Remedial Investigation Report Stillwater Boiler House Property NYSDEC Site No. B00197 US Route 4 and Best Avenue Town of Stillwater Saratoga County, New York

VOLUME 7 of 7: Data Usability Summary Reports

February 2009

Chazen Project No. 30201.14

Prepared for:

Mr. Michael McLean, P.E. NYSDEC, Region 5 Route 86 Ray Brook, NY 12977

Town of Stillwater Supervisor, Shawn Connelly East Street PO Box 700 Stillwater, New York 12170

Remedial Investigation Report Stillwater Boiler House Property NYSDEC Site No. B00197 US Route 4 and Best Avenue Town of Stillwater Saratoga County, New York

VOLUME 7 of 7: Data Usability Summary Reports

February 2009

Chazen Project # 30201.14

Prepared by:

ENGINEERS/SURVEYORS
PLANNERS
ENVIRONMENTAL SCIENTISTS

Capital District Office:

Mr. Kim Baines 547 River Street Troy, NY 12180 (518) 273-0055

Dutchess County Office: 21 Fox Street, Poughkeepsie, NY 12601

Orange County Office: 356 Meadow Avenue, Newburgh, NY 12550

North Country Office 100 Glen Street, Glens Falls, NY 12801

DATA USABILITY SUMMARY REPORT

for

THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3812 Sampled 6/28/04 - 6/29/04

SOIL SAMPLES for METALS

SB02	4-8	(S3812-1)
SB11	10-12	(S3812-2)
SB12	6-8	(S3812-3)
Sb19	4-8	(\$3812-4)

DATA ASSESSMENT

An inorganics data package containing analytical results for four soil samples was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses were performed using SW-846 methods 6010 and 7471. Laboratory data was evaluated according to the quality assurance / quality control requirements of the State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region Guidelines (SOW HW-2, Rev. Functional 11, Jan. Evaluation of Metals Data for the Contract Laboratory Program) was used as a technical reference.

The selenium results reported from this group of samples have been qualified as estimations due a low CRDL recovery.

The antimony and cobalt results from this group of samples have been qualified as estimations due to low matrix spike recoveries.

The mercury results reported from this group of samples have been qualified as estimations because duplicate measurements of mercury demonstrated poor measurement precision.

CORRECTNESS AND USABILITY

The mercury results from this group of samples have been qualified as estimations because the holding time limitation was exceeded by two days.

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed strict QC testing, can be

guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. DATAVAL, Inc. guarantees the quality of this data Secondly. assessment. However, DATAVAL, Inc. does not warrant interpretation or utilization of this data by a third party.

Reviewer's signature:

____ Date: 19/18/04/

SAMPLE HISTORY

Sample holding times are calculated between the time of laboratory receipt (VTSR) and the time of analysis. Mercury samples must be analyzed within 26 days of receipt; the remaining metals within 180 days. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a laboratory split duplicate, a matrix spiked sample, and a rinsate blank.

This sample delivery group contained four soil samples. The samples were collected from the Former Stillwater Boiler House site on 28Jun04 and 29Jun04. They were shipped to the laboratory 29Jun04. The shipment arrived, intact, on 30Jun04.

The samples were digested for mercury on 27Jul04 and for ICP metals on 29Jul04. Analyses for mercury were completed on 28Jul04. Determinations of ICP metals were completed on 29Jul04. Mercury results have been qualified as estimations because the holding time limitation was exceeded by two days.

CALIBRATIONS

Calibration curves are constructed, using certified materials, to define the linear range of each analytical instrument. Beyond this range, measurements cannot be made with confidence. The calibration curve is immediately tested by analyzing an initial calibration verification standard (ICV). Continuing verifications (CCV) must bracket each group of up to ten samples. ICV and CCV recoveries must meet established criteria.

ICP calibrations were performed with a blank and three standards. Calibrations for mercury were performed with a blank and five standards. The lowest mercury standard equaled CRDL. The mercury calibration curve demonstrated an acceptable degree of linearity.

Each instrument calibration was immediately verified by the analysis of an ICV standard. Continuing calibration checks were made following each group of 10 samples. Each calibration check that was used to bracket samples from this program satisfied the program acceptance criteria.

CONTRACT REQUIED DETECTION LIMIT STANARDS (CRDL)

To verify instrument linearity near CRDL, an ICP standard at a concentration of twice CRDL (CRI) is analyzed at the beginning and end of each analytical sequence. A standard equaling CRDL

(CRA) must be included in each atomic adsorption sequence. CRDL standards must produce a recovery between 80% and 120%.

The CRDL results reported by the laboratory included an unacceptable recovery of selenium (122%). Based on this indication of bias, the selenium results reported from this group of samples have been qualified as estimations.

It is noted that the laboratory did not analyze CRDL standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this discrepancy. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Preparation blanks are carried through the digestion process with each group of samples to evaluate general laboratory technique. Calibration blanks are run periodically to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

An initial blank (ICB) was analyzed following the calibration in each analytical sequence. Additional blanks were analyzed after every ten samples (CCB) and at the end of each sequence. Preparation blanks were digested, prior to analysis, with each group of samples. Each laboratory prepared blank that was associated with samples from this program was free of analyte contamination exceeding CRDL.

INTERFERENCE CHECK SAMPLE (ICS)

ICS standards are analyzed at the beginning and end of each ICP analysis sequence to verify background and inter-element correction factors. The recoveries of specified analytes are measured in the presence of interfering concentrations of aluminum, calcium, magnesium and iron.

Interference check standards, ICSA and ICSAB, were included in each ICP analysis sequence. Each interference check standard that was used to bracket samples from this program produced recoveries within the range of acceptance, 80% - 120%.

It is noted that the laboratory did not analyze ICS standards at the end of each analytical sequence. Although the requirements

of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this discrepancy. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

PREDIGESTION SPIKE

The recovery of spike concentrations added to samples prior to digestion and analysis demonstrates measurement bias caused by sample matrix effects. Predigestion spikes must be recovered within control limits of 75% - 125%.

A sample from an unrelated delivery group was selected for matrix spiking. Each targeted analyte was added to two portions of this sample. With the exception of antimony (27%, 28%) and (62%,61%), each of these additions was recovered successfully. Although unacceptable recoveries were reported for aluminum, iron and manganese, this performance was The aluminum, iron and manganese concentrations not considered. in the unspiked sample exceeded four times the level of the The antimony and cobalt results reported from this group of samples have been qualified as estimations.

It should be noted that spike recoveries reported from unrelated samples provide no insight to matrix affects that might bias measurements in program samples. ASP protocol requires that program samples be used for matrix spiking.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Laboratory split duplicates of unrelated samples were processed with this group of samples. These duplicate pairs demonstrated an acceptable level of measurement precision for every targeted analyte except mercury (23% RPD). Again, it is noted that this performance provides little insight to the interferences affecting samples from this program. Mercury results have been qualified as estimations.

Field split duplicates were not included in this delivery group.

LABORATORY CONTROL STANDARD

Laboratory control samples are prepared by adding analytes to clean sand or reagent water. Analyte concentrations are then determined without interferences caused by sample matrix effects.

A solid LCS standard was digested and analyzed with this group of samples. Acceptable recoveries were reported for each targeted analyte.

ICP SERIAL SILUTION SAMPLE

Possible matrix effects are verified by the process of serial dilutions. Samples are diluted 1:5 to reduce contributions that might bias measurements. The original sample result, and the corrected concentration of the diluted sample compared. Sample data is qualified if the original concentrations are not recovered within 10%. Analytes with initial concentrations below 50 times IDL are not considered.

A sample from an unrelated delivery group was prepared as a serial dilution. None of the analytes present in the undiluted aliquot of these samples, at a concentration exceeding 50 times IDL, differed from the diluted result by more than 10%. The program acceptance criteria was satisfied. It is noted that this performance may not reflect interferences associated with the matrix of samples from this program.

SUMMARY OF QUALIFIED DATA

Former Stillwater Boiler House site

Sampled 6/28/04 - 6/29/04

•	
CRDL	2.79J 3.72J 3.59J 3.06J
DUPES MERCURY	0.06J 0.06J 0.02J 0.12J
SPIKES COBALT	9.97J 7.91J 20.4J 12.9J
SPIKES ANTIMONY	UJ UJ 3.59J
HOLD TIME MERCURY	0.06J 0.06J 0.02J 0.12J
	(S3812-1) (S3812-2) (S3812-3) (S3812-4)
	SB02 4-8 (S3812-1) SB11 10-12 (S3812-2) SB12 6-8 (S3812-3) Sb19 4-8 (S3812-4)

Report of Analysis

Client: **Chazen Companies**

Date Collected:

6/28/2004

Project:

Date Received:

7/27/2004

Client Sample

SDG No.: SB-024-8

S3812

ID: Lab Sample ID:

S3812-01

Matrix:

SOIL

% Solids:

79,20

CAS No.	Analyte	Conc.	Units	Qua	alifier	DL	Dilution	Date Prep	Date Anal.	Method
7429-90-5	Aluminum	13300	mg/Kg			0.786	l	7/29/200	7/29/2004	EPA SW-846 6010
7440-36-0	Antimony	0.704 U	mg/Kg	¥	AF	0.704	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-38-2	Arsenic	12.5	mg/Kg			0.296	Ĭ.	7/29/200	7/29/2004	EPA SW-846 6010
7440-39-3	Barium	185	mg/Kg			0.028	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-41-7	Beryllium	0.775	mg/Kg			0.005	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-43-9	Cadmium	3.020	ıng/Kg			0.058	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-70-2	Calcium	2180	mg/Kg			0.438	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-47-3	Chromium	16.5	mg/Kg			0.119	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-48-4	Cobalt	9.970	nig/Kg	1.	M	0.099	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-50-8	Copper	35.6	mg/Kg			0.143	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-89-6	Iron	33600	mg/Kg			2.200	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-92-1	Lead	19.5	mg/Kg			0.129	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-95-4	Magnesium	4240	mg/Kg			0.020	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-96-5	Manganese	275	mg/Kg			1.000	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-97-6	Mercury	0.06	mg/Kg	J		0.01	1	7/27/200	7/28/2004	EPA SW-846 7471
7440-02-0	Nickel	28.3	mg/Kg			0.189	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-09-7	Potassium	1130	mg/Kg		N	4.110	1	7/29/200	7/29/2004	EPA SW-846 6010
7782-49-2	Selenium	2.790	mg/Kg	J		0,391	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-22-4	Silver	0.939	mg/Kg	J		0.131	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-23-5	Sodium	132	mg/Kg	J		46.5	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-28-0	Thallium	0.413	mg/Kg 1	U	•	0.413	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-62-2	Vanadium	21.0	mg/Kg		(0.128	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-66-6	Zinc	67.9	mg/Kg		(0.070	1	7/29/200		EPA SW-846 6010
Commen	ts:		····							

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client: **Chazen Companies** **Date Collected:** 6/29/2004

Project:

Date Received:

7/27/2004

Client Sample

SDG No.:

S3812

SB-1110-12

Matrix: SOIL

ID: Lab Sample ID: S3812-02

% Solids:

83.80

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7429-90-5	Aluminum	11300	mg/Kg		0.751	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-36-0	Antimony	0.672 U	J mg/Kg	W W	0.672	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-38-2	Arsenic	15.2	mg/Kg		0.283	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-39-3	Barium	83.5	mg/Kg	•	0.026	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-41-7	Beryllium	0.603	mg/Kg		0.005	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-43-9	Cadmium	4.380	mg/Kg		0.055	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-70-2	Calcium	1660	nig/Kg		0.418	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-47-3	Chromium	17.7	mg/Kg		0.113	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-48-4	Cobalt	7.910	mg/K.g	J	0.094	I	7/29/200	7/29/2004	EPA SW-846 6010
7440-50-8	Copper	41.3	mg/Kg	_	0.136	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-89-6	Iron	45900	mg/Kg		2.100	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-92-1	Lead	25.4	mg/Kg		0.123	l	7/29/200	7/29/2004	EPA SW-846 6010
7439-95-4	Magnesium	3850	mg/Kg		0.019	. 1	7/29/200	7/29/2004	EPA SW-846 6010
7439-96-5	Manganese	441	mg/Kg		0.957	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-97-6	Mercury	0.06	mg/Kg	J	0.01	1	7/27/200	7/28/2004	EPA SW-846 7471
7440-02-0	Nickel	17.1	mg/Kg		0.180	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-09-7	Potassium	1110	mg/Kg	N	3.920	1	7/29/200	7/29/2004	EPA SW-846 6010
7782-49-2	Selenium	3,720	mg/Kg	7	0.374	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-22-4	Silver	2.050	mg/Kg		0.125	ı	7/29/200	7/29/2004	EPA SW-846 6010
7440-23-5	Sodium	44.4	mg/Kg	U	44.4	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-28-0	Thallium	0.394	mg/Kg	U	0.394	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-62-2	Vanadium	19.5	mg/Kg		0.122	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-66-6	Zinc	70.3	mg/Kg		0.067	1	7/29/200	7/29/2004	EPA SW-846 6010
Commen	ts:								

Report of Analysis

Client:

Chazen Companies

Date Collected:

6/29/2004

Project:

Date Received:

7/27/2004

SDG No.:

Client Sample

SB-126-8

Matrix:

S3812 SOIL

ID: Lab Sample ID:

S3812-03

% Solids:

86,70

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7429-90-5	Aluminum	11800	mg/Kg		0.725	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-36-0	Antimony	0.649 <i>U</i>	mg/Kg	XX	0.649	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-38-2	Arsenic	14.4	mg/Kg		0.273	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-39-3	Barium	68.3	mg/Kg		0.025	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-41-7	Beryllium	0.660	mg/Kg		0.005	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-43-9	Cadmium .	4.720	mg/Kg		0.053	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-70-2	Calcium	5930	mg/Kg		0.404	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-47-3	Chromium	16.8	mg/Kg		0.110	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-48-4	Cobalt	20.4	mg/Kg	JW	0.091	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-50-8	Copper	511	mg/Kg		0.131	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-89-6	Iron	39700	mg/Kg		2.030	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-92-1	Lead	78.3	mg/Kg		0.119	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-95-4	Magnesium	5890	mg/Kg		0.018	i	7/29/200	7/29/2004	EPA \$W-846 6010
7439-96-5	Manganese	793	mg/Kg		0.925	1	7/29/200	7/29/2004	EPA SW-846 6010
74 39-97 - 6	Mercury	0.02	mg/Kg	ſ	0.01	1	7/27/200	7/28/2004	EPA SW-846 7471
7440-02-0	Nickel	40.0	mg/Kg		0.174	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-09-7	Potassium	1390	mg/Kg	N	3.790	1	7/29/200	7/29/2004	EPA SW-846 6010
7782-49-2	Selenium	3.590	mg/Kg	J	0.361	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-22-4	Silver	0.774	mg/Kg	J	0.121	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-23-5	Sodium	96,8	mg/Kg	J	42,9	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-28-0	Thallium	0.381	mg/Kg	U	0.381	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-62-2	Vanadium	18.4	mg/Kg		0.118	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-66-6	Zinc	246	mg/Kg		0.065	1	7/29/200	7/29/2004	EPA SW-846 6010
Comman	ta.								

Comments:

Report of Analysis

Client: **Chazen Companies** Date Collected:

6/29/2004

Project:

Date Received:

7/27/2004

Client Sample

SB-194-8

SDG No.: S3812

ID: Lab Sample ID:

S3812-04

Matrix:

SOIL

% Solids:

68.70

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7429-90-5	Aluminum	11200	mg/Kg		0.916	l	7/29/200	7/29/2004	EPA SW-846 6010
7440-36-0	Antimony	3.590 🗸	mg/Kg	XX	0.820	t	7/29/200	7/29/2004	EPA SW-846 6010
7440-38-2	Arsenic	11.4	mg/Kg		0.345	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-39-3	Barium	220	mg/Kg		0.032	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-41-7	Beryllium	0.690	mg/Kg	J	0.006	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-43-9	Cadmium	3.790	mg/Kg		0.067	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-70-2	Calcium	10500	mg/Kg		0.509	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-47-3	Chromium	21.0	mg/Kg		0.138	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-48-4	Cobalt	12.9	mg/Kg _	JW	0.115	1	7/29/200	7/29/2004	EPA SW-846 6010
7440-50-8	Copper	108	mg/Kg		0.166	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-89-6	Iron	36600	mg/Kg		2.560	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-92-1	Lead	341	mg/Kg		0.150	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-95-4	Magnesium	5070	mg/Kg		0.023	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-96-5	Manganese	372	mg/Kg		1.170	1	7/29/200	7/29/2004	EPA SW-846 6010
7439-97-6	Mercury	0.12	mg/Kg	J	0.01	1	7/27/200	7/28/2004	EPA SW-846 7471
7440-02-0	Nickel	26.0	mg/Kg		0.220	1	7/29/200	7/29/2004	EPA SW-846 6010
440-09-7	Potassium	1620	mg/Kg	N	4.790	J	7/29/200	7/29/2004	EPA SW-846 6010
782-49-2	Selenium	3.060	mg/Kg [J	0.456	1	7/29/200	7/29/2004	EPA SW-846 6010
440-22-4	Silver	1.260	mg/Kg	J	0.153	1	7/29/200	7/29/2004	EPA SW-846 6010
440-23-5	Sodium	210	mg/Kg	J	54.1	1	7/29/200	7/29/2004	EPA SW-846 6010
440-28-0	Thallium	0.480	mg/Kg	U	0.480	1	7/29/200	7/29/2004	EPA SW-846 6010
440-62-2	Vanadium	25.0	mg/Kg		0.148	1	7/29/200	7/29/2004	EPA SW-846 6010
440-66-6	Zinc	487	mg/Kg		0.082	1	7/29/200	7/29/2004	EPA SW-846 6010

Metals - 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies SDG No.: \$3812

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3812 SAS No.: S3812

Initial Calibration Source: EPA-ICV

Continuing Calibration Source: EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
ICV01				V					
	ninum	2475.10	2482.0	99.7	90.0 - 110.0	\mathbf{P}_{\perp}	7/29/2004	09:46	P107294
Anti	mony	983.90	992.0	99.2	90.0 - 110.0	P	7/29/2004	09:46	P107294
Arse	nic	980.00	996.0	98.4	90.0 - 110.0	P	7/29/2004	09:46	P107294
Bari	um	509.79	502.0	101.6	90.0 - 110.0	P	7/29/2004	09:46	P107294
Bery	llium	476.54	493.0	96.7	90.0 - 110.0	P	7/29/2004	09:46	P107294
Cadr	nium	505.94	494.0	102.4	90.0 - 110.0	P	7/29/2004	09:46	P107294
Calci	ium	10192.44	10180.0	100.1	90.0 - 110.0	P	7/29/2004	09:46	P107294
Chro	mium	495.51	490.0	101.1	90.0 - 110.0	P	7/29/2004	09:46	P107294
Coba	alt	511.10	496.0	103.0	90.0 - 110.0	P	7/29/2004	09:46	P107294
Copp	er	482.45	490.0	98.5	90.0 - 110.0	P	7/29/2004	09:46	P107294
Iron		4960.66	5107.0	97.1	90.0 - 110.0	P	7/29/2004	09:46	P107294
Lead		997.53	996.0	100.2	90.0 - 110.0	P	7/29/2004	09:46	P107294
Magi	nesium	5994.18	6003.0	99.9	90.0 - 110.0	P	7/29/2004	09:46	P107294
Mang	ganese	509.24	495.0	102.9	90.0 - 110.0	P	7/29/2004	09:46	P107294
Merc	cury	4.08	4.1	99.5	90.0 - 110.0	CV	7/28/2004	13:08	072804C
Nick	el	505.02	492.0	102.6	90.0 - 110.0	Þ	7/29/2004	09:46	P107294
Potas	sium	10237.96	10008.0	102.3	90.0 - 110.0	P	7/29/2004	09:46	P107294
Selen	nium	1015.46	1005.0	101.0	90.0 - 110.0	р	7/29/2004	09:46	P107294
Silve	ı.	472.01	495.0	95.4	90.0 - 110.0	P	7/29/2004	09:46	P107294
Sodiu	ım	9807.16	10039.0	97.7	90.0 - 110.0	P	7/29/2004	09:46	P107294
Thall	liun	970.94	1027.0	94.5	90.0 - 110.0	P	7/29/2004	09:46	P107294
Vana	dium	511.24	501.0	102.0	90.0 - 110.0	P	7/29/2004	09:46	P107294
Zinc		1044.46	1000.0	104.4	90.0 - 110.0	P	7/29/2004	09:46	P107294

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: \$3812

Contract: Chazen Companies

Lab Code: CHEMED

ED Case No.: S3812

SAS No.: \$3812

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
				/					
CCV04				\wedge					
Alum		9854.52	10000.0	98.5	90.0 - 110.0	P	7/29/2004	11:51	P107294
Antin	nony	4910.56	5000.0	98.2	90.0 - 110.0	₽	7/29/2004	11:51	P107294
Arser	nic	4997.28	5000.0	99.9	90.0 - 110.0	P	7/29/2004	11:51	P107294
Bariu	m	10148.95	10000,0	101.5	90.0 - 110.0	P	7/29/2004	11:51	P107294
Beryl	lium	244.54	250.0	97.8	90.0 - 110.0	P	7/29/2004	11:51	P107294
Cadm	ium	2462.71	2500.0	98.5	90.0 - 110.0	P	7/29/2004	11:51	P107294
Calci	un	24593.35	25000.0	98.4	90.0 - 110.0	P	7/29/2004	11:51	P107294
Chror	nium	968.48	1000.0	96,8	90.0 - 110.0	P	7/29/2004	11:51	P107294
Cobal	t	2416.00	2500.0	96,6	90.0 - 110.0	P	7/29/2004	11:51	P107294
Coppe	er	1200.26	1250.0	96.0	90.0 - 110.0	P	7/29/2004	11:51	P107294
Iron		4773.24	5000.0	95.5	90.0 - 110.0	P	7/29/2004	11:51	P107294
Lead		4843.82	5000.0	96.9	90.0 - 110.0	P	7/29/2004	11:51	P107294
Magn	esium	24334.06	25000.0	97.3	90.0 - 110.0	\mathbf{p}	7/29/2004	11:51	P107294
Mang	anese	2410.60	2500.0	96.4	90.0 ~ 110.0	P	7/29/2004	11:51	P107294
Мегс	ıry	4.92	5.0	98.4	90.0 - 110.0	CV	7/28/2004	14:39	072804C
Nicke	l	2448.02	2500.0	97.9	90.0 - 110.0	P	7/29/2004	11:51	P107294
Potass	sium	26202.53	25000.0	104.8	90.0 - 110.0	P	7/29/2004	11;51	P107294
Seleni	um	5020.27	5000.0	100.4	90.0 - 110.0	P	7/29/2004	11:51	P107294
Silver		1255.72	1250.0	100.5	90.0 - 110.0	P	7/29/2004	11:51	P107294
Sodiu	m	25458.53	25000.0	101.8	90.0 - 110.0	P	7/29/2004	11:51	P107294
Thalli		5012.09	5000.0	100.2	90.0 - 110.0	p	7/29/2004	11:51	P107294
Vanad	ium	2392.18	2500.0	95.7	90.0 - 110.0	P	7/29/2004	11:51	P107294
Zinc	-	2458.92	2500.0	98,4	90.0 - 110.0	p	7/29/2004	11:51	P107294

Metals - 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies				SDG No.:	\$3812		
Contract: Chazen Companies		Lab Code:	CHEMED	Case No.:	S3812	SAS No.:	S3812
Initial Calibration Source:	EPA-ICV	·					

Continuing Calibration Source: EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
~1.C1% 143.W					/				
CCV05	າຂໍາ	10630.05	10000.0	106.3	90.0 - 110.0	13	7/00/004	10.06	D107001
				7.7		b b	7/29/2004	12:26	P107294
Antir	,	5300.55	5000.0	106.0	90.0 - 110.0	P	7/29/2004	12:26	P107294
Arsei		5395.07	5000.0	107.9	90.0 - 110.0	P	7/29/2004	12:26	P107294
Bariu		10674.47	10000.0	106.7	90.0 - 110.0	Þ	7/29/2004	12:26	P107294
Beryl	•	266.19	250.0	106.5	90.0 - 110.0	P	7/29/2004	12:26	P107294
Cadn		2676.87	2500.0	107.1	90.0 - 110.0	P	7/29/2004	12:26	P107294
Calci		26791.40	25000.0	107.2	90.0 - 110.0	P	7/29/2004	12:26	P107294
Chro		1064.80	1000.0	106.5	90.0 - 110.0	P	7/29/2004	12:26	P107294
Coba	lt .	2653.82	2500.0	106.2	90.0 - 110.0	P	7/29/2004	12:26	P107294
Сорр	ег	1313.46	1250.0	105.1	90.0 - 110.0	Þ	7/29/2004	12:26	P107294
Iron		5364.44	5000.0	107.3	90.0 - 110.0	P	7/29/2004	12:26	P107294
Lead		5310.24	5000.0	106.2	90.0 - 110.0	Þ	7/29/2004	12:26	P107294
Magu	nesium	26470.18	25000.0	105.9	90.0 - 110.0	Р	7/29/2004	12:26	P107294
Mang	ganese	2655.25	2500.0	106.2	90.0 - 110.0	P	7/29/2004	12:26	P107294
Merci	ury	4.93	5.0	98.6	90.0 - 110.0	CV	7/28/2004	15:09	072804C
Nicke	el	2668.21	2500.0	106.7	90.0 - 110.0	P	7/29/2004	12:26	P107294
Potas:	sium	27431.21	25000.0	109.7	90.0 - 110.0	P	7/29/2004	12:26	P107294
Selen	ium	5458.26	5000.0	109.2	90.0 - 110.0	P	7/29/2004	12:26	P107294
Silver	r	1337.47	1250.0	107.0	90.0 - 110.0	P	7/29/2004	12:26	P107294
Sodiu	m	26922.19	25000.0	107.7	90.0 - 110.0	P	7/29/2004	12:26	P107294
Thalli	ium	5363.28	5000.0	107.3	90.0 - 110.0	₽	7/29/2004	12:26	P107294
Vanac	dium	2644.52	2500.0	105.8	90.0 - 110.0	P	7/29/2004	12:26	P107294
Zinc		2685.31	2500.0	107.4	90.0 - 110.0	P	7/29/2004	12:26	P107294

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client:	Chazen	Com	panies
---------	--------	-----	--------

SDG No.: S3812

Contract: Chazen Companies

_ Lab Code: CHEMED

Case No.: S3812

SAS No.: S3812

Initial Calibration Source:

EPA-JCV

Continuing Calibration Source:

EPA-LV

Sample TD	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
				/	/				
CCV06	•	0.500.40		/		_			
Alum		9692.40	10000,0	96.9	90.0 - 110.0	P	7/29/2004	12:58	P107294
Antin	-	4874.13	5000.0	97.5	90.0 - 110.0	P	7/29/2004	12:58	P107294
Arsen		4991.30	5000.0	99.8	90.0 - 110.0	P	7/29/2004	12:58	P107294
Bariu		10116.19	10000.0	101.2	90.0 - 110.0	P	7/29/2004	12:58	P107294
Beryll	ium	240.72	250.0	96.3	90.0 - 110.0	P	7/29/2004	12:58	P107294
Cadm	ium	2427.84	2500.0	97.1	90.0 - 110.0	P	7/29/2004	12:58	P107294
Calcit	ເໝ	24004.27	25000.0	96.0	90.0 - 110.0	P	7/29/2004	12:58	P107294
Chron	ນ່ນກາ	946.82	1000.0	94.7	90.0 - 110.0	P	7/29/2004	12:58	P107294
Cobal	<u>I</u>	23 61.96	2500.0	94.5	90.0 - 110.0	P	7/29/2004	12:58	P107294
Coppe	r	1183,84	1250.0	94.7	90.0 - 110.0	P	7/29/2004	12:58	P107294
Iron		4547.34	5000.0	90.9	90.0 - 110.0	P	7/29/2004	12:58	P107294
Lead		4763.54	5000.0	95.3	90.0 - 110.0	P	7/29/2004	12:58	P107294
Magne	esium	23990.50	25000.0	96.0	90.0 - 110.0	P	7/29/2004	12:58	P107294
Manga	unese	2355.19	2500.0	94.2	90.0 - 110.0	P	7/29/2004	12:58	P107294
Mercu	ry	4.90	5.0	98.0	90.0 - 110.0	CV	7/28/2004	15:40	072804C
Nickel		2397.56	2500.0	95.9	90.0 - 110.0	P	7/29/2004	12:58	P107294
Potass	ium	25835.19	25000.0	103.3	90.0 - 110.0 -	p	7/29/2004	12:58	P107294
Seleni	um	5012.60	5000.0	100.3	90.0 - 110.0	P	7/29/2004	12:58	P107294
Silver		1244.98	1250.0	99.6	90.0 - 110.0	P	7/29/2004	12:58	P107294
Sodiur	n	25494.13	25000,0	102.0	90.0 - 110.0	P	7/29/2004	12:58	P107294
Thalliu		5011.80	5000.0	100.2	90.0 - 110.0	P	7/29/2004	12:58	P107294
Vanad		2344.35	2500.0	93.8	90.0 - 110.0	P	7/29/2004	12:58	P107294
Zinc		2404.47	2500.0	96.2	90.0 - 110.0	$\dot{\mathbf{P}}$	7/29/2004	12:58	P107294

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3812

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3812

SAS No.: S3812

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
					/				·····
CCV07				/					
Alum	imm	9684.70	0.00001	96.8	90.0 - 110.0	P	7/29/2004	13:34	P107294
Antin	iony	4883.66	5000.0	97.7	90.0 - 110.0	P	7/29/2004	.13:34	P107294
Arser	ic	5010.96	5000.0	100.2	90.0 - 110.0	P	7/29/2004	13:34	P107294
Bariu	m	10176.51	10000,0	101.8	90.0 - 110.0	P	7/29/2004	13:34	P107294
Beryl	lium	240.58	250.0	96.2	90.0 - 110.0	P	7/29/2004	13:34	P107294
Cadm	ium	2428.84	2500.0	97.2	90.0 - 110.0	P	7/29/2004	13:34	P107294
Calci	ım .	23970.81	25000.0	95.9	90.0 - 110.0	P	7/29/2004	13:34	P107294
Chror	nium	940.90	1000.0	94.1	90.0 - 110.0	P	7/29/2004	13:34	P107294
Cobal	t	2338.60	2500.0	93.5	90.0 - 110.0	P	7/29/2004	13:34	P107294
Сорре	er	1170.16	1250.0	93.6	90.0 - 110.0	P	7/29/2004	13:34	P107294
Iron		4692.66	5000.0	93.9	90.0 - 110.0	P	7/29/2004	13:34	P107294
Lead		4741.49	5000.0	94.8	90.0 - 110.0	P	7/29/2004	13:34	P107294
Magn	esium	23874.03	25000.0	95.5	90.0 - 110.0	P	7/29/2004	13:34	F107294
Mang	anese	2322.80	2500.0	92.9	90.0 - 110.0	P	7/29/2004	13:34	P107294
Merci	ıry	4.94	5.0	98.8	90.0 ~ 110.0	CV	7/28/2004	15:50	072804C
Nicke	Ī	2402.92	2500.0	96.1	90.0 - 110.0	P	7/29/2004	13:34	P107294
Potass	ium	23643.45	25000.0	94.6	90.0 - 110.0	р	7/29/2004	13:34	P107294
Seleni	um	4982.10	5000.0	99.6	90.0 - 110.0	P	7/29/2004	13:34	P107294
Silver		1269.60	1250.0	101.6	90.0 - 110.0	P	7/29/2004	13:34	P107294
Sodiu	nı .	23531.27	25000.0	94.1	90.0 - 110.0	þ	7/29/2004	13:34	P107294
Thalli	ונען	5081.38	5000.0	101.6	90.0 - 110.0	₽	7/29/2004	13:34	P107294
Vanad	ium	2315.77	2500.0	92.6	90.0 - 110.0	p	7/29/2004	13:34	P107294
Zinc		2396.30	2500.0	95.9	90.0 - 110.0	P	7/29/2004	13:34	P107294

Metals - 2b CRDL STANDARD FOR AA & ICP

Client: Chazen Companies		SDG No.: S3812							
Contract: Chazen Companies	Lab Code: CHEMED	Case No.:	SAS No.: S3812						
AA CRDL Standard Source:		S3812 							

ICP CRDL Standard Source: INOR-VEN

ICP CR	DL Standard Sou	rce: <u>IN</u>	OR-VEN				`		
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	M	Analysis Date	Analysis Time	Run Number
CRI01									
А	luminum	373.06	400.0	93.3	75 - 125	P	7/29/2004	09:53	P107294
А	ntimony	117.36	120.0	97.8	75 - 125	P	7/29/2004	09:53	P107294
А	rsenic	17.34	20.0	86.7	75 - 125	p	7/29/2004	09:53	P107294
В	arium	373.93	400.0	93.5	75 - 125	P	7/29/2004	09:53	P107294
В	eryllium	10.02	10.0	100.2	75 - 125	P	7/29/2004	09:53	P107294
С	admium	9.44	0.01	94.4	75 - 125	P	7/29/2004	09:53	P107294
C	alcium	9397.20	10000.0	94.0	75 - 125	P	7/29/2004	09:53	P107294
C	hromium	19.88	20.0	99.4	75 - 125	P	7/29/2004	09:53	P107294
c	obalt	99.56	100.0	99.6	75 - 125	P	7/29/2004	09:53	P107294
C	opper	47.06	50.0	94.1	75 - 125	P	7/29/2004	09:53	P107294
lre	on	192.220	200.0	96.11	75 - 125	P	7/29/2004	09:53	P107294
L	ead	6.14	6.0	102.3	75 - 125	P	7/29/2004	09:53	P107294
М	lagnesium	9384.91	10000.0	93.8	75 - 125	P	7/29/2004	09:53	P107294
M	anganese	30.30	30.0	101.0	75 - 125	P	7/29/2004	09:53	P107294
M	lercury	0.16	0.2	(80.0) W	0 - 200	cv	7/28/2004	13:17	072804C
N	ickel	82.70	80.0	103.4	75 - 125	P	7/29/2004	09:53	P107294
Se	elenium	12.22	10.0	122.2	75 - 125	P	7/29/2004	09:53	P107294
Si	lver	20.04	20.0	100.2	75 - 125	P	7/29/2004	09:53	P107294
Ti	allium	15.91	20.0	79.6 80 7	6 75-125	P	7/29/2004	09:53	P107294
Va	anadium	100.82	100.0	100.8		P	7/29/2004	09:53	P107294
Zi	nc	40.64	40.0	101.6	75 - 125	P	7/29/2004	09:53	P107294

Metals - 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: \$3812

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3812

SAS No.: S3812

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
ICB01		100.1	1/2000	, , , , , , , , , , , , , , , , , , ,	100.1	200.0	P	7/29/2004		P107294
	Aluminum	180.1	+/-200.0	U	180.1	200.0 60.0	r p	7/29/2004	09:49	P107294 P107294
	Antimony	6.6	+/-60.0	U	6.6		-		09:49	
	Arsenic	4.8	+/-10.0	U	4.8	10.0	Р	7/29/2004	09:49	P107294
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/29/2004	09:49	P107294
	Beryllium	1.1	+/-5.0	U	1.1	5.0	Þ	7/29/2004	09:49	P107294
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/29/2004	09:49	P107294
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/29/2004	09:49	P107294
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/29/2004	09:49	P107294
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/29/2004	09:49	P107294
	Copper	0.7	+/-25.0	U	0.7	25.0	P	7/29/2004	09:49	P107294
	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/29/2004	09:49	P107294
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/29/2004	09:49	P107294
ſ	Magnesium	254.2	+/-5000.0	U	254.2	\$000.0	P	7/29/2004	09:49	P107294
	Manganese	-0.5	+/-15.0	J	0.2	15.0	P	7/29/2004	09:49	P107294
	Mercury	-0.033	+/-0.200	l	0.006	0.200	CV	7/28/2004	13:10	072804C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/29/2004	09:49	P107294
	Potassium	51.0	+/-5000,0	U	51.0	5000.0	P	7/29/2004	09:49	P107294
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/29/2004	09:49	P107294
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/29/2004	09:49	P107294
	Sodium	189.5	+/-5000.0	U	189.5	5000.0	P	7/29/2004	09:49	P107294
	Thallium	7.0	+/-10.0	J	5.8	10.0	P	7/29/2004	09:49	P107294
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/29/2004	09:49	P107294
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/29/2004	09:49	P107294

- 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3812

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3812

SAS No.: \$3812

Sample II) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
		7.8						~~		
CCB04				./						
CCB04	Aluminum	180.1	+/-200.0	U	180.1	200.0	P	7/29/2004	11:53	P107294
	Antimony	6,6	+/-60.0	U	6.6	60.0	P	7/29/2004	11:53	P107294
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/29/2004	11:53	P107294
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/29/2004	11:53	P107294
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/29/2004	11:53	P107294
	Cadmium	1.0	+/-5.0	Ū	1.0	5.0	P	7/29/2004	11:53	P107294
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/29/2004	11:53	P107294
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/29/2004	11:53	P107294
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/29/2004	11:53	P107294
	Copper	-1.0	+/-25.0	J	0.7	25.0	P	7/29/2004	11:53	P107294
	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/29/2004	11:53	P107294
	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/29/2004	11:53	P107294
)	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/29/2004	11:53	P107294
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/29/2004	11:53	P107294
	Mercury	-0.010	+/-0.200	J	0.006	0.200	CV	7/28/2004	14:41	072804C
	Nickel	5.5	+/-40.0	υ	5.5	40.0	P	7/29/2004	11:53	P107294
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/29/2004	11:53	P107294
	Selenium	5.2	+/-10.0	U	5.2	10.0	\mathbf{P}	7/29/2004	11:53	P107294
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/29/2004	11:53	P107294
	Sodium	-269.5	+/-5000.0	J	189.5	5000.0	P	7/29/2004	11:53	P107294
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/29/2004	11:53	P107294
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/29/2004	11:53	P107294
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/29/2004	11:53	P107294

Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3812

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3812

SAS No.: \$3812

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
· · · · · · · · · · · · · · · · · · ·					/					
CCB05				/	•					
	Aluminum	180.1	+/-200.0	U ·	180.1	200.0	P	7/29/2004	12:29	P107294
	Antimony	6.6	+/-60.0	U	6.6	60.0	Ρ.	7/29/2004	12:29	P107294
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/29/2004	12.29	P107294
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/29/2004	12:29	P107294
	Beryllium	1.1	+/-5.0	j	1.1	5.0	P	7/29/2004	12:29	P107294
	Cadmiun	1.0	+/-5.0	U	1.0	5.0	P	7/29/2004	12:29	P107294
	Calcium	1744.7	+/-5000.0	\mathbf{u}	1744.7	5000.0	P	7/29/2004	12:29	P107294
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/29/2004	12:29	P107294
	Cobalt	2.4	+/-50.0	υ	2.4	50.0	P	7/29/2004	12:29	P107294
	Copper	-0,8	+/-25.0	J	0.7	25.0	P	7/29/2004	12:29	P107294
	Iron	59.6	+/-100.0	J	29.0	100.0	P	7/29/2004	12:29	P107294
	Lead	1.9	+/-5.0	J	1.8	5.0	P	7/29/2004	12:29	P107294
)	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/29/2004	12:29	P107294
	Manganese	1.4	+/-15.0	J	0.2	15.0	P	7/29/2004	12:29	P107294
*	Мегсигу	-0.041	+/-0.200	J	0.006	0.200	ÇV	7/28/2004	15:12	072804C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/29/2004	12:29	P107294
	Potassium	51.0	+/~5000.0	U	51.0	5000.0	P	7/29/2004	12:29	P107294
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/29/2004	12:29	P107294
	Silver	3,4	+/-10.0	U	3.4	10.0	P	7/29/2004	12:29	P107294
	Sodium	-373.1	+/-5000.0	J	189.5	5000.0	P	7/29/2004	12:29	P107294
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/29/2004	12:29	P107294
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/29/2004	12:29	P107294
	Zine	8.1	+/-20.0	U	8.1	20.0	P	7/29/2004	12:29	P107294

- 3a ~ INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: \$3812

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3812

SAS No.: S3812

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
			.,		/					
CCB06				/	,					
	Aluminum	180.1	+/-200.0	U 🐧	180.1	200.0	P	7/29/2004	13:00	P107294
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/29/2004	13:00	P107294
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/29/2004	13:00	P107294
	Bariun	11.0	+/-200.0	U	11.0	200.0	P	7/29/2004	13:00	P107294
	Beryllium	1.6	+/-5.0	J	1.1	5,0	P	7/29/2004	13:00	P107294
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/29/2004	13:00	P107294
	Calcium	1744.7	+/-5000,0	U	1744.7	5000.0	P	7/29/2004	13:00	P107294
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/29/2004	13:00	P107294
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/29/2004	13:00	P107294
	Copper	-1.5	+/-25.0	Ţ	0.7	25.0	·P	7/29/2004	13:00	P107294
	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/29/2004	13:00	P107294
	Lead	1.8	+/-5.0	U .	1.8	5.0	P	7/29/2004	13:00	P107294
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/29/2004	13:00	P107294
	Manganese	0.2	+/-15.0	U	0.2	15.0	\mathbf{P}	7/29/2004	t3:00	P107294
	Mercury	-0.036	+/-0,200	J	0.006	0.200	CV	7/28/2004	15:42	072804C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/29/2004	13:00	P107294
	Potassium	51.0	+/-5000.0	Ü	51.0	5000.0	P	7/29/2004	13:00	P107294
	Selenium ⁻	5.2	+/-10.0	U	5.2	10.0	P	7/29/2004	13:00	P107294
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/29/2004	13:00	P107294
	Sodium	-346.1	+/-5000.0	J	189.5	5000.0	P	7/29/2004	13:00	P107294
	Thallium	8.5	+/-10.0	J	5.8	10.0	P	7/29/2004	13:00	P107294
	Vanadium	1.9	+/-50.0	U	1.9	50.0	Ρ.	7/29/2004	13:00	P107294
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/29/2004	13:00	P107294

Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: \$3812

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3812

SAS No.: \$3812

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL,	CRQL	M	Analysis Date	Analysis Time	Run
767807										
CCB07	Aluminum	180.1	+/-200.0	u 🗸	180.1	200.0	P	7/29/2004	13:37	P107294
	Antimony	6.6	+/-60.0	Ū	6.6	60.0	P	7/29/2004	13:37	P107294
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/29/2004	13:37	P107294
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/29/2004	13:37	P107294
	Beryllium	1.9	+/-5.0	J	1.1	5.0	P	7/29/2004	13:37	P107294
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/29/2004	13:37	P107294
	Calcium	1744.7	+/-5000.0	U	1 7 44.7	5000.0	₽	7/29/2004	13:37	P107294
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/29/2004	13:37	P107294
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/29/2004	13:37	P107294
	Copper	-1.8	+/-25.0	J	0.7	25.0	P	7/29/2004	13:37	P107294
	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/29/2004	13:37	P107294
	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/29/2004	13:37	P107294
	Magnesium	254.2	+/-5000.0	IJ	254.2	5000.0	P	7/29/2004	13:37	P107294
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/29/2004	13:37	P107294
	Mercury	-0.046	+/-0.200	J	0.006	0.200	cv	7/28/2004	15:52	072804C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/29/2004	13:37	P107294
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/29/2004	13:37	P107294
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/29/2004	13:37	P107294
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/29/2004	13:37	P107294
	Sodium	-332.9	+/-5000.0	J	189.5	5000.0	P	7/29/2004	13:37	P107294
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/29/2004	13:37	P107294
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/29/2004	13:37	P107294
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/29/2004	13:37	P107294

Metals - 3b -PREPARATION BLANK SUMMARY

Client:

Chazen Companies

SDG No.:

S3812

Instrument:

CV2

Sample ID	Analyte	Result (mg/Kg)	Acceptance Limit	Conc Qual	MDL mg/Kg	CRQL mg/Kg	M	Analysis Date	Analys Time	•	
PB16537BL		SOIL		Batch Numb	er: PJ	B16537		Prep Date:	7/27	/2004	
Ме	reury	0.001	<0.010	υ	0.006	0.010	CV	7/28/2004	14:43	072804C	
PB16570BL		SOIL		Batch Number	ér: PI	316570		Prep Date:	7/29	/2004	
Alu	minum	3.746	<20.000	J 🗸	0.629	20.000	P	7/29/2004	11:16	P107294	
Ant	imony	-0.286	<6.000	U	0.563	6.000	P	7/29/2004	11:16	P107294	
Ars	enic	0.262	<1.000	J	0.237	1.000	P	7/29/2004	11:16	P107294	
Bar	ium	-0.198	<20.000	Ţ	0.022	20.000	P	7/29/2004	11:16	P107294	
Ber	yllium	0.044	< 0.500	j ·	0.004	0.500	P	7/29/2004	11:16	P107294	
Cad	lmium	-0.068	<0.500	J	0.046	0.500	P	7/29/2004	11:16	P107294	
Calo	cium	-0.134	<500.000	U	0.350	500.000	P	7/29/2004	11:16	P107294	
Chr	omium	-0.028	<1.000	U	0.095	1.000	P	7/29/2004	11:16	F107294	
Cob	alt	-0.050	<5.000	U	0.079	5.000	P	7/29/2004	11:16	P107294	
Сор	per	-0.056	<2.500	U	0.114	2.500	P	7/29/2004	11:16	P107294	
Iron	i	-2.890	<10.000	J	1.762	10.000	P	7/29/2004	11:16	P107294	
Lead	d	-0.028	< 0.500	U	0.103	0.500	P	7/29/2004	11:16	P107294	
Maş	guesium	-0.488	<500.000	J	0.016	500.000	P	7/29/2004	11:16	P107294	
Mar	nganese	-0.055	<1.500	U	0.802	1,500	P	7/29/2004	11:16	P107294	
Nick	kel	0.130	<4.000	U	0.151	4.000	P	7/29/2004	11:16	P107294	
Pota	issium	-1.915	<500.000	U	3.289	500,000	P	7/29/2004	11:16	P107294	
Sele	nium	0.126	<1.000	U	0.313	1.000	P	7/29/2004	11:16	P107294	
Silve	er	-0.052	<1.000	U	0.105	1.000	P	7/29/2004	11:16	P107294	
Sodi	ium	-19.400	<500.000	ប	37.167	500.000	P	7/29/2004	11:16	P107294	
Thal	llium	-0.084	<1.000	U	0.330	1.000	P	7/29/2004	11:16	P107294	
Vana	adium	-0.020	<5.000	U	0.102	5.000	P	7/29/2004	11:16	P107294	
Zinc	;	-0.240	<2.000	J	0.056	2.000	P	7/29/2004	11:16	P107294	

Metals - 4 INTERFERENCE CHECK SAMPLE

Client: Chazen Companies SDG No.: S3812

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3812 SAS No.: S3812

ICS Source: EPA Instrument IO: PI

ample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Number
ICS-A01	[
	Aluminum	441000	519000	85.0	80 - 120	7/29/2004	10:00	P107294
	Antimony	-1.1			0 - 0	7/29/2004	10:00	P107294
	Arsenic	-2.3			0 - 0	7/29/2004	10:00	P107294
	Barium	-1.2			0 - 0	7/29/2004	10:00	P107294
	Beryllium	0.20		1	0 - 0	7/29/2004	10:00	P107294
	Cadmium	1.6		٧	0 - 0	7/29/2004	10:00	P107294
	Calcium	399000	491900	81.1	80 - 120	7/29/2004	10:00	P107294
	Chronium	16.4	20	82.0	80 - 120	7/29/2004	10:00	P107294
	Cobalt	-0.22			0 - 0	7/29/2004	10:00	P107294
	Copper	2.9			0 - 0	7/29/2004	10:00	P107294
	Iron	158000	195000	81.0	80 - 120	7/29/2004	10:00	P107294
•	Lead	2.8			0 - 0	7/29/2004	10:00	P107294
	Magnesium	471000	542000	86.9	80 - 120	7/29/2004	10:00	P107294
	Manganese	-5.0			0~0	7/29/2004	10:00	P107294
1	Nickel	-1.6			0 - 0	7/29/2004	10:00	P107294
]	Potassium	83.3			0 - 0	7/29/2004	10:00	P107294
:	Selenium	9.9			0 - 0	7/29/2004	10:00	P107294
;	Silver	4.7			0 - 0	7/29/2004	10:00	P107294
:	Sodium	-124			0 - 0	7/29/2004	10:00	P107294
•	Thallium	-2.0			0 - 0	7/29/2004	10:00	P107294
1	Vanadium	-3.1			0 - 0	7/29/2004	10:00	P107294
2	Zinc	-5.6			0 - 0	7/29/2004	10:00	P107294

Metals - 4 INTERFERENCE CHECK SAMPLE

Client: Chazen Companies

SDG No.: S3812

Contract: Chazen Companies

en Companies Lab Code: CHEMED

Case No.: \$3812

SAS No.: S3812

ICS Source:

EPA

Instrument ID:

PΙ

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-AB0				V				
_	Aluminum	445000	514000	86.6	80 - 120	7/29/2004	10:06	P107294
Å	Antimony	520	518	100.4	80 - 120	7/29/2004	10:06	P107294
4	Arsenic	84.2	102	82.5	80 - 120	7/29/2004	10:06	P107294
I	Barium	461	456	101.1	80 - 120	7/29/2004	10:06	P107294
I	Beryllium	397	458	86.7	80 - 120	7/29/2004	10:06	P107294
•	Cadmium	814	910	89.5	80 - 120	7/29/2004	10:06	P107294
(Calcium	402000	489000	82.2	80 - 120	7/29/2004	10:06	P107294
(Chromium	407	455	89.5	80 - 120	7/29/2004	10:06	P107294
C	Cobalt	409	430	95.1	80 - 120	7/29/2004	10:06	P107294
(Copper	445	506	87.9	80 - 120	7/29/2004	10:06	P107294
L	ron	161000	194600	82.7	80 - 120	7/29/2004	10:06	P107294
Į	.ead	43.5	49	88.8	80 - 120	7/29/2004	10:06	P107294
y	Magnesium	473000	540600	87.5	80 - 120	7/29/2004	10:06	P107294
¥	Manganese	406	438	92.7	80 - 120	7/29/2004	10:06	P107294
N	Jickel	787	846	93.0	80 - 120	7/29/2004	10:06	P107294
P	otassium	52.2			80 - 120	7/29/2004	10:06	P107294
S	elenium	53.7	47	114.3	80 - 120	7/29/2004	10:06	P107294
s	ilver	193	196	98.5	80 - 120	7/29/2004	10:06	P107294
S	odium	34.8			80 - 120	7/29/2004	10:06	P107294
T	hallium	81,1	89	91.1	80 - 120	7/29/2004	10:06	P107294
V	/anadium	411	452	90.9	80 - 120	7/29/2004	10:06	P107294
z	inc	891	958	93.0	80 - 120	7/29/2004	10:06	P107294

-5a-

MATRIX SPIKE SUMMARY

Client: Chazen Companies Level: LOW SDG No.: \$3812

Contract: Chazen Companies Lab Code: CHEMEI) Case No.: S3812 SAS No.: S3812

Matrix: SOII. Sample ID: \$3794-01 Client ID: CPQ13-20001N07048

Percent Solids for Sample: 86.30 Spiked ID: \$3794-01\$ Percent Solids for Spike Sample: 86.30

Units mg/Kg	Acceptance Limit %R	Spiked		Sample		~ "	•		
mg/Kg		Result	C	Result	c _	Spike Added	% Recovery Qua	l M	
	80 - 120	18544.0300		12696.9700		231.75	2523.0	P	
mg/Kg	80 - 120	26.5162		0.6524	U	92.70	(28.6) N	P	
mg/Kg	80 - 120	87.8488		2.7283		92.70	91.8	P	
mg/Kg	80 - 120	278.9832		39.4751		231.75	103.3	₽	
mg/Kg	80 - 120	20.1582		0.5093	J	23.17	84.8	P	
mg/Kg	80 - 120	24.2630		1.3418		23.17	98.9	P	
mg/Kg	80 - 120	889.5886		385.2010	J	579.37	87.1	P	
mg/Kg	80 - 120	60.0035		11.0481		46.35	105.6	P	
mg/Kg	80 - 120	47.5243		33.2822		23.17	(61.5) N	P	
mg/Kg	80 - 120	45.0174		8.8928		34.76	103.9	P	
mg/Kg	80 - 120	17302.3700		15404.0700	/	347.62	546.1	P	
mg/Kg	80 - 120	119.6060		7.8146		115.87	96.5	P	-
mg/Kg	80 - 120	891.2260		638.5261		231.75	109.0	P	•
mg/Kg	80 - 120	425.0492		524.7618		23.17	430.4	P	
mg/Kg	80 - 120	65.2938		7.0110		57.94	100.6	P	
mg/Kg	80 - 120	1680.7150		264.7880	J	1158,75	122.2	P	
mg/Kg	80 - 120	195.7277		1.3546		231.75	83.9	P	
mg/Kg	80 - 120	9.5220		0.3268	J	8.69	105.8	P	
mg/Kg	80 - 120	397.5522	J	43.0672	U	347.62	114.4	P	
mg/Kg	80 - 120	215.6176		0.3824	U	231.75	93.0	P	
mg/Kg	80 - 120	63.1871		24.5133		34.76	111.3	P	
mg/Kg	80 - 120	59.2265		33.2688		23.17	112.0	P	
	mg/Kg	mg/Kg 80 - 120	mg/Kg 80 - 120 26.5162 mg/Kg 80 - 120 87.8488 mg/Kg 80 - 120 278.9832 mg/Kg 80 - 120 20.1582 mg/Kg 80 - 120 24.2630 mg/Kg 80 - 120 889.5886 mg/Kg 80 - 120 60.0035 mg/Kg 80 - 120 47.5243 mg/Kg 80 - 120 17302.3700 mg/Kg 80 - 120 119.6060 mg/Kg 80 - 120 891.2260 mg/Kg 80 - 120 425.0492 mg/Kg 80 - 120 65.2938 mg/Kg 80 - 120 195.7277 mg/Kg 80 - 120 195.7277 mg/Kg 80 - 120 397.5522 mg/Kg 80 - 120 397.5522 mg/Kg 80 - 120 63.1871	mg/Kg 80 - 120 26.5162 mg/Kg 80 - 120 87.8488 mg/Kg 80 - 120 278.9832 mg/Kg 80 - 120 20.1582 mg/Kg 80 - 120 24.2630 mg/Kg 80 - 120 889.5886 mg/Kg 80 - 120 60.0035 mg/Kg 80 - 120 47.5243 mg/Kg 80 - 120 45.0174 mg/Kg 80 - 120 17302.3700 mg/Kg 80 - 120 119.6060 mg/Kg 80 - 120 425.0492 mg/Kg 80 - 120 425.0492 mg/Kg 80 - 120 65.2938 mg/Kg 80 - 120 195.7277 mg/Kg 80 - 120 9.5220 mg/Kg 80 - 120 397.5522 J mg/Kg 80 - 120 63.1871	mg/Kg 80 - 120 26.5162 0.6524 mg/Kg 80 - 120 87.8488 2.7283 mg/Kg 80 - 120 278.9832 39.4751 mg/Kg 80 - 120 20.1582 0.5093 mg/Kg 80 - 120 24.2630 1.3418 mg/Kg 80 - 120 889.5886 385.2010 mg/Kg 80 - 120 60.0035 11.0481 mg/Kg 80 - 120 47.5243 33.2822 mg/Kg 80 - 120 45.0174 8.8928 mg/Kg 80 - 120 17302.3700 15404.0700 mg/Kg 80 - 120 119.6060 7.8146 mg/Kg 80 - 120 891.2260 638.5261 mg/Kg 80 - 120 425.0492 524.7618 mg/Kg 80 - 120 1680.7150 264.7880 mg/Kg 80 - 120 195.7277 1.3546 mg/Kg 80 - 120 397.5522 J 43.0672 mg/Kg 80 - 120 397.5522 J 43.0672 <td>mg/Kg 80 - 120 26.5162 0.6524 U mg/Kg 80 - 120 87.8488 2.7283 mg/Kg 80 - 120 278.9832 39.4751 mg/Kg 80 - 120 20.1582 0.5093 J mg/Kg 80 - 120 24.2630 1.3418 mg/Kg 80 - 120 889.5886 385.2010 J mg/Kg 80 - 120 60.0035 11.0481 11.0481 mg/Kg 80 - 120 47.5243 33.2822 12.0481 mg/Kg 80 - 120 45.0174 8.8928 12.0404.0700 15404</td> <td>mg/Kg 80 - 120 26.5162 0.6524 U 92.70 ¹ mg/Kg 80 - 120 87.8488 2.7283 92.70 ¹ mg/Kg 80 - 120 278.9832 39.4751 231.75 ¹ mg/Kg 80 - 120 20.1582 0.5093 J 23.17 ¹ mg/Kg 80 - 120 24.2630 1.3418 23.17 ¹ mg/Kg 80 - 120 889.5886 385.2010 J 579.37 ¹ mg/Kg 80 - 120 60.0035 11.0481 46.35 ¹ mg/Kg 80 - 120 47.5243 33.2822 23.17 ¹ mg/Kg 80 - 120 45.0174 8.8928 34.76 ¹ mg/Kg 80 - 120 17302.3700 15404.0700 347.62 ¹ mg/Kg 80 - 120 19.6060 7.8146 115.87 ¹ mg/Kg 80 - 120 425.0492 524.7618 23.175 ¹ mg/Kg 80 - 120 450.0492 524.7618 23.17 ¹ mg/Kg 80 - 120 1680.7150 264.7880 J 1158.75 ¹</td> <td>mg/Kg 80 - 120 26.5162 0.6524 U 92.70 28.6 N mg/Kg 80 - 120 87.8488 2.7283 92.70 91.8 N mg/Kg 80 - 120 278.9832 39.4751 231.75 103.3 mg/Kg 80 - 120 20.1582 0.5093 J 23.17 84.8 mg/Kg 80 - 120 24.2630 1.3418 23.17 98.9 mg/Kg 80 - 120 889.5886 385.2010 J 579.37 87.1 mg/Kg 80 - 120 60.0035 11.0481 46.35 105.6 mg/Kg 80 - 120 47.5243 33.2822 23.17 61.5 N mg/Kg 80 - 120 45.0174 8.8928 34.76 103.9 mg/Kg 80 - 120 17302.3700 15404.0700 347.62 346.1 mg/Kg 80 - 120 19.6060 7.8146 115.87 96.5 mg/Kg 80 - 120 891.2260 638.5261 231.</td> <td>mg/Kg 80 - 120 26.5162 0.6524 U 92.70 28.6 N P mg/Kg 80 - 120 87.8488 2.7283 92.70 91.8 P mg/Kg 80 - 120 278.9832 39.4751 231.75 103.3 P mg/Kg 80 - 120 20.1582 0.5093 J 23.17 84.8 P mg/Kg 80 - 120 24.2630 1.3418 23.17 98.9 P mg/Kg 80 - 120 889.5886 385.2010 J 579.37 87.1 P mg/Kg 80 - 120 60.0035 11.0481 46.35 105.6 P mg/Kg 80 - 120 47.5243 33.2822 23.17 61.5 N P mg/Kg 80 - 120 45.0174 8.8928 34.76 103.9 P mg/Kg 80 - 120 17302.3700 15404.0700 347.62 546.1 P mg/Kg 80 - 120 891.2260 638.5261</td>	mg/Kg 80 - 120 26.5162 0.6524 U mg/Kg 80 - 120 87.8488 2.7283 mg/Kg 80 - 120 278.9832 39.4751 mg/Kg 80 - 120 20.1582 0.5093 J mg/Kg 80 - 120 24.2630 1.3418 mg/Kg 80 - 120 889.5886 385.2010 J mg/Kg 80 - 120 60.0035 11.0481 11.0481 mg/Kg 80 - 120 47.5243 33.2822 12.0481 mg/Kg 80 - 120 45.0174 8.8928 12.0404.0700 15404	mg/Kg 80 - 120 26.5162 0.6524 U 92.70 ¹ mg/Kg 80 - 120 87.8488 2.7283 92.70 ¹ mg/Kg 80 - 120 278.9832 39.4751 231.75 ¹ mg/Kg 80 - 120 20.1582 0.5093 J 23.17 ¹ mg/Kg 80 - 120 24.2630 1.3418 23.17 ¹ mg/Kg 80 - 120 889.5886 385.2010 J 579.37 ¹ mg/Kg 80 - 120 60.0035 11.0481 46.35 ¹ mg/Kg 80 - 120 47.5243 33.2822 23.17 ¹ mg/Kg 80 - 120 45.0174 8.8928 34.76 ¹ mg/Kg 80 - 120 17302.3700 15404.0700 347.62 ¹ mg/Kg 80 - 120 19.6060 7.8146 115.87 ¹ mg/Kg 80 - 120 425.0492 524.7618 23.175 ¹ mg/Kg 80 - 120 450.0492 524.7618 23.17 ¹ mg/Kg 80 - 120 1680.7150 264.7880 J 1158.75 ¹	mg/Kg 80 - 120 26.5162 0.6524 U 92.70 28.6 N mg/Kg 80 - 120 87.8488 2.7283 92.70 91.8 N mg/Kg 80 - 120 278.9832 39.4751 231.75 103.3 mg/Kg 80 - 120 20.1582 0.5093 J 23.17 84.8 mg/Kg 80 - 120 24.2630 1.3418 23.17 98.9 mg/Kg 80 - 120 889.5886 385.2010 J 579.37 87.1 mg/Kg 80 - 120 60.0035 11.0481 46.35 105.6 mg/Kg 80 - 120 47.5243 33.2822 23.17 61.5 N mg/Kg 80 - 120 45.0174 8.8928 34.76 103.9 mg/Kg 80 - 120 17302.3700 15404.0700 347.62 346.1 mg/Kg 80 - 120 19.6060 7.8146 115.87 96.5 mg/Kg 80 - 120 891.2260 638.5261 231.	mg/Kg 80 - 120 26.5162 0.6524 U 92.70 28.6 N P mg/Kg 80 - 120 87.8488 2.7283 92.70 91.8 P mg/Kg 80 - 120 278.9832 39.4751 231.75 103.3 P mg/Kg 80 - 120 20.1582 0.5093 J 23.17 84.8 P mg/Kg 80 - 120 24.2630 1.3418 23.17 98.9 P mg/Kg 80 - 120 889.5886 385.2010 J 579.37 87.1 P mg/Kg 80 - 120 60.0035 11.0481 46.35 105.6 P mg/Kg 80 - 120 47.5243 33.2822 23.17 61.5 N P mg/Kg 80 - 120 45.0174 8.8928 34.76 103.9 P mg/Kg 80 - 120 17302.3700 15404.0700 347.62 546.1 P mg/Kg 80 - 120 891.2260 638.5261

Matrix:

Metals

-5a-

MATRIX SPIKE DUPLICATE SUMMARY

Client ID: CPQ13-20001N0704SD

Client: Chazen Companies Level: SDG No.:

Contract: Chazen Companies Lab Code: CHEMED Case No.: \$3812 SAS No.: S3812 Sample ID: S3794-01

Percent Solids for Sample: 86.30 Spiked ID: Percent Solids for Spike Sample: 86.30 S3794-01SD

Percent Sonds for Sample: 80.50			Shikea in:	3331	94-01SD	rerent sonus for Spike Sample: 80.30						
Analyte	Units	Acceptance Limit %R	MSD Result	C	Sample Result	C	Spike Added	% Recovery Qual	М			
Aluminum	mg/Kg	80 - 120	18459.2800		12696.9700		231.75	2486.4	P			
Antimony	mg/Kg	80 - 120	25.9536		0.6524	U	92.70	(28.0) N	P			
Arsenic	mg/Kg	80 - 120	87.7126		2.7283		92.70	91.7	P			
Barium	mg/Kg	80 - 120	278.4333		39,4751		231.75	103.1	P			
Beryllium	mg/Kg	80 - 120	20.0869		0.5093	J	23.17	84.5	P			
Cadmium	mg/Kg	80 - 120	24.1889		1.3418		23.17	98.6	P			
Calcium	mg/Kg	80 - 120	886.6582		385.2010	J	579.37	86.6	P			
Chromium	mg/Kg	80 - 120	59.5881		11.0481		46.35	104.7	P			
Cobalt	mg/Kg	80 - 120	47.4293		33.2822		23.17	(61.1) N	P			
Copper	mg/Kg	80 - 120	44.6756		8.8928	/	34.76	102.9	P			
fron .	mg/Kg	80 - 120	17169.0500		15404.0700 🗸		347.62	(507.7)	P			
Lead	mg/Kg	80 - 120	119.1396		7.8146		115.87	96.1	P			
Magnesium	mg/Kg	80 - 120	886.0481		638,5261		231.75	106.8	P			
anganese	mg/Kg	80 - 120	423.2254		524.7618 🐱		23.17	(438.2)	P			
Nickel	mg/Kg	80 - 120	65.0516		7.0110		57.94	100.2	P			
Potassium	mg/Kg	80 - 120	1676,3750		264.7880 .	Ţ	1158.75	(121.8) N	P			
Selenium	mg/Kg	80 - 120	196.1228		1.3546		231.75	84.0	P			
Silver	mg/Kg	80 - 120	9.5423		0.3268	J	8.69	106.0	P			
Sodium	mg/Kg	80 - 120	386.8621	J	43.0672	IJ	347.62	111.3	P			
Thallium •	mg/Kg	80 - 120	213.2607		0.3824	Ú	231.75	92.0	P			
Vanadium	mg/Kg	80 - 120	- 62.9583		24.5133		34.76	110.6	P			
Zinc	mg/Kg	80 - 120	59,1026		33,2688		23.17	111.5	P			

- 5a -

MATRIX SPIKE SUMMARY

Mercury	mg/Kg	80 - 120	0.1976	·	0.0078	ĭ	0.21	90.4		CV			
Analyte	Units	Acceptance Limit %R	Spiked Result	c	Sample Result	c	Spike Added	% Recovery	Oual	M			
Percent Solids for Sample: 96.40			Spiked ID: S3786-06			Per	rcent Solids	for Spike Samp	le: . 96.	40			
Matrix:	SOIL		Sample ID:	S3	786-05	Cii	ent ID: SDU	JRKEE-SS4S					
Contrac	t: <u>Chazen</u>	Companies	Lab	Code:	CHEMED		Case No.:	S3812		SAS No.: 83812			
Client: Chazen Companies			Level	:	LOW		SDG No.:	<u>\$3812</u>	\$3812				

- 5a -

MATRIX SPIKE DUPLICATE SUMMARY

VIIVIIII V	lient: Chazen Companies				LOW		SDG No.:	S3812		· · · · · · · · · · · · · · · · · · ·			
Contract	Chazen	Companies	Lab C	Code:	CHEMED		Case No.:	S3812	S.	AS No.: S3812			
Matrix:	SOIL		Sample ID:	Sample ID: \$3786-05				Client ID: SDURKEE-SS4SD					
Percent S	Percent Solids for Sample: 96.40		Spiked ID:	S3786-07		Percent Solids f		for Spike Sample: 96)			
Analyte	Units	Acceptance Limit %R	MSD Result	C	Sample Result	c	Spike Added	% Recovery	Qual	M			
/lercury	mg/Kg	80 - 120	0.1961		0.0078		0.21	89.7		CV			

POST DIGEST SPIKE SUMMARY

Client: Chazen Companies SDG No.: S3812

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3812 SAS No.: S3812

Matrix: SOIL Level: LOW Client ID: CPQ13-20001N0704A

Sample ID: \$3794-01 Spiked ID: \$3794-01A

Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	c	Spike Added	% Recovery	Qual	M
Antimony	ug/L	75 - 125	222.76		6.60	U	800.0	27.8		p
Cobalt	ug/L	75 - 125	410.34		287.22		200.0	61.6		P
Potassium	ug/L	75 ~ 125	14622.64		2285.12	J	10000.0	123.4		P

Metals -6-

DUPLICATE SAMPLE SUMMARY

Client: Chazen Companies

Level:

LOW

SDG No.:

<u>\$3812</u>

Contract:

Chazen Companies

Lab Code: CHEMED

Case No.: \$3812 SAS No.: \$3812

Matrix:

Sample ID: \$3794-01

Client ID: CPQ13-20001N0704D

Percent Solids for Sample: 86.30		Duplicate ID:	S3794	I-01D	Perce				
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	С	RPD Qua	i M	
Aluminum	mg/Kg		12696.9700		12754.3200		0.5	P	
Antimony	mg/Kg		0.6524	U	0.6524	U		P	
Arsenic	mg/Kg	1.1587	2.7283		2.7584		1.1	P	
Barium	mg/Kg	23.1750	39.4751		39.2868		0.5	P	
Beryllium	mg/Kg		0.5093	J	0.4873	J	4.4	P	
Cadmium	mg/Kg	0.5794	1.3418		1.2769		5.0	P	
Calcium	mg/Kg		385.2010	J	386.4305	J	0.3	P	
Chromium	mg/Kg		11.0481		11.1124		0.6	P	
Cobalt	mg/Kg		33.2822		33.3766		0.3	P	
Copper	mg/Kg	2.8969	8.8928		9.0562		1.8	P	
Iron	mg/Kg		15404.0700		15704.7700		1.9	P	
Lead	mg/Kg		7.8146		8.3111		6.2	P	
Magnesium	mg/Kg	579.3743	638.5261	-	640.0533		0.2	P .	
Yanganese	mg/Kg		524.7618		528.9681		0.8	P	•
Nickel	mg/Kg	4.6350	7.0110		7.0637		0.7	P	
Potassium	mg/Kg		264.7880	j	263.9612	J	0.3	P	
Selenium	mg/Kg		1.3546		1.0979	J	20.9	P -	
Silver	mg/Kg		0.3268	J	0.3685	J	12.0	P	
Sodium	mg/Kg		43.0672	U	43.0672	U		P	
Thallium	mg/Kg		0.3824	U	0.3824	U		P	
Vanadium	mg/Kg	5.7937	24.5133		24.5805		0.3	P	
Zinc	mg/Kg		33.2688		33.6176		1.0	P	

Metals -6-

DUPLICATE SAMPLE SUMMARY

Client: Chazen Companies

Level:

LOW

SDG No.:

S3812

Contract:

Chazen Companies

Lab Code:

CHEMED

SAS No.: §3812

Matrix:

Sample ID: <u>\$3794-01S</u>

Client ID: CPQ13-20001N0704SD

Percent Solids for Sample: 86.30

Duplicate ID: S3794-01SD

Percent Solids for Duplicate: 86.30

Percent Solids for Sample: 86.30		Duplicate ID: S3794-01SD			Percent Solids for Duplicate: 86.30					
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD $$ Qual	М		
Aluminum	mg/Kg		18544.0300		18459.2800		0.5	P		
Antimony	mg/Kg		26.5162		25.9536		2.1	P		
Arsenic	mg/Kg		87.8488		87.7126		0.2	P		
Barium	mg/Kg		278.9832		278.4333		0.2	P		
Beryllium	mg/Kg		20.1582		20.0869		0.4	P		
Cadmium	mg/Kg		24.2630		24.1889		0.3	P		
Calcium	mg/Kg		889.5886		886.6582		0.3	P		
Chromium	mg/Kg		60,0035		59.5881		0.7	P		
Cobalt	mg/Kg		47.5243		47.4293		0.2	P		
Copper	mg/Kg		45.0174		44.6756		0.8	P		
Iron	mg/Kg		17302.3700		17169.0500		0.8	P		
Lead	mg/Kg	-	119.6060		119.1396		0.4	P		
Magnesium	mg/Kg		891.2260		886.0481		0.6	p		
Manganese	mg/Kg		425.0492		423.2254		0.4	P		
Nickel	mg/Kg		65.2938		65.0516		0.4	P		
Potassium	mg/Kg		1680.7150		1676.3750		0.3	P		
Selenium	mg/Kg		195.7277		196.1228		0.2	P		
Silver	mg/Kg		9.5220		9.5423		0.2	P		
Sodium	mg/Kg		397,5522	J	386.8621	J	2.7	P		
Thallium	mg/Kg		215.6176		213.2607		1.1	P		
Vanadium	mg/Kg		63.1871		62,9583		0.4	p		
Zinc	mg/Kg		59.2265		59.1026		0.2	p		

-6-DUPLICATE SAMPLE SUMMARY

1			200 2220		CIRITAL MAC COLI		•					
Client: Chazen Companies			Level:	I.	.OW	SDG No.: \$3812						
Contract: Chazen Companies		Lab Code:	<u>.</u>	HEMED	Case	SAS No.: S3812						
Matrix:	· · · · · · · · · · · · · · · · · · ·	Sample ID:	S378	36-05	Client ID: SDURKEE-SS4D							
Percent Solids for Sample: 96.40			Duplicate ID:	Duplicate ID: \$3786-05D			Percent Solids for Duplicate: 96.40					
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	C	RPD	Qual	М			
Mercury	mg/Kg		0.0078	J	0.0062	J	22.9		CV			

Metals - 6 -DUPLICATE SAMPLE SUMMARY

			400000000000000000000000000000000000000	TO THE THE TOTAL OF THE TOTAL O									
Client: Cha	Client: Chazen Companies			L	.OW	SDG No.: \$3812							
Contract: Chazen Companies		Lab Code:	Lab Code: <u>CHEMED</u>			No.: <u>\$381</u>	2	SAS	S No.: \$3812				
Matrix: SOIL			Sample ID:	Sample ID: <u>\$3786-06</u>				Client ID: SDURKEE-SS4SD					
Percent Sol	Percent Solids for Sample: 96.40		Duplicate ID: S	Duplicate ID: S3786-07			Percent Solids for Duplicate: 96.40						
Acceptance Analyte Units Limit		Sample Result			c	RPD	Qual	М					
1ercury	mg/Kg		0.1976		0.1961		0,8	··	CV.				

