR FUEL****** ******DO NOT SIPHON BY MOUTH******

Handle as a flammable liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Special slow load procedures for "switch loading" must be followed to avoid the static ignition hazard that can exist when higher flash point material (such as fuel oil) is loaded into tanks previously containing low flash point products (such as this product) - see API Publication 2003, "Protection Against Ignitions Arising Out Of Static, Lightning and Stray Currents.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

MSDS No. 9950

8. EXPOSURE CONTROLS and PERSONAL PROTECTION								
EXPOSURE LIMITS								
Component (CAS No.)				Exposure Limits				
	Source	TWA (ppm)	STEL (ppm)	Note				
Gasoline (86290-81-5)	ACGIH	300	500	A3				
Benzene (71-43-2)	OSHA	1	5	Carcinogen				
	ACGIH	0.5	2.5	A1, skin				
	USCG		5					
n-Butane (106-97-8)	ACGIH	1000		Aliphatic Hydrocarbon Gases Alkane (C1-C4)				
Ethyl Alcohol (ethanol) (64-17-5)	OSHA	1000						
	ACGIH	1000		A4				
Ethyl benzene (100-41-4)	OSHA	100						
	ACGIH	100	125	A3				
n-Hexane (110-54-3)	OSHA	500						
	ACGIH	50		Skin				
Methyl-tertiary butyl ether [MTBE] (1634-04-4)	ACGIH	50		A3				
Tertiary-amyl methyl ether [TAME] (994-05-8)				None established				
Toluene (108-88-3)	OSHA	200		Ceiling: 300 ppm; Peak: 500 ppm (10 min.)				
	ACGIH	20		A4				
1,2,4- Trimethylbenzene (95-63-6)	ACGIH	25						
Xylene, mixed isomers (1330-20-7)	OSHA	100						
<u>.</u>	ACGIH	100	150	A4				

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile or neoprene are recommended. Chemical protective clothing such as that made of of E.I. DuPont Tychem ®, products or equivalent is recommended based on degree of exposure.

Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

RESPIRATORY PROTECTION

A NIOSH-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection and limitations.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

A translucent, straw-colored or light yellow liquid

Gasoline, All Grades

MSDS No. 9950

<u>ODOR</u>

A strong, characteristic aromatic hydrocarbon odor. Oxygenated gasoline with MTBE and/or TAME may have a sweet, ether-like odor and is detectable at a lower concentration than non-oxygenated gasoline.

ODOR THRESHOLD

	Odor Detection	Odor Recognition	
Non-oxygenated gasoline:	0.5 - 0.6 ppm	0.8 - 1.1 ppm	
Gasoline with 15% MTBE:	0.2 - 0.3 ppm	0.4 - 0.7 ppm	
Gasoline with 15% TAME:	0.1 ppm	0.2 ppm	
BASIC PHYSICAL PROPERT	IES		

BOILING RANGE: VAPOR PRESSURE: VAPOR DENSITY (air = 1): SPECIFIC GRAVITY ($H_2O = 1$): EVAPORATION RATE: PERCENT VOLATILES: SOLUBILITY (H_2O): 50
85 to 437 °F (39 to 200 °C)
6.4 - 15 RVP @ 100 °F (38 °C) (275-475 mm Hg @ 68 °F (20 °C)
AP 3 to 4
0.70 - 0.78
10-11 (n-butyl acetate = 1)
100 %
Non-oxygenated gasoline - negligible (< 0.1% @ 77 °F). Gasoline with 15%
MTBE - slight (0.1 - 3% @ 77 °F); ethanol is readily soluble in water

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources

INCOMPATIBLE MATERIALS

Keep away from strong oxidizers.

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke). Contact with nitric and sulfuric acids will form nitrocresols that can decompose violently.

11. TOXICOLOGICAL PROPERTIES

ACUTE TOXICITY

Acute Dermal LD50 (rabbits): > 5 ml/kg Primary dermal irritation (rabbits): slightly irritating Guinea pig sensitization: negative Acute Oral LD50 (rat): 18.75 ml/kg Draize eye irritation (rabbits): non-irritating

CHRONIC EFFECTS AND CARCINOGENICITY

Carcinogenicity:OSHA: NO IARC: YES - 2B

NTP: NO ACGIH: YES (A3)

IARC has determined that gasoline and gasoline exhaust are possibly carcinogenic in humans. Inhalation exposure to completely vaporized unleaded gasoline caused kidney cancers in male rats and liver tumors in female mice. The U.S. EPA has determined that the male kidney tumors are species-specific and are irrelevant for human health risk assessment. The significance of the tumors seen in female mice is not known. Exposure to light hydrocarbons in the same boiling range as this product has been associated in animal studies with effects to the central and peripheral nervous systems, liver, and kidneys. The significance of these animal models to predict similar human response to gasoline is uncertain.

This product contains benzene. Human health studies indicate that prolonged and/or repeated overexposure to benzene may cause damage to the blood-forming system (particularly bone marrow), and serious blood disorders such as aplastic anemia and leukemia. Benzene is listed as a human carcinogen by the NTP, IARC, OSHA and ACGIH.

Gasoline, All Grades

MSDS No. 9950

This product may contain methyl tertiary butyl ether (MTBE): animal and human health effects studies indicate that MTBE may cause eye, skin, and respiratory tract irritation, central nervous system depression and neurotoxicity. MTBE is classified as an animal carcinogen (A3) by the ACGIH.

12. ECOLOGICAL INFORMATION

Keep out of sewers, drainage areas and waterways. Report spills and releases, as applicable, under Federal and State regulations. If released, oxygenates such as ethers and alcohols will be expected to exhibit fairly high mobility in soil, and therefore may leach into groundwater. The API (<u>www.api.org</u>) provides a number of useful references addressing petroleum and oxygenate contamination of groundwater.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION

DOT PROPER SHIPPING NAME: DOT HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER: DOT SHIPPING LABEL: Gasoline 3, PG II UN 1203 FLAMMABLE LIQUID

15. REGULATORY INFORMATION

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other federal, state, or local regulations; consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
Х	Х	Х		

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product contains the following toxic chemicals subject to the reporting requirements of section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372:

INGREDIENT NAME (CAS NUMBER)	CONCENTRATION WT. PERCENT
Benzene (71-43-2)	0.1 to 4.9 (0.1 to 1.3 for reformulated gasoline)
Ethyl benzene (100-41-4)	< 3

 Gasoline, All Grades
 MSDS No. 9950

 n-Hexane (110-54-3)
 0.5 to 4

 Methyl-tertiary butyl ether (MTBE) (1634-04-4)
 0 to 15.0

 Toluene (108-88-3)
 1 to 15

 1,2,4- Trimethylbenzene (95-63-6)
 < 6</td>

US EPA guidance documents (<u>www.epa.gov/tri</u>) for reporting Persistent Bioaccumulating Toxics (PBTs) indicate this product may contain the following deminimis levels of toxic chemicals subject to Section 313 reporting:

1 to 15

INGREDIENT NAME (CAS NUMBER)CONCENTRATION - Parts per million (ppm) by weightPolycyclic aromatic compounds (PACs)17Benzo (g,h,i) perylene (191-24-2)2.55Lead (7439-92-1)0.079

CALIFORNIA PROPOSITION 65 LIST OF CHEMICALS

This product contains the following chemicals that are included on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

INGREDIENT NAME (CAS NUMBER)	Date Listed
Benzene	2/27/1987
Ethyl benzene	6/11/2004
Toluene	1/1/1991

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 2 (Flammable Liquid) Class D, Division 2A (Very toxic by other means) and Class D, Division 2B (Toxic by other means)

16. OTHER INFORMATION

Xylene, mixed isomers (1330-20-7)

<u>NFPA® HAZARD RATING</u>	HEALTH:	1	Slight
	FIRE:	3	Serious
	REACTIVITY:	0	Minimal
HMIS® HAZARD RATING	HEALTH: FIRE: PHYSICAL:	1 * 3 0	Slight Serious Minimal * CHRONIC

SUPERSEDES MSDS DATED: 07/01/06

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS:

AUKON			
ACGIH	American Conference of Governmental Industrial Hygienists	CERCLA	Comprehensive Emergency Response, Compensation, and Liability Act
AIHA	American Industrial Hygiene Association	DOT	U.S. Department of Transportation
ANSI	American National Standards Institute		[General Info: (800)467-4922]
	(212)642-4900	EPA	U.S. Environmental Protection Agency
API	American Petroleum Institute (202)682-8000	HMIS	Hazardous Materials Information System

Gasoline, All Grades

MSDS No. 9950

IARC	International Agency For Research On Cancer	REL SARA	Recommended Exposure Limit (NIOSH) Superfund Amendments and
MSHA	Mine Safety and Health Administration		Reauthorization Act of 1986 Title III
NFPA	National Fire Protection Association	SCBA	Self-Contained Breathing Apparatus
	(617)770-3000	SPCC	Spill Prevention, Control, and
NIOSH	National Institute of Occupational Safety		Countermeasures
	and Health	STEL	Short-Term Exposure Limit (generally 15
NOIC	Notice of Intended Change (proposed		minutes)
	change to ACGIH TLV)	TLV	Threshold Limit Value (ACGIH)
NTP	National Toxicology Program	TSCA	Toxic Substances Control Act
OPA	Oil Pollution Act of 1990	TWA	Time Weighted Average (8 hr.)
OSHA	U.S. Occupational Safety & Health	WEEL	Workplace Environmental Exposure
	Administration		Level (AIHA)
PEL	Permissible Exposure Limit (OSHA)	WHMIS	Workplace Hazardous Materials
RCRA	Resource Conservation and Recovery Act		Information System (Canada)

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Diesel Fuel (All Types)

MSDS No. 9909

EMERGENCY OVERVIEW

CAUTION! OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED

Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer. If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

NFPA 704 (Section 16)

1. CHEMICAL PRODUCT AND COMPANY INFORMATION

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER (24 hrs): CHEMTREC COMPANY CONTACT (business hours): Corporate Safe MSDS INTERNET WEBSITE: www.hess.com

CHEMTREC (800) 424-9300 Corporate Safety (732) 750-6000 www.hess.com (See Environment, Health, Safety & Social Responsibility)

SYNONYMS: Ultra Low Sulfur Diesel (ULSD); Low Sulfur Diesel; Motor Vehicle Diesel Fuel; Diesel Fuel #2; Dyed Diesel Fuel; Non-Road, Locomotive and Marine Diesel Fuel; Tax-exempt Diesel Fuel

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.) Diesel Fuel (68476-34-6) Naphthalene (91-20-3) CONCENTRATION PERCENT BY WEIGHT 100 Typically < 0.01

A complex mixture of hydrocarbons with carbon numbers in the range C9 and higher. Diesel fuel may be dyed (red) for tax purposes. May contain a multifunctional additive.

3.	HAZARDS IDENTIFICATION
EVES	

EYES

Contact with liquid or vapor may cause mild irritation.

<u>SKIN</u>

May cause skin irritation with prolonged or repeated contact. Practically non-toxic if absorbed following acute (single) exposure. Liquid may be absorbed through the skin in toxic amounts if large areas of skin are repeatedly exposed.

INGESTION

The major health threat of ingestion occurs from the danger of aspiration (breathing) of liquid drops into the lungs, particularly from vomiting. Aspiration may result in chemical pneumonia (fluid in the lungs), severe lung damage, respiratory failure and even death.

Ingestion may cause gastrointestinal disturbances, including irritation, nausea, vomiting and diarrhea, and central nervous system (brain) effects similar to alcohol intoxication. In severe cases, tremors, convulsions, loss of consciousness, coma, respiratory arrest, and death may occur.

Diesel Fuel (All Types)

MSDS No. 9909

INHALATION

Excessive exposure may cause irritations to the nose, throat, lungs and respiratory tract. Central nervous system (brain) effects may include headache, dizziness, loss of balance and coordination, unconsciousness, coma, respiratory failure, and death.

WARNING: the burning of any hydrocarbon as a fuel in an area without adequate ventilation may result in hazardous levels of combustion products, including carbon monoxide, and inadequate oxygen levels, which may cause unconsciousness, suffocation, and death.

CHRONIC EFFECTS and CARCINOGENICITY

Similar products produced skin cancer and systemic toxicity in laboratory animals following repeated applications. The significance of these results to human exposures has not been determined - see Section 11 Toxicological Information.

IARC classifies whole diesel fuel exhaust particulates as probably carcinogenic to humans (Group 2A). NIOSH regards whole diesel fuel exhaust particulates as a potential cause of occupational lung cancer based on animal studies and limited evidence in humans.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

In case of contact with eyes, immediately flush with clean, low-pressure water for at least 15 min. Hold evelids open to ensure adequate flushing. Seek medical attention.

SKIN

Remove contaminated clothing. Wash contaminated areas thoroughly with soap and water or waterless hand cleanser. Obtain medical attention if irritation or redness develops.

INGESTION

DO NOT INDUCE VOMITING. Do not give liquids. Obtain immediate medical attention. If spontaneous vomiting occurs, lean victim forward to reduce the risk of aspiration. Monitor for breathing difficulties. Small amounts of material which enter the mouth should be rinsed out until the taste is dissipated.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES:

FLASH POINT: AUTOIGNITION POINT: OSHA/NFPA FLAMMABILITY CLASS: 2 (COMBUSTIBLE) LOWER EXPLOSIVE LIMIT (%): UPPER EXPLOSIVE LIMIT (%):

> 125 °F (> 52 °C) minimum PMCC 494 °F (257 °C) 0.6 7.5

FIRE AND EXPLOSION HAZARDS

Vapors may be ignited rapidly when exposed to heat, spark, open flame or other source of ignition. When mixed with air and exposed to an ignition source, flammable vapors can burn in the open or explode in confined spaces. Being heavier than air, vapors may travel long distances to an ignition source and flash back. Runoff to sewer may cause fire or explosion hazard.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

Diesel Fuel (All Types)

MSDS No. 9909

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Handle as a combustible liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Diesel fuel, and in particular low and ultra low sulfur diesel fuel, has the capability of accumulating a static electrical charge of sufficient energy to cause a fire/explosion in the presence of lower flashpoint products such as gasoline. The accumulation of such a static charge occurs as the diesel flows through pipelines, filters, nozzles and various work tasks such as tank/container filling, splash loading, tank cleaning; product sampling; tank gauging; cleaning, mixing, vacuum truck operations, switch loading, and product agitation. There is a greater potential for static charge accumulation in cold temperature, low humidity conditions.

Documents such as 29 CFR OSHA 1910.106 "Flammable and Combustible Liquids, NFPA 77 Recommended Practice on Static Electricity, API 2003 "Protection Against Ignitions Arising Out of Static, Lightning, and Stray Currents and ASTM D4865 "Standard Guide for Generation and Dissipation of Static

Diesel Fuel (All Types)

MSDS No. 9909

Electricity in Petroleum Fuel Systems" address special precautions and design requirements involving loading rates, grounding, bonding, filter installation, conductivity additives and especially the hazards associated with "switch loading." ["Switch Loading" is when a higher flash point product (such as diesel) is loaded into tanks previously containing a low flash point product (such as gasoline) and the electrical charge generated during loading of the diesel results in a static ignition of the vapor from the previous cargo (gasoline).]