LABORATORY CONTROL SAMPLE SUMMARY

Client: Chazen Companies			<u>.</u>	٠		SDG No.:	SDG No.: \$3812				
Contract: Chazen Companies		Lab Cod	le: CHEMED		Case No.:	83812	SAS No.: S3812				
Aqueous I	LCS Source:				Solid	LCS Source:	EPA-ICV				
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	М			
PB16537BS	Mercury	mg/Kg	0.200	0.207		103.5	0.2 - 0.2	CV			

Metals -7LABORATORY CONTROL SAMPLE SUMMARY

Client: Chazen Companies

SDG No.: S3812

Contract: Chazen Companies Lab Code: CHEMED C

Case No.: S3812 SAS No.: S3812

11/ · · · · · · · · · · · · · · · · · ·	Solid	LCS Source:	EPA-ICV	
	Solid LCS Source:			
lue Result	c	% Recovery	Acceptance Limits	M
			7	
- • •				P
80.0 79.4).	99.2	64.0 - 96.0	P
80.0 82.6	•	103.2	64.0 - 96.0	P
200.0 218.6	;	109.3	160.0 - 240.0	P
20.0 20.7		103.5	16,0 - 24.0	P
20.0 21.2		106.0	16.0 - 24.0	P
500.0 520.3	;	104.1	400.0 - 600.0	P
40.0 41.8		104.5	32.0 - 48.0	P
20.0 20.6	,	103.0	16.0 - 24.0	P
30.0 30.2		100.7	24.0 - 36.0	P
00.0 281.9	•	94.0	240.0 - 360.0	P
00.0 101.2		101.2	80.0 - 120.0	P
204.0	J	102.0	160.0 - 240.0	P
20.0 21.1		105.5	16.0 - 24.0	P .
50.0 51.5		103.0	40.0 - 60.0	P
00.0 . 896.7		89.7	800.0 - 1200.0	P
00.0 208.3		104.2	160.0 - 240.0	P
7.5 7.9		105.3	6.0 - 9.0	P
	J	102.2	240.0 - 360.0	p
00.0 201.4		100.7	160.0 - 240.0	p
		101.7	24.0 - 36.0	P
		108.5	16.0 - 24.0	P
	200.0 198.6 80.0 79.4 80.0 32.6 200.0 218.6 20.0 20.7 20.0 21.2 500.0 520.3 40.0 41.8 20.0 20.6 30.0 30.2 800.0 281.9 100.0 101.2 20.0 20.0 20.0 21.1 50.0 51.5 200.0 896.7 200.0 208.3 7.5 7.9 200.0 306.5 200.0 30.5	200.0 198.6 80.0 79.4 80.0 82.6 200.0 218.6 200.0 20.7 20.0 21.2 500.0 520.3 40.0 41.8 20.0 20.6 30.0 30.2 300.0 281.9 100.0 101.2 200.0 204.0 J 20.0 21.1 50.0 51.5 200.0 896.7 200.0 208.3 7.5 7.9 200.0 306.5 J 200.0 201.4 30.0 30.5	Result C Recovery 200.0 198.6 99.3 80.0 79.4 99.2 80.0 82.6 103.2 200.0 218.6 109.3 20.0 20.7 103.5 20.0 21.2 106.0 500.0 520.3 104.1 40.0 41.8 104.5 20.0 20.6 103.0 30.0 30.2 100.7 300.0 281.9 94.0 400.0 101.2 101.2 200.0 204.0 J 102.0 20.0 21.1 105.5 50.0 51.5 103.0 200.0 208.3 104.2 7.5 7.9 105.3 300.0 306.5 J 102.2 200.0 201.4 100.7 30.0 30.5 101.7	Idue Result C Recovery Limits 200.0 198.6 99.3 160.0 - 240.0 80.0 79.4 99.2 64.0 - 96.0 80.0 82.6 103.2 64.0 - 96.0 200.0 218.6 109.3 160.0 - 240.0 20.0 20.7 103.5 16.0 - 24.0 20.0 21.2 106.0 16.0 - 24.0 500.0 520.3 104.1 400.0 - 600.0 40.0 41.8 104.5 32.0 - 48.0 20.0 20.6 103.0 16.0 - 24.0 30.0 30.2 100.7 24.0 - 36.0 300.0 281.9 94.0 240.0 - 360.0 200.0 204.0 J 102.0 160.0 - 240.0 200.0 204.0 J 102.0 160.0 - 240.0 200.0 204.0 J 102.0 160.0 - 240.0 200.0 51.5 103.0 40.0 - 60.0 200.0 200.0 896.7 89.7

- 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Chazen Companies SDG No.: S3812

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3812 SAS No.: S3812

Matrix: WATER Level: LOW Client ID: CPO13-20001N0704L

Sample ID:	S3794-01	Serial Dilution ID: S3794-01L									
Analyte	Initial Result ug/L	c	Serial Result ug/L	c	% Difference	Qual	Acceptance Limits	М			
Aluminum	109574.90		110383.60		0.7		10.00 %	P			
Antimony	6.60	U	33.00	υ			10.00 %	P			
Arsenic	23.54		24.22	U	100.0	^	10.00 %	P	•		
Barium	340.67		328.82	J	3.5		10.00 %	P			
Beryllium	4.40	J	6.68	J	51.8 🖊		10.00 %	P			
Cadmium	11.58		9.30	J	19.7 🗸		10.00 %	P			
Calcium	3324.28	J	8723.50	U	100.0	,	10.00 %	P			
Chromium	95.34		98.92		3.8		10.00 %	P			
Cobalt	287.22		291.20		1.4		10.00 %	P.			
Соррег	76.74		74.42	J	3.0		10.00 %	P			
Iron	132937.10		141480.90		6.4		10.00 %	P			
Lead	67.44		79.65		18.1		10.00 %	P			
Magnesium	5510.48		5733.42	J	4.0		10.00 %	P			
Manganese	4528.70		4768.48		5.3		10.00 %	P			
Nickel	60.50		65.35	J	8.0		10.00 %	Р			
Potassium	2285.12	J	1705.52	J	25.4		10.00 %	P			
Selenium	11.69		26.18	U	100.0		10.00 %	P			
Silver	3.38	U	16.90	U			10.00 %	P			
Sodium	189.47	ប	947.36	U			10.00 %	P.			
Thallium	5.78	U	28.89	U			10.00 %	P			
Vanadium	211.55		214.88	ĵ	1.6		10.00 %	P			
Zinc	287.11		278.42		3.0		10.00 %	P			

-9-

SERIAL DILUTION SAMPLE SUMMARY

Contract:	Chazen Companies			Lab Code	: CHEMED		Case No.: S3812	2	SAS No.: <u>83812</u>
Matrix:	WATER	Level	: <u>L</u> C	WC		Client I	D: <u>SDURKE</u> E	-SS4L	
Sample ID:	S3786-05					Serial D	ilution ID: S378		
Analyte	Initial Result ug/L	c	Serial Result ug/L	c	% Difference	Qual	Acceptance Limits	М	
I ercury	0.15	J	0.03	U	100.0	/	10.00 %	CV	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

DATAVAL, INC.
Environmental Data Validation

JAMES B. BALDWIN, JR. Phone/Fax (607) 642-5460 Hooper Road, PMB 283 Endwell, NY 13760

DATA USABILITY SUMMARY REPORT

for

THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3409 Sampled 6/28/04 thru 6/30/04

SOIL SAMPLES for METALS

SB13	4-8	(S3409-01)	SB31	4-8	(S3409-02)
SB31	4-8D	(S3409-03)	SB03	4-8	(S3409-04)
SB04	4-8	(S3409-05)	SB04	12-16	(S3409-06)
SB18	4-8	(S3409-07)	SB07	4-8	(S3409-08)
SB33	4-8	(S3409-09)	SB29	0 - 4	(S3409-10)
SB34	8-12	(S3409-11)	SB34	8-12D	(S3409-12)
SB32	4-8	(S3409-13)	SB20	4-8	(S3409-14)
SB24	4-8	(S3409-15)	SB26	4-8	(S3409-16)

DATA ASSESSMENT

An inorganics data package containing analytical results for sixteen soil samples was received from The Chazen Companies on The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses were performed using SW-846 methods 6010 and 7471. Laboratory data was evaluated according to the quality assurance / quality control requirements of the State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region Functional Guidelines (SOW HW-2, Rev. 11, Jan. Evaluation of Metals Data for the Contract Laboratory Program) was used as a technical reference.

Positive silver and all potassium results have been qualified as estimations due to unacceptable matrix spike recoveries.

Selenium and thallium results have been qualified as estimations due to poor CRDL performance.

Calcium, lead and potassium results have been qualified as estimations due to poor serial dilution results.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed strict QC testing, can be guaranteed to be accurate. Strict QC serves to increase

confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data However, DATAVAL, Inc. does not warrant interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin

Date: 10/18/04

SAMPLE HISTORY

Sample holding times are calculated between the time of laboratory receipt (VTSR) and the time of analysis. Mercury samples must be analyzed within 26 days of receipt; the remaining metals within 180 days. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a laboratory split duplicate, a matrix spiked sample, and a rinsate blank.

This sample delivery group contained sixteen soil samples. The samples were collected from the Former Stillwater Boiler House site between 28Jun04 and 30Jun04. The entire group of samples was shipped to the laboratory, via FedEx, on 01Jul04. The shipment arrived, intact, the following morning.

The samples were digested for ICP metals and mercury on 13Jul04. Mercury determinations were completed on 13Jul04. ICP analyses were finished on 16Jul04. Program holding time limitations were satisfied.

CALIBRATIONS

Calibration curves are constructed, using certified materials, to define the linear range of each analytical instrument. Beyond this range, measurements cannot be made with confidence. The calibration curve is immediately tested by analyzing an initial calibration verification standard (ICV). Continuing verifications (CCV) must bracket each group of up to ten samples. ICV and CCV recoveries must meet established criteria.

ICP calibrations were performed with a blank and three standards. Calibrations for mercury were performed with a blank and five standards. The lowest mercury standard equaled CRDL. The mercury calibration curve demonstrated an acceptable degree of linearity.

Each instrument calibration was immediately verified by the analysis of an ICV standard. Continuing calibration checks were made following each group of 10 samples. Each calibration check that was used to bracket samples from this program satisfied the program acceptance criteria.

CONTRACT REQUIED DETECTION LIMIT STANARDS (CRDL)

To verify instrument linearity near CRDL, an ICP standard at a concentration of twice CRDL (CRI) is analyzed at the beginning and end of each analytical sequence. A standard equaling CRDL

(CRA) must be included in each atomic adsorption sequence. CRDL standards must produce a recovery between 80% and 120%.

The CRDL results reported by the laboratory included unacceptable recoveries of selenium (124%) and thallium (76%). Based on these indications of bias, the selenium and thallium results reported from this group of samples have been qualified as estimations.

It is noted that the laboratory did not analyze CRDL standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this omission. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Preparation blanks are carried through the digestion process with each group of samples to evaluate general laboratory technique. Calibration blanks are run periodically to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

An initial blank (ICB) was analyzed following the calibration in each analytical sequence. Additional blanks were analyzed after every ten samples (CCB) and at the end of each sequence. Preparation blanks were digested, prior to analysis, with each group of samples. Each laboratory prepared blank that was associated with samples from this program was free of analyte contamination exceeding CRDL.

INTERFERENCE CHECK SAMPLE (ICS)

ICS standards are analyzed at the beginning and end of each ICP analysis sequence to verify background and inter-element correction factors. The recoveries of specified analytes are measured in the presence of interfering concentrations of aluminum, calcium, magnesium and iron.

Interference check standards, ICSA and ICSAB, were included in each ICP analysis sequence. Each interference check standard that was used to bracket samples from this program produced recoveries within the range of acceptance, 80% - 120%.

It is noted that the laboratory did not analyze ICS standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this omission. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

PREDIGESTION SPIKE

The recovery of spike concentrations added to samples prior to digestion and analysis demonstrates measurement bias caused by sample matrix effects. Predigestion spikes must be recovered within control limits of 75% - 125%.

SB29 0-4 was selected for matrix spiking. With the exception of mercury, the required analytes were added to two portions of this sample. Mercury was added to a sample from an unrelated delivery group. With the exception of potassium (155%,154%) and silver (155%,155%), each of these additions was recovered successfully. One high recovery was also reported for mercury (129%). Based on these indications of bias, positive potassium, silver and mercury results have been qualified as estimation.

Unacceptable matrix spike recoveries were also reported for aluminum, iron, magnesium and manganese. In each of these cases, however, the analyte concentration in the unspiked sample exceeded four times the level of the spike that was added. Data qualifications were not required.

Again, it is noted that the mercury spiked samples provided no indication of matrix affects that might bias samples from this site. Future data packages should include matrix spikes prepared with program samples, as required by ASP protocol.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Laboratory split duplicates of SB29 0-4 were processed with this group of samples. The concentrations obtained from this duplicate pair differed by less than 20% RPD or PQL. An acceptable level of measurement precision was demonstrated. A duplicate pair from an unrelated delivery group were evaluated

for mercury. An acceptable level of precision was demonstrated. Again, ASP protocol was not satisfied.

Field split duplicates of SB31 4-8 and SB34 8-12 were also included in this delivery group. Each analyte that was present in these samples, at a concentration above CRDL, produced a duplicate result that differed by less than 60% RPD. The program requirement was satisfied.

LABORATORY CONTROL STANDARD

Laboratory control samples are prepared by adding analytes to clean sand or reagent water. Analyte concentrations are then determined without interferences caused by sample matrix effects.

A solid LCS standard was digested and analyzed with this group of samples. Acceptable recoveries were reported for each targeted analyte.

ICP SERIAL SILUTION SAMPLE

Possible matrix effects are verified by the process of serial Samples are diluted 1:5 to reduce contributions that might bias measurements. The original sample result, and the corrected concentration of the diluted sample qualified if compared. Sample data is the original concentrations are not recovered within 10%. Analytes with initial concentrations below 50 times IDL are not considered.

SB29 0-4 was prepared as a serial dilution. Mercury was evaluated using a sample from an unrelated program. Of the analytes present in the undiluted aliquots of these samples, at a concentration exceeding 50 times IDL, only calcium (23%), lead (11%) and potassium (32%) differed from the diluted result by more than 10%. Calcium, lead and potassium results have been qualified as estimations.

SUMMARY OF QUALIFIED DATA

Former Stillwater Boiler House site

Sampled 28Jun04 thru 30Jun04

	:1																		
SER DIL	FOTCOUR	1780,1	٠	10	. L	12001	י ל	FOFOCT) (4 0 (4 0 (4 0 (4 0 (4 0 (4 0 (4)	ŋ ·	14103	932J	1670,1	10/01/	ዞ	0 F	1550J	1880J	220
SER DIL	מניים	64.73	· ~	ი	0	1 C	י י י	٠ ٧	о п	· ·	61.43	18.1J	17.6J	ر	ბ თ	, (30T0	16.23	1947
SER DIL		6240J	26	1470J	85	41	0	01200 170.1	16100 1010) H	25400	61100J	1960J	1500J	1960,T	١c	5	1520J	28600J
SPIKES		0.83J	0.39J	0.40J		0.37J		0.26.7	5.7.5 T.7.5) · ()	0.000		0.14J		0.25J	F. & C		0.41J	
SPIKES POTASSIUM		17803	1910J	2070J	516J	1200J	1610J	19807	3310,7	-	T (932J	1670J	1540J	1830J	1550.T) (1880J	2220J
CRDL THALLIUM		UJ	UJ	UJ	UJ	UJ	UJ	UJ	UJ	1.11	o !	ר ס	UJ	UJ	UJ	11.7) ¦	n O	Ωſ
CRDL SELENIUM		2.56J	1.92J	1.84J	2.315	1.31J	1.26J	1.03J	1.17J	C	•	ا ق	0	0.76J	1.51J	2.173	 (77	1.037
		3409-0	3409-0	3409-0	409-0	(83409-05)	(83409-06)	(83409-07)	(83409-08)	(83409-09)		0408-T	(S3409-I	(83409 - 12)	(83409-13)	(\$3409-14)	1 0000	34081 1.081	(83409-16)
		4-	4-	4-	4-	1 4-8	1 12-16	3 4-8	4-	3 4-8	Ċ	7 7 	ZT - 8	1 8-12D	2 4-8	4-8	_	ւ դ I	7 4 - 8
		ф	Μ	B 3	SB03		SB04	SB18	SB07	SB33	0	7 0	η η	SB34	SB32	SB20	ρ	9 0	929S

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies	SDG No.: \$3409	Method Type: SW846				
Sample ID: S3409-01		Client ID: SB-134-8		7		
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: S3409	SAS No.: S3409			
Matrix: SOIL	Date Received: 7/2/2004	Level: LOW				

% Solids: 83.2

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	12600	mg/Kg			P	0.749	P1	P107154
7440 - 36-0	Antimony	0.670	mg/Kg	U		P	0.670	P1	P107154
7440-38-2	Arsenic	11.9	mg/Kg			P	0.282	P1	P107154
7440-39-3	Barium	89.0	mg/Kg			P	0.026	P1	P107154
7440-41-7	Beryllium	0.727	mg/Kg			P	0.005	P1	P107154
/440-43-9	Cadmium	2,350	mg/Kg			P	0.055	P1	P107154
7440-70-2	Calcium	6240	mg/Kg	I		P	0.417	P1	P107154
7440-47-3	Chromium	17.2	mg/Kg			P	0.113	P1	P107154
7440-48-4	Cobalt	18.6	mg/Kg			P	0.094	P1	P107154
7440-50-8	Copper	621	mg/Kg			P	0.136	P1	P107154
7439-89-6	Iron	35300	mg/Kg			P	2.100	P1	P107154
7439-92-1	Lead	64.7	mg/Kg	J		P	0.123	P1	P107154
7439 - 95-4	Magnesium	7300	mg/Kg			P	0.019	P1	P107154
7439-96-5	Manganese	371	mg/Kg			P	0.954	P1	P107154
7439-97-6	Mercury	0.08	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	28.5	mg/Kg			P	0.180	P1	P107154
7440-09-7	Potassium	1780	mg/Kg	ゴ	N	P	3.910	P1	P107154
7782-49-2	Selenium	2.560	mg/Kg	ゴ		P	0.372	Pj	P107154
7440-22-4	Silver	0.829	mg/Kg	7 J	N	P	0.125	P1	P107154
7440-23-5	Sodium	140	mg/Kg	J		P	44.2	P1	P107154
7440-28 - 0	Thallium	0.393	mg/Kg	NOD		P	0.393	P1	P107154
7440-62 - 2	Vanadium	19.7	mg/Kg	_		P	0.121	P1	P107154
7440-66-6	Zinc	252	mg/Kg			P	0.067	Pi	P107154

M

Client: Chaz	en Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before:	
Comments: _			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No	.: S3409	·	Method Type: SW846	
Samı	ple ID: S3409-02			Client ID: SB-314-8		
Cont	ract: Chazen Companies	Lab Code:	CHEMED	Case No.: S3409	SAS No.: S340	19
Matr	rix: SOIL	Date Received: 7/2/200	04	Level: LOW		

% Solids: 80.2

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run	
7429-90-5	Aluminum	19300	mg/Kg			P	0.777	P1	P107154	
7440-36-0	Antimony	0.695	mg/Kg	U		P	0.695	P1	P107154	
7440-38 - 2	Arsenic	8.450	mg/Kg			P	0.293	P1	P107154	
7440-39-3	Barium	78.3	mg/Kg			P	0.027	P1	P107154	
7440-41-7	Beryllium	0.628	mg/Kg			P	0.005	P1	P107154	
440-43-9	Cadmium	1.020	mg/Kg			P	0.057	P1	P107154	
7440-70-2	Calcium	1260	mg/Kg	ゴ		P	0.432	P1	P107154	
7440-47-3	Chromium	23.3	mg/Kg			P	0.117	Pl	P107154	
7440-48-4	Cobalt	15.0	mg/Kg			P	0.098	P1	P107154	
7440-50-8	Copper	22.5	mg/Kg			P	0.141	P1	P107154	
7439-89-6	Iron	29300	mg/Kg			P	2.180	P1	P107154	
7439-92-1	Lead	13.1	mg/Kg	ゴ		P	0.127	P1	P107154	
7439-95-4	Magnesium	4890	mg/Kg			P	0.020	P1	P107154	
7439-96-5	Manganese	270	mg/Kg			P	0.990	P1	P107154	
7439-97-6	Mercury	0.03	mg/Kg		N	CV	0.01	CV2	071304C	
7440-02-0	Nickel	20.1	mg/Kg			P	0.186	P1	P107154	
7440-09-7	Potassium	1910	mg/Kg	ブ	N	P	4.060	P1	P107154	
7782-49-2	Selenium	1.920	mg/Kg	1		P	0.386	P1	P107154	
7440-22-4	Silver	0.392	mg/Kg	47	N	P	0.130	P1	P107154	
7440-23-5	Sodium	593	mg/Kg	J		P	45.9	P1	P107154	
7440-28-0	Thallium	0.407	mg/Kg	JUU		P	0.407	P1	P107154	
7440-62-2	Vanadium	29.0	mg/Kg			P	0.126	P1	P107154	
7440-66-6	Zinc	56.2	mg/Kg			P	0.069	P1	P107154	

Client: Chaz	zen Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before:	
Comments: _			

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3409	Method Type:	SW846

Sample ID: \$3409-03

Client ID: SB-314-8DUP

Contract: Chazen Companies

Case No.: S3409

SAS No.: S3409

Matrix: SOIL

Date Received: 7/2/2004

Lab Code: CHEMED

Level: LOW

% Solids: 75.7

CAS No.	Analyte	Concentration	Units	C (Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	20600	mg/Kg			Р	0.831	P1	P107154
7440-36-0	Antimony	0.744	mg/Kg	U		P	0.744	P1	P107154
7440-38-2	Arsenic	12.9	mg/Kg			P	0.313	P1	P107154
7440-39-3	Barium	70.8	mg/Kg			P	0.029	P1	P107154
7440-41-7	Beryllium	0.728	mg/Kg			P	0.005	P1	P107154
440-43-9	Cadmium	1.440	mg/Kg			P	0.061	P1	P107154
7440-70-2	Calcium	1470	mg/Kg	ゴ		P	0.462	P1	P107154
7440-47-3	Chromium	25.8	mg/Kg			P	0.125	P1	P107154
7440-48-4	Cobalt	8.330	mg/Kg			P	0.104	P1 ·	P107154
7440-50-8	Copper	25.9	mg/Kg			P	0.151	P1	P107154
7439-89-6	Iron	38600	mg/Kg			P	2.330	P1	P107154
7439-92-1	Lead	19.3	mg/Kg	J		P	0.136	Pl	P107154
7439-95-4	Magnesium	4780	mg/Kg			P	0.021	P1	P107154
7439-96-5	Manganese	494	mg/Kg			P	1.060	P1	P107154
7439-97-6	Mercury	0.04	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	18.2	mg/Kg			P	0.199	P1	P107154
7440-09-7	Potassium	2070	mg/Kg	J	N	P	4.340	P1	P107154
7782-49-2	Selenium	1.840	mg/Kg	1		P	0.413	P1	P107154
7440-22-4	Silver	0.400	mg/Kg	27	N	P	0.139	P1	P107154
7440-23-5	Sodium	603	mg/Kg	J		P	49.1	P1	P107154
7440-28-0	Thallium	0.436	mg/Kg	どり		P	0.436	P1	P107154
7440-62-2	Vanadium	31.7	mg/Kg			P	0.135	P1	P107154
7440-66-6	Zinc	62.0	mg/Kg			P	0.074	P1	P107154

3B

Client: Chaz	zen Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before: Clarity After:	<u> </u>
Comments: _			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

lient: Chazen Companies	SDG No.: \$3409	N	Method Type: SW846		
Sample ID: S3409-04		Client ID: SB-034-8			
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: S3409	SAS No.: S3409		
Matrix: SOIL	Date Received: 7/2/2004	Level: LOW			

CAS No.	Analyte	Concentration	Units	С	Qual	М	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	1300	mg/Kg	-		Р	0.823	P1	P107154
7440-36-0	Antimony	1.300	mg/Kg	J		P	0.737	P1	P107154
7440-38-2	Arsenic	16.1	mg/Kg			P	0.310	P1	P107154
7440-39-3	Barium	76.1	mg/Kg			P	0.029	P1	P107154
7440-41-7	Beryllium	0.347	mg/Kg	J		P	0.005	P1	P107154
1440-43-9	Cadmium	0.552	mg/Kg	J		P	0.060	P1	P107154
7440-70-2	Calcium	2850	mg/Kg	J		P	0.458	P1	P107154
7440-47-3	Chromium	3.490	mg/Kg	•••		P	0.124	P1	P107154
7440-48-4	Cobalt	3.530	mg/Kg	J		P	0.103	P1	P107154
7440-50-8	Copper	32.4	mg/Kg			P	0.149	P1	P107154
7439-89-6	Iron	15500	mg/Kg			P	2.310	P1	P107154
7439-92-1	Lead	72.2	mg/Kg	J		P	0.135	P1	P107154
7439-95-4	Magnesium	425	mg/Kg	J		P	0.021	P1	P107154
7439-96-5	Manganese	461	mg/Kg			P	1.050	Pi	P107154
7439-97-6	Mercury	1.3	mg/Kg		N	CV	0.04	CV2	071304C
7440-02-0	Nickel	9.440	mg/Kg			P	0.198	P1	P107154
7440-09-7	Potassium	516	mg/Kg	13	N	P	4.300	P1	P107154
7782-49-2	Selenium	2.310	mg/Kg	1		P	0.410	P1	P107154
7440-22-4	Silver	0.137	mg/Kg	y .	N	P	0.137	P1	P107154
7440-23-5	Sodium	154	mg/Kg	J		P	48.6	P1	P107154
7440-28-0	Thallium	0.432	mg/Kg	JU VK	}	P	0.432	P1	P107154
7440-62-2	Vanadium	21.5	mg/Kg		-	P	0.134	P1	P107154
7440-66-6	Zinc	42.5	mg/Kg			P	0.073	P1	P107154

 γM

Client: Chaz	en Companies	SDG No.: S3409	Method Type: SW846	
Color Before: Color After:	BROWN YELLOW	Clarity Before:	Texture: <u>MEDIUM</u> Artifacts:	
Comments: _				

- 1 - INORGANIC ANALYSIS DATA PACKAGE

ient: Chazen Companies	SDG No.: S3409	M	ethod Type: SW846
Sample ID: S3409-05		Client ID: SB-044-8	
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: S3409	SAS No.: S3409
Matrix: SOIL	Date Received: 7/2/2004	Level: LOW	

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run	
7429-90-5	Aluminum	12900	mg/Kg			P	0.798	P1	P107154	
7440-36-0	Antimony	0.714	mg/Kg	U		P	0.714	P1	P107154	
7440-38-2	Arsenic	8.800	mg/Kg			P	0.301	P1	P107154	
7440-39-3	Barium	82.9	mg/Kg	,		P	0.028	P1	P107154	
7440-41-7	Beryllium	0.559	mg/Kg	J		P	0.005	P1	P107154	
/440-43-9	Cadmium	0.846	mg/Kg			P	0.058	P1	P107154	
7440-70-2	Calcium	2410	mg/Kg	J		P	0.444	P1	P107154	
7440-47-3	Chromium	17.3	mg/Kg			P	0.121	P1	P107154	
7440-48-4	Cobalt	5.800	mg/Kg	J		P	0.100	P1	P107154	
7440-50-8	Copper	12.0	mg/Kg			P	0.145	P1	P107154	
7439-89-6	Iron	25400	mg/Kg			P	2.240	P1	P107154	
7439-92-1	Lead	19.0	mg/Kg	J		P	0.131	P1	P107154	
7439-95-4	Magnesium	3900	mg/Kg	•		P	0.020	P1	P107154	
7439-96-5	Manganese	428	mg/Kg			P	1.020	P1	P107154	
7439-97-6	Mercury	0.12	mg/Kg		N	CV	0.01	CV2	071304C	
7440-02-0	Nickel	14.0	mg/Kg			P	0.192	P1	P107154	
7440-09-7	Potassium	1200	mg/Kg	J	N	P	4.170	P1	P107154	
7782-49-2	Selenium	1.310	mg/Kg	1		P	0.397	P1	P107154	
7440-22-4	Silver	0.370	mg/Kg	J-1	N	P	0.133	P1	P107154	
7440-23-5	Sodium	47.2	mg/Kg	U		P	47.2	P1 .	P107154	
7440-28-0	Thallium	0.419	mg/Kg	ل محار	\mathcal{C}	P	0.419	P1	P107154	
7440-62-2	Vanadium	22,2	mg/Kg			P	0.129	Pl	P107154	
7440-66-6	Zinc	36.8	mg/Kg			P	0.071	P1	P107154	

M

Client: Chaz	ten Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before:	Texture: <u>MEDIUM</u> Artifacts:
Comments:			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies		SDG No.	: S3409		Method Type: SW846	
,	· · · · · · · · · · · · · · · · · · ·		· ·		·	·	
Samp	ole ID: S3409-06				Client ID: SB-0412-16		
Cont	ract: Chazen Companies		Lab Code:	CHEMED	Case No.: S3409	SAS No.: S3409	
Matr	ix: SOIL	Date Rece	ived: 7/2/200)4	Level: LOW		

% Solids: 82.2

CAS No.	Analyte	Concentration	Units	С	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	11900	mg/Kg			P	0.750	P1	P107154
7440-36-0	Antimony	0.671	mg/Kg	U		P	0.671	P1 .	P107154
7440-38-2	Arsenic	11.2	mg/Kg			P	0.283	P1	P107154
7440-39-3	Barium	123	mg/Kg			P	0.026	P1	P107154
7440-41-7	Beryllium	0.770	mg/Kg			·P	0.005	P1	P107154
)440-43-9	Cadmium	1.070	mg/Kg			P	0.055	P1	P107154
7440-70-2	Calcium	5200	mg/Kg	J		P	0.417	P1	P107154
7440-47-3	Chromium	16.4	mg/Kg	•		P	0.113	P1	P107154
7440-48-4	Cobalt	13.6	mg/Kg			P	0.094	P1	P107154
7440-50-8	Copper	39.6	mg/Kg			P	0.136	P1	P107154
7439-89-6	Iron	26200	mg/Kg			P	2.100	P1 .	P107154
7439-92-1	Lead	85.6	mg/Kg	J		P	0.123	P1	P107154
7439-95-4	Magnesium	4950	mg/Kg			P	0.019	Pi	P107154
7439-96-5	Manganese	683	mg/Kg			P	0.957	P 1	P107154
7439 - 97-6	Mercury	0.10	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	31.6	mg/Kg			Р	0.180	P1	P107154
7440-09-7	Potassium	1610	mg/Kg	J	N	P	3.920	P1	P107154
7782-49-2	Selenium	1.260	mg/Kg	Ī		P	0.373	P1	P107154
7440-22-4	Silver	0.125	mg/Kg	U	N	P	0.125	P1	P107154
7440-23-5	Sodium	357	mg/Kg	j		P	44.3	P1	P107154
7440-28-0	Thallium	0.394	mg/Kg	JU U	ļ	P	0.394	P1	P107154
7440-62-2	Vanadium	20.9	mg/Kg			P	0.122	P1	P107154
7440-66-6	Zinc	91.4	mg/Kg			P	0.067	P1	P107154

 \mathscr{M}

Client: Chaz	zen Companies	SDG No.: S3409	Method Type: SW846
Color Before: Color After:	BROWN YELLOW	Clarity Before:	Texture: <u>MEDIUM</u> Artifacts:
Comments: _			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies	SDG No.: S3409	,	Method Type: SW846		
Sample ID: S3409-07		Client ID: SB-184-8			
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: S3409	SAS No.: S3409		
Matrix: SOIL Da	te Received: 7/2/2004	Level: LOW			

% Solids: 84.9

CAS No.	Analyte	Concentration	Units	С (Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	13500	mg/Kg			P	0.741	PI	P107154
7440-36-0	Antimony	0.663	mg/Kg	U		P	0.663	P1	P107154
7440-38-2	Arsenic	6.300	mg/Kg			P	0.279	P1	P107154
7440-39-3	Barium	87.4	mg/Kg			P	0.026	P1	P107154
7440-41-7	Beryllium	0.681	mg/Kg			P	0.005	P1	P107154
/440-43-9	Cadmium	0.817	mg/Kg			P	0.054	P1	P107154
7440-70-2	Calcium	2170	mg/Kg	J		P	0.412	P1	P107154
7440-47-3	Chromium	20.0	mg/Kg			P	0.112	P1	P107154
7440-48-4	Cobalt	11.5	mg/Kg			P	0.093	P1	P107154
7440-50-8	Copper	35.0	mg/Kg			P	0.134	P1	P107154
7439-89-6	Iron	22200	mg/Kg			P	2.080	P1	P107154
7439-92-1	Lead	16.9	mg/Kg	J		P	0.121	P1	P107154
7439-95-4	Magnesium	5250	mg/Kg			P	0.019	P1	P107154
7439-96-5	Manganese	483	mg/Kg			P	0.945	P1	P107154
7439-97-6	Mercury	0.05	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	33.8	mg/Kg			P	0.178	P1	P107154
7440-09-7	Potassium	1980	mg/Kg	J	N	P	3.870	P1	P107154
7782-49-2	Selenium	1.030	mg/Kg	メゴ		P	0.369	P1	P107154
7440-22-4	Silver	0.264	mg/Kg	ょむ	N	P	0.124	P1	P107154
7440-23-5	Sodium	73.2	mg/Kg	J	÷	P	43.8	P1	P107154
7440-28-0	Thallium	0.389	mg/Kg	KU X		P	0.389	P1	P107154
7440-62-2	Vanadium	20.5	mg/Kg			P	0.120	P1	P107154
7440-66-6	Zinc	73.9	mg/Kg			P	0.066	P1	P107154

M

Client: Chaz	zen Companies	SDG No.: \$3409	Method Type: SW846		
Color Before:	BROWN	Clarity Before:	Texture: <u>MEDIUM</u>		
Color After:	YELLOW	Clarity After:	Artifacts:		
Comments:					

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDC	G No.: S3409		Method Type: SW846	
Samp	ple ID: S3409-08			Client ID: SB-074-8		
Cont	ract: Chazen Companies	Lab C	ode: CHEMED	Case No.: S3409	SAS No.: S3409	
Matr	ix: SOIL	Date Received: 7/	/2/2004	Level: LOW		

% Solids: 82.6

CAS No.	Analyte	Concentration	Units	С	Qual	М	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	18100	mg/Kg			P	0.762	Pl	P107154
7440-36-0	Antimony	0.682	mg/Kg	U		P	0.682	P1	P107154
7440-38-2	Arsenic	8.430	mg/Kg			P	0.287	P1	P107154
7440-39 - 3	Barium	114	mg/Kg			P	0.027	P1	P107154
7440-41-7	Beryllium	0.740	mg/Kg			P	0.005	PI	P107154
1440-43-9	Cadmium	1.160	mg/Kg			P	0.056	P1	P107154
7440-70-2	Calcium	1610	mg/Kg	J		P	0.424	P1	P107154
7440-47-3	Chromium	25.8	mg/Kg			P	0.115	P1	P107154
7440-48-4	Cobalt	14.4	mg/Kg			P	0.096	P1	P107154
7440-50-8	Copper	50.6	mg/Kg	4		P	0.138	P1	P107154
7439-89-6	Iron	30100	mg/Kg			P	2.130	P1	P107154
7439-92-1	Lead	15.1	mg/Kg	J		P	0.125	P1	P107154
7439-95-4	Magnesium	6250	mg/Kg	•		P	0.019	P1	P107154
7439-96-5	Manganese	397	mg/Kg			P	0.971	P1	P107154
7439-97-6	Mercury	0.05	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	38.8	mg/Kg			P	0.183	P1	P107154
7440-09-7	Potassium	3310	mg/Kg	J	N	Þ	3.980	P1	P107154
7782-49-2	Selenium	1.170	mg/Kg	×1		P	0.379	P1	P107154
7440-22-4	Silver	0.272	mg/Kg	* 7	N	P	0.127	P1	P107154
7440-23-5	Sodium	124	mg/Kg	J		P	45.0	P1	P107154
7440-28-0	Thallium	0.400	mg/Kg	<i>y</i> U	\mathcal{C}	P	0.400	P1	P107154
7440-62-2	Vanadium	28.0	mg/Kg			P	0.123	P1	P107154
7440-66-6	Zinc	75.0	mg/Kg			P	0.068	P1	P107154

 \mathcal{M}

Client: Chaz	en Companies	SDG No.: S3409	Method Type: SW846
Color Before: Color After:	BROWN YELLOW	Clarity Before:	Texture: MEDIUM Artifacts:
Comments: _			

-1-INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3409	 Method Type:	SW846
					-

Sample ID: S3409-09 Client ID: SB-334-8

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3409 SAS No.: S3409

Matrix: SOIL Date Received: 7/2/2004 Level: LOW

% Solids: 77.2

CAS No.	Analyte	Concentration	Units	С	Qual	М	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	4270	mg/Kg			P	0.807	P1	P107154
7440-36-0	Antimony	1.320	mg/Kg	J		P	0.722	P1	P107154
7440-38-2	Arsenic	121	mg/Kg			P	0.304	P1	P107154
7440-39-3	Barium	167	mg/Kg			P	0.028	P1	P107154
7440-41-7	Beryllium	0.482	mg/Kg	J		P	0.005	P1	P107154
)1440-43 - 9	Cadmium	1.770	mg/Kg			P	0.059	P1	P107154
7440-70-2	Calcium	5540	mg/Kg	J		P	0.449	P1	P107154
7440-47-3	Chromium	7.180	mg/Kg			. P	0.122	P1	P107154
7440-48-4	Cobalt	4.310	mg/Kg	J		P	0.101	PI	P107154
7440-50-8	Copper	27.7	mg/Kg			P	0.146	P1	P107154
7439-89-6	Iron	37900	mg/Kg			P	2.260	P1	P107154
7439-92-1	Lead	61.4	mg/Kg	J		P	0.132	P1	P107154
7439-95-4	Magnesium	1750	mg/Kg	•		P	0.021	P1 .	P107154
7439-96-5	Manganese	169	mg/Kg			P	1.030	P1	P107154
7439-97 - 6	Mercury	0.60	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	11.3	mg/Kg			P	0.194	P1	P107154
7440-09-7	Potassium	1410	mg/Kg	1	N	P	4.220	P1	P107154
7782-49-2	Selenium	4.000	mg/Kg	J		P	0.401	P1	P107154
7440-22-4	Silver	0.660	mg/Kg	x 1	N	P	$0.1\widehat{3}5$	P1	P107154
7440-23-5	Sodium	221	mg/Kg	J		P	47.7	P1	P107154
7440-28-0	Thallium	0.423	mg/Kg	سن محلر)	P	0.423	P1	P107154
7440-62-2	Vanadium	12.2	mg/Kg	- 4	•	P	0.131	P1	P107154
7440-66-6	Zinc	63.7	mg/Kg			P	0.072	P1	P107154

つかり

Client: Chaz	zen Companies	SDG No.: S3	409	Method Type: SW846		
Color Before:	BROWN YELLOW	Clarity Before:		Texture: Artifacts:	MEDIUM	
Comments: _						

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	ient: Chazen Companies SDG No.:		S3409		Method Type: SW846		
			<u> </u>				
Samp	ole ID: S3409-10			Client ID: SB-290-4			
Cont	ract: Chazen Companies	Lab Code: (CHEMED	Case No.: S3409	SAS No.: S3409		
Matr	ix: SOIL	Date Received: 7/2/2004	ļ	Level: LOW			

% Solids: 92.8

CAS No.	Analyte	Concentration	Units	c (Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	6750	mg/Kg			P	0.678	P1	P107154
7440-36-0	Antimony	0.607	mg/Kg	U		P	0.607	P1	P107154
7440-38-2	Arsenic	7.920	mg/Kg			P	0.255	P1	P107154
7440-39-3	Barium	91.4	mg/Kg			P	0.024	P1	P107154
7440-41-7	Beryllium	0.379	mg/Kg	J		P	0.004	P1	P107154
)440-43-9	Cadmium	0.604	mg/Kg			P	0.050	P1	P107154
7440-70-2	Calcium	61100	mg/Kg 🛫	1		P	0.377	P1	P107154
7440-47-3	Chromium	6.510	mg/Kg			P	0.102	P1	P107154
7440-48-4	Cobalt	6.460	mg/Kg			P	0.085	P1	P107154
7440-50-8	Copper	15.9	mg/Kg			P	0.123	P1	P107154
7439\39-6	Iron	13200	mg/Kg			P	1.900	P1	P107154
7439-92-1	Lead	18.1	mg/Kg	1		P	0.111	P1	P107154
7439-95-4	Magnesium	17500	mg/Kg	~		P	0.017	P1	P107154
7439-96-5	Manganese	443	mg/Kg			P	0.864	P1	P107154
7439-97-6	Mercury	0.05	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	13.0	mg/Kg			P	0.163	P1	P107154
7440-09-7	Potassium	932	mg/Kg	J	N	P	3.540	Pl	P107154
7782-49-2	Selenium	0.355	mg/Kg	× 1		P	0.337	P1	P107154
7440-22-4	Silver	0.113	mg/Kg	U	N	P	0.113	P1	P107154
7440-23-5	Sodium	82.4	mg/Kg	J		P	40.1	P1	P107154
7440-28-0	Thallium	0.356	mg/Kg	R OD		P	0.356	P1	P107154
7440-62-2	Vanadium	8.280	mg/Kg	-		P	0.110	P1	P107154
7440-66-6	Zinc	47.0	mg/Kg			P	0.060	P1	P107154

Client: Chaz	zen Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before: Clarity After:	
Comments:			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3409	Method Type:	SW846	

Sample ID: S3409-11

Client ID: SB-348-12

Contract: Chazen Companies

Case No.: S3409

SAS No.: S3409

Matrix: SOIL Date Received: 7/2/2004

Lab Code: CHEMED

Level: LOW

% Solids: 86.3

								i e	Analytical
CAS No.	Analyte	Concentration	Units	С	Qual	M	. DT	Instrument ID	Run
7429-90-5	Aluminum	11300	mg/Kg			P	0.729	P1	P107154
7440-36-0	Antimony	0.652	mg/Kg	υ		P	0.652	P1	P107154
7440-38-2	Arsenic	8.880	mg/Kg			P	0.275	P1	P107154
7440-39-3	Barium	69.4	mg/Kg			P	0.025	P1	P107154
7440-41-7	Beryllium	0.641	mg/Kg			P	0.005	P1	P107154
)440-43-9	Cadmium	0.892	mg/Kg			P	0.053	P1	P107154
7440-70-2	Calcium	1960	mg/Kg	J		P	0.406	P1	P107154
7440-47-3	Chromium	15.7	mg/Kg			P	0.110	Pí	P107154
7440-48-4	Cobalt	15.4	mg/Kg			P	0.092	P1	P107154
7440-50-8	Copper	44.4	mg/Kg			P	0.132	P1	P107154
7439-89-6	Iron	25300	mg/Kg			P	2.040	P1	P107154
7439-92-1	Lead	17.6	mg/Kg	J		P	0.119	P1	P107154
7439-95-4	Magnesium	5020	mg/Kg	•		P	0.019	P1	P107154
7439-96-5	Manganese	874	mg/Kg			P	0.929	P1	P107154
7439-97-6	Mercury	0.05	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	35.2	mg/Kg			P	0.175	P1	P107154
7440-09-7	Potassium	1670	mg/Kg	J	N	P	3.810	P1	P107154
7782-49-2	Selenium	1.050	mg/Kg	XJ		P	0.363	P1	P107154
7440-22-4	Silver	0.135	mg/Kg	47	N	P	0.122	P1	P107154
7440-23-5	Sodium	43.1	mg/Kg	U		P	43.1	P1	P107154
7440-28-0	Thallium	0.382	mg/Kg	レ し	つ	P	0.382	P1	P107154
7440-62-2	Vanadium	17.2	mg/Kg		~	P	0.118	P1	P107154
7440-66-6	Zinc	102	mg/Kg			P	0.065	P1	P107154

Client: Chaz	en Companies	SDG No.: S3409	Method Type: SW846
Color Before: Color After:	BROWN	Clarity Before:	Texture: MEDIUM Artifacts:
Comments: _		······································	

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.: S3409	Method Type:	SW846
		-		

Sample ID: S3409-12

Client ID: SB-348-12DUP

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Matrix: SOIL

Date Received: 7/2/2004

Level: LOW

% Solids: 90.4

								Analytical
Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Run
Aluminum	9520	mg/Kg			P	0.682	P1	P107154
Antimony	0.611	mg/Kg	U		P	0.611	P1	P107154
Arsenic	7.790	mg/Kg			P	0.257	P1	P107154
Barium	54.9	mg/Kg			P	0.024	P1	P107154
Beryllium	0.521	mg/Kg	J		P	0.004	P1	P107154
Cadmium	0.721	mg/Kg			P	0.050	P1	P107154
Calcium	1500	mg/Kg	J		P	0.380	P1	P107154
Chromium	13.7	mg/Kg			P	0.103	P1	P107154
Cobalt	10.7	mg/Kg			P	0.086	P1	P107154
Copper	29.4	mg/Kg			P	0.124	P1	P107154
Iron	21000	mg/Kg			P	1.910	P1	P107154
Lead	16.0	mg/Kg	J		P	0.112	P1	P107154
Magnesium	4290	mg/Kg			P	0.017	P1	P107154
Manganese	503	mg/Kg			P	0.870	P1	P107154
Mercury	0.04	mg/Kg		N	CV	0.01	CV2	071304C
Nickel	24.4	mg/K.g			P	0.164	P1	P107154
Potassium	1540	mg/Kg	J	N	P	3.570	P1	P107154
Selenium	0.764	mg/Kg	XJ.		P	0.339	P1	P107154
Silver	0.114	mg/Kg	U	N	P	0.114	P1	P107154
Sodium	40.3	mg/Kg	U		P	40.3	P1	P107154
Thallium	0.358	mg/Kg	として	3	P	0.358	P1	P107154
Vanadium	14.2	mg/Kg			P	0.111	P1	P107154
Zinc	67.0	mg/Kg			P	0.061	P1	P107154
	Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium	Aluminum 9520 Antimony 0.611 Arsenic 7.790 Barium 54.9 Beryllium 0.521 Cadmium 0.721 Calcium 1500 Chromium 13.7 Cobalt 10.7 Copper 29.4 Iron 21000 Lead 16.0 Magnesium 4290 Manganese 503 Mercury 0.04 Nickel 24.4 Potassium 1540 Selenium 0.764 Silver 0.114 Sodium 40.3 Thallium 0.358 Vanadium 14.2	Aluminum 9520 mg/Kg Antimony 0.611 mg/Kg Arsenic 7.790 mg/Kg Barium 54.9 mg/Kg Beryllium 0.521 mg/Kg Cadmium 0.721 mg/Kg Calcium 1500 mg/Kg Chromium 13.7 mg/Kg Cobalt 10.7 mg/Kg Copper 29.4 mg/Kg Iron 21000 mg/Kg Magnesium 4290 mg/Kg Manganese 503 mg/Kg Mercury 0.04 mg/Kg Nickel 24.4 mg/Kg Potassium 1540 mg/Kg Silver 0.114 mg/Kg Sodium 40.3 mg/Kg Thallium 0.358 mg/Kg Vanadium 14.2 mg/Kg	Aluminum 9520 mg/Kg Antimony 0.611 mg/Kg U Arsenic 7.790 mg/Kg Barium 54.9 mg/Kg Beryllium 0.521 mg/Kg J Cadmium 0.721 mg/Kg Calcium 1500 mg/Kg Chromium 13.7 mg/Kg Cobalt 10.7 mg/Kg Iron 21000 mg/Kg Lead 16.0 mg/Kg Magnesium 4290 mg/Kg Marcury 0.04 mg/Kg Nickel 24.4 mg/Kg Potassium 1540 mg/Kg Selenium 0.764 mg/Kg U Sodium 40.3 mg/Kg U Thallium 0.358 mg/Kg Vanadium 14.2 mg/Kg Vanadium 14.2 mg/Kg Vanadium 14.2 mg/Kg Vanadium 14.2 mg/Kg	Aluminum 9520 mg/Kg Antimony 0.611 mg/Kg U Arsenic 7.790 mg/Kg Barium 54.9 mg/Kg Beryllium 0.521 mg/Kg Cadmium 1500 mg/Kg Calcium 1500 mg/Kg Chromium 13.7 mg/Kg Cobalt 10.7 mg/Kg Iron 21000 mg/Kg Iron 21000 mg/Kg Magnesium 4290 mg/Kg Manganese 503 mg/Kg Mercury 0.04 mg/Kg Nickel 24.4 mg/Kg Potassium 1540 mg/Kg J N Selenium 0.764 mg/Kg U N Solium 40.3 mg/Kg U Thallium 0.358 mg/Kg Vanadium 14.2 mg/Kg Vanadium	Aluminum 9520 mg/Kg P Antimony 0.611 mg/Kg U P Arsenic 7.790 mg/Kg P Barium 54.9 mg/Kg P Beryllium 0.521 mg/Kg J P Cadmium 0.721 mg/Kg P P Calcium 1500 mg/Kg P P Chromium 13.7 mg/Kg P P Chromium 13.7 mg/Kg P P Cobalt 10.7 mg/Kg P P Copper 29.4 mg/Kg P P Iron 21000 mg/Kg P P Magnesium 4290 mg/Kg P P Manganese 503 mg/Kg P N CV Nickel 24.4 mg/Kg N CV Nickel 24.4 mg/Kg N P Selenium	Aluminum 9520 mg/Kg P 0.682 Antimony 0.611 mg/Kg U P 0.611 Arsenic 7.790 mg/Kg P 0.257 Barium 54.9 mg/Kg P 0.024 Beryllium 0.521 mg/Kg J P 0.004 Cadmium 0.721 mg/Kg P 0.050 Calcium 1500 mg/Kg P 0.050 Chromium 13.7 mg/Kg P 0.103 Cobalt 10.7 mg/Kg P 0.086 Copper 29.4 mg/Kg P 0.124 Iron 21000 mg/Kg P 0.124 Iron 21000 mg/Kg P 0.112 Magnesium 4290 mg/Kg P 0.017 Manganese 503 mg/Kg P 0.017 Manganese 503 mg/Kg P 0.870 Mercury 0.04 mg/Kg N CV 0.01 Nickel 24.4 mg/Kg P 0.164 Potassium 1540 mg/Kg J N P 3.570 Selenium 0.764 mg/Kg J N P 0.339 Silver 0.114 mg/Kg U N P 0.114 Sodium 40.3 mg/Kg U N P 0.114 Sodium 40.3 mg/Kg U P 40.3 Thallium 0.358 mg/Kg W J P 0.358 Vanadium 14.2 mg/Kg P 0.111	Aluminum 9520 mg/Kg P 0.682 P1 Antimony 0.611 mg/Kg U P 0.611 P1 Arsenic 7.790 mg/Kg P 0.257 P1 Barium 54.9 mg/Kg P 0.024 P1 Beryllium 0.521 mg/Kg J P 0.004 P1 Cadmium 0.721 mg/Kg P 0.050 P1 Cadmium 1500 mg/Kg P 0.050 P1 Chromium 13.7 mg/Kg P 0.0380 P1 Chromium 13.7 mg/Kg P 0.0380 P1 Cobalt 10.7 mg/Kg P 0.0380 P1 Copper 29.4 mg/Kg P 0.086 P1 Iron 21000 mg/Kg P 0.112 P1 Magnesium 4290 mg/Kg P 0.017 P1 Mercury

Metals .

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chaz	zen Companies	SDG No.: S3	409	Method Type: SW846		
Color Before:	BROWN YELLOW	Clarity Before:		Texture: Artifacts:	MEDIUM	
Comments: _		· · · · · · · · · · · · · · · · · · ·		·		

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3409	Method Type:	SW846

Sample ID: S3409-13 Client ID: SB-324-8

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3409 SAS No.: S3409

Matrix: SOIL Date Received: 7/2/2004 Level: LOW

% Solids: 87.6

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	13600	mg/Kg			P	0.718	P1	P107154
7440-36-0	Antimony	0.643	mg/Kg	U		P	0.643	P 1	P107154
7440-38-2	Arsenic	8.710	mg/Kg			P	0.271	P1	P107154
7440-39-3	Barium	55.8	mg/Kg			P	0.025	P1	P107154
7440-41-7	Beryllium	0.731	mg/Kg			P	0.005	P 1	P107154
1440-43-9	Cadmium	1.720	mg/Kg			P	0.053	P1	P107154
7440-70-2	Calcium	1960	mg/Kg	J		P	0.400	P1	P107154
7440-47-3	Chromium	21.3	mg/Kg	~		P	0.108	P1	P107154
7440-48-4	Cobalt	28.3	mg/Kg			P	0.090	P1	P107154
7440-50-8	Copper	363	mg/Kg			P	0.130	P1	P107154
7439-89-6	Iron	27500	mg/Kg			P	2.010	P1	P107154
7439-92-1	Lead	19.0	mg/Kg	J		P	0.118	P1	P107154
7439-95-4	Magnesium	6440	mg/Kg	•		P.	0.018	P1	P107154
7439-96-5	Manganese	358	mg/Kg			P	0.916	P1	P107154
7439-97-6	Mercury	0.06	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	31.0	mg/Kg			P	0.172	P1	P107154
7440-09-7	Potassium	1830	mg/Kg	J	N	P	3.750	P1	P107154
7782-49-2	Selenium	1.510	mg/Kg	1		P	0.357	P1	P107154
7440-22-4	Silver	0.253	mg/Kg 🗸	* 1	N	P	0.120	P1	P107154
7440-23-5	Sodium	42.4	mg/Kg	U		P	42.4	P1	P107154
7440-28-0	Thallium	0.377	mg/Kg	y UC)	P	0.377	P1	P107154
7440-62-2	Vanadium	23.2	mg/Kg			P	0.116	P1	P107154
7440-66-6	Zinc	165	mg/Kg			P	0.064	P1	P107154

M

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chaz	zen Companies	SDG No.: S3409	. Method Type: SW846
Color Before: Color After:	BROWN YELLOW	Clarity Before:	Texture: <u>MEDIUM</u> Artifacts:
Comments: _			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.: S3409	Method Type: SW846		
Samp	ole ID: S3409-14		Client ID: SB-204-8		
	ract: Chazen Companies	Lab Code: CHEMED	Case No.: S3409	SAS No.: S3409	⊿
Matr	ix: SOIL	Date Received: 7/2/2004	Level: LOW		

% Solids: 72.4

									Analytical
CAS No.	Analyte	Concentration	Units	C (Qual	M	DL	Instrument ID	Run
7429-90-5	Aluminum	13200	mg/Kg			P .	0.869	P1	P107154
7440-36-0	Antimony	0.778	mg/Kg	U		P	0.778	P1	P107154
7440-38-2	Arsenic	15.0	mg/Kg			P	0.327	Ρi	P107154
7440-39-3	Barium	181	mg/Kg			P	0.030	P1	P107154
7440-41-7	Beryllium	1.350	mg/Kg			P	0.006	P1	P107154
440-43-9	Cadmium	1.780	mg/Kg			P	0.064	P1	P107154
7440-70-2	Calcium	7070	mg/Kg	J		P	0.483	P1	P107154
7440-47-3	Chromium	17.7	mg/Kg			P	0.131	P1	P107154
7440-48-4	Cobalt	17.0	mg/Kg			P	0.109	P1	P107154
7440-50-8	Copper	90.3	mg/Kg			P	0.157	P1	P107154
7439-89-6	Iron	26700	mg/Kg			P	2.430	P1	P107154
7439-92-1	Lead	301	mg/Kg	J		P	0.142	P1	P107154
7439-95-4	Magnesium	3480	mg/Kg			P	0.022	P1	P107154
7439-96-5	Manganese	546	mg/Kg			P	1.110	P1	P107154
7439-97-6	Mercury	0.09	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	58.1	mg/Kg			P	0.209	P1	P107154
7440-09-7	Potassium	1550	mg/Kg	J	N	P	4.540	Pl	P107154
7782-49-2	Selenium	2.170	mg/Kg	J		P	0.432	P1	P107154
7440-22-4	Silver	0.233	mg/Kg	47	N	P	0.145	P1	P107154
7440-23-5	Sodium	395	mg/Kg	J		P	51.3	P1	P107154
7440-28-0	Thallium	0.456	mg/Kg	J (J)		P	0.456	P1	P107154
7440-62-2	Vanadium	24.0	mg/Kg			P	0.141	P1	P107154
7440-66-6	Zinc	360	mg/Kg			P	0.077	P1	P107154

g(\$)

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chaz	en Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before:	Texture: MEDIUM Artifacts:
Comments:		· · · · · · · · · · · · · · · · · · ·	·

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3409	Method Type: SW846	-

Sample ID: S3409-15

Client ID: SB-244-8

Contract: Chazen Companies

Lab Code: CHEMED Case

Case No.: S3409

SAS No.: S3409

Matrix: SOIL

Date Received: 7/2/2004

Level: LOW

% Solids: 83.8

								•	Analytical
CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Run
7429-90-5	Aluminum	19900	mg/Kg			P	0.751	P1	P107154
7440-36-0	Antimony	0.672	mg/Kg	U		P	0.672	P 1	P107154
7440-38-2	Arsenic	7.780	mg/Kg			P ·	0.283	P 1	P107154
7440-39-3	Barium	93.9	mg/Kg			P	0.026	P1	P107154
7440-41-7	Beryllium	0.886	mg/Kg			P	0.005	P1	P107154
/440-43-9	Cadmium	0.680	mg/Kg			P	0.055	P1	P107154
7440-70-2	Calcium	1520	mg/Kg	J		P	0.418	P 1	P107154
7440-47-3	Chromium	17.8	mg/Kg			P	0.113	P1	P107154
7440-48-4	Cobalt	4.210	mg/Kg	J		P	0.094	P1	P107154
7440-50-8	Copper	18.1	mg/Kg			P	0.136	P1	P107154
7439-89-6	Iron	23700	mg/Kg			P	2.100	P1	P107154
7439-92-1	Lead	16.2	mg/Kg	J		P	0.123	P1	P107154
7439-95-4	Magnesium	2700	mg/Kg			P	0.019	P1	P107154
7439-96-5	Manganese	65.8	mg/Kg			P	0.957	P1	P107154
7439-97-6	Mercury	0.04	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	12.0	mg/Kg			P	0.180	P1	P107154
7440-09-7	Potassium	1880	mg/Kg	J	N	P	3.920	P1	P107154
7782-49-2	Selenium	1.240	mg/Kg	1		P	0.374	P1	P107154
7440-22-4	Silver	0.409	mg/Kg	+7	N	P	0.125	P1	P107154
7440-23-5	Sodium	48.1	mg/Kg	J		P	44.4	P1	P107154
7440-28-0	Thallium	0.394	mg/Kg	NO.)	P	0.394	Pi	P107154
7440-62-2	Vanadium	26.1	mg/Kg			P	0.122	P1	P107154
7440-66-6	Zinc	59.3	mg/Kg			· P	0.067	P1	P107154

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chaz	zen Companies	SDG No.: S3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before: Clarity After:	Texture: <u>MEDIUM</u> Artifacts:
Comments: _			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

lient: Chazen Companies	SDG No.: S3409		Method Type: SW846
Sample ID: S3409-16		Client ID: SB-264-8	
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: S3409	SAS No.: \$3409
Matrix: SOIL	Date Received: 7/2/2004	Level: LOW	
% Solids: 75.6			

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	13300	mg/Kg			P	0.824	P1	P107154
7440-36-0	Antimony	0.737	mg/Kg	U		P	0.737	P1	P107154
7440-38-2	Arsenic	13.3	mg/Kg			P	0.310	P1	P107154
7440-39-3	Barium	149	mg/Kg			P	0.029	P1	P107154
7440-41-7	Beryllium	0.822	mg/Kg			P	0.005	P1	P107154
/440-43-9	Cadmium	1.340	mg/Kg			P	0.060	P1	P107154
7440-70-2	Calcium	28600	mg/Kg	1		P	0.458	P1	P107154
7440-47 - 3	Chromium	19.1	mg/Kg			P	0.124	P1	P107154
7440-48-4	Cobalt	11.4	mg/Kg			P	0.103	P1	P107154
7440-50-8	Copper	66.5	mg/Kg			P	0.149	P1	P107154
7439-89-6	Iron	25000	mg/Kg			P	2.310	P1	P107154
7439-92-1	Lead	194	mg/Kg	J		P	0.135	Pl	P107154
7439-95-4	Magnesium	6000	mg/Kg			P	0.021	P1	P107154
7439-96-5	Manganese	684	mg/Kg			P	1.050	P1	P107154
7439-97-6	Mercury	0.20	mg/Kg		N	CV	0.01	CV2	071304C
7440-02-0	Nickel	26.7	mg/Kg			P	0.198	P1	P107154
7440-09-7	Potassium	2220	mg/Kg	J	N	P	4.310	P1	P107154
7782-49-2	Selenium	1.030	mg/Kg	XJ		P	0.410	P1	P107154
7440-22-4	Silver	0.138	mg/Kg	U	N	P	0.138	P1	P107154
7440-23-5	Sodium	334	mg/Kg	J		P	48.7	P1	P107154
7440-28-0	Thallium	0.432	mg/Kg	メして)	P	0.432	P1	P107154
7440-62-2	Vanadium	23.2	mg/Kg			P	0.134	P1	P107154
7440-66-6	Zinc	175	mg/Kg			P	0.073	P1	P107154

SB

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chaz	zen Companies	SDG No.: \$3409	Method Type: SW846
Color Before:	BROWN YELLOW	Clarity Before:	Texture: <u>MEDIUM</u> Artifacts:
Comments:			

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
ICV01							,		:
	uminum	2588.40	2482.0	104.3	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ar	ntimony	1026.93	992.0	103.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ar	senic	1004.36	996.0	100.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ba	rium	540.48	502.0	107.7	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ве	ryllium	500.54	493.0	101.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ca	dmium	516.51	494.0	104.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ca	lcium	10464.50	10180.0	102.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ch	romium	507.81	490.0	103.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Co	balt	518.82	496.0	104.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
\ Co	pper	507.36	490.0	103.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
/ Iro	n	4945.28	5107.0	96.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Le	ad	1023.10	996.0	102.7	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ma	agnesium	6234.40	6003.0	103.9	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ma	anganese	521.24	495.0	105.3	90.0 - 110.0	P	7/15/2004	10:04	P107154
Me	ercury	4.27	4.1	104.1	90.0 - 110.0	CV	7/13/2004	17:57	071304C
Nic	ckel	515.40	492.0	104.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Pot	tassium	9047.87	10008.0	90.4	90.0 - 110.0	P	7/15/2004	10:04	P107154
Sel	lenium	1024.40	1005.0	101.9	90.0 - 110.0	P	7/15/2004	10:04	P107154
Sil	ver	517.50	495.0	104.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Soc	dium	9456.94	10039.0	94.2	90.0 - 110.0	P	7/15/2004	10:04	P107154
The	allium	1021.64	1027.0	99.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Va	nadium	488.99	501.0	97.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Zin	nc	1056.90	1000.0	105.7	90.0 - 110.0	P	7/15/2004	10:04	P107154

- 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies		SDG No.: \$3409	•
Contract: Chazen Companies	Lab Code: CHEMED	Case No. \$3400 SAS	No • \$3400

Initial Calibration Source: EPA-ICV

Continuing Calibration Source: <u>EPA-LV</u>

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CCV01					<i>,</i>				
	inum	10135.43	10000.0	101.4	90.0 - 110.0	P	7/15/2004	10:31	P107154
Antir	nony	5049.49	5000.0	101.0	90.0 - 110.0	P	7/15/2004	10:31	P107154
Arser	nic	5092.03	5000.0	101.8	90.0 - 110.0	P	7/15/2004	10:31	P107154
Bariu	ım	10174.54	10000.0	101.7	90.0 - 110.0	P	7/15/2004	10:31	P107154
Beryl	lium	255,23	250.0	102.1	90.0 - 110.0	P	7/15/2004	10:31	P107154
Cadn	iium	2552.06	2500.0	102.1	90.0 - 110.0	P	7/15/2004	10:31	P107154
Calci	um	25374.39	25000.0	101.5	90.0 - 110.0	P	7/15/2004	10:31	P107154
Chro	mium	1011.12	1000.0	101,1	90.0 - 110.0	P	7/15/2004	10:31	P107154
Coba	lt	2533.35	2500.0	101.3	90.0 - 110.0	P	7/15/2004	10:31	P107154
Copp	er	1263.25	1250.0	101.1	90.0 - 110.0	P	7/15/2004	10:31	P107154
, Iron		4984.46	5000.0	99.7	90.0 - 110.0	P	7/15/2004	10:31	P107154
Lead		5065.10	- 5000.0	101.3	90.0 - 110.0	P	7/15/2004	10:31	P107154
Magn	esium	25333.50	25000.0	101.3	90.0 - 110.0	P	7/15/2004	10:31	P107154
Mang	anese	2534.36	2500.0	101.4	90.0 - 110.0	P	7/15/2004	10:31	P107154
Merc	ury	4.85	5.0	97.0	90.0 - 110.0	CV	7/13/2004	18:02	071304C
Nicke	el .	2533.40	2500.0	101.3	90.0 - 110.0	P	7/15/2004	10:31	P107154
Potas	sium	25196.79	25000.0	100.8	90.0 - 110.0	P	7/15/2004	10:31	P107154
Selen	ium	5159.17	5000.0	103.2	90.0 - 110.0	P	7/15/2004	10:31	P107154
Silver	•	1301.76	1250.0	104.1	90.0 - 110.0	P	7/15/2004	10:31	P107154
Sodiu	m	25192.96	25000.0	100.8	90.0 - 110.0	P	7/15/2004	10:31	P107154
Thalli	ium	5088.86	5000.0	101.8	90.0 - 110.0	P	7/15/2004	10:31	P107154
Vanac	lium	2525,49	2500.0	101.0	90.0 - 110.0	P	7/15/2004	10:31	P107154
Zinc		2554.90	2500.0	102.2	90.0 - 110.0	P	7/15/2004	10:31	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV02								· · · · · · · · · · · · · · · · · · ·	
	uminum	9952.80	10000.0	99.5	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ar	ntimony	5187.06	5000.0	103.7	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ar	senic	5309.23	5000.0	106.2	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ba	rium	10314.08	10000.0	103.1	90.0 - 110.0	P	7/15/2004	11:05	P107154
Be	ryllium	261.38	250.0	104.6	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ca	dmium	2676.53	2500.0	107.1	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ca	lcium	26221.47	25000.0	104.9	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ch	romium	1024.30	1000.0	102.4	90.0 - 110.0	P	7/15/2004	11:05	P107154
Co	balt	2559.33	2500.0	102.4	90.0 - 110.0	P	7/15/2004	11:05	P107154
Co	pper	1221.45	1250.0	97.7	90.0 - 110.0	P	7/15/2004	11:05	P107154
' Iro	n	4888.42	5000.0	97.8	90.0 - 110.0	P	7/15/2004	11:05	P107154
Le	ad	5177.52	5000.0	103.6	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ma	agnesium	25337.12	25000.0	101.3	90.0 - 110.0	P	7/15/2004	11:05	P107154
Ma	anganese	2546.06	2500.0	101.8	90.0 - 110.0	P	7/15/2004	11:05	P107154
Me	ercury	5.16	5.0	103.2	90.0 - 110.0	CV	7/13/2004	18:30	071304C
Nic	ckel	2623.80	2500.0	105.0	90.0 - 110.0	P	7/15/2004	11:05	P107154
Pot	tassium	25449.85	25000.0	101.8	90.0 - 110.0	P	7/15/2004	11:05	P107154
Sel	lenium	5264.23	5000.0	105.3	90.0 - 110.0	P	7/15/2004	11:05	P107154
Sil	ver	1271.24	1250.0	101.7	90.0 - 110.0	P	7/15/2004	11:05	P107154
Soc	dium	25899.85	25000.0	103.6	90.0 - 110.0	P	7/15/2004	11:05	P107154
The	allium	5373.36	5000.0	107.5	90.0 - 110.0	P	7/15/2004	11:05	P107154
Va	nadium	2504.80	2500.0	100.2	90.0 - 110.0	P	7/15/2004	11:05	P107154
Zin	nc	2605.88	2500.0	104.2	90.0 - 110.0	P	7/15/2004	11:05	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: \$3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CCV03					/				·
A	Aluminum	10223.00	10000.0	102.2	90.0 - 110.0	P	7/15/2004	11:30	P107154
A	Antimony	5259.14	5000.0	105.2	90.0 - 110.0	P	7/15/2004	11:30	P107154
A	Arsenic	5378.95	5000.0	107.6	90.0 - 110.0	P	7/15/2004	11:30	P107154
Е	Barium	10480.92	10000.0	104.8	90.0 - 110.0	P	7/15/2004	11:30	P107154
E	Beryllium	265.62	250.0	106.2	90.0 - 110.0	P	7/15/2004	11:30	P107154
C	Cadmium	2698.86	2500.0	108.0	90.0 - 110.0	P	7/15/2004	11:30	P107154
C	Calcium	26656.98	25000.0	106.6	90.0 - 110.0	P	7/15/2004	11:30	P107154
C	Chromium	1046.30	1000.0	104.6	90.0 - 110.0	P	7/15/2004	11:30	P107154
C	Cobalt	2605.03	2500.0	104.2	90.0 - 110.0	P	7/15/2004	11:30	P107154
\ c	Copper	1254.30	1250.0	100.3	90.0 - 110.0	P	7/15/2004	11:30	P107154
·′ Ir	ron	5076.04	5000.0	101.5	90.0 - 110.0	P	7/15/2004	11:30	P107154
T.	ead	5274.24	5000.0	105.5	90.0 - 110.0	P	7/15/2004	11:30	P107154
N	lagnesium	25862.36	25000.0	103.4	90.0 - 110.0	P	7/15/2004	11:30	P107154
N	langanese	2599.29	2500.0	104.0	90.0 - 110.0	P	7/15/2004	11:30	P107154
M	fercury	4.99	5.0	99.8	90.0 - 110.0	CV	7/13/2004	19:00	071304C
N	lickel	2662.48	2500.0	106.5	90.0 - 110.0	P	7/15/2004	11:30	P107154
P	otassium	25919.21	25000.0	103.7	90.0 - 110.0	P	7/15/2004	11:30	P107154
S	elenium	5298.51	5000.0	106.0	90.0 - 110.0	P	7/15/2004	11:30	P107154
S	ilver	1286.55	1250.0	102.9	90.0 - 110.0	P	7/15/2004	11:30	P107154
S	odium	26101.59	25000.0	104.4	90.0 - 110.0	P	7/15/2004	11:30	P107154
T	hallium	5423,28	5000.0	108.5	90.0 - 110.0	P	7/15/2004	11:30	P107154
V	anadium	2565.06	2500.0	102.6	90.0 - 110.0	P	7/15/2004	11:30	P107154
Z	inc	2650.30	2500.0	106.0	90.0 - 110.0	P	7/15/2004	11:30	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV04					/			· · · ·	· ·
	aminum	9937.05	10000.0	99.4	90.0 - 110.0	P	7/15/2004	11:58	P107154
An	timony	5135.51	5000.0	102.7	90.0 - 110.0	P	7/15/2004	11:58	P107154
Ars	senic	5258.09	5000.0	105.2	90.0 - 110.0	P	7/15/2004	11:58	P107154
Bar	rium	10346.58	10000.0	103.5	90.0 - 110.0	P	7/15/2004	11:58	P107154
Ber	ryllium	257.19	250.0	102.9	90.0 - 110.0	P	7/15/2004	11:58	P107154
Cad	dmium	2619.93	2500.0	104.8	90.0 - 110.0	P	7/15/2004	11:58	P107154
Cal	leium	25644.20	25000.0	102.6	90.0 - 110.0	P	7/15/2004	11:58	P107154
Chi	romium	1005.48	1000.0	100.5	90.0 - 110.0	P	7/15/2004	11:58	P107154
Col	balt	2507.34	2500.0	100.3	90.0 - 110.0	P	7/15/2004	11:58	P107154
Coj	pper	1222.84	1250.0	97.8	90.0 - 110.0	P	7/15/2004	11:58	P107154
Iro	n	4822.20	5000.0	96.4	90.0 - 110.0	P	7/15/2004	11:58	P107154
Lea	ad	5082.42	5000.0	101.6	90.0 - 110.0	P	7/15/2004	11:58	P107154
Ma	gnesium	25037.91	25000.0	100.2	90.0 - 110.0	P	7/15/2004	11:58	P107154
Ma	nganese	2499.58	2500.0	100.0	90.0 - 110.0	P	7/15/2004	11:58	P107154
Me	reury	5.19	5.0	103.8	90.0 - 110.0	CV	7/13/2004	19:30	071304C
Nic	kel	2575.04	2500.0	103.0	90.0 - 110.0	P	7/15/2004	11:58	P107154
Pot	assium	25761.21	25000.0	103.0	90.0 - 110.0	P	7/15/2004	11:58	P107154
Sele	enium	5197.74	5000.0	104.0	90.0 - 110.0	P	7/15/2004	11:58	P107154
Silv	/er	1258.94	1250.0	100.7	90.0 - 110.0	P	7/15/2004	11:58	P107154
Sod	lium	25950.54	25000.0	103.8	90.0 - 110.0	P	7/15/2004	11:58	P107154
Tha	ıllium	5333.66	5000.0	106.7	90.0 - 110.0	P	7/15/2004	11:58	P107154
Var	nadium	2473.93	2500.0	99.0	90.0 - 110.0	P	7/15/2004	11:58	P107154
Zin	c	2561.84	2500.0	102.5	90.0 - 110.0	P	7/15/2004	11:58	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: \$3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	. М	Analysis Date	Analysis Time	Run Number
CCV05	,								
	ıminum	9558.50	10000.0	95.6	90.0 - 110.0	P	7/15/2004	12:28	P107154
An	timony	4804.76	5000.0	96.1	90.0 - 110.0	P	7/15/2004	12:28	P107154
Ars	enic	5049.86	5000.0	101.0	90.0 - 110.0	P	7/15/2004	12:28	P107154
Bar	ium	10086.53	10000.0	100.9	90.0 - 110.0	P	7/15/2004	12:28	P107154
Ber	yllium	247.09	250.0	98.8	90.0 - 110.0	P	7/15/2004	12:28	P107154
Cac	lmium	2510.59	2500.0	100.4	90.0 - 110.0	P	7/15/2004	12:28	P107154
Cal	cium	24602.08	25000.0	98.4	90.0 - 110.0	P	7/15/2004	12:28	P107154
Chr	omium	958.31	1000.0	95.8	90.0 - 110.0	P	7/15/2004	12:28	P107154
Col	oalt	2382.86	2500.0	95.3	90.0 - 110.0	P	7/15/2004	12:28	P107154
Cop	oper	1165.80	1250.0	93.3	90.0 - 110.0	P	7/15/2004	12:28	P107154
J Iron	ı	4523.18	5000.0	90.5	90.0 - 110.0	P	7/15/2004	12:28	P107154
Lea	d	4789.92	5000.0	95.8	90.0 - 110.0	P	7/15/2004	12:28	P107154
Mag	gnesium	23946.82	25000.0	95.8	90.0 - 110.0	P	7/15/2004	12:28	P107154
Ma	nganese	2374.56	2500.0	95.0	90.0 - 110.0	P	7/15/2004	12:28	P107154
Me	rcury	5.07	5.0	101.4	90.0 - 110.0	CV	7/13/2004	19:58	071304C
Nic	kel	2470.21	2500.0	98.8	90.0 - 110.0	P	7/15/2004	12:28	P107154
Pota	assium	24803.11	25000.0	99.2	90.0 - 110.0	P	7/15/2004	12:28	P107154
Sele	enium	4947.00	5000.0	98.9	90.0 - 110.0	P	7/15/2004	12:28	P107154
Silv	er	1339.07	1250.0	107.1	90.0 - 110.0	P	7/15/2004	12:28	P107154
Sod	ium	25375,29	25000.0	101.5	90.0 - 110.0	P	7/15/2004	12:28	P107154
Tha	llium	5203.51	5000.0	104.1	90.0 - 110.0	P	7/15/2004	12:28	P107154
Van	ıadium	2342.08	2500.0	93.7	90.0 - 110.0	P	7/15/2004	12:28	P107154
Zin	С	2452.54	2500.0	98.1	90.0 - 110.0	P	7/15/2004	12:28	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
COTTO				/	/			**	
CCV06	ıminum	0400.60	10000.0	24.2	000 1100		5456664		
		9490.60	10000.0	94.9	90.0 - 110.0	P	7/15/2004	12:51	P107154
	timony	4817.41	5000.0	96.3	90.0 - 110.0	P	7/15/2004	12:51	P107154
	senic	5074.14	5000.0	101.5	90.0 - 110.0	P	7/15/2004	12:51	P107154
	rium	10219.38	10000.0	102.2	90.0 - 110.0	P	7/15/2004	12:51	P107154
	ryllium	245.86	250.0	98.3	90.0 - 110.0	P	7/15/2004	12:51	P107154
	dmium	2506.17	2500.0	100.2	90.0 - 110.0	P	7/15/2004	12:51	P107154
Cal	cium	24458.52	25000.0	97.8	90.0 - 110.0	P	7/15/2004	12:51	P107154
Chi	romium	944.54	1000.0	94.5	90.0 - 110.0	P	7/15/2004	12:51	P107154
Col	balt	2340.59	2500.0	93.6	90.0 - 110.0	P	7/15/2004	12:51	P107154
Coj	pper	1141.34	1250.0	91.3	90.0 - 110.0	P	7/15/2004	12:51	P107154
) Iron	n	4554.78	5000.0	91.1	90.0 - 110.0	P	7/15/2004	12:51	P107154
Lea	ıđ	4807.28	5000.0	96.1	90.0 - 110.0	P	7/15/2004	12:51	P107154
Ma	gnesium	23650.14	25000.0	94.6	90.0 - 110.0	P	7/15/2004	12:51	P107154
Ma	nganese	2329.99	2500.0	93.2	90.0 - 110.0	P	7/15/2004	12:51	P107154
Me	rcury	5.10	5.0	102.0	90.0 - 110.0	CV	7/13/2004	20:28	071304C
Nic	kel	2446.36	2500.0	97.9	90.0 - 110.0	p	7/15/2004	12:51	P107154
Pot	assium	24925.54	25000.0	99.7	90.0 - 110.0	P	7/15/2004	12:51	P107154
Sel	enium	4953.73	5000.0	99.1	90.0 - 110.0	P	7/15/2004	12:51	P107154
Silv	er/er	1357.20	1250.0	108.6	90.0 - 110.0	P	7/15/2004	12:51	P107154
Soc	lium	25767.36	25000.0	103.1	90.0 - 110.0	P	7/15/2004	12:51	P107154
Tha	ıllium	5257.66	5000.0	105.2	90.0 - 110.0	P	7/15/2004		P107154
Var	nadium	2287.06	2500.0	91.5	90.0 - 110.0	P	7/15/2004	12:51	P107154
Zin		2433.44	2500.0	97.3	90.0 - 110.0	P	7/15/2004	12:51	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV07	 			1/			····	·	
	luminum	9584.46	10000.0	95.8	90.0 - 110.0	P	7/15/2004	12.07	D107154
	ntimony	4912.70	5000.0	98.3	90.0 - 110.0			13:26	P107154
	senic	5088.48	5000.0	101.8	90.0 - 110.0	P	7/15/2004	13:26	P107154
	rium	10259.78	10000.0			P	7/15/2004	13:26	P107154
	eryllium	246.05		102.6	90.0 - 110.0	P	7/15/2004	13:26	P107154
	admium	240.03 2512.92	250.0	98.4	90.0 - 110.0	P	7/15/2004	13:26	P107154
-	deium		2500.0	100.5	90.0 - 110.0	P	7/15/2004	13:26	P107154
		24464.43	25000.0	97.9	90.0 - 110.0	P	7/15/2004	13:26	P107154
	nromium	946.45	1000.0	94.6	90.0 - 110.0	P	7/15/2004	13:26	P107154
	balt	2349.65	2500.0	94.0	90.0 - 110.0	P	7/15/2004	13:26	P107154
)	ppper	1157.29	1250.0	92.6	90.0 - 110.0	P	7/15/2004	13:26	P107154
Iro		4660.87	5000.0	93.2	90.0 - 110.0	P	7/15/2004	13:26	P107154
Le	ad	4840.22	5000.0	96.8	90.0 - 110.0	P	7/15/2004	13:26	P107154
Ma	agnesium	23816.17	25000.0	95.3	90.0 - 110.0	P	7/15/2004	13:26	P107154
Ma	anganese	2335.89	2500.0	93.4	90.0 - 110.0	P	7/15/2004	13:26	P107154
Me	ercury	5.01	5.0	100.2	90.0 - 110.0	CV	7/13/2004	20:57	071304C
Ni	ckel	2453.16	2500.0	98.1	90.0 - 110.0	P	7/15/2004	13:26	P107154
Po	tassium	25365.29	25000.0	101.5	90.0 - 110.0	P	7/15/2004	13:26	P107154
Sei	lenium	4982.58	5000.0	99.7	90.0 - 110.0	P	7/15/2004	13:26	P107154
Sil	ver	1316.42	1250.0	105.3	90.0 - 110.0	P	7/15/2004	13:26	P107154
So	dium	25969.98	25000.0	103.9	90.0 - 110.0	P	7/15/2004	13:26	P107154
Y The	allium	5285,94	5000.0	105.7		2. P	7/15/2004	13:26	P107154
Va	nadium	2305.41	2500.0	92.2	90.0 - 110.0	P	7/15/2004	13:26	P107154
Zir		2440.58	2500.0	97.6	90.0 - 110.0	P	7/15/2004	13:26	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV08									
	minum	9805.99	10000.0	98.1	90.0 - 110.0	P	7/15/2004	14:07	P107154
Anti	imony	4982.15	5000.0	99.6	90.0 - 110.0	P	7/15/2004	14:07	P107154
Arse	enic .	5010.18	5000.0	100:2	90.0 - 110.0	P	7/15/2004	14:07	P107154
Bari	um	10019.61	10000.0	100.2	90.0 - 110.0	P	7/15/2004	14:07	P107154
Bery	yllium	248.45	250.0	99.4	90.0 - 110.0	P	7/15/2004	14:07	P107154
Cadı	mium	2486.56	2500.0	99.5	90.0 - 110.0	. P	7/15/2004	14:07	P107154
Calc	ium	24777.31	25000.0	99.1	90.0 - 110.0	P	7/15/2004	14:07	P107154
Chro	omium	985.62	1000.0	98.6	90.0 - 110.0	P	7/15/2004	14:07	P107154
Cob	alt	2465.33	2500.0	98.6	90.0 - 110.0	P	7/15/2004	14:07	P107154
Cop	per	1224.20	1250.0	97.9	90.0 - 110.0	P	7/15/2004	14:07	P107154
Iron		4835.80	5000.0	96.7	90.0 - 110.0	P	7/15/2004	14:07	P107154
Lead	1	4961.24	5000.0	99.2	90.0 - 110.0	P.	7/15/2004	14:07	P107154
Mag	nesium	24807.01	25000.0	99.2	90.0 - 110.0	P	7/15/2004	14:07	P107154
Man	ganese	2461.41	2500.0	98.5	90.0 - 110.0	P	7/15/2004	14:07	P107154
Merc	cury	4.98	5.0	99.6	90.0 - 110.0	CV	7/13/2004	21:22	071304C
Nick	cel	2478.59	2500.0	99.1	90.0 - 110.0	P	7/15/2004	14:07	P107154
Pota	ssium	24743.06	25000.0	99.0	90.0 - 110.0	P	7/15/2004	14:07	P107154
Sele	nium	5116.10	5000.0	102.3	90.0 - 110.0	P	7/15/2004	14:07	P107154
Silve	er	1301.28	1250.0	104.1	90.0 - 110.0	P	7/15/2004	14:07	P107154
Sodi	um	24810.20	25000.0	99.2	90.0 - 110.0	P	7/15/2004	14:07	P107154
Thal	lium	5038.65	5000.0	100.8	90.0 - 110.0	P	7/15/2004	14:07	P107154
Vana	adium	2456.30	2500.0	98.3	90.0 - 110.0	P	7/15/2004	14:07	P107154
Zinc		2516.01	2500.0	100.6	90.0 - 110.0	P	7/15/2004	14:07	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: \$3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	М	Analysis Date	Analysis Time	Run Number
CCV09	,			/	/				
	luminum	9761.54	10000.0	97.6	90.0 - 110.0	Р	7/15/2004	14:31	P107154
· A1	ntimony	5006.96	5000.0	100.1	90.0 - 110.0	P	7/15/2004	14:31	P107154
	rsenic	5067.24	5000.0	101.3	90.0 - 110.0	P	7/15/2004	14:31	P107154
Ba	arium	10030.46	10000.0	100.3	90.0 - 110.0	P	7/15/2004	14:31	P107154
Ве	eryllium	250.88	250.0	100.4	90.0 - 110.0	P	7/15/2004	14:31	P107154
	admium	2518.56	2500.0	100.7	90.0 - 110.0	P	7/15/2004	14:31	P-107154
Ca	alcium	25010.40	25000.0	100.0	90.0 - 110.0	P	7/15/2004	14:31	P107154
Cł	nromium	992.60	1000.0	99.3	90.0 - 110.0	P	7/15/2004	14:31	P107154
Co	obalt	2480.12	2500,0	99.2	90.0 - 110.0	P	7/15/2004	14:31	P107154
\ Co	opper	1220.54	1250.0	97.6	90.0 - 110.0	P	7/15/2004	14:31	P107154
) Iro		4889.32	5000.0	97.8	90.0 - 110.0	P	7/15/2004	14:31	P107154
Le	ad	5002.70	5000.0	100.1	90.0 - 110.0	P	7/15/2004	14:31	P107154
·M	agnesium	24877.05	25000.0	99.5	90.0 - 110.0	P	7/15/2004	14:31	P107154
M	anganese	2471.66	2500.0	98.9	90.0 - 110.0	P	7/15/2004	14:31	P107154
	ercury	5.03	5.0	100.6	90.0 - 110.0	CV	7/13/2004	21:34	071304C
Ni	ckel	2494,72	2500.0	99:8	90.0 - 110.0	P	7/15/2004	14:31	P107154
Po	tassium	24626.33	25000.0	98.5	90.0 - 110.0	P	7/15/2004	14:31	P107154
Se	lenium	5145.26	5000.0	102.9	90.0 - 110.0	P	7/15/2004	14:31	P107154
Sil	lver	1306.18	1250.0	104.5	90.0 - 110.0	Р	7/15/2004	14:31	P107154
So	dium	24855.49	25000.0	99.4	90.0 - 110.0	P	7/15/2004	14:31	P107154
Th	allium E.	5058.48	5000.0	101.2	90.0 - 110.0	P	7/15/2004	14:31	P107154
Va	nadium	2460.29	2500.0	98.4	90.0 - 110.0	P	7/15/2004	14:31	P107154
Ziı	nc	2534.70	2500.0	101.4	90.0 - 110.0	P	7/15/2004	14:31	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies SDG No.: S3409

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3409 SAS No.: S3409

Initial Calibration Source: EPA-ICV

Continuing Calibration Source: <u>EPA-LV</u>

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV36				/					
	luminum	9762.80	10000.0	97.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
	untimony	5057.06	5000.0	101.1	90.0 - 110.0	P	7/16/2004	03:15	P107154
	ursenic	5265.08	5000.0	105.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
	Barium	10324.69	10000.0	103.2	90.0 - 110.0	P	7/16/2004	03:15	P107154
	Beryllium	254.05	250.0	101.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
	admium	2582.99	2500.0	103.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
_	Calcium c	25325.23	25000.0	101.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
	hromium	972.22	1000.0	97.2	90.0 - 110.0	P	7/16/2004	03:15	P107154
	Cobalt	2425.44	2500.0	97.0	90.0 - 110.0	P	7/16/2004	03:15	P107154
, C	Copper	1177.69	1250.0	94.2	90.0 - 110.0	P	7/16/2004	03:15	P107154
1	ron	4637.71	5000.0	92.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
L	ead	4914.12	5000.0	98.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
	lagnesium	24496.46	25000.0	98.0	90.0 - 110.0	P	7/16/2004	03:15	P107154
	langanese	2408.75	2500.0	96.4	90.0 - 110.0	P	7/16/2004	03:15	P107154
	lickel	2518.87	2500.0	100.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
P	otassium	25710.20	25000.0	102.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
S	elenium	5291.54	5000.0	105.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
S	ilver	1332.94	1250.0	106.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
S	odium	26248.96	25000.0	105.0	90.0 - 110.0	P	7/16/2004	03:15	P107154
Т	hallium	5380.38	5000.0	107.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
V	anadium	2369.13	2 2500.0	94.8	90.0 - 110.0	P	7/16/2004	03:15	P107154 :
Z	inc	2503.02	2500.0	100.1	90.0 - 110.0	P	7/16/2004	03:15	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: \$3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV37									
	luminum	9593.74	10000.0	95.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
A	ntimony	4991.07	5000.0	99.8	90.0 - 110.0	P	7/16/2004	03:41	P107154
A	rsenic	5192.98	5000.0	103.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
B	arium	10178.74	10000.0	101.8	90.0 - 110.0	P	7/16/2004	03:41	P107154
В	eryllium	249.52	250.0	99.8	90.0 - 110.0	P	7/16/2004	03:41	P107154
C	admium	2539.92	2500.0	101.6	90.0 - 110.0	P	7/16/2004	03:41	P107154
C	alcium	24860.61	25000.0	99.4	90.0 - 110.0	P	7/16/2004	03:41	P107154
C	hromium	954.38	1000.0	95.4	90.0 - 110.0	P	7/16/2004	03:41	P107154
C	obalt	2382.90	2500.0	95.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
\ C	opper	1157.37	1250.0	92.6	90.0 - 110.0	P	7/16/2004	03;41	P107154
) Iro	on	4515.42	5000.0	90.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
Le	ead	4856.04	5000.0	97.1	90.0 - 110.0	P	7/16/2004	03:41	P107154
M	agnesium	24065.13	25000.0	96.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
M	anganese	2363.52	2500.0	94.5	90.0 - 110.0	P	7/16/2004	03:41	P107154
N	ickel	2479.54	2500.0	99.2	90.0 - 110.0	P	7/16/2004	03:41	P107154
Po	otassium	25293.12	25000.0	101.2	90.0 - 110.0	P	7/16/2004	03:41	P107154
Se	elenium	5263.64	5000.0	105.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
Si	lver	1312.90	1250.0	105.0	90.0 - 110.0	P	7/16/2004	03:41	P107154
Sc	odium	25972.70	25000.0	103.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
Th	nallium	5322.28	5000.0	106.4	90.0 - 110.0	P	7/16/2004	03:41	P107154
V,	anadium	2322.14	2500.0	92.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
Zi	ne	2461.10	2500.0	98.4	90.0 - 110.0	P	7/16/2004	03:41	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: \$3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

		•							
Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV38									
	Aluminum	9601.94	10000.0	96.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
	Antimony	5001.62	5000.0	100.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
	Arsenic	5248.07	5000.0	105.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
	Barium	10230.46	10000.0	102.3	90.0 - 110.0	P	7/16/2004	04:10	P107154
	Beryllium	252.16	250.0	100.9	90.0 - 110.0	P	7/16/2004	04:10	P107154
	Cadmium	2572.98	2500.0	102.9	90.0 - 110.0	P	7/16/2004	04:10	P107154
(Calcium	25103.04	25000.0	100.4	90.0 - 110.0	P	7/16/2004	04:10	P107154
	Chromium	961.18	1000.0	96.1	90.0 - 110.0	P	7/16/2004	04:10	P107154
(Cobalt	2397.10	2500.0	95.9	90.0 - 110.0	P	7/16/2004	04:10	P107154
, σ	Copper	1153.26	1250.0	92.3	90.0 - 110.0	P	7/16/2004	04:10	P107154
)	ron	4591.92	5000.0	91.8	90.0 - 110.0	P	7/16/2004	04:10	P107154
L	ead	4875.89	5000.0	97.5	90.0 - 110.0	P	7/16/2004	04:10	P107154
. N	Magnesium	24150.30	25000.0	96.6	90.0 - 110.0	P	7/16/2004	04:10	P107154
N	Manganese	2374.12	2500.0	95.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
N	- Vickel	2502.68	2500.0	100.1	90.0 - 110.0	P	7/16/2004	04:10	P107154
P	otassium	25255.55	25000.0	101.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
S	Selenium	5251,14	5000.0	105.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
S	Silver	1321.64	1250.0	105.7	90.0 - 110.0	P	7/16/2004	04:10	P107154
S	odium	26038.23	25000.0	104.2	90.0 - 110.0	P	7/16/2004	04:10	P107154
Т	hallium	5357.04	5000.0	107.1	90.0 - 110.0	P	7/16/2004	04:10	P107154
V	⁷ anadium	2324.23	2500.0	93.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
Z	line	2477.18	2500.0	99.1	90.0 - 110.0	P	7/16/2004	04:10	P107154

- 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Aluminum 9591.60 10000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Antimony 5002.95 5000.0 100.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Arsenic 5236.67 5000.0 104.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Barium 10265.41 10000.0 102.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Beryllium 250.59 250.0 100.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cadmium 2551.64 2500.0 102.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Calcium 24984.10 2500.0 99.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5264.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Zine 2458.29 2500.0 98.3 90.0 - 110.0 P 7/16/2004 04:37 P107154	Sample II	D Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
Aluminum 9591.60 10000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Antimony 5002.95 5000.0 100.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Arsenic 5236.67 5000.0 104.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Barium 10265.41 10000.0 102.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Beryllium 250.59 250.0 100.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cadmium 2551.64 2500.0 102.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Calcium 24984.10 2500.0 99.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 P0tassium 25352.49 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25303.42 2500.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25303.42 2500.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P10715	CCV3	9				/				
Arsenic 5236.67 5000.0 104.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Barium 10265.41 10000.0 102.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Beryllium 250.59 250.0 100.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cadmium 2551.64 2500.0 102.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Calcium 24984.10 2500.0 99.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 2500.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154			9591.60	10000.0	95.9	90.0 - 110.0	P	7/16/2004	04:37	P107154
Barium 10265.41 10000.0 102.7 90.0 - 110.0 P 7/16/2004 04:37 P107154 Beryllium 250.59 250.0 100.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cadmium 2551.64 2500.0 102.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Calcium 24984.10 2500.0 99.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Antimony	5002.95	5000.0	100.1	90.0 - 110.0	P	7/16/2004	04:37	P107154
Beryllium 250.59 250.0 100.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cadmium 2551.64 2500.0 102.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Calcium 24984.10 2500.0 99.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 2500.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P10715		Arsenic	5236.67	5000.0	104.7	90.0 - 110.0	P	7/16/2004	04:37	P107154
Beryllium 250.59 250.0 100.2 90.0 - 110.0 P 7/16/2004 04:37 P107154		Barium	10265.41	10000.0	102.7	90.0 - 110.0	P	7/16/2004	04:37	P107154
Cadmium 2551.64 2500.0 102.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Calcium 24984.10 25000.0 99.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0		Beryllium	250,59	250.0	100.2	90.0 - 110.0	P	7/16/2004	04:37	
Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 2500.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Cadmium	2551,64	2500.0	102.1	90.0 - 110.0	P	7/16/2004	04:37	
Chromium 952.26 1000.0 95.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Cobalt 2374.65 2500.0 95.0 90.0 - 110.0 P 7/16/2004 04:37 P107154 Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 2500.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Over the second s		Calcium	24984.10	25000.0	99.9	90.0 - 110.0	P	7/16/2004	04:37	P107154
Copper 1148.34 1250.0 91.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154 Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 2500.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Chromium	952,26	1000.0	95.2	90.0 - 110.0	P	7/16/2004	04:37	
Iron 4529.58 5000.0 90.6 90.0 - 110.0 P 7/16/2004 04:37 P107154		Cobalt	2374.65	2500.0	95.0	90.0 - 110.0	P	7/16/2004	04:37	P107154
Lead 4838.01 5000.0 96.8 90.0 - 110.0 P 7/16/2004 04:37 P107154 Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium	\	Copper	1148.34	1250.0	91.9	90.0 - 110.0	P	7/16/2004	04:37	P107154
Magnesium 23970.84 25000.0 95.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 <t< td=""><td>)</td><td>Iron</td><td>4529.58</td><td>5000.0</td><td>90.6</td><td>90.0 - 110.0</td><td>P</td><td>7/16/2004</td><td>04:37</td><td>P107154</td></t<>)	Iron	4529.58	5000.0	90.6	90.0 - 110.0	P	7/16/2004	04:37	P107154
Manganese 2362.08 2500.0 94.5 90.0 - 110.0 P 7/16/2004 04:37 P107154 Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Lead	4838.01	5000.0	96.8	90.0 - 110.0	P	7/16/2004	04:37	P107154
Nickel 2482.45 2500.0 99.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Magnesium	23970.84	25000.0	95.9	90.0 - 110.0	P	7/16/2004	04:37	P107154
Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Manganese	2362.08	2500.0	94.5	90.0 - 110.0	P	7/16/2004	04:37	P107154
Potassium 25325.49 25000.0 101.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Selenium 5254.08 5000.0 105.1 90.0 - 110.0 P 7/16/2004 04:37 P107154 Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Nickel	2482.45	2500.0	99.3	90.0 - 110.0	P	7/16/2004	04:37	P107154
Silver 1323.93 1250.0 105.9 90.0 - 110.0 P 7/16/2004 04:37 P107154 Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Potassium	25325.49	25000.0	101.3	90.0 - 110.0	P	7/16/2004	04:37	P107154
Sodium 25802.09 25000.0 103.2 90.0 - 110.0 P 7/16/2004 04:37 P107154 Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Selenium	5254.08	5000.0	105.1	90.0 - 110.0	P	7/16/2004	04:37	P107154
Thallium 5366.88 5000.0 107.3 90.0 - 110.0 P 7/16/2004 04:37 P107154 Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Silver	1323.93	1250.0	105.9	90.0 - 110.0	P	7/16/2004	04:37	P107154
Vanadium 2303.42 2500.0 92.1 90.0 - 110.0 P 7/16/2004 04:37 P107154		Sodium	25802.09	25000.0	103.2	90.0 - 110.0	P	7/16/2004	04:37	P107154
7 170/201 (01/3)		Thallium	5366.88	5000.0	107.3	90.0 - 110.0	P	7/16/2004	04:37	P107154
m)		Vanadium	2303.42	2500.0	92.1	90.0 - 110.0	P	7/16/2004	:04:37	P107154
7777201 110/151		Zine	2458.29	2500.0	98.3	90.0 - 110.0	P	7/16/2004	04:37	P107154

- 2a -

INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV40			,						· · · · · · · · · · · · · · · · · · ·
-	luminum	9583.36	10000.0	95.8	90.0 - 110.0	P	7/16/2004	05:00	P107154
A	ntimony	4975.54	5000.0	99.5	90.0 - 110.0	P	7/16/2004	05:00	P107154
A:	rsenic	5223.50	5000.0	104.5	90.0 - 110.0	P	7/16/2004	05:00	P107154
В	arium	10242.57	10000.0	102.4	90.0 - 110.0	P	7/16/2004	05:00	P107154
В	eryllium	249.85	250.0	99.9	90.0 - 110.0	P	7/16/2004	05:00	P107154
Ca	admium	2550.13	2500.0	102.0	90.0 - 110.0	P	7/16/2004	05:00	P107154
Ca	alcium	24922.86	25000.0	99.7	90.0 - 110.0	P	7/16/2004	05:00	P107154
Cl	hromium	949.76	1000.0	95.0	90.0 - 110.0	P	7/16/2004	05:00	P107154
C	obalt	2367.30	2500.0	94.7	90.0 - 110.0	P	7/16/2004	05:00	P107154
C	opper	1144.68	1250.0	91.6	90.0 - 110.0	P	7/16/2004	05:00	P107154
) Iro	on	4501.90	5000.0	90.0	90.0 - 110.0	P	7/16/2004	05:00	P107154
Le	ead	4809.94	5000.0	96.2	90.0 - 110.0	P	7/16/2004	05:00	P107154
M	agnesium	23895.40	25000.0	95.6	90.0 - 110.0	P	7/16/2004	05:00	P107154
М	anganese	2356.33	2500.0	94.3	90.0 - 110.0	P	7/16/2004	05:00	P107154
Ni	ickel	2474.87	2500.0	99.0	90.0 - 110.0	P	7/16/2004	05:00	P107154
Po	otassium	25291.82	25000.0	101.2	90.0 - 110.0	P	7/16/2004	05:00	P107154
Se	elenium	5234.07	5000.0	104.7	90.0 - 110.0	P	7/16/2004	05:00	P107154
Si	lver	1319.30	1250.0	105.5	90.0 - 110.0	P	7/16/2004	05:00	P107154
Sc	odium	25939.37	25000.0	103.8	90.0 - 110.0	P	7/16/2004	05:00	P107154
Th	nallium	5397.85	5000.0	108.0	90.0 - 110.0	P	7/16/2004	05:00	P107154
Va	anadium	2292.33	2500.0	91.7	90.0 - 110.0	P	7/16/2004	05:00	P107154
Zi	ne	2450.22	2500.0	98.0	90.0 - 110.0	P	7/16/2004	05:00	P107154

Metals - 2b -CRDL STANDARD FOR AA & ICP

"lient:	Chazen Companies	SDG No.: S3409
JHCHI.	Chazen Companies	SDG 110. 33409

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3409 SAS No.: S3409

AA CRDL Standard Source:

ICP CRDL Standard Source: INOR-VEN

									
Sample I	D Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	M	Analysis Date	Analysis Time	Run Number
CRI03	•								•
CRIUS	Aluminum	410.01	400.0	102.5	75 - 125	P	7/16/2004	02:06	P107154
	Antimony	121.09	120.0	102.5	75 - 125	P	7/16/2004	02:06	P107154
	<u>-</u>	20.57	20.0	100.9	75 - 125				
	Arsenic					P	7/16/2004	02:06	P107154
	Barium	384.44	400.0	96.1	75 - 125	P	7/16/2004	02:06	P107154
	Beryllium	10.48	10.0	104.8	75 - 125	P -	7/16/2004	02:06	P107154
	Cadmium	9.70	10.0	97.0	75 - 125	P	7/16/2004	02:06	P107154
	Calcium	9684.86	10000.0	96.8	75 - 125	P	7/16/2004	02:06	P107154
	Chromium	20.68	20.0	103.4	75 - 125	P	7/16/2004	02:06	P107154
	Cobalt	102.20	100.0	102.2	75 - 125	P	7/16/2004	02:06	P107154
V	Copper	50.56	50.0	101.1	75 - 125	P	7/16/2004	02:06	P107154
)	Iron	209.505	200.0	104.7\$	75 - 125	P	7/16/2004	02:06	P107154
	Lead	6.53	6.0	108.8	75 - 125	P	7/16/2004	02:06	P107154
	Magnesium	9682.30	10000.0	96.8	75 - 125	P	7/16/2004	02:06	P107154
	Manganese	31.60	30.0	105.3	75 - 125	P	7/16/2004	02:06	P107154
	Nickel	84.32	80.0	105.4	75 - 125	P	7/16/2004	02:06	P107154
	Selenium	12.42	10.0	124.2	75 - 125	P	7/16/2004	02:06	P107154
	Silver	21.57	20.0	107.8	75 - 125	P	7/16/2004	02:06	P107154
	Thallium	15.16	20.0	75.8	75 - 125	P	7/16/2004	02:06	P107154
	Vanadium	104.99	100.0	105.0	75 - 125	P	7/16/2004	02:06	P107154
	Zinc	42.10~	40.0	105.0	75 - 125	P	7/16/2004	02:06	P107154
	Zinc	44.10"	40.0	103.2	13 - 123	Г	7/10/2004	02:00	£10713 4

Client: Chazen Companies

SDG No.: S3409.

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: \$3409

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
								•		
ICB01				•						
	Aluminum	180.1	+/-200.0	U	180.1	200.0	P	7/15/2004	10:07	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	10:07	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/15/2004	10:07	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	10:07	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	10:07	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/15/2004	10:07	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	10:07	P107154
	Chromium	1,2	+/-10.0	U	1.2	10.0	P	7/15/2004	10:07	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	10:07	P107154
	Copper	0.7	+/-25.0	U	0.7	25.0	P	7/15/2004	10:07	P107154
\	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	10:07	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	10:07	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	10:07	P107154
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/15/2004	10:07	P107154
	Mercury	0.006	+/-0.200	U	0.006	0.200	CV	7/13/2004	18:00	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	10:07	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/15/2004	10:07	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	Р	7/15/2004	10:07	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	10:07	P107154
	Sodium	-267.5	+/-5000.0	J	189.5	5000.0	P	7/15/2004	10:07	P107154
	Thallium	5.8	+/-10.0	U	, 5.8	10.0	P	7/15/2004		P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	10:07	P107154
	Zinc	8.1	+/-20.0	υ	8.1	20.0	P	7/15/2004	10:07	P107154
	Zille	0,1	17-20.0	U	0.1	20.0	r	1/13/2004	10:07	F10/134

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
C C B01				/		• • •				
CDVI	Aluminum	180.1	+/-200.0	υ	180.1	200.0	P	7/15/2004	10:33	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	10:33	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/15/2004	10:33	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	10:33	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	10:33	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/15/2004	10:33	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	10:33	P107154
	Chromium	1.2	+/-10.0	υ	1.2	10.0	P	7/15/2004	10:33	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	10:33	P107154
	Copper	0.7	+/-25.0	U	0.7	25.0	P	7/15/2004	10:33	P107154
1	Iron	29,0	+/-100.0	U	29.0	100.0	P	7/15/2004	10:33	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	10:33	P107154
•	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	10:33	P107154
	Manganese	-0.3	+/-15.0	J	0.2	15.0	P	7/15/2004	10:33	P107154
	Mercury	0.029	+/-0.200	J	0.006	0.200	CV	7/13/2004	18:05	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	10:33	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/15/2004	10:33	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/15/2004	10:33	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	10:33	P107154
	Sodium	189.5	+/-5000.0	U	189.5	5000.0	P	7/15/2004	10:33	P107154
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/15/2004	10:33	P107154
	Vanadium	1.9	+/-50.0	υ	1.9	50.0	P	7/15/2004	10:33	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P ·	7/15/2004	10:33	P107154

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

									<u> </u>	
Sample II) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
									· <u>-</u>	
CCB02		100.1	. / 200 0	/	100.1	200.0	_			
	Aluminum	180.1	+/-200.0	U	180.1	200.0	P	7/15/2004	11:07	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	11:07	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/15/2004	11:07	P107154
	Baçium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	11:07	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	11:07	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/15/2004	11:07	P107154
	Calcium	1 744. 7	+/-5000.0	υ	1744.7	5000.0	P	7/15/2004	11:07	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	11:07	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	. 11:07	P107154
	Copper	-1.8	+/-25.0	J ·	0.7	25.0	P	7/15/2004	11:07	P107154
``	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	11:07	P107154
}	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	11:07	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	11:07	P107154
	Manganese	0.2	+/-15.0	υ	0.2	15.0	P	7/15/2004	11:07	P107154
	Mercury	0.145	+/-0.200	J	0.006	0.200	CV	7/13/2004	18:33	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	11:07	P107154
	Potassium	-153.4	+/-5000.0	J	51.0	5000.0	P	7/15/2004	11:07	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/15/2004	11:07	P107154
	Silver	3.4	+/-10.0	υ	3.4	10.0	P	7/15/2004	11:07	P107154
	Sodium	-483.6	+/-5000.0	J	189.5	5000.0	P	7/15/2004		P107154
	Thallium	7.1	+/-10.0	J	5.8	10.0		7/15/2004	11:07	P107154
f.	Vanadium	1.9	+/-50.0	U	1.9	50.0	, r P	7/15/2004	11:07	
	Zinc	-14.9	+/-20.0	J	8.1	20.0	P P		11:07	P107154
	ZAIJŲ	-14.9	⊤7 <i>-</i> ∠U.U	j	δ.1	20.0	r	7/15/2004	11:07	P107154

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

							***				_
Sample ID) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run	
				/						·	
CCB03											
	Aluminum	180.1	+/-200.0	ຸບັ	180.1	200.0	P	7/15/2004	11:34	P107154	
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	11:34	P107154	
	Arsenic	4.8	+/-10.0	υ	4.8	10.0	P	7/15/2004	11:34	P107154	
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	11:34	P107154	
	Beryllium	1.1	+/-5.0	U	1,1	5.0	P	7/15/2004	11:34	P107154	
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/15/2004	11:34	P107154	
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	11:34	P107154	
ě	Chromium	1.2	+/-10.0	υ	1.2	10.0	P	7/15/2004	11:34	P107154	
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	11:34	P107154	
	Copper	-2.1	+/-25.0	J	0.7	25.0	P	7/15/2004	11:34	P107154	
\ \	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	11:34	P107154	
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	11:34	P107154	
	Magnesium	254.2	+/-5000.0	U	254,2	5000.0	P	7/15/2004	11:34	P107154	
	Manganese	0.4	+/-15.0	J	0.2	15.0	P	7/15/2004	11:34	P107154	
	Mercury	0.096	+/-0.200	J	0.006	0.200	CV	7/13/2004	19:02	071304C	
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	11:34	P107154	
	Potassium	-157.4	+/-5000.0	J	51.0	5000.0	P	7/15/2004	11:34	P107154	
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/15/2004	11:34	P107154	
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	11:34	P107154	
	Sodium	-494.9	+/-5000.0	J .	189.5	5000.0	P	7/15/2004	11:34	P107154	
	Thallium	5.8	+/-10.0	c. U	5.8	10.0	P	7/15/2004	11:34	P107154	
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	11:34	P107154	
	Zinc	-14.1	+/-20.0	J	8.1	20.0	P	7/15/2004	11:34	P107154	
									11.57		

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

Sample II) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB04	4.1	100.1	. / 200 0	, , , , , , , , , , , , , , , , , , ,	100.1	200.0		= 14 = 10 0 0 4		
	Aluminum	180.1	+/-200.0	U	180.1	200.0	P	7/15/2004	12:00	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	12:00	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/15/2004	12:00	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	12:00	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	12:00	P107154
	Cadmium	-1.3	+/-5.0	J	1.0	5.0	P	7/15/2004	12:00	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	12:00	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	12:00	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	12:00	P107154
	Copper	-2.4	+/-25.0	J	0.7	25.0	P	7/15/2004	12:00	P107154
\	Iron	29.0	+/-100.0	υ	29.0	100.0	P	7/15/2004	12:00	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	12:00	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	Ρ.	7/15/2004	12:00	P107154
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/15/2004	12:00	P107154
	Mercury	-0.018	+/-0.200	J	0.006	0.200	CV	7/13/2004	19:32	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	12:00	P107154
	Potassium	-133.6	+/-5000.0	J	51.0	5000.0	P	7/15/2004	12:00	P107154
	Selenium	7.1	+/-10.0	J	5.2	10.0	P	7/15/2004	12:00	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	12:00	P107154
	Sodium	-409.8	+/-5000.0	J	189.5	5000.0	P	7/15/2004	12:00	P107154
	Thallium	5 Q	+/-10.0	U	5.8	10.0	P	7/15/2004	: 12:00	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	12:00	P107154
	Zinc	-14.6	+/-20.0	J	8.1	20.0	P	7/15/2004	12:00	P107154

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

ample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CB05										
CDUS	Aluminum	180.1	+/-200.0	U.	180.1	200.0	P	7/15/2004	12:30	P107154
	Antimony	6.6	+/-60.0	Ū	6.6	60.0	P	7/15/2004	12:30	P107154
	Arsenic	4.8	+/-10.0	υ	4.8	10.0	P	7/15/2004	12:30	P107154
	Barium	11.0	+/-200.0	Ŭ.	11.0	200.0	P	7/15/2004	12:30	P107154
<i>*</i>	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	12:30	P107154
	Cadmium	-1.2	+/-5.0	j	1.0	5.0	P	7/15/2004	12:30	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	12:30	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	12:30	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	12:30	P107154
	Copper	-2.7	+/-25.0	J	0.7	25.0	P	7/15/2004	12:30	P107154
1	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	12:30	P107154
)	Lead	-1.9	+/-5.0	J	1.8	5.0	P	7/15/2004	12:30	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	12:30	P107154
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/15/2004	12:30	P107154
	Mercury	0.106	+/-0.200	J	0.006	0.200	CV	7/13/2004	20:00	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	12:30	P107154
	Potassium	-142.1	+/-5000.0	J	51.0	5000.0	P	7/15/2004	12:30	P107154
	Selenium	6.8	+/-10.0	J	5.2	10.0	P	7/15/2004	12:30	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	12:30	P107154
	Sodium	-473.5	+/-5000.0	J	189.5	5000.0	Ρ.	7/15/2004	12:30	P107154
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/15/2004	12:30	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	12:30	P107154
	Zinc	-14.6	+/-20.0	J	8.1	20.0	P	7/15/2004	12:30	P107154

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: \$3409

										
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
					/ /		. "			
CCB06					,					
	Aluminum	180.1	+/-200.0	U'.	180.1	200.0	P	7/15/2004	12:53	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	12:53	P107154
	Arsenic	5.4	+/-10.0	J	4.8	10.0	P	7/15/2004	12:53	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	12:53	P107154
	Beryllium	1.2	+/-5.0	J	1.1	5.0	P	7/15/2004	12:53	P107154
	Cadmium	-1.2	+/-5.0	J	1.0	5.0	P	7/15/2004	12:53	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	12:53	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	12:53	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	12:53	P107154
	Copper	-3.0	+/-25.0	J	0.7	25.0	P	7/15/2004	12:53	P107154
\	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	12:53	P107154
)	Lead	-3.8	+/-5.0	J	1.8	5.0	P	7/15/2004	12:53	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P .	7/15/2004	12:53	P107154
	Manganese	0.2	+/-15.0	J	0.2	15.0	P	7/15/2004	12:53	P107154
	Mercury	0.140	+/-0.200	J	0.006	0.200	CŶ	7/13/2004	20:31	071304C
	Nickel	5.5	+/-40.0	υ	5.5	40.0	P	7/15/2004	12:53	P107154
	Potassium	-153.8	+/-5000.0	J	51.0	5000.0	₽	7/15/2004	12:53	P107154
	Selenium	5.7	+/-10.0	J	5.2	10.0	P	7/15/2004	12:53	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	12:53	P107154
	Sodium	-567.8	+/-5000.0	J	189.5	5000.0	P	7/15/2004	12:53	P107154
	Thallium	5.8	.+/-10.0	U	5.8	10.0	P	7/15/2004	12:53	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	12:53	P107154
	Zinc	-14.6	+/-20.0	J	8.1	20.0	P	7/15/2004	12:53	P107154
									12.00	

Metals - 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

Sample ID	Analyte -	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
ССВ07					/	-		- <u>-</u>		
CCB0/	Aluminum	180.1	+/-200.0	U 🧗	180.1	200.0	Р	7/15/2004	12.21	P107154
	Antimony	6.6	+/-60.0	Ū.	6.6	60.0	P	7/15/2004	13:31	P107154
	Arsenic	4.8	+/-10.0	Ū	4.8	10.0	P	7/15/2004	13:31 13:31	P107154
	Barium	11.0	+/-200.0	Ü	11.0	200.0	P	7/15/2004	13:31	P107154
	Beryllium	1.5	+/-5.0	J	1,1	5.0	P	7/15/2004	13:31	P107154
	Cadmium	-2.0	+/-5.0	J	1.0	5.0	P	7/15/2004	13:31	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	13:31	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	13:31	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	13:31	P107154
	Copper	-3.6	+/-25.0	J	0.7	25.0	P	7/15/2004	13:31	P107154
	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	13:31	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	13:31	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	13:31	P107154
	Manganese	-0.3	+/-15.0	J	0.2	15.0	P	7/15/2004	13:31	P107154
	Mercury	0.059	+/-0.200	J	0.006	0.200	CV	7/13/2004	20:59	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	13:31	P107154
	Potassium	-166.2	+/-5000.0	J	51.0	5000.0	P	7/15/2004		P107154
	Selenium	6.6	+/-10.0	J	5.2	10.0	P	7/15/2004	13:31	P107154
	Silver	3.4	+/-10.0	υ	3.4	10.0	P	7/15/2004	13:31	P107154
	Sodium	-962.8	+/-5000.0	J	189.5	5000.0	P	7/15/2004	13:31	P107154
	Thallium	5.8	+/-10.0	υ	5.8	10.0	P	7/15/2004	13:31	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	13:31	P107154
	Zinc	-15.2	+/-20.0	J	8.1	20.0	P	7/15/2004	13:31	P107154

- 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

ample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CB08					•					
СБОО	Aluminum	180.1	+/-200.0	υ	180.1	200.0	P	7/15/2004	14:09	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	14:09	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/15/2004	14:09	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	14:09	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	14:09	P107154
	Cadmium	1.0	+/-5.0	υ	1.0	5.0	P	7/15/2004	14:09	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/15/2004	14:09	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	14:09	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/15/2004	14:09	P107154
	Copper	0.7	+/-25.0	U	0.7	25.0	P	7/15/2004	14:09	P107154
\	Iron	29.0	+/-100.0	υ	29.0	100.0	P	7/15/2004	14:09	P107154
,)	Lead	1.8	+/-5.0	Ū	1.8	5.0	P	7/15/2004	14:09	P107154
	Magnesium	254,2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	14:09	P107154
	Manganese	-0.3	+/-15.0	J	0.2	15.0	P	7/15/2004	14:09	P107154
	Mercury	0.050	+/-0.200	J	0.006	0.200	CV	7/13/2004	21:24	071304C
	Nickel	5.5	+/-40.0	U	5,5	40.0	P	7/15/2004	14:09	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/15/2004	14:09	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/15/2004	14:09	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	14:09	P107154
	Sodium	-244.3	+/-5000.0	J	189.5	5000.0	P	7/15/2004	14:09	P107154
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/15/2004	14:09	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	14:09	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/15/2004	14:09	P107154

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

Sample II) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
ССВ09				/						
ССБОЭ	Aluminum	180.1	+/-200.0	U	180.1	200.0	P	7/15/2004	14:33	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	14:33	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/15/2004	14:33	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	14:33	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/15/2004	14:33	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/15/2004	14:33	P107154
	Calcium	1744.7	+/-5000.0	υ	1744.7	5000.0	Р	7/15/2004	14:33	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/15/2004	14:33	P107154
	Cobalt	2.4	+/-50.0	U	2,4	50.0	P	7/15/2004	14:33	P107154
	Copper	0.7	+/-25.0	U	0.7	25.0	P	7/15/2004	14:33	P107154
\	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	14:33	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	14:33	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	14:33	P107154
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/15/2004	14:33	P107154
	Mercury	0.029	+/-0.200	J	0.006	0.200	CV	7/13/2004	21:37	071304C
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	14:33	P107154
	Potassium	51.0	+/-5000.0	υ	51.0	5000.0	P	7/15/2004	14:33	P107154
	Selenium	5.2	+/-10.0	U	. 5.2	10.0	P	7/15/2004	14:33	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/15/2004	14:33	P107154
	Sodium	-336.5	+/-5000.0	J	189.5	5000.0	P	7/15/2004	14:33	P107154
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/15/2004	14:33	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	14:33	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/15/2004	14:33	P107154

- 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

		Result	Acceptance	Conc				Analysis	Analysis	· .
Sample II) Analyte	ug/L	Limit	Qual	MDL	CRQL	M	Date	Time	Run
CCB36					/				•	
CCDSU	Aluminum	180.1	+/-200.0	υ/	180.1	200.0	P	7/16/2004	03:17	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/16/2004	03:17	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	03:17	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	03:17	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	03:17	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	03:17	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	03:17	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	03:17	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	03:17	P107154
	Copper	-1.3	+/-25.0	J	0.7	25.0	P	7/16/2004	03:17	P107154
)	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/16/2004	03:17	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	03:17	P107154
·	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/16/2004	03:17	P107154
	Manganese	-0.4	+/-15.0	J	0.2	15.0	P	7/16/2004	03:17	P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	03:17	P107154
	Potassium	51.0	+/-5000.0	υ	51.0	5000.0	P	7/16/2004	03:17	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	03:17	P107154
	Silver	3.4	+/-10.0	U	3,4	10.0	P	7/16/2004	03:17	P107154
	Sodium	-413.9	+/-5000.0	J	189.5	5000.0	P	7/16/2004	03:17	P107154
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/16/2004	03:17	P107154
	Vanadium	1.9 .	+/-50.0	U	1.9	50.0	P	7/16/2004	03:17	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/16/2004	03:17	P107154

Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

ample ID	Analyte	Result ug/L	Acceptance Limit	Cone Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB37										
	Aluminum	180.1	+/-200.0	υ/	180.1	200.0	P	7/16/2004	03:43	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/16/2004	03:43	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	03:43	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	03:43	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	03:43	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	03:43	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	03:43	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	03:43	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	03:43	P107154
	Copper	-1.5	+/-25.0	J	0.7	25.0	P	7/16/2004	03:43	P107154
)	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/16/2004	03:43	P107154
7	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	03:43	P107154
	Magnesium	254.2	+/-5000.0	υ	254.2	5000.0	P	7/16/2004	03:43	P107154
	Manganese	-0.5	+/-15.0	J	0.2	15.0	P	7/16/2004	03:43	P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	03:43	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/16/2004	03:43	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	03:43	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/16/2004	03:43	P107154
	Sodium	-292.5	+/-5000.0	J	189.5	5000.0	P	7/16/2004	03:43	P107154
	Thallium	8.0	+/-10.0	J	5.8	10.0	P	7/16/2004	03:43	P107154
,	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/16/2004	03:43	P107154
	Zine	8.1	+/-20.0	υ	8.1	20.0	P	7/16/2004	03:43	P107154

Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

	······································			·-···		· .					
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run	
CCB38											
	Aluminum	180.1	+/-200.0	u/	180.1	200.0	P	7/16/2004	04:12	P107154	
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/16/2004	04:12	P107154	
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	04:12	P107154	
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	04:12	P107154	
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	04:12	P107154	
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	04:12	P107154	
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	04:12	P107154	
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	04:12	P107154	
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	04:12	P107154	
	Copper	-1.4	+/-25.0	J	0.7	25.0	P	7/16/2004	04:12	P107154	
`	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/16/2004	04:12	P107154	
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	04:12	P107154	
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/16/2004	04:12	P107154	
	Manganese	-0.5	+/-15.0	J	0.2	15.0	P	7/16/2004	04:12	P107154	
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	04:12	P107154	
	Potassium	-74.0	+/-5000.0	J	51.0	5000.0	P	7/16/2004	04:12	P107154	
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	04:12	P107154	
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/16/2004	04:12	P107154	
	Sodium	-659.7	+/-5000.0	J	189.5	5000.0	P	7/16/2004	04:12	P107154	
	Thallium	7.1	+/-10.0	J	5.8	10.0	P	7/16/2004	04:12	P107154	
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/16/2004	04:12	P107154	
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/16/2004	04:12	P107154	

Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: \$3409

ample ID	Analyte	Result ug/L	Acceptance Limit	Cone Qual	MDL	CRQL	М	Analysis Date	Analysis Time	Run
CB39					/					
	Aluminum	180.1	+/-200.0	U 🖊	180.1	200.0	P	7/16/2004	04:39	P107154
	Antimony	6.6	+/-60.0	υ	6.6	60.0	P	7/16/2004	04:39	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	04:39	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	04:39	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	04:39	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	04:39	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	04:39	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	04:39	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	04:39	P107154
	Copper	-2.2	+/-25.0	J	0.7	25.0	P	7/16/2004	04:39	P107154
N 1	Iron	54.7	+/-100.0	J	29.0	100.0	P	7/16/2004	04:39	P107154
1	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	04:39	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/16/2004	04:39	P107154
	Manganese	0.4	+/-15.0	J	0.2	15.0	P	7/16/2004	04:39	P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	04:39	P107154
	Potassium	-64.1	+/-5000.0	J	51.0	5000.0	P	7/16/2004	04:39	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	04:39	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/16/2004	04:39	P107154
	Sodium	-398.7	+/-5000.0	J	189.5	5000.0	P	7/16/2004	04:39	P107154
	Thallium	7.6	+/-10.0	J	5.8	10.0	P	7/16/2004	04:39	P107154
	Vanadium	1.9	+/-50.0	U-	1.9	50.0	P	7/16/2004	04:39	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/16/2004	04:39	P107154