Note: When conductivity additives are used or are necessary the product should achieve 25 picosiemens/meter or greater at the handling temperature.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

		Exposure Limits	
Components (CAS No.)	Source	TWA/STEL	Note
Diocol Fuel: (69.476.34.6)	OSHA	5 mg/m, as mineral oil mist	
Diesei Fuel: (68476-34-6)	ACGIH	100 mg/m ³ (as totally hydrocarbon vapor) TWA	A3, skin
· · · · · · · · · · · · · · · · · · ·	OSHA	10 ppm TWA	
Naphthalene (91-20-3)	ACGIH	10 ppm TWA / 15 ppm STEL	A4, Skin

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Gloves constructed of nitrile, neoprene, or PVC are recommended. Chemical protective clothing such as of E.I. DuPont TyChem®, Saranex® or equivalent recommended based on degree of exposure. Note: The resistance of specific material may vary from product to product as well as with degree of exposure. Consult manufacturer specifications for further information.

Diesel Fuel (All Types)

MSDS No. 9909

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Clear, straw-yellow liquid. Dyed fuel oil will be red or reddish-colored.

<u>ODOR</u>

Mild, petroleum distillate odor

BASIC PHYSICAL PROPERTIES

BOILING RANGE:	320 to 690 oF (160 to 366 °C)
VAPOR PRESSURE:	0.009 psia @ 70 °F (21 °C)
VAPOR DENSITY (air = 1):	> 1.0
SPECIFIC GRAVITY $(H_2O = 1)$:	0.83 to 0.88 @ 60 °F (16 °C)
PERCENT VOLATILES:	100 %
EVAPORATION RATE:	Slow; varies with conditions
SOLUBILITY (H ₂ O):	Negligible

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid high temperatures, open flames, sparks, welding, smoking and other ignition sources. Keep away from strong oxidizers; Viton ®; Fluorel ®

HAZARDOUS DECOMPOSITION PRODUCTS

Carbon monoxide, carbon dioxide and non-combusted hydrocarbons (smoke).

11. TOXICOLOGICAL PROPERTIES

ACUTE TOXICITY

Acute dermal LD50 (rabbits): > 5 ml/kg Primary dermal irritation: extremely irritating (rabbits) Guinea pig sensitization: negative Acute oral LD50 (rats): 9 ml/kg Draize eye irritation: non-irritating (rabbits)

CHRONIC EFFECTS AND CARCINOGENICITY

Carcinogenic: OSHA: NO IARC: NO

ACGIH: A3

Studies have shown that similar products produce skin tumors in laboratory animals following repeated applications without washing or removal. The significance of this finding to human exposure has not been determined. Other studies with active skin carcinogens have shown that washing the animal's skin with soap and water between applications reduced tumor formation.

NTP: NO

MUTAGENICITY (genetic effects)

This material has been positive in a mutagenicity study.

Diesel Fuel (All Types)

DOT SHIPPING LABEL:

MSDS No. 9909

12. **ECOLOGICAL INFORMATION**

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. **DISPOSAL CONSIDERATIONS**

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION

PROPER SHIPPING NAME: HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER:

Diesel Fuel Placard (International Only): 3. PG III NA 1993 (Domestic) UN 1202 (International) None

Use Combustible Placard if shipping in bulk domestically

15. **REGULATORY INFORMATION**

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
Х	Х	Х		

SARA SECTION 313 - SUPPLIER NOTIFICATION

This product may contain listed chemicals below the *de minimis* levels which therefore are not subject to the supplier notification requirements of Section 313 of the Emergency Planning and Community Right-To-Know Act (EPCRA) of 1986 and of 40 CFR 372. If you may be required to report releases of chemicals listed in 40 CFR 372.28, you may contact Hess Corporate Safety if you require additional information regarding this product.

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product contains the following chemicals that are included on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

INGREDIENT NAME (CAS NUMBER) Diesel Engine Exhaust (no CAS Number listed)

Date Listed 10/01/1990

CANADIAN REGULATORY INFORMATION (WHMIS)

Class B, Division 3 (Combustible Liquid) and Class D, Division 2, Subdivision B (Toxic by other means)

Diesel Fuel (All Types)

MSDS No. 9909

16. OTHER INFORMATION

<u>NFPA®</u>	HAZARD RATING	HEALTH: FIRE: REACTIVITY:	0 2 0	
Refer to I	NFPA 704 "Identifica	ation of the Fire Hazard	ls of Materia	ls" for further information
<u>hmis® h</u>	IAZARD RATING	HEALTH: FIRE: PHYSICAL:	1 * * Chro 2 0	onic
SUPERS	EDES MSDS DATE	D: 02/28/2001		
ABBREV AP = App N/A = No	/IATIONS: proximately < = t Applicable N/D =	Less than > = = Not Determined pp	= Greater tha m = parts pe	an er million
ACRON	<u>(MS:</u>			
ACGIH	American Conferer	nce of Governmental	NTP	National Toxicology Program
ΔΙΗΔ	Industrial Hygienists		OPA OSHA	US Occupational Safety & Health
ANSI	SI American National Standards Institute		OONA	Administration
	(212) 642-4900		PEL	Permissible Exposure Limit (OSHA)
API	American Petroleur	m Institute	RCRA	Resource Conservation and Recovery
(202) 682-8000				Act
CERCLA	Comprehensive En	nergency Response,	REL	Recommended Exposure Limit (NIOSH)
Compensation, and Liability Act		SARA	Superfund Amendments and	
DOT	U.S. Department of	1 Transportation	SCBA	Self-Contained Breathing Apparatus
FPA	EPA US Environmental Protection Agency		SPCC	Spill Prevention Control and
HMIS	IMIS Hazardous Materials Information System		0,00	Countermeasures
IARC	International Agend	cy For Research On	STEL	Short-Term Exposure Limit (generally
	Cancer			15 minutes)
MSHA	Mine Safety and He	ealth Administration	TLV	Threshold Limit Value (ACGIH)
NFPA	National Fire Prote	ction Association	TSCA	Toxic Substances Control Act
	(617)770-3000		TWA	Time Weighted Average (8 hr.)
NIOSH	National Institute of	r Occupational Safety	WEEL	vvorkplace Environmental Exposure
NOIC	Notice of Intended	Change (proposed		Level (AINA) Canadian Workplace Hazardous
11010	change to ACGIH 1	TLV)		Materials Information System
	•			-

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Hess 5W30 Motor Oil

MSDS No. 9683

NFPA 704 (Section 16)

EMERGENCY OVERVIEW CAUTION! OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer.

If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

1. CHEMICAL PRODUCT AND COMPANY INFORMATION

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER: COMPANY CONTACT (business hours):

VALVOLINE: 800-247-5263

Valvoline Info: 606-357-7847 Corporate EHS 732-750-6000 www.hess.com

MSDS Internet Website:

SYNONYMS: Valvoline Product Code 52670453

This product is manufactured by The Valvoline Company and packaged under the Amerada Hess ("Hess") label. The information in this MSDS has been developed by The Valvoline Company, MSDS No. 505.0172013-013.002I, date 5/11/99.

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.)

CONCENTRATION PERCENT BY WEIGHT 83.0 – 93.0

Aliphatic Petroleum Distillates (64742-65-0) Detergent/ Dispersant Engine Oil Package Zinc Compounds

N/A N/A

Petroleum-based lubricating oil with detergent/dispersant engine oil package with zinc compounds.

3. HAZARDS IDENTIFICATION

EYES

May cause mild eye irritation. Symptoms include stinging, tearing, and redness.

<u>SKIN</u>

May cause mild skin irritation. Prolonged or repeated contact may dry the skin. Symptoms include redness, burning, drying and cracking of the skin, and skin burns. Additional symptoms of skin contact include: acne. Passage of this material into the body through the skin is possible, but it is unlikely that this would result in harmful effects during safe handling and use.

Hess 5W30 Motor Oil

MSDS No. 9683

INGESTION

Swallowing small amounts of this material during normal handling is not likely to cause harmful effects. Swallowing large amounts may be harmful.

INHALATION

It is possible to breathe this material under certain conditions of handling and use (for example, during heating, spraying, or stirring). Breathing small amounts of this material during normal handling is not likely to cause harmful effects. Breathing large amounts may be harmful. Symptoms usually occur at air concentrations higher than the recommended exposure limits.

CHRONIC EFFECTS and CARCINOGENICITY

This material is not listed as a carcinogen by IARC, NTP, or OSHA. Used motor oil has been shown to cause skin cancer in laboratory animal continually exposed by repeated applications. Avoid prolonged or repeated skin contact.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

If symptoms develop, move individual away from exposure and into fresh air. Flush eyes gently with water while holding eyelids apart. If symptoms persist or there is visual difficulty, seek medical attention.

<u>SKIN</u>

Remove contaminated clothing. Wash exposed area with soap and water. If symptoms persist, seek medical attention. Launder clothing before reuse.

INGESTION

Seek medical attention. If individual is drowsy or unconscious, do not give anything by mouth; place individual on the left side with the head down. Contact a physician, medical facility, or poison control center for advice about whether to induce vomiting. If possible, do not leave individual unattended.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Note to Physicians

Acute aspiration of large amounts of oil-laden material may produce a serious aspiration hazard. Patients who aspirate these oils should be followed for the development of long-term sequelae. Repeated aspiration of mineral oil can produce chronic inflammation of the lungs (i.e. lipoid pneumonia) that may progress to pulmonary fibrosis. Symptoms are often subtle and radiological changes appear worse than clinical abnormalities. Occasionally, persistent cough, irritation of the upper respiratory tract, shortness of breath with exertion, fever, and bloody sputum occur. Inhalation exposure to oil mists below current workplace exposure limits is unlikely to cause pulmonary abnormalities. Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material: skin.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES: FLASH POINT: AUTOIGNITION POINT: EXPLOSIVE LIMITS (%):

410.0 $^{\rm o}\text{F}\,$ (210.0 $^{\rm o}\text{C})\,$ COC No data No data

Hess 5W30 Motor Oil

MSDS No. 9683

FIRE AND EXPLOSION HAZARDS

Never use welding or cutting torch on or near drum (even empty) because product (even just residue) can ignite explosively. No special fire hazards are known to be associated with this product. Dense smoke may be generated while burning.

HAZARDOUS PRODUCTS OF COMBUSTION

May form: carbon dioxide and carbon monoxide, oxides of sulfur, nitrogen and phosphorous, various hydrocarbons.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

SMALL SPILL: Absorb liquid on vermiculite, floor absorbent or other absorbent material. Persons not wearing proper personal protective equipment should be excluded from area of spill.

Hess 5W30 Motor Oil

MSDS No. 9683

LARGE SPILL: Prevent run-off to sewers, streams, or other bodies of water. If run-off occurs, notify authorities as required, that a spill has occurred. Persons not wearing proper personal protective equipment should be excluded from area of spill until clean-up has been completed.

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Handle as a combustible liquid. Keep away from heat, sparks, and open flame! Electrical equipment should be approved for classified area. Bond and ground containers during product transfer to reduce the possibility of static-initiated fire or explosion.

Special slow load procedures for "switch loading" must be followed to avoid the static ignition hazard that can exist when higher flash point material (such as fuel oil) is loaded into tanks previously containing low flash point products (such as this product) - see API Publication 2003, "Protection Against Ignitions Arising Out Of Static, Lightning and Stray Currents.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

		Exposure Limits	
Components (CAS No.)	Source	TWA/STEL Note	
Aliphatic Petroleum Distillates (64742-65-0)	OSHA ACGIH	5 mg/m, as mineral oil mist 5 mg/m, as mineral oil mist	

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

Hess 5W30 Motor Oil

MSDS No. 9683

SKIN PROTECTION

Not normally required. However, wear resistant gloves such as nitrile rubber to prevent irritation which may result from prolonged or repeated skin contact with product. To prevent repeated or prolonged skin contact, wear impervious clothing and boots. Wear normal work clothing covering arms and legs.

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Dry, clear, and bright liquid

<u>ODOR</u>

No data

BASIC PHYSICAL PROPERTIES

BOILING RANGE:	(for component) > 425.0 F (218.3 C) @ 760.00 mmHg
VAPOR PRESSURE:	No data
VAPOR DENSITY (air = 1):	No data
LIQUID DENSITY:	7.300 lbs/gal @ 60.00 F (.876 kg/l @ 15.60 C)
SPECIFIC GRAVITY (H ₂ O = 1):	0.876 @ 60F
PERCENT VOLATILES:	No data
EVAPORATION RATE:	Slower than ethyl ether
pH:	No data
VISCOSITY:	<= 3300.0 cps @ -25 C; 10.5 - 11.2 cst @ 100 C

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid contact with: acids, halogens, strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS

May form: aldehydes, carbon dioxide and carbon monoxide, hydrogen sulfide, oxides of sulfur, nitrogen and phosphorus, toxic fumes, various hydrocarbons.

11. TOXICOLOGICAL PROPERTIES

No data

12. ECOLOGICAL INFORMATION

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

Hess 5W30 Motor Oil

MSDS No. 9683

14. TRANSPORTATION INFORMATION

PROPER SHIPPING NAME: HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER: DOT SHIPPING LABEL:

None None None None

15. **REGULATORY INFORMATION**

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
X	Х			

SARA SECTION 313 - SUPPLIER NOTIFICATION ZINC C1-C14 ALKYLDITHIOPHOSPHATE (CAS No. 68649-42-3)

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product and its components are not listed on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

1

1

CANADIAN REGULATORY INFORMATION (WHMIS)

Not controlled

16. **OTHER INFORMATION**

HEALTH: NFPA® HAZARD RATING

FIRE:

REACTIVITY: 0

Refer to NJPA 704 "Identification of the Fire Hazards of Materials" for further information

HMIS® HAZARD RATING	HEALTH:	1 *	Slight
	FIRE:	1	Slight
	PHYSICAL:	0	Negligible

Hess 5W30 Motor Oil

MSDS No. 9683

* Chronic

SUPERSEDES MSDS DATED: 05/11/1999

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS:

ACGIH	American Conference of Governmental	NTP	National Toxicology Program
AIHA	American Industrial Hygiene Association	OSHA	U.S. Occupational Safety & Health
ANSI	American National Standards Institute		Administration
	(212) 642-4900	PEL	Permissible Exposure Limit (OSHA)
API	American Petroleum Institute	RCRA	Resource Conservation and Recovery
	(202) 682-8000		Act
CERCLA	Comprehensive Emergency Response,	REL	Recommended Exposure Limit (NIOSH)
	Compensation, and Liability Act	SARA	Superfund Amendments and
DOT	U.S. Department of Transportation		Reauthorization Act of 1986 Title III
	[General info: (800) 467-4922]	SCBA	Self-Contained Breathing Apparatus
EPA	U.S. Environmental Protection Agency	SPCC	Spill Prevention, Control, and
HMIS	Hazardous Materials Information System		Countermeasures
IARC	International Agency For Research On	STEL	Short-Term Exposure Limit (generally
	Cancer		15 minutes)
MSHA	Mine Safety and Health Administration	TLV	Threshold Limit Value (ACGIH)
NFPA	National Fire Protection Association	TSCA	Toxic Substances Control Act
	(617)770-3000	TWA	Time Weighted Average (8 hr.)
NIOSH	National Institute of Occupational Safety	WEEL	Workplace Environmental Exposure
	and Health		Level (AIHA)
NOIC	Notice of Intended Change (proposed	WHMIS	Canadian Workplace Hazardous
	change to ACGIH TLV)		Materials Information System
	- ,		•

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Hess 10W30 Motor Oil

MSDS No. 8957

NFPA 704 (Section 16)

EMERGENCY OVERVIEW CAUTION! OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer. If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER: COMPANY CONTACT (business hours):

VALVOLINE: 800-247-5263

Valvoline Info:606-357-7847 Corporate EHS 732-750-6000 www.hess.com

MSDS Internet Website:

SYNONYMS: Valvoline Product Code 52670413

This product is manufactured by The Valvoline Company and packaged under the Amerada Hess ("Hess") label. The information in this MSDS has been developed by The Valvoline Company, MSDS No. 505.0170829-014.002I, date 5/11/99.