- 3a -

INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

		·								
Sample II) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
~~~ 44									-	
CCB40	Aluminum	100.1	1/0000	/	100.					
		180.1	+/-200.0	U/	180.1	200.0	P	7/16/2004	05:02	P107154
	Antimony	6.6	+/-60.0	Ū	6.6	60.0	P	7/16/2004	05:02	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	05:02	P107154
	Barium	11.0	+/-200.0	υ	11.0	200.0	P	7/16/2004	05:02	P107154
	Beryllium	1.1	+/-5.0	U	1,1	5.0	P	7/16/2004	05:02	P107154
	Cadmium	1.0	+/-5,0	U	1.0	5.0	P	7/16/2004	05:02	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	05:02	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	05:02	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	05:02	P107154
	Copper	-1.4	+/-25.0	J	0.7	25.0	P	7/16/2004	05:02	P107154
١	Iron	47.7	+/-100.0	J	29.0	100.0	P	7/16/2004	05:02	P107154
)	Lead	1.8	+/-5.0	υ	1.8	5.0	P	7/16/2004	05:02	P107154
	Magnesium	254.2	+/-5000.0	U	254,2	5000.0	P	7/16/2004	05:02	P107154
	Manganese	0.4	+/-15.0	j	0.2	15.0	P	7/16/2004		P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	05:02	P107154
	Potassium	-60.2	+/-5000.0	J	51.0	5000.0	P	7/16/2004	05:02	P107154
	Selenium	5.2	+/-10.0	ΰ	5.2	10.0	P	7/16/2004	05:02	•
	Silver	3,4	+/-10.0	U	3.4	10.0	r P	7/16/2004	05:02	P107154
	Sodium	-516.8	+/-5000.0	J	3.4 189.5		_		05:02	P107154
	Thallium			-		5000.0	P	7/16/2004	05:02	P107154
		5.8	+/-10.0	U	5.8	10.0	P	7/16/2004	05:02	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/16/2004	05:02	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/16/2004	05:02	P107154

# Metals - 3b PREPARATION BLANK SUMMARY

Client:

Chazen Companies

SDG No.:

S3409

Instrument:

CV2

Sample ID	Analyte	Result (mg/Kg)	Acceptance Limit	Conc Qual	MDL mg/Kg	CRQL mg/Kg	M	Analysis Date	Analys Time	
PB16177BI		SOIL		Batch Numbe	r: PI	316177		Prep Date:	7/13	/2004
	Mercury	-0.002	<0.010	U	0.006	0.010	CV	7/13/2004	18:14	071304C
PB16183BL		SOIL		Batch Numbe	ŕ: PI	316183		Prep Date:	7/13	/2004
	Aluminum	3.910	<20.000	J /	0.629	20.000	P	7/16/2004	04:00	P107154
	Antimony	-0.828	<6.000	J	0.563	6.000	P	7/16/2004	04:00	P107154
	Arsenic	0.182	<1.000	U	0.237	1.000	P	7/16/2004	04:00	P107154
	Barium	-0.396	<20.000	J	0.022	20.000	P	7/16/2004	04:00	P107154
	Beryllium	0.084	< 0.500	J	0.004	0.500	P	7/16/2004	04:00	P107154
	Cadmium	-0.095	< 0.500	J	0.046	0.500	P	7/16/2004	04:00	P107154
)	Calcium	2.247	<500.000	J	0.350	500.000	P	7/16/2004	04:00	P107154
	Chromium	0.002	<1.000	U	0.095	1.000	P	7/16/2004	04:00	P107154
!	Cobalt	-0.138	<5.000	J	0.079	5.000	P	7/16/2004	04:00	P107154
,	Copper	-0.165	<2.500	J	0.114	2.500	P	7/16/2004	04:00	P107154
-	Iron	-0.563	<10.000	U	1.762	10.000	P	7/16/2004	04:00	P107154
	Lead	0.104	< 0.500	J	0.103	0.500	P	7/16/2004	04:00	P107154
Ţ	Magnesium	-0.418	<500.000	J	0.016	500.000	P	7/16/2004	04:00	P107154
?	Manganese	-0.074	<1.500	U	0.802	1.500	P	7/16/2004	04:00	P107154
]	Nickel	-0.186	<4.000	J	0.151	4.000	P	7/16/2004	04:00	P107154
]	Potassium	-2.306	<500.000	U	3.289	500.000	P	7/16/2004	04:00	P107154
<b>4</b>	Selenium	-0.024	<1.000	U	0.313	1.000	P	7/16/2004	04:00	P107154
;	Silver	0.020	<1.000	U	0.105	1.000	P	7/16/2004	04:00	P107154
•	Sodium	-37.044	<500.000	U	37.167	500.000	P	7/16/2004	04:00	P107154
•	Thallium	-0.358	<1.000	J	0.330	1.000	P	7/16/2004	04:00	P107154
•	Vanadium	0.048	<5.000	U	0.102	5.000	P	7/16/2004	04:00	P107154
7	Zinc	-0.268	< 2.000	J	0.056	2.000	P	7/16/2004	04:00	P107154

# Metals - 4 INTERFERENCE CHECK SAMPLE

Client: Chazen Companies

**SDG No.:** S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

ICS Source:

Instrument ID:

**P1** 

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-A0	3							
	Aluminum	480000	519000	92.5	80 - 120	7/16/2004	02:11	P107154
	Antimony	-5.0			0 - 0	7/16/2004	02:11	P107154
	Arsenic	-1.9			0 - 0	7/16/2004	02:11	P107154
	Barium	-2.6			0 - 0	7/16/2004	02:11	P107154
	Beryllium	0.095			0 - 0	7/16/2004	02:11	P107154
	Cadmium	7.5			0 - 0	7/16/2004	02:11	P107154
	Calcium	431000	491900	87.6	80 - 120	7/16/2004	02:11	P107154
	Chromium	18.0	20	90.0	80 - 120	7/16/2004	02:11	P107154
	Cobalt	-0.28			0 - 0	7/16/2004	02:11	P107154
	Copper	4.8			0 - 0	7/16/2004	02:11	P107154
	Iron	167000	195000	85.6	80 - 120	7/16/2004	02:11	P107154
	Lead	3.8			0 - 0	7/16/2004	02:11	P107154
	Magnesium	509000	542000	93.9	80 - 120	7/16/2004	02:11	P107154
	Manganese	-3.2			0 - 0	7/16/2004	02:11	P107154
	Nickel	-2.8			0 - 0	7/16/2004	02:11	P107154
	Potassium	81.9			0 - 0	7/16/2004	<b>02</b> :11	P107154
	Selenium	2.9			0 - 0	7/16/2004	02:11	P107154
	Silver	1.1			0 - 0	7/16/2004	02:11	P107154
	Sodium	-347	\$ a		0 - 0	7/16/2004	02:11	P107154
	Thallium	-17.7			0 - 0	7/16/2004	02:11	P107154
	Vanadium	-2.0			0 - 0	7/16/2004	02:11	P107154
	Zinc	-2.0			0 - 0	7/16/2004	02:11	P107154

# Metals - 4 INTERFERENCE CHECK SAMPLE

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

ICS Source:

Instrument ID:

**P**1

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-AB	03							
	Aluminum	493000	514000	95.9	80 - 120	7/16/2004	02:16	P107154
	Antimony	566	518	109.3	80 - 120	7/16/2004	02:16	P107154
	Arsenic	94.3	102	92.5	80 - 120	7/16/2004	02:16	P107154
	Barium	502	456	110.1	80 - 120	7/16/2004	02:16	P107154
	Beryllium	433	458	94.5	80 - 120	7/16/2004	02:16	P107154
	Cadmium	891	910	97.9	80 - 120	7/16/2004	02:16	P107154
	Calcium	440000	489000	90.0	80 - 120	7/16/2004	02:16	P107154
	Chromium	445	455	97.8	80 - 120	7/16/2004	02:16	P107154
	Cobalt	452	430	105.1	80 - 120	7/16/2004	02:16	P107154
	Copper	506	506	100.0	80 - 120	7/16/2004	02:16	P107154
	Iron	171000	194600	87.9	80 - 120	7/16/2004	02:16	P107154
	Lead	51.7	49	105.5	80 - 120	7/16/2004	02:16	P107154
	Magnesium	519000	540600	96.0	80 - 120	7/16/2004	02:16	P107154
	Manganese	446	438	101.8	80 - 120	7/16/2004	02:16	P107154
	Nickel	866	846	102.4	80 - 120	7/16/2004	02:16	P107154
	Potassium	65.9			80 - 120	7/16/2004	02:16	P107154
	Selenium	43.7	47	93.0	80 - 120	7/16/2004	02:16	P107154
	Silver	209	196	106.6	80 - 120	7/16/2004	02:16	P107154
	Sodium	-15.7			80 - 120	7/16/2004	02:16	P107154
	Thallium	78.9	89	88.7	80 - 120	7/16/2004	02:16	P107154
	Vanadium	447	452	98.9	80 - 120	7/16/2004	02:16	P107154
	Zinc	975	958	101.8	80 - 120	7/16/2004	02:16	P107154

# Metals - 5a -

)	•	-	M	ATRI	X SPIKE SU	JMM.	ARY				
Client: Ch	azen Compa	nies	Level:	·	LOW	<del></del>	SDG No.:	_S3409		<del> </del>	
Contract:	Chazen	Companies	Lab (	Code:	CHEMED		Case No.: S	3409	S	AS No.: S3409	
Matrix:	SOIL		Sample ID:	S35	520-02	Clie	ent ID: AB-R	EC-29-85-15-P	CS		
Percent So	lids for Sar	nple: 89.80	Spiked ID:	S35	20-02S	Per	cent Solids for	r Spike Sampl	e: 89.80		
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result	С	Spike Added	% Recovery	Qual	<b>M</b>	
Mercury	mg/Kg	80 - 120	0.2522		0.0136		0.22	108.5		CV	_

- 5a -

MATRIX	SPIKE	DIPLICA	TE	SUMMARY
		DULLIUM	<b>1. 11</b> 12	OUNTRIVIANT

)							O LIVETIAL REEL			
Client: Cl	nazen Compa	nies	Level	: 	LOW		SDG No.:			
Contract:	Chazen	Companies	Lab (	Code:	CHEMED		Case No.: S	3409	SAS No.: \$3409	
Matrix:	SOIL		Sample ID:	S35	20-02	Clie	ent ID: AB-RE	C-29-85-15-PCSD		<del></del>
Percent Solids for Sample: 89.80			Spiked ID:	S352	S3520-02SD		cent Solids for	Spike Sample: 89	.80	
Analyte	Units	Acceptance Limit %R	MSD Result	Ċ	Sample Result	c	Spike Added	% Recovery / Qua	nl M	
1ercury	mg/Kg	80 - 120	0.2973		0.0136		0.22	(129.0 N	CV	

- 5a -

### MATRIX SPIKE SUMMARY

Client: Chazen Companies

LOW

SDG No.:

S3409

Contract:

Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Matrix:

SOIL

Sample ID:

S3409-10

Client ID: SB-290-4S

Percent Sol	lids for San	nple: 92.80	Spiked ID:	S34	109-10S	Perce	ent Solids for S	Spike Sample: 92.80	)	
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result	C	Spike Added	% Recovery Qual	M	
Aluminum	mg/Kg	80 - 120	8062.4130		6746.8630		215.52	(10.4)	P	
Antimony	mg/Kg	80 - 120	79.2382		0.6067	U	86.21	91.9	P	
Arsenic	mg/Kg	80 - 120	90.7769		7.9192		86.21	96.1	P	
Barium	mg/Kg	80 - 120	275.5609		91.4046		215.52	85.4	P	
Beryllium	mg/Kg	80 - 120	17.8615		0.3788	J	21.55	81.1	P	
Cadmium	mg/Kg	80 - 120	19.5323		0.6040		21.55	87.8	P	
Chromium	mg/Kg	80 - 120	43.0286		6.5129		43.10	84.7	P	•
Cobalt	mg/Kg	80 - 120	24.7220		6.4564		21.55	84.8	P	
Copper	mg/Kg	80 - 120	45.0043		15.9132		32.33	90.0	P	
Iron	mg/Kg	80 - 120	14218.4500		13157.9600		323.28	(328.0)	P	
Lead	mg/Kg	80 - 120	112,5997		18.0657		107.76	87.7	P	
Magnesium	mg/Kg	80 - 120	19536.1700		17452.4600	_	215.52	966.8	P	
N. Janese	mg/Kg	80 - 120	437.0948		442.9332		21.55	-27.1	P	
Nickel	mg/Kg	80 - 120	60.0991		12,9995		53.88	87.4	P	
Potassium	mg/Kg	80 - 120	2599.5130		931.8912		1077.59	(154.8) N	P	
Selenium	mg/Kg	80 - 120	190.5054		0.3551	J	215.52	88.2	P	
Silver	mg/Kg	80 - 120	12.5318		0.1131	U	8.08	(155.1) N	P	
Sodium	mg/Kg	80 - 120	435.2274	J	82.3836	J	323.28	109.1	P	
Thallium	mg/Kg	80 - 120	205.4908		0.3556	υ	215.52	95.3	P	
Vanadium	mg/Kg	80 - 120	35.4246		8.2812		32.33	84.0	P	
Zinc	mg/Kg	80 - 120	69.6148		47.0151		21.55	104.9	P	

- 5a -

# MATRIX SPIKE DUPLICATE SUMMARY

Client: Chazen Companies

Level:

SDG No.:

Contract:

Chazen Companies

Lab Code: CHEMED

Case No.: S3409

SAS No.: S3409

Matrix:

Sample ID:

S3409-10

Client ID: SB-290-4SD

Percent Solids for Sample: 92.80

Spiked ID:

S3409-10SD

Percent Solids for Spike Sample: 92:80

Percent Sc	olids for San	aple: 92.80	Spiked ID:	S34	09-10SD Per	cent Solids for	Spike Sample: 92.80		
Analyte	Units	Acceptance Limit %R	MSD Result	С	Sample Result C	Spike Added	% Recovery _,Qual	M	
Aluminum	mg/Kg	80 - 120	8021.7800		6746.8630	215.52	(591.6)	P	<u> </u>
Antimony	mg/Kg	80 - 120	79.2015		0.6067 U	86.21	91.9	P	
Arsenic	mg/Kg	80 - 120	90.5700		7.9192	86.21	95,9	P	
Barium	mg/Kg	80 - 120	273.9973		91.4046	215.52	84.7	P	
Beryllium	mg/Kg	80 - 120	17.7328 .		0.3788 J	21.55	80.5	P	
Cadmium	mg/Kg	80 - 120	19.5059		0.6040	21.55	87.7	P	
Chromium	mg/Kg	80 - 120	42.7128		6.5129	43.10	84.0	P	
Cobalt	mg/Kg	80 - 120	24.5350		6.4564	21.55	83.9	P	
Copper	mg/Kg	80 - 120	44.6562		15.9132	32.33	88.9	P	
Iron	mg/Kg	80 - 120	14132.9500		13157.9600	323.28	(301.6)	P	
Lead	mg/Kg	80 - 120	111.7365		18.0657	107.76	86.9'	P	
Magnesium	mg/Kg	80 - 120	19412.6000		17452.4600	215.52	909.5	P	
M Inese	mg/Kg	80 - 120	434.7381		442.9332	21.55	-38.0	P	
Nickel	mg/Kg	80 - 120	59.7489		12.9995	53.88	86.8	P	
Potassium	mg/Kg	80 - 120	2589.0910		931.8912	1077.59	(153.8) N	P	
Selenium	mg/Kg	80 - 120	190.3082		0.3551 J	215.52	88.1	P	
Silver	mg/Kg	80 - 120	12.5339		0.1131 U	8.08	(55.1) N	P	
Sodium	mg/Kg	80 - 120	438.2716	J	82.3836 J	323.28	110.1	p	
Thallium	mg/Kg	80 - 120	202.8939		<b>0.3556</b> U	215.52	94.1	P	
Vanadium	mg/Kg	80 - 120	35.2893		8.2812	32.33	83.5	P	
Zinc	mg/Kg	80 - 120	69.2430		47.0151	21.55	103.1	P	

- 6 -

### **DUPLICATE SAMPLE SUMMARY**

dent: Chazen Companies

Level:

LOW SDG No.: S3409

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: S3409

SAS No.: S3409

Matrix:

Sample ID: <u>\$3520-02</u>

Client ID: AB-REC-29-85-15-PCD

Percent Solids for Sample: 89.80

Duplicate ID: S3520-02D

Percent Solids for Duplicate: 89 80

T CI COLL DOIL	Terecal Bolida for Bampic: 85.00			Duplicate 10: 55520-02D			Tercent Solids for Duplicate: 69.00				
Analyte	Units	Acceptance Limit	Sample Result	С	Duplicate Result	C	RPD	Qual	M		
Mercury	mg/Kg	0.0111	0.013	6	0.0173		23.9		CV	·	

- 6 -

· ·
<b>DUPLICATE SAMPLE SUMMARY</b>

Level: LOW SDG No.:

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: \$3409

SAS No.: \$3409

Matrix:

aent: Chazen Companies

Sample ID:

Client ID: AB-REC-29-85-15-PCSD

Percent Solids for Sample: 89.80

Duplicate ID: S3520-02SD

Percent Solids for Duplicate: 89.80

	1		1						• 07.00		
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	С	RPD / Q	ual	M		
Mercury	mg/Kg		0.2522	2	0.2973		16.4		CV		·

### Metals - 6 -**DUPLICATE SAMPLE SUMMARY**

ent: Chazen Companies

Level:

LOW

SDG No.:

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: S3409

SAS No.: S3409

Matrix:

Sample ID: \$3409-10

Client ID: SB-290-4D

Percent Solids for Sample: 92.80

Duplicate ID: S3409-10D

Percent Solids for Dunlicate: 92 80

Percent Soli	Percent Solids for Sample: 92.80		Duplicate ID: S3409-10D			Percent Solids for Duplicate: 92.80				
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M	
Aluminum	mg/Kg		6746.8630		6713.5160		0.5 ·		P	_
Antimony	mg/Kg		0.6067	U	0.6067	U			P	
Arsenic	mg/Kg		7.9192		7.5668		4.6		P	
Barium	mg/Kg	21.5517	91.4046		91.3077		0.1		P	
Beryllium	mg/Kg		0.3788	J	0.3788	J	0.0		P	
Cadmium	mg/Kg	0.5388	0.6040		0.5986		0.9		P	
Calcium	mg/Kg		61113.8700		61042.2000		0.1		P	
Chromium	mg/Kg		6.5129		6.4795		0.5		P	
Cobalt	mg/Kg	5.3879	6.4564		6.3966	•	0.9		P	
Copper	mg/Kg		15.9132		1 <i>5.</i> 7672		0.9		P	
Iron	mg/Kg		13157.9600		13075.4600		0.6		P	
Lead	mg/Kg		18.0657		18.0932		0.2		P	
N	mg/Kg		17452.4600		17401.7200		0.3		P	
Manganese	mg/Kg		442.9332		441.4655		0.3		P	
Nickel	mg/Kg	4.3103	12.9995		13.1751		1.3		P	
Potassium	mg/Kg	538.7931	931.8912		918.7711		1.4	_	P	
Selenium	mg/Kg		0.3551	J	0.3373	U	200.0		P	
Silver	mg/Kg		0.1131	U	0.1131	U		,	P	
Sodium	mg/Kg		82.3836	J	49.5706	J	49.7		P	
Thallium	mg/Kg		0.3556	U	0.3556	U			P	
Vanadium	mg/Kg	5.3879	8.2812		8.1848		1.2		P	
Zinc	mg/Kg		47.0151		47.0840		0.1		P	

### Metals - 6 -**DUPLICATE SAMPLE SUMMARY**

lent: Chazen Companies

Level:

LOW

SDG No.:

S3409

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: S3409

SAS No.: S3409

Matrix:

SOIL

Sample ID: S3409-10S

Client ID: SB-290-4SD

Percent Solids for Sample: 92.80

**Duplicate ID: S3409-10SD** 

Percent Solids for Duplicate: 92.80

rercent son	us for Sampi	e: 92.80	Duplicate ID: 53409-105D			Percent Solids for Duplicate: 92.80				
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	. <b>C</b>	RPD	Qual	M	
Aluminum	mg/Kg		8062.4130		8021.7800		0.5		P	
Antimony	mg/Kg		79.2382		79.2015		0.0		P	
Arsenic	mg/Kg		90.7769		90.5700		0.2		P	
Barium	mg/Kg		275.5609		273.9973		0.6		P	
Beryllium	mg/Kg		17.8615		17.7328		0.7		P	
Cadmium	mg/Kg		19.5323		19.5059		0.1		P	
Chromium	mg/Kg		43.0286		42,7128		0.7		P	
Cobalt	mg/Kg		24.7220		24.5350		0.8		P	
Copper	mg/Kg		45.0043		44.6562		0.8		P	
Iron	mg/Kg		14218.4500		14132.9500		0.6		P	
Lead	mg/Kg		112.5997		111.7365		0.8		P	
Magnesium	mg/Kg		19536.1700		19412.6000		0.6		P	
nese )	mg/Kg		437.0948		434.7381		0.5		P	
Nickel	mg/Kg		60.0991		59.7489		0.6		P	
Potassium	mg/Kg		2599.5130		2589.0910		0.4		P	
Selenium	mg/Kg		190.5054		190.3082		0.1		P	
Silver	mg/Kg		12.5318		12.5339		0.0		P	
Sodium	mg/Kg		435.2274	J	438.2716	J	0.7		P	
Thallium	mg/Kg		205.4908		202.8939		1.3		P	
Vanadium	mg/Kg		35.4246		35.2893		0.4		P	
Zinc	mg/Kg		69.6148		69.2430		0.5		P	

-7-

# LABORATORY CONTROL SAMPLE SUMMARY

Client: Chazen Companies

**SDG No.:** S3409

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3409

			Sona .	LCS Source:	EPA-ICV		
Units	True Value	Result	C	% Recovery	Acceptance Limits	M	
mg/Kg	0.200	0.216		108.0	0.2 - 0.2	CV	
	· · · · · · · · · · · · · · · · · · ·			Units True Value Result C	Units True Value Result C Recovery	Units True Value Result C Recovery Limits	Units True Value Result C Recovery Limits M

# Metals - 7 LABORATORY CONTROL SAMPLE SUMMARY

Client: Chazen Companies

SDG No.: S3409

Contract: Chazen Companies

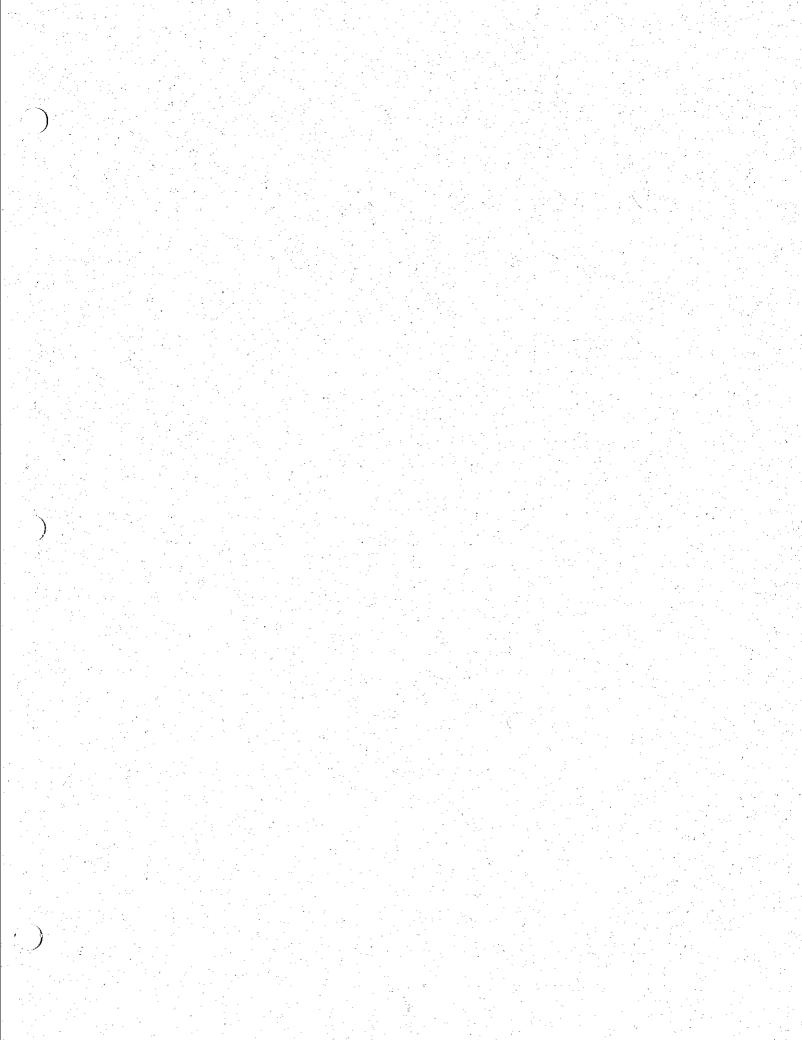
Lab Code: CHEMED

Case No.: S3409

Aqueous	s LCS Source:				Solid	LCS Source:	EPA-ICV		
Sample ID	Analyte	Units	True Value	Result	С	% Recovery	Acceptance Limits	M	
PB161831	3S							·	
	Aluminum	mg/Kg	200.0	202.3		101.2	160.0 - 240.0	P	
	Antimony	mg/Kg	80.0	83.0		103.8	64.0 - 96.0	P	
	Arsenic	mg/Kg	80.0	88.1		110.1	64.0 - 96.0	P	
	Barium	mg/Kg	200.0	227.1		113.6	160.0 - 240.0	P	
	Beryllium	mg/Kg	20.0	20.4		102.0	16.0 - 24.0	P	
	Cadmium	mg/Kg	20.0	22.1		110.5	16.0 - 24.0	P	
	Calcium	mg/Kg	500.0	539.7		107.9	400.0 - 600.0	P	
	Chromium	mg/Kg	40.0	41.5		103.8	32.0 - 48.0	P	
	Cobalt	mg/Kg	20.0	20.4		102.0	16.0 - 24.0	P	
	Copper	mg/Kg	30.0	29.5		98.3	24.0 - 36.0	P	
	Iron	mg/Kg	300.0	278.9		93.0	240.0 - 360.0	P	
	Lead	mg/Kg	100.0	103.0		103.0	80.0 - 120.0	P	
)	Magnesium	mg/Kg	200.0	205.8	J	102.9	160.0 - 240.0	P	
	Manganese	mg/Kg	20.0	20.6		103.0	16.0 - 24.0	P	
	Nickel	mg/Kg	50.0	53.8		107.6	40.0 - 60.0	P	
	Potassium	mg/Kg	1000.0	1112.2		111.2	800.0 - 1200.0	P	
	Selenium	mg/Kg	200.0	218.8		109.4	160.0 - 240.0	P	
	Silver	mg/Kg	7.5	8.2		109.3	6.0 - 9.0	P	
	Sodium	mg/Kg	300.0	302.4	J	100.8	240.0 - 360.0	P	
	Thallium	mg/Kg	200.0	218.1		109.0	160.0 - 240.0	P	
	Vanadium	mg/Kg	30.0	29.8		99.3	24.0 - 36.0	P	
	Zinc	mg/Kg	20.0	20.3		101.5	16.0 - 24.0	P	

- 9 .. SERIAL DILUTION SAMPLE SUMM

)		•	SEKIA	ը ունն	JIION SA	WIPLE ST	JIVLIVLARY			
Client: Cha	azen Companies						SDG No.: \$34	09	_	
Contract:	Chazen Companies		_ Lal	Code:	CHEMED		Case No.: S3409		SAS No.: <u>\$3409</u>	
Matrix:	WATER	Level:	LOW			Client ID	: AB-REC-2	9-85-15-PCL		
Sample ID:	S3520-02					Serial Dil	ution ID: S3520	)-02L	·	
Analyte	Initial Result ug/L	R	erial esult ıg/L	C	% Difference	Qual	Acceptance Limits	M		
<b>Aercury</b>	0.24	(	).84	J	250.0	<u> </u>	10.00 %	CV		


### - 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Chazen Companies SDG No.: S3409

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3409 SAS No.: S3409

Matrix: WATER Level: LOW Client ID: SB-290-4L

Sample ID: S3409-10 Serial Dilution ID: S3409-10L Initial Serial Result Result % Acceptance ug/L ug/L Analyte  $\mathbf{C}$  $\mathbf{C}$ Difference Qual Limits M Aluminum 62610.88 64178.20 2.5 10.00 % P Antimony U 6.60 33.00 U 10.00 % P Arsenic 73.49 75.80 3.1 10.00 % P Barium 848.24 895.15 J 5.5 10.00 % P Beryllium 3.52 J 8.08 J 129.5 10.00 % P Cadmium 5.60 4.97 U 100.0 10.00 % P Calcium 567136.70 699985.10 23.4 10.00 % P Chromium 60.44 64.02 5.9 10.00 % P Cobalt 59.92 58.50 J 2.4 10.00 % P Copper 147.68 139.75 5.4 10.00 % P Iron 122105.80 132784.90 8.7 10.00 % P 167.65 185.35 10.6 10.00 % P Magnesium 161958.80 173244.20 7.0 10.00 % P Manganese 4110.42 4512.85 9.8 10.00 % P Nickel 120.64 136.18 12.9 J 10.00 % P Potassium 8647.95 5858.05 J 32,3 10.00 % P Selenium 5.24 U 26.18 U 10.00 % P Silver 3.38 U 16.90 U 10.00 % P Sodium 764.52 100.0 J 947.36 U 10.00 % P Thallium 5.78 U 28.89 U 10.00 % P Vanadium 76.85 81.42 J 5.9 10.00 % P Zinc 436.30 453.55 4.0 10.00 % P



### DATA USABILITY SUMMARY REPORT

for

### THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3409 Sampled 6/28/04 thru 6/30/04

### SOIL SAMPLES for VOLATILE ORGANICS

SB31	4-8	(S3409-02)	SB31	4-8D	(S3409-03)
SB03	4 - 8	(S3409-04)	SB04	4-8	(S3409-05)
SB04	12-16	5(S3409-06)	SB18	4-8	•
SB07	4-8	(S3409-08)	SB33	4-8	(S3409-09)
SB29	0 - 4	(S3409-10)	SB34	8-12	(S3409-11)
SB34	8-121	(S3409-12)	SB32	4-8	(S3409-13)
SB20	4-8	(S3409-14)	SB24	4-8	(S3409-15)
SB26	4-8	(S3409-16)			·

### DATA ASSESSMENT

A volatile organics data package containing analytical results for fifteen soil samples was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8260B, addressed Target Compound List analytes. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-24, Rev 1, June 1999, Standard Operating Procedure for the Validation of Organic Data Acquired Using SW-846 Method 8260B (Rev 2, Dec 1996) was used as a technical reference.

The results reported from SB31 4-8D, SB04 4-8, SB04 12-16, SB34 8-12D, SB20 4-8 and SB26 4-8 have been qualified as estimations due to a combination of unacceptable surrogate standard recoveries and poor internal standard performance.

When present in samples, methylene chloride and acetone have been flagged as undetected. The presence of these analytes is assumed to represent a laboratory artifact

The perchloroethene results from SB31 4-8, and SB04 4-8; the benzene results from SB34 8-12D, SB32 4-8, SB20 4-8 and SB26 4-8; the cis-1,3-dichloropropene results from SB34 8-12D, SB32 4-8, SB20 4-8 and SB26 4-8; and the trichloroethene result from every program sample have been qualified as estimations due to poor calibration performance.

#### CORRECTNESS AND USABILITY

The results reported from SB31 4-8, SB04 12-16, SB18 4-8, SB07 4-8, SB33 4-8, SB29 0-4, SB34 8-12 and SB24 4-8 have been qualified as estimations because the ASP holding time limitation was exceeded prior to the time of analysis.

Several of the Tentatively Identified Compound (TIC) identifications reported from SB03 4-8, SB18 4-8, SB07 4-8 and SB29 0-4 were not supported by the mass spectra searches included in the raw data. These identifications have been edited to indicate an appropriate identification.

Many of the chromatograms included in this data package were grossly over attenuated due to the presence of a large artifact peak caused by carbon dioxide. The surrogate and internal standard peaks in the affected samples were reduced to a height

of less than 25% of full scale. This mechanical problem should be corrected prior to future sampling events.

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound Concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 10/19/09

### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the time of sample receipt (VTSR). Samples must remain chilled to 4°C between the time of collection and the time of analysis. Acid preserved VOA samples must be analyzed within 10 days of receipt, unpreserved samples within 7 days. The holding time for soils is 10 days. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a matrix spike, matrix spike duplicate, and a rinsate blank.

This sample delivery group contained fifteen soil samples. The samples were collected from the Former Stillwater Boiler House site between 28Jun04 and 30Jun04. The entire group of samples was shipped to the laboratory, via FedEx, on 01Jul04. The shipment arrived, intact, the following morning.

It is noted that the laboratory provided no documentation to indicate that the samples were properly chilled at the time of receipt. Although data has not been qualified, it should be noted that such omissions seriously limit the defensibility of reported data.

The initial analysis of SB31 4-8, SB03 4-8, SB18 4-8, SB07 4-8, SB29 0-4, SB34 8-12 and SB24 4-8 was completed 1-2 days beyond the ASP holding time limitation. Similarly, the repeated analysis of SB31 4-8DUP, SB04 4-8, SB04 12-16, SB33 4-8, SB34 8-12DUP, SB20 4-8 and SB26 4-8 were performed one day beyond the allowed holding time. The results reported from these samples have been qualified as estimations.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank. Any sample concentration less than 5 times the level determined in a blank must be qualified. The qualification criteria is extended to ten times the concentration observed in blanks for common laboratory artifacts. These include acetone, methylene chloride and 2-butanone. Chloroform is also frequently present as a laboratory artifact.

Four method blanks were analyzed with this group of samples. Each of these blanks demonstrated acceptable chromatography. The blanks did contain traces of acetone (14  $\mu g/kg$ ) and methylene chloride (1.7 $\mu g/kg$ , 3.8 $\mu g/kg$ ). Similar artifacts were present in program samples. When present, acetone and methylene chloride should be interpreted as undetected. Detection limits equaling CRDL or the reported concentration, whichever is greater, should be assumed.

### MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of BFB was analyzed prior to each analytical sequence and during every 12-hour period of instrument operation. An Instrument Performance Check Form is present for each BFB evaluation. The BFB tunes associated with this group of samples satisfied the program acceptance criteria.

#### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

Initial instrument calibrations were performed on 29Jun04, 08Jul04 and 13Jul04. Standards of 5, 20, 50, 100 and 200 µg/l were included. During each calibration, most analytes produced the required levels of response and demonstrated an acceptable degree of linearity. During the 29Jun04 calibration a low response was reported for trichloroethene and tetrachloroethene. Based on this performance, the trichloroethene and tetrachloroethene results reported from associated samples have been qualified as estimations. Although each 1,1-dichloroethene standard produced the required level of response, poor linearity was demonstrated. This performance indicates that errors would be expected in measurements of 1,1-dichloroethene, but this analyte would be detected if present in samples. Because 1,1-dichloroethene was not detected in samples, data has been left unqualified.

During the 08Jul04 calibration, benzene and trichloroethene failed to produce the required levels of response, and 1,1-dichloroethene again demonstrated poor linearity. Associated benzene and trichloroethene results have been qualified as estimations. 1,1-dichloroethene has again been left unqualified. Acceptable calibration performance was demonstrated on 13Jul04.

Continuing calibration verifications were performed on 07Jul04, 09Jul04 and 13Jul04, prior to the analysis of program samples. On 07Jul04, trichloroethene and tetrachloroethene produced an unacceptably low response. This issue has been previously addressed. Similarly, the low response produced by benzene and trichloroethene on 09Jul04 has been previously addressed. On 09Jul04 a low response was also produced by cis-1,3-dichloropropene. Cis-1,3-dichloropropene results have been qualified as estimations in associated samples.

During the calibration check on 13Jul04, trichloroethene again produced a low instrument response. Trichloroethene results have been qualified as estimations in associated samples.

#### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared. However, the laboratory evaluated surrogate performance by applying in-house control limits. When compared to ASP requirements, unacceptable surrogate recoveries were reported from SB31 4-8DUP, SB04 12-16, SB33 4-8, SB20 4-8, and SB26 4-8. Each of these samples was reanalyzed. The second analysis of MW04 12-16 and SB33 4-8 produced acceptable surrogate recoveries. Data obtained from the repeated analysis of these samples should be included in data tables. Data obtained from the initial analysis of MW31 4-8DUP, SB20 4-8 and SB26 4-8 should be included in data table. These results, however, must be flagged as estimations.

### INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 50%. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to these limits, an unacceptable response was produced by the internal standard additions to SB31 4-8DUP, SB04 4-8, SB04 12-16, SB33 4-8, SB34 8-12DUP and SB20 4-8. The analysis of these samples was repeated. Based on improved performance, data obtained from the repeated analysis of SB04 12-16 and SB33 4-8 should be included in data tables.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide
an indication of laboratory accuracy. The analysis of a duplicate
spiked aliquot provides a measurement of precision.

SB33 4-8 was selected for matrix spiking. The recoveries of additions to two portions of this sample were compared to laboratory generated acceptance criteria. When compared to ASP requirements, unacceptable recoveries were observed for trichloroethene and chlorobenzene.

It is noted that the MS/MSD Summary found on page 11 indicated a chlorobenzene concentration of 50  $\mu g/kg$  in the unspiked portion SB33 4-8, and spike recoveries of -15% and -14%. The unspiked

result was not supported by the raw data. When this error was corrected, acceptable recoveries of 62% and 63% were calculated. Data qualifications were not required.

The remaining low trichloroethene recovery (55%) that was reported from the MS spiked sample, alone, does not warrant data qualifications.

A single spiked blank (LCS) was also processed with this group of samples. This sample produced a toluene recovery of 75%, 1% below the ASP acceptance criteria. Again, this minor deviation does not require the qualification of data.

#### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects or poor laboratory technique.

Field split duplicates of SB31 4-8 and SB34 8-12 were included in this delivery group. With the exception of artifacts of methylene chloride, targeted analytes were not detected in either portion of these samples. Program requirements were satisfied.

#### REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

Tentatively Identified Compounds were also reported (TIC). The TIC identifications reported from SB03 4-8, SB-18 4-8, SB07 4-8 and SB29 0-4 were not supported by the mass spectra searches included in the raw data. The affected report forms were edited to reflect appropriate identifications.

SUMMARY OF QUALIFIED DATA

Former Stillwater Boiler House site

Sampled 6/28/04 - 6/30/04

CALIBRATE BENZENE			מט מט מט
CALIBRATE PCE	UJ	υĵ	
CALIBRATE	U U U U	00000000000000000000000000000000000000	מממממ
BLANK ACETONE	45D		35U 89U
BLANK METH CL	6.2U 5.0U	8.30 6.00 6.50 7.40	5.6U 12U 6.0U 6.6U
HOLD TIME	ALL J/UJ	ALL J/UJ ALL J/UJ ALL J/UJ ALL J/UJ ALL J/UJ	ALL J/UJ
INT STDS SURROGATES			ALL J/UJ ALL J/UJ ALL J/UJ
	3400 4400 14009 1009	(8 8 4 4 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	(83409-1 (83409-1 (83409-1 (83409-1 (83409-1
		» I & & & 4 H +	0 44 44 44 1 1 1 1 1 1 8 8 8 8

Former Stillwater Boiler House site

Sampled 6/28/04 - 6/30/04

SPECTRA ID TIC CALIBRATE

EDIT EDIT EDIT UJ UJ UJ Ωſ 4-8D (\$3409-03) 4-8 (\$3409-04) 4-8 (\$3409-05) 12-16 (\$3409-05) 4-8 (\$3409-07) 4-8 (\$3409-07) 4-8 (\$3409-11) 8-12 (\$3409-12) 8-12 (\$3409-12) 4-8 (\$3409-13) 4-8 (\$3409-13) 4-8 (\$3409-13) 4-8 (\$3409-15) 4-8 (\$3409-15) SB31 SB31 SB03 SB04 SB04 SB18 SB07 SB33 SB34 SB34 SB32 SB32 SB32 SB24 SB26

Volatiles SW-846

SDG No.:

S3409

Sample ID:	S3409-02	Client II	): <u>SB-31</u>	4-8	
Date Collected: Date Analyzed: File ID: Dilution: Analytical Method: Sample Wt/Wol: Soil Aliquot Vol:	6/30/2004 7/13/2004 VK071312.D 1 8260 5.0 Units: g	Instrum	al Run ID: VK ent ID: MSV ed Blank: VB ract Vol:		
arameter	CAS Number	Concentration C	RDL	MDL	Units

Parameter	CAS Number	Concentration	С	RDL	MDL	Units	
TARGETS						~~	
Dichlorodifluoromethane	75-71-8	< 1.5	ክ/	6.2	1.5	ug/Kg	
Chloromethane	74-87-3	< 0.41	T \	6.2	0.41	ug/Kg	
Vinyl chloride	75-01-4	< 0.29	p J	6.2	0.29	ug/Kg	
Bromomethane	74-83-9	< 0.88	11	6.2	0.88	ug/Kg	
Chloroethane	75-00-3	< 0.66	þ	6.2	0.66	ug/Kg	
Tri )ofluoromethane	75-69-4	< 3.1	14	6.2	3.1	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.57	#\v <b>ɔ</b>	6.2	0.57	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.27	Ψ/ · · ·	6.2	0.27	ug/Kg	
Acetone	67-64-1	< 9.3	<b>[</b> ]	31	9.3	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	þ	6.2	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.29	þ	6.2	0.29	ug/Kg	
Methyl Acetate	79-20-9	< 1.6	→ tr/	6.2	1.6	ug/Kg	
Methylene Chloride	75-09-2	6,248	UXX	6.2	0.85	ug/Kg	
trans-1,2-Dichloroethene	156-60-5	< 0.46	Ψ	6.2	0.46	ug/Kg	
1,1-Dichloroethane	75-34-3	< 0.44	ψ\	6.2	0.44	ug/Kg	
Cyclohexane	110-82-7	< 0.38	†j' <b>\</b>	6.2	0.38	ug/Kg	
2-Butanone	78-93-3	< 2.8	<b>t</b> r	31	2.8	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.37	t t	6.2	0.37	ug/Kg	
cis-1,2-Dichloroethene	156-59-2	< 0.44	tr I	6.2	0.44	ug/Kg	
Chloroform	67-66-3	< 0.30	Ψĺ	6.2	0.30	ug/Kg	
1,1,1-Trichloroethane	71-55-6	< 0.34	Ψ1	6.2	0.34	ug/Kg	0
Methylcyclohexane	108-87-2	< 0.44	101	6.2	0.44	uġ/Kg	7/5
Benzene	71-43-2	< 0.25	<b>₽</b>	6.2	0.25	ug/Kg	') V/
1,2-Dichloroethane	107-06-2	< 3.8	ψl	6.2	3.8	ug/Kg	J
Frichloroethene	79-01-6	< 0.40	↓ \\\	6.2	0.40	ug/Kg	
1,2-Dichloropropane	78-87-5	< 0.42	ψ/	6.2	0.42	ug/Kg	
Bro lichloromethane	75-27-4	< 0.42	<b>\$</b> /	6.2	0.42	ug/Kg	
f-Mouryl-2-Pentanone	108-10-1	< 3.0	Ψ	31	3.0	ug/Kg	
Foluene	108-88-3	< 0.32	bl	6.2	0.32	ug/Kg	
-1,3-Dichloropropene	10061-02-6	< 0.32	t)	6,2	0.32	ug/Kg	33
is-1,3-Dichloropropene	10061-01-5	< 0.24	ψl	6.2	0.24	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.63	$\mathfrak{b}$ \	6.2	0.63	ug/Kg	
-Hexanone	591-78-6	< 4.0	$\{ b \}$	31	4.0	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-02

Client ID:

SB-314-8

Date Collected:

6/30/2004 7/13/2004

Date Analyzed: File ID:

VK071312.D

Dilution:

**8260** 

Analytical Method: Sample Wt/Wol: Soil Aliquot Vol:

5.0

Units: g Date Received:

Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/2/2004 SOIL

VK071304

MSVOAK

VBK0713S2

20

Parameter	CAS Number	Concentration	C	RDL	MDL	Units O
1,2-Dibromoethane	106-93-4	< 0.52	R.	6.2	0.52	ug/Kgr VV7
Tetrachloroethene	127-18-4	< 0.79		6.2	0.79	ug/Kg
Chlorobenzene	108-90-7	< 0.44	υl	6.2	0.44	ug/Kg
Ethyl Benzene	100-41-4	< 0.31	þ <b>/</b>	6.2	0.31 -	ug/Kg
m/p-Xylenes	136777-61-2	< 0.64	ÞΪ	6.2	<b>.0.</b> 64	ug/Kg
o-Xylene	95-47-6	< 0.54	p	6.2	0.54	ug/Kg
Sty )	100-42-5	< 0.39	₽ <b>\</b> ₩	6.2	0.39	ug/Kg
Bromoform	75-25-2	< 0.37	b / _	6.2	0.37	ug/Kg
Isopropylbenzene	98-82-8	< 0.46	<b>₩</b>   • •	6.2	0.46	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	< 0.66	JI.	6.2	0.66	ug/Kg
1,3-Dichlorobenzene	541-73-1	< 0.26	TU	6.2	0.26	ug/Kg
1,4-Dichlorobenzene	106-46-7	< 0.44	v	6.2	0.44	ug/Kg
1,2-Dichlorobenzene	95-50-1	< 9.51	Ψ	6.2	0.51	ug/Kg
1,2-Dibromo-3-Chloropropane	96-12-8	€ 0.85	ψ]	6.2	0.85	ug/Kg
1,2,4-Trichlorobenzene	120-82-1	< 0.31	₩,	6.2	0.31	ug/Kg
SURROGATES 1,2-Dichloroethane-d4	17060-07-0	38.96	78 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7	46.66	93 %	75 - 125		SPK: 50
Toluene-d8	2037-26-5	45.52	91 %	75 - 125		SPK: 50
4-Bromofluorobenzene	460-00-4	52.35	105 %	75 - 125		SPK: 50
INTERNAL STANDARDS Pentafluorobenzene	363-72-4	157715	4.20		M	
1,4-Difluorobenzene	540-36-3	293596	4.83		(11)	
Chlorobenzene-d5	3114-55-4	209029	7.33		1	
1,4-Dichlorobenzene-d4	3855-82-1	93804	8.76			

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-03

6/30/2004

Date Collected: Date Analyzed:

7/7/2004 V1070721.D

File ID:

Dilution:

Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

<u>8260</u>

Units: 5.0

g

Client ID:

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank: Soil Extract Vol:

% Moisture:

SB-314-8DUP

7/2/2004

SOIL VI062904

MSVOAL

VBI0707S1

_24

Parameter	CAS Number	Concentration	С	RDL	MDL	Units	
TARGETS			-m \ /		1.6	ug/Kg	
Dichlorodifluoromethane	75-71-8	< 1.6	¥)	6.6	1.6	ug/Kg ug/Kg	
Chloromethane	74-87-3	< 0.44	<u> </u>	6.6	0.44		
Vinyl chloride	75-01-4	< 0.31	¥1	6.6	0.31	ug/Kg	
Bromomethane	74-83-9	< 0.93	#} vo	6.6	0.93	ug/Kg	
Chloroethane	75-00-3	< 0.69	P/ O	6.6	0.69	ug/Kg	
Tric offuoromethane	75-69-4	< 3.2	Ψl	6.6	3.2	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.60	Ψl	: 6.6	0.60	ug/Kg	
1,1-Dichloroethene	75-35-4	< .0.28	V)	6.6	0.28	ug/Kg	
Acetone	67-64-1	. 45 <b>U</b>	BBF	33	9.8	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	P۱	6.6	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.30	η /	6.6	0.30	ug/Kg	
Methyl Acetate	79-20-9	< 1.7	h /	6.6	1.7	ug/Kg	`
Methylene Chloride	75-09-2	< 0.89	17	6.6	0.89	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.49	h	6.6	0.49	ug/Kg	-
1,1-Dichloroethane	75-34-3	< 0.46	17	6.6	0.46	ug/Kg	
Cyclohexane	110-82-7	< 0.40	ΨI	6.6	0.40	ug/Kg	
2-Butanone	78-93-3	< 3.0	Ψ	33	3.0	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.39	Ψĺ	6.6	0.39	ug/Kg	
cis-1,2-Dichloroethene	156-59-2	< 0.46	þΙ	6.6	0.46	ug/Kg	
Chloroform	67-66-3	< 0.31	ψl	6.6	0.31	ug/Kg	
1,1,1-Trichloroethane	71-55-6	< 0.36	th m	6.6	0.36	ug/Kg	
Methylcyclohexane	108-87-2	< 0.47	1,700	6.6	0.47	ug/Kg	-1
Benzene	71-43-2	< 0.27	₩ /	6.6	0.27	ug/Kg	17 × 17
[.2-Dichloroethane	107-06-2	< 4.1	. V /	6.6	4.1	ug/Kg	<i>)''</i>
Frichloroethene	79-01-6	< 0.42	ψ /	6.6	0.42	ug/Kg	
1,2-Dichloropropane	78-87-5	< 0.44	₩.	6.6	0.44	ug/Kg	
Bro ychloromethane	75-27-4	< 0.44	tr	6.6	0.44	ug/Kg	
1-Memyl-2-Pentanone	108-10-1	< 3.2	ψl	33	3.2	ug/Kg	
Foluene	108-88-3	< 0.34	ψ\	6.6	0.34	ug/Kg	
-1,3-Dichloropropene	10061-02-6	< 0.34	ψ∖	6.6	0.34	ug/Kg	47
is-1,3-Dichloropropene	10061-01-5	< 0.26	$\psi$ \	6.6	0.26	ug/Kg	
1,1,2-Trichloroethane	79-00-5	< 0.67	# }	6.6	0.67	ug/Kg	
l-Hexanone	591-78-6	< 4.2	Մ ′	. 33	4.2	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-03

6/30/2004

Date Collected: Date Analyzed:

7/7/2004 V1070721.D

File ID:

Dilution:

Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

8260°

Units: 5.0 g Client ID:

SB-314-8DUP

Date Received:

Matrix:

7/2/2004 SOIL

Analytical Run ID:

VI062904

Instrument ID: Associated Blank: **MSVOAI** VBI0707S1

Soil Extract Vol:

% Moisture:

24

Parameter	CAS Number	Concentration	<b>C</b> .	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.55	P\	6.6	0.55	ug/Kg
Tetrachloroethene	127-18-4	< 0.84	ψ\	6.6	0.84	ug/Kg
Chlorobenzene	108-90-7	< 0.46	10 1	6.6	0.46	ug/Kg
Ethyl Benzene	100-41-4	< 0.33	11	6.6	0.33	ug/Kg
m/p-Xylenes	136777-61-2	< 0.68	1 1	6.6	0.68	ug/Kg
o-Xylene	95-47-6	< 0.57	ψĺ	6.6	0.57	ug/Kg
Str )	100-42-5	< 0.41	ψĺ	6.6	0.41	ug/Kg
Bromoform	75-25-2	< 0.39	11	6.6	0.39	ug/Kg
Isopropylbenzene	98-82-8	< 0.49	1 > U3	6.6	0.49	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	< 0.70	<b>\</b> \dot	6.6	0.70	ug/Kg
1,3-Dichlorobenzene	541-73-1	< 0.28	ψl	6.6	0.28	ug/Kg
1,4-Dichlorobenzene	106-46-7	< 0.46	ψl	6.6	0.46	ug/Kg
1,2-Dichlorobenzene	95-50-1	< 0.54	ψ \	6.6	0.54	ug/Kg
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.89	₽ }	6.6	0.89	ug/Kg
1,2,4-Trichlorobenzene	120-82-1	< 0.33	<b>v/</b>	6.6	0.33	ug/Kg
SURROGATES 1,2-Dichloroethane-d4	17060-07-0	69.52	139 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7	42.69	85 %	75 - 125		SPK: 50
Toluene-d8	2037-26-5	50.28	101 %	75 - 125		SPK: 50
4-Bromofluorobenzene	460-00-4	52.7	105 %	75 - 125		SPK: 50
INTERNAL STANDARDS						
Pentafluorobenzene	363-72-4	48090	3.86		Λ	
1,4-Difluorobenzene	540-36-3	153592	4.33		14	,
Chlorobenzene-d5	3114-55-4	141263	7.40	(	}!/	
1,4-Dichlorobenzene-d4	3855-82-1	50864	9.68		•	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Client ID: SB-314-8DUPRE Sample ID: S3409-03RE 7/2/2004 Date Received: Date Collected: 6/30/2004 SOIL Matrix: 7/13/2004 Date Analyzed: Analytical Run ID: VK071304 VK071313.D File ID: Instrument ID: **MSVOAK** Dilution: Associated Blank: VBK0713S2 8260 Analytical Method: Units: Soil Extract Vol: 5.0 Sample Wt/Wol: g % Moisture: 24 Soil Aliquot Vol:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS							
Dichlorodifluoromethane	75-71-8	< 1.6	U	6.6	1.6	ug/Kg	
Chloromethane	74-87-3	< 0.44	U	6.6	0.44	ug/Kg	
Vinyl chloride	75-01-4	< 0.31	U	6.6	0.31	ug/Kg	
Bromomethane	74-83-9	< 0.93	U	6.6	0.93	ug/Kg	
Chloroethane	75-00-3	< 0.69	U	6.6	0.69	ug/Kg	
Tr. rofluoromethane	75-69-4	< 3.2	U	6.6	3,2	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.60	U .	6.6	0.60	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.28	n 🖊	6.6	0.28	ug/Kg	
Acetone	67-64-1	< 9.8	U	33	9.8	ug/K.g	
Carbon disulfide	75-15-0	< 0.13	, iu	6/6	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.30	(1) 1 "	6.6	0.30	ug/Kg	
Methyl Acetate	79-20-9	< 1.7	· ˈus ˈ /	6.6	1.7	ug/K.g	
Methylene Chloride	75-09-2	4.8		6.6	0.89	ug/Kg	
trans-1,2-Dichloroethene	156-60-5	9 0.49 a	_` '}	6.6	0.49	ug/K.g	
1,1-Dichloroethane	75-34-3	5< 0.465	Ū	6.6	0.46	ug/Kg	
Cyclohexane	110-82-7	< 0.40	/ M	6.6	0.40	ug/Kg	
2-Butanone	78-93-3	< 3.0	<b>(</b> 4)	33	3.0	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0,89	<b>′)</b> t	6.6	0.39	ug/Kg	
cis-1,2-Dichloroethene	156-59-2	< 0.46	U	6.6	0.46	ug/Kg	
Chloroform	67-66-3	< 0.31	U	6.6	0.31	ug/Kg	
1,1,1-Trichloroethane	71-55-6	< 0.36	U	6.6	0.36	ug/Kg	
Methylcyclohexane	108-87-2	< 0.47	U	6.6	0.47	ug/Kg	۰.
Benzene	71-43-2	< 0.27	U	6.6	0.27	ug/Kg	$\alpha \gamma \gamma$
1,2-Dichloroethane	107-96-2	< 4.1	$\mathbf{U}$	6:6	4.1	ug/Kg	"
Trichloroethene	79-01-6	< 0.42	U	6.6	0.42	ug/Kg	
1,2-Dichloropropane	78-87-5	< 0.44	Ŭ	6.6	0.44	ug/Kg	
Br dichloromethane	75-27-4	< 0.44	U	6.6	0.44	ug/Kg	
4-Michyl-2-Pentanone	108-10-1	< 3.2	U	33	3.2	ug/Kg	-
Toluene	108-88-3	< 0.34	U	6.6	0.34	ug/Kg	•
t-1,3-Dichloropropere	10061-02-6	< 0.34	U	6.6	0.34	ug/Kg	56
cis-1,3-Dichloropropene	10061-01-5	< 0.26	U	6.6	0.26	ug/Kg	
1,1,2-Trichloroethane	79-00-5	< 0.67	U	6.6	0.67	ug/Kg	
2-Hexanone	591-78-6	< 4.2	U	33	4.2	ug/Kg	

Volatiles SW-846

SDG No.:

Soil Aliquot Vol:

S3409

Client:

Chazen Companies

SB-314-8DUPRE Client ID: S3409-03RE Sample ID: 7/2/2004 Date Received: Date Collected: 6/30/2004 SOIL Matrix: 7/13/2004 Date Analyzed: Analytical Run ID: VK071304 VK071313.D File ID: Instrument ID: MSVOAK Dilution: Associated Blank: VBK0713S2 Analytical Method: <u>8260</u> Soil Extract Vol: Units: Sample Wt/Wol: 5.0 g % Moisture:

1,2-Dichloroethane-d4       17060-07-0       34.48       69 %       75 - 125       SPK: 50         Dibromofluoromethane       1868-53-7       46.48       93 %       75 - 125       SPK: 50         Toluene-d8       2037-26-5       46.71       93 %       75 - 125       SPK: 50         4-Bromofluorobenzene       460-00-4       49.48       99 %       75 - 125       SPK: 50         INTERNAL STANDARDS         Pentafluorobenzene       363-72-4       143410       4.20         1,4-Difluorobenzene       540-36-3       257013       4.83         Chlorobenzene-d5       3114-55-4       225796       7.33	Parameter	CAS Number	Concentration	C	RDL .	MDL	Units
Chlorobenzene 108-90-7	1,2-Dibromoethane	106-93-4	< 0.55	U	6.6		
Ethyl Benzene 100-41-4 < 0.33 U 6.6 0.33 ug/Kg m/p-Xylenes 136777-61-2 < 0.68 U 6.6 0.68 ug/Kg o-Xylene 95-47-6 < 0.57 U 6.6 0.57 ug/Kg Sty 100-42-5 < 0.41 U 6.6 0.39 ug/Kg sprompthenzene 98-82-8 < 0.49 U 6.6 0.39 ug/Kg lsopropylbenzene 98-82-8 < 0.49 U 6.6 0.70 ug/Kg lsopropylbenzene 541-73-1 < 0.28 U 6.6 0.28 ug/Kg l.,1,2,2-Tetrachloroethane 79-34-5 < 0.70 U 6.6 0.70 ug/Kg l.,1-2-Dichlorobenzene 106-46-7 < 0.46 U 6.6 0.28 ug/Kg l.,1-2-Dichlorobenzene 95-50-1 < 0.54 U 6.6 0.54 ug/Kg l.,1-2-Dichlorobenzene 95-50-1 < 0.54 U 6.6 0.54 ug/Kg l.,1-2-Dichlorobenzene 120-82-1 < 0.33 U 6.6 0.39 ug/Kg l.,2-4-Trichlorobenzene 120-82-1 < 0.33 U 6.6 0.33 ug/Kg l.,2-Dichloroethane 1868-53-7 46.48 93 % 75-125 SPK: 50 Dibromofluoromethane 1868-53-7 46.48 93 % 75-125 SPK: 50 Dibromofluoromethane 1868-53-7 46.48 93 % 75-125 SPK: 50 Dibromofluorobenzene 460-00-4 49.48 99 % 75-125 SPK: 50 SPK	Tetrachloroethene	127-18-4	< 0.84	U	6.6		
Sample   S	Chlorobenzene	108-90-7	< 0.46	U	6.6		ug/Kg
m/p-Xylenes 136777-61-2 < 0.68 U 6.6 0.68 ug/Kg o-Xylene 95-47-6 < 0.57 U 66 0.57 ug/Kg Sty ) 100-42-5 < 0.41 S U 6.6 0.41 ug/Kg Bromoform 75-25-2 < 0.39 G 6.6 0.41 ug/Kg Isopropylbenzene 98-82-8 < 0.49 U 6.6 0.49 ug/Kg Isopropylbenzene 79-34-5 < 0.70 U 6.6 0.70 ug/Kg Isopropylbenzene 541-73-1 S 728 U 6.6 0.28 ug/Kg Isopropylbenzene 106-46-7 < 0.46 U 6.6 0.28 ug/Kg Isopropylbenzene 106-46-7 < 0.46 U 6.6 0.46 ug/Kg Isopropylbenzene 106-46-7 < 0.46 U 6.6 0.46 ug/Kg Isopropylbenzene 106-46-7 < 0.46 U 6.6 0.46 ug/Kg Isopropylbenzene 106-46-7 < 0.54 U 6.6 0.54 ug/Kg Isopropylbenzene 106-46-7 (0.54 U 6.6 0.54 ug/Kg Isopropylbenzene 106-46-7 ug/Kg	Ethyl Benzene	100-41-4	< 0.33	U .	6.6	0.33	ug/Kg
o-Xylene 95-47-6 < 0.57 U 6.6 0.57 ug/Kg St5 100-42-5 < 0.41 U 6.6 0.41 ug/Kg Bromoform 75-25-2 < 0.39 6.6 0.41 ug/Kg Isopropylbenzene 98-82-8 < 0.49 U 6.6 0.49 ug/Kg Isopropylbenzene 541-73-1 < 0.28 U 6.6 0.28 ug/Kg I,1,2,2-Tetrachlorocthane 79-34-5 < 0.70 U 6.6 0.28 ug/Kg I,3-Dichlorobenzene 106-46-7 < 0.46 U 6.6 0.28 ug/Kg I,2-Dichlorobenzene 95-50-1 < 0.54 U 6.6 0.54 ug/Kg I,2-Dichlorobenzene 96-12-8 < 0.89 U 6.6 0.89 ug/Kg I,2,4-Trichlorobenzene 120-82-1 < 0.33 U 6.6 0.33 ug/Kg SURROGATES I,2-Dichlorocthane-d4 17060-07-0 34.48 69 % 75 - 125 SPK: 50 Dibromofluoromethane 1868-53-7 46.48 93 % 75 - 125 SPK: 50 Toluene-d8 2037-26-5 46.71 93 % 75 - 125 SPK: 50 Toluene-d8 2037-26-5 46.71 93 % 75 - 125 SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 363-72-4 143410 4.20 I,4-Difluorobenzene 540-36-3 257013 4.83 Chlorobenzene-d5 3114-55-4 225796 7.33	m/p-Xylenes	136777-61-2	< 0.68	U	6.6	0.68	ug/Kg
Sty   100-42-5   Color   Col	* *	95-47-6	< 0.57	U /~	566	0.57	ug/Kg
Bromoform   75-25-2	- N	100-42-5	< 0.41	LAU V	6.6	0.41	ug/Kg
Isopropy  Isop	· /	75-25-2	< 0.39 · 5	.1/~	6.6	0.39	ug/Kg
1,1,2,2-Tetrachloroethane       79-34-5       < 0.70		98-82-8	< 0.49	0	18.6	0.49	ug/Kg
1,3-Dichlorobenzene       541-73-1       < 6.28	The state of the s	79-34-5	< 0.70	υγ	76.6	0.70	ug/Kg
1,4-Dichlorobenzene       106-46-7       < 0.46	·	541-73-1	< 8.28	$_{\mathrm{U}}$ J	6.6	0.28	ug/Kg
1,2-Dichlorobenzene       95-50-1       < 0.54	•	106-46-7	< 0.46	U	6.6	0.46	ug/Kg
1,2-Dibromo-3-Chloropropane 96-12-8 < 0.89 U 6.6 0.89 ug/Kg 1,2,4-Trichlorobenzene 120-82-1 < 0.33 U 6.6 0.33 ug/Kg  SURROGATES 1,2-Dichloroethane-d4 17060-07-0 34.48 69 % 75 - 125 SPK: 50  Dibromofluoromethane 1868-53-7 46.48 93 % 75 - 125 SPK: 50  Toluene-d8 2037-26-5 46.71 93 % 75 - 125 SPK: 50  4-Bromofluorobenzene 460-00-4 49.48 99 % 75 - 125 SPK: 50  INTERNAL STANDARDS  Pentafluorobenzene 363-72-4 143410 4.20 1,4-Difluorobenzene 540-36-3 257013 4.83  Chlorobenzene-d5 3114-55-4 225796 7.33	,	95-50-1	< 0.54	U	6.6	0.54	ug/Kg
1,2,4-Trichlorobenzene 120-82-1 <ul> <li>0.33</li> <li>6.6</li> <li>0.33</li> <li>ug/Kg</li> </ul> 34.47-Trichlorobenzene 1,2-Dichloroethane-d4 17060-07-0 34.48 69 % 75 - 125 SPK: 50 Dibromofluoromethane 1868-53-7 46.48 93 % 75 - 125 SPK: 50 SPK	•	96-12-8	< 0.89	U	6.6	0.89	ug/Kg
1,2-Dichloroethane-d4       17060-07-0       34.48       69 %       75 - 125       SPK: 50         Dibromofluoromethane       1868-53-7       46.48       93 %       75 - 125       SPK: 50         Toluene-d8       2037-26-5       46.71       93 %       75 - 125       SPK: 50         4-Bromofluorobenzene       460-00-4       49.48       99 %       75 - 125       SPK: 50         INTERNAL STANDARDS         Pentafluorobenzene       363-72-4       143410       4.20         1,4-Difluorobenzene       540-36-3       257013       4.83         Chlorobenzene-d5       3114-55-4       225796       7.33	*	120-82-1	< 0.33	Ü	6.6	0.33	ug/Kg
Dibromofluoromethane 1868-53-7 46.48 93 % 75 - 125 SPK: 50 Toluene-d8 2037-26-5 46.71 93 % 75 - 125 SPK: 50 4-Bromofluorobenzene 460-00-4 49.48 99 % 75 - 125 SPK: 50  INTERNAL STANDARDS Pentafluorobenzene 363-72-4 143410 4.20 1,4-Difluorobenzene 540-36-3 257013 4.83 Chlorobenzene-d5 3114-55-4 225796 7.33	<del>-</del>		24.40	CO 0/	75 105		ያ <b>ጋ</b> ጀት 50
Toluene-d8 2037-26-5 46.71 93 % 75 - 125 SPK: 50 4-Bromofluorobenzene 460-00-4 49.48 99 % 75 - 125 SPK: 50  INTERNAL STANDARDS Pentafluorobenzene 363-72-4 143410 4.20 1,4-Difluorobenzene 540-36-3 257013 4.83 Chlorobenzene-d5 3114-55-4 225796 7.33	•						
## 150 dense-d8							
INTERNAL STANDARDS Pentafluorobenzene 363-72-4 143410 4.20 1,4-Difluorobenzene 540-36-3 257013 4.83 Chlorobenzene-d5 3114-55-4 225796 7.33	Toluene-d8						
Pentafluorobenzene       363-72-4       143410       4.20         1,4-Difluorobenzene       540-36-3       257013       4.83         Chlorobenzene-d5       3114-55-4       225796       7.33	4-Bromofluorobenzene	460-00-4	49.48	99 %	75 - 125		SPK: 30
1,4-Difluorobenzene 540-36-3 257013 4.83 715 Chlorobenzene-d5 3114-55-4 225796 7.33							_
Chlorobenzene-d5 3114-55-4 225796 7.33							$\mathcal{M}_{\mathcal{L}}$
Omorovonzone do	•						717
1,4-Dichlorobenzene-d4 3855-82-1 89216 8.76	Chlorobenzene-d5						,
	1,4-Dichlorobenzene-d4	3855-82-1	89216	8.76			

Volatiles

SDG No.: S3409   Client: Chazen Companies   Client ID: SB-034-8	•		S	N-846			-	
Date Collected: 6/28/2004 Date Analyzed: 7/14/2004 Matrix: SOIL File ID: VK071352.D Analytical Run ID: VK071304 Dilution: 1 MSVOAK Analytical Method: 8260 Associated Blank: VBK0713S3 Sample Wt/Wol: 5.0 Units: g Soil Extract Vol: % Moisture: 0  Trameter CAS Number Concentration C RDL MDL Units  RAGETS Chlorodifluoromethane 75-71-8 < 1.2 \$\Psi\$ 5.0 1.2 ug/Kg	÷							·
ARGETS chlorodifluoromethane 75-71-8 < 1.2	Date Collected: Date Analyzed: File ID: Dilution: Analytical Method: Sample Wt/Wol:	6/28/2004 7/14/2004 VK071352.D 1 8260		Date Received: Matrix: Analytical Run ID: Instrument ID: Associated Blank: Soil Extract Vol:	7/2/2004 SOIL VK071 MSVOA VBK07	304 K	· · · · · · · · · · · · · · · · · · ·	
chlorodifluoromethane 75-71-8 < 1.2	rameter	CAS Number	Concentration	С	RDL	MDL	Units	
65 01 4 5 0 24 ng/Kg	chlorodifluorometha loromethane	74-87-3	< 0.33	<b>ψ</b> )	5.0	0.33	ug/Kg	

Parameter	CAS Number	Concentration	<u> </u>	KDL	MIDI	Omis	<del></del>
TARGETS	<i>a. a</i> 1 0	< 1.2	nì <b>\</b>	5.0	1.2	ug/Kg	
Dichlorodifluoromethane	75-71-8		# <b>\</b>	5.0	0.33	ug/Kg ug/Kg	
Chloromethane	74-87-3	< 0.33	¥. J	5.0 5.0	0.33	ug/Kg ug/Kg	
Vinyl chloride	75-01-4	< 0.24	¥. /	5.0	0.71	ug/Kg ug/Kg	
Bromomethane	74-83-9	< 0.71	1.1			ug/Kg ug/Kg	
Chloroethane	75-00-3	< 0.52	1.1	5.0	0.52		
Tr. rofluoromethane	75-69-4	< 2.5	Llin	5.0	2.5	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.46	すりの	5.0	0.46	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.22	P/	5.0	0.22	ug/Kg	
Acetone	67-64-1	< 7.5	14	25	7.5	ug/Kg	
Carbon disulfide	75-15-0	< 0.10	I	5.0	0.10	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.23	h)	5.0	0.23	ug/Kg	
Methyl Acetate	79-20-9	< 1.3	t/	5.0	1.3	ug/Kg	
Methylene Chloride	75-09-2	5,0 4 <del>.0</del> (	) #B/	<b>5.0</b>	0.68	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.37	<b>ا</b> لا	5.0	0.37	ug/K.g	
1,1-Dichloroethane	75-34-3	< 0.35	þ /	5.0	0.35	ug/Kg	
Cyclohexane	110-82-7	< 0.30	†r	5.0	0.30	ug/Kg	
2-Butanone	78-93-3	< 2.3	tr I	25	2.3	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.30	tr 1	5.0	0.30	ug/Kg	
cis-1,2-Dichloroethene	156-59-2	< 0.35	t	5.0	0.35	ug/Kg	- 1
Chloroform	67-66-3	< 0.24	tr	5.0	0.24	ug/Kg	$\sim 10^{-1}$
1,1,1-Trichloroethane	71-55-6	< 0.27	₽ <b>/</b>	5.0	0.27	ug/Kg	11/
Methylcyclohexane	108-87-2	< 0.36	b \m	5.0	0.36	ug/Kg	
Benzene	71-43-2	< 0.20	b / °	5.0	0.20	ug/Kg	
.2-Dichloroethane	107-06-2	< 3.1	† <i> </i>	5.0	3.1	ug/Kg	
Frichloroethene	79-01-6	< 0.32	b	5.0	0.32	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.34	b	5.0	0.34	ug/Kg	
Br dichloromethane	75-27-4	< 0.33	b	5.0	0.33	ug/Kg	
I-Methyl-2-Pentanone	108-10-1	< 2.4	b	25	2.4	ug/Kg	
Foluene	108-88-3	< 0.26	U	5.0	0.26	ug/Kg	
-1,3-Dichloropropene	10061-02-6	< 0.26		5.0	0.26	ug/Kg	73
is-1,3-Dichloropropene	10061-01-5	< 0.19	b l	5.0	0.19	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.51	b /	5.0	0.51	ug/Kg	
LHevanone	591-78-6	< 3.2	<b>₽</b>	25	3.2	ug/Kg	

Volatiles SW-846

SDG No.: S3409

Client:

Sample ID:

**Chazen Companies** 

S3409-04

Client ID:

SB-034-8

Date Collected:

6/28/2004

7/2/2004

Date Analyzed:

7/14/2004

Matrix:

SOIL

File ID:

VK071352.D

Analytical Run ID:

Date Received:

VK071304

Dilution:

**CAS Number** 

Instrument ID:

**MSVOAK** VBK0713S3

MDL

Units

Analytical Method:

<u>8260</u>

Associated Blank: Soil Extract Vol:

Concentration

Sample Wt/Wol: Soil Aliquot Vol:

Parameter

5.0

Units: g

% Moisture:

 $\mathbf{C}$ 

RDL

1,2-Dibromoethane	106-93-4	< 0.42	<b>1</b> 9 A	5.0	0.42	ug/Kg
1,2-Dioromoemane Fetrachloroethene	127-18-4	< 0.42	1.1	5.0	0.42	ug/Kg
			<b>[</b> ]			= =
Chlorobenzene	108-90-7	< 0.35	1.1	5.0	0.35	ug/Kg
Ethyl Benzene	100-41-4	< 0.25	Ł1	5.0	0.25	ug/Kg
n/p-Xylenes	136777-61-2	< 0.51	11	5.0	0.51	ug/Kg
o-Xylene	95-47-6	< 0.43	11	5.0	0.43	ug/Kg
Sty	100-42-5	< 0.31	h /	5.0	0.31	ug/Kg
3romoform	75-25-2	< 0.30	1. \u2	) 5.0	0.30	ug/Kg
sopropylbenzene	98-82-8	< 0.37	P / "	5.0	0.37	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	< 0.53	41	5.0	0.53	ug/Kg
,3-Dichlorobenzene	541-73-1	< 0.21	<b>V</b>	5.0	0.21	ug/Kg
,4-Dichlorobenzene	106-46-7	< 0.35	<b>₩</b> }	5.0	0.35	ug/Kg
,2-Dichlorobenzene	95-50-1	< 0.41	Ψ	5.0	0.41	ug/Kg
,2-Dibromo-3-Chloropropane	96-12-8	< 0.68	<b>U</b> .	5.0	0.68	ug/Kg
,2,4-Trichlorobenzene	120-82-1	< 0.25	$\Phi_{\cdot}$	5.0	0.25	ug/Kg
SURROGATES ,2-Dichloroethane-d4	17060-07-0	38.95	78 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7	47.82	96 %	75 - 125		SPK: 50
oluene-d8	2037-26-5	46.67	93 %	75 - 125		SPK: 50
-Bromofluorobenzene	460-00-4	41.01	82 %	75 - 125		SPK: 50
NTERNAL STANDARDS	262 72 1	40000	4.00			•
entafluorobenzene	363-72-4	198200	4.22			A
,4-Difluorobenzene	540-36-3	342951	4.84			~14
hlorobenzene-d5	3114-55-4	233532	7.33			`)!/
4-Dichlorobenzene-d4	3855-82-1	79195	8.77			
ENTITIVE IDENTIFIED COM		9.0	r	o 03		na/V a
enzene, 1-proponyl-; (E) C9/4/		8.9	J	8.93		ug/Kg
ar tone	<u>-91203</u>	<del>-130 -</del>	- <del></del>	<del>-9.Q5</del>		Hg/f-g- VIOVT
aphunalene, 1-methy	<del>-90120</del>	-16-	<del></del>	<del>-10.65</del>		THE SOURCE
U-Indene, 1-ethylidene CU/H/	<b>O</b> 2471832	11	J	10.79		ug/Kg <b>74</b>

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:	S3409-05	Client D:	SB-044-8
Date Collected: Date Analyzed: File ID: Dilution: Analytical Method Sample Wt/Wol: Soil Aliquot Vol:	6/28/2004 7/8/2004 VI070725.D 1 : 8260 5.0 Units: g	Date Received: Matrix: Analytical Run ID: Instrument ID: Associated Blank: Soil Extract Vol: % Moisture:	7/2/2004 SOIL VI062904 MSVOAI VBI0707S1

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS						lv z	
Dichlorodifluoromethane	75-71-8	< 1.6	J. J.	6.3	1.6	ug/Kg	•
Chloromethane	74-87-3	< 0.42	<u> </u>	6.3	0.42	ug/Kg	
Vinyl chloride	75-01-4	< 0.30	P /	6.3	0.30	ug/Kg	
3romomethane	74-83-9	< 0.90	ΨI	6.3	0.90	ug/Kg	
Chloroethane	75-00-3	< 0.66	CV { !	6.3	0.66	ug/Kg	
Tri )ofluoromethane	75-69-4	< 3.1	P/~~	6.3	3.1	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.58	Ψ/	6.3	0.58	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.27	Ψ\	6.3	0.27	ug/Kg	
Acetone	67-64-1	< 9.4	ΨΙ	32	9.4	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	$\Phi_1$	6.3	0.13	ug/Kg	
Vethyl tert-butyl Ether	1634-04-4	3.9	xJ	6.3	0.29	ug/Kg	
viethyl Acetate	79-20-9	< 1.6	P۱	6.3	1.6	ug/Kg	
vlethylene Chloride	75-09-2	< 0.86	Ψ\	6.3	0.86	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.47	<b>V</b> \	6.3	0.47	ug/Kg	
.,1-Dichloroethane	75-34-3	< 0.45	₩ <b> </b>	6.3	0.45	ug/K.g	
Cyclohexane	110-82-7	< 0.39	₩ }	6.3	0.39	ug/Kg	
2-Butanone	78-93-3	< 2.9	† J	32	2.9	ug/Kg	ŗ
Carbon Tetrachloride	56-23-5	< 0.38	Ψſ	6.3	0.38	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.45	Ψĺ	6.3	0.45	ug/Kg	
Chloroform	67-66-3	< 0.30	<b>V</b>	6.3	0.30	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.34	<b> </b>	6.3	0.34	ug/Kg	
Methylcyclohexane	108-87-2	< 0.45	ψ(	6.3	0.45	ug/Kg	ds
Benzene	71-43-2	< 0.26	ゅういつ	6.3	0.26	ug/Kg	$\langle 1 \rangle$
,2-Dichloroethane	107-06-2	< 3.9	<b>†</b> /	6.3	3.9	ug/Kg	J.
Prichloroethene	79-01-6	< 0.41	\p/	6.3	0.41	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.42	þ	6.3	0.42	ug/Kg	
ro lichloromethane	75-27-4	< 0.42	b	6.3	0.42	ug/Kg	
-Memiyl-2-Pentanone	108-10-1	< 3.0	ψ(	32	3.0	ug/Kg	
'oluene	108-88-3	< 0.33	b	6.3	0.33	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.32	ψl	6.3	0.32	ug/Kg	87
is-1,3-Dichloropropene	10061-01-5	< 0.25	ψl	6.3	0.25	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.64	b	6.3	0.64	ug/Kg	•
Hexanone	591-78-6	< 4.0	υ'	32	4.0	ug/Kg	

Volatiles

SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-05

Date Collected: Date Analyzed: 6/28/2004 7/8/2004

File ID:

VI070725.D

Dilution:

Analytical Method:

Sample Wt/Wol:

**8260** 

Units: 5.0

Client ID:

SB-044-8

Date Received:

Matrix:

7/2/2004

SOIL V1062904

Analytical Run ID: Instrument ID:

**MSVOAI** VBI0707S1

Associated Blank:

Soil Extract Vol:

MDL

Units

Sample Wt/Wol:	5.0 Units: g	S	Soil Extract Vol:		
Soil Aliquot Vol:			6 Moisture:	21	
	w <u>.                                    </u>			·	
Parameter	CAS Number	Concentration	C	RDL	

1,2-Dibromoethane	106-93-4	< 0	).53	Ψ\	6.3	0.53	ug/Kg
Tetrachloroethene	127-18-4	< 0	0.80	ψ \	6.3	0.80	ug/Kg
Chlorobenzene	108-90-7	< 0	).45	ψ \	6.3	0.45	ug/Kg
Ethyl Benzene	100-41-4	< 0	.32	ψ /	6.3	0.32	ug/Kg
m/p-Xylenes	136777-61-2	< 0	).65	Ψ	6.3	0.65	ug/Kg
o-Xylene	95-47-6	< 0	).55	ψΙ	6.3	0.55	ug/Kg
St }	100-42-5	< 0	.40	ψ (	6.3	0.40	ug/Kg
Bromoform	75-25-2	< 0	.38	<b>サ 〉</b> (2)	6.3	0.38	ug/Kg
Isopropylbenzene	98-82-8	< 0	.47	ψ/	6.3	0.47	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	< 0	.67	ψ/	6.3	0.67	ug/Kg
1,3-Dichlorobenzene	541-73-1	< 0	.27	Ψ	6.3	0.27	ug/Kg
1,4-Dichlorobenzene	106-46-7	< 0	.44	ψ	6.3	0.44	ug/Kg
1,2-Dichlorobenzene	95-50-1	< 0	.52	ψ\	6.3	0.52	ug/Kg
1,2-Dibromo-3-Chloropropane	96-12-8	< 0	.86	ψ\	6.3	0.86	ug/Kg
1,2,4-Trichlorobenzene	120-82-1	< 0	.32	tr)	6.3	0.32	ug/Kg
SURROGATES	150.60.05.0	4	4.57.4	05.0/	ae 10e		SPK: 50
1,2-Dichloroethane-d4	17060-07-0		17.4	95 %	75 - 125		
Dibromofluoromethane	1868-53-7		16.08	92 %	75 - 125		SPK: 50
Toluene-d8	2037-26-5	5	55.69	111 %	75 - 125		SPK: 50
4-Bromofluorobenzene	460-00-4	4	15.25	90 %	75 - 125		SPK: 50
INTERNAL STANDARDS			•				
Pentafluorobenzene	363-72-4	75	570	3.86		۸۸۸	
,4-Difluorobenzene	540-36-3	17	7369	4.32		$\sim$ 1 $^{\prime\prime}$ 1	
Chlorobenzene-d5	3114-55-4	16	6149	7.40		)''	
,4-Dichlorobenzene-d4	3855-82-1	52	217	9.67		·	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:	S3409-05RE	Client ID:	SB-044-8RE
Date Collected: Date Analyzed: File ID: Dilution: Analytical Method Sample Wt/Wol: Soil Aliquot Vol:	6/28/2004 7/13/2004 VK071315.D 1 8260 5.0 Units: g	Date Received: Matrix: Analytical Run ID: Instrument ID: Associated Blank: Soil Extract Vol: % Moisture:	7/2/2004 SOIL VK071304 MSVOAK VBK0713S2

<del></del>							
Parameter	CAS Number	Concentration	. C	RDL	MDL	Units	
TARGETS					1.6	ITT a.	
Dichlorodifluoromethane	75-71-8	< 1.6	U	6.3	1.6	ug/Kg	
Chloromethane	74-87-3	< 0.42	U	6.3	0.42	ug/K.g	
Vinyl chloride	75-01-4	< 0.30	U	6.3	0.30	ug/Kg	
Bromomethane	74-83-9	< 0.90	U	6.3	0.90	ug/Kg	
Chloroethane	75-00-3	< 0.66	υ,	6.3	0.66	ug/Kg	
Tri fofluoromethane	75-69-4	< 3.1	υ /	6.3	3.1	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.58	U, c	6.3	9,58	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.27	· · · · · ·	6.3	0.27	ug/Kg	
Acetone	67-64-1	< 9.4	, <b>\</b> Ü`, *	$\stackrel{\circ}{)}$ 32 $/$	9.4	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	17 US,	6.3	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.29	1-4	6,8	0.29	ug/K.g	
Methyl Acetate	79-20-9	< 1.6	س کل ۱	6.3	1.6	ug/Kg	
Methylene Chloride	75-09-2	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	\(\int_{\text{IB}}\/\forage\)	6.3	0.86	ug/K.g	
trans-1,2-Dichloroethene	156-60-5	< 0.470	Z(N)Z	6.3	0.47	ug/K.g	
1,1-Dichloroethane	75-34-3	< 0.45	(b) //	6.3	0.45	ug/Kg	
Cyclohexane	110-82-7	< 0.39		6.3	0.39	ug/Kg	
2-Butanone	78-93-3	< 2.9	<b>/</b> U	32	2.9	ug/K.g	
Carbon Tetrachloride	56-23-5	< 0.38	U	6.3	0.38	ug/Kg	
cis-1,2-Dichloroethene	156-59-2	< 0.45	U	6.3	0.45	ug/Kg	
Chloroform	67-66-3	< 0.30	Ū	6.3	0.30	ug/Kg	
1,1,1-Trichloroethane	71-55-6	< 0.34	U	6.3	0.34	ug/Kg	
Methylcyclohexane	108-87-2	0.45	U	6.3	0.45	ug/Kg	M
Benzene	71-43-2	< 0.26	U	6.3	0.26	ug/Kg	/\/ /
1,2-Dichloroethane	107-06-2	< 3.9	Ū	6.3	3.9	ug/Kg	,
Trichloroethene	79-01-6	< 0.41	U	6.3	0.41	ug/Kg	
1,2-Dichloropropane	78-87-5	< 0.42	U	6.3	0.42	ug/K.g	
Bry lichloromethane	75-27/4	< 0.42	U	6.3	0.42	ug/Kg	
4-Meinyl-2-Pentanone	108-10-1	< 3.0	U	32	3.0	ug/Kg	
Toluene	108-88-3	< 0.33	U	6.3	0.33	ug/Kg	
t-1,3-Dichloropropene	10061-02-6	< 0.32	U,	6.3	0.32	ug/Kg	96
cis-1,3-Dichloropropene	10061-01-5	< 0.25	U	6.3	0.25	ug/K.g	
1,1,2-Trichloroethane	79-00-5	< 0.64	U	6.3	0.64	ug/Kg	
2-Heyanore	591-78-6	< 4.0	U	32	4.0	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Client ID: SB-044-8RE Sample ID: S3409-05RE Date Received: 7/2/2004 Date Collected: 6/28/2004 SOIL Matrix: Date Analyzed: 7/13/2004 Analytical Run ID: File ID: VK071315.D VK071304 Instrument ID: **MSVOAK** Dilution: Associated Blank: VBK0713S2 <u>8260</u> Analytical Method: Soil Extract Vol: Sample Wt/Wol: Units: 5.0 g % Moisture: Soil Aliquot Vol:

Parameter ,	CAS Number	Concentration	$\mathbf{C}^{'}$	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.53	U	6.3	0.53	ug/Kg^	
Tetrachloroethene	127-18-4	< 0.80	U	6.3	0.80	ag/Kg	
Chlorobenzene	108-90-7	< 0.45	U	6.3	0.45	ug/Kg	
Ethyl Benzene	100-41-4	< 0.32	U \	6.3	0.32	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.65	. A ( ~	6.3	0.65	ug/Kg	
o-Xylene	95-47-6	< 0.55	(*13° )	5 53	0.55	ug/Kg	
Sty )	100-42-5	< 0.40	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	6.3	0.40	ug/Kg	
Bromoform	75-25-2	C86.38 20	_\ ]	6.3	0.38	ug/Kg	
Isopropylbenzene	98-82-8	5< 047	U	6.3	0.47	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.67	Nh	6.3	0.67	ug/K.g	
1,3-Dichlorobenzene	541-73-1	S 0.27	<b>γ' (</b> U - ¹	6.3	0.27	ug/Kg	
1,4-Dichlorobenzene	106-46-7	< 0.44	U	6.3	0.44	ug/Kg	
1,2-Dichlorobenzene	95-50-1	< 0.52	U	6.3	0.52	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.86	U	6.3	0.86	ug/Kg	
1,2,4-Trichlorobenzene	120-82-1	< 0.32	U	6.3	0.32	ug/K.g	
SURROGATES		2.5	570.07	77. 105		CDIC. CO	
1,2-Dichloroethane-d4	17060-07-0	36.7	73 %	75 - 125	•	SPK: 50	
Dibromofluoromethane	1000 00 .	45.92	92 %	75 - 125		SPK: 50	
Toluene-d8	2037-26-5	<b>4</b> 2.71	85 %	75 - 125		SPK: 50	
4-Bromofluorobenzene	460-00-4	52.57	105 %	75 - 125		SPK: 50	
INTERNAL STANDARDS							
Pentafluorobenzene	363-72-4	75921	4.22				
1,4-Difluorobenzene	540-36-3	134867	4.84		Ma		
Chlorobenzene-d5	3114-55-4	127644	7.35	$\sim$	(   " /		
1,4-Dichlorobenzene-d4	3855-82-1	51403	8.79	7	٧		

Volatiles

SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-06

Client ID:

Date Received:

SB-0412-16

Date Collected:

6/28/2004 7/8/2004

Matrix:

7/2/2004 SOIL

Date Analyzed: File ID:

V1070727.D

Analytical Run ID:

VI062904

Dilution:

-Hexanone

1____

Instrument ID: M

MSVOAI

3.9

30

Analytical Method:

<u>8260</u>

Associated Blank: Soil Extract Vol:

VBI0707S1

Sample Wt/Wol: Soil Aliquot Vol:

5.0

Units:

591-78-6

< 3.9

g

% Moisture: 18

					<del> </del>		
Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS							
Dichlorodifluoromethane	75-71-8	< 1.5	U	6.1	1.5	ug/K⁄ĝ	
Chloromethane	74-87-3	< 0.40	U	6.1	0.40	ug/Kg	•
Vinyl chloride	75-01-4	< 0.29	U	6.1	0.29	/ug/Kg	
Bromomethane	74-83-9	< 0.86	U	6.1	0.86	/ ug/Kg	
Chloroethane	75-00-3	< 0.64	U	6.1	0.64	ug/Kg	
Tri. ofluoromethane	75-69-4	< 3.0	U	6.1	3.0	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.56	U	6.1	0,56	ug/K.g	
1,1-Dichloroethene	75-35-4	< 0.26	U	6.1	0.26	ug/Kg	
Acetone	67-64-1	22	јв 🖊	30	9.1	ug/Kg	
Carbon disulfide	75-15-0	< 0.12	υ, δ	6.1	0.12	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.28	1011/-/	- 6.1	0.28	ug/Kg	
Methyl Acetate	79-20-9	< 1.6 , N	`, v ^t U , '	5` <i>5</i> /1	1.6	ug/Kg	
Methylene Chloride	75-09-2	ر 12	N /-/	6.1	0.83	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.45 (L)	سمولي \	6.1	0.45	ug/Kg	
I,1-Dichloroethane	75-34-3	< 0.43	~~ [™] √	6.1	0.43	ug/K.g	
Cyclohexane	110-82-7	< 0.37	ับ /	<u>م</u> کے 6.1	0.37	ug/Kg	
2-Butanone	78-93-3	< 2.8	y/ (	), 1 30 ··	2.8	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.36	Ú	6.1	0.36	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.43	U	6.1	0.43	ug/Kg	
Chloroform	67-66-3	< 0.29	U	6.1	0.29	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.33	U	6.1	0.33	ug/Kg	
Methylcyclohexane	108-87-2	< 0,43	U	6.1	0.43	ug/Kg	$\mathcal{A}$
Benzene	71-43-2	< 0.25	U	6.1	0.25	ug/Kg	$\langle 1 \rangle$
,2-Dichloroethane	107-06-2	3.8	U	6.1	3.8	ug/Kg	J. /
richloroethene	79-01-6	< 0.39	U	6.1	0.39	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.41	U	6.1	0.41	ug/Kg	
Bro 'ichloromethane	75-27-4	< 0.41	U	6.1	0.41	ug/Kg	
-Meuryl-2-Pentanone	108-10-1	< 2.9	U	30	2.9	ug/Kg	
oluene	108-88-3	< 0.32	U	6.1	0.32	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.31	U	6.1	0.31	ug/Kg	114
is-1,3-Dichloropropene	19061-01-5	< 0.24	U	6.1	0.24	ug/Kg	- • •
,1,2-Trichloroethane	19-00-5	< 0.62	U	6.1	0.62	ug/Kg	

Volatiles

SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-06

_

Client ID:

SB-0412-16

7/2/2004

**MSVOAI** 

VI062904

SOIL

Date Collected:

6/28/2004 7/8/2004

Date Analyzed: File ID:

7/8/2004 V1070727.D

Dilution:

Chlorobenzene-d5

1,4-Dichlorobenzene-d4

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 8260 5.0

Units: g

Date Received:

Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

<u>VBI0707S1</u>

% Moisture:

sture: <u>18</u>

Parameter	CAS Number	Concentration	C	RDL	MOL	Units	
1,2-Dibromoethane	106-93-4	< 0.51	U	6.1	0.51	ug/Kg	
Tetrachloroethene	127-18-4	< 0.77	U	6.1	0.77	ug/K.g	
Chlorobenzene	108-90-7	< 0.43	U	6.1	0.43	ug/K.g	,
Ethyl Benzene	100-41-4	< 0.30	U	10cm	0.30	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.63	U	on 6.1	0.63	ug/Kg	
p-Xylene	95-47-6	< 0.53	UV	c6(1)	0.53	ug/Kg	
Sty	100-42-5	< 0.38	U N	~136.1	0.38	ug/Kg	
Bromoform	75-25-2	< 0.36 LA	/U ~ ~ ~	6.1	0.36	ug/Kg	
Isopropylbenzene	98-82-8	< 0.45 ³	Ψ ~ °	<b>√</b> 6.1	0.45	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.65	/J /	$\gamma $ 6.1	0.65	ug/Kg	
1,3-Dichlorobenzene	541-73-1	< 0.26	U	$J_{6.1}$	0.26	ug/Kg	
1,4-Dichlorobenzene	106-46-7	< 0,43	Ū	6.1	0.43	ug/Kg	
1,2-Dichlorobenzene	95-50-1	0.50	U	6.1	0.50	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.83	U	6.1	0.83	ug/Kg	
1,2,4-Trichlorobenzene	120-82-1	< 0.30	U	6.1	0.30	ug/Kg	
SURROGATES		غه مه	100.07	75 105		SPK: 50	
l,2-Dichloroethane-d4	17060-07-0	69.38	139 %	75 - 125			
Dibromofluoromethane	1868-53-7	49.9	100 %	75 - 125		SPK: 50	
Toluene-d8	2037-26-5	53.94	108 %	75 - 125		SPK: 50	
1-Bromofluorobenzene	460-00-4	45.42	91 %	75 - 125		SPK: 50	
INTERNAL STANDARDS			2.04				
Pentafluorobenzene	363-72-4	63979	3.86				
l,4-Difluorobenzene	540-36-3	178545	4.32		- d	1_	

159169

40143

3114-55-4

3855-82-1

7.40

9.67

Volatiles

SW-846

SDG No.:

S3409

Client:

Chazen Companies

Chent. Chi	аген сопрамез		
Sample ID:	S3409-06RE	Client ID:	SB-0412-16RE
Date Collected: Date Analyzed: File ID: Dilution: Analytical Method Sample Wt/Wol: Soil Aliquot Vol:	6/28/2004 7/13/2004 VK071316.D 1 : 8260 5.0 Units: g	Date Received: Matrix: Analytical Run ID: Instrument ID: Associated Blank: Soil Extract Vol: % Moisture:	7/2/2004 SOIL VK071304 MSVOAK VBK0713S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS				-		N7	
Dichlorodifluoromethane	75-71-8	< 1.5	Ψl	6.1	1.5	ug/Kg	
Chloromethane	74-87-3	< 0.40	<b>P</b> \	6.1	0.40	ug/Kg	
Vinyl chloride	75-01-4	< 0.29	1	6.1	0.29	ug/Kg	
Bromomethane	74-83-9	< 0.86	14	6.1	0.86	ug/Kg	
Chloroethane	75-00-3	< 0.64	11	6.1	0.64	ug/Kg	
Tri )ofluoromethane	75-69-4	< 3.0	14	6.1	3.0	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.56	りかつ	6.1	0.56	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.26	Ψ/	6.1	0.26	ug/Kg	
Acetone	67-64-1	< 9.1	ÞΙ	30	9.1	ug/Kg	
Carbon disulfide	75-15-0	< 0.12	Ρl	6.1	0.12	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.28	ţ·	6.1	0.28	ug/Kg	
Methyl Acetate	79-20-9	< 1.6	tr/	6.1	1.6	ug/Kg	
Methylene Chloride	75-09-2	8.7 <b>U</b>	$\mathbb{R}$ - $9$ - $1$	6.1	0.83	ug/Kg	
trans-1,2-Dichloroethene	156-60-5	< 0.45	μ/	6.1	0.45	ug/Kg	
1,1-Dichloroethane	75-34-3	< 0.43	h /	6.1	0.43	ug/Kg	
Cyclohexane	110-82-7	< 0.37	<b>†</b>	6.1	0.37	ug/Kg	
2-Butanone	78-93-3	< 2.8	p	30	2.8	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.36	₩	6.1	0.36	ug/Kg	
cis-1,2-Dichloroethene	156-59-2	< 0.43	ψĺ	6.1	0.43	ug/Kg	
Chloroform	67-66-3	< 0.29	υl	6.1	0.29	ug/Kg	_
1,1,1-Trichloroethane	71-55-6	< 0.33	Ψ/	6.1	0.33	ug/Kg	N
Methylcyclohexane	108-87-2	< 0.43	Ψl	6.1	0.43	ug/Kg	$\gamma i \prime$
Benzene	71-43-2	< 0.25	する	6.1	0.25	ug/Kg	,
I,2-Dichloroethane	107-06-2	< 3.8	*\psi /	6.1	3.8	ug/Kg	
Frichloroethene	79-01-6	< 0.39	V	6.1	0.39	ug/Kg	
1,2-Dichloropropane	78-87-5	< 0.41	VI	6.1	0.41	ug/Kg	
Bro lichloromethane	75-27-4	< 0.41	Ψl	6.1	0.41	ug/Kg	
I-Mouryl-2-Pentanone	108-10-1	< 2.9	巾	30	2.9	ug/Kg	
l'oluene	108-88-3	< 0.32	巾	6.1	0.32	ug/Kg	
-1,3-Dichloropropene	10061-02-6	< 0.31	ψ\	6.1	0.31	ug/Kg	123
is-1,3-Dichloropropene	10061-01-5	< 0.24	ψ∖	6.1	0.24	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.62	ψ)	6.1	0.62	ug/Kg	
Heyanone	591-78-6	< 3.9	ս,	30	3.9	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-06RE

Date Collected: Date Analyzed: 6/28/2004 7/13/2004

File ID:

VK071316.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 8260

Units: 5.0 g Client ID:

SB-0412-16RE

Date Received:

Matrix:

Analytical Run ID:

Instrument ID:

Associated Blank:

Soil Extract Vol: % Moisture:

7/2/2004 SOIL VK071304

MSVOAK **VBK0713S2** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.51	ΨV	6.1	0.51	ug/K
Tetrachloroethene	127-18-4	< 0.77	þ \	6.1	0.77	ug/Kg
Chlorobenzene	108-90-7	< 0.43	þ \	6.1	0.43	ug/Kg
Ethyl Benzene	100-41-4	< 0.30	h l	6.1	0.30	ug/Kg
m/p-Xylenes	136777-61-2	< 0.63	† /	6.1	0.63	ug/Kg
o-Xylene	95-47-6	< 0.53	þ /	6.1	0.53	ug/Kg
Styr \	100-42-5	< 0.38	! ( いっ	<b>j</b> -6.1	0.38	ug/Kg
Bromoform	75-25-2	< 0.36	h /	6.1	0.36	ug/Kg
sopropylbenzene	98-82-8	< 0.45	tr /	6.1	0.45	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	< 0.65	<b>b</b> (	6.1	0.65	ug/Kg
1,3-Dichlorobenzene	541-73-1	< 0.26 ₅ .	t l	6.1	0.26	ug/Kg
,4-Dichlorobenzene	106-46-7	< .0.43	<b>₽</b> \	6.1	0.43	ug/Kg
,2-Dichlorobenzene	95-50-1	< 0.50	<b>U</b>	6.1	0.50	ug/Kg
,2-Dibromo-3-Chloropropane	96-12-8	< 0.83	ψ <b>)</b>	6.1	0.83	ug/Kg
,2,4-Trichlorobenzene	120-82-1	< 0.30	<b>₩</b> /	6.1	0.30	ug/Kg
SURROGATES						
,2-Dichloroethane-d4	17060-07-0	37.74	75 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7	45.18	90 %	75 - 125		SPK: 50
Coluene-d8	2037-26-5	41.26	83 %	75 - 125		SPK: 50
-Bromofluorobenzene	460-00-4	32.69	65 %	75 - 125		SPK: 50
NTERNAL STANDARDS						۸/۱.
entafluorobenzene	363-72-4	110311	4.22			d19
,4-Difluorobenzene	540-36-3	217740	4.84			
Chlorobenzene-d5	3114-55-4	164511	7.34			
,4-Dichlorobenzene-d4	3855-82-1	41182	8.79			

Sample ID:

Volatiles SW-846

SDG No.:

S3409

**Chazen Companies** Client:

S3409-07

Date Collected: 6/29/2004

Date Analyzed: 7/13/2004 File ID: VK071317.D

Dilution:

<u>8260</u> Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

5.0

Units: g Client ID:

Date Received: Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

SB-184-8

7/2/2004 SOIL

VK071304 MSVOAK

VBK0713S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
FARGETS							
Dichlorodifluoromethane	75-71-8	< 1.5	Ψ1	5.9	1.5	ug/Kg	
Chloromethane	74-87-3	< 0.39	Ψ1	5.9	0.39	ug/Kg	
Vinyl chloride	75-01-4	< 0.28	Ψ}	5.9	0.28	ug/Kg	
Bromomethane	74-83-9	< 0.83	Ψ/	5.9	0.83	ug/Kg	
Chloroethane	75-00-3	< 0.62	Ψ/	5.9	0.62	ug/Kg	
Tri ofluoromethane	75-69-4	< 2.9	Ψ	5.9	2.9	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.54	. ψ(	5.9	0.54	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.25	すくいつ	5.9	0.25	ug/Kg	
Acetone	67-64-1	< 8.8	Ψ/	29	8.8	ug/Kg	
Carbon disulfide	75-15-0	< 0.12	ÞΙ	5.9	0.12	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.27	<b> </b>	5.9	0.27	ug/Kg	
Methyl Acetate	79-20-9	< 1.5	υl	5.9	1.5	ug/Kg	
Methylene Chloride	75-09-2	<i>ઽ</i> ,લ <del>-4.8</del>	U#X	<b>/</b> 5.9	0.80	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.44	₽\	5.9	0.44	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.42	ψ.\	5.9	0.42	ug/Kg	
Cyclohexane	110-82-7	< 0.36	ψ \	5.9	0.36	ug/Kg	•
-Butanone	78-93-3	< 2.7	Ψ /	29	2.7	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.35	ψ	5.9	0.35	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.41	ψ/	5.9	0.41	ug/Kg	
Chloroform	67-66-3	< 0.28	ψ/	5.9	0.28	ug/Kg	N
,1,1-Trichloroethane	71-55-6	< 0.32	Ψ/	5.9	0.32	ug/Kg	<b>/////////////////////////////////////</b>
Aethylcyclohexane	108-87-2	< 0.42	ψ/	5.9	0.42	ug/Kg	,
enzene	71-43-2	< 0.24	רט√ו	5.9	0.24	ug/Kg	
,2-Dichloroethane	107-06-2	< 3.6	₩/**	5.9	3.6	ug/Kg	
richloroethene	79-01-6	< 0.38	ψ/	5.9	0.38	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.39	Ψ/	5.9	0.39	ug/Kg	
ror \ichloromethane	75-27-4	< 0.39	ψl	5.9	0.39	ug/Kg	
-Mcyl-2-Pentanone	108-10-1	< 2.8	Ψ	29	2.8	ug/Kg	
oluene	108-88-3	< 0.30	ψ	5.9	0.30	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.30	ψ	5.9	0.30	ug/Kg	139
s-1,3-Dichloropropene	10061-01-5	< 0.23	ψ]	5.9	0.23	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.60	₩	5.9	0.60	ug/Kg	
Hexanone	591-78-6	< 3.8	ď	29	3.8	ug/Kg	

Sample ID:

Volatiles SW-846

S3409 SDG No.:

**Chazen Companies** Client:

Date Collected: 6/29/2004 Date Analyzed: 7/13/2004 File ID: VK071317.D. Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 8260

S3409-07

Units: 5.0 g Client ID:

SB-184-8

7/2/2004

VK071304

VBK0713S2

MSVOAK

SOIL

Date Received: Matrix:

Analytical Run ID: Instrument ID:

Associated Blank:

Soil Extract Vol:

_ 15 % Moisture:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.49	٧	5.9	0.49	ug/Kg*
Tetrachloroethene	127-18-4	< 0.75	ψ \	5.9	0.75	ug/Kg
Chlorobenzene	108-90-7	< 0.41	ψ )	5.9	0.41	ug/Kg
Ethyl Benzene	100-41-4	< 0.29	ψ /	5.9	0.29	ug/Kg
m/p-Xylenes	136777-61-2	< 0.60	ψ /	5.9	0.60	ug/Kg
o-Xylene	95-47-6	< 0.51	ψ /	5.9	0.51	ug/Kg
Sty \	100-42-5	< 0.37	ψ\	5.9	0.37	ug/Kg
Bromoform	75-25-2	. < 0.35	# \ W	5.9	0.35	ug/Kg
Isopropylbenzene	98-82-8	< 0.44	ψ/	5.9	0.44	ug/K.g
1,1,2,2-Tetrachloroethane	79-34-5	< 0.62	ψ]	5.9	0.62	ug/Kg
1,3-Dichlorobenzene	541-73-1	< 0.25	ψ	5.9	0.25	ug/Kg
1,4-Dichlorobenzene	106-46-7	< 0.41	ψ [	5.9	0.41	ug/Kg
1,2-Dichlorobenzene	95-50-1	< 0.48	ψ \	5.9	0.48	ug/Kg
,2-Dibromo-3-Chloropropane	96-12-8	< 0.80	ψ	5.9	0.80	ug/Kg
,2,4-Trichlorobenzene	120-82-1	< 0.29	ψ/	5.9	0.29	ug/Kg
SURROGATES						
,2-Dichloroethane-d4	17060-07-0	40.42	81 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7	47.18	94 %	75 - 125		SPK: 50
Coluene-d8	2037-26-5	44.68	89 %	75 - 125		SPK: 50
l-Bromofluorobenzene	460-00-4	51.49	103 %	75 - 125		SPK: 50
NTERNAL STANDARDS						
entafluorobenzene	363-72-4	87921	4.22		Λ	
,4-Difluorobenzene	540-36-3	167095	4.84		y	
Chlorobenzene-d5	3114-55-4	156855	7.34	<i>J</i> "	V	
,4-Dichlorobenzene-d4	3855-82-1	62407	8.78			
CENTITIVE IDENTIFIED CO						4
imothoxo exovenadium	7681916	8.5	J	8.25		ug/Kg

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:	S3409-08	Client ID:	SB-074-8
Date Collected:	6/29/2004	Date Received:	7/2/2004
Date Analyzed:	7/13/2004	Matrix:	SOIL
File ID:	VK071318.D	Analytical Run ID:	VK071304
Dilution:	1	Instrument ID:	MSVOAK
Analytical Method:	8260	Associated Blank:	VBK0713S2
Sample Wt/Wol:	5.0 Units: g	Soil Extract Vol:	
Soil Aliquot Vol:		% Moisture:	

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS			- 1				
Dichlorodifluoromethane	75-71-8	< 1.5	₽\	6.0	1.5	ug/Kg	
Chloromethane	74-87-3	< 0.40	Ψ\	6.0	0.40	ug/Kg	
Vinyl chloride	75-01-4	< 0.28	¥ /	6.0	0.28	ug/Kg	
3romomethane	74-83-9	< 0.85	Ψ1	6.0	0.85	ug/Kg	
Chloroethane	75-00-3	< 0.63	P /	6.0	0.63	ug/Kg	
Fri ofluoromethane	75-69-4	< 3.0	Ψ(,	6.0	3.0	ug/Kg	
1,1,2-1 richlorotrifluoroethane	76-13-1	< 0.55	すりいつ		0.55	ug/Kg	
l,1-Dichloroethene	75-35-4	< 0.26	¥/	6.0	0.26	ug/Kg	
Acetone	67-64-1	< 9.0	甲	30	9.0	ug/Kg	
Carbon disulfide	75-15-0	< 0.12	Ψ(	6.0	0.12	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.28	Ψ)	6.0	0.28	ug/Kg	
Methyl Acetate	79-20-9	< 1.5	Pi	6.0	1.5	ug/Kg	
vethylene Chloride	75-09-2	6.05+	UBA	6.0	0.82	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.45	h./	6.0	0.45	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.43	Ψ \	6.0	0.43	ug/Kg	
SycIohexane	110-82-7	< 0.37	ψ \	6.0	0.37	ug/Kg	
l-Butanone	78-93-3	< 2.7	₩ [ •	30	2.7	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.36	<b>₩</b> ]	6.0	0.36	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.42	₩	6.0	0.42	ug/Kg	
Chloroform	67-66-3	< 0.29	Ψ/	6.0	0.29	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.33	Ψ/	6.0	0.33	ug/Kg	
Aethylcyclohexane	108-87-2	< 0.43	₩ <b> </b>	6.0	0.43	ug/Kg	
enzene	71-43-2	< 0.24	11 (~	6.0	0.24	ug/Kg	4
,2-Dichloroethane	107-06-2	< 3.7	( ) ( )	6.0	3.7	ug/Kg	NY
richloroethene	79-01-6	< 0.39	<b>v</b> /	6.0	0.39	ug/Kg	11/
,2-Dichloropropane	78-87-5	< 0.40	v/	6.0	0.40	ug/Kg	<b>'</b>
rom ⁴ ichloromethane	75-27-4	< 0.40	t l	6.0	0.40	ug/Kg	
-M. 1-2-Pentanone	108-10-1	< 2.9	Ų	30	2.9	ug/Kg	
oluene	108-88-3	< 0.31	U	6.0	0.31	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.31	N)	6.0	0.31	ug/Kg	156
s-1,3-Dichloropropene	10061-01-5	< 0.23	₩\	6.0	0.23	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.61	₩/	6.0	0.61	ug/Kg	
Hexanone	591-78-6	< 3.9	₽'	30	3.9	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-08

6/29/2004

Date Collected: Date Analyzed:

File ID:

7/13/2004 VK071318.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: <u>8260</u>

5.0 Units: g

54411959

35

Client ID:

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol: % Moisture:

MSVOAK

SOIL

SB-074-8

7/2/2004

VBK0713S2

ug/Kg

VK071304

17

9.92

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.50	υ\	6.0	0.50	ug/Kg	
l'etrachloroethene	127-18-4	< 0.77	† <b>†</b>	6.0	0.77	ug/Kg	
Chlorobenzene	108-90-7	< 0.42	ΨĮ	6.0	0.42	ug/Kg	
Ethyl Benzene	100-41-4	< 0.30	ΨĮ	6.0	0.30	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.62	ΨÌ	6.0	. 0.62	ug/Kg	
o-Xylene	95-47-6	< 0.52	ΨĮ	6.0	0.52	ug/Kg	
Sty \	100-42-5	< 0.38	₽[	6.0	0.38	ug/Kg	
Bromoform	75-25-2	< 0.36	14	6.0	0.36	ug/Kg	
sopropylbenzene	98-82-8	< 0.45	h >00	6.0	0.45	ug/Kg	•
1,1,2,2-Tetrachloroethane	79-34-5	< 0.64	Ψ/ •	6.0	0.64	ug/Kg	
,3-Dichlorobenzene	541-73-1	< 0.25	Ψ	6.0	0.25	ug/Kg	
,4-Dichlorobenzene	106-46-7	< 0.42	$\Psi$	6.0	0.42	ug/Kg	
,2-Dichlorobenzene	95-50-1	< 0.49	Ψ	6.0	0.49	ug/Kg	
,2-Dibromo-3-Chloropropane	96-12-8	< 0.82	ψ\	6.0	0.82	ug/Kg	
,2,4-Trichlorobenzene	120-82-1	< 0.30	ψ)	6.0	0.30	ug/Kg	
SURROGATES ,2-Dichloroethane-d4	17060-07-0	38.51	77 %	75 - 125		SPK: 50	
Dibromofluoromethane	1868-53-7	47.95	96 %	75 - 125		SPK: 50	* .
Coluene-d8	2037-26-5	44.91	90 %	75 - 125		SPK: 50	
-Bromofluorobenzene	460-00-4	39	78 %	75 - 125		SPK: 50	
NTERNAL STANDARDS							
entafluorobenzene	363-72-4	162782	4.21		-1		
,4-Difluorobenzene	540-36-3	294382	4.83		1/15		
Chlorobenzene-d5	3114-55-4	244698	7.33	1	8.		
,4-Dichlorobenzene-d4	3855-82-1	96774	8.75				
ENTITIVE IDENTIFIED CO		<b>16</b> - 110	Y	8.94		ug/Kg	
Japhthalene, decahydro-, trans-		·='	J			ug/Kg ug/Kg	
cyc xane, diethyl meth	1 m	37	J	9.03		ug/Kg ug/Kg	
yclouexane, (2-methytpropyt)-	1678984	57	J	9.07		•	
yelohexanone, 5 methyl 2 (1 in	ne 15932806	73	J	9.27		ug/Kg	157
icyclo[4.1.0]heptan-3 one, 4,7,	<b>7</b> - 4176049	71 ~ ~	J	9.38		ug/Kg	197
yclohexanone 2 methyl 5 (1 m	e 5948049	55	J T	9.58		ug/Kg	• •
yclohexanone 2-(2-butynyl)	54166482	34	J	9.66		ug/Kg	-

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-09

Client ID:

SB-334-8

Date Collected:

6/30/2004

Date Received: Matrix:

7/2/2004 SOIL

Date Analyzed:

7/9/2004

Units:

g

VI070804

File ID: Dilution: VI070913.D

Analytical Run ID: Instrument ID:

**MSVOAI** 

Analytical Method:

<u>8260</u>

Associated Blank: Soil Extract Vol:

VBI0709S2

Sample Wt/Wol:

5.0

% Moisture:

Soil Aliquot	/ol:
--------------	------

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS					1.0	. 177 =1	
Dichlorodifluoromethane	75-71-8	< 1.6	U	6.5	1.6	ug/Kg'	
Chloromethane	74-87-3	< 0.43	U	6.5	0.43	ug/Kg	
Vinyl chloride	75-01-4	< 0.31	U	6.5	0.31	/lg/Kg	
Bromomethane	74-83-9	< 0.92	U	6.5	0.92	ug/Kg	
Chloroethane	75-00-3	< 0.68	U	6.5	0.68	ug/Kg	
Tri ofluoromethane	75-69-4	< 3.2	U	6.5	3.2	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.60	η ,	6.5	0.60	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.28	U	<b>C</b> 6.5	0/28	ug/Kg	
Acetone	67-64-1	< 9.7	υ Λ ^c	32	9.7	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	$^{\mathrm{U}}\mathcal{L}^{\mathbf{u}'}$	6.5	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.30	, Op.	5 6.5	0.30	ug/Kg	
Methyl Acetate	79-20-9	< 1.7	( ² U 5)	6.5	1.7	ug/Kg	
Methylene Chloride	75-09-2	2.2	11	16 p	0.88	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.48	Ď,	6.5	0.48	ug/Kg	
l,1-Dichloroethane	75-34-3	< 0.46	<b>√</b> U	6.5	0.46	ug/Kg	
Cyclohexane	110-82-7	< 0.40	ר ע י	<b>∕</b>	0.40	ug/Kg	
2-Butanone	78-93-3	< 3.0	υ /	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3.0	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.39	U/	6.5	0.39	ug/Kg	_
is-1,2-Dichloroethene	156-59-2	< 0.46	<b>y</b>	6.5	0.46	ug/Kg	M
Chloroform	67-66-3	< 0.31	U	6.5	0.31	ug/Kg	$\gamma i j$
,1,1-Trichloroethane	71-55-6	< 0.35	U	6.5	0.35	ug/Kg	,
Methylcyclohexane	108-87-2	< 0.46	U	6.5	0.46	ug/Kg	
Benzene	71-43-2	< 0.26	U	6.5	0.26	ug/Kg	
,2-Dichloroethane	107-06-2	< 4.0	U	6.5	4:0	ug/Kg	
richloroethene	79-01-6	< 9.42	U	6.5	0.42	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.44	U	6.5	0.44	ug/Kg	
Bro lichloromethane	75-27-4	< 0.43	U	6.5	0.43	ug/Kg	
-Mouryl-2-Pentanone	108-10-1	< 3.1	U	32	3.1	ug/Kg	
Coluene	108-88-3	< 0.34	U	6.5	0.34	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.33	U	6.5	0.33	ug/Kg	181
is-1,3-Dichloropropene	10061-01-8	< 0.25	U	6.5	0.25	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.66	U	6.5	0.66	ug/Kg	
-Hexanone	591-78-6	< 4.2	U	32	4.2	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client: Ch	nazen Companies	<u></u>	
Sample ID:	S3409-09	Client ID:	SB-334-8
Date Collected: Date Analyzed: File ID: Dilution: Analytical Method Sample Wt/Wol: Soil Aliquot Vol:	6/30/2004 7/9/2004 V1070913.D 1 d: 8260 	Date Received: Matrix: Analytical Run ID: Instrument ID: Associated Blank: Soil Extract Vol: % Moisture:	7/2/2004 SOIL VI070804 MSVOAI VBI0709S2

Parameter	CAS Number	Concentrat	ion C	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.54	U	6.5	0.54	ug/Kg	
Tetrachloroethene	127-18-4	< 0.82	U	6.5	0.82	ug/Kg	
Chlorobenzene	108-90-7	< 0.46	U	6.5	0.46	ug/Kg	
Ethyl Benzene	100-41-4	< 0.32	U	6.5	0.32	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.67	U	6.5	0.67	ug/Kg	
o-Xylene	95-47-6	< 0.56	U	6.5	0.56	ug/Kg	
Sty \	100-42-5	< 0.41	D	2 68	0.41	ug/Kg	
Bromoform	75-25-2	< 0.39	ZU U AC	6.5	0.39	ug/Kg	
(sopropylbenzene	98-82-8	< 0.48	3 04	S16.3	0.48	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.69	CONTIN	6.5	0.69	ug/Kg	
1,3-Dichlorobenzene	541-73-1	< 0.27	The I	6.5	0.27	ug/Kg	
1,4-Dichlorobenzene	106-46-7	< 0.46	\v\ _U	6.5	0.46	ug/Kg	
1,2-Dichlorobenzene	95-50-1	< 9.53	υ Λ	<b>ሻ 7</b> 6.5	0.53	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	0.88	υ ')	6.5	0.88	ug/Kg	
1,2,4-Trichlorobenzene	120-82-1	< 0.32	U	6.5	0.32	ug/Kg	
SURROGATES				,			
1,2-Dichloroethane-d4	17060-07-0	36.06		75 - 125		SPK: 50	
Dibromofluoromethane	1868-53-7	50.27	101 %	75 - 125		SPK: 50	
Toluene-d8	2037-26-5	44.02	88 %	75 - 125		SPK: 50	
4-Bromofluorobenzene	460-00-4	26.23	52 %	75 - 125		SPK: 50	
NTERNAL STANDARDS							
Pentafluorobenzene	363-72-4	63636		$\sim M$			
l,4-Difluorobenzene	540-36-3	10557		$\gamma I \gamma$			
Chlorobenzene-d5	3114-55-4	69269	9 7.40	y · /			
,4-Dichlorobenzene-d4	3855-82-1	18295	6 9.67			•	

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-09RE

Client ID:

SB-334-8RE

Date Collected: Date Analyzed:

6/30/2004 7/13/2004

VK071319.D

File ID: Dilution:

Analytical Method: 8260

Sample Wt/Wol: Soil Aliquot Vol:

5.0

Units: g Date Received: Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/2/2004

SOIL

VK071304 MSVOAK

VBK0713S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS		**************************************				
Dichlorodifluoromethane	75-71-8	< 1.6	<b>₽\</b>	6.5	1.6	ug/Kg
Chloromethane	74-87-3	< 0.43	<b>!</b>	6.5	0.43	ug/Kg
Vinyl chloride	75-01-4	< 0.31	† <b>†</b>	6.5	0.31	ug/Kg
Bromomethane	74-83-9	< 0.92	† I	6.5	0.92	ug/Kg
Chloroethane	75-00-3	< 0.68	†ı	6.5	0.68	ug/Kg
Tri rofluoromethane	75-69-4	< 3.2	<b>₽</b> {	6.5	3.2	ug/Kg
1,1,2-1 richlorotrifluoroethane	76-13-1	< 0.60	す <b>〉</b> の	6.5	0.60	ug/Kg
1,1-Dichloroethene	75-35-4	< 0.28	†r / *	6.5	0.28	ug/Kg
Acetone	67-64-1	< 9.7	<b> </b> 1	32	9.7	ug/Kg
Carbon disulfide	75-15-0	< 0.13	ן ל	6.5	0.13	ug/Kg
Methyl tert-butyl Ether	1634-04-4	< 0.30	ψl	6.5	0.30	ug/Kg
Methyl Acetate	79-20-9	< 1.7	$\{\Gamma_1\}$	6.5	1.7	ug/Kg
Methylene Chloride	75-09-2	6547	UNET	6.5	0.88	ug/Kg
rans-1,2-Dichloroethene	156-60-5	< 0.48	Ρĺ	6.5	0.48	ug/Kg
,1-Dichloroethane	75-34-3	< 0.46	₩ \	6.5	0.46	ug/Kg
Cyclohexane	110-82-7	< 0.40	₩ <b>\</b>	6.5	0.40	ug/Kg
-Butanonė	78-93-3	< 3.0	tr I	32	3.0	ug/Kg
Carbon Tetrachloride	56-23-5	< 0.39	υl	6.5	0.39	ug/Kg
is-1,2-Dichloroethene	156-59-2	< 0.46	Ψl	6.5	0.46	ug/Kg
Chloroform	67-66-3	< 0.31	tr	6.5	0.31	ug/Kg
,1,1-Trichloroethane	71-55-6	< 0.35	r	6.5	0.35	ug/Kg
lethylcyclohexane	108-87-2	< 0.46	υl	6.5	0.46	ug/Kg
enzene	71-43-2	< 0.26	すいい	6.5	0.26	ug/Kg
,2-Dichloroethane	107-06-2	< 4.0	v / *	6.5	4.0	ug/Kg
richloroethene	79-01-6	< 0.42	\tag{1}	6.5	0.42	ug/Kg
2-Dichloropropane	78-87-5	< 0.44	ול	6.5	0.44	ug/Kg $\sqrt{15}$
ror dichloromethane	75-27-4	< 0.43	υl	6.5	0.43	ug/Kg
-M 1-2-Pentanone	108-10-1	< 3.1	ט	32	3.1	ug/Kg
oluene	108-88-3	< 0.34	р ·	6.5	0.34	ug/Kg
1,3-Dichloropropene	10061-02-6	< 0.33	μJ	6.5	0.33	ug/Kg 190
s-1,3-Dichloropropene	10061-01-5	< 0.25	b	6.5	0.25	ug/Kg
1,2-Trichloroethane	79-00-5	< 0.66	b)	6.5	0.66	ug/Kg
Hexanone	591-78-6	< 4.2	$\mathbf{b'}$	32	4.2	ug/Kg

Volatiles SW-846

SDG No.:

S3409

Client:

Sample ID:

Chazen Companies

S3409-09RE

Date Collected: Date Analyzed: 6/30/2004 7/13/2004

File ID:

VK071319.D

Dilution:

Soil Aliquot Vol:

Analytical Method: Sample Wt/Wol:

<u>8260</u>

5.0

Units: g Client ID:

SB-334-8RE

Date Received:

Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/2/2004 SOIL

VK071304

**MSVOAK** VBK0713S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.54	þΛ	6.5	0.54	ug/Kg	
Tetrachloroethene	127-18-4	< 0.82	þ <b>/</b>	6.5	0.82	ug/Kg	
Chlorobenzene	108-90-7	< 0.46	tr 1	6.5	0.46	ug/Kg	
Ethyl Benzene	100-41-4	< 0.32	<b>b</b> . )	6.5	0.32	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.67	þ <b>/</b>	6.5	0.67	ug/Kg	
o-Xylene	95-47-6	< 0.56	ψļ	6.5	0.56	ug/K.g	
Sty \	100-42-5	< 0.41	† <b>∤</b>	6.5	0.41	ug/K.g	
Bromoform	75-25-2	< 0.39	1 /00	6.5	0.39	ug/Kg	
Isopropylbenzene	98-82-8	< 0.48	ψ <b>/</b>	6.5	0.48	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.69	Ψĺ	6.5	0.69	ug/Kg	
t,3-Dichlorobenzene	541-73-1	< 0.27	<b>₩</b> {	6.5	0.27	ug/Kg	
l,4-Dichlorobenzene	106-46-7	< 0.46	Ψĺ	6.5	0.46	ug/Kg	
t,2-Dichlorobenzene	95-50-1	< 0.53	ψl	6.5	0.53	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.88	ψ)	6.5	0.88	ug/Kg	
1,2,4-Trichlorobenzene	120-82-1	< 0.32	Ψ/	6.5	0.32	ug/Kg	
JURROGATES						anr	
l,2-Dichloroethane-d4	17060-07-0	36.31	73 %	75 - 125		SPK: 50	
Dibromofluoromethane	1868-53-7	43.84	88 %	75 - 125	,	SPK: 50	
Foluene-d8	2037-26-5	43.68	87 %	75 - 125		SPK: 50	
1-Bromofluorobenzene	460-00-4	41.79	84 %	75 - 125		SPK: 50	
NTERNAL STANDARDS							
entafluorobenzene?	363-72-4	175213	4.21			•	
,4-Difluorobenzene	540-36-3	328572	4.83		•		
Chlorobenzene-d5	3114-55-4	218186	7.33				
,4-Dichlorobenzene-d4	3855-82-1	87752	8.76				

16 N

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

S3409-10 Client ID: SB-290-4 Sample ID: Date Received: 7/2/2004 Date Collected: 6/30/2004 Matrix: SOIL 7/13/2004 Date Analyzed: Analytical Run ID: VK071304 VK071322.D File ID: Instrument ID: MSVOAK Dilution:

Analytical Method: Sample Wt/Wol: Soil Aliquot Vol: <u>8260</u> <u>5.0</u>

.0 Units: g

Soil Extract Vol:

% Moisture: 7

Associated Blank:

7

VBK0713S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS							
Dichlorodifluoromethane	75-71-8	< 1.3	Ψ\	5.4	1.3	ug/Kg	
Chloromethane	74-87-3	< 0.36	Ψ)	5.4	0.36	ug/Kg	
Vinyl chloride	75-01-4	< 0.25	Ψ/	5.4	0.25	ug/Kg	
Bromomethane	74-83-9	< 0.76	Ψ/	5.4	0.76	ug/Kg	
Chloroethane	75-00-3	< 0.56	Ψ	5.4	0.56	ug/K.g	
Tri ofluoromethane	75-69-4	< 2.6	P(	5.4	2.6	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.49	⟨√	5.4	0.49	ug/Kg	
1,1-Dichloroethene	75-35-4	. < 0.23	Ψ/	5.4	0.23	ug/Kg ˈ	
Acetone	67-64-1	< 8.0	ÞΙ	27	0.8	ug/Kg	
Carbon disulfide	75-15-0	< 0.11	Ψl	5.4	0.11	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.25	<b>[</b> 2]	5.4	0.25	ug/Kg	
Methyl Acetate	79-20-9	< 1.4	JrJ	5.4	1.4	ug/Kg	
Methylene Chloride	75-09-2	6.9 <b>V</b>	128	5.4	0.73	ug/K.g	
rans-1,2-Dichloroethene	156-60-5	< 0.40	h/	5.4	0.40	ug/Kg	
l,1-Dichloroethane	75-34-3	< 0.38	† <u>.</u> ]	5.4	0.38	ug/Kg	
Cyclohexane	110-82-7	< 0.33		5.4	0.33	ug/Kg	
2-Butanone	78-93-3	< 2.4	b	27	2.4	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.32	† †	5.4	0.32	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.38	h	5.4	0.38	ug/K.g	
Chloroform	67-66-3	< 0.25	tr /	5.4	0.25	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.29	h	5.4	0.29	ug/Kg	
Methylcyclohexane	108-87-2	< 0.38	þ/	5.4	0.38	ug/Kg	Λ
Benzene	71-43-2	< 0.22	· þ(.m	5.4	0.22	ug/Kg	119
,2-Dichloroethane	107-06-2	< 3.3	f	5.4	3.3	ug/Kg	417
Prichloroethene	79-01-6	< 0.34	þ/	5.4	0.34	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.36	비	5.4	0.36	ug/Kg	
Bro dichloromethane	75-27-4	< 0.36	þ	5.4	0.36	ug/Kg	
-Myl-2-Pentanone	108-10-1	< 2.6	<b>/</b> 1	27	2.6	ug/Kg	
oluene	108-88-3	< 0.28	þ	5.4	0.28	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.28	þ	5.4	0.28	ug/Kg	204
is-1,3-Dichloropropene	10061-01-5	< 0.21	<b>₽</b> \	5.4	0.21	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.54	þ/	5.4	0.54	ug/Kg	
-Hexanone	<i>5</i> 91 <b>-</b> 78-6	< 3.4	ህ"	27	3.4	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Herrol, 4-cyclopontyl-

Sample ID:	S3409-10	Client ID:	SB-290-4
Date Collected: Date Analyzed: File ID: Dilution:	6/30/2004 7/13/2004 VK071322.D	Date Received: Matrix: Analytical Run ID: Instrument ID:	MSVOAK
Analytical Method: Sample Wt/Wol: Soil Aliquot Vol:	8260 5.0 Units: g	Associated Blank: Soil Extract Vol: % Moisture:	<u>VBK0713S2</u>

Parameter	CAS Number C	oncentration	C	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.45	D/	5.4	0.45	ug/Kg	
Tetrachloroethene	127-18-4	< 0.68	ψ )	5.4	0.68	ug/Kg	
Chlorobenzene	108-90-7	< 0.38	Ψ /	5.4	0.38	ug/Kg	
Ethyl Benzene	100-41-4	< 0.27	Ψ/	5.4	0.27	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.55	Ψ/	5.4	0.55	ug/Kg	
o-Xylene	95-47-6	< 0.46	Ψ	5.4	0.46	ug/Kg	
Sty \	100-42-5	< 0.34	Ψ	5.4	0.34	ug/Kg	
Broznoform	75-25-2	< 0.32	<b>₽\</b>	5.4	0.32	ug/Kg	
Isopropylbenzene	98-82-8	< 0.40	₽ <b>\</b> 03	5.4	0.40	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.57	Ψ/	5.4	0.57	ug/Kg	
1,3-Dichlorobenzene	541-73-1	< 0.23	Ψ ∤	5.4	0.23	ug/Kg	
1,4-Dichlorobenzene	106-46-7	< 0.38	ψ \	5.4	0.38	ug/Kg	
1,2-Dichlorobenzene	95-50-1	< 0.44	Ψ	5.4	0.44	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.73	ψ	5.4	0.73	ug/K.g	
1,2,4-Trichlorobenzene	120-82-1	< 0.27	ψ,	5.4	0.27	ug/Kg	
SURROGATES	17060-07-0	38.08	76 %	75 - 125		SPK: 50	
1,2-Dichloroethane-d4 Dibromofluoromethane	1868-53-7	48.28	97 %	75 - 125		SPK: 50	
	2037-26-5	47.13	94 %	75 - 125		SPK: 50	
Foluene-d8 4-Bromofluorobenzene	460-00-4	45.86	92 %	75 - 125		SPK: 50	
	400-00-4	13.00	72 70	75 225			
INTERNAL STANDARDS Pentafluorobenzene	363-72-4	185461	4.21		1		
1,4-Difluorobenzene	540-36-3	334759	4.83		$\mathcal{N}^{5}$		
Chlorobenzene-d5	3114-55-4	252963	7.33		111		
1,4-Dichlorobenzene-d4	3855-82-1	102706	8.76				
TENTITIVE IDENTIFIED CO	OMPOUNDS	17	J	8.92		ug/Kg	
Benzene, 1-methyl-2 (1 methyle	507527 CIVIT'	10		9.35		ug/Kg ug/Kg	
Be c, 1,2,3,5-tetramethyl-	527537 C10 H14/		J	9.33 9.38		ug/Kg ug/Kg	
	hyl. 4706905 CMH/C	29	J T	9.38 9.57		ug/Kg ug/Kg	
Senzene, 1-methyl-4 (1-methyle			J	9.37 9.74		ug/Kg ug/Kg	205
Senzene, 1-ethyl-2,4,5-trimethyl		23	J	9.74 9.81	•	ug/Kg ug/Kg	
-Propanone, 3-cyclopentyl=1-(2	55191112 vn kara	- 24	J	9.81		ug/Kg	

ug/Kg

ug/Kg

9.93

10.22

1518838 unkamm 19

17057828 10 (1964 10 20

Chemtech			
	Volatiles SW-846		
SDG No.: S3409  Client: Chazen Companies			
Sample ID: \$3409-10	Client ID:	SB-290-4	
Date Collected:         6/30/2004           Date Analyzed:         7/13/2004           File ID:         VK071322.D           Dilution:         1           Analytical Method:         8260           Sample Wt/Wol:         5.0         Units:         g           Soil Aliquot Vol:	Date Received: Matrix: Analytical Run ID: Instrument ID: Associated Blank: Soil Extract Vol: % Moisture:	7/2/2004 SOIL VK071304 MSVOAK VBK0713S2 7	_

 $\mathbf{C}$ 

MDL

Units

ug/Kg

RDL

10.74

JJ3

2471832 vn known 19

Concentration

CAS Number

Parameter

HI-Indone, I ethylidene

Volatiles SW-846

SDG No.:

S3409

Client: Cha	izen Companies					
Sample ID:	S3409-11			Client ID:	SB-348-12	•
Date Collected:	6/30/2004			Date Received:	7/2/2004	
Date Analyzed:	7/13/2004			Matrix:	SOIL	
File ID:	VK071323.D			Analytical Run ID:	<u>VK071304</u>	
Dilution:	1			Instrument ID:	MSVOAK	
Analytical Method:	8260		-	Associated Blank:	VBK0713S2	
Sample Wt/Wol:	5.0	Units:	g .	Soil Extract Vol:		
Soil Aliquot Vol:				% Moisture:	14	

Parameter	CAS Number	Concentration	C .	RDL	MDL	Units
TARGETS						
Dichlorodifluoromethane	75-71-8	< 1.4	Ψ\	5.8	1.4	ug/Kg
Chloromethane	74-87-3	< 0.38	Ψ ]	5.8	0.38	ug/Kg
Vinyl chloride	75-01-4	< 0.27	Ψ /	5.8	0.27	ug/Kg
Bromomethane	74-83-9	< 0.82	Ψ/	5.8	0.82	ug/K.g
Chloroethane	75-00-3	< 0.61	Ψ	5.8	0.61	ug/Kg
Γr: rofluoromethane	75-69-4	< 2.9	Ψ\	5.8	2.9	ug/Kg
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.53	4 >00	5.8	0.53	ug/K.g
1,1-Dichloroethene	75-35-4	< 0.25	Ψ/	5.8	0.25	ug/K.g
Acetone	67-64-1	< 8.7	Ψ/	29	8.7	ug/K.g
Carbon disulfide	75-15-0	< 0.12	Ψĺ	5.8	0.12	ug/Kg
Methyl tert-butyl Ether	1634-04-4	< 0.27	Ψl	5.8	0.27	ug/Kg
Methyl Acetate	79-20-9	< 1.5	t)	5.8	1.5	ug/Kg
Methylene Chloride	75-09-2	7.4 <b>U</b>	XX	5.8	0.79	ug/Kg
rans-1,2-Dichloroethene	156-60-5	< 0.43	μV	5.8	0.43	ug/Kg
1,1-Dichloroethane	75-34-3	< 0.41	ψ }	5.8	0.41	ug/Kg
Cyclohexane	110-82-7	< 0.35	<b>#</b> ]	5.8	0.35	ug/Kg
2-Butanone	78-93-3	< 2.6	Ψ /	29	2.6	ʻ ug/Kg
Carbon Tetrachloride	56-23-5	< 0.35	ψ <u>[</u> .	5.8	0.35	ug/Kg
cis-1,2-Dichloroethene	156-59-2	< 0.41	Ψĺ	5.8	0.41	ug/Kg
Chloroform	67-66-3	< 0.28	10	5.8	0.28	ug/Kg
1,1,1-Trichloroethane	71-55-6	< 0.32	Ψĺ	5.8	0.32	ug/Kg
Methylcyclohexane	108-87-2	< 0.41	ψl	5.8	0.41	ug/Kg
Benzene	71-43-2	< 0.23	すくいつ	5.8	0.23	ug/Kg
I,2-Dichloroethane	107-06-2	< 3.6	事 / *	5.8	3.6	ug/Kg
Prichloroethene	79-01-6	< 0.37	<b>V</b> /	5.8	0.37	ug/Kg
1,2-Dichloropropane	78-87-5	< 0.39	Ψ	5.8	0.39	ug/Kg
Br dichloromethane	75-27-4	< 0.39	<b>1</b> 1	5.8	0.39	ug/Kg
1-Natinyl-2-Pentanone	108-10-1	< 2.8	<b>₩</b>	29	2.8	ug/Kg
<b>Foluene</b>	108-88-3	< 0.30	ψ	5.8	0.30	ug/Kg
-1,3-Dichloropropene	10061-02-6	< 0.30	<b>₩</b> [	5.8	0.30	ug/Kg <b>224</b>
is-1,3-Dichloropropene	10061-01-5	< 0.23	ψ	5.8	0.23	ug/Kg
,1,2-Trichloroethane	79-00-5	< 0.59	₩ /	5.8	0.59	ug/Kg
-Hexanone	591-78-6	< 3.7	<b>Մ</b>	29	. 3.7	ug/Kg

Volatiles

SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-11

6/30/2004

Date Collected: Date Analyzed:

7/13/2004

File ID: Dilution: VK071323.D

Analytical Method:

8260

Sample Wt/Wol: Soil Aliquot Vol: 5.0

Units: g Client ID:

SB-348-12

Date Received:

Matrix:

7/2/2004 SOIL

Analytical Run ID: VK071304

Instrument ID:

Associated Blank:

MSVOAK VBK0713S2

Soil Extract Vol:

% Moisture:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	•
1,2-Dibromoethane	106-93-4	< 0.48	P\	5.8	0.48	ug/Kg	
Tetrachloroethene	127-18-4	< 0.74	ψ)	5.8	0.74	ug/Kg	
Chlorobenzene	108-90-7	< 0.41	ψļ	5.8	0.41	ug/Kg	
Ethyl Benzene	100-41-4	< 0.29	<b>1</b> 1	5.8	0.29	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.60	Ψĺ	5.8	0.60	ug/Kg	
o-Xylene	95-47-6	< 0.50	υ	5.8	0.50	ug/Kg	
St. B	100-42-5	< 0.36	Ψ	5.8	0.36	ug/Kg	
Bromoform	75-25-2	< 0.35	ψ\	5.8	0.35	ug/Kg	
Isopropylbenzene	98-82-8	< 0.43	# \U_	5.8	0.43	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.62	Ψ/	5.8	0.62	ug/K.g	
1,3-Dichlorobenzene	541-73-1	< 0.25	ψ/	5.8	0.25	ug/Kg	
1,4-Dichlorobenzene	106-46-7	< 0.41	Ψ/	5.8	0.41	ug/Kg	
1,2-Dichlorobenzene	95-50-1	< 0.48	U	5.8	0.48	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.79	Ψ	5.8	0.79	ug/Kg	
1,2,4-Trichlorobenzene	120-82-1	< 0.29	ψ)	5.8	0.29	ug/Kg	
SURROGATES	15000 05 0	´ 00 00	76.07	75 10E		SPK: 50	
1,2-Dichloroethane-d4	17060-07-0	37.78	76 %	75 - 125			
Dibromofluoromethane	1868-53-7	46.09	92 %	75 - 125		SPK: 50	
Foluene-d8	2037-26-5	46.03	92 %	75 - 125		SPK: 50	
4-Bromofluorobenzene	460-00-4	47.54	95 %	75 - 125		SPK: 50	
INTERNAL STANDARDS							
Pentafluorobenzene	363-72-4	190405	4.22			•	
1,4-Difluorobenzene	540-36-3	350652	4.84			ML	
Chlorobenzene-d5	3114-55-4	247145	7.33			()  7	
1,4-Dichlorobenzene-d4	3855-82-1	111013	8.75			. 1	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:	S3409-12	Client ID:	SB-348-12DUP
Date Collected: Date Analyzed: File ID: Dilution: Analytical Method Sample Wt/Wol: Soil Aliquot Vol:	6/30/2004 7/9/2004 V1070914.D 1: 8260 5.0 Units: g	Date Received: Matrix: Analytical Run ID Instrument ID: Associated Blank: Soil Extract Vol: % Moisture:	7/2/2004 SOIL : VI070804 MSVOAI VBI0709S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS					_	· · · · · · · · · · · · · · · · · · ·	
Dichlorodifluoromethane	75-71-8	< 1.4	<b>I</b> /	5.6	1.4	ug/Kg	
Chloromethane	74-87-3	< 0.37	Ψ)	5.6	0.37	ug/Kg	
Vinyl chloride	75-01-4	< 0.26	P	5.6	0.26	ug/Kg	
Bromomethane	74-83-9	< 0.79	¥ 1	5.6	0.79	ug/Kg	
Chloroethane	75-00-3	< 0.58	10	5.6	0.58	ug/Kg	
Tr' rofluoromethane	75-69-4	< 2.7	בטלין	5.6	2.7	ug/Kg	
1,1,2- Érichlorotrifluoroethane	76-13-1	< 0.51	17/02	5.6	0.51	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.24	¥1	5.6	0.24	ug/Kg	
Acetone	67-64-1	< 8.3	Ψ.	28	8.3	ug/Kg	
Carbon disulfide	75-15-0	< 0.11	t l	5.6	0.11	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.25	Ψ)	5.6	0.25	ug/Kg	
Methyl Acetate	79-20-9	< 1.4	$\mathbf{t}_{1}$	5.6	1.4	ug/Kg	
Methylene Chloride	75-09-2	516 <del>36</del> U	XX	5.6	0.76	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.41	P۸	5.6	0.41	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.39	ψ \	5.6	0.39	ug/Kg	
Cyclohexane	110-82-7	< 0.34	Ψ \	5.6	0.34	ug/Kg	Λ
l-Butanone	78-93-3	< 2.5	ψl	28	2.5	ug/Kg	117
Carbon Tetrachloride	56-23-5	< 0.33	U I	5.6	0.33	ug/Kg	1 "
is-1,2-Dichloroethene	156-59-2	< 0.39	Ψĺ	5.6	0.39	ug/Kg	
Chloroform	67-66-3	< 0.26	Ψ /	5.6	0.26	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.30	Ψ/	5.6	0.30	ug/Kg	
1/dethylcyclohexane	108-87-2	< 0.39	Ψİ	5.6	0.39	ug/Kg	
enzene	71-43-2	< 0.22	כטליו	5.6	0.22	ug/Kg	
,2-Dichloroethane	107-06-2	< 3.4	ψ/ <b>"</b>	5.6	3.4	ug/Kg	
richloroethene	79-01-6	< 0.36	Ψ/	5.6	0.36	ug/Kg	
,2-Dichloropropane	78-87-5	< 0.37	ψĮ	5.6	0.37	ug/Kg	
ror dichloromethane	75-27-4	< 0.37	Ψĺ	5.6	0.37	ug/Kg	
-N. 1-2-Pentanone	108-10-1	< 2.7	b	28	2.7	ug/Kg	-
oluene	108-88-3	< 0.29	Ψ	5,6	0.29	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.28	ψl	5.6	0.28	ug/Kg	234
s-1,3-Dichloropropene	10061-01-5	< 0.22	ψ	5.6	0.22	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.56	b	5.6	0.56	ug/K.g	
Hexanone	591-78-6	< 3.6	v'	28	3.6	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

File ID:

**Chazen Companies** 

Sample ID:

S3409-12

Client ID:

SB-348-12DUP

VI070804

Date Collected: Date Analyzed: 6/30/2004 7/9/2004

Dilution: Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol:

VI070914.D

8260 5.0 Units:

g

Date Received:

Matrix:

Analytical Run ID: Instrument ID:

Associated Blank:

Soil Extract Vol:

% Moisture:

**MSVOAI** 

10

SOIL

7/2/2004

VB10709S2

Parameter	CAS Number	Cor	icentration	C	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	<	0.46	U	5.6	0.46	ug/Kg
Tetrachloroethene	127-18-4	<	0.71	U	5.6	0.71	ug/Kg
Chlorobenzene	108-90-7	<	0.39	U	5.6	0.39	ug/Kg
Ethyl Benzene	100-41-4	<	0.28	U	5.6	0.28	ug/Kg
m/p-Xylenes	136777-61-2	<	0.57	U	5.6	0.57	ug/K.g
o-Xylene	95-47-6	<	0.48	U	5.6	0.48	ug/Kg
Styr	100-42-5	<	0.35	U	5.6	0.35	ug/Kg
Brownorm	75-25-2	<	0.33	U	5.6	0.33	ug/Kg
[sopropylbenzene	98-82-8	<	0.41	U	5.6	0.41	ug/Kg
1,1,2,2-Tetrachloroethane	79-34-5	<	0.59	U	5.6	0.59	ug/Kg
1,3-Dichlorobenzene	541-73-1	<	0.23	U	5.6	0.23	ug/Kg
1,4-Dichlorobenzene	106-46-7	<	0.39	U	5.6	0.39	ug/Kg
1,2-Dichlorobenzene	95-50-1	<	0.45	U	5.6	0.45	ug/Kg
1,2-Dibromo-3-Chloropropane	96-12-8	<	0.75	U	5.6	0.75	ug/Kg
1,2,4-Trichlorobenzene	120-82-1	<	0.28	U	5.6	0.28	ug/Kg
JURROGATES	. = 0 < 0 = 0						
1,2-Dichloroethane-d4	17060-07-0		41.34	83 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7		44.09	88 %	75 - 125	•,	SPK: 50
Γoluene-d8	2037-26-5		45.74	91 %	75 - 125		SPK: 50
I-Bromofluorobenzene	460-00-4		48.59	97 %	75 - 125		SPK: 50
NTERNAL STANDARDS						,	۸
'entafluorobenzene	363-72-4		170474	3.86		$\mathcal{N}$	4
,4-Difluorobenzene	540-36-3		301312	4.32		'11	1
Chlorobenzene-d5	3114-55-4		281842	7.40		•	
,4-Dichlorobenzene-d4	3855-82-1		126338	9.67			

Volatiles SW-846

SDG No.:

Soil Aliquot Vol:

S3409

Client:

**Chazen Companies** 

Sample ID:	S3409-12RE	Client ID:	SB-348-12DUPRE
Date Collected:	6/30/2004	Date Received:	7/2/2004
Date Analyzed:	7/13/2004	Matrix:	SOIL
File ID:	VK071324.D	Analytical Run ID:	VK071304
Dilution:	1	Instrument ID:	MSVOAK
Analytical Method	1: 8260	Associated Blank:	VBK0713S2
Sample Wt/Wol:	5.0 Units: g	Soil Extract Vol:	

% Moisture:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Dichlorodifluoromethane	75-71-8	< 1.4	Ψ\.	5.6	1.4	ug/Kg
Chloromethane	74-87-3	< 0.37	₩ \	5.6	0.37	ug/Kg
Vinyl chloride	75-01-4	< 0.26	Ψ	5.6	0.26	ng/Kg
Bromomethane	74-83-9	< 0.79	Ψ	5.6	/2K/9	ug/Kg
Chloroethane	75-00-3	< 0.58	Ψ	5.6	(0.58	ug/Kg
fric pfluoromethane	75-69-4	< 2.7	Ψ ( .	5.6	^ 2×7 <b>/</b>	ug/Kg
,1,2-Trichlorotrifluoroethane	76-13-1	< 0.51	ψ <b>&gt;</b> υ	J 5.6	15.51	ug/Kg
,1-Dichloroethene	75-35-4	< 0.24	Ψ/	5.5	b 24	ug/K.g
Acetone	67-64-1	< 8.3	Ψ (	~ ~ 28 V	8.3 A _	ug/Kg
Carbon disulfide	75-15-0	< 0.11	Ψ	5.60 S	12/7	ug/Kg
Methyl tert-butyl Ether	1634-04-4	< 0.25	₩ }	3.0	, w ₁ 20	ug/Kg
Lethyl Acetate	79-20-9	< 1.4	11/	5.6	1.4	ug/Kg
Aethylene Chloride	75-09-2	5.1	$\mathbb{F}_{J}$	V 5.9	0.76	ug/Kg
rans-1,2-Dichloroethene	156-60-5	< 0.41	h/	5.6	0.41	ug/Kg
,1-Dichloroethane	75-34-3	< 0.39	þ <b>\</b>	5.6	0.39	ug/Kg
Cyclohexane	110-82-7	< 0.34	P	5.6	0.34	ug/Kg
-Butanone	78-93-3	< 2.5	h   <b>/</b>	28	2.5	ug/Kg
Carbon Tetrachloride	56-23-5	< 0.33	tr 🔏	5.6	0.33	ug/Kg 🎢 )
is-1,2-Dichloroethene	156-59-2	< 0.39	<b>7</b>	5.6	0.39	ug/Kg
hloroform	67-66-3	< 0.26	<b>/</b> p	5.6	0.26	ug/Kg
,1,1-Trichloroethane	71-55-6	< 0.30	' þ	5.6	0.30	ug/Kg
1ethylcyclohexane	108-87-2	< 0.39	h	5.6	0.39	ug/Kg
enzene	71-43-2	< 0.22	h (	5.6	0.22	ug/Kg
2-Dichloroethane	107-06-2	< 3.4	h )0:		3.4	ug/Kg
richloroethene	79-01-6	< 9.36	þ /	5.6	0.36	ug/Kg
2-Dichloropropane	78-87-5	< 0.37	þ <b>/</b>	5.6	0.37	ug/Kg
rom 'ichloromethane	75-27-4	< 0.37	þ /	5.6	0.37	ug/Kg
-Me. 1-2-Pentanone	108-10-1	< 2.7	μĮ	28	2.7	ug/Kg
oluene	108-88-3	< 0.29	D	5.6	0.29	ug/Kg
1,3-Dichloropropene	10061-02-6	< 0.28	μ	5.6	0.28	ug/Kg <b>243</b>
s-1,3-Dichloropropene	10061-01-8	- < 0.22	<b>\$</b> \	5.6	0.22	ug/Kg
1,2-Trichloroethane	79-00-5	< 0.56	μl	5.6	0.56	ug/Kg
Hexanone	591 <b>-7</b> 8-6	< 3.6	v'	28	3.6	ug/Kg

Sample ID:

Volatiles SW-846

SDG No.: S3409

Client: Chazen Companies

Date Collected: 6/30/2004 Date Analyzed: 7/13/2004

S3409-12RE

VK071324.D File ID:

Dilution: Analytical Method:

Senzene, (2-methyl-2-propenyl):

Vaplithalene, 1,2,3,4-tetrahydro-1-

. 8-Dihydronaphthol

<del>lectamide, 2 cyano</del>

4-Cyclohexadien-i-

-Ouinolinol-

me, 2,3-dihydro-1,1-dimet

4-6-dime

Sample Wt/Wol: Soil Aliquot Vol: 8260 5.0 Units:

g

3290537~C10H12-11

4912929 in known 11

55257993 CIL IF (C) 19

107915 Valence 9.6

580165 Wknow 10

51738159 Lukum

13

0 bulinown

1559815 CU HIC

Client ID:

**SB-348-12DUPRE** 

Date Received: 7/2/2004 Matrix:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

SOIL VK071304 MSVOAK

VBK0713S2 10

9.61

9.79

9.83

10.06

10.14

10.24

10.47

10.65

J

J

J

J

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

244

RDL MDL Units CAS Number Concentration  $\mathbf{C}$ Parameter ug/Kg 106-93-4 < 0,46 5.6 0.46 1,2-Dibromoethane 0.71 5.6 0.71 ug/Kg Tetrachloroethene 127-18-4 108-90-7 < 0.39 5.6 0.39 ug/Kg Chlorobenzene 0.28ug/Kg Ethyl Benzene 100-41-4 0.28 5.6 0.57ug/Kg 136777-61-2 0.57 m/p-Xylenes < 9.48 ug/Kg o-Xylene 95-47-6 0.48 ug/Kg 100-42-5 0.35 Styr ug/Kg Bromm'orm 75-25-2 0.33 ug/Kg (sopropylbenzene 98-82-8 0.41 0.59 5.6 ug/Kg 1,1,2,2-Tetrachloroethane 79-34-5 0.59 0.23 5.6 0.23 ug/Kg 541-73-1 1,3-Dichlorobenzene ug/Kg 0.39 5.6 0.39 106-46-7 1,4-Dichlorobenzene 0.45 5.6 0.45 ug/Kg 95-50-1 1.2-Dichlorobenzene 0.75 ug/Kg 96-12-8 0.75 5.6 1,2-Dibromo-3-Chloropropane 0.28 0.28 ug/Kg 1,2,4-Trichlorobenzene 120-82-1 5.6 SURROGATES ~ 69 % SPK: 50 17060-07-0 34.67 75 - 125 1,2-Dichloroethane-d4 SPK: 50 110 % 75 - 125 55.04 Dibromofluoromethane 1868-53-7 75 - 125 SPK: 50 41.47 83 % 2037-26-5 Foluene-d8 75 - 125 SPK: 50 123 % 460-00-4 61.38 4-Bromofluorobenzene INTERNAL STANDARDS 4.22 363-72-4 37846 Pentafluorobenzene 4.86 56360 4-Difluorobenzene 540-36-3 3114-55-4 60532 7.39 Chlorobenzene-d5 8.84 1.4-Dichlorobenzene-d4 3855-82-1 22640 FENTITIVE IDENTIFIED COMPOUNDS

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-13

6/30/2004

Date Collected: Date Analyzed: File ID:

7/9/2004 V1070916.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 8260 5.0

Units:

g

Client ID:

Date Received:

Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

SB-324-8

7/2/2004 SOIL

VI070804

**MSVOAI** VB10709S2

Parameter	CAS Number	Cor	ncentration	С	RDL	MDL	Units	
TARGETS								
Dichlorodifluoromethane	75-71-8	<	1.4	U	5.7	1.4	ug/Kg	
Chloromethane	74-87-3	<	0.38	U	5.7	0.38	ug/Kg	
Vinyl chloride	75-01-4	<	0.27	U	5.7	0.27	ug/K.g	
Bromomethane	74-83-9	<	0.80	U	5.7	0.80	ug/Kg	
Chloroethane	75-00-3	<	0.60	U	<b>5.7</b> .	0.60	· ug/Kg	
Tric ofluoromethane	75-69-4	<	2.8	U	5.7	2.8	ug/Kg	
1,1,2-Trichlorotrifluoroethane	76-13-1	<	0.52	U	5.7	0.52	ug/Kg	
I,1-Dichloroethene	75-35-4	<	0.24	U	5.7	0.24	ug/Kg	
Acetone	67-64-1	<	8.5	U	28	8.5	ug/Kg	
Carbon disulfide	75-15-0	<	0.11	U	5.7	0.11	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	<	0.26	U	5.7	0.26	ug/Kg	
Methyl Acetate	79-20-9	<	1.4	U	5.7	1.4	ug/Kg	
Methylene Chloride	75-09-2	<	0.77	U	5.7	0.77	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	<	0.42	U	5.7	0.42	ug/Kg	
l,1-Dichloroethane	75-34-3	<	0.40	U	5.7	0.40	ug/Kg	
Cyclohexane	110-82-7	<	0.35	U	5.7	0.35	ug/Kg	
2-Butanone	78-93-3	<	2.6	U	28	2.6	ug/Kg	
Carbon Tetrachloride	56-23-5	<	0.34	U	5.7	0.34	ug/Kg	
is-1,2-Dichloroethene	156-59-2	<	0.40	U	5.7	0.40	ug/Kg	
Chloroform	67-66-3	<	0.27	U	5.7	0.27	ug/Kg	^^
,1,1-Trichloroethane	71-55-6	<	0.31	U	5.7	0.31	ug/Kg	$\mathcal{A}(\mathcal{A})$
Methylcyclohexane	108-87-2	<	0.40	U	5.7	0.40	ug/Kg	1,
Benzene	71-43-2	<	0.23	ガしつ	5.7	0.23	ug/Kg	
,2-Dichloroethane	107-06-2	<	3.5	U	5.7	3.5	ug/Kg	
richloroethene	79-01-6	<	0.36	として	5.7	0.36	ug/Kg	
,2-Dichloropropane	78-87-5	<	0.38	U	5.7	0.38	ug/Kg	
Bror \ichloromethane	75-27-4	<	0.38	U	5.7	0.38	ug/Kg	
-Mcgl-2-Pentanone	108-10-1	<	2.7	U	28	2.7	ug/Kg	
`oluene	108-88-3	<	0.29	U	5.7	0.29	ug/Kg	
1,3-Dichloropropene	10061-02-6	<	0.29	U	5.7	0.29	ug/Kg	268
is-1,3-Dichloropropene	10061-01-5	<	0.22	JU UJ	5.7	0.22	ug/Kg	
,1,2-Trichloroethane	79-00-5	<	0.57	U	5.7	0.57	ug/Kg	
Hexanone	591-78-6	<	3.6	U	28	3.6	ug/Kg	

Volatiles

SW-846

SDG No.:

S3409

Client:

File ID:

**Chazen Companies** 

Sample ID:

S3409-13

Client ID:

SB-324-8

Date Collected: Date Analyzed: 6/30/2004 7/9/2004

V1070916.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol:

8260 5.0

Units: g Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

12

7/2/2004 SOIL

VI070804 **MSVOAI** 

**VBI0709S2** 

?arameter	CAS Number	Concentration	C	RDL	MDL	Units
.,2-Dibromoethane	106-93-4	< 0.47	U	5.7	0.47	ug/Kg
letrachloroethene	127-18-4	< 0.72	U	5.7	0.72	ug/Kg
Chlorobenzene	108-90-7	< 0.40	U	5.7	0.40	ug/Kg
3thyl Benzene	100-41-4	< 0.28	U	5.7	0.28	ug/Kg
n/p-Xylenes	136777-61-2	< 0.58	U	5.7	0.58	ug/Kg
-Xylene	95-47-6	< 0.49	U	5.7	0.49	ug/Kg
Styrr \	100-42-5	< 0.36	U	5.7	0.36	ug/Kg
3ronorm	75-25-2	< 0.34	$\Omega$	5.7	0.34	ug/Kg
sopropylbenzene	98-82-8	< 0.42	U	5.7	0.42	ug/Kg
,1,2,2-Tetrachloroethane	79-34-5	< 0.60	U	5.7	0.60	ug/Kg
,3-Dichlorobenzene	541-73-1	< 0.24	U	5.7	0.24	ug/Kg
,4-Dichlorobenzene	106-46-7	< 0.40	U	5.7	0.40	ug/Kg
,2-Dichlorobenzene	95-50-1	< 0.46	U	5.7	0.46	ug/Kg
,2-Dibromo-3-Chloropropane	96-12-8	< 0.77	U	5.7	0.77	ug/Kg
,2,4-Trichlorobenzene	120-82-1	< 0.28	U	5.7	0.28	ug/Kg
URROGATES						
,2-Dichloroethane-d4	17060-07-0	39.16	78 %	75 - 125		SPK: 50
bibromofluoromethane	1868-53-7	50.12	100 %	75 - 125		SPK: 50
oluene-d8	2037-26-5	45.88	92 %	75 - 125		SPK: 50
-Bromofluorobenzene	460-00-4	44.87	90 %	75 - 125		SPK: 50
NTERNAL STANDARDS						
entafluorobenzene	363-72-4	461038	3.86	. 6		
4-Difluorobenzene	540-36-3	807889	4.32	$\mathcal{N}$		
hlorobenzene-d5	3114-55-4	738731	7.40	7'/		
4-Dichlorobenzene-d4	3855-82-1	320661	9.67			

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-14

Client ID:

SB-204-8

Date Collected:

6/29/2004

Date Received: Matrix:

7/2/2004

Date Analyzed:

7/9/2004

SOIL VI070804

File ID:

VI070917.D

Units:

g

Analytical Run ID: Instrument ID:

**MSVOAI** 

Dilution: Analytical Method:

<u>8260</u>

Associated Blank:

% Moisture:

**VBI0709S2** 

Sample Wt/Wol:

5.0

Soil Extract Vol:

28

Soil Aliquot Vol:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS			ž.,			tre	
Dichlorodifluoromethane	75-71-8	< 1.7	F)	6.9	1.7	ug/Kg	
Chloromethane	74-87-3	< 0.46	P. J	6.9	0.46	ug/Kg	
Vinyl chloride	75-01-4	< 0.33	11	6.9	0.33	ug/Kg	
Bromomethane	74-83-9	< 0.98	P (.a.	6.9	0.98	ug/Kg	
Chloroethane	75-00-3	< 0.73		6.9	0.73	ug/Kg	
Tric offluoromethane	75-69-4	< 3.4	P	6.9	3.4	ug/Kg	
,1,2-1 richlorotrifluoroethane	76-13-1	< 0.64	₽ <b>\</b>	6.9	0.64	ug/K.g	
.,1-Dichloroethene	75-35-4	< 0.30	ft 1	6.9	0.30	ug/Kg	
Acetone	67-64-1	3525 U	XX	$\sqrt{3}5$	10	ug/Kg	
Carbon disulfide	75-15-0	< 0.14	h)	6.9	0.14	ug/Kg	
Aethyl tert-butyl Ether	1634-04-4	< 0.32	p > 00	6.9	0.32	ug/Kg	
Aethyl Acetate	79-20-9	< 1.8	†ι <b>Ι</b>	6.9	1.8	ug/Kg	
Aethylene Chloride	75-09-2	12 <b>U</b>	7	<b>/</b> 6.9	0.94	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.52	Ψί	6.9	0.52	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.49	ψ\	6.9	0.49	ug/Kg	
yclohexane	110-82-7	< 0.42	ψ \	6.9	0.42	ug/Kg	
-Butanone	78-93-3	< 3.2	₩	35	3.2	ug/Kg	
arbon Tetrachloride	56-23-5	< 0.41	ψ	6.9	0.41	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.49	₩ [	6.9	0.49	ug/Kg	1/2
hloroform	67-66-3	< 0.33	₩	6.9	0.33	ug/Kg	y• /
,1,1-Trichloroethane	71-55-6	< 0.38	<b>v</b> /	6.9	0.38	ug/Kg	
lethylcyclohexane	108-87-2	< 0.49	ψ /	6.9	0.49	ug/Kg	
enzene	71-43-2	< 0.28	すくいつ	6.9	0.28	ug/Kg	
2-Dichloroethane	107-06-2	< 4.3	$\psi$ /	6.9	4.3	ug/Kg	
richloroethene	79-01-6	< 0.44	ψ/	6.9	0.44	ug/Kg	
2-Dichloropropane	78-87-5	< 0.47	₩/	6.9	0.47	ug/Kg	
rom 'ichloromethane	75-27-4	< 0.46	₩/	6.9	0.46	ug/Kg	
Me. 1-2-Pentanone	108-10-1	< 3.3	Ψ	35	3.3	ug/Kg	
oluene	108-88-3	< 0.36	$\psi$	6.9	0.36	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.36	$\psi$	6.9	0.36	ug/Kg	277
s-1,3-Dichloropropene	10061-01-5	< 0.27	ψ	6.9	0.27	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.70	ψl	6.9	0.70	ug/Kg	
Hexanone	591-78-6	< 4.4	₽ <i>/</i>	35	4.4	ug/Kg	

Volatiles

SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-14

Client ID:

SB-204-8

28

Date Collected:

6/29/2004 7/9/2004

Date Analyzed: File ID:

V1070917.D

Dilution:

2260