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.) Aliphatic Petroleum Distillates (64742-65-0) Detergent/ Dispersant Engine Oil Package CONCENTRATION PERCENT BY WEIGHT 83.0 – 93.0

N/A N/A

Petroleum-based lubricating oil with detergent/dispersant engine oil package with zinc compounds.

3. HAZARDS IDENTIFICATION

<u>EYES</u>

Zinc Compounds

May cause mild eye irritation. Symptoms include stinging, tearing, and redness.

<u>SKIN</u>

May cause mild skin irritation. Prolonged or repeated contact may dry the skin. Symptoms include redness, burning, drying and cracking of the skin, and skin burns. Additional symptoms of skin contact include: acne. Passage of this material into the body through the skin is possible, but it is unlikely that this would result in harmful effects during safe handling and use.

INGESTION

Hess 10W30 Motor Oil

MSDS No. 8957

Swallowing small amounts of this material during normal handling is not likely to cause harmful effects. Swallowing large amounts may be harmful.

INHALATION

It is possible to breathe this material under certain conditions of handling and use (for example, during heating, spraying, or stirring). Breathing small amounts of this material during normal handling is not likely to cause harmful effects. Breathing large amounts may be harmful. Symptoms usually occur at air concentrations higher than the recommended exposure limits.

CHRONIC EFFECTS and CARCINOGENICITY

This material is not listed as a carcinogen by IARC, NTP, or OSHA. Used motor oil has been shown to cause skin cancer in laboratory animal continually exposed by repeated applications. Avoid prolonged or repeated skin contact.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

If symptoms develop, move individual away from exposure and into fresh air. Flush eyes gently with water while holding eyelids apart. If symptoms persist or there is visual difficulty, seek medical attention.

<u>SKIN</u>

Remove contaminated clothing. Wash exposed area with soap and water. If symptoms persist, seek medical attention. Launder clothing before reuse.

INGESTION

Seek medical attention. If individual is drowsy or unconscious, do not give anything by mouth; place individual on the left side with the head down. Contact a physician, medical facility, or poison control center for advice about whether to induce vomiting. If possible, do not leave individual unattended.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Note to Physicians

Acute aspiration of large amounts of oil-laden material may produce a serious aspiration hazard. Patients who aspirate these oils should be followed for the development of long-term sequelae. Repeated aspiration of mineral oil can produce chronic inflammation of the lungs (i.e. lipoid pneumonia) that may progress to pulmonary fibrosis. Symptoms are often subtle and radiological changes appear worse than clinical abnormalities. Occasionally, persistent cough, irritation of the upper respiratory tract, shortness of breath with exertion, fever, and bloody sputum occur. Inhalation exposure to oil mists below current workplace exposure limits is unlikely to cause pulmonary abnormalities. Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material: skin.

5. FIRE FIGHTING MEASURES FLAMMABLE PROPERTIES: FLASH POINT: AUTOIGNITION POINT: EXPLOSIVE LIMITS (%):

430.0 °F (221.1 °C) COC No data No data

FIRE AND EXPLOSION HAZARDS

Hess 10W30 Motor Oil

MSDS No. 8957

Never use welding or cutting torch on or near drum (even empty) because product (even just residue) can ignite explosively. No special fire hazards are known to be associated with this product. Dense smoke may be generated while burning.

HAZARDOUS PRODUCTS OF COMBUSTION

May form: carbon dioxide and carbon monoxide, oxides of sulfur, nitrogen and phosphorous, various hydrocarbons.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

SMALL SPILL: Absorb liquid on vermiculite, floor absorbent or other absorbent material. Persons not wearing proper personal protective equipment should be excluded from area of spill.

Hess 10W30 Motor Oil

MSDS No. 8957

LARGE SPILL: Prevent run-off to sewers, streams, or other bodies of water. If run-off occurs, notify authorities as required, that a spill has occurred. Persons not wearing proper personal protective equipment should be excluded from area of spill until clean-up has been completed.

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Containers of this material may be hazardous when emptied. Since emptied containers retain product residues (vapor, liquid, and/or solid), all hazard precautions given in the data sheet must be observed. All five gallon pails and larger metal containers including tank cars and tank trucks should be grounded and/or bonded when material is transferred. Precautions during use: avoid prolonged or frequently repeated skin contact with this material. Skin contact can be minimized by wearing impervious protective gloves. As with all products of this nature, good personal hygiene is essential. Hands and other exposed areas should be washed thoroughly with soap and water after contact, especially before eating and/or smoking. Regular laundering of contaminated clothing is essential to reduce indirect skin contact with this material. Warning. Sudden release of hot organic chemical vapors or mists from process equipment operating at elevated temperature and pressure, or sudden ingress of air into vacuum equipment, may result in ignitions without the presence of obvious ignition sources. Published "autoignition" or "ignition" temperature values cannot be treated as safe operating temperatures in chemical processes without analysis of the actual process conditions. Any use of this product in elevated temperature processes should be thoroughly evaluated to establish and maintain safe operating conditions.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

		Exposure Limits		
Components (CAS No.)	Source	TWA/STEL	Note	
Aliphatic Petroleum Distillates (64742-65-0)	OSHA ACGIH	5 mg/m, as mineral oil mist 5 mg/m, as mineral oil mist		

Hess 10W30 Motor Oil

MSDS No. 8957

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Not normally required. However, wear resistant gloves such as nitrile rubber to prevent irritation which may result from prolonged or repeated skin contact with product. To prevent repeated or prolonged skin contact, wear impervious clothing and boots. Wear normal work clothing covering arms and legs.

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Dry, clear, and bright liquid

<u>ODOR</u>

No data

BASIC PHYSICAL PROPERTIES

BOILING RANGE:	(for component) > 425.0 F (218.3 C) @ 760.00 mmHg
VAPOR PRESSURE:	Not applicable
VAPOR DENSITY (air = 1):	No data
LIQUID DENSITY:	7.340 lbs/gal @ 60.00 F (.881 kg/l @ 15.60 C)
SPECIFIC GRAVITY (H ₂ O = 1):	0.881 @ 60F
PERCENT VOLATILES:	No data
EVAPORATION RATE:	Slower than ethyl ether
pH:	Not applicable
VISCOSITY:	<= 3300.0 cps @ -20 C; 10.0 - 11.0 cst @ 100 C

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid contact with: acids, halogens, strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS

May form: aldehydes, carbon dioxide and carbon monoxide, hydrogen sulfide, oxides of sulfur, nitrogen and phosphorus, toxic fumes, various hydrocarbons.

11. TOXICOLOGICAL PROPERTIES

No data

Hess 10W30 Motor Oil

MSDS No. 8957

12. **ECOLOGICAL INFORMATION**

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

DISPOSAL CONSIDERATIONS 13.

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION

PROPER SHIPPING NAME: HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER: DOT SHIPPING LABEL:

None None None None

REGULATORY INFORMATION 15.

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION	<u> 311/312 - HAZARD CI</u>	LASSES		
ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
X	Х			

SARA SECTION 313 - SUPPLIER NOTIFICATION ZINC C1-C14 ALKYLDITHIOPHOSPHATE (CAS No. 68649-42-3)

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product and its components are not listed on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

CANADIAN REGULATORY INFORMATION (WHMIS)

Not controlled

Hess 10W30 Motor Oil

MSDS No. 8957

16. OTHER INFORMATIO)N
----------------------	----

1 NFPA® HAZARD RATING HEALTH: FIRE: 1 **REACTIVITY:** 0 Refer to NJPA 704 "Identification of the Fire Hazards of Materials" for further information

HMIS® HAZARD RATING	HEALTH: FIRE:	1 * 1	Slight Slight
	PHYSICAL:	0	Negligible
			* Chronic

SUPERSEDES MSDS DATED: 05/11/1999

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

<u>ACRONY</u>	<u>MS:</u>		
ACGIH	American Conference of Governmental	NTP	National Toxicology Program
	Industrial Hygienists	OPA	Oil Pollution Act of 1990
AIHA	American Industrial Hygiene Association	OSHA	U.S. Occupational Safety & Health
ANSI	American National Standards Institute		Administration
	(212) 642-4900	PEL	Permissible Exposure Limit (OSHA)
API	American Petroleum Institute	RCRA	Resource Conservation and Recovery
	(202) 682-8000		Act
CERCLA	Comprehensive Emergency Response,	REL	Recommended Exposure Limit (NIOSH)
	Compensation, and Liability Act	SARA	Superfund Amendments and
DOT	U.S. Department of Transportation		Reauthorization Act of 1986 Title III
	[General info: (800) 467-4922]	SCBA	Self-Contained Breathing Apparatus
EPA	U.S. Environmental Protection Agency	SPCC	Spill Prevention, Control, and
HMIS	Hazardous Materials Information System		Countermeasures
IARC	International Agency For Research On	STEL	Short-Term Exposure Limit (generally
	Cancer		15 minutes)
MSHA	Mine Safety and Health Administration	TLV	Threshold Limit Value (ACGIH)
NFPA	National Fire Protection Association	TSCA	Toxic Substances Control Act
	(617)770-3000	TWA	Time Weighted Average (8 hr.)
NIOSH	National Institute of Occupational Safety	WEEL	Workplace Environmental Exposure
	and Health		Level (AIHA)
NOIC	Notice of Intended Change (proposed	WHMIS	Canadian Workplace Hazardous
	change to ACGIH TLV)		Materials Information System

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or

AMERADA HESS CORPORATION

MATERIAL SAFETY DATA SHEET

Low Sulfur Diesel Fuel

MSDS No. 9904

third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Hess 10W40 Motor Oil

MSDS No. 14292

EMERGENCY OVERVIEW CAUTION! OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer. If ingested, do NOT induce vomiting, as this may cause chemical pneumonia (fluid in the lungs).

1. CHEMICAL PRODUCT AND COMPANY INFORMATION

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER: COMPANY CONTACT (business hours):

VALVOLINE: 800-247-5263

Valvoline Info:606-357-7847 Corporate EHS 732-750-6000 www.hess.com

MSDS Internet Website:

SYNONYMS: Valvoline Product Code 52670414

This product is manufactured by The Valvoline Company and packaged under the Amerada Hess ("Hess") label. The information in this MSDS has been developed by The Valvoline Company, MSDS No. 505.0164091-016.003I, date 5/11/99.

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.) Aliphatic Petroleum Distillates (64742-65-0) Detergent/ Dispersant Engine Oil Package **CONCENTRATION PERCENT BY WEIGHT** 83.0 – 93.0

N/A N/A

Petroleum-based lubricating oil with detergent/dispersant engine oil package with zinc compounds.

3. HAZARDS IDENTIFICATION

<u>EYES</u>

Zinc Compounds

May cause mild eye irritation. Symptoms include stinging, tearing, and redness.

<u>SKIN</u>

May cause mild skin irritation. Prolonged or repeated contact may dry the skin. Symptoms include redness, burning, drying and cracking of the skin, and skin burns. Additional symptoms of skin contact include: acne. Passage of this material into the body through the skin is possible, but it is unlikely that this would result in harmful effects during safe handling and use.

INGESTION

Hess 10W40 Motor Oil

MSDS No. 14292

Swallowing small amounts of this material during normal handling is not likely to cause harmful effects. Swallowing large amounts may be harmful.

INHALATION

It is possible to breathe this material under certain conditions of handling and use (for example, during heating, spraying, or stirring). Breathing small amounts of this material during normal handling is not likely to cause harmful effects. Breathing large amounts may be harmful. Symptoms usually occur at air concentrations higher than the recommended exposure limits.

CHRONIC EFFECTS and CARCINOGENICITY

This material is not listed as a carcinogen by IARC, NTP, or OSHA. Used motor oil has been shown to cause skin cancer in laboratory animal continually exposed by repeated applications. Avoid prolonged or repeated skin contact.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

If symptoms develop, move individual away from exposure and into fresh air. Flush eyes gently with water while holding eyelids apart. If symptoms persist or there is visual difficulty, seek medical attention.

<u>SKIN</u>

Remove contaminated clothing. Wash exposed area with soap and water. If symptoms persist, seek medical attention. Launder clothing before reuse.

INGESTION

Seek medical attention. If individual is drowsy or unconscious, do not give anything by mouth; place individual on the left side with the head down. Contact a physician, medical facility, or poison control center for advice about whether to induce vomiting. If possible, do not leave individual unattended.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Note to Physicians

Acute aspiration of large amounts of oil-laden material may produce a serious aspiration hazard. Patients who aspirate these oils should be followed for the development of long-term sequelae. Repeated aspiration of mineral oil can produce chronic inflammation of the lungs (i.e. lipoid pneumonia) that may progress to pulmonary fibrosis. Symptoms are often subtle and radiological changes appear worse than clinical abnormalities. Occasionally, persistent cough, irritation of the upper respiratory tract, shortness of breath with exertion, fever, and bloody sputum occur. Inhalation exposure to oil mists below current workplace exposure limits is unlikely to cause pulmonary abnormalities. Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material: skin.

5. FIRE FIGHTING MEASURES FLAMMABLE PROPERTIES: FLASH POINT: AUTOIGNITION POINT: EXPLOSIVE LIMITS (%):

435.0 $^{\rm o}\text{F}\,$ (223.8 $^{\rm o}\text{C})\,$ COC No data No data

FIRE AND EXPLOSION HAZARDS

Hess 10W40 Motor Oil

MSDS No. 14292

Never use welding or cutting torch on or near drum (even empty) because product (even just residue) can ignite explosively. No special fire hazards are known to be associated with this product. Dense smoke may be generated while burning.

HAZARDOUS PRODUCTS OF COMBUSTION

May form: carbon dioxide and carbon monoxide, oxides of sulfur, nitrogen and phosphorous, various hydrocarbons.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

SMALL SPILL: Absorb liquid on vermiculite, floor absorbent or other absorbent material. Persons not wearing proper personal protective equipment should be excluded from area of spill.