Analytical Method: Sample Wt/Wol: Soil Aliquot Vol: 8260 5.0

Units: g

Date Received: Matrix:

Analytical Run ID:

Analytical Run ID: Instrument ID; Associated Blank:

Soil Extract Vol: % Moisture:

7/2/2004

SOIL

VI070804 MSVOAI VBI0709S2

Parameter	CAS Number	Concentration	$\mathbf{c}$	RDL	MDL	Units
l,2-Dibromoethane	106-93-4	< 0.58	Ψı	6.9	0.58	ug/Kg
Tetrachloroethene	127-18-4	< 0.88	þ	6.9	0.88	ug/Kg
Chlorobenzene	108-90-7	< 0.49	Į <b>u</b> ∖	6.9	0.49	ug/Kg
Ethyl Benzene	100-41-4	< 0.35	υl	6.9	0.35	ug/Kg
n/p-Xylenes	136777-61-2	< 0.71	וּן	6.9	0.71	ug/Kg
o-Xylene	95-47-6	< 0.60	ty [	6.9	0.60	ug/Kg
Styr	100-42-5	< 0.43	l d	6.9	0.43	ug/Kg
Bronworm	75-25-2	< 0.42	t Sva	6.9	0.42	ug/Kg
sopropylbenzene	98-82-8	< 0.51	Ψ/	6.9	0.51	ug/Kg
,1,2,2-Tetrachloroethane	79-34-5	< 0.73	₩/	6.9	0.73	ug/Kg
,3-Dichlorobenzene	541-73-1	< 0.29	Մ∫	6.9	0.29	ug/Kg
,4-Dichlorobenzene	106-46-7	< 0.49	Ψľ	6.9	0.49	ug/Kg
,2-Dichlorobenzene	95-50-1	< 0.57	ψ(	6.9	0.57	ug/Kg
,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	ψ\	6.9	0.94	ug/Kg
,2,4-Trichlorobenzene	120-82-1	< 0.35	$\Phi_1$	6.9	0.35	ug/Kg
URROGATES						
,2-Dichloroethane-d4	17060-07-0	58.79	118 %	75 - 125		SPK: 50
Dibromofluoromethane	1868-53-7	84.71	169 %	75 - 125		SPK: 50
`oluene-d8	2037-26-5	31.67	63 %	75 - 125		SPK: 50
-Bromofluorobenzene	460-00-4	10.27	21 %	75 - 125		SPK: 50
NTERNAL STANDARDS						
entafluorobenzene	363-72-4	226964	3.86	A		
4-Difluorobenzene	540-36-3	434038	4.32	711		
blorobenzene-d5	3114-55-4	158087	7.40			
4-Dichlorobenzene-d4	3855-82-1	28102	9.67			

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample D: <u>S3409-14RE</u>

Date Collected: <u>6/29/2004</u>

Date Analyzed: File ID:

yzed: <u>7/13/2004</u> VK071326.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 8260 5.0

5.0 Units:

g

Client ID:

SB-204-8RE

7/2/2004

MSVOAK

VK071304

VBK0713S2

SOIL

Date Received:

Matrix:
Analytical Run ID:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

28

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS						F	
Dichlorodifluoromethane	75-71-8	< 1.7	U	6.9	1.7	ug/Kg	
Chloromethane	74-87-3	< 0.46	U	6.9	0.46	ug/K.g	
Vinyl chloride	75-01-4	< 0.33	U	6.9	0.33	/g/Kg	
Bromomethane	74-83-9	< 0.98	U	6.9	0.98	ug/Kg	
Chloroethane	75-00-3	< 0.73	U	6.9	0.73	ug/Kg	
Tri rofluoromethane	75-69-4	< 3.4	U	6.9	3.4	ug/Kg	
1,1,2-1 richlorotrifluoroethane	76-13-1	< 0.64	U	6.9	0.64	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.30	U	6.9ع ،	0,80	ug/Kg	
Acetone	67-64-1	< 10	U	. 1 ¹ 35	/10	ug/Kg	
Carbon disulfide	75-15-0	< 0.14	U .,	راژه ۱۳۶۰	0.14	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.32	U V	56.9	0.32	ug/Kg	
Methyl Acetate	79-20-9	< 1.8	$\mathbf{\Psi}$	(-1) 6.9	1.8	ug/Kg	
Methylene Chloride	75-09-2	22	(AB ~	- / _{6.9} /	0.94	ug/Kg	
trans-1,2-Dichloroethene	156-60-5	< 0.52	Y _N	6.9	0.52	ug/K.g	
1,1-Dichloroethane	75-34-3	< 0.49	U	6.0	0.49	ug/Kg	
Cyclohexane	110-82-7	< 0.42	U	6.9	0.42	ug/Kg	
2-Butanone	78-93-3	< 3.2	U /	35	3.2	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.41	U /	6.9	0.41	ug/Kg	M
cis-1,2-Dichloroethene	156-59-2	< 0.49	IJ	6.9	0.49	ug/Kg	917
Chloroform	67-66-3	< 0.33	U	6.9	0.33	ug/Kg	, , ,
1,1,1-Trichloroethane	71-55-6	< 0.38	<b>/</b> U	6.9	0.38	ug/Kg	
Methylcyclohexane	108-87-2	< 0.49	U	6.9	0.49	ug/Kg	
Benzene	71-43-2	< 0.28	U	6.9	0.28	ug/Kg	
1,2-Dichloroethane	107-06-2	< 4.3	U	6.9	4.3	ug/Kg	
Trichloroethene	79-01-6	< 0.44	U	6.9	0.44	ug/Kg	
1,2-Dichloropropane	78-87-5	0.47</td <td>U</td> <td>6.9</td> <td>0.47</td> <td>ug/Kg</td> <td></td>	U	6.9	0.47	ug/Kg	
Bron dichloromethane	75-27-4	0.46	U	6.9	0.46	ug/Kg	
4-M yl-2-Pentanone	108-10-1	< 3.3	U	35	3.3	ug/Kg	
<b>Foluene</b>	108-88-3	< 0.36	U	6.9	0.36	ug/Kg	
-1,3-Dichloropropene	10061-02-6	< 0.36	U	6.9	0.36	ug/Kg	286
is-1,3-Dichloropropene	10061-01-5	< 0.27	U	6.9	0.27	ug/Kg	
,1,2-Trichloroethane	79-00-5	< 0.70	U	6.9	0.70	ug/Kg	
-Hexanone	591-78-6	< 4.4	U	35	4.4	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-14RE

Date Collected:

Date Analyzed: File ID:

Dilution:

Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

6/29/2004

7/13/2004 VK071326.D

> <u>8260</u> 5.0 Units: g

Client ID:

Date Received:

Matrix:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

**SB-204-8RE** 

7/2/2004

SOIL

VK071304

MSVOAK

VBK0713S2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
l,2-Dibromoethane	106-93-4	< 0.58	U	6.9	0.58	ug/Kg	
letrachloroethene	127-18-4	< 0.88	U	6.9	0.88	ug/Kg	
Chlorobenzene	108-90-7	< 0.49	U	6.9	0.49	ug/Kg	
Ethyl Benzene	100-41-4	< 0.35	U	6.9k	0.38	ug/Kg	
n/p-Xylenes	136777-61-2	< 0.71	U,	6.9 6.9 6.9	0.71	ug/Kg	
-Xylene	95-47-6	< 0.60	SU V	7' 6.95	0.60	ug/Kg	
tyre- \	100-42-5	< 0.43	100	1-1569	0.43	ug/Kg	
Broll Jrm	75-25-2	< 0.42	2 11VV)	6.9	0.42	ug/Kg	
sopropylbenzene	98-82-8	< 0.51	U	- (69)	0.51	ug/Kg	,
,1,2,2-Tetrachloroethane	79-34-5	< 0.73	/U /	<b>)</b> 1 6.9	0.73	ug/Kg	
,3-Dichlorobenzene	541-73-1	< 0.29	U	6.9	0.29	ug/Kg	
,4-Dichlorobenzene	106-46-7	< 9.49	U	6.9	0.49	ug/Kg	
,2-Dichlorobenzene	95-50-1	0.57	U	6.9	0.57	ug/Kg	
,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	6.9	0.94	ug/Kg	
,2,4-Trichlorobenzene	120-82-1	< 0.35	U	6.9	0.35	ug/Kg	
URROGATES							
,2-Dichloroethane-d4	17060-07-0	49.71	99 %	75 - 125		SPK: 50	
ibromofluoromethane	1868-53-7	81.15	162 %	75 - 125		SPK: 50	
oluene-d8	2037-26-5	35.58	71 %	75 - 125		SPK: 50	
Bromofluorobenzene	460-00-4	4.25	8 %	75 - 125		SPK: 50	
TERNAL STANDARDS							
entafluorobenzene	363-72-4	64472	4.23			$\mathcal{M}$	
4-Difluorobenzene	540-36-3	116605	4.85		<b>/</b>	19	
hlorobenzene-d5	3114-55-4	54172	7.39		1	<b>y</b> /	
4-Dichlorobenzene-d4	3855-82-1	6989	8.96				

Volatiles SW-846

SDG No.:

Soil Aliquot Vol:

S3409

Client:

Chazen Companies

Client ID: Sample ID: S3409-15 SB-244-8 Date Collected: Date Received: 7/2/2004 6/30/2004 Matrix: SOIL Date Analyzed: 7/13/2004 File ID: VK071327.D Analytical Run ID: VK071304 Dilution: Instrument ID: MSVOAK Associated Blank: Analytical Method: <u>8260</u> VBK0713S2 Sample Wt/Wol: Units: Soil Extract Vol: 5.0 g

% Moisture:

_16

Parameter	CAS Number	Concentration	С	RDL	MDL	Units	
FARGETS							
Dichlorodifluoromethane	75-71-8	< 1.5	<b>b</b> ./	6.0	1.5	ug/Kg	
Chloromethane	74-87-3	< 0.39	P )	6.0	0.39	ug/Kg	
Vinyl chloride	75-01-4	< 0.28	p I	6.0	0.28	ug/Kg	
3romomethane	74-83-9	< 0.84	רט 🤄	6.0	0.84	ug/Kg	
Chloroethane	75-00-3	< 0.62	p/	6.0	0.62	ug/Kg	
Tric offuoromethane	75-69-4	< 2.9	þΙ	6.0	2.9	ug/Kg	
1,1,2-1 richlorotrifluoroethane	76-13-1	< 0.55	μļ	6.0	0.55	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.26	$\mathfrak{t}_{I}$	6.0	0.26	ug/Kg	
Acetone	67-64-1	89 <b>U</b>		<b>3</b> 0	8.9	ug/Kg	
Carbon disulfide	75-15-0	36	J	V 6.0	0.12	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.27	PSun	6.0	0.27	ug/Kg	
Methyl Acetate	79-20-9	< 1.5	0	6.0	1.5	ug/Kg	
Methylene Chloride	75-09-2	6,0.4 <del>.5</del> U	XX	<b>√</b> 6.0	0.81	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.44	Ψ\	6.0	0.44	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.42	Ψ /	6.0	0.42	ug/Kg	
Cyclohexane	110-82-7	< 0.36	₩ \	6.0	0.36	ug/Kg	
l-Butanone	78-93-3	< 2.7	₩	30	2.7	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.35	<b>b</b> 1	6.0	0.35	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.42	₩	6.0	0.42	ug/Kg	
hloroform	67-66-3	< 0.28	<b>V</b>	6.0	0.28	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.32	₩	6.0	0.32	ug/Kg	
1ethylcyclohexane	108-87-2	< 0.42	₩ (	6.0	0.42	ug/Kg	
enzene	71-43-2	< 0.24	( )VJ	6.0	0.24	ug/Kg	Λa
,2-Dichloroethane	107-06-2	< 3.7	<b>v</b> /	6.0	3.7	ug/Kg	1/4
richloroethene	79-01-6	< 0.38	Ψl	6.0	0.38	ug/Kg	()° /
,2-Dichloropropane	78-87-5	< 0.40	þ	6.0	0.40	ug/Kg	V
romadichloromethane	75-27-4	< 0.40	ψ	6.0	0.40	ug/Kg	
-M. 1-2-Pentanone	108-10-1	< 2.9	υl	30	2.9	ug/Kg	
oluene	108-88-3	< 0.31	ψ\	6.0	0.31	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.30	$\psi$ \	6.0	0.30	ug/Kg	300
s-1,3-Dichloropropene	10061-01-5	< 0.23	tr }	6.0	0.23	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.60	tr /	6.0	0.60	ug/Kg	
Hexanone	591-78-6	< 3.8	$\psi'$	30	3.8.	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID: \$3409-15

Date Collected: 6/30/2004

Date Analyzed: 7/13/2004

File ID: VK071327.D
Dilution: 1

Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

: <u>}</u>

8260 5.0 Units:

g

Client ID:

Date Received:

Matrix:

Analytical Run ID: Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

SB-244-8

7/2/2004 SOIL

VK071304 MSVOAK VBK0713S2

16		
RDL	MDL	1

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
l,2-Dibromoethane	106-93-4	< 0.50	Ψ\	6.0	0.50	ug/Kg	
Fetrachloroethene	127-18-4	< 0.76	ψ \	6.0	0.76	ug/Kg	
Chlorobenzene	108-90-7	< 0.42	ψ	6.0	0.42	ug/Kg	
Ethyl Benzene	100-41-4	< 0.30	ψ/	6.0	0.30	ug/Kg	
n/p-Xylenes	136777-61-2	< 0.61	ψ	6.0	0.61	ug/Kg	
)-Xylene	95-47-6	< 0.51	ψ [	6.0	0.51	ug/Kg	
Styr. \	100-42-5	< 0.37	ψ \	6.0	0.37	ug/K.g	
3roi_ form	75-25-2	< 0.36	サンロコ	6.0	0.36	ug/K.g	
sopropylbenzene	98-82-8	< 0.44	$\psi \nearrow 0$	6.0	0.44	ug/K.g	
.,1,2,2-Tetrachloroethane	79-34-5	< 0.63	ψ/	6.0	0.63	ug/Kg	
.,3-Dichlorobenzene	541-73-1	< 0.25	<b>#</b>	6.0	0.25	ug/Kg	
.,4-Dichlorobenzene	106-46-7	< 0.42	ψ\	6.0	0.42	ug/Kg	
.,2-Dichlorobenzene	95-50-1	< 0.49	Ψ	6.0	0.49	ug/Kg	
.,2-Dibromo-3-Chloropropane	96-12-8	< 0.81	ψ }	6.0	0.81	ug/Kg	
.,2,4-Trichlorobenzene	120-82-1	< 0.30	ս/	6.0	0.30	ug/Kg	
JURROGATES							
,2-Dichloroethane-d4	17060-07-0	37.68	75 %	75 - 125	,	SPK: 50	
Dibromofluoromethane	1868-53-7	49.94	100 %	75 - 125		SPK: 50	
?oluene-d8	2037-26-5	44.13	88 %	75 - 125		SPK: 50	
-Bromofluorobenzene	460-00-4	51.04	102 <b>%</b>	75 - 125		SPK: 50	
NTERNAL STANDARDS							
'entafluorobenzene	363-72-4	121617	4.22				
,4-Difluorobenzene	540-36-3	213623	4.84	dh			
hlorobenzene-d5	3114-55-4	144660	7.34	/ <b>)</b>			
,4-Dichlorobenzene-d4	3855-82-1	77970	8.76	,			

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:	S3409-16	Client ID:	SB-264-8
Date Collected:	6/30/2004	Date Received:	7/2/2004
Date Analyzed:	7/9/2004	Matrix:	SOIL
File ID:	V1070919.D	Analytical Run ID:	
Dilution:	1	Instrument ID:	MSVOAI
Analytical Method	d: 8260	Associated Blank:	VBI0709S2
Sample Wt/Wol:	5.0 Units: g	Soil Extract Vol:	
Soil Alimet Vol:	<u></u> <u></u>	% Moisture:	24

Parameter	CAS Number	Concentration	С	RDL	MDL	Units	
TARGETS	<b></b>		of se				
Dichlorodifluoromethane	75-71-8	< 1.6	F/	6.6	1.6	ug/Kg	
Chloromethane	74-87-3	< 0.44	P \	6.6	0.44	ug/Kg	
Vinyl chloride	75-01-4	< 0.31	¥ )	6.6	0.31	ug/Kg	
Bromomethane	74-83-9	< 0.93	ΨI	6.6	0.93	ug/Kg	
Chloroethane	75-00-3	< 0.69	Υl	6.6	0.69	ug/Kg	
Tric ofluoromethane	75-69-4	< 3.2	<b>Ψ</b> ]	6.6	3.2	ug/Kg	
1,1,2-rrichlorotrifluoroethane	76-13-1	< 0.60	כטלון	6.6	0.60	ug/Kg	
1,1-Dichloroethene	75-35-4	< 0.28	Try Va	6.6	0.28	ug/Kg	
Acetone	67-64-1	< 9.8	ΨĮ	33	9.8	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	₽ }	6.6	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.30	Ψ \	6.6	0.30	ug/Kg	
Methyl Acetate	79-20-9	< 1.7	11	6.6	1.7	ug/Kg	
Aethylene Chloride	75-09-2	616 25	UXX	6.6	0.89	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.49	h/	6.6	0.49	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.46	tr /	6.6	0.46	ug/Kg	
Cyclohexane	110-82-7	< 0.40	† \	6.6	0.40	ug/Kg	4
-Butanone	78-93-3	< 3.0	tr )	33	3.0	ug/Kg	Λη
Carbon Tetrachloride	56-23-5	< 0.39	†r }	6.6	0.39	ug/Kg	91
is-1,2-Dichloroethene	156-59-2	< 0.46	þ l	6.6	0.46	ug/Kg	•
hloroform	67-66-3	< 0.31	tr	6.6	0.31	ug/Kg	
,1,1-Trichloroethane	71-55-6	< 0.36	†	6.6	0.36	ug/Kg	
<b>fethylcyclohexane</b>	108-87-2	< 0.47	t l	6.6	0.47	ug/Kg	
enzene	71-43-2	< 0.27	מלין	6.6	0.27	ug/K.g	
,2-Dichloroethane	107-06-2	< 4.1	1 / U	6.6	4.1	ug/Kg	
richloroethene	79-01-6	< 0.42	<b>b</b> /	6.6	0.42	ug/Kg	
2-Dichloropropane	78-87-5	< 0.44	bl	6.6	0.44	ug/Kg	
romadichloromethane	75-27-4	< 0.44	ψl	6.6	0.44	ug/Kg	
M. 1-2-Pentanone	108-10-1	< 3.2	ψl	33	3.2	ug/Kg	
oluene	108-88-3	< 0.34	b /	6.6	0.34	ug/Kg	•
1,3-Dichloropropene	10061-02-6	< 0.34	U }	6.6	0.34	ug/Kg	316
s-1,3-Dichloropropene	10061-01-5	< 0.26	<b>↓</b>	6.6	0.26	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.67	ψ/	6.6	0.67	ug/Kg	
Hexanone	591-78-6	< 4.2	t ·	33	4.2	ug/Kg	

Volatiles SW-846

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-16

Date Collected: Date Analyzed:

7/9/2004

File ID: Dilution:

**Parameter** 

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 6/30/2004

VI070919.D

8260 Units: 5.0 g

**CAS Number** 

Client ID:

SB-264-8

Date Received:

Matrix:

7/2/2004

RDL

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

 $\mathbf{C}$ 

Concentration

SOIL VI070804 **MSVOAI** VB10709S2

MDL

Units

A			<del>-</del>				
1,2-Dibromoethane	106-93-4	< 0.55	Ψ\	6.6	0.55	ug/Kg	<del></del>
Tetrachloroethene	127-18-4	< 0.84	ψ/	6.6	0.84	ug/Kg	
Chlorobenzene	108-90-7	< 0.46	ψ	6.6	0.46	ug/Kg	
Ethyl Benzene	100-41-4	< 0.33	₩ /	6.6	0.33	ug/Kg	
m/p-Xylenes	136777-61-2	< 0.68	Ψ /	6.6	0.68	ug/Kg	
o-Xylene	95-47-6	< 0.57	ψ∫	6.6	0.57	ug/Kg	
Sty )	100-42-5	< 0.41	Ψ	6.6	0.41	ug/Kg	
Bromoform	75-25-2	< 0.39	上くいつ	6.6	0.39	ug/Kg	
Isopropylbenzene	98-82-8	< 0.49	$\Psi$	6.6	0.49	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.70	Ψ	6.6	0.70	ug/Kg	
1,3-Dichlorobenzene	541-73-1	< 0.28	ψ	6.6	0.28	ug/Kg	
1,4-Dichlorobenzene	106-46-7	< 0.46	ψ	6.6	0.46	ug/Kg	
1,2-Dichlorobenzene	95-50-1	< 0.54	ψ/	6.6	0.54	ug/Kg	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.89	Ψ ∤	6.6	0.89	ug/Kg	
1,2,4-Trichlorobenzene	120-82-1	< 0.33	<b>₺</b> /	6.6	0.33	ug/Kg	
SURROGATES							
1,2-Dichloroethane-d4	17060-07-0	34.43	69 %	75 - 125		SPK: 50	
Dibromofluoromethane	1868-53-7	49.42	99 %	75 - 125	<b>'</b> ,	SPK: 50	
Toluene-d8	2037-26-5	43.44	87 %	75 - 125		SPK: 50	
1-Bromofluorobenzene	460-00-4	33.44	67 %	75 - 12,5		SPK: 50	
INTERNAL STANDARDS							
Pentafluorobenzene	363-72-4	605472	3.86		. 1		
1,4-Difluorobenzene	540-36-3	1015711	4.32		NY	1	
Chlorobenzene-d5	3114-55-4	824925	7.40		()! /		
1,4-Dichlorobenzene-d4	3855-82-1	252593	9.67				

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID: S3409-16RE Client ID: SB-264-8RE

Date Collected: 6/30/2004 Date Analyzed: 7/13/2004

VK071328.D File ID:

Dilution: Analytical Method:

8260

Sample Wt/Wol: Soil Aliquot Vol: 5.0

Units: g

Date Received: Matrix:

Analytical Run ID: Instrument ID:

Associated Blank:

Soil Extract Vol:

% Moisture:

7/2/2004

VK071304

VBK0713S2

MSVOAK

SOIL

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
· · · · · · · · · · · · · · · · · · ·		<del>,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, </del>				<del>/</del>	
FARGETS Dichlorodifluoromethane	75-71-8	< 1.6	U	6.6	1.6	ug/K	
Chloromethane	74-87-3	< 0.44	Ü	6.6	0.44	ug/Kg	
Vinyl chloride	75-01-4	< 0.31	U	6.6	0.31	g/Kg	
Bromomethane	74-83-9	< 0.93	U	6.6	0.93	ug/Kg	
Chloroethane	75-00-3	< 0.69	U	6.6	0.69	ug/Kg	
[ri ofluoromethane	75-69-4	< 3.2	U	6.6	3.2	ug/Kg	
,1,2-Trichlorotrifluoroethane	76-13-1	< 0.60	U	6.6	0.60	ug/Kg	
,1-Dichloroethene	75-35-4	< 0.28	U	6.6	0.28	ug/Kg	
Acetone	67-64-1	< 9.8	U	Jun 33	<b>9</b> .8	ug/Kg	
Carbon disulfide	75-15-0	< 0.13	U	<b>₹</b> \ €8	0.13	ug/Kg	
Methyl tert-butyl Ether	1634-04-4	< 0.30	<b>ט</b> , מ	<b>9</b> .6	0.30	ug/Kg	
Methyl Acetate	79-20-9	< 1.7	υ,	6.6	1.7	ug/Kg	
Nethylene Chloride	75-09-2	6.8	BUJ	6.6	0.89	ug/Kg	
rans-1,2-Dichloroethene	156-60-5	< 0.49	GU O	6,6	0.49	ug/Kg	
,1-Dichloroethane	75-34-3	< 0.46	ับ	6.6 A	0.46	ug/Kg	
Cyclohexane	110-82-7	< 0.40	U	6.6	1 0.40	ug/Kg	
-Butanone	78-93-3	< 3.0	U	33 )	3.0	ug/Kg	
Carbon Tetrachloride	56-23-5	< 0.39	U /	6.6	0.39	ug/Kg	
is-1,2-Dichloroethene	156-59-2	< 0.46	ע /	6.6	0.46	ug/Kg	Ma
hloroform	67-66-3	< 0.31	U	6.6	0.31	ug/Kg	417
,1,1-Trichloroethane	71-55-6	< 0.36	Ø	6.6	0.36	ug/Kg	<b>J</b> '
lethylcyclohexane	108-87-2	< 0.47	<b>/</b> U	6.6	0.47	ug/Kg	
enzene	71-43-2	< 0.27	U	6.6	0.27	ug/Kg	
,2-Dichloroethane	107-06-2	< 4.1	U	6.6	4.1	ug/Kg	
richloroethene	79-01-6	< 0.42	U	6.6	0.42	ug/Kg	
,2-Dichloropropane	78-87-5	< 0,44	U	6.6	0.44	ug/Kg	
ro lichloromethane	75-27-4	< 10.44	U	6.6	0.44	ug/Kg	
Mc/sl-2-Pentanone	108-10-1	<b>∮</b> 3.2	U	33	3.2	ug/Kg	
oluene	108-88-3	< 0.34	U	6.6	0.34	ug/Kg	
1,3-Dichloropropene	10061-02-6	< 0.34	U	6.6	0.34	ug/Kg	325
s-1,3-Dichloropropene	10061-01-5	< 0.26	U	6.6	0.26	ug/Kg	
1,2-Trichloroethane	79-00-5	< 0.67	U	6.6	0.67	ug/Kg	
Hexanone	591-78-6	< 4.2	U	33	4.2	ug/K.g	

Volatiles SW-846

SDG No.:

S3409

Client:

Chazen Companies

Sample ID: S3409-16RE Client ID: SB-264-8RE Date Collected: 6/30/2004 Date Received: 7/2/2004 Date Analyzed: 7/13/2004 Matrix: SOIL VK071328.D File ID: Analytical Run ID: VK071304 Dilution: Instrument ID: **MSVOAK** Analytical Method: **8260** Associated Blank: VBK0713S2 Sample Wt/Wol: 5.0 Units: Soil Extract Vol: g Soil Aliquot Vol: % Moisture: 24

Parameter	CAS Number	Concentration	$\mathbf{C}$	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.55	U	6.6	0.55	ug/Kg	
Tetrachloroethene	127-18-4	< 0.84	U	6.6	0.84	ug/Kg	
Chlorobenzene	108-90-7	< 0.46	U	6.6	0.46	ug/Kg	
Ethyl Benzene	100-41-4	< 0.33	U	· 6.6	0,33	ug/Kg	
n/p-Xylenes	136777-61-2	< 0.68	U	· 16.6	0.68	ug/Kg	
o-Xylene	95-47-6	< 0.57	υ ', <b>ν</b>	6.6	0.57	ug/Kg	
Sty )	100-42-5	< 0.41	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	-1 56	0.41	ug/Kg	
3romotorm	75-25-2	< 0.39 5 ^d	U	6.6	0.39	ug/Kg	
sopropylbenzene	98-82-8	< 0.49	00	~6,6	0.49	ug/Kg	
1,1,2,2-Tetrachloroethane	79-34-5	< 0.70	W /	√ 1 d.6	0.70	ug/Kg	
,3-Dichlorobenzene	541-73-1	< 0.28 .	U	6.6	0.28	ug/Kg	
.,4-Dichlorobenzene	106-46-7	< 0.46	U	6.6	0.46	ug/Kg	
,2-Dichlorobenzene	95-50-1	< 0.54	U	6.6	0.54	ug/Kg	
,2-Dibromo-3-Chloropropane	96-12-8	0.89	U	6.6	0.89	ug/Kg	
,2,4-Trichlorobenzene	120-82-1	< 0.33	U	6.6	0.33	ug/Kg	
JURROGATES							
,2-Dichloroethane-d4	17060-07-0	31.32	63 %	75 ~ 125		SPK: 50	
Dibromofluoromethane	1868-53-7	46.23	92 %	75 - 125		SPK: 50	
?oluene-d8	2037-26-5	43.1	86 %	75 - 125		SPK: 50	
-Bromofluorobenzene	460-00-4	39.35	79 %	75 - 125		SPK: 50	
NTERNAL STANDARDS					٨		
'entafluorobenzene	363-72-4	155707	4.22		$\mathcal{N}_{\mathcal{L}}$	1	
,4-Difluorobenzene	540-36-3	281848	4.84		`917	•	
lhlorobenzene-d5	3114-55-4	228835	7.34		,		
,4-Dichlorobenzene-d4	3855-82-1	66890	8.78				

# Surrogate Summary SW-846

SUG No.: 83409 nt:

Chazen Companies

Analytical Method:

Analytical Metl	hod: EPA SW840	, 0200					
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Lin Low	nits High
BSK0713S2	VLCS01	1,2-Dichloroethane-d4	50	40.85	82 1	75.00	125.00
		Dibromofluoromethane	50	46.15	92	75.00	125.00
		Toluene-d8	50	49.75	100	75.00	125.00
		4-Bromofluorobenzene	50	52.71	105 %	75.00	125.00
S3409-02	SB-314-8	1,2-Dichloroethane-d4	50	38.96	781	75.00	125.00
		Dibromofluoromethane	50	46.66	93		125.00
		Toluene-d8	50	45.52	91	75.00	125.00
		4-Bromofluorobenzene	50	52,35	105,	75.00	125.00
S3409-03	SB-314-8DUP	1,2-Dichloroethane-d4	50	69.52	(139) *	75.00	125.00
• •		Dibromofluoromethane	50	42.69	85.	75.00	125.00
		Toluene-d8	50	50.28	101 \	75.00	125.00
		4-Bromofluorobenzene	50	52.7	105	75.00	125.00
S3409-03RE	SB-314-8DUPRE	1,2-Dichloroethane-d4	50	34.48	69	75.00	125.00
		Dibromofluoromethane	50	46.48	93	75.00	125.00
		Toluene-d8	50	46.71	93	75.00	125.00
•		4-Bromofluorobenzene	50	49.48	99	75.00	125.00
°2409-04	SB-034-8	1,2-Dichloroethane-d4	50	38.95	78.	75.00	125.00
)		Dibromofluoromethane	50	47.82	96	75.00	125.00
		Toluene-d8	50	46.67	93,	75.00	125.00
		4-Bromofluorobenzene	50	41.01	82'	75.00	125.00
S3409-05	SB-044-8	1,2-Dichloroethane-d4	50	47.4	95	75.00 75.00	125.00
	·	Dibromofluoromethane	50	46.08	92	75.00	125.00
		Toluene-d8	50	55.69	111	75.00	125.00
		4-Bromofluorobenzene	50	45.25	90	75.00	125.00
S3409-05RE	SB-044-8RE	1,2-Dichloroethane-d4	50	36.7	73		
		Dibromofluoromethane	50	45.92	92 t	75.00 75.00	125.00 125.00
		Toluene-d8	50	42.71	85:	•	
		4-Bromofluorobenzene	50	52.57	105		125.00
S3409-06	SB-0412-16	1,2-Dichloroethane-d4	50	69.38	(139) *		125.00
	-	Dibromofluoromethane	50	49.9	100 ·	•	125.00
		Toluene-d8	50	53.94	108.		125.00
		4-Bromofluorobenzene	50	45.42	91.		125.00
S3409-06RE	SB-0412-16RE	1,2-Dichloroethane-d4	50	37.74	-		125.00
	22 0 1 2 1 0 1 0 2	Dibromofluoromethane	50	45.18	75	75.00	
		Toluene-d8	50	41.26	90 83		125.00
		4-Bromofluorobenzene	50		7		125.00
3409-07	SB-184-8	1,2-Dichloroethane-d4		32.69	654		125.00
	~~ *010	Dibromofluoromethane	50	40.42	81:1	and the second second	125.00
)	•	Toluene-d8	50	47.18	94 "		125.00
1		4-Bromofluorobenzene	50	44.68	89		125.00
3409-08	SB-074-8	'	50	51.49	103 }		125.00
TUJ~UO	D-0/T-0	1,2-Dichloroethane-d4	50	38.51	77 -	^{75.00} 8	
		Dibromofluoromethane	50	47.95	96	75.00	125.00

# Surrogate Summary SW-846

SDG No.:

S3409

Chazen Companies

T.1. C	CII. (IP.				· · · · · · · · · · · · · · · · · · ·		nits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High
S3409-08	SB-074-8	Toluene-d8	30	44.91		75.00	125.00
		4-Bromofluorobenzene	50	39	78	75.00	125.00
S3409-09	SB-334-8	1,2-Dichloroethane-d4	50	36.06	72· مسلم	75.00	125.00
		Dibromofluoromethane	50	50.27	101	75.00	125.00
		Toluene-d8	50	44.02	88	75.00	125.00
4		4-Bromofluorobenzene	50	26.23	52.)*	75.00	125.00
S3409-09MS	SB-334-8MS	1,2-Dichloroethane-d4	50	37.01	74	75.00	125.00
		Dibromofluoromethane	50	43.32	87.	75.00	125.00
		Toluene-d8	50	47.31	95	75.00	125.00
		4-Bromofluorobenzene	50	41.65	83 * /	75.00	125.00
S3409-09MSD	SB-334-8MSD	1,2-Dichloroethane-d4	50	36.58	73 /*	75.00	125.00
		Dibromofluoromethane	50	45.12	. 90	75.00	125.00
	•	Toluene-d8	50	48.71	97	75.00	125.00
		4-Bromofluorobenzene	50	46.89	94	75.00	125.00
S3409-09RE	SB-334-8RE	1,2-Dichloroethane-d4	50	36.31	73	75.00	125.00
		Dibromofluoromethane	50	43.84	88	75.00	125.00
- 5	•	Toluene-d8	50	43.68	87	75.00	125.00
)		4-Bromofluorobenzene	50	41.79	84	75.00	125.00
S3409-10	SB-290-4	1,2-Dichloroethane-d4	50	38.08	76 .	75.00	125.00
		Dibromofluoromethane	50	48.28	97	75.00	125.00
		Toluene-d8	50	47.13	94	75.00	125.00
		4-Bromofluorobenzene	50	45.86	92	75.00	125.00
S3409-11	SB-348-12	1,2-Dichloroethane-d4	50	37.78	76	75.00	125.00
		Dibromofluoromethane	50	46.09	92	75.00	125.00
		Toluene-d8	50	46.03	92	75.00	125.00
		4-Bromofluorobenzene	50	47.54	95	75.00	125.00
S3409-12	SB-348-12DUP	1,2-Dichloroethane-d4	50	41.34	83	75.00	125.00
	•	Dibromofluoromethane	50	44.09	88	75.00	125.00
		Toluene-d8	50	45.74	91	75.00	125.00
		4-Bromofluorobenzene	50	48.59	97	75.00	125.00
S3409-12RE	SB-348-12DUPRE	1,2-Dichloroethane-d4	50	34.67	(69) *	75.00	125.00
		Dibromofluoromethane	50	55.04	110	75.00	125.00
	94	Toluene-d8	50	41.47	(83)	75.00	125.00
		4-Bromofluorobenzene	50	61.38	(123)	75.00	125.00
S3409-13	SB-324-8	1,2-Dichloroethane-d4	50	39.16	78,	75.00	125.00
		Dibromofluoromethane	50	50.12	100	75.00	125.00
		Toluene-d8	50	45.88	92	75.00	125.00
		4-Bromofluorobenzene	50	44.87	90	75.00 75.00	125.00
)09-14	SB-204-8 ·	1,2-Dichloroethane-d4	50	58.79	118	75.00 75.00	125.00
)		Dibromofluoromethane	50	84.71	118 · 169 ·*		
	est 1000	Toluene-d8	50 50	31.67	(63) *	-	125.00
		4-Bromofluorobenzene					125.00
		1 Dromondoronomene	50	10.27	$(2\Gamma)^*$	75.00	125.00

# Surrogate Summary SW-846

SDG No.:

S3409

)nt:

**Chazen Companies** 

Analytical Method:

Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Liı Low	nits High
S3409-14RE	SB-204-8RE	1,2-Dichloroethane-d4	50	49.71	99.	75.00	125.00
		Dibromofluoromethane	50	81.15	162 *	75.00	125.00
		Toluene-d8	50	35.58	(71) *	75.00	125.00
		4-Bromofluorobenzene	50	4.25	(8) *.	75.00	125.00
S3409-15	SB-244-8	1,2-Dichloroethane-d4	50	37.68	75	75.00	125.00
		Dibromofluoromethane	50	49.94	100	75.00	125.00
		Toluene-d8	50	44.13	88	75.00	125.00
		4-Bromofluorobenzene	50	51.04	102	75.00	125.00
S3409-16	SB-264-8	1,2-Dichloroethane-d4	50	34.43	(69) *	75.00	125.00
		Dibromofluoromethane	50	49.42	99	75.00	125.00
		Toluene-d8	50	43.44	87	75.00	125.00
	š	4-Bromofluorobenzene	50	33.44	67	75.00	125.00
S3409-16RE	SB-264-8RE	1,2-Dichloroethane-d4	50	31.32	(63) *	75.00	125.00
		Dibromofluoromethane	50	46.23	92.	75.00	125.00
		Toluene-d8	50	43.1	86	75.00	125.00
		4-Bromofluorobenzene	50	39.35	79	75.00	125.00
VBI0707S1	VBLK01	1,2-Dichloroethane-d4	- 50	53.39	107.	75.00	125.00
)	•	Dibromofluoromethane	50	51.04	102 \	75.00	125.00
	•	Toluene-d8	50	53.23	106	75.00	125.00
		4-Bromofluorobenzene	50	51.73	103 .	75.00	125.00
VBI0709S2	VBLK02	1,2-Dichloroethane-d4	50	40	80	75.00	125.00
	-	Dibromofluoromethane	50	48.02	96	75.00	125.00
		Toluene-d8	50	45.45	91,	75.00	125.00
		4-Bromofluorobenzene	50	44.74	89	75.00	125.00
VBK0713S2	VBLK03	1,2-Dichloroethane-d4	50	43.96	88,	75.00	125.00
		Dibromofluoromethane	50	48.22	96	75.00	125.00
		Toluene-d8	50	44.72	891	75.00	125.00
		4-Bromofluorobenzene	50	49.71	99.	75.00	125.00
VBK0713S3	VBLK04	1,2-Dichloroethane-d4	50	38.75	78	75.00	125.00
		Dibromofluoromethane	50	47.73	95	75.00	125.00
		Toluene-d8	50	47.32	95	75.00	125.00
		4-Bromofluorobenzene	50	49.32	99	75.00	125.00

# Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.:

S3409

ent:

Chazen Companies

Analytical Method:

Lab Sample ID	Parameter	Spike	Sample Result	Result	Rec	RPD	Qual	Low	Limits High	RPD
Client Sample ID:	: SB-334-8MS	a salah salah dalah salah s	Carried States Conference	Salt own page 15-11 and Salt	winds the fact	Section 1999	oddylar i ir		and the second	e de la cas
S3409-09MS	1,1-Dichloroethene	65	0.0	49	75.	٠.	*	82	154	
Trichlo	Benzene	65	0.0	45	69.		*	.83	135	
	Trichloroethene	65	0.0	36	(55)	)	*	81	129	
	Toluene	65	0.0	41	63.		*	79	140	
	Chlorobenzene	65	50.0 0.0	40	(F)	626	, * <b></b>	80	141	
Client Sample ID:	SB-334-8MSD		The second of the second			J	37			
S3409-09MSD	1,1-Dichloroethene	65	0.0	49	75 [.]	0	*.	82	154	22
	Benzene	65	0.0	45	69	0	*	83	135	21
	Trichloroethene	65	0.0	41	63.	14	*	81	129	24
	Toluene	65	0.0	43	66,	5	*	79	140	21
•	Chlorobenzene	65	50.0 0.0	41		37%	*	80	141	21
					1			ř		

# Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

S3409

`ant:

. .

**Chazen Companies** 

Analytical Method:

Lab Sample ID	Parameter	Spike	Result	Rec RPD	Qual Low	Limits High RPD
BSK0713S2	1,1-Dichloroethene	20	18	90	70	130
	Benzene	20	17	85.	70	130
	Trichloroethene	20	18	90	.70	130
	Toluene	20	15	(75.)	70	130
	Chlorobenzene	20	17	85	70	130

# VOLATILE METHOD BLANK SUMMARY

<b>.</b>	VBLK01	
ab Name: Chemtech	Contract: CHAZ02	
Lab Code: CTECH Case No.: 83409	SAS No.: <u>83409</u> SDG NO.: 83409	_
Lab File ID: VI070703.D Date Analyzed: 7/7/2004	Lab Sample ID: VBI0707S1	_
GC Column: RTXVMS ID: 0.18 (mm)	Time Analyzed: 15:36  Heated Purge: (Y/N) y	

Instrument ID:

MSVOAI

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	<del></del>				
EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED		
SB-314-8DUP	83409-03	VI070721.D	22:54		
SB-044-8	83409-05	VI070725.D	00:30		
SB-0412-16	s3409-06	VI070727.D	01:19		

COMMENTS:	

EPA SAMPLE NO.

# 4A VOLATILE METHOD BLANK SUMMARY

 EPA	SAMPLE	NO.
	VBLK02	

ab Name:

Chemtech

Contract:

CHAZ02

Lab Code:

CTECH Case No.:

S3409

SAS No.: \$3409

SDG NO.:

S3409

Lab File ID:

VI070904.D

Lab Sample ID:

Date Analyzed:

7/9/2004

VBI0709S2

Time Analyzed:

GC Column:

RTXVMS ID: 0.18

Heated Purge: (Y/N)

Instrument ID:

MSVOAI

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
SB-334-8	s3409-09	VI070913.D	14:58
SB-348-12DUP	S3409-12	VI070914.D	15:23
SB-324-8	s3409-13	VI070916.D	16:12
SB-204-8	S3409-14	VI070917.D	16:36
SB-264-8	s3409-16	VI070919.D	17:24

COMMENTS:	 ·	•	

# VOLATILE METHOD BLANK SUMMARY

 EPA	SAMPLE	NO.	
	VBLK03		

ab Name:

Chemtech

Contract:

CHAZ02

Lab Code:

CTECH Case No.: S3409

SAS No.: S3409

SDG NO.:

S3409

Lab File ID:

VK071310.D

Lab Sample ID:

VBK0713S2

Date Analyzed:

7/13/2004

Time Analyzed:

GC Column:

DB624

ID: 0.18

(mm)

Heated Purge: (Y/N)

12:45

Instrument ID:

MSVOAK

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
SB-314-8	\$3409-02	VK071312.D	13:36
SB-314-8DUPRE	S3409-03RE	VK071313.D	14:01
SB-044-8RE	S3409-05RE	VK071315.D	14:52
SB-0412-16RE	S3409-06RE	VK071316.D	15:17
SB-184-8	S3409-07	VK071317.D	15:42
SB-074-8	\$3409~08	VK071318.D	16:07
SB-334-8RE	S3409-09RE	VK071319.D	16:33
SB-334-8MS	S3409-09MS	VK071320.D	16:59
SB-334-8MSD	S3409-09MSD	VK071321.D	17:24
SB-290-4	s3409-10	VK071322.D	17:49
SB-348-12	s3409-11	VK071323.D	18:15
SB-348-12DUPRE	S3409-12RE	VK071324.D	18:40
SB-204-8RE	S3409-14RE	VK071326.D	19:31
SB-244-8	\$3409-15	VK071327.D	19:56
SB-264-8RE	S3409-16RE	VK071328.D	20:21
VLCS01	BSK0713S2	VK071329.D	20:21

COMMENTS:	4	
)	 	•

# 4A VOLATILE METHOD BLANK SUMMARY

			EPA SAMPL	E NO.
			VBLK0	4
ab Name: Chemtech		Contract: CHA	AZ02	
Lab Code: CTECH Case No.	: <u>83409</u>	SAS No.: <u>83409</u>	SDG NO.: S34	109
Lab File ID: VK071332.D		Lab Sample ID:	VBK0713S3	
Date Analyzed: 7/13/2004	<del>-</del>	Time Analyzed:	22:03	<del></del>
GC Column: DB624 ID: 0.	18 (mm)	Heated Purge: (Y/)	и)	
Instrument ID: MSVOAK			÷	
THIS METHO	BLANK APPLIES TO T	THE FOLLOWING SAMPLES, 1	MS AND MSD:	
EPA SAMPLE NO	LAB	LAB	TIME	

VK071352.D

06:30

|S3409-04

SB-034-8

) COMMENTS:

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Chemtech

Contract: CHAZ02

Lab Code:

CTECH

Case No.:

S3409

SAS No.: \$3409

SDG NO.: _S3409

Lab File ID:

VI062903.D

BFB Injection Date:

6/29/2004

Instrument ID:

MSVOAI

BFB Injection Time:

14:52

GC Column:

RTXVMS ID:

0.18 (mm)

Heated Purge: Y/N

Y

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	19.3
75	30.0 - 60.0% of mass 95	34.3
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7.7
173	Less than 2.0% of mass 174	0.3( 0.7. 1
174	50.0 - 100.0% of mass 95	50.2
175	5.0 - 9.0% of mass 174	4.3 ( 8.7 1
176	95.0 - 101.0% of mass 174	50.5 ( 100.7 1
177	5.0 - 9.0% of mass 176	3.5 ( 6.8 2

¹⁻Value is % mass 174

2-Value is % mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD005	5 PPB ICC	VI062904.D	6/29/2004	15:28
VSTD020	20 PPB ICC	VI062905.D	6/29/2004	15:53
VSTD050	50 PPB ICC	VI062906.D	6/29/2004	16:17
VSTD100	100 PPB ICC	VI062907.D	6/29/2004	16:41
VSTD200	200 PPB ICC	VI062908.D	6/29/2004	17:05 4

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

 
 Lab
 Name:
 Chemtech

Contract:

CHAZ02

Lab Code:

CTECH

Case No.:

0.18

S3409

SAS No.: \$3409

SDG NO.: <u>83409</u>

Lab File ID:

VI070701.D

BFB Injection Date:

Instrument ID:

7/7/2004

MSVOAI

ID:

BFB Injection Time:

14:47

GC Column:

RTXVMS

(mm)

Heated Purge: Y/N

Y

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	15.7
75	30.0 - 60.0% of mass 95	· · · · · · · · · · · · · · · · · · ·
95	Base Peak, 100% relative abundance	41.0.
96	5.0 - 9.0% of mass 95	100.0
173	Less than 2.0% of mass 174	0.7( 1.5.1
174	50.0 - 100.0% of mass 95	
175	5.0 - 9.0% of mass 174	50.6
176	95.0 - 101.0% of mass 174	2.9 ( 5.8 1
177	5.0 - 9.0% of mass 176	48.2 ( 95.3 1 3.5 ( 7.3 2

1-Value is % mass 174

2-Value is % mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD0.50	50 PPB CCC	VI070702.D	7/7/2004	15:12
VBLK01	VBI0707S1	VI070703.D	7/7/2004	15:36
SB-314-8DUP	s3409-03	VI070721.D	7/7/2004	22:54
SB-044-8	s3409-05	VI070725.D	7/8/2004	00:30
SB-0412-16	s3409-06	VI070727.D	7/8/2004	01:19

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Chemtech Contract: CHAZ02

Lab File ID: VI070801.D BFB Injection Date: 7/8/2004

Instrument ID: MSVOAI BFB Injection Time: 17:22

GC Column: RTXVMS ID: 0.18 (mm) Heated Purge: Y/N Y

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	16.5 1
75	30.0 - 60.0% of mass 95	32.8
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	7 1
173	Less than 2.0% of mass 174	1.7( 0.0 1
174	50.0 - 100.0% of mass 95	51.7
175	5.0 - 9.0% of mass 174	
176	95.0 - 101.0% of mass 174	
177	5.0 - 9.0% of mass 176	52.0 ( 100.5 1 3.6 ( 7.0, 2

1-Value is % mass 174

2-Value is % mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD005	5 PPB ICC	VI070803.D	7/8/2004	18:37
VSTD200	200 PPB ICC	VI070804.D	7/8/2004	19:01
VSTD100	100 PPB ICC	VI070805.D	7/8/2004	19:25
VSTD050	50 PPB ICC	VI070806.D	7/8/2004	19:49
VSTD020	20 PPB ICC	VI070807.D	7/8/2004	20:14 2

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

√ab Name: Chemtech Contract:

CHAZ02

CTECH

Case No.: S3409

(mm)

SAS No.: \$3409

SDG NO.: S3409

Lab File ID:

VI070901.D

BFB Injection Date:

7/9/2004

Instrument ID:

MSVOAT

BFB Injection Time:

09:52

GC Column:

Lab Code:

RTXVMS ID:

0.18

Heated Purge: Y/N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	15.6
7.5	30.0 - 60.0% of mass 95	30.6
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	8.0
173	Less than 2.0% of mass 174	
174	50.0 - 100.0% of mass 95	0.9( 0.0.1 71.2
175	5.0 - 9.0% of mass 174	
176	95.0 - 101.0% of mass 174	4.0 ( 5.6. 1
177	5.0 - 9.0% of mass 176	67.8 ( 95.2, 1 4.4 ( 6.5, 2

1-Value is % mass 174

2-Value is % mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME. ANALYZED
VSTD050	50 PPB CCC	VI070902.D	7/9/2004	10:16
VBLK02	VBI0709S2	VI070904.D	7/9/2004	11:20
SB-334-8	83409-09	VI070913.D	7/9/2004	14:58
SB-348-12DUP	s3409-12	VI070914.D	7/9/2004	15:23
SB-324-8	\$3409-13	VI070916.D	7/9/2004	16:12
SB-204-8	s3409-14	VI070917.D	7/9/2004	16:36
SB-264-8	s3409-16	VI070919.D	7/9/2004	17:24 2

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Chemtech Contract: CHAZ02

 Lab Code:
 CTECH
 Case No.:
 S3409
 SAS No.:
 S3409
 SDG NO.:
 S3409

Lab File ID: VK071301.D BFB Injection Date: 7/13/2004

Instrument ID: MSVOAK BFB Injection Time: 08:56

GC Column: DB624 ID: 0.18 (mm) Heated Purge: Y/N Y

m/e	ION ABUNDANCE CRITERIA	% RELATIVE
50	15.0 - 40.0% of mass 95	ABUNDANCE 19.8
75	30.0 - 60.0% of mass 95	40.6
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	4.0( 0.0 1
174	50.0 - 100.0% of mass 95	51.3
175 176	5.0 - 9.0% of mass 174	4.3 ( 8.4 1
177	95.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	50.0 ( 97.3 1

1-Value is % mass 174

2-Value is % mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZEI
VSTD005	5 PPB ICC	VK071302.D	7/13/2004	09:21
VSTD020	20 PPB ICC	VK071303.D	7/13/2004	09:47
VSTD050	50 PPB ICC	VK071304.D	7/13/2004	10:12
VSTD100	100 PPB ICC	VK071305.D	7/13/2004	10:38
VSTD200	200 PPB ICC	VK071306.D	7/13/2004	11:03
VBLK03	VBK0713S2	VK071310.D	7/13/2004	12:45
SB-314-8	S3409-02	VK071312.D	7/13/2004	13:36
SB-314-8DUPRE	S3409-03RE	VK071313.D	7/13/2004	14:01
SB-044-8RE	S3409-05RE	VK071315.D	7/13/2004	14:52
SB-0412-16RE	\$3409-06RE	VK071316.D	7/13/2004	15:17
SB-184-8	s3409-07	VK071317.D	7/13/2004	15:42
SB-074-8	s3409-08	VK071318.D	7/13/2004	16:07
SB-334-8RE	S3409-09RE	VK071319.D	7/13/2004	16:33
SB-334-8MS	s3409-09Ms	VK071320.D	7/13/2004	16:59
SB-334-8MSD	s3409-09MsD	VK071321.D	7/13/2004	17:24
SB-290-4	s3409-10	VK071322.D	7/13/2004	17:49
SB-348-12	s3409-11	VK071323.D	7/13/2004	18:15
SB-348-12DUPRE	S3409-12RE	VK071324.D	7/13/2004	18:40
SB-204-8RE	s3409-14RE	VK071326.D	7/13/2004	19:31
SB-244-8	\$3409-15	VK071327.D	7/13/2004	19:56
SB-264-8RE	S3409-16RE	VK071328.D	7/13/2004	20:21 V

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Chemtech Contract: CHAZ02

Lab Code: CTECH Case No.: \$3409 SAS No.: \$3409 SDG NO.: \$3409

Lab File ID: VK071301.D BFB Injection Date: 7/13/2004

Instrument ID: MSVOAK BFB Injection Time: 08:56

GC Column: DB624 ID: 0.18 (mm) Heated Purge: Y/N Y

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	19.8
75	30.0 - 60.0% of mass 95	40.6
95	Base Peak, 100% relative abundance	100.0
. 96	5.0 - 9.0% of mass 95	6.9
173	Less than 2.0% of mass 174	4.0( 0.0 1
174	50.0 - 100.0% of mass 95	51.3.
175	5.0 - 9.0% of mass 174	4.3 ( 8.4 1
176	95.0 - 101.0% of mass 174	50.0 ( 97.3 1
177	5.0 - 9.0% of mass 176	4.2 ( 8.4 2

1-Value is % mass 174

2-Value is % mass 176

EPA	LAB	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
VLCS01	BSK0713S2	VK071329.D	7/13/2004	20:47

# VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Tab Name: Chemtech Contract: CHAZ02

Lab Code: CTECH Case No.: S3409 SAS No.: S3409 SDG NO.: <u>\$3409</u>

Lab File ID: VK071330.D BFB Injection Date:

7/13/2004 Instrument ID: MSVOAK BFB Injection Time: 21:12

GC Column: DB624 ID: 0.18 (mm) Heated Purge: Y/N Y

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	
75	30.0 - 60.0% of mass 95	21.9
95	Base Peak, 100% relative abundance	42.4
96	5.0 - 9.0% of mass 95	100.0.
173	Less than 2.0% of mass 174	0.04
174	50.0 - 100.0% of mass 95	2.8( 0.0 1
175	5.0 - 9.0% of mass 174	51.5.
176	95.0 - 101.0% of mass 174	4.2 ( 8.1, 1
177	5.0 - 9.0% of mass 176	3.2 ( 6.2 .2

1-Value is % mass 174

2-Value is % mass 176

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD050	50 PPB CCC	VK071331.D	7/13/2004	21:38
VBLK04	VBK0713S3	VK071332.D	7/13/2004	22:03
SB-034-8	S3409-04	VK071352.D	7/14/2004	06:30

# VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Chemtech Contract CHAZ02

Lab Code: CTECH Case No.: S3409 SAS No.: S3409 SDG No.: S3409

Lab File ID: VI070702.D Date Analyzed: 7/7/2004

Instrument ID: MSVOAI Time Analyzed: 15:12

GC Column: RTXVMS ID: 0.1 (mm) Heated Purge: (Y/N) Y

	IS1 AREA #	RT#	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	414539	3.86	1036045	4.32	1007615	7.40
UPPER LIMIT	829078	4.36	2072090	4.82	2015230	7,90
LOWER LIMIT	207270	3.36	518023	3.82	503808	6.90
SAMPLE NO.						<u></u> .
VBLK01	447279	3.87	1149830	4.32	1104939	7.40
SB-314-8DUP	48090 *	3.86	153592 *	4.33	(141263)*	7.40
SB-044-8	7570 *	3.86	17.369 *	4.32	(16149)	7.40
SB-0412-16	63979 *	3.86	(178545) *	4.32	159169 *	7.40

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

# VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Chemtech Lab Name: Contract: CHAZ02 Lab Code: CTECH Case No. S3409 SAS No.: SDG No.: S3409 S3409 Lab File ID: VI070702.D Date Analyzed: 7/7/2004 Instrument ID: Time Analyzed: 15:12 **MSVOAI** Service Commence of the GC Column: RTXVMS ID: 0.1 (mm) Heated Purge: (Y/N) Y

·	IS4 AREA #	RT#				
12 HOUR STD	449502	9.67				
UPPER LIMIT	899004	10.17				,
LOWER LIMIT	224751	9.17			_	 
SAMPLE NO.	N				-	
VBLK01	425640	9.67	<u> </u>			 
SB-314-8DUP	50864 *	9.68				 
SB-044-8	5217 *	9.67		<del>                                     </del>		 
SB-0412-16	40143 )*	9.67	<del></del>	<b>†</b>	<del></del>	 

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: Chemtech Contract CHAZ02

Lab Code: CTECH Case No.: \$3409 SAS No.: \$3409 SDG No.: \$3409

Lab File ID: VI070902.D Date Analyzed: 7/9/2004

Instrument ID: MSVOAI Time Analyzed: 10:16

GC Column: RTXVMS ID: 0.1 (mm) Heated Purge: (Y/N) Y

	IS1 AREA #	RT#	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	597473	3.86	1080324	4.32	972583	7.40
UPPER LIMIT	1194946	4.36	2160648	4.82	1945166	7.90
LOWER LIMIT	298737	3.36	540162	3.82	486292	6.90
SAMPLE NO.						
VBLK02	775596	3.86	1331198	4.32	1113926	7.40
SB-334-8	636365	3.86	1055717	4.32	692699	7.40
SB-348-12DUP	(170474)	3.86	(301312)*	4.32	281842 *	7.40
SB-324-8	461038	3.86	807889	4.32	738731	7.40
SB-204-8	226964	3.86	434038	4.32	(158087)*	7.40
SB-264-8	605472	3.86	1015711	4.32	824925	7.40

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: Chemtech Contract: CHAZ02 Lab Code: CTECH Case No. S3409 SAS No.: S3409 SDG No.: S3409 Lab File ID: VI070902.D Date Analyzed: 7/9/2004 Instrument ID: MSVOAI Time Analyzed: 10:16 GC Column: RTXVMS 0.1 (mm) Heated Purge: (Y/N)

	IS4 AREA #	RT#			,	
12 HOUR STD	433545	9.67				
UPPER LIMIT	867090	10.17				<del>                                     </del>
LOWER LIMIT	216773	9.17	<del>.</del>		<del> </del>	
SAMPLE NO.						
VBLK02	487858	9.67				
SB-334-8	182956 *	9.67	-		·	
SB-348-12DUP	(126338 *)	9.67				
SB-324-8	320661	9.67	<del></del>	-		
SB-204-8	28102 *	9.67				
SB-264-8	252593	9.67		<del> </del>		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: Chemtech Contract CHAZ02

Lab Code: CTECH Case No.: S3409 SAS No.: S3409 SDG No.: S3409

Lab File ID: VK071331.D Date Analyzed: 7/13/2004

Instrument ID: MSVOAK Time Analyzed: 21:38

GC Column: DB624 ID: 0.1 (mm) Heated Purge: (Y/N) Y

	IS1 AREA #	RT#	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	191322	4.21	362273	4.83	306219	7.31
UPPER LIMIT	382644	4.71	724546	5.33	612438	7.81
LOWER LIMIT	95661	3.71	181137	4.33	153110	6.81
SAMPLE NO.			/			
BLK04	202098	4.22	372396	4.84	317057	7.33
SB-034-8	198200	4.22	342951	4.84	233532	7.33

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

PT UPPER LIMIT = +0.50 minutes of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

### 8A.

# VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Chemtech Lab Name: Contract: CHAZ02 Lab Code: CTECH S3409 SAS No.: Case No. SDG No.: S3409 S3409 Lab File ID: VK071331.D Date Analyzed: 7/13/2004 Instrument ID: Time Analyzed: MSVOAK 21:38

Heated Purge: (Y/N)

	IS4 AREA #	RT#		
12 HOUR STD	131809	8.74		
UPPER LIMIT	263618	9.24		
LOWER LIMIT	65905	8/24		
SAMPLE NO.		/		
VBLK04	115804	8.76		
SB-034-8	79195	8.77		

IS4 = 1,4-Dichlorobenzene-d4

ID:

0.1

(mm)

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

GC Column:

DB624

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Lab Name: Chemtech Contract CHAZ02

Lab Code: CTECH Case No.: S3409 SAS No.: S3409 SDG No.: S3409

Lab File ID: VK071304.D Date Analyzed: 7/13/2004

Instrument ID: MSVOAK Time Analyzed: 10:12

GC Column: DB624 ID: 0.1 (mm) Heated Purge: (Y/N) Y

	T	T	<del></del>	·	· · · · · · · · · · · · · · · · · · ·	
	IS1 AREA #	RT#	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	162413	4.20	324046	4.82	274721	7.32
UPPER LIMIT	324826	4.70	648092	5.32	549442	7.82
LOWER LIMIT	81207	3.70	162023	4.32	137361	6.82
SAMPLE NO.				:		<u></u>
VBLK03	189915	4.20	373925	4.83	256061	7.32
SB-314-8	157715	4.20	293596	4.83	209029	7.33
SB-314-8DUPRE	143410	4.20	257013	4.83	225796	7.33
SB-044-8RE	75921 )*	4.22	134867	4.84	(127644)*	7.35
SB-0412-16RE	110311	4.22	217740	4.84	164511	7.34
SB-184-8	87921	4.22	167095	4.84	156855	7.34
SB-074-8	162782	4.21	294382	4.83	244698	7.33
SB-334-8RE	175213	4.21	328572	4.83	218186	7.33
SB-334-8MS	183125	4.21	337789	4.83	230832	7.32
SB-334-8MSD	191086	4.21	347786	4.83	257446	7.32
SB-290-4	185461	4.21	334759	4.83	252963	7.33
SB-348-12	190405	4.22	350652	4.84	247145	7.33
SB-348-12DUPRE	37846 *	4.22	56360)+	4.86	(60.532)	7.39
SB-204-8RE	(64472)*	4.23	(16605)	4.85	54172 *	7.39
SB-244-8	121617	4.22	213623	4.84	144660	7.34
SB-264-8RE	155707	4.22	281848	4.84	228835	7.34
VLCS01	192312	4.21	361517	4.83	295625	7.32

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

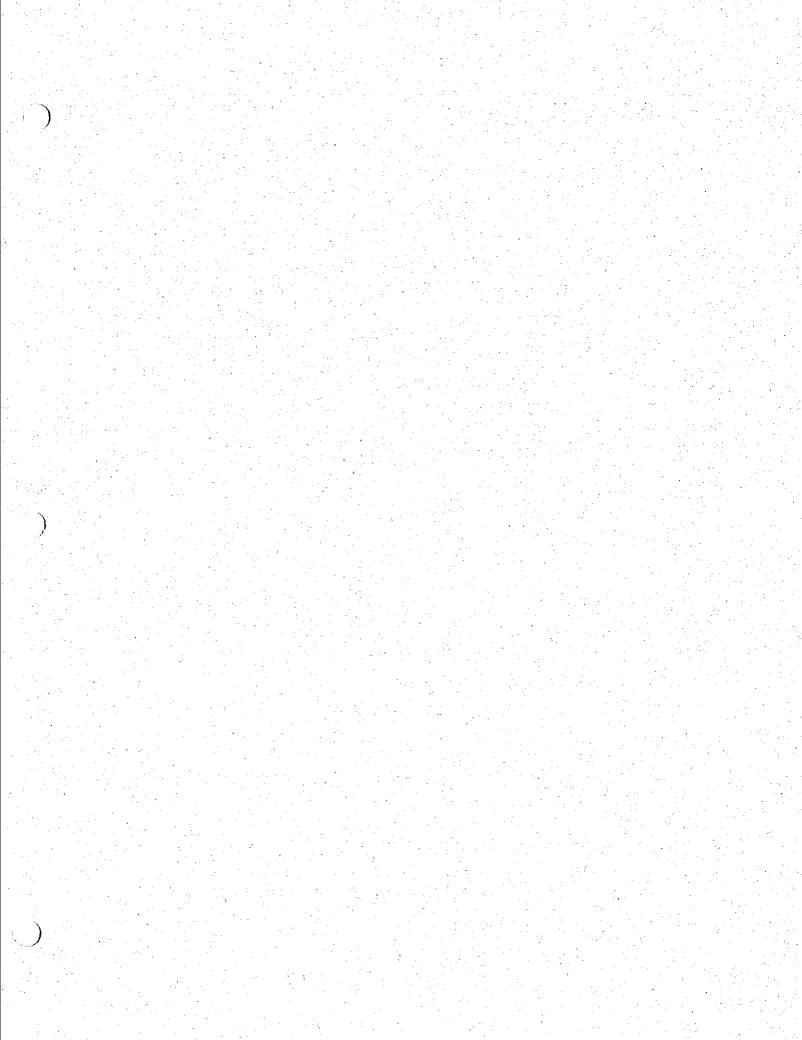
Lab Name: Chemtech Contract: CHAZ02

Lab Code: CTECH Case No. S3409 SAS No.: S3409 SDG No.: S3409

Lab File ID: VK071304.D Date Analyzed: 7/13/2004

Instrument ID: MSVOAK Time Analyzed: 10:12

GC Column: DB624 ID: 0.1 (mm) Heated Purge: (Y/N) Y


		]	<del>                                     </del>			<u> </u>	<del></del> -	······································
	IS4 AREA #	RT#						
12 HOUR STD	121149	8.74						
UPPER LIMIT	242298	9.24			•			
LOWER LIMIT	60575	8.24	<u> </u>					<u>-</u>
SAMPLE NO.								<del></del> -
VBLK03	122556	8.75		-			_	
SB-314-8	93804	8.76					_	
SB-314-8DUPRE	89216	8.76			-			
SB-044-8RE	51403 *	8.79			· · · · · · · · · · · · · · · · · · ·			<del></del>
SB-0412-16RE	(41182) *	8.79			· · · · · · · · · · · · · · · · · · ·		$\top$	<del></del>
SB-184-8	62407	8.78				· · · · · · · · · · · · · · · · · · ·	_   _	
SB-074-8	96774	8.75			n de en de Salada e de la compansión de la	- E 4727 V		and the state of the same of t
SB-334-8RE	87752	8.76					_	
SB-334-8MS	74643	8.74					$\top$	<del></del> -
SB-334-8MSD	90129	8.74				· .		
SB-290-4	102706	8.76	-		· · · · · ·			
SB-348-12	111013	8.75					_	
SB-348-12DUPRE	(22640) *	8.84						
SB-204-8RE	(6989) *	8.96	··.					
SB-244-8	77970	8.76	· · · · · · · · · · · · · · · · · · ·			···	_	
SB-264-8RE	66890	8.78		_		******	1	<u></u>
VLCS01	130646	8.74						

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.



# DATA USABILITY SUMMARY REPORT

for

# THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

# FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG: S3409 Sampled 6/28/04 thru 6/30/04

# SOIL SAMPLES for SEMIVOLATILE ORGANICS

SB31	4-8	(S3409-02)	SB31	4-8D	(S3409-03)
SB03	4-8	(S3409-04)	SB04	4-8	(S3409-05)
SB04	12-1	6(S3409-06)	SB18	4-8	(S3409-07)
SB07	4-8	(S3409-08)	SB33	4-8	(S3409-09)
SB29	0 - 4	(S3409-10)	SB34	8-12	(S3409-11)
SB34	8-12	D(S3409-12)	SB32	4-8	(S3409-13)
SB20	4-8	(S3409-14)	SB24	4-8	(S3409-15)
SB26	4-8	(S3409-16)			

## DATA ASSESSMENT

A semivolatile organics data package containing analytical results for fifteen soil samples was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8270C, addressed Target Compound List analytes. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-22, Rev 2, SOP for the Validation of Organic Data Acquired Using SW-846 Method 8270C, June 2001) was used as a technical reference.

The presence of bis(2-ethylhexyl)phthalate in SB04 12-16, SB07 4-8, SB24 4-8 and SB26 4-8, and an Aldol Condensation Product (ACP) in nearly every program sample is assumed to represent a laboratory artifact. The phthalate has been flagged as an estimation. When present, the ACP has been removed from sample reports.

The identifications of phenanthrene in SB03 4-8 and SB33 4-8; naphthalene in SB07 4-8, SB20 4-8 and SB26 4-8; chrysene in SB34 8-12; acenaphthene in SB26 4-8, and benzo(a)anthracene in SB34 8-12 were not conclusive, based on the mass spectra references found in the raw data. Each of these analytes should be considered undetected in the affected samples.

The Tentatively Identified Compounds (TIC) reported from each program sample have been edited to reflect identifications that are supported by the library searches included in the raw data.

## CORRECTNESS AND USABILIT

All data reported from this group of samples has been qualified as an estimation because the holding time prior to extraction was grossly violated.

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J" and "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence

in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

es B. Baldwin

Date:

### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved, or are not analyzed within established holding times, may no longer be considered representative. Holding times are calculated from the time of receipt (VTSR). Samples must remain chilled to 4°C from the time of collection. Extractions must begin within 5 days of receipt. Analyses must be completed within 40 days of extraction. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a matrix spike, matrix spike duplicate, and a rinsate blank.

This sample delivery group contained fifteen soil samples. The samples were collected from the Former Stillwater Boiler House site between 28Jun04 and 30Jun04. The entire group of samples was shipped to the laboratory, via FedEx, on 01Jul04. The shipment arrived, intact, the following morning.

It is noted that the laboratory provided no documentation to indicate that the samples were properly chilled at the time of receipt. Although data has not been qualified due to this omission, it should be noted that such errors seriously limit the defensibility of reported data.

With the exception of SB24 4-8 and SB26 4-8, this group of samples was held in the laboratory for 12 days prior to extraction. SB24 4-8 and SB26 4-8 were held for 15 days. Analyses were completed within three days of extraction. All data reported from this group of samples has been qualified as an estimation because the holding time prior to extraction was grossly exceeded.

### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank. Any sample concentration less than 5 times the level determined in a blank must be qualified. The qualification criteria is extended to ten times the concentration observed in blanks for common laboratory artifacts. These include phthalate esters.

Two method blanks were processed with this group of samples. Both blanks demonstrated acceptable chromatography and were free of targeted analyte contamination. Although not present in the method blanks, bis(2-ehtylhexyl)phthalate was detected in SB04 12-16, SB07 4-8, SB24 4-8 and SB26 4-8. The presence of this phthalate is assumed to represent a laboratory artifact. However, because the phthalate was not present in blanks, it cannot be removed from sample reports. When present, bis(3-ethylhexyl)phthalate concentrations have been flagged as estimations. They should only be considered significant if consistent with site history.

4-Hydroxy-4-methyl-2-pentanone, an Aldol Condensation Product, was reported as a Tentatively Identified Compound (TIC) in both method

blanks and in most program samples. When present, this artifact has been removed from sample reports.

### MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of DFTPP was analyzed prior to each analytical sequence and during every 12-hour period of instrument operation. An Instrument Performance Check Form is present for each DFTPP evaluation. The DFTPP tunes associated with this group of samples satisfied the program acceptance criteria.

### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 12Jul04. Standards of 20, 50, 80, 120 and 160 ng were included. The calibration curve for each targeted analyte produced the required instrument response at each level of concentration and demonstrated an acceptable degree of linearity.

Calibration verifications were performed on 15Jul04, 17Jul04, 19Jul04, 20Jul04 and 22Jul04, prior to the analysis of samples from this program. When compared to the initial calibration, these checks demonstrated an acceptable level of instrument stability. One exception s noted. A significant shift was noted in the response of bis(2-chloroethyl)ether on 20Jul04 and 22Jul04. In both cases, an acceptable level of response was demonstrated. Although errors might be expected in measurements of bis(2-chloroethyl)ether, it may be assumed this analyte would be detected if present in samples. Because bis(2-chloroethyl)ether was not detected in samples, data has been left unqualified.

### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared. The laboratory's in-house acceptance criteria was applied.

Although some instances did exist were surrogate recoveries did not fall within these limits, in every case, ASP requirements were satisfied.

# INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than a factor of two. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to this criteria an acceptable response was reported for each internal standard addition to this group of samples.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte
concentrations to a sample, prior to analysis. Analyte recoveries
provide an indication of laboratory accuracy. The analysis of a
duplicate spiked aliquot provides a measurement of precision.

SB31 4-8 was selected for matrix spiking. Spike recoveries were also reported for additions to a non-program sample. Only the SB31 4-8 MS/MSD was considered. When compared to the ASP acceptance criteria, high recoveries were reported for 2,4-dinitrotoluene (105%,105%), pentachlorophenol (118%,114%) and phenol (95%). Similar recoveries were reported from a spiked blank. Data has not been qualified based on this performance.

### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicates of SB31 4-8 and SB34 8-12 were included in this delivery group. Both samples of SB31 4-8 were free of targeted analytes, as was the duplicate of SB34 4-8. SB34 4-8 contained traces of fluoranthene and pyrene that were below CRDL. These samples demonstrated an acceptable level of analytical precision.

# SAMPLE INFORMATION

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples. Analyte identifications that were not conclusively supported by the mass spectra references included in the raw data have been flagged "U". They should be considered undetected. The following samples were affected.

SB03 4-8 phenanthrene

SB07 4-8 naphthalene

SB33 4-8 phenanthrene

SB34 8-12 benzo(a)anthracene, chrysene

SB20 4-8 naphthalene SB26 4-8 naphthalene, acenaphthene

The Tentatively Identified Compounds (TIC) reported from each sample included an Aldol Condensation Product (ACP). When present, this artifact has been removed from sample reports. The remaining TIC's included several identifications that were not supported by the library searches included in the raw data. Each report has been edited to include appropriate identifications.

# SUMMARY OF QUALIFIED DATA

Sampled 08Jul04

Former Stillwater Boiler House site

CHRYSENE							121	O 7 +				
NAPHTHALENE				771	•					9711	5	9.2U
SPECTRA ID PHENANTHRENE	950U				9.40	1						
BLANK ALDOL	REMOVE REMOVE	REMOVE	REMOVE	REMOVE	REMOVE		REMOVE	REMOVE	REMOVE			REMOVE
BLANKS PHTHALATE			41J	517							60J	440
HOLD TIME	ALL J/UJ ALL J/UJ ALL J/UJ											
	340 340 340	(83409-0	409-0404	3409-0	3409-0	3409-1	409-1	(83409-1	3409-1	409 - 1	3409-1	(83409-16)
	SB31 4-8 SB31 4-8D SB03 4-8	B04 4-8	BU4 12-1 B18 4-8	B07 4-	B33 4-	B29	B34 8-1	B34 8-	<b>B</b> 3	B20 4-	B24 4-	B26 4-

# SUMMARY OF QUALIFIED DATA

Sampled 08Jul04

# Former Stillwater Boiler House site

SPECTRA ID	TIC	E L C
SPECTRA ID	BENZO (A) ANTHRACENE	
SPECTRA ID	ACENAPHTHALENE	
		(83409-02)
		331 4-8

5U
ne.6
80 (S3409-02) 88 (S3409-03) 88 (S3409-03) 89 (S3409-04) 89 (S3409-05) 89 (S3409-07) 80 (S3409-09) 81 (S3409-11) 120 (S3409-12) 81 (S3409-13) 82 (S3409-13) 83409-13) 83409-14) 83409-15)
4-8 4-8 112-16 6-18-16 7-18-17 7-18-17 7-18-17 7-18-17 7-18-17 7-18-17 7-18-17 7-18-17 7-18-17 7-18-17 7-18-18-18-18-18-18-18-18-18-18-18-18-18-
SB31 SB31 SB31 SB33 SB33 SB33 SB33 SB33

SDG No.:

- S3409

Client:

Chazen Companies

Sample ID:	\$3409-02
Date Collected:	6/30/2004
Date Analyzed:	7/15/2004
Date Extracted:	7/14/2004
Dilution:	1
Analytical Method:	8270
Sample Wt/Wol:	15.3
Injection Vol:	2 ·
Associated Blank:	PB16274B

Client ID: <u>SB-314-8</u>

Date Received:
Matrix:
File ID:
Instrument ID:

7/2/2004 SOIL BE012664 D BNAE

Analytical Run ID: Extract Vol: % Moisture:

BE071204 500 20

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS	<u> </u>			·		· · · · · ·
Benzaldehyde	100-52-7	< 40	Ψ\	410	40	ug/K.g
Phenol	108-95-2	< 17	ψ \	410	. 17	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 20	ψ	410	20	ug/Kg
2-Chlorophenol	95-57-8	< 18	ψ	410	18	ug/Kg
2-Methylphenol	95-48-7	< 26	ψ /	410	26	ug/Kg
)-oxybis(1-Chloropropane)	108-60-1	< 22	ψ /	410	22	ug/Kg
Acetophenone	98-86-2	< 21	ψ /	410	21	ug/Kg
3+4-Methylphenols	106-44-5	< 19	ψ	410	19	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 18	₩	410	18	ug/K.g
Hexachloroethane	67-72-1	< 19	# │	410	19	ug/Kg
Nitrobenzene	98-95-3	< 21	ψ	410	21	ug/K.g
Isophorone	78-59-1	< 15	#	410	15	ug/Kg
2-Nitrophenol	88-75-5	< 16	₩	410	16	ug/Kg
2,4-Dimethylphenol	105-67-9	< 22	ψ\	410	22	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 19	₩	410	19	ug/Kg
2,4-Dichlorophenol	120-83-2	< 14	₩\	410	14	ug/Kg
Naphthalene	91-20-3	< 8.8	# \	410	8.8	ug/Kg
4-Chloroaniline	106-47-8	< 150	# }U=	410	150	ug/Kg
Hexachlorobutadiene	87-68-3	< 14	ψ /	410	14	ug/Kg
Caprolactam	105-60-2	< 15	ψ/	410	. 15	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 12	ψ/	410	12	ug/Kg
2-Methylnaphthalene	91-57-6	< 7.0	Ψ/	410	7.0	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 10	Ψl	410	10	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 15	ψ	410	15	ug/Kg
2.4.5-Trichlorophenol	95-95-4	< 27	$\mathbb{H}$ $\Lambda$	1000	27	ug/Kg
,l-Biphenyl	92-52-4	< 12	M   M	410	12	ug/Kg
hloronaphthalene	91-58-7	< 8.5	ψ ' ) ^ν	410	8.5	ug/Kg
-Nitroaniline	88-74-4	< 15	p) ;	1000	15	ug/Kg
Dimethylphthalate	131-11-3	< 9.7	ψĮ	410	9.7	ug/ <b>Kg</b>
Acenaphthylene	208-96-8	< 12	VI.	410	12	ug/Kg

SDG No.:

Associated Blank:

S3409

Client:

Chazen Companies

 Sample ID:
 \$3409-02

 Date Collected:
 6/30/2004

 Date Analyzed:
 7/15/2004

 Date Extracted:
 7/14/2004

 Dilution:
 1

 Analytical Method:
 8270

 Sample Wt/Wol:
 15.3

 Injection Vol:
 2

PB16274B

Client ID:

SB-314-8

Date Received: Matrix: File ID: 7/2/2004 SOIL BE012664.D

Instrument ID:
Analytical Run ID:
Extract Vol:
% Moisture:

BE071204

<u>500</u> 20

**BNAE** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS					······································	
2,6-Dinitrotoluene	606-20-2	< 17	Ψı	410	17	ug/Kg
3-Nitroaniline	99-09-2	< 66	ψ\	1000	66	ug/Kg
Acenaphthene	83-32-9	< 9.0	ψ \	410	9.0	ug/K.g
2,4-Dinitrophenol	51-28-5	< 18	Ψ	1000	18	ug/K.g
4-Nitrophenol	100-02-7	< 40	ψ	1000	40	ug/Kg
penzofuran	132-64-9	< 13	₩ \	410	13	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 8.1	Ψ \ -	410	8.1	ug/K·g
Diethylphthalate	84-66-2	< 13	$\Psi$	410	13	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 10	ψ	410	10	ug/Kg
Fluorene	86-73-7	< 12	<b>t</b>	410	12 ⁻	ug/Kg
4-Nitroaniline	100-01-6	< 32	<b>v</b>	1000	32	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 24	$\Psi$	1000	24	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 10	ψ	410	10	ug/K.g
4-Bromophenyl-phenylether	101-55-3	< 11	$\Psi$	410	11	ug/Kg
Hexachlorobenzene	118-74-1	< 7.6		410	7.6	ug/Kg
Atrazine	1912-24-9	< 12	# >00	410	12	ug/Kg
Pentachlorophenol	87-86-5	< 13	ψ/	1000	13	ug/Kg
Phenanthrene	85-01-8	< 9.1	$\psi$	410	9.1	ug/Kg
Anthracene	120-12-7	< 9.7	Ψ{	410	9.7	ug/Kg
Carbazole -	86-74-8	< 9.0	4	410	9.0	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.4	. <b>ti</b> l	410	5.4	ug/Kg
Fluoranthene	206-44-0	< 5.6	$\Psi$	410	5.6	ug/Kg
Pyrene	129-00-0	< 7.2	thi a	410	7.2	ug/Kg
Butylbenzylphthalate	85-68-7	< 14	Ψ	-410	14	ug/K·g
3,3-Dichlorobenzidine	91-94-1	< 65	t)	410	65	ug/K.g
Benzo(a)anthracene	56-55-3	< 6.1	ψ	410	6.1	ug/Kg
ysene	218-01-9	< 13	<b>1</b>	410	13	ug/Kg
us(2-Ethylhexyl)phthalate .	117-81-7	< 9.3	#1 MM	. 410	9.3	ug/Kg
Pi-n-octyl phthalate	117-84-0	< 9.7	# 1 ' )' /	410	9.7	ug/Kg
Benzo(b)fluoranthene	205-99-2	< 22	th .	410	. 22	<b>44</b> ug/Kg

#### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-02

Client ID:

SB-314-8

Date Collected:

6/30/2004

Date Received: Matrix:

7/2/2004

Date Analyzed:

7/15/2004

SOIL

Date Extracted:

7/14/2004

File ID:

RE012664.D

Dilution:

Instrument ID:

BNAE

Analytical Method:

8270 15.3 Analytical Run ID:

BE071204

Sample Wt/Wol:

Extract Vol:

500

Injection Vol: Associated Blank:

2 PB16274B % Moisture:

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 14	Ψ γ	410	14	ug/Kg
Benzo(a)pyrene	50-32-8	< 7.0	ψ/	410	7.0	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 9.8	申〉の	410	9.8	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 12	<b>₽</b> \	410	12	ug/Kg
nzo(g,h,i)perylene	191-24-2	< 18	t)	410	18	ug/Kg
OURROGATES						
2-Fluorophenol	367-12-4	234.55	78 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	242.54	81 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	147.71	74 %	23 - 120	•	SPK: 200
2-Fluorobiphenyl	321-60-8	144.56	72 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	227.07	76 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	150.45	75 %	18 - 137		SPK: 200
INTERNAL STANDARDS			· · · · · · · · · · · · · · · · · · ·	•		
1,4-Dichlorobenzene-d4	3855-82-1	252504	3.47			
Naphthalene-d8	1146-65-2	921262	4.25			
Acenaphthene-d10	15067-26-2	527162	5.34			
Phenanthrene-d10	1517-22-2	916380	6.32			
Chrysene-d12	1719-03-5	875227	8.36			
Perylene-d12	1520-96-3	907486 .	9.95			
CENTITIVE IDENTIFIED CON	1POUNDS				•	
ACP CON 1		440	AB	2.50		<del>—ug/Kg-</del> K
Texadecancio acid	57103	150	, <u>J</u> , .	6.64	and the second	ug/Kg
Hicosche, (E) Unknews	74685339	430	J	8.14		ug/Kg
Squaleno unknam	7683649	270	J	9.12		ug/Kg

#### SVOC

SDG No.:

S3409

Client:

Sample ID:	S3409-03	Client ID:	SB-314-8DUP
Date Collected: Date Analyzed: Date Extracted: Dilution: Analytical Method Sample Wt/Wol: Injection Vol: Associated Blank:	6/30/2004 7/15/2004 7/14/2004 1 8270 	Date Received: Matrix: File ID: Instrument ID: Analytical Run ID: Extract Vol: % Moisture:	7/2/2004 SOIL BE012659.D BNAE BE071204 500 24

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 42	Ψ \	430	42	ug/Kg
Phenol	108-95-2	< 18	Ψ\	430	18	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 21 .	Ψ	430	. 21	ug/Kg
2-Chlorophenol	95-57-8	< 19	ψ [	430	19	ug/Kg
Methylphenol	95-48-7	< 27	ψ /	430	27	ug/Kg
2,2-oxybis(1-Chloropropane)	108-60-1	< 23	ψ /	430	23	ug/Kg
Acetophenone	98-86-2	< 23	Ψ	430	23.	ug/Kg
3+4-Methylphenols	106-44 <b>-</b> 5	< 20	ψ	430	20	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 19	ψ	430	19	ug/Kg
Hexachloroethane	67-72-1	< 21	ψ	430	21	ug/Kg
Nitrobenzene	98-95-3	< 22	· ψ]	430	22	ug/Kg
Isophorone	78-59-1	< 16	ψ	430	16	ug/Kg
2-Nitrophenol	88 <b>-</b> 75-5	< 17	ψ(	430	17	ug/Kg
2,4-Dimethylphenol	105-67-9	< 23	ψ∖	430	23	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 20	ψ\	430	20	ug/Kġ
2,4-Dichlorophenol	120-83-2	< 15	\$\s\u00f3	430	15	ug/Kg
Naphthalene	91-20-3	< 9.4	ψ/~~	430	9.4	ug/Kg
4-Chloroaniline	106-47-8	< 160	ψ/	430	160	ug/Kg
Hexachlorobutadiene	87-68-3	< 15	ψ/	430	15	ug/Kg
Caprolactam	105-60-2	< 16	Ψ	430	16	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 13	ψl	430	13	ug/Kg
2-Methylnaphthalene	91-57-6	< 7.5	ψ <b>\</b>	430	7.5	ug/Kg
Hexachlorocyclopentadiene	· 77-47-4	< 11	Ψ	430	11	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 16	ין	430	16	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 29	17	1100	29	ug/Kg
1,1-Biphenyl	92-52-4	< 13	T.	430	13	ug/Kg
Chloronaphthalene	91-58-7	< 9.0	ν	430	9.0	ug/Kg
2-Nitroaniline	88-74-4	< 16		1100	16	ug/Kg
Dimethylphthalate .	131-11-3	< 10	する	430	10	<b>55</b> /Kg
Acenaphthylene	208-96-8	< 13	$\mathfrak{h}_{I \to I}$	430	13	ug/Kg

#### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

Date Collected: Date Analyzed:

7/15/2004

Date Extracted: Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

S3409-03

6/30/2004

7/14/2004

<u>8270</u>

15.1 PB16274B Client ID:

SB-314-8DUP

Date Received:

Matrix:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture: 7/2/2004

SOIL

BE012659.D

BNAE

BE071204

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS	,					
2,6-Dinitrotoluene	606-20-2	< 18	Ψ	430	18	ug/Kg
3-Nitroaniline	99-09-2	< 70	ψ\	1100	70	ug/Kg
Acenaphthene	83-32-9	< 9.6	ψ \	430	9.6	ug/Kg
2,4-Dinitrophenol	51-28-5	< 19	ψ \	1100	19	ug/Kg
Nitrophenol	100-02-7	< 42	ψ	1100	42	ug/Kg
benzofuran	132-64-9	< 14	ψ \	430	14	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 8.6	ψ	430	8.6	ug/Kg
Diethylphthalate	84-66-2	< 14	ψ [	430	14	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 11	ψ ]	430	11	ug/Kg
Fluorene	86-73-7	< 12	ψ [	430	12	ug/Kg
4-Nitroaniline	100-01-6	< 34	ψ	1100	34	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 25	ψ∫	1100	25	ug/K.g
N-Nitrosodiphenylamine	86-30-6	< 11	ψ	430	11	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 11	ψ	430	11	ug/Kg
Hexachlorobenzene	118-74-1	< 8.1	Ψ\	430	8.1	uģ/Kg
Atrazine	1912-24-9	< 13	中〉ひつ	430	13	ug/Kg
Pentachlorophenol	87-86-5	< 13	ψ/	1100	13	ug/Kg
Phenanthrene	85-01-8	< 9.7	Ψ[	430	9.7.	ug/Kg
Anthracene	120-12-7	< 10	W	430	10	ug/Kg
Carbazole	86-74-8	< 9.6	И	430	9.6	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.8	Ф	430	5.8	ug/Kg
Fluoranthene	206-44-0	< 6.0	И	430	6.0	·ug/Kg
Pyrene	129-00-0	< 7.7	Ц	430	7.7	ug/Kg
Butylbenzylphthalate	85-68-7	< 15	- <b>/</b> /	430	15	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 70	#\	430	70	ug/Kg
Benzo(a)anthracene	56-55 <b>-</b> 3	< 6.5	41 V()	430	6.5	ug/Kg
drysene	218-01-9	< 14	ψ\ J''	430	14	ug/Kg
bis(2-Ethylhexyl)phthalate	117-81-7	< 10	Ψ	430	10	ug/Kg
Di-n-octyl phthalate	117-84-0	< 10	Ψ/	430	10	ս <b>ց5/6</b> ջ
Benzo(b)fluoranthene	205-99-2	< 23	₩'	430	23	ug/Kg

#### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

Date Collected: Date Analyzed:

7/15/2004

Date Extracted:

Dilution:

Analytical Method: Sample Wt/Wol:

Injection Vol:

Associated Blank:

S3409-03

6/30/2004

7/14/2004

8270

15.1

PB16274B

Client ID:

SB-314-8DUP

Date Received:

Matrix:

7/2/2004 SOIL

File ID:

Instrument ID:

Analytical Run ID:

Extract Vol:

% Moisture:

BE012659.D

BNAE

BE071204

500

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						<del></del>
Benzo(k)fluoranthene	207-08-9	< 15	η	430	15	ug/Kg
Benzo(a)pyrene	50-32-8	< 7.5	ן ע	430	7.5	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 10	17 \ (7)	430	10	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 13	υ	430	13	ug/Kg
enzo(g,h,i)perylene	191-24-2	< 19	ր 1	430	19	ug/Kg
SURROGATES						· · · · · · · · · · · · · · · · · · ·
2-Fluorophenol	367-12-4	231.6	77 %	25 - 121	•	SPK: 300
Phenol-d5	13127-88-3	241.39	80 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	148.06	74 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	146.31	73 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	227.26	76 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	152.47	76 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	243917	3.47			٠.
Naphthalene-d8	1146-65-2	869437	4.25	$\sim \mathcal{N}$		
Acenaphthene-d10	15067-26-2	507809	5.34	$\gamma D$		
Phenanthrene-d10	1517-22-2	878680	6.33	1.7		
Chrysene-d12	1719-03-5	831610	8.42			•
Perylene-d12	1520-96-3	848418	10.02			
TENTITIVE IDENTIFIED COM	IPOUNDS					
ACP		470	AB	2.51		<del>ug/Kg √</del> ⟨
5-Efcosene, (E)- unknam	74685306	360	J.,	8.19	dans energy to the control of the	ug/Kg
Squalene In Known	7683649	360	J	9.19		ug/Kg

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:	S3409-04	Client ID:	SB-034-8
Date Collected: Date Analyzed: Date Extracted: Dilution: Analytical Method Sample Wt/Wol: Injection Vol: Associated Blank:	15.1	Date Received: Matrix: File ID: Instrument ID: Analytical Run ID: Extract Vol: % Moisture:	7/2/2004 SOIL BE012673.D BNAE BE071204 5000

Parameter	CAS Number	Concentration	C ·	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 4200	<b>Ψ\</b>	43000	4200	ug/K.g
Phenol	108-95-2	< 1800	ψ\	43000	1800	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 2100	ψΙ	43000	2100	ug/Kg
2-Chlorophenol	95-57 <b>-</b> 8	< 1900	# \	43000	1900	ug/Kg
^Methylphenol	95-48-7	< 2700	ψ \	43000	2700	ug/Kg
.,2-oxybis(1-Chloropropane)	108-60-1	< 2300	Ψ (	43000	2300	ug/Kg
Acetophenone	98-86-2	< 2300	<b>₩</b> .	43000	2300	ug/Kg
3+4-Methylphenols	106-44-5	< 2000	Ψ ]	43000	2000	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 1900	Ψ	43000	1900	ug/Kg
Hexachloroethane	67-72-1	< 2100	Ψ	43000	2100	ug/Kg
Nitrobenzene	98-95-3	< 2200	ψļ	43000	2200	ug/Kg
Isophorone	78-59-1	< 1600	Ψĺ	43000	1600	ug/Kg
2-Nitrophenol	88-75-5	< 1700	Ψ	43000	1700	ug/Kg
2,4-Dimethylphenol	105-67-9	< 2300	Ψĺ	43000	2300	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 2000	V \	43000	2000	ug/Kg
2,4-Dichlorophenol	120-83-2	< 1500	f >U7	43000	1500	ug/Kg
Naphthalene	91-20-3	< 940	₽/	43000	940	ug/Kg
4-Chloroaniline	106-47-8	< 16000	Ψ/	43000	16000	· ug/Kg
Hexachlorobutadiene	87-68-3	< 1500	t)	43000	1500	ug/Kg
Caprolactam	105-60-2	< 1600	И	43000	1600	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 1300	<b>i</b> d .	43000	1300	ug/Kg
2-Methylnaphthalene	91-57-6	< 750	<b> </b>	43000	750	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 1100	<b>i</b> t[	43000	1100	ug/Kg
2.4.6-Trichlorophenol	88-06-2	< 1600	ψ∖	43000	1600	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 2900	₽\	110000	2900	ug/Kg
1,1-Biphenyl	92-52-4	< 1300	ψ\	43000	1300	ug/Kg
Chloronaphthalene	91-58-7	< 900	b	43000	900	ug/Kg
2-Nitroaniline	88-74-4	< 1600 M	tr I	110000	1600	.ug/Kg
Dimethylphthalate	131-11-3	< 1000	<b>₽</b>	43000	1000	սց/ <u>Մ</u> ց
Acenaphthylene	208-96-8	< 1300	þl	43000	1300	ug/Kg

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-04

Date Collected:

6/28/2004

Date Analyzed: Date Extracted:

7/14/2004

Dilution:

10

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

7/16/2004

<u>8270</u> 15.1

PB16274B

Client ID:

SB-034-8

Date Received:

Matrix:

File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

7/2/2004

SOIL BE012673.D

BNAE

BE071204

2.4
24

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
2.6-Dinitrotoluene	606-20-2	< 1800	ψ̈́ţ	43000	1800	ug/Kg
3-Nitroaniline	99-09-2	< 7000	<b>b</b> \ :	110000	7000	ug/Kg
Acenaphthene	83-32-9	< 950	b }	43000	950	ug/Kg
2,4-Dinitrophenol	51-28-5	< 1900	ן ע	110000	1900	ug/K.g
Nitrophenol	100-02-7	< 4200	ן ע	110000	4200	ug/K.g
Dibenzofuran	132-64-9	< 1400	ן ע	43000	1400	ug/K.g
	121-14-2	< 860	J	43000	860	ug/K.g
2,4-Dinitrotoluene	84-66-2	< 1400	ון	43000	1400	ug/Kg
Diethylphthalate	7005-72-3	< 1100	ט	43000	1100	ug/Kg
4-Chlorophenyl-phenylether	86-73-7	< 1200	U > VI	43000	1200	ug/Kg
Fluorene	100-01-6	< 3400	u /	110000	3400	ug/Kg
4-Nitroaniline	534-52-1	< 2500	bl	110000	2500	ug/Kg
4,6-Dinitro-2-methylphenol	86-30-6	< 1100	U	43000	1100	ug/Kg
N-Nitrosodiphenylamine	101-55-3	< 1100	J	43000	1100	ug/Kg
4-Bromophenyl-phenylether	118-74-1	< 810		43000	810	ug/K.g
Hexachlorobenzene	1912-24-9	< 1300	5	43000	1300	ug/K.g
Atrazine	87-86-5	< 1300	F	110000	1300	ug/Kg
Pentachlorophenol	87-80-3 85-01-8	ر <del>1300</del> 950	¥ U1	43000	970	ug/Kg
Phenanthrene	= "	< 1000	TITS	43000	1000	ug/Kg
Anthracene	120-12-7	< 950	1 > 1/1	43000	950	ug/Kg
Carbazole	86-74-8	< 580	11/03	43000	580	ug/Kg
Di-n-butylphthalate	84-74-2	7200	×1 .	43000	600	ug/Kg
Fluoranthene	206-44-0	8300	، کر ،	43000	770	ug/Kg
Pyrene	129-00-0	< 1500	) J	43000	1500	ug/Kg
Butylbenzylphthalate	85-68-7		1	43000	6900	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 6900	1, (	43000	650	ug/Kg
Senzo(a)anthracene	56-55-3	< 650	1100	43000	1400	ug/Kg
Chrysene	218-01-9	< 1400	# ( ) -	43000	990	ug/Kg .
bis(2-Ethylhexyl)phthalate	117-81-7	< 990 .	#1	43000	1000	u <b>6</b> 77g
Di-n-octyl phthalate	117-84-0	< 1000	¥}	43000	2300	u <b>67</b> 5 ug/Kg
Benzo(b)fluoranthene	205-99-2	< 2300	(I) J	45000	2300	451175

#### **SVOC**

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-04

SB-034-8

Date Collected:

6/28/2004

Date Analyzed:

7/16/2004 7/14/2004

Date Extracted: Dilution:

10

Analytical Method:

Sample Wt/Wol:

Injection Vol: Associated Blank: 8270

15.1 2

PB16274B

Client ID:

Date Received:

Matrix: File ID:

Instrument ID: Analytical Run ID:

Extract Vol: % Moisture: 7/2/2004

SOIL

BE012673.D

BNAE

BE071204

5000

Parameter	CAS Number	Concentration	. <b>C</b>	RDL	MDL	Units
TARGETS					-	
Benzo(k)fluoranthene	207-08-9	< 1500	Ψ <b>\</b>	43000	1500	ug/Kg
Benzo(a)pyrene	50-32-8	< 750	ψ)	43000	750	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 1000	すという	43000	1000	ug/K:g
Dibenz(a,h)anthracene	53-70-3	< 1300	ψ (	43000	1300	ug/Kg
Benzo(g,h,i)perylene	191-24-2	< 1900	Ψ)	43000	1900	ug/Kg
RROGATES						
2-Fluorophenol	367-12-4	15.7	5 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	17.4	6%	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	11.2	6 %	23 - 120	,	SPK: 200
2-Fluorobiphenyl	321-60-8	12.9	6%	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	15.3	5 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	13.4	7 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	201437	3.48			
Naphthalene-d8	1146-65-2	875667	4.25			
Acenaphthene-d10	15067-26-2	503447	5.34			
Phenanthrene-d10	1517-22-2	894054	6.31			
Chrysene-d12	1719-03-5	900056	8.30			
Perylene-d12	1520-96-3	915785	9.88			
TENTITIVE IDENTIFIED CO	MPOUNDS					
Thiophone unknown	110021	10000	J	2.03		ug/Kg



#### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-05

Date Collected: Date Analyzed:

6/28/2004 7/15/2004

Date Extracted:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol: Associated Blank: 15.0

8270

PB16274B

Client ID:

SB-044-8

7/2/2004

Date Received:

Matrix:

SOIL

File ID:

RE012661.D

BNAE

Instrument ID: Analytical Run ID:

BE071204

Extract Vol: % Moisture:

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 41	μ/	420	41	ug/Kg
Phenol	108-95-2	< 17	Ψ\	420	17	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 21	ΨŢ	420	21	ug/Kg
2-Chlorophenol	95-57-8	< 18	Ψ [	420	18	ug/Kg
Methylphenol	95-48-7	< 26	<b>U</b>	420	26	ug/Kg
2,2-oxybis(1-Chloropropane)	108-60-1	< 23	· <b>t</b>	420	23	ug/Kg
Acetophenone	98-86-2	< 22	Ψ }	420	22	ug/Kg
3+4-Methylphenols	106-44-5	< 19	Ψ	420	19	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 18	₩ . [	420	18	ug/Kg
Hexachloroethane	67-72-1	< 20	Ψ	420	20	ug/Kg
Nitrobenzene	98-95-3	< 21	Ψ /	420	21	ug/Kg
Isophorone	78-59-1	< 16	Ψ /	420	16	ug/Kg
2-Nitrophenol	88-75-5	< 17	Ψj	420	17	ug/Kg
2,4-Dimethylphenol	105-67 <b>-</b> 9	< 23	Ψ [	420	23	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 19	1\01	420	19	ug/Kg
2,4-Dichlorophenol	120-83-2	< 15	ψ,/ Ο.	420	15	ug/Kg
Naphthalene	91-20-3	< 9.1	ψ/	420	9.1	ug/Kg
4-Chloroaniline	106-47-8	< 150	Ψ	420	150	ug/Kg
Hexachlorobutadiene	87 <b>-</b> 68-3	< 15	Ψ	420	15	ug/Kg
Caprolactam	105-60-2	< 15	Ф	420	15	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 12	Щ	420	12	ug/Kg
2-Methylnaphthalene	91-57-6	< 7.2	ᅦ	420	7.2	uġ/Kg
Hexachlorocyclopentadiene	77-47-4	< 10	ψ\	420	10	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 15	ψ <b>\</b>	-420	15	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 28	ψ \	1000	28	ug/Kg
1,1-Biphenyl	92-52-4	< 12	ψ \	420	12	ug/Kg
2-Chloronaphthalene	91-58-7	< 8.7	ψ]	420	8.7	ug/Kg
2-Nitroaniline	88-74-4	< 15	ψ↓	1000 -	15	ug/Kg
Dimethylphthalate	131-11-3	< 10 ()//	ψ∤	420	10	<del>це/</del> К.g
Acenaphthylene	208-96-8	< 13	₩.	420	13	ug/Kg

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-05

Client ID:

SB-044-8

Date Collected:

6/28/2004

Date Analyzed: Date Extracted: 7/15/2004 7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

15.0

2

8270

PB16274B

Date Received:

Matrix:

File ID:

Instrument ID: Analytical Run ID:

Extract Vol:

7/2/2004

SOIL

RE012661 D

BNAE

BE071204

500 21

% Moisture:

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS			I			
2,6-Dinitrotoluene	606-20-2	< 18	Ψ Υ	420	18	ug/Kg
3-Nitroaniline	99-09-2	< 67	Ψ \	1000	67	ug/Kg
Acenaphthene	83-32-9	< 9.2	ψ (	420	9.2	ug/Kg
2,4-Dinitrophenol	51-28-5	< 18	ψ /	1000	18	ug/K.g
Nitrophenol	100-02-7	< 41	ψ /	1000	41	ug/Kg
Jibenzofuran	132-64-9	< 14	ψ /	420	14	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 8.3	ψ / -	420	8.3	ug/Kg
Diethylphthalate	84-66-2	< 13	ψΙ	420	13	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 10	ψ∫	420	10	ug/Kg
Fluorene	86-73-7	< 12	ψ/	420	12	ug/Kg
4-Nitroaniline	100-01-6	< 33	ψ∤	1000	33	ug/Kg
4.6-Dinitro-2-methylphenol	534-52-1	< 24	ψ∤	1000	24	ug/K.g
N-Nitrosodiphenylamine	86-30-6	< 11	ψ∤	420	11	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 11	ψ\	420	11	ug/Kg
Hexachlorobenzene	118-74-1	< 7.8	ψ/	420	7.8	ug/Kg
Atrazine	1912-24-9	< 13	サンいつ	420	13	ug/K.g
Pentachlorophenol	87-86-5	< 13	Ψ/03	1000	13	ug/Kg
Phenanthrene	85-01-8	< 9.3	ψ/	420	9.3	ug/Kg
Anthracene	120-12-7	< 10	ψ/	420	10	ug/Kg
Carbazole	86-74-8	< 9.2	t/	420	9.2	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.6	₩	420	5.6	ug/Kg
Fluoranthene	206-44-0	< 5.8	₩	420	5.8	ug/Kg
	129-00-0	< 7.5	₩	420	7.5	ug/Kg
Pyrene  Details and debths late	85-68-7	< 14		420	14	ug/Kg
Butylbenzylphthalate 3,3-Dichlorobenzidine	91-94-1	< 67 ·	Ш	420	67	ug/Kg
	56-55-3	< 6.3	υl	420	6.3	ug/K.g
Benzo(a)anthracene	218-01-9	< 13	₽/	420	13	ug/K.g
hrysene	117-81-7	< 9.6	₩ }	420	. 9.6	ug/K.g
bis(2-Ethylhexyl)phthalate	117-84-0	< 10	t l	420	10	ug/Kg
Di-n-octyl phthalate	205-99-2	$< \frac{10}{22}$	<b>U</b>	420	22	ug/Kg <b>78</b> ug/Kg
Benzo(b)fluoranthene	2UJ+77-2		• •		_	

#### **SVOC**

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-05

Date Collected: Date Analyzed:

6/28/2004 7/15/2004

Date Extracted:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

<u>8270</u> 15.0

_2

PB16274B

Client ID:

SB-044-8

Date Received:

Matrix:

File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

7/2/2004

SOIL

BE012661.D

BNAE

BE071204

500

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						\( N7. a.
Benzo(k)fluoranthene	207-08-9	< 14	۴ì	420	14	ug/Kg
Benzo(a)pyrene	50-32-8	< 7.2	11	420	7.2	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 10	TY Y	420	10	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 12	₽1	420	12	ug/Kg
enzo(g,h,i)perylene	191-24-2	< 18	Ψ) <u> </u>	420	18	ug/Kg
SURROGATES					40	ante 200
2-Fluorophenol	367-12-4	241.24	80 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	250.55	84 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	140.35	70 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	150.88	75 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	238.91	80 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	158.52	79 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	242766	3.47			*
Naphthalene-d8	1146-65-2	880384	4.25			
Acenaphthene-d10	15067-26-2	509795	5.34			
Phenanthrene-d10	1517-22-2	886443	6.31			
Chrysene-d12	1719-03-5	835485	8.33			
Perylene-d12	1520-96-3	861742	9.91			
TENTITIVE IDENTIFIED CO	MPOUNDS					ar V
ACP-		<del>&lt; 510 -</del>	AB-	<del>- 2.50</del>		<del>ug/x-g</del> ∕
1-Octadocanol a (cehel	112925	410	J	8,10	,	ug/Kg
Squalence un known	7683649	430	J	9.08		ug/K.g

SDG No.:

S3409

Client:

Chazen Companies

S3409-06 Sample ID: Client ID: SB-0412-16 Date Collected: Date Received: 7/2/2004 6/28/2004 Date Analyzed: 7/15/2004 Matrix: SOIL BE012665.D Date Extracted: 7/14/2004 File ID: Dilution: Instrument ID: 1 BNAE Analytical Method: 8270 Analytical Run ID: BE071204 Sample Wt/Wol: Extract Vol: 15.2 500 Injection Vol: % Moisture: 18 Associated Blank: PB16274B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 39	νį	. 400	39	ug/Kg
Phenol	108-95-2	< 17	ψ\	400	17	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 20	tr l	400	20	ug/Kg
2-Chlorophenol	95-57-8	< 17	ψ	400	17	ug/Kg
2-Methylphenol	95-48-7	< 25	t l	400	25	ug/Kg
)-oxybis(1-Chloropropane)	108-60-1	< 22	ψĺ	400	22	ug/Kg
Acetophenone	98-86-2	< 21	ψ [	400	21	ug/Kg
3+4-Methylphenols	106-44-5	< 18	<b>ψ</b> /	400	18	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 18	ψ/	400	18	ug/Kg
Hexachloroethane	67-72-1	< 19	ψ/	400	19	ug/Kg
Nitrobenzene	98-95-3	< 20	ψ	400	20	ug/Kg
Isophorone	78-59-1	< 15	ψ]	400	15	ug/Kg
2-Nitrophenol	88-75-5	< 16	ψ	400	16	ug/Kg
2,4-Dimethylphenol	105-67-9	< 22	ψ(	400	22	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 18	ψ\	400	18	ug/Kg
2,4-Dichlorophenol	120-83-2	< 14	<b>₩\.</b> ₩	400	14	ug/Kg
Naphthalene	91-20-3	< 8.7	$\psi / \psi$	400	8.7	ug/Kg
4-Chloroaniline	106-47-8	< 150	ψ/	400	150	ug/Kg
Hexachlorobutadiene	87-68-3	< 14	ψ/	400	14	ug/Kg
Caprolactam	105-60-2	< 15	ψ/	400	15	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 12	ψ	400	12	ug/Kg
2-Methylnaphthalene	91-57-6	< 6.9	ψ∖	400	6.9	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 10	ψ\	400	10	u <b>g/Kg</b>
2,4,6-Trichlorophenol	88-06-2	< 14	ψ\	400	14	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 26	ψ \	1000	26	ug/Kg
1,1-Biphenyl	92-52-4	< 12	ψ ]	400	12	ug/Kg
Shloronaphthalene	91-58-7	< 8.3	ψ]	400	8.3	ug/Kg
Nitroaniline	88-74-4	< 14	ψ/	1000	14	ug/Kg
Dimethylphthalate	131-11-3	< 9.5	ψ/	400	9.5	.ug/Kg
Acenaphthylene	208-96-8	< 12	<b>₩</b>	400	12	ug/Kg

SDG No.:

S3409

Client:

Chazen Companies

Sample ID: S3409-06 Date Collected: 6/28/2004 Date Analyzed: 7/15/2004 Date Extracted: 7/14/2004 Dilution: 8270 Analytical Method: 15.2 Sample Wt/Wol: Injection Vol: Associated Blank: PB16274B Client ID: <u>SB-0412-16</u>

Date Received:
Matrix:
File ID:
Instrument ID:
Analytical Run ID:

7/2/2004 SOIL BE012665 D BNAE

Analytical Run ID:
Extract Vol:
% Moisture:

18

BE071204 500

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 17	Ψĺ	400	17	ug/Kg
3-Nitroaniline	99-09-2	< 64	ψ)	1000	64	ug/Kg
Acenaphthene	83-32-9	< 8.8	ψ	400	8.8	ug/Kg
2,4-Dinitrophenol	51-28-5	< 18	ψ	1000	18	ug/Kg
4-Nitrophenol	100-02-7	< 39	ψ \	1000	39	ug/Kg
benzofuran	132-64-9	< 13	Ψ	400	13	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 8.0	ψ /	400	8.0	ug/Kg
Diethylphthalate	84-66-2	< 13	· #	400	13 .	ug/K.g
4-Chlorophenyl-phenylether	7005-72-3	< 9.9	ψ	400	9.9	ug/Kg
Fluorene	86-73-7	< 11	ψ	400	11	ug/Kg
4-Nitroaniline	100-01-6	< 31	ψ (	1000	31	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 23	ψ\	1000	23	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 10	<b>♥ }U</b> 1	400	10	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 10	ψ / ΄	400	10	ug/Kg
Hexachlorobenzene	118-74-1	< 7.5	Ψ/	400	7.5	ug/Kg
Atrazine	1912-24-9	< 12	Ψ/	400	12	ug/Kg
Pentachlorophenol	87-86-5	< 12	Ψ[	1000	12	ug/K.g
Phenanthrene	85-01-8	< 8.9	ψ	400	8.9	ug/Kg
Anthracene	120-12-7	< 9.5	ψĺ	400 '	9.5	ug/Kg
Carbazole	86-74-8	< 8.8	ψĺ	400	8.8	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.3	ψ]	400	5.3	ug/Kg
Fluoranthene	206-44-0	< 5.6	Ψĺ	400	5.6	ug/K.g
Pyrene	129-00-0	< 7.1	Ψļ	400	7.1	ug/Kg
Butylbenzylphthalate	85-68-7	< 13	10 \	400	13	ug/Kg
3.3-Dichlorobenzidine	91-94-1	< 64	<b>b</b> ]	400	64	ug/Kg
Benzo(a)anthracene	56-55-3	< 6.0	<b>₽. /</b>	400	6.0	ug/Kg
Tysene	218-01-9	< 13	υ,	400	13	ug/Kg
us(2-Ethylhexyl)phthalate	117-81-7	41 (V)	15	400	9.2	ug/Kg
Di-n-octyl phthalate	117-84-0	< 9.5 )	V North	400	9.5	ug/Kg
Benzo(b)fluoranthene	205-99-2	< 21	PANA	400	21	ug/K.g

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-06

6/28/2004

Date Analyzed: Date Extracted:

Date Collected:

7/15/2004 7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol: Injection Vol:

Associated Blank:

8270 15.2

PB16274B

Client ID:

Date Received:

Matrix:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture: SB-0412-16

7/2/2004

SOIL

RE012665.D

BNAE

BE071204

500

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 14	<b>Ψ</b>	400	14	ug/Kg
Benzo(a)pyrene	50-32-8	< 6.9	ψ/	400	6.9	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 9.7	\$\mu\$\ldots	400	9.7	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 12	ψ [	400	12	ug/K.g
pnzo(g,h,i)perylene	191-24-2	< 17	Ψ/	400	17	ug/Kg
SURROGATES						
2-Fluorophenol	367-12-4	238.48	79 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	249.61	83 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	136.1	68 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	148.65	74 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	236.8	79 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	152.21	76 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	235908	3.47		-	
Naphthalene-d8	1146-65-2	877443	4.25			
Acenaphthene-d10	15067-26-2	489320	5.34			
Phenanthrene-d10	1517-22-2	857754	6.31	M		
Chrysene-d12	1719-03-5	818572	8.31	$\alpha$		
Perylene-d12	1520-96-3	842037	9.88			
TENTITIVE IDENTIFIED COM	POUNDS					Λ
ACP		510	AB-	2.50		<del>ug/Kg</del> K
Cyclotetradecane unknown	295170	31,0	J.	8.09		ug/Kg
Psi., psi. Carotene, 7,7,8,8,11,11,1	502625	220	J	9.05		ug/Kg

SDG No.:

S3409

Client:

Sample ID:	S3409-07	_ Client ID:	SB-184-8
Date Collected:	6/29/2004	Date Received:	7/2/2004
Date Analyzed:	7/15/2004	Matrix:	SOIL
Date Extracted:	7/14/2004	File ID:	BE012671.D
Dilution:	2	Instrument ID:	BNAE
Analytical Method	8270	Analytical Run ID:	BE071204
Sample Wt/Wol:	15.1	Extract Vol:	1000
Injection Vol:	2	% Moisture:	15
Associated Blank:	PB16274B		

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
Benzaldehyde	100-52-7	< 150	<b>Ψ \</b>	1500	150	ug/Kg
Phenol	108-95-2	< 64	ս /	1500	64	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 76	₩ \	1500	76	ug/Kg
2-Chlorophenol	95-57-8	< 67	ψ	1500	67	ug/Kg
2-Methylphenol	95-48-7	< 97	$\Psi$	1500	.97	ug/Kg
)-oxybis(1-Chloropropane)	108-60-1	< 83	₩ \	1500	83	ug/Kg
Acetophenone	98-86-2	< 81	ψ \	1500	. 81	ug/Kg
3+4-Methylphenols	106-44-5	. < 71	ψ ∤	1500	71	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 68	₩	1500	68	ug/Kg
Hexachloroethane	67-72-1	< 74	ψ	1500	74	ug/Kg
Nitrobenzene	98-95-3	< 78	ψ /	1500	78	ug/Kg
Isophorone	78-59-1	< 57	ψ	1500	57	ug/Kg
2-Nitrophenol	88-75-5	< 62	ψ /	1500	62	ug/Kg
2,4-Dimethylphenol	105-67-9	< 83	₩ .	1500	- 83	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 70	ψ (	1500	70	ug/Kg
2,4-Dichlorophenol	120-83-2	< 54	# \VJ	1500	54	ug/Kg
Naphthalene	91-20-3	< 34 .	<b>#</b> / ~	1500	34	ug/Kg
4-Chloroaniline	106-47-8	< 570	ψ/	1500	570	ug/Kg
Hexachlorobutadiene	87-68-3	< 54	ψ	1500	54	ug/Kg
Caprolactam	105-60-2	< 57	ψ	1500	57	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 46	ψ\	1500	46	ug/Kg
2-Methylnaphthalene	91-57-6	< 27	ψ\ .	1500	27	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 39	ψ]	1500	39	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 56	ψ	1500	56	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 100	ψ \	3900	100	ug/Kg
1,1-Biphenyl	92-52-4	< 46	Ψ [	1500	46	ug/Kg
hloronaphthalene	91-58-7	< 32	ψ	1500	32	ug/Kg
د-Nitroaniline	88-74-4	< 56	₩ /	3900	56 .	ug/Kg
Dimethylphthalate	131-11-3	< 37	ψ/	1500	37	ug/K00
Acenaphthylene	208-96-8	< 46	₩,	1500	46	ug/Kg

SDG No.:

S3409

Client:

Sample ID:	S3409-07	Client ID:	SB-184-8
Date Collected: Date Analyzed:	6/29/2004 7/15/2004	Date Received: Matrix:	7/2/2004 SOIL
Date Extracted: Dilution:	7/14/2004 2.	File ID: Instrument ID:	BE012671.D BNAE
Analytical Method:	8270	Analytical Run ID:	
Sample Wt/Wol:	<u>. 15.1</u>	Extract Vol:	1000
Injection Vol:	_2	% Moisture:	15
Associated Blank:	PB16274B		

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS		· · · · · · · · · · · · · · · · · · ·	***************************************	<del></del>		
2,6-Dinitrotoluene	606-20-2	< 66	₩\	1500	66 '	ug/Kg
3-Nitroaniline	99-09-2	< 250	Ψ/	3900	250	ug/Kg
Acenaphthene	83-32-9	< 34	<b>₩</b>	. 1500	34	ug/Kg
2,4-Dinitrophenol	51-28-5	< 68	# /	3900	68	ug/Kg
4-Nitrophenol	- 100-02-7	< 150	ψ \	3900	150	ug/Kg
benzofuran	132-64-9	< 51	ψ /	1500	51	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 31	$\Psi$	1500	. 31	ug/Kg
Diethylphthalate	· 84-66-2	< 48	ψ /	1500	48	ug/K.g
4-Chlorophenyl-phenylether	7005-72-3	< 38	ψ /	1500	38	ug/Kg
Fluorene	86-73-7	< 44	ψ /	1500	44	ug/Kg
4-Nitroaniline	100-01-6	< 120	ψ	3900	120	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 90	ψ /	3900	90	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 39	ψ/	1500	39	ug/Kg
4-Bromophenyl-phenylether	101-55-3	· < 41	ψ[	1500	41 .	ug/Kg
Hexachlorobenzene	118-74-1	< 29	ψ\	1500	29	ug/Kg
Atrazine	1912-24-9	< 47	₩ }ι~	1500	47	ug/Kg
Pentachlorophenol	87-86-5	< 48	ψ /∿〜	3900	48	ug/Kg
Phenanthrene	85-01-8	< 35	ψ/	1500	35	ug/Kg
Anthracene	120-12-7	< 37	.ψ/	1500	. 37	ug/Kg
Carbazole	86-74-8	< 34	ψ	1500	34	ug/Kg
Di-n-butylphthalate	84-74-2	< 21	Ψ	1500	21	ug/Kg
Fluoranthene	206-44-0	< 21	ψ	1500	21	ug/Kg
Pyrene	129-00-0	< 28	ψ	1500	28	ug/K.g
Butylbenzylphthalate	85-68-7	< 52	ψ\ .	1500	.52	ug/Kg
3.3-Dichlorobenzidine	91-94-1	< 250	ψ\	1500	250	ug/Kg
Benzo(a)anthracene	56-55-3	< 23	Ψ.	1500	23	ug/Kg
lysene	218-01-9	< 49	W.	1500	49	ug/Kg
bis(2-Ethylhexyl)phthalate	117-81-7	. < 35	Ų./	1500	35	ug/Kg
Di-n-octyl phthalate	117-84-0	< 37	$\Psi$	1500	37	^{ug/} <b>¥01</b>
Benzo(b)fluoranthene	205-99-2	< 82	W .	1500	82	ug/Kg

#### SVOC

) SDG No.:

S3409

Client:

		•	,	
	Sample ID:	S3409-07	Client ID:	SB-184-8
. کشت	Date Collected:	6/29/2004	Date Received:	7/2/2004
	Date Analyzed:	7/15/2004	Matrix:	SOL
	Date Extracted:	7/14/2004	File ID:	BE012671.D
	Dilution:	2	Instrument ID:	BNAE
	Analytical Method:	8270	Analytical Run ID:	BE071204
	Sample Wt/Wol:	15.1	Extract Vol:	1000
	Injection Vol:	2	% Moisture:	15
	Associated Blank:	PB16274B		· .

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS	<u> </u>		<u> </u>			······································
Benzo(k)fluoranthene	207-08-9	< 53	Þ١	1500	53	ug/Kg
Benzo(a)pyrene	50-32-8	< 27	1	1500	27	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 37	ψlus	1500	37	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 45	ψ( ⁻	1500	45	ug/Kg
Benzo(g,h,i)perylene	191-24-2	< 67	ψ)	1500	67	ug/Kg
RROGATES						
2-Fluorophenol	367-12-4	98.6	33 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	121.38	40 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	73.02	37 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	73.98	37 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	101.78	34 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	70.92	35 %	18 - 137		SPK: 200
INTERNAL STANDARDS		· · · · · · · · · · · · · · · · · · ·				
1,4-Dichlorobenzene-d4	3855-82-1	223393	3.47	r,		
Naphthalene-d8	1146-65-2	929601	4.25	-1		
Acenaphthene-d10	15067-26-2	524717	5.34	V15		
Phenanthrene-d10	1517-22-2	924570	6.32	)   "		
Chrysene-d12	1719-03-5	930198	8.40			
Perylene-d12	1520-96-3	965736	10.00			
TENTITIVE IDENTIFIED C	OMPOUNDS				· · · · · · · · · · · · · · · · · · ·	***************************************
ACP		410	AB	2.51		<del>ug/Kg-</del> R
I-Pontadecanethiol-unkon	<b>~~</b> 25276704	340	$\mathbf{J}_{i}$	8.19		ug/Kg
4-Mothyl-1,5-Hoptadicno	998947	510	J	9.17		ug/Kg
2 <del>6,26-Dimothyl-5,23-ergostadic</del>	<del>m.</del> 0	2100	J	15.07		ug/Kg

**SVOC** 

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-08

Date Collected: Date Analyzed: 6/29/2004 7/15/2004

Date Extracted:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270

15.2 PB16274B Client ID:

SB-074-8

Date Received:

7/2/2004 SOIL

Matrix:

File ID:

BE012666.D

Instrument ID:

% Moisture:

BNAE Analytical Run ID:

Extract Vol:

<u>500</u>

BE071204

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS	100 50 7	< 39	TU V	390	39	ug/Kg
Benzaldehyde	100-52-7	< 16	T \	390	16	ug/Kg
Phenol	108-95-2	< 19	1	390	19	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 17	J	390	17	ug/Kg
2-Chlorophenol	95-57-8	< 25		390	25	ug/Kg
Methylphenol	95-48-7	< 21	T I	390	21	ug/Kg
2,2-oxybis(1-Chloropropane)	108-60-1	< 21		390	21	ug/Kg
Acetophenone	98-86-2		1 /00	390	18	ug/Kg
3+4-Methylphenols	106-44-5	< 18	1, /	390	17	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 17	¥, (	390	19	ug/Kg
Hexachloroethane	67-72-1	< 19	1	390	20	ug/Kg
Nitrobenzene	98-95-3	< 20	¥, \	390	15	ug/Kg
Isophorone	78-59-1	< 15	¥. 1	390	16	ug/Kg
2-Nitrophenol	88-75-5	< 16	# 1	390	21	ug/Kg
2,4-Dimethylphenol	105-67-9	< 21	¥. ]	390	18	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 18	¥/	390	14	ug/Kg
2,4-Dichlorophenol	120-83-2	< 14	1	390	8.6	ug/Kg
Naphthalene	91-20-3	۲ <del>-110</del> 817	<b>→</b> U]	390	150	ug/Kg
4-Chloroaniline	106-47-8	< 150	127	390 390	130	ug/Kg
Hexachlorobutadiene	87-68-3	< 14	1 700		15	ug/Kg
Caprolactam	105-60-2	< 15	P 3	390	12	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 12	P'	390	6.8	ug/Kg
2-Methylnaphthalene	91-57-6	120	27	390	9.9	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 9.9	PΛ	390	9.9	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 14	P /	390	26	ug/Kg ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 26	Ψ(	990	20 12	ug/Kg ug/Kg
1,1-Biphenyl	92-52-4	< 12		390		ug/K.g ug/Kg
2-Chloronaphthalene	91-58-7	< 8.2	Ψ/	` 390	8.2	=
2-Nitroaniline	88-74-4	· < 14 MS	ΨĮ	990	14	ug/Kg
Dimethylphthalate	131-11-3	< 9.4	ΨV	390	9.4	143°s
Acenaphthylene	208-96-8	< 12	U!	390	12	ug/Kg

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-08

Date Collected: Date Analyzed: 6/29/2004 7/15/2004

Date Extracted:

7/14/2004

Dilution: Analytical Method:

<u>8270</u>

Sample Wt/Wol: Injection Vol: 15.2

Associated Blank:

PB16274B

Client ID:

SB-074-8

Date Received:

Motrix

7/2/2004

Matrix:

n. 90

SOIL BE012666.D

File ID: Instrument ID:

BNAE

Analytical Run ID:

BE071204

Extract Vol: % Moisture:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
2.6-Dinitrotoluene	606-20-2	< 17	ΨÌ	390	17	ug/Kg
3-Nitroaniline	99-09-2	< 64	Ψ\	990	64	ug/Kg
Acenaphthene	83-32-9	< 8.7	ψ \	390	8.7	ug/Kg
2,4-Dinitrophenol	51-28-5	< 17	Ψ	990	17	ug/Kg
Nitrophenol	100-02-7	< 38	Ψ]	990	38	ug/Kg
∠ibenzofuran	132-64-9	< 13	Ψ/	390	13	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 7.9	Ψ/	390	7.9	ug/Kg
Diethylphthalate	84-66-2	< 12	t)	390	12	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 9.8	W.	390	9.8	ug/Kg
Fluorene	86-73-7	< 11	₩	390	11	ug/Kg
4-Nitroaniline	100-01-6	< 31	Ħ	990	31	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 23	ψ/	990	23	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 10	ψ \ <i>ι )</i> 1	390	10	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 10	$\frac{1}{2}$	390	10	ug/Kg
Hexachlorobenzene	118-74-1	< 7.4	ψl	390	<b>7.4</b> =,	ug/Kg
Atrazine	1912-24-9	< 12	₩	390	12	ug/K.g
Pentachlorophenol	87-86-5	< 12	ψl	990	12	ug/Kg
Phenanthrene	85-01-8	< 8.8	υl	390	8.8	ug/Kg
Anthracene	120-12-7	< 9.4	Ψ,	NG 390	9.4	ug/Kg
Carbazole	86-74-8	< 8.7	U Y	390	8.7	ug/Kg
	84-74-2	< 5.2		390	5.2	ug/Kg
Di-n-butylphthalate Fluoranthene	206-44-0	< 5.5	U	390	5.5	ug/Kg
	129-00-0	< 7.0	₩	390	7.0	ug/Kg
Pyrene	85-68-7	< 13		390	13	ug/Kg
Butylbenzylphthalate	/ 91-94-1	< 63	G.	390	63	ug/Kg
3,3-Dichioropolizianie	56-55-3	< 5.9	$\mathbf{H}$	390	5.9	ug/Kg
Penzo(a)anthracene	218-01-9	< 12	<b></b> ₹	390	12	ug/Kg
hrysene	117-81-7	51,	7.7	390	9.0	ug/K.g
bis(2-Ethylhexyl)phthalate	117-81-7	< 9.4	II.	390	9.4	484Kg
Di-n-octyl phthalate Benzo(b)fluoranthene	205-99-2	< 21	f>U	390	21	ug/Kg

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-08

Client ID:

SB-074-8

Date Collected:

6/29/2004

Date Analyzed:

7/15/2004 7/14/2004

Date Extracted: Dilution:

Analytical Method: Sample Wt/Wol:

8270

Injection Vol:

Associated Blank:

15.2

PB16274B

Date Received:

Matrix:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture: 7/2/2004

SOIL BE012666.D

BNAE

BE071204

500

17

Parameter	CAS Number	Concentration	C ·	RDL	MDL	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 13	<b>#</b> ")	390	- 13	ug/Kg
Benzo(a)pyrene	50-32-8	< 6.8	# /	390	6.8	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 9.5	\$ \bullet \bullet \lambda \bullet \lambda \bullet \lambda \bullet \lambda \bullet \bul	390	9.5	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 12	ψ (	390	12	ug/Kg
enzo(g,h,i)perylene	191-24-2	< 17	ψ <i>)</i>	390	17	ug/Kg
SURROGATES						
2-Fluorophenol	367-12-4	232.93	78 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	248.73	83 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	126.58	63 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	144.28	72 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	232.89	78 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	155.78	78 %	18 - 137		SPK: 200
INTERNAL STANDARDS					•	
1,4-Dichlorobenzene-d4	3855-82-1	229376	3.47			
Naphthalene-d8	1146-65-2	871535	4.25			
Acenaphthene-d10	15067-26-2	496585	5.34			
Phenanthrene-d10	1517-22-2	839889	6.30			
Chrysene-d12	1719-03-5	774780	8.26			
Perylene-d12	1520-96-3	794605	9.83			

#### TENTITIVE IDENTIFIED COMPOUNDS

TEMITTIVE MENTERIED COM	LOGRADA				· ·
ACD		310	AB	2.50	ug/Kg (
Benzene, 1,2 dimethyl	-95 <del>476</del>	170	J	2.81	<del></del>
Benzene, 4-cthyl-1,2-dimethyl	934805 C10 64 14	130	J	3.65	ug/Kg
Naphthalene, decahydro, trans-	-493027-C10 H18	150	J	3.68	ug/Kg
nzene, 1-methyl-3-(1-methyleth	535773 C101414	270	J	3.75	ug/Kg
Naphthalene, decahydro-2-methyl-	<del>-295876</del> 1Unknow	<b>~</b> 240	J	3.92	ug/Kg
Unknown Clo HICL		150	, J	4.07	մց/ <u>K</u> ջ
5-Undecene, 6-methyl-	83687450 Un Kucu	<b>1</b> 60	J	4.33	ug/Kg
Naphthalene, decahydro-2,6-dimet-	-1618220 vn knav	<b>~1</b> 80	J	4.39	ug/Kg

#### **SVOČ**

SDG No.:

S3409

Client:

Chazen Companies

S3409-08 Sample ID: Date Collected: 6/29/2004 Date Analyzed: 7/15/2004 7/14/2004 Date Extracted: Dilution:

Analytical Method;

Sample Wt/Wol: Injection Vol: Associated Blank:

<u>8270</u> 15.2

PB16274B

Client ID:

Date Received: Matrix:

File ID: Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

SB-074-8

7/2/2004 SOIL BE012666.D

BNAE

BE071204

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TENTITIVE IDENTIFIED CO	MPOUNDS					
Octano, 2,3,7-trimethyl-	<u>62016346</u> a (kun	<b>3</b> 80	J	4.45		ug/Kg
Triallylsilane	- onknow		J	4.54		ug/Kg
Dodecane, 2,7,10 trimethyl	74645980 M Kun	~ 200	J	4.62		ug/Kg
Renzocycloheptatriene	264095 CII HIO	200	J	4.75		ug/Kg
odecane, 2,6,10-trimethyl-	3891983 alkan	460	J	4.82		ug/Kg
Undecane, 4,6-dimethyl-	<del>1731282</del> 2a(kane	360	J	5.10		ug/Kg
Hexadecanoic acid	57103	140	J	6.61		ug/Kg
9-Octadoconamide (Z)-	-301020 amid	100	J.	7.75		ug/Kg
,1-Nonadecanel	-1454848 a (cehel	450	J	8.04		ug/Kg
(	7683649 vyknen	120	J	9.00		ug/Kg
.Squalenc 1(4 <del>11) Phonanthrenone, 4a,4b,5,6</del>			J	14.84	·	ug/Kg



#### **SVOC**

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-09

Client ID:

Date Received:

SB-334-8

Date Collected:

6/30/2004

Matrix:

7/2/2004

Date Analyzed: Date Extracted:

7/15/2004 7/14/2004

File ID:

SOIL BE012668.D

Dilution: Analytical Method:

8270

Instrument ID: Analytical Run ID: BNAE

Sample Wt/Wol:

15.1

Extract Vol: % Moisture:

BE071204 500

23

Injection Vol: Associated Blank:

PB16274B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS		——————————————————————————————————————			······································	
Benzaldehyde	100-52-7	< 42	Ð١	430	42	ug/Kş
PhenoI	108-95-2	< 18	f /	430	18	ug/Kį ug/Kį
ois(2-Chloroethyl)ether	111-44-4	< 21	₽ /	430	21	ug/Kg ug/Kg
2-Chlorophenol	95-57-8	< 18	f l	430	18	ug/Kg ug/Kg
-Methylphenol	95-48-7	< 27	f l	430	27	ug/Kg ug/Kg
)oxybis(1-Chloropropane)	108-60-1	< 23	f l	430	23	ug/Kg ug/Kg
Acetophenone	98-86-2	< 22	<b>b</b> /	430	22	ug/Kg ug/Kg
+4-Methylphenols	106-44-5	< 20	<b>U</b>	430	20	ug/Kg
V-Nitroso-di-n-propylamine	621-64-7	< 19	1	430	19	ug/Kg ug/Kg
lexachloroethane	67-72-1	< 20	T I	430	20	ug/Kg ug/Kg
litrobenzene	98-95-3	< 22	<b>J</b> /	430	22	ug/Kg ug/Kg
sophorone	78-59-1	< 16	<b>b</b> 1	430	16	ug/Kg ug/Kg
-Nitrophenol	88 <b>-</b> 75-5	< 17	T	430	17	ug/Kg ug/Kg
4-Dimethylphenol	105-67-9	< 23	4	430	23	ug/Kg ug/Kg
s(2-Chloroethoxy)methane	111-91-1	< 20	<b>b</b> /	430	20	ug/Kg ug/Kg
4-Dichlorophenol	120-83-2	< 15	T.	430	15	ug/Kg ug/Kg
aphthalene	91-20-3	< 9.3		430	9.3	ug/K.g ug/K.g
Chloroaniline	106-47-8	< 160	I / 5	430	160	ug/K.g ug/K.g
exachlorobutadiene	87-68-3	< 15	T. /	430	15	ug/Kg ug/Kg
prolactam	105-60-2	< 16	£1	430	16	ug/Kg
Chloro-3-methylphenol	59-50-7	< 13	J	430	13	ug/Kg ug/Kg
Methylnaphthalene	91-57-6	< 7.4	J.	430	7.4	ug/Kg ug/Kg
xachlorocyclopentadiene	77-47-4	< 11	J.I	430	11	ug/K.g ug/Kg
4,6-Trichlorophenol	88-06-2	< 16	J	430		ug/Kg ug/Kg
,5-Trichlorophenol	95-95-4	< 28		1100	28	ug/Kg
-Biphenyl	92-52-4	< 13	[· ]	430	13	ug/Kg ug/Kg
loronaphthalene	91-58-7	< 8.9	<b>.</b> .	430	8.9	ug/Kg ug/Kg
troaniline	88-74-4	< 16		1100	16 .	ug/Kg ug/Kg
nethylphthalate	131-11-3	< 10 AM		430	10 .	
enaphthylene	208-96-8	< 13	[, <i>]</i>	430	13	^{ug/} <b>45</b> ug/Kg

SVOC

SDG No.:

S3409

Client:

· Chazen Companies

Sample ID: Client ID: S3409-09 SB-334-8 Date Collected: Date Received: 6/30/2004 7/2/2004 Date Analyzed: 7/15/2004 Matrix: SOIL Date Extracted: File ID: 7/14/2004 BE012668.D Dilution: Instrument ID: BNAE Analytical Method: <u>8270</u> Analytical Run ID: BE071204 Sample Wt/Wol: 15.1 Extract Vol: 500 Injection Vol: 2 % Moisture: 23 Associated Blank: PB16274B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS				<u> </u>		
2,6-Dinitrotoluene	606-20-2	< 18	Ψ\	430	18	ug/Kg
3-Nitroaniline	99-09-2	< 69	ψ )	1100	69	ug/Kg
Acenaphthene	83-32-9	< 9.4	ψ [	430	9.4	ug/Kg
2,4-Dinitrophenol	51-28-5	< 19	₩ /	1100	19	ug/Kg
Nitrophenol	100-02-7	< 42	ψ	1100	42	ug/Kg
Libenzofuran	132-64-9	< 14	ψ/	430	14	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 8.5	# /	430	8.5	ug/Kg
Diethylphthalate	84-66-2	< 13	ψ (	430	13	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 11	# \	430	11	ug/Kg
Fluorene	86-73-7	< 12	# \0 \	430	12	ug/Kg
4-Nitroaniline	100-01-6	< 33	ψ/	1100	33	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 25	<b>₩</b> [	1100	25	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 11	ψ {	430	11	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 11	ψ \	430	11	ug/Kg
Hexachlorobenzene	118-74-1	< 8.0	ψ	430	8.0	ug/Kg
Atrazine	1912-24-9	< 13	ψ <b>/</b>	430	13	ug/Kg
Pentachlorophenol	87-86-5	< 13	₩/	1100	13	ug/Kg
henanthrene	85-01-8	2-100-914	エン	430	9.6	ug/Kg
Anthracene	120-12-7	< 10	Ψ 🦒	430	10 .	ug/Kg
Carbazole	86-74-8	< 9.4	# 603	430	9.4	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.7	# ) -	430	5.7	ug/Kg
luoranthene	206-44-0	170	11/	430	5.9	ug/Kg
yrene	129-00-0	170	XJ V	430	7.6	ug/Kg
Butylbenzylphthalate	85-68-7	· · · · < 14 · · · · ·	<b>#</b> \(\(\mathbf{n}\)	- 430 -	14	ug/Kg
,3-Dichlorobenzidine	91-94-1	< 69	†	430	69	ug/Kg
enzo(a)anthracene	56-55-3	120	*1-	430	6.5	ug/Kg
lysene	218-01-9	170	27	430	14	ug/Kg
is(2-Ethylhexyl)phthalate	117-81-7	. < 9.8	W\11	430	9.8	. ug/Kg
i-n-octyl phthalate	117-84-0	< 10	1703	430	10	ug/46
enzo(b)fluoranthene	205-99-2	120	47	<b>-</b> 430	23	ug/Kg

#### SVOC

SDG No.:

S3409

Client:

			<del></del>
Sample ID:	S3409-09	Client ID:	SB-334-8
 Date Collected:	6/30/2004	Date Received:	7/2/2004
Date Analyzed:	7/15/2004	Matrix:	SOIL
Date Extracted:	7/14/2004	File ID:	BE012668.D
Dilution:	1	Instrument ID:	BNAE
Analytical Method:	8270	Analytical Run ID:	BE071204
Sample Wt/Wol:	15.1	Extract Vol:	500
Injection Vol:	2	% Moisture:	23
Associated Blank:	PB16274B		

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS					· · · · · · · · · · · · · · · · · · ·	·
Benzo(k)fluoranthene	207-08-9	73	x1 -	430	15	ug/Kg
Benzo(a)pyrene	50-32-8	88	37	430	7.4	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	L-70-10	J- U.J	430	10	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 13	JU UJ	430	13	ug/Kg
Benzo(g,h,i)perylene	191-24-2	68	JJ	430	19	ug/Kg
RROGATES			<del></del>			·
2-Fluorophenol	367-12-4	215.55	72 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	232.9	78 <b>%</b>	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	132.8	66 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	146.14	73 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	236.92	79 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	142.61	71 %	18 - 137		SPK: 200
INTERNAL STANDARDS	<u> </u>		<u> </u>			
1,4-Dichlorobenzene-d4	3855-82-1	243386	3.47			
Naphthalene-d8	1146-65-2	878702	4.25			
Acenaphthene-d10	15067-26-2	508414	5.34			
Phenanthrene-d10	1517-22-2	893872	6.31			
Chrysene-d12	1719-03-5	840687	8.34			
Perylene-d12	1520-96-3	864744	9.92			
FENTITIVE IDENTIFIED C	OMPOUNDS					
ACP'		470	AB	2.50		ug/Kg
<del>Icxadecanoic aci</del> d	-57103 Unknow	_ 260	J	6.63		ug/Kg
Phenylnaphthalene	35465715 CIG HI 2		J	6.86		ug/Kg
henanthrene , dimethyl-	1576698	110	J	7.00		ug/Kg
<del>'{cptadecenc</del>	6 <del>765395</del> alcoho (	320	J	8.12		ug/Kg
<del>dinown</del>	C201417	130	J	9.78		ug/Kg

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-10

Client ID:

SB-290-4

Date Collected:

6/30/2004

Date Analyzed: Date Extracted: 7/15/2004 7/14/2004

Dilution:

Analytical Method:

8270

Sample Wt/Wol:

15.3

Injection Vol:

2

Associated Blank:

7/2/2004

Date Received:

Matrix:

SOIL · BE012669.D

File ID:

Instrument ID:

BNAE

Analytical Run ID:

BE071204

Extract Vol:

% Moisture:

1000

PB16274B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS			········			
Benzaldehyde	100-52-7	< 140	Ψ\	1400	140	ug/Kg
Phenol	108-95-2	< 58	ψ\	1400	58	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 69	ψ\.	1400	69	ug/Kg
2-Chlorophenol	95-57-8	< 60	₩ \	1400	60	ug/Kg
Methylphenol	95-48-7	< 88	Ψ	1400	88	ug/Kg
_,,,,,	108-60-1	< 76	ti }	1400	76	ug/Kg
Acetophenone	98-86-2	< 73	Ψ] -	1400	73	ug/Kg
3+4-Methylphenols	106-44-5	< 64	tr	1400	64	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 62	Ψ /	1400	62	ug/Kg
Hexachloroethane	67-72-1	< .67	Ψ	1400	67	ug/Kg
Nitrobenzene	98-95-3	< 71	₩ /	1400	71	ug/Kg
Isophorone	78-59-1	< 52	ψ /	1400	52	ug/Kg
2-Nitrophenol	88-75-5	< 56	ΨΪ	1400	56	ug/K.g
2,4-Dimethylphenol	105-67-9	< 76	ψ	1400	76	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 64	ψ <b>\</b> ·	1400	64	ug/Kg
2,4-Dichlorophenol	120-83-2	< 49	すりの	1400	49	ug/Kg
Naphthalene	91-20-3	< 30	<b>#</b> /	1400	30	ug/Kg
4-Chloroaniline	106-47-8	< 520	<b>₽</b> /	1400	520	ug/Kg
Hexachlorobutadiene	87-68-3	< 49	Ψl	1400	49	ug/Kg
Caprolactam	105-60-2	< 52	ψ[	1400	52	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 41	Ψĺ	1400	41	ug/Kg
2-Methylnaphthalene	91-57-6	< 24	$\Psi$	1400	24	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 35	ψ	1400	35	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 51	ψ\	1400	51	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 92	ψ \	3500	92	ug/Kg
! [-Biphenyl	92-52-4	< 41	ψ	1400	41	ug/Kg
hloronaphthalene	91-58-7	< 29	ΨĮ	1400	29	ug/Kg
2-Nitroaniline	88-74-4	< 51 · (1)	Ψ1	3500	51	ug/Kg .
Dimethylphthalate	131-11-3	< 33	Ψ	1400	33	п <b>g/К</b> g
Acenaphthylene	208-96-8	< 42	<del>Մ</del>	1400	42	ug/Kg

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-10

Client ID:

SB-290-4

Date Collected:

6/30/2004

Date Received: Matrix:

7/2/2004

Date Analyzed:

7/15/2004

File ID:

SOIL BE012669.D

Date Extracted: Dilution:

7/14/2004

Instrument ID:

BNAE

Analytical Method:

8270

Analytical Run ID:

BE071204

Sample Wt/Wol:

15.3

Extract Vol:

1000

Injection Vol:

2

% Moisture:

7.

Associated Blank:

PB16274B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						,
2,6-Dinitrotoluene	606-20-2	< 60	P۱	1400	60	ug/Kg
3-Nitroaniline	99-09-2	< 230	₩ \	3500	230	ug/Kg
Acenaphthene	83-32-9	< 31	ψ \	1400	31	ug/Kg
2,4-Dinitrophenol	51-28-5	< 62.	TU \	3500	62	ug/Kg
Nitrophenol	100-02-7	< 140	Ψ	3500	140	ug/K.g
Dibenzofuran	132-64-9	< 46	1	1400	46	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 28	₩ I	1400	28	ug/Kg
Diethylphthalate	84-66-2	< 44	ψ	1400	44	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 35	$\Psi$	1400	35	ug/Kg
Fluorene	86-73-7	< 40	<b>†</b>	1400	40	ug/Kg
4-Nitroaniline	100-01-6	< 110	<b>t</b> /	3500	110	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 81	<b>t</b>	3500	81	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 35	₩ {	1400	35	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 37	₩ /	1400	37	ug/Kg
Hexachlorobenzene	118-74-1	< 26	<b>ψ</b> (	1400	26	ug/Kg
Atrazine	1912-24-9	< 43	1 \17	1400	43	ug/K.g
Pentachlorophenol	87-86-5	< 43	Ψ / ້ ້	3500	43	ug/Kg
Phenanthrene	85-01-8	< 31	Ψ/	1400	31	ug/Kg
Anthracene	120-12-7	< 33	ψ//	1400	33	ug/Kg
Carbazole	86-74-8	< 31	ψ/	1400	31 .	ug/Kg
Di-n-butylphthalate	84-74-2	< 19	Ψl	1400	19	ug/K.g
Fluoranthene	206-44-0	< 19	ψ\	1400	19	ug/Kg
Pyrene	129-00-0	< 25	ψ}	1400	25	ug/Kg
Butylbenzylphthalate	85-68-7	< 47	₩\	1400	47	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 220	ψ \	1400	220	ug/Kg
nzo(a)anthracene	56-55-3	< 21	ψ (	1400	21	ug/Kg
chrysene	218-01-9	< 44	ψ	1400	44	ug/Kg
bis(2-Ethylhexyl)phthalate	117-81-7	< 32	ψ \	1400	32	ug/Kg
Di-n-octyl phthalate	117-84-0	< 33	ψ/	1400	33	u <b>g/65</b>
Benzo(b)fluoranthene	205-99-2	< 74	f 1	1400	74	ug/Kg

arroanta a

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-10

6/30/2004 7/15/2004

Date Analyzed: Date Extracted:

Date Collected:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

15.3

8270

PB16274B

Client ID:

SB-290-4

Date Received:

Matrix:

File ID:

Instrument ID: Analytical Run ID:

Extract Vol:

% Moisture:

7/2/2004

SOIL

BE012669.D

BNAE

BE071204

1000

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS			····			
Benzo(k)fluoranthene	207-08-9	< 48	Ψ <b>`</b>	1400	48	ug/Kg
Benzo(a)pyrene	50-32-8	< 24	ψ/	1400	24	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 34	ψ <b>〉</b> છ	1400	34	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 41	ψ{	1400	41	ug/Kg
nzo(g,h,i)perylene	191-24-2	< 61	ψ.	1400	61	ug/Kg
SURROGATES						
2-Fluorophenol	367-12-4	126.04	42 %	25 - 121	•	SPK: 300
Phenol-d5	13127-88-3	107.84	36 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	64.72	32 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	69.26	35 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	109.2	36 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	75.38	38 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	223491	3.47			
Naphthalene-d8	1146-65-2	933341	4.25			
Acenaphthene-d10	15067-26-2	533426	5.34	•		
Phenanthrene-d10	1517-22-2	922194	6.31			
Chrysene-d12	1719-03-5	924382	8.31			
Perylene-d12	1520-96-3	938257	9.89			
TENTITIVE IDENTIFIED CO	MPOUNDS					
Benzenesulfonamide, N,4-dimeth	y 640619	900	J	5.94		ug/Kg
9-Eicosene, (E)	74685293 unki	nev410	J	8.10		ug/Kg

#### **SVOC**

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-11

6/30/2004

7/15/2004

7/14/2004

Date Collected:

Date Analyzed: Date Extracted:

Dilution:

Analytical Method:

Sample Wt/WoI: Injection Vol:

Associated Blank:

8270 15.2

PB16274B

Client ID:

SB-348-12

Date Received:

Matrix:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol:

% Moisture:

7/2/2004

SOIL BE012667.D

BNAE

BE071204

500

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 37	Ψ	380	37	ug/Kg
Phenol	108-95-2	< 16	Ψ	380	16	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 19	ψ	. 380	19	ug/Kg
2-Chlorophenol	95-57-8	< 16	ψ	380	16	ug/Kg
Methylphenol	95-48-7	< 24	ψ	380	24	ug/Kg
2,2-oxybis(1-Chloropropane)	108-60-1	< 20	ψ	380	20	ug/Kg
Acetophenone	98-86-2	< 20	Ψ	380	20	ug/Kg
3+4-Methylphenols	106-44-5	< 17	Ψ	380	17	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 17	Ψ	380	17	ug/Kg
Hexachloroethane	67-72-1	< 18	. 🛡	380	18 .	ug/Kg
Nitrobenzene	98-95-3	< 19	ψ	380	19	ug/Kg
Isophorone	78-59-1	< 14	Ψ	380	14	ug/Kg
2-Nitrophenol	88-75-5	< 15	ψ	380	15	ug/Kg
2,4-Dimethylphenol	105-67-9	< 20	ψ	380	20	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 17	Ψ	380	17	ug/Kg
2,4-Dichlorophenol	120-83-2	< 13	Ψ	380	13	ug/Kg
Naphthalene	91-20-3	< 8.2	ψ	380	8.2	ug/Kg
4-Chloroaniline	106-47-8	< 140	Ψ	380	140	ug/Kg
Hexachlorobutadiene	87-68-3	< 13	Ψ	380	13	ug/Kg
Caprolactam	105-60-2	< 14	ψ	380	14	ug/Kˌg
4-Chloro-3-methylphenol	59-50-7	< 11	ψ	380	11	ug/Kg
2-Methylnaphthalene	91-57-6	< 6.5	ψ	380	6.5	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 9.5	ψ	380	9.5	ug/Kg
2,4.6-Trichlorophenol	88-06-2	< 14	• ф	380	14	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 25	ψ	950	25	ug/Kg
\1-Biphenyl	92-52-4	< 11	ψ	380	11	ug/Kg
2-Chloronaphthalene	91-58-7	< 7.9	ψ	380	7.9	ug/Kg
2-Nitroaniline	88-74-4	< 14	ψ	950	14	ug/Kg
Dimethylphthalate	131-11-3	< 9.0	ψ	380	9.0	475
Acenaphthylene	208-96-8	< 11	<del>Մ</del>	380	11	ug/Kg

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-11

Date Collected: Date Analyzed: 6/30/2004 7/15/2004

Date Extracted:

7/14/2004

Dilution:

Analytical Method: Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270 15.2

PB16274B

Client ID:

SB-348-12

Date Received:

Matrix:

7/2/2004 SOIL

File ID:

BE012667.D

Instrument ID:

BNAE

Analytical Run ID: Extract Vol:

% Moisture:

BE071204

<u>500</u> 14

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 16	Ψ\	380	16	ug/K.g
3-Nitroaniline	99-09-2	< 61	ψſ	950	61	ug/Kg
Acenaphthene	83-32-9	< 8.4	10 1	380	8.4	ug/Kg
2,4-Dinitrophenol	51-28-5	< 17	₩ }	950	17	ug/Kg
Nitrophenol	100-02-7	< 37	<b>₩</b>	950	37	ug/Kg
Jibenzofuran	132-64-9	< 12	ψ /	380	12	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 7.6	<b>₩</b>	- 380	7.6	ug/K.g-
Diethylphthalate	84-66-2	< 12	Ψ	380	12	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 9.4	$\Psi I$ .	380	9.4	ug/Kg
Fluorene	86-73-7	< 11	ψ(	380	11	ug/Kg
4-Nitroaniline	100-01-6	< 30	ψ(	950	30	ug/Kg
4.6-Dinitro-2-methylphenol	534-52-1	< 22	1/03	950	22	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 9.6	# <b>/</b> U.3	380	9.6	ug/Kg