Hess 10W40 Motor Oil

MSDS No. 14292

LARGE SPILL: Prevent run-off to sewers, streams, or other bodies of water. If run-off occurs, notify authorities as required, that a spill has occurred. Persons not wearing proper personal protective equipment should be excluded from area of spill until clean-up has been completed.

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Containers of this material may be hazardous when emptied. Since emptied containers retain product residues (vapor, liquid, and/or solid), all hazard precautions given in the data sheet must be observed. All five gallon pails and larger metal containers including tank cars and tank trucks should be grounded and/or bonded when material is transferred. Precautions during use: avoid prolonged or frequently repeated skin contact with this material. Skin contact can be minimized by wearing impervious protective gloves. As with all products of this nature, good personal hygiene is essential. Hands and other exposed areas should be washed thoroughly with soap and water after contact, especially before eating and/or smoking. Regular laundering of contaminated clothing is essential to reduce indirect skin contact with this material. Warning. Sudden release of hot organic chemical vapors or mists from process equipment operating at elevated temperature and pressure, or sudden ingress of air into vacuum equipment, may result in ignitions without the presence of obvious ignition sources. Published "autoignition" or "ignition" temperature values cannot be treated as safe operating temperatures in chemical processes without analysis of the actual process conditions. Any use of this product in elevated temperature processes should be thoroughly evaluated to establish and maintain safe operating conditions.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

		Exposure Limits		
Components (CAS No.)	Source	TWA/STEL	Note	
Aliphatic Petroleum Distillates	OSHA	5 mg/m, as mineral oil mist		
(64742-65-0)	ACGIH	5 mg/m, as mineral oil mist		

ENGINEERING CONTROLS

Hess 10W40 Motor Oil

MSDS No. 14292

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Safety glasses or goggles are recommended where there is a possibility of splashing or spraying.

SKIN PROTECTION

Not normally required. However, wear resistant gloves such as nitrile rubber to prevent irritation which may result from prolonged or repeated skin contact with product. To prevent repeated or prolonged skin contact, wear impervious clothing and boots. Wear normal work clothing covering arms and legs.

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Dry, clear, and bright liquid

<u>ODOR</u>

No data

BASIC PHYSICAL PROPERTIES

BOILING RANGE:	(for component) > 425.0 F (218.3 C) @ 760.00 mmHg
VAPOR PRESSURE:	No data
VAPOR DENSITY (air = 1):	No data
LIQUID DENSITY:	7.340 lbs/gal @ 60.00 F (.881 kg/l @ 15.60 C)
SPECIFIC GRAVITY (H ₂ O = 1):	0.881 @ 60F
PERCENT VOLATILES:	No data
EVAPORATION RATE:	Slower than ethyl ether
pH:	No data
VISCOSITY:	<= 3300.0 cps @ -20 C; 13.5 – 14.5 cst @ 100 C

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid contact with: acids, halogens, strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS

May form: aldehydes, carbon dioxide and carbon monoxide, hydrogen sulfide, oxides of sulfur, nitrogen and phosphorus, toxic fumes, various hydrocarbons.

11. TOXICOLOGICAL PROPERTIES

No data

12. ECOLOGICAL INFORMATION

Hess 10W40 Motor Oil

MSDS No. 14292

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

14.	TRANSPORTATION INFORMATION	

PROPER SHIPPING NAME:	None
HAZARD CLASS and PACKING GROUP:	None
DOT IDENTIFICATION NUMBER:	None
DOT SHIPPING LABEL:	None

15. REGULATORY INFORMATION

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
X	X			

SARA SECTION 313 - SUPPLIER NOTIFICATION

ZINC C1-C14 ALKYLDITHIOPHOSPHATE (CAS No. 68649-42-3)

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product and its components are not listed on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

CANADIAN REGULATORY INFORMATION (WHMIS)

Not controlled

16. OTHER INFORMA	TION		
NFPA® HAZARD RATING	HEALTH:	1	

1

0

FIRE: REACTIVITY:

Refer to NJPA 704 "Identification of the Fire Hazards of Materials" for further information

Hess 10W40 Motor Oil

MSDS No. 14292

HMIS® HAZARD RATING	HEALTH:	1 *	Slight
	FIRE:	1	Slight
	PHYSICAL:	0	Negligible
			* Chronic

SUPERSEDES MSDS DATED: 05/11/1999

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS:

ACRONT	<u>NI3.</u>		
ACGIH	American Conference of Governmental	NTP	National Toxicology Program
	Industrial Hygienists	OPA	Oil Pollution Act of 1990
AIHA	American Industrial Hygiene Association	OSHA	U.S. Occupational Safety & Health
ANSI	American National Standards Institute		Administration
	(212) 642-4900	PEL	Permissible Exposure Limit (OSHA)
API	American Petroleum Institute	RCRA	Resource Conservation and Recovery
	(202) 002-0000	חבו	Decommonded Exposure Limit (NIOSH)
CERCLA		REL	
	Compensation, and Liability Act	SARA	Superfund Amendments and
DOT	U.S. Department of Transportation		Reauthorization Act of 1986 Title III
	[General info: (800) 467-4922]	SCBA	Self-Contained Breathing Apparatus
EPA	U.S. Environmental Protection Agency	SPCC	Spill Prevention, Control, and
HMIS	Hazardous Materials Information System		Countermeasures
IARC	International Agency For Research On	STEL	Short-Term Exposure Limit (generally
	Cancer		15 minutes)
MSHA	Mine Safety and Health Administration	TLV	Threshold Limit Value (ACGIH)
NFPA	National Fire Protection Association	TSCA	Toxic Substances Control Act
	(617)770-3000	TWA	Time Weighted Average (8 hr.)
NIOSH	National Institute of Occupational Safety	WEEL	Workplace Environmental Exposure
	and Health		Level (AIHA)
NOIC	Notice of Intended Change (proposed	WHMIS	Canadian Workplace Hazardous
	change to ACGIH TLV)		Materials Information System

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Hess Dextron/Mercon ATF

MSDS No. 16931

NFPA 704 (Section 16)

EMERGENCY OVERVIEW CAUTION! OSHA/NFPA COMBUSTIBLE LIQUID - SLIGHT TO MODERATE IRRITANT EFFECTS CENTRAL NERVOUS SYSTEM HARMFUL OR FATAL IF SWALLOWED Moderate fire hazard. Avoid breathing vapors or mists. May cause dizziness and drowsiness. May cause moderate eye irritation and skin irritation (rash). Long-term, repeated exposure may cause skin cancer.

1. CHEMICAL PRODUCT AND COMPANY INFORMATION

Hess Corporation 1 Hess Plaza Woodbridge, NJ 07095-0961

EMERGENCY TELEPHONE NUMBER: COMPANY CONTACT (business hours):

VALVOLINE: 800-247-5263

Valvoline Info: 606-357-7847 Corporate EHS 732-750-6000 www.hess.com

MSDS Internet Website:

SYNONYMS: Automatic Transmission Fluid; Valvoline Product Code 52678302

This product is manufactured by The Valvoline Company and packaged under the Amerada Hess ("Hess") label. The information in this MSDS has been developed by The Valvoline Company, MSDS No. 505.0200299-007.002I, date 09/14/99.

See Section 16 for abbreviations and acronyms.

2. COMPOSITION and CHEMICAL INFORMATION ON INGREDIENTS

INGREDIENT NAME (CAS No.)

CONCENTRATION PERCENT BY WEIGHT 73.0 - 83.0

Aliphatic Petroleum Distillates (64742-65-0)

Petroleum-based lubricating oil with transmission fluid package.

3. HAZARDS IDENTIFICATION

<u>EYES</u>

Unlikely to cause eye irritation or injury

<u>SKIN</u>

Short-term exposure is not expected to cause skin irritation or injury. Prolonged or repeated exposure may dry and crack the skin. Pre-existing skin disorders may be aggravated by exposure to this material. Additional symptoms of skin contact may include: acne, Passage of this material into the body through the skin is possible, but it is unlikely that this would result in harmful effects during safe handling and use.

INGESTION

Swallowing small amounts of this material during normal handling is not likely to cause harmful effects. Swallowing large amounts may be harmful.

INHALATION

Hess Dextron/Mercon ATF

MSDS No. 16931

It is possible to breathe this material under certain conditions of handling and use (for example, during heating, spraying, or stirring). Breathing small amounts of this material during normal handling is not likely to cause harmful effects. Breathing large amounts may be harmful.

SYMPTOMS OF EXPOSURE

Signs and symptoms of exposure to this material through breathing, swallowing, and/or passage of the material through the skin may include: stomach or intestinal upset (nausea, vomiting, and diarrhea) irritation (nose, throat, airways).

CHRONIC EFFECTS and CARCINOGENICITY

This material is not listed as a carcinogen by IARC, NTP, or OSHA.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE

Irritation from skin exposure may aggravate existing open wounds, skin disorders, and dermatitis (rash).

4. FIRST AID MEASURES

EYES

If symptoms develop, move individual away from exposure and into fresh air. Flush eyes gently with water while holding eyelids apart. If symptoms persist or there is visual difficulty, seek medical attention.

<u>SKIN</u>

First aid is not normally required. However, it is recommended that exposed areas be cleaned by washing with soap and water.

INGESTION

Seek medical attention. If individual is drowsy or unconscious, do not give anything by mouth; place individual on the left side with the head down. Contact a physician, medical facility, or poison control center for advice about whether to induce vomiting. If possible, do not leave individual unattended.

INHALATION

Remove person to fresh air. If person is not breathing provide artificial respiration. If necessary, provide additional oxygen once breathing is restored if trained to do so. Seek medical attention immediately.

Note to Physicians

Acute aspiration of large amounts of oil-laden material may produce a serious aspiration hazard. Patients who aspirate these oils should be followed for the development of long-term sequelae. Repeated aspiration of mineral oil can produce chronic inflammation of the lungs (i.e. lipoid pneumonia) that may progress to pulmonary fibrosis. Symptoms are often subtle and radiological changes appear worse than clinical abnormalities. Occasionally, persistent cough, irritation of the upper respiratory tract, shortness of breath with exertion, fever, and bloody sputum occur. Inhalation exposure to oil mists below current workplace exposure limits is unlikely to cause pulmonary abnormalities. Preexisting disorders of the following organs (or organ systems) may be aggravated by exposure to this material: skin.

5. FIRE FIGHTING MEASURES

FLAMMABLE PROPERTIES: FLASH POINT: AUTOIGNITION POINT: EXPLOSIVE LIMITS (%):

365.0 $^{\rm o}\text{F}\,$ (185 $^{\rm o}\text{C})\,$ COC No data No data

FIRE AND EXPLOSION HAZARDS

Hess Dextron/Mercon ATF

MSDS No. 16931

Never use welding or cutting torch on or near drum (even empty) because product (even just residue) can ignite explosively. No special fire hazards are known to be associated with this product. Dense smoke may be generated while burning.

HAZARDOUS PRODUCTS OF COMBUSTION

May form: carbon dioxide and carbon monoxide, oxides of sulfur, nitrogen and phosphorous, various hydrocarbons.

EXTINGUISHING MEDIA

SMALL FIRES: Any extinguisher suitable for Class B fires, dry chemical, CO2, water spray, fire fighting foam, or Halon.

LARGE FIRES: Water spray, fog or fire fighting foam. Water may be ineffective for fighting the fire, but may be used to cool fire-exposed containers.

FIRE FIGHTING INSTRUCTIONS

Small fires in the incipient (beginning) stage may typically be extinguished using handheld portable fire extinguishers and other fire fighting equipment.

Firefighting activities that may result in potential exposure to high heat, smoke or toxic by-products of combustion should require NIOSH/MSHA- approved pressure-demand self-contained breathing apparatus with full facepiece and full protective clothing.

Isolate area around container involved in fire. Cool tanks, shells, and containers exposed to fire and excessive heat with water. For massive fires the use of unmanned hose holders or monitor nozzles may be advantageous to further minimize personnel exposure. Major fires may require withdrawal, allowing the tank to burn. Large storage tank fires typically require specially trained personnel and equipment to extinguish the fire, often including the need for properly applied fire fighting foam.

See Section 16 for the NFPA 704 Hazard Rating.

6. ACCIDENTAL RELEASE MEASURES

ACTIVATE FACILITY'S SPILL CONTINGENCY OR EMERGENCY RESPONSE PLAN.

Evacuate nonessential personnel and remove or secure all ignition sources. Consider wind direction; stay upwind and uphill, if possible. Evaluate the direction of product travel, diking, sewers, etc. to confirm spill areas. Spills may infiltrate subsurface soil and groundwater; professional assistance may be necessary to determine the extent of subsurface impact.

Carefully contain and stop the source of the spill, if safe to do so. Protect bodies of water by diking, absorbents, or absorbent boom, if possible. Do not flush down sewer or drainage systems, unless system is designed and permitted to handle such material. The use of fire fighting foam may be useful in certain situations to reduce vapors. The proper use of water spray may effectively disperse product vapors or the liquid itself, preventing contact with ignition sources or areas/equipment that require protection.

Take up with sand or other oil absorbing materials. Carefully shovel, scoop or sweep up into a waste container for reclamation or disposal - caution, flammable vapors may accumulate in closed containers. Response and clean-up crews must be properly trained and must utilize proper protective equipment (see Section 8).

SMALL SPILL: Absorb liquid on vermiculite, floor absorbent or other absorbent material. Persons not wearing proper personal protective equipment should be excluded from area of spill.

Hess Dextron/Mercon ATF

MSDS No. 16931

LARGE SPILL: Prevent run-off to sewers, streams, or other bodies of water. If run-off occurs, notify authorities as required, that a spill has occurred. Persons not wearing proper personal protective equipment should be excluded from area of spill until clean-up has been completed.

7. HANDLING and STORAGE

HANDLING PRECAUTIONS

Containers of this material may be hazardous when emptied. Since emptied containers retain product residues (vapor, liquid, and/or solid), all hazard precautions given in the data sheet must be observed. All five gallon pails and larger metal containers including tank cars and tank trucks should be grounded and/or bonded when material is transferred. Precautions during use: avoid prolonged or frequently repeated skin contact with this material. Skin contact can be minimized by wearing impervious protective gloves. As with all products of this nature, good personal hygiene is essential. Hands and other exposed areas should be washed thoroughly with soap and water after contact, especially before eating and/or smoking. Regular laundering of contaminated clothing is essential to reduce indirect skin contact with this material. Warning. Sudden release of hot organic chemical vapors or mists from process equipment operating at elevated temperature and pressure, or sudden ingress of air into vacuum equipment, may result in ignitions without the presence of obvious ignition sources. Published "autoignition" or "ignition" temperature values cannot be treated as safe operating temperatures in chemical processes without analysis of the actual process conditions. Any use of this product in elevated temperature processes should be thoroughly evaluated to establish and maintain safe operating conditions.

STORAGE PRECAUTIONS

Keep away from flame, sparks, excessive temperatures and open flame. Use approved vented containers. Keep containers closed and clearly labeled. Empty product containers or vessels may contain explosive vapors. Do not pressurize, cut, heat, weld or expose such containers to sources of ignition.

Store in a well-ventilated area. This storage area should comply with NFPA 30 "Flammable and Combustible Liquid Code". Avoid storage near incompatible materials. The cleaning of tanks previously containing this product should follow API Recommended Practice (RP) 2013 "Cleaning Mobile Tanks In Flammable and Combustible Liquid Service" and API RP 2015 "Cleaning Petroleum Storage Tanks".

WORK/HYGIENIC PRACTICES

Emergency eye wash capability should be available in the near proximity to operations presenting a potential splash exposure. Use good personal hygiene practices. Avoid repeated and/or prolonged skin exposure. Wash hands before eating, drinking, smoking, or using toilet facilities. Do not use as a cleaning solvent on the skin. Do not use solvents or harsh abrasive skin cleaners for washing this product from exposed skin areas. Waterless hand cleaners are effective. Promptly remove contaminated clothing and launder before reuse. Use care when laundering to prevent the formation of flammable vapors which could ignite via washer or dryer. Consider the need to discard contaminated leather shoes and gloves.

8. EXPOSURE CONTROLS and PERSONAL PROTECTION

EXPOSURE LIMITS

		Exposure Limits		
Components (CAS No.)	Source	TWA/STEL	Note	
Aliphatic Petroleum Distillates	OSHA	5 mg/m, as mineral oil mist		
(64742-65-0)	ACGIH	5 mg/m, as mineral oil mist		

Hess Dextron/Mercon ATF

MSDS No. 16931

ENGINEERING CONTROLS

Use adequate ventilation to keep vapor concentrations of this product below occupational exposure and flammability limits, particularly in confined spaces.

EYE/FACE PROTECTION

Not required under normal conditions of use. However, if misting or splashing conditions exist, then safety glasses or chemical splash goggles are advised.

SKIN PROTECTION

Not normally required. However, wear resistant gloves such as nitrile rubber to prevent irritation which may result from prolonged or repeated skin contact with product. To prevent repeated or prolonged skin contact, wear impervious clothing and boots. Wear normal work clothing covering arms and legs.

RESPIRATORY PROTECTION

A NIOSH/MSHA-approved air-purifying respirator with organic vapor cartridges or canister may be permissible under certain circumstances where airborne concentrations are or may be expected to exceed exposure limits or for odor or irritation. Protection provided by air-purifying respirators is limited. Refer to OSHA 29 CFR 1910.134, NIOSH Respirator Decision Logic, and the manufacturer for additional guidance on respiratory protection selection.

Use a positive pressure, air-supplied respirator if there is a potential for uncontrolled release, exposure levels are not known, in oxygen-deficient atmospheres, or any other circumstance where an air-purifying respirator may not provide adequate protection.

9. PHYSICAL and CHEMICAL PROPERTIES

APPEARANCE

Red liquid

ODOR: Petroleum

BASIC PHYSICAL PROPERTIES

BOILING RANGE:	No data
VAPOR PRESSURE:	No data
VAPOR DENSITY (air = 1):	No data
LIQUID DENSITY:	7.29 lbs/gal @ 60.00 F (.875 kg/l @ 15.60 C)
SPECIFIC GRAVITY (H ₂ O = 1):	0.875 @ 60F
PERCENT VOLATILES:	No data
EVAPORATION RATE:	Slower than ethyl ether
pH:	No data
VISCOSITY:	6.9 - 8.0 cst @ 100 C; 29.0 - 42.6 cst @ 40 C > 175.0 ratio

10. STABILITY and REACTIVITY

STABILITY: Stable. Hazardous polymerization will not occur.

CONDITIONS TO AVOID and INCOMPATIBLE MATERIALS

Avoid contact with: acids, halogens, strong oxidizing agents.

HAZARDOUS DECOMPOSITION PRODUCTS

May form: aldehydes, carbon dioxide and carbon monoxide, hydrogen sulfide, oxides of sulfur, nitrogen and phosphorus, toxic fumes, various hydrocarbons.

11. TOXICOLOGICAL PROPERTIES

No data

Hess Dextron/Mercon ATF

MSDS No. 16931

12. ECOLOGICAL INFORMATION

Keep out of sewers, drainage areas, and waterways. Report spills and releases, as applicable, under Federal and State regulations.

13. DISPOSAL CONSIDERATIONS

Consult federal, state and local waste regulations to determine appropriate disposal options.

14. TRANSPORTATION INFORMATION

PROPER SHIPPING NAME: HAZARD CLASS and PACKING GROUP: DOT IDENTIFICATION NUMBER: DOT SHIPPING LABEL:

None None None None

15. REGULATORY INFORMATION

U.S. FEDERAL, STATE, and LOCAL REGULATORY INFORMATION

This product and its constituents listed herein are on the EPA TSCA Inventory. Any spill or uncontrolled release of this product, including any substantial threat of release, may be subject to federal, state and/or local reporting requirements. This product and/or its constituents may also be subject to other regulations at the state and/or local level. Consult those regulations applicable to your facility/operation.

CLEAN WATER ACT (OIL SPILLS)

Any spill or release of this product to "navigable waters" (essentially any surface water, including certain wetlands) or adjoining shorelines sufficient to cause a visible sheen or deposit of a sludge or emulsion must be reported immediately to the National Response Center (1-800-424-8802) as required by U.S. Federal Law. Also contact appropriate state and local regulatory agencies as required.

CERCLA SECTION 103 and SARA SECTION 304 (RELEASE TO THE ENVIRONMENT)

The CERCLA definition of hazardous substances contains a "petroleum exclusion" clause which exempts crude oil, refined, and unrefined petroleum products and any indigenous components of such. However, other federal reporting requirements (e.g., SARA Section 304 as well as the Clean Water Act if the spill occurs on navigable waters) may still apply.

SARA SECTION 311/312 - HAZARD CLASSES

ACUTE HEALTH	CHRONIC HEALTH	FIRE	SUDDEN RELEASE OF PRESSURE	REACTIVE
Х				

SARA SECTION 313 - SUPPLIER NOTIFICATION

ZINC C1-C14 ALKYLDITHIOPHOSPHATE (CAS No. 68649-42-3)

CALIFORNIA PROPOSITON 65 LIST OF CHEMICALS

This product and its components are not listed on the Proposition 65 "List of Chemicals" required by the California Safe Drinking Water and Toxic Enforcement Act of 1986:

CANADIAN REGULATORY INFORMATION (WHMIS)

Not controlled

16. OTHER INFORMATION

NFPA® HAZARD RATING HEALTH: 1

FIRE: 1 REACTIVITY: 0

Hess Dextron/Mercon ATF

MSDS No. 16931

Refer to NJPA 704 "Identification of the Fire Hazards of Materials" for further information

HMIS® HAZARD RATING	HEALTH:	1 *	Slight
	FIRE:	1	Slight
	PHYSICAL:	0	Negligible
			* Chronic

<u>OTHER</u>: The information presented in this MSDS was taken directly from the MSDS for this product prepared by The Valvoline Company, the manufacturer of the product – see Section 2.

SUPERSEDES MSDS DATED: 05/11/1999

ABBREVIATIONS:

AP = Approximately	< = Less than	> = Greater than
N/A = Not Applicable	N/D = Not Determined	ppm = parts per million

ACRONYMS:

ACGIH	American Conference of Governmental	NTP OPA	National Toxicology Program Oil Pollution Act of 1990
AIHA	American Industrial Hygiene Association	OSHA	U.S. Occupational Safety & Health
ANSI	American National Standards Institute		Administration
	(212) 642-4900	PEL	Permissible Exposure Limit (OSHA)
API	American Petroleum Institute	RCRA	Resource Conservation and Recovery
	(202) 682-8000		Act
CERCLA	Comprehensive Emergency Response,	REL	Recommended Exposure Limit (NIOSH)
	Compensation, and Liability Act	SARA	Superfund Amendments and
DOT	U.S. Department of Transportation		Reauthorization Act of 1986 Title III
	[General info: (800) 467-4922]	SCBA	Self-Contained Breathing Apparatus
EPA	U.S. Environmental Protection Agency	SPCC	Spill Prevention, Control, and
HMIS	Hazardous Materials Information System		Countermeasures
IARC	International Agency For Research On	STEL	Short-Term Exposure Limit (generally
	Cancer		15 minutes)
MSHA	Mine Safety and Health Administration	TLV	Threshold Limit Value (ACGIH)
NFPA	National Fire Protection Association	TSCA	Toxic Substances Control Act
	(617)770-3000	TWA	Time Weighted Average (8 hr.)
NIOSH	National Institute of Occupational Safety	WEEL	Workplace Environmental Exposure
	and Health		Level (AIHA)
NOIC	Notice of Intended Change (proposed	WHMIS	Canadian Workplace Hazardous
	change to ACGIH TLV)		Materials Information System

DISCLAIMER OF EXPRESSED AND IMPLIED WARRANTIES

Information presented herein has been compiled from sources considered to be dependable, and is accurate and reliable to the best of our knowledge and belief, but is not guaranteed to be so. Since conditions of use are beyond our control, we make no warranties, expressed or implied, except those that may be contained in our written contract of sale or acknowledgment.

Vendor assumes no responsibility for injury to vendee or third persons proximately caused by the material if reasonable safety procedures are not adhered to as stipulated in the data sheet. Additionally, vendor assumes no responsibility for injury to vendee or third persons proximately caused by abnormal use of the material, even if reasonable safety procedures are followed. Furthermore, vendee assumes the risk in their use of the material.

Material Safety Data Sheet

can cause severe injury.

Physical State

WARNING!

Color

employees, customers and users of this product.

Liquid.

Seek medical attention immediately. Surgical removal of oil may be necessary. Spills may create a slipping hazard.

Clear to light amber.

Most damage occurs during the first few hours.

This Data Sheet contains important information.

READ AND KEEP FOR REFERENCE.

IMPORTANT: Read this MSDS before handling or disposing of this product and pass this information on to

Odor

Mild petroleum odor

Emergency Overview

Oil injected into the skin from high-pressure leaks in hydraulic systems

308166 Rev. D Updated: 5/02

First choice when quality counts.

Hazard Rankings				
	HMIS	NFPA		
Health Hazard	1	0		
Fire Hazard	1	1		
Reactivity	0	0		
* = Chronic Health Hazard				
- chronic rieatur	1102010			
Protective E	quipm	ent		
Protective E Minimum Rec See Section 8	quipm quiremer for Deta	ent nts ails		

1.0 CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Hydraulic Fluid Chemical Name: Industrial Oils Graco Inc. P.O. Box 1441 60 11th Ave. NE Minneapolis, MN 55440–1441 Emergency Information Health Emergency (RMPC): (303)– 623–5716

Chemical Spills (Chemtrec): (800)-424-9300

Part Number(s): 218-797

Use: Hydraulic Fluid used in PT2500 electric driver hydraulic pump.

2.0 COMPOSITION / INFORMATION ON INGREDIENTS

-		
Component %	CAS#	% by Weight
1)Distillates, petroleum, solvent-refined light	64741-89-5	30 – 50
paraffinic		
2)Distillates, petroleum, solvent-refined	64741-89-5	40 - 60
heavy paraffinic		
 Proprietary Ingredients 	Proprietary Mixture	0 - 2
 Zinc alkyldithiophosphate 	68649-42-3	0 - 1
		0 1

For exposure data, see 8.0, Exposure Controls / Personal Protection.

GRACO INC. P.O. BOX 1441 MINNEAPOLIS, MN 55440-1441 Page 1 of 11 ©COPYRIGHT 1997, GRACO INC. Graco Inc. is registered to ISO 9001

3.0 HAZARDS IDENTIFICATION

Emergency Overview: Physical State: Liquid light amber

Potential Health Effects:

Eye Contact		This	product can caus	e transie	ent mild eye i	rritation with	short-term conta	act with lic	quid sprays or mists
Skin Contact		This material can cause mild skin irritation from prolonged or repeated skin contact. Injection under the skin can cause inflammation, swelling and mild central nervous system depression. Injection of pressurized hydrocarbons can cause severe, permanent tissue damage. Initial symptoms may be minor. Injection of petroleum hydrocarbons requires immediate medical attention.							
Inhalation		At ele mem	evated temperatu branes of the no	ires or in se, the th	enclosed sp roat, bronch	aces, produ , and lungs	ct mist or vapors	s may irrita	te the mucous
Ingestion		If swallowed, large volumes of material can cause generalized depression, headache, drowsiness, nausea, vomiting and diarrhea. Smaller doses can cause a laxative effect. If aspirated into the lungs, liquid can cause lung damage.							
Chronic Health Effects Summary		Contains a petroleum-based mineral oil. Prolonged or repeated skin contact can cause mild irritation and inflammation characterized by drying, cracking, (dermatitis) or oil acne. Repeated or prolonged inhalation of petroleum-based mineral oil mists at concentrations above applicable workplace exposure levels can cause respiratory irritation or other pulmonary effects.							
Conditions Aggravated by Exposure		Medical conditions aggravated by exposure to this material may include pre-existing skin disorders.							
Target Organ	S	This material may cause damage to the following organs: skin.							
Carcinogenic Potential		This carci	product does not nogenic by OSH	contain A, IARC	any compon or NTP.	ents at conc	entrations above	e 0.1% wh	ich are considered
OSHA Hazard Class		ificatior	n is indicated by an	"X" in the	box adjacent Standard (29 (to the hazard CFR 1910 120	title. If no "X" is pr	esent, the p	product does not exhibit the
OSHA Health Hazard Classification OSHA Physical Hazard Classif			lassificati	ion					
Irritant			Тохіс		Combustib	le	Explosive		Pyrophoric
Sensitizer			Highly Toxic		Flammable		Oxidizer		Water-reactive
Corrosive			Carcinogenic		Compresse Gas	ed	Organic Peroxide		Unstable

4.0 FIRST AID MEASURES

Take proper precautions to ensure your own health and safety before attempting rescue or providing first aid. For more specific information, refer to Exposure Controls and Personal Protection in Section 8 of this MSDS.

Evo	Check for and remove contact lenses. Flush eves with cool, clean, low-pressure water while
Eye	occasionally lifting and lowering eyelids. Seek medical attention if excessive tearing, redness, or pain persists.
Skin	Remove contaminated shoes and clothing. Wipe off excess material. Wash exposed skin with mild soap and water. Seek medical attention if tissue appears damaged or if pain or irritation persists. Thoroughly clean contaminated clothing before reuse. Discard contaminated leather goods. If material is injected under the skin, seek medical attention immediately.
Inhalation	Move victim to fresh air. If victim is not breathing, immediately begin rescue breathing. If breathing is difficult, 100 percent humidified oxygen should be administered by a qualified individual. Seek medical attention immediately. Keep the affected individual warm and at rest.
Ingestion	Do not induce vomiting unless directed to by a physician. Do not give anything to drink unless directed to by a physician. Never give anything by mouth to a person who is not fully conscious. Seek medical attention immediately
Notes to Physician	In the event of injection in underlying tissue, immediate treatment should include extensive incision, debridement and saline irrigation. Inadequate treatment can result in ischemia and gangrene. Early symptoms may be minimal.

. NOTES: NA = Not Applicable;

NE = Not Established;

UN = Unavailable

5.0 FIREFIGHTING MEASURES

Flashpoint	OPEN CUP: 212°C (414°F) (Cleveland.).
UFL	No Data
LFL	No Data
Autoignition Temperature	Not Available
Flammability Classification	NFPA Class-IIIB combustible material. Slightly combustible!
Extinguishing Media	Use dry chemical, foam, Carbon Dioxide or water fog
Special Properties	This material can burn but will not readily ignite. This material will release vapors when heated above the flash point temperature that can ignite when exposed to a source of ignition. In enclosed spaces, heated vapor can ignite with explosive force. Mists or sprays may burn at temperatures below the flash point.
Firefighting Equipment	Firefighters must use full bunker gear including NIOSH-approved positive pressure self-contained breathing apparatus to protect against potential hazardous combustion or decomposition products and oxygen deficiencies.
Hazardous Combustion Products	Carbon dioxide, carbon monoxide, smoke, fumes, unburned hydrocarbons and trace oxides of sulfur, phosphorus, zinc and/or nitrogen.

6.0 ACCIDENTAL RELEASE MEASURES

Take proper precautions to ensure your own health and safety before attempting spill control or clean-up. For more specific information, refer to the Emergency Overview on Page 1, Exposure Controls and Personal Protection in Section 8 and Disposal Considerations in Section 13 of this MSDS.

Do not touch damaged containers or spilled material unless wearing appropriate protective equipment. Slipping hazard; do not walk through spilled material. Stop leak if you can do so without risk. For small spills, absorb or cover with dry earth, sand, or other inert non-combustible absorbent material and place into waste containers for later disposal. Contain large spills to maximize product recovery or disposal. Prevent entry into waterways or sewers. In urban area, cleanup spill as soon as possible. In natural environments, seek cleanup advice from specialists to minimize physical habitat damage. This material will float on water. Absorbent pads and similar materials can be used. Comply with all laws and regulations.

7.0 HANDLING AND STORAGE

Handling	Avoid water contamination and extreme temperatures to minimize product degradation. Empty containers may contain product residues that can ignite with explosive force. Do not pressurize, cut, weld, braze solder, drill, grind or expose containers to flames, sparks, heat or other potential ignition sources. Consult appropriate federal, state and local authorities before reusing, reconditioning, reclaiming, recycling or disposing of empty containers and/or waste residues of this product
Storage	Keep container closed. Do not store with strong oxidizing agents. Do not store at temperatures above 120° F or in direct sunlight for extended periods of time. Consult appropriate federal, state and local authorities before reusing, reconditioning, reclaiming, recycling or disposing of empty containers or waste residues of this product.

8.0 EXPOSURE CONTROLS / PERSONAL PROTECTION

Еуе	Safety glasses equipped with side shields should be adequate protection under most conditions of use. Wear goggles and/or face shield if splashing or spraying is anticipated. Wear goggles and face shield if material is heated above 125°F (51°C). Have suitable eye wash water available	
Personal Protective Equipment	Personal protective equipment should be selected based upon the conditions under which this material is used. A hazard assessment of the work area for PPE requirements should be conducted by a qualified professional pursuant to OSHA regulations. The following pictograms represent the minimum requirements for personal protective equipment. For certain operations, additional PPE may be required.	
	∽∽ Л 🖞	
Hand Protection	Use gloves constructed of chemica heavy nitrile rubber if frequent or pr protective gloves when handling pr	al resistant materials such as neoprene or rolonged contact is expected. Use heat- roduct at elevated temperatures.
Body Protection	Use clean and impervious protective clothing (e.g., neoprene or Tyvek (*)) if splashing or spraying conditions are present. Protective clothing may include long-sleeve outer garment, apron, or lab coat. If significant contact occurs, remove oil-contaminated clothing as soon as possible and promptly shower. Launder contaminated before reuse or discard. Wear heat protective boots and protective clothing when handling material at elevated temperatures	
Engineering Controls	Provide exhaust ventilation or other concentrations of mists and/or vapo (see below). An eye wash station a work-station	r engineering controls to keep the airborne ors below the recommended exposure limits and safety shower should be located near the
Respiratory Protection	Vaporization is not expected at ambient temperatures. Therefore, the need for respiratory protection is not anticipated under normal use conditions and with adequate ventilation. If elevated airborne concentrations above applicable workplace exposure levels are anticipated, a NIOSH-approved organic vapor respirator equipped with a dust/mist prefilter should be used. Protection factors vary depending upon the type of respirator used. Respirators should be used in accordance with OSHA requirements (29 CFR 1910.134).	
General Comments	Use good personal hygiene practices. Wash hands and other exposed skin areas with plenty of mild soap and water before eating, drinking, smoking, use of toilet facilities, or leaving work. DO NOT use gasoline, kerosene, solvents or harsh abrasives as skin cleaners. Since specific exposure standards/control limits have not been established for this product, the "Oil Mist, Mineral" exposure limits shown below are suggested as minimum control guidelines.	
Occupational Exposure Guidelines	Substance 1) Oil Mist, Mineral	Applicable Workplace Exposure Levels ACGIH (United States). TWA: 5 mg/m 3 STEL: 10 mg/m 3 OSHA (United States). TWA: 5 mg/m 3

9.0 CHEMICAL AND PHYSICAL PROPERTIES

Appearance and Odor	Mild petroleum odor
рН	Not Applicable
Vapor Pressure (mm Hg)	<0.001 kPa (<0.01 mmHg) (at 20°C)
Vapor Density (Air = 1)	>1 (Air = 1)
Boiling Point	Not available
Melting Point	Not available
Solubility in Water	Insoluble in cold water.
Specific Gravity (Water = 1)	0.87 (Water = 1)
Physical State	Liquid
Color	Clear to light amber
Viscosity (cST @ 40°C)	33
Volatile Characteristics	Negligible volatility
Additional Properties	Gravity, °API (ASTM D287) = 31.3 @ 60° F Density = 7.42 Lbs/gal. Viscosity (ASTM D2161) = 170 SUS @ 100° F

10.0 STABILITY AND REACTIVITY

Stability	Stable.
Conditions to Avoid	Keep away from extreme heat, sparks, open flame, and strongly oxidizing conditions.
Materials to Avoid	Strong oxidizers.
Hazardous Decomposition	No additional hazardous decomposition products were identified other than the combustion products identified in Section 5 of this MSDS
Hazardous Polymerization	Not expected to occur

11.0 TOXILOGICAL INFORMATION

For other health-related information, refer to the Emergency Overview on Page 1 of the Hazards Identification in Section 3 of this MSDS.

Distillates, petroleum, solvent-refined light paraffinic: ORAL (LD50): Acute: >5000 mg/kg [Rat]. DERMAL (LD50): Acute: >2000 mg/kg [Rabbit]. Distillates, petroleum, solvent-refined heavy paraffinic: ORAL (LD50): Acute: >5000 mg/kg [Rat]. DERMAL (LD50): Acute: >2000 mg/kg [Rabbit].

Distillates, petroleum, solvent-refined light paraffinic:

Mineral oil mists derived from highly refined oils are reported to have low acute and sub-acute toxicities in animals. Effects from single and short-term repeated exposures to high concentrations of mineral oil mists well above applicable workplace exposure levels include lung inflammatory reaction, lipoid granuloma formation and lipoid pneumonia. In acute and sub-acute studies involving exposures to lower concentrations of mineral oil mists at or near current work place exposure levels produced no significant toxicological effects. In long term studies (up to two years) no carcinogenic effects have been reported in any animal species tested.

Distillates, petroleum, solvent-refined heavy paraffinic:

Mineral oil mists derived from highly refined oils are reported to have low acute and sub-acute toxicities in animals. Effects from single and short-term repeated exposures to high concentrations of mineral oil mists well above applicable workplace exposure levels include lung inflammatory reaction, lipoid granuloma formation and lipoid pneumonia. In acute and sub-acute studies involving exposures to lower concentrations of mineral oil mists at or near current work place exposure levels produced no significant toxicological effects. In long term studies (up to two years) no carcinogenic effects have been reported in any animal species tested.

Hydraulic Oils:

Repeated or prolonged skin contact with certain hydraulic oils can cause mild skin irritation characterized by drying, cracking (dermatitis) or oil acne. Injection under the skin, in muscle or into the blood stream can cause irritation, inflammation, swelling, fever, and systemic effects, including mild central nervous system depression. Injection of pressurized hydrocarbons can cause severe, permanent tissue damage.

12.0 ECOLOGICAL INFORMATION

Ecotoxicity

Analysis for ecological effects has not been conducted on this product. However, if spilled, this product and any contaminated soil or water may be harmful to human, animal, and aquatic life. Also, the coating action associated with petroleum and petroleum products can be harmful or fatal to aquatic life and waterfowl.

Environmental Fate

An environmental fate analysis has not been conducted on this specific product. Plants and animals may experience harmful or fatal effects when coated with petroleum-based products. Petroleum-based (mineral) lube oils will normally float on water. In stagnant or slow-flowing waterways, an oil layer can cover a large surface area. As a result, this oil layer might limit or eliminate natural atmospheric oxygen transport into the water. With time, if not removed, oxygen depletion in the waterway can result in a loss of marine life or create an anaerobic environment. This material contains phosphorus which is a controlled element for disposal in effluent waters in most sections of North America. Phosphorus is known to enhance the formation of algae. Severe algae growth can reduce oxygen content in the water possibly below levels necessary to support marine life.

13.0 DISPOSAL INFORMATION

Hazard characteristic and regulatory waste stream classification can change with product use. Accordingly, it is the responsibility of the user to determine the proper storage, transportation, treatment and/or disposal methodologies for spent materials and residues at the time of disposition.

Conditions of use may cause this material to become a "hazardous waste", as defined by federal or state regulations. It is the responsibility of the user to determine if the material is a "hazardous waste" at the time of disposal. Transportation, treatment, storage, and disposal of waste material must be conducted in accordance with RCRA regulations (see 40 CFR 260 through 40 CFR 271). State and/or local regulations may be more restrictive. Contact the RCRA/Superfund Hotline at (800) 424-9346 or your regional US EPA office for guidance concerning case specific disposal issues. Empty drums and pails retain residue. DO NOT pressurize, cut, weld, braze, solder, drill, grind, or expose this product's empty container to heat, flame, or other ignition sources. DO NOT attempt to clean it. Empty drums and pails should be drained completely, properly bunged or sealed, and promptly sent to a reconditioner.

14.0 TRANSPORTATION INFORMATION U.S. Dept. of Transportation: Not a US Department of Transportation regulated material.

Hazard Class - Not regulated Packing Group(s) – Not applicable UN/NA ID – Not regulated Reportable Quantity – A Reportable Quantity (RQ) has not been established for this material. Placards

Emergency Response Guide No. Not applicable Hazmat STCC No. – Not assigned MARPOL III Status – Not a DOT "Marine Pollutant' Per 49 CFR 171.8

15.0 REGULATORY INFORMATION

	1
CERCLA Sections 102A/103 Hazardous Substances (40 CFR Part 302.4)	The Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) requires notification of the National Response Center concerning release of quantities of "hazardous substances" equal to or greater than the reportable quantities (RQ's) listed in 40 CFR 302.4. As defined by CERCLA, the term "hazardous substance" does not include petroleum, including crude oil or any fraction thereof which is not otherwise specifically designated in 40 CFR 302.4. Chemical substances present in this product or refinery stream that may be subject to this statute are: Zinc and Zinc Compounds, Concentration: 0 - 1%
SARA Title III Section 302 Extremely Hazardous Substances (40 CFR Part 355)	The Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III requires facilities subject to Subparts 302 and 304 to submit emergency planning and notification information based on Threshold Planning Quantities (TPQs) and Reportable Quantities (RQs) for "Extremely Hazardous Substances" listed in 40 CFR 302.4 and 40 CFR 355. No components were identified
SARA Title III Section 311/312 Hazardous Categorization (40 CFR Part 370)	The Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III requires facilities subject to this subpart to submit aggregate information on chemicals by "Hazard Category" as defined in 40 CFR 370.2. This material would be classified under the following hazard categories: No SARA 311/312 hazard categories identified.
SARA Title III Sections 313 (40 CFR Part 372)	This product contains the following components in concentrations above de minimis levels that are listed as toxic chemicals in 40 CFR Part 372 pursuant to the requirements of Section 313 of SARA: No components were identified.
U.S. Inventory (TSCA)	This product and/or its components are listed on the Toxic Substances Control Act (TSCA) inventory.
CWA	This material is classified as an oil under Section 311 of the Clean Water Act (CWA) and the Oil Pollution Act of 1990 (OPA). Discharges or spills which produce a visible sheen on waters of the United States, their adjoining shorelines, or into conduits leading to surface waters must be reported to the EPA's National Response Center at (800) 424-8802.
California Proposition 65	This material may contain the following components which are known to the State of California to cause cancer, birth defects or other reproductive harm, and may be subject to the requirements of California Proposition 65 (CA Health & Safety Code Section 25249.5): Toluene: 0.001%
New Jersey Right-to-Know Label	Petroleum Oil (Hydraulic Fluid)
Additional Regulatory Remarks	No additional regulatory remarks

16.0 OTHER INFORMATION

Refer to the top of Page 1 for the HMIS and NFPA Hazard Ratings for this product.

ABBREVIATIONS

AP = Approximately, EQ = Equal, > = Greater Than, < = Less Than, NA = Not Applicable, ND = No Data, NE = Not Established

ACGIH = American Conference of Governmental Industrial Hygienists

IARC = International Agency for Research on Cancer

NIOSH = National Institute of Occupational Safety and Health

NPCA = National Paint and Coating Manufacturers Association

NFPA = National Fire Protection Association

AIHA = American Industrial Hygiene Association

NTP = National Toxicology Program

OSHA = Occupational Safety and Health Administration

HMIS = Hazardous Materials Information System

EPA = Environmental Protection Agency

Prepared By

Graco, Inc.

This Material Safety Data Sheet and the information it contains is offered to you in good faith as accurate. We have reviewed any information contained in this data sheet which we have received from sources outside our company. We believe that information to be correct, but cannot guarantee its accuracy or completeness. Health and safety precautions in this Data Sheet may not be adequate for all individuals and/or situations. It is the users' obligation to evaluate and use this product safely and to comply with all applicable laws and regulations. No statement made in this data sheet shall be construed as a permission or recommendation for the use of any product in a manner that might infringe existing patents. No warranty is made, either express or implied.

NOTES: NA = Not Applicable; NE = Not Established; UN = Unavailable

All written and visual data contained in this document reflects the latest product information available at the time of publication.

Graco reserves the right to make changes at any time without notice.

Sales Offices: Minneapolis, Detroit, International Offices: Belgium, Korea, Hong Kong, Japan

> www.graco.com PRINTED IN U.S.A.

Health	1
Fire	1
Reactivity	0
Personal Protection	С

Material Safety Data Sheet Ethylene glycol MSDS

Section 1: Chemical Product and Company Identification

Product Name: Ethylene glycol

Catalog Codes: SLE1072

CAS#: 107-21-1

RTECS: KW2975000

TSCA: TSCA 8(b) inventory: Ethylene glycol

Cl#: Not available.

Synonym: 1,2-Dihydroxyethane; 1,2-Ethanediol; 1,2-Ethandiol; Ethylene dihydrate; Glycol alcohol; Monoethylene glycol; Tescol

Chemical Name: Ethylene Glycol

Chemical Formula: HOCH2CH2OH

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: **1-800-901-7247** International Sales: **1-281-441-4400**

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call: 1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS #	% by Weight
Ethylene glycol	107-21-1	100

Toxicological Data on Ingredients: Ethylene glycol: ORAL (LD50): Acute: 4700 mg/kg [Rat]. 5500 mg/kg [Mouse]. 6610 mg/kg [Guinea pig]. VAPOR (LC50): Acute: >200 mg/m 4 hours [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects:

Hazardous in case of ingestion. Slightly hazardous in case of skin contact (irritant, permeator), of eye contact (irritant), of inhalation. Severe over-exposure can result in death.

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH.

MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Non-mutagenic for bacteria and/or yeast.

TERATOGENIC EFFECTS: Not available.

DEVELOPMENTAL TOXICITY: Not available.

The substance may be toxic to kidneys, liver, central nervous system (CNS).

Repeated or prolonged exposure to the substance can produce target organs damage. Repeated exposure to a highly toxic material may produce general deterioration of health by an accumulation in one or many human

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Cold water may be used. Get medical attention if irritation occurs.

Skin Contact:

Wash with soap and water. Cover the irritated skin with an emollient. Get medical attention if irritation develops. Cold water may be used.

Serious Skin Contact: Not available.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

Serious Inhalation: Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If large quantities of this material are swallowed, call a physician immediately. Loosen tight clothing such as a collar, tie, belt or waistband.

Serious Ingestion:

Medical Conditions Aggravated by Exposure:

Persons with pre-existiing kidney, respiratory, eye, or neurological problems might be more sensitive to Ethylene Glycol.

Notes to Physician:

1. Support vital functions, correct for dehydration and shock, and manage fluid balance.

2. The currently recommended medical management of Ethylene Glycol poisoning includes elimination of

Ethylene Glycol and metabolites. Elimination of Ethylene Glycol may be achieved by the following methods:

a. Emptying the stomach by gastric lavage. It is useful if initiated within < 1 of ingestion.

b. Correct metabolic acidosis with intravenous administration of sodium bicarbonate, adjusting the administration rate accoridng to repeated and frequent measurement of acid/base status.

c. Administer ethanol (orally or by IV (intravenously)) or fomepizole (4-methylpyrazole or Antizol)) therapy by IV as an antidote to inhibit the ormation of toxic metabolites.

d. If patients are diagnosed and treated early in the course with the above methods, hemodialysis may be avoided if fomepizole or ethanol therapy is effective and has corrected the metabolic acidosis, and no renal failure is present. However, once severe acidosis and renal failure occured, however, hemodialysis is necessary. It is effective in removing Ethylene Glycol and toxic metabolites, and correcting metabolic acidosis.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 398°C (748.4°F)

Flash Points: CLOSED CUP: 111°C (231.8°F). (Tagliabue.)

Flammable Limits: LOWER: 3.2%

Products of Combustion: These products are carbon oxides (CO, CO2).

Fire Hazards in Presence of Various Substances:

Slightly flammable to flammable in presence of open flames and sparks, of heat. Non-flammable in presence of shocks.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder. LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards:

Explosive decomposition may occur if combined with strong acids or strong bases and subjected to elevated temperatures.

Section 6: Accidental Release Measures

Small Spill:

Dilute with water and mop up, or absorb with an inert dry material and place in an appropriate waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Stop leak if without risk. Do not get water inside container. Do not touch spilled material. Use water spray to reduce vapors. Prevent entry into sewers, basements or confined areas; dike if needed. Eliminate all ignition sources. Call for assistance on disposal. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapor/spray. Wear suitable protective clothing. If ingested, seek medical advice immediately and show the container or the label. Keep away from incompatibles such as oxidizing agents, acids, alkalis.

Storage: Keep container tightly closed. Keep container in a cool, well-ventilated area. Hygroscopic

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection:

Safety glasses. Synthetic apron. Gloves (impervious). For most conditions, no respiratory protection should be needed. However, if material is heated or sprayed and if atmospheric levels exceed exposure guidelines, use an approved vapor (air purifying) respirator.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Boots. Gloves. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

STEL: 120 (mg/m3) [Australia] TWA: 100 (mg/m3) from ACGIH (TLV) [United States] CEIL: 125 (mg/m3) from OSHA (PEL) [United States] CEIL: 50 (ppm) from OSHA (PEL) [United States] TWA: 52 STEL: 104 (mg/m3) [United Kingdom (UK)] Inhalation TWA: 10 (mg/m3) [United Kingdom (UK)] SKIN3 Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties
Physical state and appearance: Liquid. (syrupy)
Odor: Odorless.
Taste: Mild sweet
Molecular Weight: 62.07 g/mole
Color: Clear Colorless.
pH (1% soln/water): Not available.
Boiling Point: 197.6°C (387.7°F)
Melting Point: -13°C (8.6°F)
Critical Temperature: Not available.
Specific Gravity: 1.1088 (Water = 1)
Vapor Pressure: .06 mmHg @ 20 C; .092 mmHg at 25 C
Vapor Density: 2.14 (Air = 1)
Volatility: Not available.
Odor Threshold: Not available.
Water/Oil Dist. Coeff.: The product is more soluble in water; log(oil/water) = -1.4
Ionicity (in Water): Not available.
Dispersion Properties: See solubility in water, acetone.
Solubility: Soluble in cold water, hot water, acetone. Slightly soluble in diethyl ether. Miscible with lower aliphatic alcohols, glycerol, acetic acid, acetone and similar ketones, aldehydes, pyridine, similar coal tar bases. Practically insoluble in benzene and its homologs, chlorinated hydrocarbons, petroleum ether.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Excess heat, incompatible materials.

Incompatibility with various substances: Reactive with oxidizing agents, acids, alkalis.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity:

Hygroscopic. Absorbs moisture from the air. Avoid contamination with materials with hydroxyl compounds. Also incompatible with aliphatic amines, isocyanates, chlorosulfonic acid, and oleum

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin. Ingestion.

Toxicity to Animals:

Acute oral toxicity (LD50): 4700 mg/kg [Rat]. Acute toxicity of the vapor (LC50): >200 mg/m3 4 hours [Rat].

Chronic Effects on Humans:

CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH. MUTAGENIC EFFECTS: Mutagenic for mammalian somatic cells. Non-mutagenic for bacteria and/or yeast. May cause damage to the following organs: kidneys, liver, central nervous system (CNS).

Other Toxic Effects on Humans:

Hazardous in case of ingestion. Slightly hazardous in case of skin contact (irritant, permeator), of inhalation.

Special Remarks on Toxicity to Animals:

Lowest Published Toxic Dose/Conc: TDL [Man] - Route: oral; Dose: 15gm/kg Lethal Dose/Conc 50% Kill LD50 [Rabbit] - Route: dermal; Dose: 9530 ul/kg

Special Remarks on Chronic Effects on Humans:

May cause adverse reproductive effects and birth defects (teratogenic) based on animal test data. No human data has been reported at this time. May affect genetic material (mutagenic)

Special Remarks on other Toxic Effects on Humans:

Acute Potential Health Effects:

Skin: May cause skin irritation. May cause more severe response if skin is abraded. A single prolonged exposure is not likely to result in material being absorbed through skin in harmful amounts. Massive contact with damaged skin may result in absorption of potentially harmful amounts

Eyes: Vapors or mist may cause temporary eye irritation (mild temporary conjunctival inflammation) and lacrimation. Corneal injury is unlikely or insignificant.

Ingestion: It is rapidly absorbed from the gastrointestinal tract. Oral toxicity is expected to be moderate in humans due to Ethylene Glycol even though tests with animals show a lower degree of toxicity. Excessive exposure (swallowing large amounts) may cause gastrointestinal tract irritation with nausea, vomiting, abdominal discomfort, diarrhea.

It can affect behavior/central nervous system within 0.5 to 12 hours after ingestion. A transient inebriation with excitement, stupor, headache, slurred speech, ataxia, somnolence, and euphoria, similar to ethanol intoxication, can occur within the first several hours. As sthe Ethylene Glycol is metabolized, metabolic acidosis and further central nervous system depression (convulsions, muscle weakness) develop. Serious intoxication may develop to coma associated with hypotonia, hyporeflexia, and less commonly seizures, and meningismus. 12 to 24 hours

Section 12: Ecological Information

Ecotoxicity:

Ecotoxicity in water (LC50): 41000 mg/l 96 hours [Fish (Trout)]. 46300 mg/l 48 hours [water flea]. 34250 mg/l 96 hours [Fish (bluegill fish)]. 34250 mg/l 72 hours [Fish (Goldfish)].

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may arise.

Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

Illinois toxic substances disclosure to employee act: Ethylene glycol Illinois chemical safety act: Ethylene glycol New York release reporting list: Ethylene glycol Rhode Island RTK hazardous substances: Ethylene glycol Pennsylvania RTK: Ethylene glycol Minnesota: Ethylene glycol Massachusetts RTK: Ethylene glycol Massachusetts spill list: Ethylene glycol New Jersey: Ethylene glycol Louisiana spill reporting: Ethylene glycol TSCA 8(b) inventory: Ethylene glycol SARA 313 toxic chemical notification and release reporting: Ethylene glycol CERCLA: Hazardous substances.: Ethylene glycol: 5000 lbs. (2268 kg)

Other Regulations:

OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada): CLASS D-2A: Material causing other toxic effects (VERY TOXIC).

DSCL (EEC): R22- Harmful if swallowed. S46- If swallowed, seek medical advice immediately and show this container or label.

HMIS (U.S.A.):

Health Hazard: 1

Fire Hazard: 1

Reactivity: 0
Personal Protection: C
National Fire Protection Association (U.S.A.):
Health: 1
Flammability: 1
Reactivity: 0
Specific hazard:
Protective Equipment: Gloves. Lab coat. Not applicable. Safety glasses.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:18 PM

Last Updated: 11/06/2008 12:00 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

MATERIAL SAFETY DATA SHEET LUBRIMATIC ULTRA LUBE GREASE (11309 - 11310)

1. PRODUCT AND COMPANY IDENTIFICATION

TRADE NAME	LUBRIMATIC ULTRA LUBE GREASE (11309 - 11310)
PRODUCT NUMBER	11309, 11310, MBK99000A0
PRODUCT USE	Lubricating Grease
MANUFACTURER	Chemtool, Incorporated 801 West Rockton Rd. Rockton, IL 61072 U.S.A
DISTRIBUTOR	Plews/Edelmann 1550 Franklin Grove Road Dixon, IL 61021 U.S.A. Tel: +01(815) 288 - 3344
EMERGENCY TELEPHONE	CHEMTREC +1 800 424 9300 - Outside the US +01 703 527 3887 [for
Date of last issue	Plews/Edelmann] 2010-01-27

2. COMPOSITION AND INFORMATION ON INGREDIENTS

INGREDIENT NAME	CAS No.	WEIGHT
LUBRICATING OILS, PETROLEUM, BASE OILS, HIGHLY REFINED (IP346 DMSO	Mixture**(2)	70-90 %
Extracts <3%)		
*LITHIUM SOAP AND MIXED BASE THICKENERS	Proprietary	5-15 %
*PHOSPHORODITHIOIC ACID, O,O-DI-C1-14-ALKYL ESTERS, ZINC SALTS	68649-42-3	<1 %
*BENZENESULFONIC ACID, DODECYL-, CALCIUM SALT	26264-06-2	<0.5 %
*CARBON BLACK	1333-86-4	<0.2 %
*ANTIMONY DIALKYLDITHIOCARBAMATE	Proprietary	<0.1 %

* This chemical(s) is hazardous according to OSHA/WHIMIS criteria

COMPOSITION COMMENTS	 Refer to section eight (8) for exposure limits on ingredients. Chemical ingredients not regulated by OSHA or SARA are treated confidentially. **(2) The base oil for this product can be a mixture of any of the following highly refined petroleum streams: CAS 64741-88-4; CAS 64741-89-5; CAS 64741-95-3; CAS 64741-96-4; CAS 64741-97-5; CAS 64742-01-4; CAS 64742-52-5; CAS 64742-53-6; CAS 64742-54-7; CAS 64742-55-8; CAS 64742-56-9; CAS 64742-57-0; CAS 64742-62-7; CAS 64742-63-8; CAS 64742-65-0; CAS 72623-83-7; CAS 72623-85-9; CAS 72623-86-0; CAS 72623-87-1. Carcinogenicity: The petroleum base oils contained in this product.
	CAS 72623-87-1. Carcinogenicity: The petroleum base oils contained in this product

have been highly refined by a variety of processes including solvent extraction, solvent dewaxing and hydrotreating to remove aromatics and improve performance characteristics. All petroleum base oils contained in this product meet the IP 346 criteria of less than 3 percent DMSO extractable PAH's and are not considered carcinogens by IARC, NTP or OSHA.

3. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW		
HEALTH HAZARDS, GENERAL	Exposure to vapors generated at high temperatures may cause respiratory irritation.	
SENSITIZATION	No known information.	
CARCINOGENICITY	IARC-2B: The agent is possibly carcinogenic to humans (limited evidence of carcinogenicity in humans). Carbon Black, CAS # 1333-86-4	
HEALTH WARNINGS	INHALATION. Heating can generate vapors that may cause respiratory irritation, nausea and headaches. Inhalation hazard at room temperature is unlikely due to the low volatility of this product. SKIN CONTACT. Repeated or prolonged contact can result in drying of the skin. EYE CONTACT. Irritating. INGESTION. Can cause stomach ache and vomiting. Main hazard, if ingested, is aspiration into the lungs and subsequent pneumonitis.	
ROUTE OF ENTRY	Inhalation. Skin and/or eye contact. Ingestion.	
MEDICAL SYMPTOMS	MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:	

4. FIRST AID MEASURES

INHALATION	Vapor inhalation under ambient conditions is normally not a problem. If overcome by vapor of hot product, immediately remove from source of exposure. Move the exposed person to fresh air at once. For breathing difficulties oxygen may be necessary. Get medical attention if any discomfort continues.
EYES	Rinse the eye with water immediately. Continue to rinse for at least 15 minutes. Contact physician if discomfort continues.
SKIN	Remove contaminated clothing. Wash skin thoroughly with soap and water. Get medical attention if any discomfort continues.
INGESTION	DO NOT INDUCE VOMITING! Get medical attention immediately!

5. FIRE FIGHTING MEASURES

FLASH POINT (°C)	224 (435°F) Cd OC (Cleveland open cup).
FLAMMABILITY LIMIT - LOWER(%)	N/D
FLAMMABILITY LIMIT - UPPER(%)	N/D
EXTINGUISHING MEDIA	Use: Carbon dioxide (CO2). Dry chemicals, sand, dolomite etc. Alcohol resistant foam. Water spray, fog or mist.
SPECIAL FIRE FIGHTING PROCEDURES	Use water to keep fire exposed containers cool and disperse vapors. Water spray may be used to flush spills away from exposures and dilute spills to non-flammable
	mixtures. Avoid water in straight hose stream; will scatter and spread fire. Keep run-off water out of sewers and water sources. Dike for water control.
-------------------------------------	--
UNUSUAL FIRE & EXPLOSION HAZARDS	Pressure will increase in over heated, closed containers.
HAZARDOUS COMBUSTION PRODUCTS	Oxides of: Carbon.
PROTECTIVE MEASURES IN CASE OF FIRE	Self-contained breathing equipment and chemical resistant clothing recommended.

6. ACCIDENTAL RELEASE MEASURES

PERSONAL PRECAUTIONS	Minimize skin contact. Avoid breathing vapors. Wear an appropriate respirator if exposure exceeds recommended guidelines. Remove sources of ignition. Wear suitable eye protection.
PRECAUTIONS TO PROTECT THE ENVIRONMENT	Keep product out of sewers and watercourses by diking or impounding. Advise authorities if product has entered or may enter sewers, watercourses or extensive land areas. Assure conformity with applicable government regulations.
SPILL CLEAN-UP PROCEDURES	Contain spill. Absorb small amounts. Collect and return large amounts to shipping container. Rinse area with water.

7. HANDLING AND STORAGE

HANDLING PRECAUTIONS	Ventilate well, avoid breathing vapors. Use approved respirator if air contamination is above accepted level. Do not reuse container. Keep lid closed when not in use. Do not store or mix with strong oxidizers. Avoid spilling, skin and eye contact. Eye wash and emergency shower must be available at the work place.
STORAGE PRECAUTIONS	Store separate from strong acids and oxidizers. Keep away from heat, sparks and open flame.
STORAGE CRITERIA	Chemical storage.

8. EXPOSURE CONTROLS AND PERSONAL PROTECTION

COMPONENT	STD	TWA	STEL	TWA	STEL
LUBRICATING OILS, PETROLEUM, BASE OILS, HIGHLY REFINED (IP346 DMSO Extracts <3%)	OSHA			5 mg/m3 as oil mist	
	ACGIH			5 mg/m3 as oil mist	10 mg/m3 as oil mist
CARBON BLACK	OSHA			3.5 mg/m3	
	ACGIH			3.5 mg/m3	**A4
	NIOSH	3.5 mg/m3	**Ca		
ANTIMONY DIALKYLDITHIOCARBAMATE	OSHA			0.5 mg/m3 as Sb	
	ACGIH			0.5 mg/m3 as Sb	

INGREDIENT COMMENTS

**NIOSH Ca: Potential Occupational Carcinogen. **ACGIH A4: Not Classifiable as a Human Carcinogen.

PROTECTIVE EQUIPMENT

ENGINEERING CONTROLS	Use engineering controls to reduce air contamination to permissible exposure level.
VENTILATION	No specific ventilation requirements noted, but forced ventilation may still be required if air contamination exceeds acceptable level.
RESPIRATORS	No specific recommendation made, but respiratory protection may still be required under exceptional circumstances when excessive air contamination exists.
PROTECTIVE GLOVES	Chemical resistant gloves recommended to prevent prolonged or repeated contact.
EYE PROTECTION	Wear splash-proof eye goggles to prevent any possibility of eye contact.
PROTECTIVE CLOTHING	Wear appropriate clothing to prevent repeated or prolonged skin contact.
HYGIENIC WORK PRACTICES	Wash at the end of each work shift and before eating, smoking and using the toilet.

9. PHYSICAL AND CHEMICAL PROPERTIES

APPEARANCE/PHYSICAL STATE	Grease.		
COLOR	Black.		
ODOR	Mild (or faint). Petroleum.		
SOLUBILITY DESCRIPTION	Insoluble in water.		
DENSITY	0.89	Temperature (°C)	15.6 (60°F)
VAPOR DENSITY (air=1)	> 5		
VAPOR PRESSURE	< 0.1 mmHg	Temperature (°C)	20 (68°F)
EVAPORATION RATE	< 0.01	Reference	BuAc=1
pH-VALUE, CONC. SOLUTION	N/A		

10. STABILITY AND REACTIVITY

STABILITY	Normally stable.
CONDITIONS TO AVOID	Avoid contact with acids and oxidizing substances.
HAZARDOUS POLYMERIZATION	Will not occur.
POLYMERIZATION DESCRIPTION	Not applicable
MATERIALS TO AVOID	Acids, oxidizing. Strong oxidizing agents.

HAZARDOUS DECOMPOSITION Oxides of: Carbon. PRODUCTS

11. TOXICOLOGICAL INFORMATION

TOXICOLOGICAL INFORMATION	No experimental toxicological data on the preparation as such is available.
COMPONENT	LUBRICATING OILS, PETROLEUM, BASE OILS, HIGHLY REFINED (IP346 DMSO Extracts <3%)
TOXICOLOGICAL DATA	WHMIS (Canada) = Not a controlled product. Carcinogenicity_IP_346 = <3% DMSO Extracts
TOXIC DOSE - LD 50 TOXIC DOSE - LD 50 SKIN TOXIC CONC LC 50 IRRITATION SENSITIZATION	 > 5000 mg/kg (oral rat) > 2000 mg/kg (skn rbt) No Information Available (NIA). Prolonged skin contact may cause irritation. Not known to be a sensitizer.
COMPONENT	LITHIUM SOAP AND MIXED BASE THICKENERS
TOXIC DOSE - LD 50 TOXIC CONC LC 50	No Information Available (NIA). No Information Available (NIA).
COMPONENT	CARBON BLACK
TOXICOLOGICAL DATA	WHMIS (Canada) D2A Acute toxicity. TCLo 6 hours. Inhalation. Rat. 7 mg/m3 Irritating effects. Skin. Slight Irritant (0.6/8) Carcinogenicity. IARC = 2B
TOXIC DOSE - LD 50 TOXIC DOSE - LD 50 SKIN CARCINOGENICITY	 > 15400 mg/kg (oral rat) > 3000 mg/kg (skn rbt) NTP: Not listed. MAK-3 designation: Substances which cause concern that they could be carcinogenic for man. IARC-2B: The agent is possibly carcinogenic to humans (limited evidence of carcinogenicity in humans).

12. ECOLOGICAL INFORMATION

ECOLOGICAL INFORMATION There is no ecological data on the product itself.

13. DISPOSAL CONSIDERATIONS

DISPOSAL METHODS

Spilled material, unused contents and empty containers must be disposed of in accordance with local, state and federal regulations.

14. TRANSPORT INFORMATION

DOT HAZARD CLASS	Not regulated.
REPORTABLE QUANTITY (RQ)	No
TDGR CLASS	Not Regulated.
IMDG CLASS	Not regulated
SEA TRANSPORT NOTES	Not regulated per IMDG.
AIR TRANSPORT NOTES	Not regulated per IATA.

15. REGULATORY INFORMATION

US FEDERAL REGULATIONS

COMPONENT	SARA 302	CERCLA	SARA 313
LUBRICATING OILS, PETROLEUM, BASE OILS, HIGHLY REFINED (IP346 DMSO	No	No	No
	Nia	Nia	
	NO	NO	No
PHOSPHORODITHIOIC ACID, 0,0-DI-C1-14-ALKYL ESTERS, ZINC SALTS	No	***	N982 - Zn
BENZENESULFONIC ACID, DODECYL-, CALCIUM SALT	No	1 000 lbs	No
CARBON BLACK	No	No	No
ANTIMONY DIALKYLDITHIOCARBAMATE	No	***	N010 - Sb

REGULATORY STATUS

*** Indicates that no RQ is assigned to this generic or broad class, although the class is a CERCLA hazardous substance. See 50 Federal Register 13456 (April 4, 1985). Values in Section 313 column represent Category Codes for reporting under Section 313.

CLEAN AIR ACT				
COMPONENT	CAA Accidental Release Prevention			
ANTIMONY DIALKYLDITHIOCARBAMATE	No			
CARBON BLACK	No			
LUBRICATING OILS, PETROLEUM, BASE OILS, HIGHLY REFINED (IP346 DMSO	No			
Extracts <3%)				
LITHIUM SOAP AND MIXED BASE THICKENERS	No			
PHOSPHORODITHIOIC ACID, O,O-DI-C1-14-ALKYL ESTERS, ZINC SALTS	No			
BENZENESULFONIC ACID, DODECYL-, CALCIUM SALT	No			

SARA HAZARD CATEGORIES

None

US STATE REGULATIONS							
COMPONENT	CA	MA	FL	MN	NJ	ΡΑ	RI
LUBRICATING OILS, PETROLEUM, BASE OILS,	No	No	No	No	No	No	No
HIGHLY REFINED (IP346 DMSO Extracts <3%)							
LITHIUM SOAP AND MIXED BASE THICKENERS	No	No	No	No	No	No	No
PHOSPHORODITHIOIC ACID, O,O-DI-C1-14-ALKYL	No	No	Yes	Yes	Yes	EH	No
ESTERS, ZINC SALTS							
BENZENESULFONIC ACID, DODECYL-, CALCIUM	No	Yes	No	No	Yes	EH	No
SALT							
CARBON BLACK	С	Yes	No	No	Yes	HS	No
ANTIMONY DIALKYLDITHIOCARBAMATE	No	No	No	No	No	No	No

STATE REGULATORY STATUS

CALIFORNIA PROPOSITION 65: This product may contain the following chemical(s) considered by the State of California's Safe Drinking Water and Toxic Enforcement Act of 1986 as causing cancer or reproductive toxicity, and for which warnings are now required:

Carbon black (airborne, unbound particles of respirable size), cancer hazard, CAS# 1333-86-4.

PENNSYLVANIA RIGHT-TO-KNOW: This product contains the following chemicals that the state of Pennsylvania has identified as Special Hazardous Substances (SHS), Environmental Hazards (EH), or both (ESHS). The PA regulations require that the MSDS identify all SHS or EH chemicals by chemical name, common name, and CAS Number if they comprise 0.01% or more.

Zinc compounds regulated under CERCLA and SARA 313, Environmental Hazard Antimony compounds regulated under CERCLA and SARA 313, Environmental Hazard

Benzenesulfonic acid, dodecyl-, sodium salt, Environmental Hazard, CAS# 25155-30-0

WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM - WHMIS

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all the information required by the Controlled Products Regulations.

LABEL(S) FOR SUPPLY

SALT

BENZENESULFONIC ACID, DODECYL-, CALCIUM DSL

CONTROLLED PRODUCT D2A - Very CLASSIFICATION	Irritating an	d/or Very Ch	ronically Toxi	c Materi	als			
Risk phrases Classification	on per mar	ufacturer.						
R-22 Harmi	ful if swallc	wed.						
R-25 Toxic	if swallowe	ed.						
R-38 Irritati	R-38 Irritating to skin.							
R-65 Harmi	ful: may ca	luse lung dar	mage if swall	owed.				
Xi								
Xn								
	GLOBAL IN	VENTORIES						
COMPONENT	CAN	US	EU	AUS	JAP	KOR	PHLP	CHN
ANTIMONY DIALKYLDITHIOCARBAMATE	NPRI	Yes	EINECS	Yes	Yes	Yes	Yes	Yes
LUBRICATING OILS, PETROLEUM, BASE OILS,	DSL	Yes	EINECS	Yes	Yes	Yes	Yes	Yes
HIGHLY REFINED (IP346 DMSO Extracts <3%)								
LITHIUM SOAP AND MIXED BASE THICKENERS	DSL	Yes	EINECS	No	Yes	Yes	No	No
PHOSPHORODITHIOIC ACID, O,O-DI-C1-14-ALKYL ESTERS, ZINC SALTS	DSL	Yes	EINECS	Yes	Yes	Yes	Yes	Yes

Yes

EINECS Yes

Yes

Yes

Yes

Yes

14037 - LUBRIMATIC ULTRA LUBE GREASE (11309 - 11310)

CARBON BLACK	DSL	Yes	EINECS	Yes	Yes	Yes	Yes	Yes
	CANADA CEPA: All on notification requirement	components of ents under the	f this product Canadian En	comply	with ne ental Pro	w subs	tance n Act (C	EPA).
USA (TSCA)	All components in this product are listed on the US Toxic Substances Control Act (TSCA) Inventory or are exempt from TSCA Inventory requirements.							
CANADA (DSL)	All components in this product are listed on the Canada Domestic Substances List (DSL) or are exempt from DSL requirements.							
EUROPE (EINECS/ELINCS/NLP)	All components in this product are listed on the European Inventory of New and Existing Chemical Substances (EINECS), the European LIst of Notified Chemical Substances (ELINCS), or the No Longer Polymers (NLP) list, or are exempt from EU listing requirements.							
JAPAN (ENCS)	All components in this product are listed on the Japan Inventory of Existing and New Chemical Substances (ENCS) or are exempt from ENCS requirements.							
PHILIPPINES (PICCS)	This product contains one or more components that are NOT LISTED on the Philippines Inventory of Chemicals and Chemical Substances (PICCS) and are NOT EXEMPT from PICCS requirements.							
AUSTRALIA (AICS)	This product contains one or more components that are NOT LISTED on the Australian Inventory of Chemical Substances (AICS) and are NOT EXEMPT from AICS requirements.						om AICS	
KOREA (ECL)	All components in this product are listed on the Korea Existing Chemicals List (ECL) or are exempt from KECL requirements.						t (ECL)	
CHINA (IECS)	This product contains one or more components that are NOT LISTED on the China Inventory of Existing Chemical Substances (IECS) and are NOT EXEMPT from IECS requirements.						China 1ECS	

16. OTHER INFORMATION

	NFPA-HMIS HAZARD RATING
HEALTH	Irritation, minor residual injury (1) - HMIS/NFPA
FLAMMABILITY	Burns only if pre-heated (1) - HMIS/NFPA
REACTIVITY	Normally Stable (0) - HMIS/NFPA
PERSONAL PROTECTION INDEX	B - Safety Eyewear and Gloves
Tariff Code (Schedule B)	2710.19.3750 Lubricating greases, with or without additives.
REVISION COMMENTS	Section 1: Name Change Section 1: Product Number Section 1: Manufacturer Section 1: Distributor Section 1: Emergency Telephone Section 16: Tariff Code (Schedule B)
PREPARED BY	Chemtool, Incorporated
Replacement of MSDS generated	2009-01-06
MSDS No.	14037

DATE	2010-01-27			
DISCLAIMER	While the information and recommendations set forth herein are believed to be accurate as of the date thereof, the company makes no warranty with respect thereto and disclaims all liability from reliance therein.			
INFORMATION SOURCES	Raw Material MSDS(s).			
* Information revised since previous MSDS version				
PRINTING DATE:	2010-01-27			

9/9