4-Bromophenyl-phenylether	101 <b>-</b> 55-3	< 10	Ψ/	380	10	ug/Kg
Hexachlorobenzene	118-74-1	< 7.1	₩/	380	7.1	ug/Kg
Atrazine	1912-24-9	< 12	И	380	12	ug/Kg
Pentachlorophenol	87-86-5	< 12,	Ф	950	12	ug/Kg
Phenanthrene	85-01-8	< 8.5	ψl	380	8.5	ug/Kg
Anthracene	120-12-7	< 9.0	ψ∖	380	9.0	ug/Kg
Carbazole	86-74-8	< 8.4	ψ\	380	8.4	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.0	Ψ)	380	5.0	ug/K.g
Fluoranthene	206-44-0	68	83	<b>✓</b> 380	5.3	ug/Kg
Pyrene	129-00-0	75 •	x1 "	380	6.8	ug/Kg
Butylbenzylphthalate	85-68-7	< 13	XSUD	380	- 43	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 61	R / CJ	380	61	ug/Kg
Pęnzo(a)anthracene	56-55-3	< <del>-√0</del> 5	- <del>-</del> UI	380	5.7	ug/K.g
nrysene	218-01-9	<- 12	エリゴ	380	12	ug/Kg
bis(2-Ethylhexyl)phthalate	117-81-7	< 8.7	W 7	380	8.7	ug/Kg
Di-n-octyl phthalate	117-84-0	< 9.0	4507	380	9.0	ug 76
Benzo(b)fluoranthene	205-99-2	< 20 Mb	. 115	380	20	ug/Kg

SVOCMS Groun1

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-11

Date Collected:

6/30/2004

Date Analyzed:

7/15/2004 7/14/2004

Date Extracted: Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270

15.2 PB16274B

Client ID:

SB-348-12

Date Received:

Matrix:

7/2/2004 SOIL

File ID:

BE012667 D BNAE

BE071204

Instrument ID:

Analytical Run ID:

Extract Vol:

% Moisture:

500

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 13	<b>ቀ</b> ጋ	380	13	ug/Kg
Benzo(a)pyrene	50-32-8	< 6.5	Ψ ]	380	6.5	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 9.2	ΨLUI	380	9.2	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 11	ψ ( ΄	380	11	ug/Kg
enzo(g,h,i)perylene	191-24-2	< 16	ψ)	380	16	. ug/K.g
SURROGATES					•	
2-Fluorophenol	367-12-4	197.41	66 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	212.2	71 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	127.88	64 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	132.46	66 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	237.17	79 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	156.16	78 %	18 - 137	, <u>.</u>	SPK: 200
INTERNAL STANDARDS				•		
1,4-Dichlorobenzene-d4	3855-82-1	237967	3.47			
Naphthalene-d8	1146-65-2	865524	4.25			
Acenaphthene-d10	15067-26-2	497566	5.34	.1		
Phenanthrene-d10	1517-22-2	863902	6.32	15		
Chrysene-d12	1719-03-5	825171	8.40	()//		
Perylene-d12	1520-96-3	840228	10.00			
TENTITIVE IDENTIFIED COM	POUNDS					4
ACP		370	AB	2.50	-	ug/Kg (
Benzenesulfonamide, N,4-dimethy	640619	190	J	5.95		ug/Kg
4-Nonadecanol	1454848 vn know	m 340	Ţ	8.17		ug/Kg

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-12

Date Collected: Date Analyzed: 6/30/2004 7/15/2004 7/14/2004

Date Extracted:

Dilution:
Analytical Method:

Sample Wt/Wol:

Injection Vol:
Associated Blank:

8270

15.0 2 PB16274B Client ID:

SB-348-12DUP

Date Received:

Matrix: File ID:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture:

7/2/2004

SOIL

RE012662.D

BNAE

BE071204

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						· M7
Benzaldehyde	100-52-7	< 36	Ψ\	370	36	ug/Kg
Phenol	108-95-2	< 15	Ψ \	370	15	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 18	Ψ \	370	18	ug/Kg
2-Chlorophenol	95-57-8	< 16	Ψ ]	370	16	ug/Kg
)-Methylphenol	95-48-7	< 23	Ψ /	370	23	ug/Kg
2,2-oxybis(1-Chloropropane)	108-60-1	< 20	Ψ	370	20	ug/Kg
Acetophenone	98-86-2	< 19	Ψ /	370	19	ug/Kg
3+4-Methylphenols	106-44-5	< 17	Ψ	370	17	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 16	Ψ /	370	16	ug/Kg
Hexachloroethane	67-72-1	< 18 ·	Ψ /	370	18	ug/Kg
Nitrobenzene	98-95-3	< 19	Ψ /	370	19	ug/Kg
Isophorone	78-59-1	< 14	Ψ ]	370	14	ug/Kg
2-Nitrophenol	88-75-5	< 15	Ψ↓	370	15	ug/Kg
2,4-Dimethylphenol	105-67-9	< 20	Ψ \	370	20	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 17	ψ \	370	17	ug/Kg
2,4-Dichlorophenol	120-83-2	< 13	כטל 🛡	370	13	ug/Kg
Naphthalene	91-20-3	< 8.0	ψ / ້	370	8.0	ug/Kg
4-Chloroaniline	106-47-8	< 140	ψ/	370	140	ug/Kg
Hexachlorobutadiene	87-68-3	< 13	Ψ/	370	13	ug/Kg
Caprolactam	105-60-2	< 14	ψ/	370	14	ug/Kg
4. Chloro-3-methylphenol	59-50-7	< 11	ψļ	370	11	ug/Kg
2-Methylnaphthalene	91-57-6	< 6.3	ψ[	370	6.3	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 9.2	ψ <b>\</b>	370	9.2	ug/Kg
2,4,6-Trichlorophenol	88-06-2	< 13	Ψ	370		ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 24	ψ)	920	24	ug/Kg
• •	92-52-4	< 11	ψ[	370	11	ug/Kg
)1,1-Biphenyl	91-58-7	< 7.7	ψ1	370	7.7	ug/Kg
2-Chloronaphthalene	88-74-4	< 13	$\Psi V = V$	920	13	ug/Kg
2-Nitroaniline	131-11-3	< 8.8	4 \ \ \ \ \	370	8.8	188
Dimethylphthalate Acenaphthylene	208-96-8	< 11	11 117	370	11	ug/Kg
Acenaphurytene						

SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-12

Date Collected:

6/30/2004 7/15/2004

Date Analyzed: Date Extracted:

7/14/2004

8270

15.0

PB16274B

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

Client ID:

SB-348-12DUP

Date Received:

Matrix:

7/2/2004 SOIL

File ID:

BE012662.D

BNAE Instrument ID:

Analytical Run ID:

Extract Vol:

BE071204 500

% Moisture:

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 16	<b>\$</b> \	370	16	ug/Kg
3-Nitroaniline	99-09-2	< 59	Ψ/	920	59	ug/Kg
Acenaphthene	83-32-9	< 8.1	Ψ \	370	8.1	ug/Kg
2,4-Dinitrophenol	51-28-5	< 16	Ψ	920	16	ug/Kg
Nitrophenol	100-02-7	< 36	Ψ	920	36	ug/Kg
Dibenzofuran	132-64-9	< 12	ψ	370	12	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 7.3	ψ \	370	7.3	ug/Kg
Diethylphthalate	84-66-2	< 12	ΨΙ	370	12	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 9.1	Ψ [	370	9.1	ug/Kg
Fluorene	86-73-7	< 10	ψ }	370	10	ug/Kg
4-Nitroaniline	100-01-6	< 29	ψ	920	29	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 21	ψ	920	21	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 9.3	ψ	370	9.3	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 9.6	ψ (	370	9.6	ug/Kg
Hexachlorobenzene	118-74-1	< 6.9	ψ \	370	6.9	ug/Kg
Atrazine	1912-24-9	< 11	V Vm	370	11	ug/Kg
Pentachlorophenol	87-86-5	< 11	1 /03	920	11	ug/Kg
Phenanthrene	85-01-8	< 8.2	ψ/	370	8.2	ug/Kg
Anthracene	120-12-7	< 8.8	Ψ	370	8.8	ug/Kg
Carbazole	86-74-8	< 8.1	Ψ	370	8.1	ug/Kg
Di-n-butylphthalate	84-74-2	< 4.9	Ψ	370	4.9	ug/Kg
Fluoranthene	206-44-0	< 5.1	ψ	370	5.1	ug/Kg
Pyrene	129-00-0	< 6.5	Ψ	370	6.5	ug/Kg
Butylbenzylphthalate	85-68-7	< 12		370	12	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 59	Ψ	370	59	ug/Kg
enzo(a)anthracene	56-55-3	< 5.5	ψ Λ	370	5.5	ug/K.g
hrysene	218-01-9	< 12	#\ <i>~</i> (\'	370	12	ug/Kg
bis(2-Ethylhexyl)phthalate	117-81-7	< 8.4	ψ (	J .370	8.4	ug/Kg
Di-n-octyl phthalate	117-84-0	< 8.8	<b>#</b>	370	8.8	<b>∤</b> g/Kg
Benzo(b)fluoranthene	205-99-2	< 20	ılı "	370	20	ug/Kg

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-12

Date Collected: Date Analyzed:

6/30/2004 7/15/2004

Date Extracted:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270

15.0 PB16274B Client ID:

SB-348-12DUP

Date Received:

Matrix:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture:

7/2/2004 SOIL

BE012662 D BNAE

BE071204

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						ir r
Benzo(k)fluoranthene	207-08-9	< 13	ΨĴ	370	13	ug/Kg
Benzo(a)pyrene	50-32-8	< 6.3	#/	370	6.3	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 8.9	$\psi \setminus V$	370	8.9	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 11	Ψ [	370	11	ug/Kg
)enzo(g,h,i)perylene	191-24-2	< 16	Ψ,	370	16	ug/Kg
SURROGATES						CDIZ. 200
2-Fluorophenol	367-12-4	240.37	80 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	255.37	85 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	147.45	74 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	147.77	74 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	235.46	78 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	153.71	77 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	242438	3.47			
Naphthalene-d8	1146-65-2	895375	4.25			
Acenaphthene-d10	15067-26-2	510002	5.34	$\mathcal{A}$		
Phenanthrene-d10	1517-22-2	895110	6.31	$\alpha$ 17		
Chrysene-d12	1719-03-5	843130	8.29	J*/		
Perylene-d12	1520-96-3	862936	9.86			·
TENTITIVE IDENTIFIED C	OMPOUNDS					119/Kg R
ACP		430	AB	2 51	<u>.,,</u>	ug/Kg
Cyclotetradecane Unknee	~~2 <del>95170</del>	360	J	8.07		ug/Kg ug/Kg
Squalene Unknown	7683649	210	J	9.03	· · · · · · · · · · · · · · · · · · ·	ugricg

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-13

Client ID:

SB-324-8

Date Collected:

6/30/2004

Date Received: Matrix:

File ID:

7/2/2004

Date Analyzed: Date Extracted: 7/15/2004

SOIL

Dilution:

7/14/2004

Analytical Method:

<u>8270</u>

BE012660.D

Sample Wt/Wol:

15.1

BNAE

Injection Vol:

Analytical Run ID: Extract Vol:

BE071204 500

2

% Moisture:

Instrument ID:

12

PB16274B

Parameter .	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 37	Þ∖	370	37	ug/Kg
Phenol	108-95-2	. < 16	ψ\	370	16	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 18	₩ \	370	18 .	ug/Kg
2-Chlorophenol	95-57-8	< 16	ψ )	370	16	ug/Kg
² -Methylphenol	95-48-7	< 24	TU	370	24	ug/Kg
)-oxybis(1-Chloropropane)	108-60-1	< 20	t l	370	20	ug/Kg
Acetophenone	98-86-2	< 20	Tr /	370	20	ug/Kg
3+4-Methylphenols	106-44-5	< 17	₩ ]	370	17	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 16	Ψ	370	16	ug/Kg
Hexachloroethane	67-72-1	< 18	ψ /	370	18	ug/Kg
Nitrobenzene	98-95-3	< 19	ψ/	370	19	ug/K.g
Isophorone	78-59-1	< 14	ψ /	370	14	ug/Kg
2-Nitrophenol	88-75-5	< 15	ψ	370	15	ug/Kg
2,4-Dimethylphenol	105-67-9	< 20	ψ	370	20	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 17	ψ \	370	17.	ug/Kg
2,4-Dichlorophenol	120-83-2	< 13	ψ <i>\U</i> ,	<b>)</b> 370	13	ug/Kg
Naphthalene	91-20-3	< 8.1.	ψ / `	370	8.1	ug/Kg
4-Chloroaniline	106-47-8	< 140	ψ/	370	140	ug/Kg
Hexachlorobutadiene	87-68-3	< 13	ψ/	370	13	ug/Kg
Caprolactam	105-60-2	< 14	ψ/	370	14	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 11	ψl	370	11	ug/Kg
2-Methylnaphthalene	91-57-6	< 6.4	ψ	370	6.4	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 9.4	ψ	370	9.4	ug/Kg
2,4,6-Trichlorophenol	88-06-2	· < 14	#	3.70	14	· ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 25	ψ↓	940	25	ug/Kg
1,1-Biphenyl	92-52-4	< 11	ψ \	370	11	ug/Kg
Chloronaphthalene	91-58-7	< 7.8	ψ\	370	7.8	ug/Kg
2-Nitroaniline	88-74-4	< 14	ψ <b>\</b> ,	940	14	ug/Kg
Dimethylphthalate	131-11-3	< 8.9	# 1 M	370	8.9	u <u>e</u> /Ke
Acenaphthylene	208-96-8	< 11	#1 )v	370	11	<b>199</b> ug/Kg

#### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-13

Client ID:

SB-324-8

Date Collected:

6/30/2004

Date Received:

7/2/2004

Date Analyzed:

7/15/2004 7/14/2004 Matrix:

SOIL

Date Extracted:

File ID:

RE012660.D

Dilution: Analytical Method:

Instrument ID:

BNAE

Sample Wt/Wol:

<u>8270</u> 15.1

Analytical Run ID:

BE071204

Injection Vol:

2.

Extract Vol: % Moisture: 500 _12

Associated Blank:

PB16274B

Parameter	CAS Number	Concent	ration	C	RDL	MDL	Units
TARGETS				· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
2,6-Dinitrotoluene	606-20-2	< 16		B١	370	16	ug/Kg
3-Nitroaniline	99-09-2	< 60		$\frac{1}{2}$	940	60	ug/Kg
Acenaphthene	83-32-9	< 8.2		<b>₽</b>	370	8.2	ug/Kg
2,4-Dinitrophenol	51-28-5	< 16		t \	940	. 16	ug/Kg
4-Nitrophenol	100-02-7	< 36		t	940	36	ug/Kg
benzofuran	132-64-9	· < 12		t /	370	12	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 7.4		tr 1	. 370	7:4	ug/Kg
Diethylphthalate	84-66-2	< 12		b	370	12	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 9.3			370	9.3	ug/Kg
Fluorene	86-73-7	< 11		1	370	11	ug/Kg
4-Nitroaniline	100-01-6	< 29		b	940	29	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 22		b	940	22	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 9.5	,	ti l	370	9.5	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 9.8		ול	370	9.8	ug/Kg
Hexachlorobenzene	118-74-1	< 7.0		h l	370	7.0	ug/Kg
Atrazine	1912-24-9	< 11	,	h	370	11	ug/Kg
Pentachlorophenol	87-86-5	< 12		בעל ל	940	12	ug/Kg
Phenanthrene	85-01-8	< 8.3		J / VJ	370	8.3	ug/Kg
Anthracene	120-12-7	< 8.9		b <b>/</b>	370	8.9	ug/Kg
Carbazole	86-74-8	< 8.2	,	ול	370	8.2	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.0		T)	370	5.0	ug/Kg
Fluoranthene	206-44-0	< 5.2		ן ן ע	370	5,2	ug/Kg
Pyrene	129-00-0	< 6.7	,	J	370	6.7	ug/Kg
Butylbenzylphthalate	85-68-7	< 13-		J	370 · ·	···· 13···	ug/K.g
3,3-Dichlorobenzidine	91-94-1	< 60	-	J	370	60	ug/Kg
Benzo(a)anthracene	56-55-3	< 5.6	1	J \	370	5.6	ug/Kg
ysene	218-01-9	< 12		J	370	12	ug/Kg
2-Ethylhexyl)phthalate	117-81-7	< 8.6	ţ	J	370	8.6	ug/Kg
Di-n-octyl phthalate	117-84-0	< 8.9	į	J/ M_	370	8.9	ug/Kg
Benzo(b)fluoranthene	205-99-2	< 20	1	1 717	370	20	սց <b>ՀՕՕ</b>

CIX	70	`	
	/ 6	- 31	

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-13

Client ID:

SB-324-8

7/2/2004

Date Collected: Date Analyzed:

6/30/2004

7/15/2004

Date Extracted:

7/14/2004

Dilution:

1

Analytical Method: Sample Wt/Wol:

Injection Vol: Associated Blank:

8270 15.1

PB16274B

Date Received:

Matrix: File ID:

Instrument ID:

Analytical Run ID:

Extract Vol:

BE012660.D BNAE

SOIL

BE071204

500

% Moisture: 12

Parameter	CAS Number	Concentration	$\mathbf{C}$	RDL	MDL	Units
TARGETS					* **.**	
Benzo(k)fluoranthene	207-08-9	< 13	ψl	370	13	ug/Kg
Benzo(a)pyrene	50-32-8	< 6.4	ψ/	370	6.4	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 9.0	ψ\$ <i>υ</i> ጋ	370	9.0	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 11	# ( )	370	11	ug/Kg
Benzo(g,h,i)perylene	191-24-2	< 16	₩)	370 ·	16	ug/Kg
RROGATES						
2-Fluorophenol	367-12-4	241.75	81 %	25 - 121	3	SPK: 300
Phenol-d5	13127-88-3	251.25	84 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	152.37	76 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	152.36	76 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	232.25	77 %	19 - 122	•	SPK: 300
Terphenyl-d14	1718-51-0	153.18	77 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	253557	3.47			-
Naphthalene-d8	1146-65-2	918540	4.25			
Acenaphthene-d10	15067-26-2	521099	5.34			
Phenanthrene-d10	1517-22-2	902777	6.32	·		
Chrysene-d12	1719-03-5	874617	8.38	M		
Perylene-d12	1520-96-3	889886	9.97			
TENTITIVE IDENTIFIED C	OMPOUNDS					·
4CP		410	-AB	2.50		<del>ug/K</del> g (
Bicoscne, (E) unknown	<del>~ 74685339</del> _	330	J	8.16		ug/Kg
,9,13-Pentadecatrien-2-one, 6,	10; 1117528 un leu	100×200	J	9.14		ug/Kg

**SVOC** 

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-14

Date Collected:

6/29/2004

Date Analyzed: Date Extracted: 7/15/2004 7/14/2004

Dilution:

Analytical Method: Sample Wt/Wol:

8270 15.1

Injection Vol:

Associated Blank:

PB16274B

Client ID:

SB-204-8

Date Received:

Matrix:

7/2/2004 SOIL

File ID:

BE012672.D BNAE

Instrument ID:

% Moisture:

Analytical Run ID: Extract Vol:

1000 28

BE071204

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS			.f.	4600	450	ug/Kg
Benzaldehyde	100-52-7	< 450	$\mathbb{Y}$	4600 4600	190	ug/Kg ug/Kg
Phenol	108-95-2	< 190	<u> </u>		230	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 230	¥ 1	4600	200	ug/Kg
2-Chlorophenol	95-57-8	< 200	<u> </u>	4600	290	ug/Kg
Methylphenol	95-48-7	< 290	1	4600	250	ug/Kg
2,2-oxybis(1-Chloropropane)	108-60-1	< 250	$\mathbb{P}$	4600	240	ug/Kg
Acetophenone	98-86-2	< 240	Ψ. Ι	· <del>4</del> 600	240	ug/Kg
3+4-Methylphenols	106-44-5	< 210	Ψ	4600	200	ug/Kg ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 200	Ψ <i>\U</i> ン	4600	200	ug/Kg
Hexachloroethane	<b>67-72</b> -1	< 220	ΨI	4600	230	ug/Kg ug/Kg
Nitrobenzene	98-95-3	< 230	¥/	4600	230 170	ug/Kg ug/Kg
Isophorone	78-59-1	< 170	Ψ1	4600	180	ug/Kg ug/Kg
2-Nitrophenol	88-75 <b>-</b> 5	< 180	ΨĮ	4600	250	ug/Kg
2,4-Dimethylphenol	105-67-9	< 250	ΨĮ	4600	210	ug/Kg
bis(2-Chloroethoxy)methane	111-91-1	< 210	Ψ(	4600	160	ug/Kg
2,4-Dichlorophenol	120-83-2	< 160	₩, 111	4600	100	ug/Kg
Naphthalene	91-20-3	∠ <del>-2100−</del> 9つ	T 01	4600	1700	ug/Kg
4-Chloroaniline	106-47-8	< 1700	Ψ)	4600	160	ug/Kg
Hexachlorobutadiene	87-68-3	< 160	1 /v	4600	170	ug/Kg
Caprolactam	105-60-2	< 170	Ψ	4600	140	ug/Kg
4-Chloro-3-methylphenol	59-50-7	< 140	₩ J - m /	4600	79	ug/Kg
2-Methylnaphthalene	91-57-6	810	メブレ	4600	110	ug/Kg
Hexachlorocyclopentadiene	77-47-4	< 110	. Т.	4600	170	ug/Kg
2.4.6-Trichlorophenol	88-06-2	< 170	<u> </u>	4600	300	ug/Kg
2,4,5-Trichlorophenol	95-95-4	< 300	¥ /	11000	140	ug/Kg
1,1-Biphenyl	92-52-4	< 140	_ ¥ } v⊃	4600	95 ·	ug/Kg
2-Chloronaphthalene	91-58-7	< 95	1	4600	93 170	ug/Kg
2-Nitroaniline	88-74-4	< 170 ·	<u> </u>	11000	110	υσ/Κα
Dimethylphthalate	131-11-3	< 110	¥ )	4600	140	<b>210</b> °
Acenaphthylene	208-96-8	< 140	V	4600	140	ug/125

**SVOC** 

SDG No.: S3409

Chazen Companies Client:

S3409-14 Sample ID:

Date Collected: 6/29/2004 7/15/2004 Date Analyzed: 7/14/2004 Date Extracted:

Dilution: 8270 Analytical Method:

15.1 Sample Wt/Wol: Injection Vol:

PB16274B Associated Blank:

Client ID:

SB-204-8

Date Received: SOIL Matrix:

File ID: Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture: 7/2/2004

BE012672.D BNAE

BE071204

1000 28

Parameter	CAS Number	Concentration	·C .	RDL	MDL	Units
TARGETS			The Control of the Co	4600	190	ug/Kg
2,6-Dinitrotoluene	606-20-2	< 190	1>00	11000	740	ug/Kg
3-Nitroaniline	99-09-2	< 740	Ψ-	✓ 4600	100	ug/K.g
Acenaphthene	83-32-9	4200		11000	200	ug/Kg
2,4-Dinitrophenol	51-28-5	< 200	# > U)	11000	450	ug/Kg
)-Nitrophenol	100-02-7	< 450	Ψ, σ	<b>/</b> 4600	150	ug/Kg
Dibenzofuran	132-64-9	2900	<i>J</i> 1	4600	91	ug/K-g
2,4-Dinitrotoluene	121-14-2	< 91	17.	4600	140	ug/Kg
Diethylphthalate	84-66-2	< 140	1 707	4600	110	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 110	<b>#</b> )		130	ug/Kg
Fluorene	86-73-7	3900	٦٠٠١	∕4600 11000	360	ug/Kg
4-Nitroaniline	100-01-6	< 360	17		270	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 270		11000	120	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 120	ן על ¦¦	4600	120	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 120	41.		86	ug/Kg
Hexachlorobenzene	118-74-1	< 86	1	4600 4600	140	ug/Kg
Atrazine	1912-24-9	< 140	Y)		140	ug/Kg
Pentachlorophenol	87-86-5	< 140	Ų,	11000	100	ug/Kg
Phenanthrene	85-01-8	36000	J	<b>/</b> 4600	110	ug/Kg
Anthracene	120-12-7	9000	•	<b>∠</b> 4600	100	ug/Kg ug/Kg
Carbazole	86-74-8	2900	<i>7</i> 7	<b>√</b> 4600		ug/Kg
Di-n-butylphthalate	84-74-2	< 61	どり	4600	61	ug/Kg ug/Kg
Fluoranthene	206-44-0	31000	J	<b>/</b> 4600	64	ug/Kg ug/Kg
Pyrene	129-00-0	26000	100	<b>4</b> 600	82	ug/Kg ug/Kg
Butylbenzylphthalate	85-68-7	< 150	~ Z (7)	4600	150	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 730	5 UJ	4600	730	ug/Kg ug/Kg
Benzo(a)anthracene	56-55-3	11000	I	4600	69	_
Chrysene	218-01-9	9400	1.	√ 4600	150	ug/Kg
bis(2-Ethylhexyl)phthalate	117-81-7	< 110		4600	110	ug/Kg
Di-n-octyl phthalate	117-84-0	< 110	#VJ	4600	110	21,1 21,1
Benzo(b)fluoranthene	205-99-2	8800	J	✓ ⁴⁶⁰⁰	240	Tuġ/K.g

$\sigma \cdot \sigma \circ$
-----------------------------

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-14

Date Collected: Date Analyzed:

6/29/2004 7/15/2004

Date Extracted: Dilution:

7/14/2004

Analytical Method:

8270

Sample Wt/Wol: Injection Vol:

15.1

Associated Blank:

PB16274B

Client ID:

SB-204-8

7/2/2004

Date Received:

Matrix:

SOIL

File ID:

Instrument ID:

% Moisture:

BE012672.D BNAE

Analytical Run ID:

Extract Vol:

BE071204

1000

28

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS			, mi	£1.500	1.60	ug/Kg
Benzo(k)fluoranthene	207-08-9	4000	<i>X</i> )	<b>4600</b>	160 79	ug/Kg ug/Kg
Benzo(a)pyrene	50-32-8	7600	J	√4600 ∕4600	110	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	3900	¥1,	<b>4600</b> . <b>4600</b>	130	ug/Kg
Dibenz(a,h)anthracene	53-70-3	130	EUW.	4600	200	ug/Kg
Benzo(g,h,i)perylene	191-24-2	4000	17	7 4000	200	VB/1-6
SURROGATES			•		it = 4	SPK: 300
2-Fluorophenol	367-12-4	156.25	52 %	25 - 121		SPK: 300 SPK: 300
Phenol-d5	13127-88-3	116.2	39 %	24 - 113		SPK. 300 SPK. 200
Nitrobenzene-d5	4165-60-0	75.10001	38 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	73.45	37 %	30 - 116		SPK: 200 SPK: 300
2,4,6-Tribromophenol	118-79-6	102.75	34 %	19 - 122		SPK: 200
Terphenyl-d14	1718-51-0	68.6	34 %	18 - 137		3FR. 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	212158	3.47		•	
Naphthalene-d8	1146-65-2	924537	4.25			
Acenaphthene-d10	15067-26-2	541884	5.34			
Phenanthrene-d10	1517-22-2	986433	6.32			
Chrysene-d12	1719-03-5	1021652	8.36			٠.
Perylene-d12	1520-96-3	1002760	9.94			
TENTITIVE IDENTIFIED COL	MPOUNDS					
	- CI5 H10	1200	J	6.75		ug/Kg
(6H)Cyclobuta[jk]phenanthrene	243174 unknam		J	7.54	4 1 4 1	ug/Kg
+ 1H-Benzo[b]fluorene	228846 CI7412		J	7.63		ug/Kg
	3442782 un know		J	7.72		ug/K.g
Pyrene, 2-methyl-	217594 vy Know		J	8.16		ug/Kg
Triphenylene	27208373 CIE 410		J	8.19		ug/K.g
Cyclopenta[cd]pyrene 3-4-Dihydrocyclopenta(cd)pyrene		<b>~</b> 940	l,	8.45	•	ug/Kg
		1400	J	9.57		<b>21,2</b> /g
Unknown	-198550 C20H1	<b>2_</b> 4800	J	9.80		ug/Kg
Perylene	1,0000					

SVOC SDG No.: S3409 Chazen Companies Client: SB-204-8 Client ID: Sample ID: S3409-14 7/2/2004 Date Received: 6/29/2004 Date Collected: SOIL Matrix: 7/15/2004 Date Analyzed: BE012672.D File ID: 7/14/2004 Date Extracted: BNAE Instrument ID: Dilution: BE071204 Analytical Run ID: 8270 Analytical Method: Extract Vol: 1000 Sample Wt/Wol: 15.1 % Moisture: _28 _2_ Injection Vol: PB16274B Associated Blank:

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TENTITIVE IDENTIFIED C	COMPOUNDS			10.55		na/Va
Dibenze[def,mmo]ehrysene -1,2:3,4-Dibenzpyrene	191264 CZZH L CZYH 19		J J	12.77 15.62	•	ug/Kg ug/Kg

#### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-15

Date Collected: Date Analyzed:

Date Extracted:

Dilution:

Analytical Method:

Sample Wt/Wol: Injection Vol:

Associated Blank:

6/30/2004

7/19/2004 7/17/2004

<u>8270</u>

15.1 2

PB16346B

· Client ID:

SB-244-8

Date Received:

Matrix: File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

7/2/2004 SOIL

BE012802.D

**BNAE** 

BE071204

500 16

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 38	U \	390	38	ug/Kg
Phenol	108-95-2	< 16	t \	390	16	ug/Kg
bis(2-Chloroethyl)ether	111-44-4	< 19	t )	390	19	ug/Kg
2-Chlorophenol	95-57-8	< 17	t l	390	17	ug/Kg
2-Methylphenol	95-48-7	< 25	. tr /	390	25	ug/Kg
Yoxybis(1-Chloropropane)	108-60-1	< 21	t /	390	21	ug/Kg
Letophenone	98-86-2	< 20	t l	390	20	ug/Kg
3+4-Methylphenols	106-44-5	< 18	t l	390	18	ug/Kg
N-Nitroso-di-n-propylamine	621-64-7	< 17	tr l	390	17	ug/Kg
Hexachloroethane	67-72-1	< 19	Ψl	390	. 19	ug/Kg
Nitrobenzene	98-95-3	< 20	ti/	390	20	ug/Kg
Isophorone	78-59-1	< 15	til .	390	15.	ug/Kg
2-Nitrophenol	88-75-5	.< 16	₩.	390	16	ug/Kg
2,4-Dimethylphenol	105-67-9	< 21	th o	390	21	ug/Kg
ois(2-Chloroethoxy)methane	111-91-1	< 18	₽/	390	18	ug/Kg
2,4-Dichlorophenol	120-83-2	< 14	1)00	390	14	ug/Kg
Vaphthalene	91-20-3	< .8.5	. 1	390	8.5	ug/Kg
l-Chloroaniline	106-47-8	< 150	v/	390	150	ug/Kg
Hexachlorobutadiene	87-68-3	< 14	v/	390	14	ug/Kg
Caprolactam	105-60-2	< 14	U	390	14	ug/Kg
-Chloro-3-methylphenol	59-50-7	< 12	U	390	12	ug/Kg
-Methylnaphthalene	91-57-6	< 6.8	U	390	6.8	ug/Kg
lexachlorocyclopentadiene	77-47-4	< 9.8	t)	390	9.8	ug/Kg
,4,6-Trichlorophenol	88-06-2	< 14		- 390	14	ug/Kg
.4,5-Trichlorophenol	95-95-4	< 26	t)	980	26	ug/Kg
,I-Biphenyl	92-52-4	< 12	t l	390	12	ug/Kg
Chloronaphthalene	91-58-7	< 8.2	t l	390	8.2	ug/Kg
droaniline	88-74-4	< 14	$\Psi$	.980	14	ug/Kg
imethylphthalate	131-11-3	< 9.4	the M	390	9.4	^{ug/} <b>240</b>
cenaphthylene	208-96-8	< 12	H 411	390	12	ug/Kg

#### **SVOC**

SDG No.:

S3409

Client:

**Chazen Companies** 

Sample ID:

S3409-15

Client ID:

Date Received:

SB-244-8

Date Collected:

6/30/2004

:

Matrix:

7/2/2004

Date Analyzed: Date Extracted: 7/19/2004 7/17/2004

File ID:

SOIL BE012802.D

Dilution:

0050

Instrument ID:

BNAE

Analytical Method: Sample Wt/Wol: 8270

Analytical Run ID: Extract Vol:

BE071204

Sample Wt/Wol: Injection Vol: <u>15.1</u> <u>2</u>

% Moisture:

500 16

Injection Vol:
Associated Blank:

PB16346B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS	······				· · · · · · · · · · · · · · · · · · ·	
2,6-Dinitrotoluene	606-20-2	< 17	¥	390	17	ug/Kg
3-Nitroaniline	99-09-2	< 63	ψ /	980	63	ug/Kg
Acenaphthene	83-32-9	< 8.7	<b>₩</b> \	390	8.7	ug/Kg
2,4-Dinitrophenol	51-28-5	< 17	₩ <b>)</b>	980	17	ug/Kg
4-Nitrophenol	100-02-7	< 38	1 1	980	38	ug/Kg
enzofuran	132-64-9	< 13	<b>V</b> /	390	13	ug/Kg
2,4-Dinitrotoluene	121-14-2	< 7.8	+ b /	390	7.8	ug/Kg
Diethylphthalate	84-66-2	< 12	t l	390	12	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 9.7	<b>b</b> [	390	9.7	ug/Kg
Fluorene	86-73-7	< 11	\tau \	390	11	ug/Kg
4-Nitroaniline	100-01-6	< 31	tr	980	31	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 23	ΨĮ	980	23	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 10	tr l	390	10	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 10	11	390	. 10	ug/Kg
Hexachlorobenzene	118-74-1	< 7.3	$\lceil v \rceil$	390	7.3	ug/Kg
Atrazine	1912-24-9	< 12	Ψſ	390	12	ug/Kg
Pentachlorophenol	87-86-5	< 12	<b>b</b> /	980	12	ug/Kg
Phenanthrene	85-01-8	< 8.8	<b>μ</b> (	390	8.8	ug/Kg
Anthracene	120-12-7	< 9.4	<b>[</b> t]	390	9.4	ug/Kg
Carbazole	86-74-8	< 8.7	b	390	8.7	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.2	וֹל	390	5.2	ug/Kg
Fluoranthene	206-44-0	< 5.5	υl	390	5.5	ug/Kg
Pyrene	129-00-0	< 7.0	þ	390	7.0	ug/Kg
Butylbenzylphthalate	85-68-7	< 13	IJ.	- 390	·13· · ·	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 63		390	63	ug/Kg
Benzo(a)anthracene	56-55-3	< 5.9	þ J	390	5.9	ug/Kg
ysene	218-01-9	< 12	Մ՛_	390	12	ug/Kg
در)(2-Ethylhexyl)phthalate	117-81-7	60	XJ	390 .	9.0	ug/Kg
Di-n-octyl phthalate	117-84-0	< 9:4	PLID	390	9.4	ug <b>/241</b>
Benzo(b)fluoranthene	205-99-2	< 21	\$ 7 U J	390	21	ug/Kg
		()1/				

C	<b>X</b> 7	$\alpha$	$\sim$
Э	Y	v	U

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-15

Date Collected: Date Analyzed: 6/30/2004 7/19/2004

Date Extracted:

7/17/2004

Dilution:

8270

Analytical Method: Sample Wt/Wol:

15.1

Injection Vol:

Associated Blank:

PB16346B

Client ID:

SB-244-8

7/2/2004

Date Received:

Matrix:

SOIL

File ID:

BE012802.D

Instrument ID:

BNAE

Analytical Run ID:

BE071204

Extract Vol:

% Moisture:

500

16

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS						***
Benzo(k)fluoranthene	207-08-9	< 13	<b>Ψ</b>	390	13	ug/Kg
Benzo(a)pyrene	50-32-8	< 6.8	Ψ1	390	6.8	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	< 9.5	ψ	390	9.5	ug/Kg
Dibenz(a,h)anthracene	53-70-3	< 11	Ψ (	390	11	ug/Kg
enzo(g,h,i)perylene	191-24-2	< 17	ψ/-	390	17	ug/Kg
SURROGATES						
2-Fluorophenol	367-12-4	260.27	87 %	25 - 121		SPK: 300
Phenol-d5	13127-88-3	256.97	86 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	136.97	68 %	23 - 120		SPK; 200
2-Fluorobiphenyl	321-60-8	150.87	75 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	250.84	84 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	161.4	81 %	18 - 137		SPK: 200
INTERNAL STANDARDS				•		
1,4-Dichlorobenzene-d4	3855-82-1	214388	3.45			
Naphthalene-d8	1146-65-2	786615	4.23		4	
Acenaphthene-d10	15067-26-2	468241	5.32	$\gamma \gamma$	5	
Phenanthrene-d10	1517-22-2	848229	6.29	10		
Chrysene-d12	1719-03-5	767766	8.34			
Perylene-d12	1520-96-3	805619	9.91			
TENTITIVE IDENTIFIED CO	MPOUNDS					
Sulfur, mol. (S8)	10544500	2000	J	6.62	•	ug/Kg
Sulfur	7704349	12000	<b>J</b>	6.81	•	ug/Kg
	~ 7 <del>1685339 -</del>	660	J	8.11		ug/Kg
, , ,	14801617705	470	J	12.96		ug/Kg
Jaraxastorol unknown	1059149	460	J	13.25		ug/Kg

### SVOC

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-16

Client ID:

SB-264-8

Date Collected:

6/30/2004

Matrix:

7/2/2004

Date Analyzed:

7/20/2004

File ID:

SOIL PEGI2022 D

Date Extracted: Dilution:

7/17/2004

Instrument ID:

Date Received:

BE012833.D BNAE

Analytical Method:

<u>8270</u>

Analytical Run ID: BIVALE

BE071204

Sample Wt/Wol:

15.1

Extract Vol: % Moisture:

<u>500</u> _____

Injection Vol:
Associated Blank:

PB16346B

TARGETS   Benzaldehyde   100-52-7	Parameter	CAS Number	Concentration	С	RDL	MDL	Units
Sentition   108-95-2   18	TARGETS						
Phenol   108-95-2	Benzaldehyde	100-52-7	< 42	<b>P</b> \	430		=
bis(2-Chloroethyl)ether	<u>*</u>	108-95-2	< 18	þ <b>/</b>	430		=
2-Chlorophenol 95-57-8 < 19		111-44-4	< 21	p	430		
Methylphenol   95-48-7       27         430   27	•	95-57-8	< 19	ÞΙ	430		=
2/2-oxybis(1-Chloropropane)         108-60-1         < 23	*	95-48-7	< 27	ψĴ	430		
Acetophenone 98.86-2 < 23	,	108-60-1	< 23 .	υl	430		<del>-</del> -
3+4-Methylphenols		98-86-2	< 23	ΨĮ	430		
N-Nitroso-di-n-propylamine 621-64-7		106-44-5	< 20	₽(	430		
Hexachloroethane	7 ^	621-64-7	< 19	₽ <b>〉</b> (2)	430	19	
Nitrobenzene 98-95-3		67-72 <b>-</b> 1	< 21	<b>†</b> /	430	21	
Isophorone   78-59-1	***************************************	98-95-3	< 22	b	430	22	ug/Kg
2-Nitrophenol 88-75-5		78-59-1	< 16	Ψ	430	16	
2,4-Dimethylphenol 105-67-9 < 23 Ug/Kg bis(2-Chloroethoxy)methane 111-91-1 < 20 Ug/Kg 2,4-Dichlorophenol 120-83-2 < 15 Ug/Kg 430 15 Ug/Kg Naphthalene 91-20-3		88-75-5	< 17	T)	430	17	ug/Kg
bis(2-Chloroethoxy)methane  111-91-1    20	•	105-67-9	< 23	ψ	430	23	= -
2,4-Dichlorophenol 120-83-2 < 15		111-91-1	< 20	ψ <b>\</b>	430	20	ug/Kg
Naphthalene 91-20-3	• • • • • • • • • • • • • • • • • • • •	120-83-2	< 15	$\Psi'$	430	15	
4-Chloroaniline 106-47-8 < 160	•	91-20-3	C = 85 9,2	J- UJ	430	9.4	ug/Kg
Hexachlorobutadiene	-	106-47-8	< 160	Ψſ	430	160	
Caprolactam 105-60-2 < 16		87-68-3	< 15	<b>,</b> ψ ,	430	15	ug/Kg
4-Chloro-3-methylphenol 59-50-7 < 13		105-60-2	< 16	$\psi$	430	16	ug/Kg
2-Methylnaphthalene 91-57-6 < 7.4	*	59-50-7	< 13	ψ /	430	13	ug/Kg
Hexachlorocyclopentadiene 77-47-4 < 11	• "	91-57-6	< 7.4	ψ/	430	7.4	ug/K.g
2;4,6-Trichlorophenol 88-06-2 < 16 Ug/Kg 2,4,5-Trichlorophenol 95-95-4 < 29 Ug/Kg 1,1-Biphenyl 92-52-4 < 13 Ug/Kg Chloronaphthalene 91-58-7 < 9.0 Ug/Kg 2-Nitroaniline 88-74-4	* *		< 11	ψĺ	430	11	* ·
2,4,5-Trichlorophenol       95-95-4       < 29			< 16	# \m	430	16	ug/Kg
1.1-Biphenyl 92-52-4 < 13 Ug/Kg  1.1-Biphenyl 92-52-4 < 13 Ug/Kg  1.1-Chloronaphthalene 91-58-7 < 9.0 Ug/Kg  2-Nitroaniline 88-74-4 < 16 Ug/Kg  Dimethylphthalate 131-11-3 < 10 Ug/Kg	· · · -		< 29	ψ /UJ	1100	29	ug/Kg
Chloronaphthalene 91-58-7 < 9.0 U 430 9.0 ug/Kg 2-Nitroaniline 88-74-4 < 16 U 1100 16 ug/Kg Dimethylphthalate 131-11-3 < 10 U 430 10 25/4g	• •		< 13	ψ/	430	13	ug/Kg
2-Nitroaniline 88-74-4 < 16 U 1100 16 - ug/Kg Dimethylphthalate 131-11-3 < 10 U 430 10 25 49	\		< 9.0	ψ∤	430	9.0	ug/Kg
Dimethylphthalate 131-11-3 < 10 430 10 2543	-		< 16	Ψ	1100	16 -	ug/Kg
$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$				ψ/	430	10	25 4g
	Acenaphthylene	208-96-8	< 13	<b>ս</b> ՛	430	13	

#### **SVOC**

) SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-16

Client ID:

SB-264-8

Date Collected:

6/30/2004

Date Received: Matrix:

7/2/2004

Date Analyzed:

7/20/2004 7/17/2004

SOIL

Date Extracted: Dilution:

File ID:

RE012833.D

Analytical Method:

8270

Instrument ID:

BNAE

Sample Wt/Wol:

15.1

Analytical Run ID: Extract Vol:

BE071204

Injection Vol:

_2

% Moisture:

500 24

Associated Blank:

PB16346B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS				<del></del>	<u>-</u>	
2,6-Dinitrotoluene	606-20-2	< 18	#\m	430	18	ug/Kg
3-Nitroaniline	99-09-2	< 70	# / · ·	1100	70	ug/Kg
Acenaphthene	83-32-9	<- <del>100</del> -93	V1	430	9.5	ug/Kg
2,4-Dinitrophenol	51-28-5	< 19	#\im	1100	19	ug/Kg
4-Nitrophenol	100-02-7	< 42	†	1100	. 42	ug/Kg
'jenzofuran	132-64-9	64	x1 /	430	14	ug/Kg
∠, -Dinitrotoluene	121-14-2	< 8.6	Ψ1	430	8.6	ug/K.g
Diethylphthalate	84-66-2	< 14	\$ >03	430	14	ug/Kg
4-Chlorophenyl-phenylether	7005-72-3	< 11	# }	430	11	ug/Kg
Fluorene	86-73-7	100	xJ /	430	12	ug/Kg
4-Nitroaniline	100-01-6	< 34	Ψ	1100	34	ug/Kg
4,6-Dinitro-2-methylphenol	534-52-1	< 25	ψ	1100	25	ug/Kg
N-Nitrosodiphenylamine	86-30-6	< 11	ψ /	430	11	ug/Kg
4-Bromophenyl-phenylether	101-55-3	< 11	# \v3	430	11	ug/Kg
Hexachlorobenzene	118-74-1	< 8.1	# /03	430	8.1	ug/Kg
Atrazine	1912-24-9	< 13	ψj	430	13	ug/Kg
Pentachlorophenol	87-86-5	< 13	⊕,/	1100	13	ug/Kg
Phenanthrene	85-01-8	860	J	430	9.7	ug/Kg
Anthracene	120-12-7	250	+7	430	10	ug/Kg
Carbazole	86-74-8	. 81	+7 2	- 430	9.5	ug/Kg
Di-n-butylphthalate	84-74-2	< 5.7	xUJ .	430	5.7	ug/Kg
Fluoranthene	206-44-0	1000	· ゴ	430	6.0	ug/Kg
Pyrene	129-00-0	900	J "	430	7.7	ug/Kg
Butylbenzylphthalate	85-68-7	< 14 · ·	JANUT .	430	14	ug/Kg
3,3-Dichlorobenzidine	91-94-1	< 69	× JU.	430	69	ug/Kg
Benzo(a)anthracene	56-55-3	470	J	430	6.5	ug/Kg
Chrysene	218-01-9	390	JJ V	430	14	ug/K.g
Ethylhexyl)phthalate	117-81-7	. 44	XJ V	430	9.9	ug/K.g
Di-n-octyl phthalate	117-84-0	< 10	JY UT	430	10	ug/ <u>Kg</u>
Benzo(b)fluoranthene	205-99-2	330	ナブノ	430	23	ug/ <b>255</b>

**SVOC** 

SDG No.:

S3409

Client:

Chazen Companies

Sample ID:

S3409-16

Client ID:

SB-264-8

Date Collected:

6/30/2004

Matrix:

7/2/2004

Date Analyzed:

7/20/2004

SOIL

Date Extracted:

7/17/2004

File ID:

BE012833.D

Dilution:

8270

Instrument ID:

Date Received:

BNAE

Analytical Method: Sample Wt/Wol:

Analytical Run ID: Extract Vol:

BE071204

Injection Vol:

15.1 2

% Moisture:

500 24

Associated Blank:

Benzo[e]pyrene

PB16346B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS			-			
Benzo(k)fluoranthene	207-08-9	210	× 7~	430	15	ug/K.g
Benzo(a)pyrene	50-32-8	300	<b>#]</b> /	430	7.4	ug/Kg
Indeno(1,2,3-cd)pyrene	193-39-5	150	17	430	10	ug/K.g
Dibenz(a,h)anthracene	53-70-3	< 13	buj	430	13	ug/Kg
~enzo(g,h,i)perylene	191-24-2	160	V1/	430	19	ug/Kg
SURROGATES						
2-Fluorophenol	367-12-4	261.87	87 %	25 - 121	• •	SPK: 300
Phenol-d5	13127-88-3	279.83	93 %	24 - 113		SPK: 300
Nitrobenzene-d5	4165-60-0	161.48	81 %	23 - 120		SPK: 200
2-Fluorobiphenyl	321-60-8	169.59	85 %	30 - 116		SPK: 200
2,4,6-Tribromophenol	118 <b>-</b> 79-6	266.53	89 %	19 - 122		SPK: 300
Terphenyl-d14	1718-51-0	155.83	78 %	18 - 137		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	210769	3.45			
Naphthalene-d8	1146 <b>-</b> 65-2	770083	4.23			
Acenaphthene-d10	15067-26-2	459675	5.32	na.	,	
Phenanthrene-d10	1517-22-2	852668	6.31	NA		
Chrysene-d12	1719-03-5	835095	8.41	1 /4/		
Perylene-d12	1520-96-3	793438	10.00			
TENTITIVE IDENTIFIED C	OMPOUNDS					j
ACP		550	AB	2.47		ug/Kg

192972 C201+12 230

Ţ

J

-6.75

9.85

ug/Kg

ug/Kg

#### Surrogate Summary SW-846

SL 6.: <u>834</u>

Chazen Companies

Analytical Method:

						Li	mits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High
PB16274B	SBLK01	2-Fluorophenol	300	275.13	92 🗸	25.00	121.00
		Phenol-d5	300	277.19	92	24.00	113.00
		Nitrobenzene-d5	200	148.48	74	23.00	120.00
		2-Fluorobiphenyl	200	153.16	77	30.00	116.00
		2,4,6-Tribromophenol	300	225.41	75	19.00	122.00
		Terphenyl-d14	200	152.38	76	18.00	137.00
PB16274BS	SLCS01	2-Fluorophenol	300	275.4	92	25.00	121.00
		Phenol-d5	300	259.71	87	24.00	113.00
		Nitrobenzene-d5	200	158.96	79	23.00	120.00
		2-Fluorobiphenyl	200	166.91	83	30.00	116.00
		2,4,6-Tribromophenol	300	240.68	80	19.00	122.00
		Terphenyl-d14	200	132.88	66	18.00	137.00
PB16346B	SBLK02	2-Fluorophenol	300	284.6	95	25.00	121.00
		Phenol-d5	300	304.19	101	24.00	113.00
		Nitrobenzene-d5	200	189.02	95	23.00	120.00
1	•	2-Fluorobiphenyl	200	180.35	90	30.00	116.00
/		2,4,6-Tribromophenol	300	266.6	89	19.00	122.00
		Terphenyl-d14	200	161.44	81	18.00	137.00
PB16346BS	SLCS02	2-Fluorophenol	300	262.39	87	25.00	121.00
		Phenol-d5	300	260.66	87	24.00	113.00
		Nitrobenzene-d5	200	166.65	83	23.00	120.00
		2-Fluorobiphenyl	200	173.76	87	30.00	116.00
		2,4,6-Tribromophenol	300	254.96	85	19.00	122.00
		Terphenyl-d14	200	137.27	69	18.00	137.00
S3409-02	SB-314-8	2-Fluorophenol	300	234.55	78	25.00	121.00
	٠	Phenol-d5	300	242.54	81	24.00	113.00
		Nitrobenzene-d5	200	147.71	74	23.00	120.00
		2-Fluorobiphenyl	200	144.56	72	30.00	116.00
		2,4,6-Tribromophenol	300	227.07	76	19.00	122.00
		Terphenyl-d14	200	150.45	75	18.00	137.00
S3409-03	SB-314-8DUP	2-Fluorophenol	300	231.6	77	25.00	121.00
		Phenol-d5	300	241.39	80	24.00	113.00
		Nitrobenzene-d5	200	148.06	74	23.00	120.00
		2-Fluorobiphenyl	200	146.31	73	30.00	116.00
		2,4,6-Tribromophenol	300	227.26	76	19.00	122.00
		Terphenyl-d14	200	152.47	76	18.00	137.00
S3409 ₇ 03MS	SB-314-8DUPMS	2-Fluorophenol	300	239.09	80	25.00	121.00
)		Phenol-d5	300	262.67	88	24.00	113.00
<i>'</i>		Nitrobenzene-d5	200	158.67	79	23.00	120.00
		2-Fluorobiphenyl	200	180.82	90	30.00	<b>6</b> 16.00
		2,4,6-Tribromophenol	300	278.84	93	19.00	122.00
		Terphenyl-d14	200	160.88	80	18.00	137.00
			200	100,00	00	10.00	157.00

#### Surrogate Summary SW-846

si lo.:

S3409

Client:

Chazen Companies

Analytical Method:

Analytical Metho	od: EPA SW-846	OL / U				Ţ.ir	nits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High
S3409-03MSD	SB-314-8DUPMSD	2-Fluorophenol	300	259.89	87 🗸	25.00	121.00
		Phenol-d5	300	273.22	91	24.00	113.00
		Nitrobenzene-d5	200	167.34	84	23.00	120.00
		2-Fluorobiphenyl	200	187.3	94	30.00	116.00
		2,4,6-Tribromophenol	300	273.41	91	19.00	122.00
*		Terphenyl-d14	200	159.58	80	18.00	137.00
S3409-04	SB-034-8	2-Fluorophenol	300	157	52	25.00	121.00
		Phenol-d5	300	174	58	24.00	113.00
		Nitrobenzene-d5	200	112	56	23.00	120.00
		2-Fluorobiphenyl	200	129	64	30.00	116.00
		2,4,6-Tribromophenol	300	153	51	19.00	122.00
		Terphenyl-d14	200	134	67	18.00	137.00
S3409-05	SB-044-8	2-Fluorophenol	300	241,24	80	25.00	121.00
		Phenol-d5	300	250.55	84	24.00	113.00
		Nitrobenzene-d5	200	140.35	70	23.00	120.00
)		2-Fluorobiphenyl	200	150.88 °	75	30.00	116.00
}		2,4,6-Tribromophenol	300	238.91	80	19.00	122.00
		Terphenyl-d14	200	158.52	79	18.00	137.00
S3409-06	SB-0412-16	2-Fluorophenol	300	238.48	79	25.00	121.00
		Phenol-d5	300	249.61	83	24.00	113.00
		Nitrobenzene-d5	200	136.1	68	23.00	120.00
		2-Fluorobiphenyl	200	148.65	74	30.00	116.00
		2,4,6-Tribromophenol	300	236.8	79	19.00	122.00
		Terphenyl-d14	200	152.21	76	18.00	137.00
S3409-07	SB-184-8	2-Fluorophenol	300	98.6	33 🟏	25.00	121.00
		Phenol-d5	300	121.38	40	24.00	113.00
		Nitrobenzene-d5	200	73.02	37	23.00	120.00
		2-Fluorobiphenyl	200	73.98	37	30.00	116.00
		2,4,6-Tribromophenol	300	101.78	34	19.00	122.00
		Terphenyl-d14	200	70.92	35	18.00	137.00
S3409-08	SB-074-8	2-Fluorophenol	300	232.93	₇₈ ~	25.00	121.00
		Phenol-d5	300	248.73	83	24.00	113.00
		Nitrobenzene-d5	200	126.58	63	23.00	120.00
		2-Fluorobiphenyl	200	144.28	72	30.00	116.00
		2,4,6-Tribromophenol	300	232.89	78	19.00	122.00
		Terphenyl-d14	200	155.78	78	18.00	137.00
S3409-09	SB-334-8	2-Fluorophenol	300	215.55	72	25.00	121.00
}-		Phenol-d5	300	232.9	78	24.00	113.00
		Nitrobenzene-d5	200	132.8	66	23.00	120.00
		2-Fluorobiphenyl	200	146.14	73		<b>7</b> 116.00
		2,4,6-Tribromophenol	300	236.92	79	19.00	122.00
		Terphenyl-d14	200	142.61	71	18.00	137.00
			200	1,2,01	, .	10.00	137.00
						· · · · · · · · · · · · · · · · · · ·	

## Surrogate Summary SW-846

**Chazen Companies** 

Analytical Meth	od: EPA SW-84					Lir	nits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery Qual	Low	High
S3409-10	SB-290-4	2-Fluorophenol	300	126.04	42	25.00	121.00
		Phenol-d5	300	107.84	36	24.00	113.00
-		Nitrobenzene-d5	200	64.72	32	23.00	120.00
		2-Fluorobiphenyl	200	69.26	35	30.00	116.00
		2,4,6-Tribromophenol	300	109.2	36	19.00	122.00
		Terphenyl-d14	200	75.38	38	18.00	137.00
S3409-11	SB-348-12	2-Fluorophenol	300	197.41	66 🖍	25.00	121.00
		Phenol-d5	300	212.2	71:	24.00	113.00
		Nitrobenzene-d5	200	127.88	64	23.00	120.00
		2-Fluorobiphenyl	200	132.46	66	30.00	116.00
		2,4,6-Tribromophenol	300	237.17	79	19.00	122.00
		Terphenyl-d14	200	156.16	78	18.00	137.00
S3409-12	SB-348-12DUP	2-Fluorophenol	300	240.37	80 /	25.00	121.00
		Phenol-d5	300	255.37	85	24.00	113.00
		Nitrobenzene-d5	200	147.45	74	23.00	120.00
,		2-Fluorobiphenyl	200	147.77	74	30.00	116.00
)		2,4,6-Tribromophenol	300	235.46	78	19.00	122.00
,		Terphenyl-d14	200	153.71	77	18.00	137.00
S3409-13	SB-324-8	2-Fluorophenol	300	241.75	81	25.00	121.00
		Phenol-d5	300	251.25	84	24.00	113.00
		Nitrobenzene-d5	200	152.37	76	23.00	120.00
	·	2-Fluorobiphenyl	200	152.36	76	30.00	116.00
		2,4,6-Tribromophenol	300	232.25	77	19.00	122.00
		Terphenyl-d14	200	153.18	77	18.00	137.00
S3409-14	SB-204-8	2-Fluorophenol	300	156.25	52	25.00	121.00
		Phenol-d5	300	116.2	39	24.00	113.00
•		Nitrobenzene-d5	200	5.10001	38	23.00	120.00
		2-Fluorobiphenyl	200	73.45	37	30.00	116.00
		2,4,6-Tribromophenol	300	102.75	34	19.00	122.00
		Terphenyl-d14	200	68.6	34	18.00	137.00
S3409-15	SB-244-8	2-Fluorophenol	300	260.27	87	25.00	121.00
		Phenol-d5	300	256.97	86	24.00	113.00
		Nitrobenzene-d5	200	136.97	68	23.00	120.00
		2-Fluorobiphenyl	200	150.87	75	30.00	116.00
		2,4,6-Tribromophenol	300	250.84	84	19.00	122.00
		Terphenyl-d14	200	161.4	81	18.00	137.00
S3409-16	SB-264-8	2-Fluorophenol	300	261.87	87	25.00	121.00
),		Phenol-d5	300	279.83	93	24.00	113.00
1		Nitrobenzene-d5	200	161.48	81	23.00	120.00
		2-Fluorobiphenyl	200	169.59	85		<b>8</b> 16.00
		2,4,6-Tribromophenol	300	266.53	89	19.00	122.00
		Terphenyl-d14	200	155.83	78	18.00	137.00
		101phonyi-017	200	133.63	70	10.00	127,00

#### Surrogate Summary SW-846

SI /o.:

S3409

lient.

**Chazen Companies** 

Analytical Method:

		· · · · · · · · · · · · · · · · · · ·					Lin	nits
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery	Qual	Low	High
S3567-11MS	S3567-11MS	2-Fluorophenol	300	208.63	70	<u> </u>	25.00	121.00
	•	Phenol-d5	300	196.64	66		24.00	113.00
		Nitrobenzene-d5	200	140.35	70		23.00	120.00
		2-Fluorobiphenyl	200	159.54	80		30.00	116.00
		2,4,6-Tribromophenol	300	246.66	82		19.00	122.00
		Terphenyl-d14	200	153.09	77	_	18.00	137.00
S3567-12MSD	S3567-12MSD	2-Fluorophenol	300	205.21	68 🖊		25.00	121.00
		Phenol-d5	300	200.69	67		24.00	113.00
		Nitrobenzene-d5	200	141.92	71		23.00	120.00
		2-Fluorobiphenyl	200	164.78	82		30.00	116.00
•		2,4,6-Tribromophenol	300	249.02	83		19.00	122.00
		Terphenyl-d14	200	154.24	77		18.00	137.00

#### Matrix Spike/Matrix Spike Duplicate Summary SW-846

E No.:

S3409

Client:

**Chazen Companies** 

Analytical Method:

		Sample			Rec		RPD		Limits	
Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: S3567-11MS	Client Sa	mple ID:	S3567-11MS							
Phenol	2400	0	1700	71	<u> </u>			20	150	
bis(2-Chloroethyl)ether	2400	0	1300	. 54				37	114	
2-Chlorophenol	2400	0	1600	67	/			52	107	
2-Methylphenol	2400	0	1800	75				50	100	
2,2-oxybis(1-Chloropropane)	2400	0	1700	71				44	102	
3+4-Methylphenols	2400	0	1800	75				30	106	
N-Nitroso-di-n-propylamine	2400	_ 0	1800	75	/			20	150	
Hexachloroethane	2400^	0	2500	104	*			43	101	
Nitrobenzene	2400	0	1600	67				50	109	
Isophorone	2400	0	2200	92				48	111	
2-Nitrophenol	2400	0	2000	83				52	116	
2,4-Dimethylphenol	2400	0	1900	79				47	109	
bis(2-Chloroethoxy)methane	2400	0	1900	79				51	111	
2,4-Dichlorophenol	2400	0	2300	96				55	109	
) Naphthalene	2400	0	2000	83				34	120	
4-Chloroaniline	2400	0	1300	54				15	92	
Hexachlorobutadiene	2400	0	1900	79				20	150	
4-Chloro-3-methylphenol	2400	0	2000	83 -				60	100	
2-Methylnaphthalene	2400	790	2100	55				49	115	
Hexachlorocyclopentadiene	4800	0	1100	23				20	107	
2,4,6-Trichlorophenol	2400	0	2400	100				50	112	
2,4,5-Trichlorophenol	2400	0	2400	100				55	105	
1,1-Biphenyl	2400	0	2200	92				20	150	
2-Chloronaphthalene	2400	0	2100	88				50	113	
2-Nitroaniline	2400	0	2100	88				52	110	
Dimethylphthalate	2400	0	2200	92				45	122	
Acenaphthylene	2400	0	2100	88				52	107	
2,6-Dinitrotoluene	2400	0	2200	92				49	116	
3-Nitroaniline	2400	0	1700	71				27	88	
Acenaphthene	2400	0	2200	92 🗸				65	100	
2,4-Dinitrophenol	4800	0	920	19	*			26	131	
4-Nitrophenol	4800	0	3000	62				45	95	
Dibenzofuran	2400	0	2300	96				52	113	
2,4-Dinitrotoluene	2400	0	2000	83	•			56	104	
Diethylphthalate	2400	0	2200	92				49	115	
4-Chlorophenyl-phenylether	2400	0	2300	96				37	127	
Fluorene	2400	0	2300	96				47	117	
4-Nitroaniline	2400	0	2300	96				41	116	^
4,6-Dinitro-2-methylphenol	2400	0	660	28	*			40	105	0
N-Nitrosodiphenylamine	2400	0	2400	100				20	150	

#### Matrix Spike/Matrix Spike Duplicate Summary SW-846

B No.:

S3409

Client:

**Chazen Companies** 

Analytical Method:

Parameter	Spike	Sample Result	Result	Rec	Rec Qual	RPD	RPD Qual	Low	Limits High	RPD
Lab Sample ID: S3567-11MS	Client Sa	mple ID:	S3567-11MS							
4-Bromophenyl-phenylether	2400	0	2400	100				53	113	
Hexachlorobenzene	2400	0	2400	100				48	118	
Atrazine	2400	0	2300	96				37	122	
Pentachlorophenol	4800	0	6000	(125*)	)	•		20	150	
Phenanthrene	2400	84	2400	96				20	150	
Anthracene	2400	0	2300	96				54	108	
Carbazole	2400	0	2400	100				54	117	
Di-n-butylphthalate	2400	0	2500	104				. 52	112	
Fluoranthene	2400	0	2200	92				55	105	
Pyrene	2400	0	2500	104 🗸				20	150	
Butylbenzylphthalate	2400	0	2500	104				55	120	
3,3-Dichlorobenzidine	2400	0	1900	79				31	111	
Benzo(a)anthracenc	2400	0	2500	104	*			60	100	
Chrysene	2400	0	2200	92				51	115	
) bis(2-Ethylhexyl)phthalate	2400	120	2500	99				54	124	
Di-n-octyl phthalate	2400	0	2300	96				53	122	
Benzo(b)fluoranthene	2400	0	2400	100				42	126	
Benzo(k)fluoranthene	2400	0	2300	96				43	125	
Benzo(a)pyrene	2400	0	2000	83				58	102	
Indeno(1,2,3-cd)pyrene	2400	0	960	40	*			42	124	
Dibenz(a,h)anthracene	2400	0	1300	54				41	130	
Benzo(g,h,i)perylene	2400	0	1100	46				39	130	

#### Matrix Spike/Matrix Spike Duplicate Summary SW-846

) No.:

S3409

Client: Chazen Companies

Analytical Method: EPA S

		Sample			Rec		RPD		Limits	
Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: S3567-12MSD	Client Sa	ımple ID:	S3567-12MSD			•				
Phenol	2400	0	1700	71 🔻	<b>/</b> .	0		20	150	50
bis(2-Chloroethyl)ether	2400	0	1400	58		7		37	114	50
2-Chlorophenol	2400	0	1600	67		0		52	107	50
2-Methylphenol	2400	0	1700	71		5		50	100	50
2,2-oxybis(1-Chloropropane)	2400	0	1700	71		0		44	102	50
3+4-Methylphenols	2400	0	1700	71		5		30	106	50
N-Nitroso-di-n-propylamine	2400	0	1800	75 🗸	/	0		20	150	50
Hexachloroethane	2400	0	2600	108	*	4		43	101	50
Nitrobenzene	2400	0	1600	67		0		50	109	50
Isophorone	2400	0	2200	92		0		48	111	50
2-Nitrophenol	2400	0	2000	83		0		52	116	50
2,4-Dimethylphenol	2400	0	1400	58		. 31		47	109	50
bis(2-Chloroethoxy)methane	2400	0	1800	75		5		51	111	50
2,4-Dichlorophenol	2400	0	2300	96		0		55	109	50
) Naphthalene	2400	0	2000	83		0		34	120	50
4-Chloroaniline	2400	0	1200	50		8		15	92	50
Hexachlorobutadiene	2400	0	1900	79		0		20	150	50
4-Chloro-3-methylphenol	2400	0	2000	83	_	0		60	100	50
2-Methylnaphthalene	2400	790	2100	55		0		49	115	50
Hexachlorocyclopentadiene	4800	0	570	12	*	63	*	20	107	50
2,4,6-Trichlorophenol	2400	0	2400	100		0		50	112	50
2,4,5-Trichlorophenol	2400	0	2400	100		0		55	105	50
1,1-Biphenyl	2400	0	2300	96		4		20	150	50
2-Chloronaphthalene	2400	0	2200	92		4		50	113	50
2-Nitroaniline	2400	0	2000	83		6		52	110	50
Dimethylphthalate	2400	0	2200	92		0		45	122	50
Acenaphthylenc	2400	0	2100	88		0		52	107	50
2,6-Dinitrotoluene	2400	0	2300	96		4		49	116	50
3-Nitroaniline	2400	0	1700	71		0		27	88	50
Acenaphthene	2400	0	2300	96 🚄		4		65	100	50
2,4-Dinitrophenol	4800	0	1500	31		48		26	131	50
4-Nitrophenol	4800	0	3000	62 -		0		45	95	50
Dibenzofuran	2400	0	2300	96		0		52	113	50
2,4-Dinitrotoluene	2400	0	2200	92 🗸		10		56	104	50
Diethylphthalate	2400	0	2200	92		0		49	115	50
\4-Chlorophenyl-phenylether	2400	0	2300	96		0		37	127	50
Fluorene	2400	0	2300	96		0		47	117	50
4-Nitroaniline	2400	0	2000	83		15		41	115	<b>2</b> ⁵⁰
4,6-Dinitro-2-methylphenol	2400	0	1100	46		49		40	105	<b>2</b> ₅₀
N-Nitrosodiphenylamine	2400	0	2400	100		0		20	150	50

# Chemtech Consulting Group Matrix Spike/Matrix Spike Duplicate Summary SW-846

F No.:

S3409

Client:

**Chazen Companies** 

Analytical Method:

Parameter	Spike	Sample Result	Result	Rec	Rec Qual RPD	RPD Qual	Low	Limits High	RPĎ
Lab Sample ID: S3567-12MSD	Client Sa	imple ID:	S3567-12MSD						
4-Bromophenyl-phenylether	2400	0	2400	100	0		53	113	50
Hexachlorobenzene	2400	0	2400	100	0		48	118	50
Atrazine	2400	0	2300	96	. 0		37	122	50
Pentachlorophenol	4800	0	5600	(113)	7		20	150	50
Phenanthrene	2400	84	2400	96	0		20	150	50
Anthracene	2400	0	2300	96	0		54	108	50
Carbazole	2400	0	2400	100	0		54	117	50
Di-n-butylphthalate	2400	0	2500	104	0		52	112	50
Fluoranthene	2400	0	2300	96	4		55	105	50
Pyrene	2400	0	2500	104 🕶	0		20	150	50
Butylbenzylphthalate	2400	0	2400	100	4		55	120	50
3,3-Dichlorobenzidine	2400	0	1900	79	0		31	111	50
Benzo(a)anthracene	2400	0	2400	100	4		60	100	50
Chrysene	2400	0	2200	92	0		51	115	50
) bis(2-Ethylhexyl)phthalate	2400	120	2500	99	0		54	124	50
Di-n-octyl phthalate	2400	0	2200	92	4		53	122	50
Benzo(b)fluoranthene	2400	0	2900	121	19		42	126	50
Benzo(k)fluoranthene	2400	0	2200	92	4		43	125	50
Benzo(a)pyrene	2400	0	2100	88	6		58	102	50
Indeno(1,2,3-cd)pyrene	2400	0	720	30	* 29		42	124	50
Dibenz(a,h)anthracene	2400	0	1200	50	8		41	130	50
Benzo(g,h,i)perylene	2400	0	1000	42	9		39	130	50

# Chemtech Consulting Group Matrix Spike/Matrix Spike Duplicate Summary SW-846

G No.:

S3409

Client:

**Chazen Companies** 

Analytical Method:

		Sample			Rec	RPD		Limits	
Parameter	Spike	Result	Result	Rec	Qual RP	D Qual	Low	High	RPD
Lab Sample ID: S3409-03MS	Client Sa	ımple ID:	SB-314-8DUPM	is ,					
Phenol	2200	0	2000	91.			20	150	
bis(2-Chloroethyl)ether	2200	0	1500	68			37	114	
2-Chlorophenol	2200	0	1900	86 -			52	107	
2-Methylphenol	2200	0	1900	86	•		50	100	
2,2-oxybis(1-Chloropropane)	2200	0	1800	82			44	102	
3+4-Methylphenols	2200	0	1900	86			30	106	
N-Nitroso-di-n-propylamine	2200	0	2000	91•	•		20	150	
Hexachloroethane	2200	0	1600	73			43	101	
Nitrobenzene	2200	0	1900	86			50	109	
Isophorone	2200	0	1900	86			48	111	
2-Nitrophenol	2200	0	1900	86			52	116	
2,4-Dimethylphenol	2200	0	2000	91			47	109	
bis(2-Chloroethoxy)methane	2200	0	1900	86			51	111	
2,4-Dichlorophenol	2200	0	2100	95			55	109	
Naphthalene	2200	0	1900	86			34	120	
4-Chloroaniline	2200	0	2000	91			15	92	
Hexachlorobutadiene	2200	0	2000	91			20	150	
4-Chloro-3-methylphenol	2200	0	2100	95 -	/		60	100	
2-Methylnaphthalene	2200	0	2100	95			49	115	
Hexachlorocyclopentadiene	4400	0	3200	73			20	107	
2,4,6-Trichlorophenol	2200	0	2400	109			50	112	
2,4,5-Trichlorophenol	2200	0	2300	105			55	105	
1,1-Biphenyl	2200	0	2300	105			20	150	
2-Chloronaphthalene	2200	0	2200	100			50	113	
2-Nitroaniline	2200	0	2100	95			52	110	
Dimethylphthalate	2200	0	2300	105			45	122	
Acenaphthylene	2200	0	2200	100			52	107	
2,6-Dinitrotoluene	2200	0	2300	105			49	116	
3-Nitroaniline	2200	0	2100	95	*		27	88	
Acenaphthene	2200	0	2300	105	1/		65	100	
2,4-Dinitrophenol	4400	0	2100	48			26	131	
4-Nitrophenol	4400	0	2900	66 <	_		45	95	
Dibenzofuran	2200	0	2300	105	1		52	113	
2,4-Dinitrotoluene	2200	0	2300	(105.	) *		56	104	
Diethylphthalate	2200	0	2200	100	•		49	115	
\4-Chlorophenyl-phenylether	2200	0	2300	105			37	127	
Fluorene	2200	0	2300	105			47	117	
4-Nitroaniline	2200	0	2100	95			41	115	
4,6-Dinitro-2-methylphenol	2200	0	1400	64			40	105	4
N-Nitrosodiphenylamine	2200	0	2500	114			20	150	

#### Matrix Spike/Matrix Spike Duplicate Summary SW-846

G No.:

S3409

Client:

Chazen Companies

Analytical Method:

Parameter	Spike	Sample Result	Result	Rec	Rec Qual RPD	RPD Qual	Low	Limits High RPD
Lab Sample ID: S3409-03MS	Client Sa	mple ID:	SB-314-8DUPM	IS				
4-Bromophenyl-phenylether	2200	0	2500	114	*		53	113
Hexachlorobenzene	2200	0	2400	109			48	118
Atrazine	2200	0	2500	114			37	122
Pentachlorophenol	4400	0	5200	118	Σ•		20	150
Phenanthrene	2200	0	2500	114			20	150
Anthracene	2200	0	2400	109	*		54	108
Carbazole	2200	0	2400	109			54	117
Di-n-butylphthalate	2200	0	2400	109			52	112
Fluoranthene	2200	0	2400	109	*		55	105
Pyrene	2200	. 0	2400	109			20	150
Butylbenzylphthalate	2200	0	2400	109			55	120
3,3-Dichlorobenzidine	2200	0	2200	100			31	111
Benzo(a)anthracene	2200	0	2500	114	*		60	100
Chrysene	2200	0	2300	105			51	115
) bis(2-Ethylhexyl)phthalate	2200	0	2400	109			54	124
Di-n-octyl phthalate	2200	0	2300	105			53	122
Benzo(b)fluoranthene	2200	0	2300	105			42	126
Benzo(k)fluoranthene	2200	0	2100	95			43	125
Bcnzo(a)pyrene	2200	0	2100	95			58	102
Indeno(1,2,3-cd)pyrene	2200	0	1900	86			42	124
Dibenz(a,h)anthracene	2200	0	1900	86			41	130
Benzo(g,h,i)perylene	2200	0	1600	73			- 39	130

# Chemtech Consulting Group Matrix Spike/Matrix Spike Duplicate Summary SW-846

) No.:

S3409

Client:

**Chazen Companies** 

Analytical Method:

		Sample			Rec		RPD		Limits	
Parameter	Spike	Result	Result	Rec	Qual	RPD	Qual	Low	High	RPD
Lab Sample ID: S3409-03MSD	Client Sa	mple ID:	SB-314-8DUPM	ISD ¹						
Phenol	2200	.0	2100	(957)		4		20	150	50
bis(2-Chloroethyl)ether	2200	0	1700	77.		12		37	114	50
2-Chlorophenol	2200	0	2000	91 🗸	•	6		52	107	50
2-Methylphenol	2200	0	2000	91		6		50	100	50
2,2-oxybis(1-Chloropropane)	2200	0	1900	86		5		44	102	50
3+4-Methylphenols	2200	0	2100	95		10		30	106	50
N-Nitroso-di-n-propylamine	2200	0	2000	91	•	0		20	150	50
Hexachloroethane	2200	0	1700	77		5		43	101	50
Nitrobenzene	2200	0	1800	82		. 5		50	109	50
Isophorone	2200	0	1900	86		0		48	111	50
2-Nitrophenol	2200	0	2000	91		6		52	116	50
2,4-Dimethylphenol	2200	0	2100	95		4		47	109	50
bis(2-Chloroethoxy)methane	2200	0	2000	91		6		51	111	50
2,4-Dichlorophenol	2200	0	2100	95		0		55	109	50
) Naphthalene	2200	0	2000	91		6		34	120	50
4-Chloroaniline	2200	0	1900	86		6		15	92	50
Hexachlorobutadiene	2200	0	2100	95		4		20	150	50
4-Chloro-3-methylphenol	2200	0	2100	95 -	-	0		60	100	50
2-Methylnaphthalene	2200	0	2100	95		0		49	115	50
Hexachlorocyclopentadiene	4400	0	3600	. 82		12		20	107	50
2,4,6-Trichlorophenol	2200	0	2400	109		0		50	112	50
2,4,5-Trichlorophenol	2200	0	2400	109	*	4		55	105	50
1,1-Biphenyl	2200	0	2400	109		4		20	150	50
2-Chloronaphthalene	2200	0	2200	100		0		50	113	50
2-Nitroaniline	2200	0	2100	95		0		52	110	50
Dimethylphthalate	2200	0	2300	105		0		45	122	50
Acenaphthylene	2200	0	2200	100		0		52	107	50
2,6-Dinitrotoluene	2200	0	2300	105		0		49	116	50
3-Nitroaniline	2200	0	1800	82		15		27	88	50
Acenaphthene	2200	0	2300	105	*	0		65	100	50
2,4-Dinitrophenol	4400	0	2400	\$5		14		26	131	50
4-Nitrophenol	4400	0	2900	66		0		45	95	50
Dibenzofuran	2200	0	2400	109		4		52	113	50
2,4-Dinitrotoluene	2200	0	2300	105	*	0		56	104	50
Diethylphthalate	2200	0	2200	100		0		49	115	50
\4-Chlorophenyl-phenylether	2200	0	2300	105		0		37	127	50
Fluorene	2200	0	2300	105		0		47	117	50
4-Nitroaniline	2200	0	2100	95		0		41	115	<b>16</b> ⁵⁰
4,6-Dinitro-2-methylphenol	2200	0	1500	68		6		40	105	1 <b>b</b>
N-Nitrosodiphenylamine	2200	0	2500	114		0		20	150	50

#### Matrix Spike/Matrix Spike Duplicate Summary SW-846

)5 No.:

S3409

Client:

**Chazen Companies** 

Analytical Method:

Parameter	Spike	Sample Result	Result	Rec	Rec Qual	RPD	RPD Qual	Low	Limits High	RPD
Lab Sample ID: S3409-03MSD	Client Sa	mple ID:	SB-314-8DUPM	(SD						
4-Bromophenyl-phenylether	2200	0	2400	109		4		53	113	50
Hexachlorobenzene	2200	0	2400	109		0		48	118	50
Atrazine	2200	0	2500	114		0		37	122	50
Pentachlorophenol	4400	0	5000	(114)	•	3		20	150	50
Phenanthrene	2200	0	2500	114		0		20	150	50
Anthracene	2200	0	2400	109	*	0		54	108	50
Carbazole	2200	0	2300	105		4		54	117	50
Di-n-butylphthalate	2200	0	2300	105		4		52	112	50
Fluoranthene	2200	0	2400	109	*	0		55	105	50
Pyrene	2200	0	2400	109	_	0		20	150	50
Butylbenzylphthalate	2200	0	2300	105		4		55	120	50
3,3-Dichlorobenzidine	2200	0	2100	95		5		31	111	50
Benzo(a)anthracene	2200	0	2400	109	*	4		60	100	50
Chrysene	2200	0	2400	109		4		<b>5</b> 1 -	115	50
) bis(2-Ethylhexyl)phthalate	2200	0	2400	109		0		54	124	50
Di-n-octyl phthalate	2200	0	2300	105		0		53	122	50
Benzo(b)fluoranthene	2200	0	2200	100		5		42	126	50
Benzo(k)fluoranthene	2200	0	2200	100		5		43	125	50
Benzo(a)pyrene	2200	0	2100	95		0		58	102	50
Indeno(1,2,3-ed)pyrene	2200	0	1900	86		0		42	124	50
Dibenz(a,h)anthracene	2200	0	1800	82		5		<b>4</b> 1	130	50
Benzo(g,h,i)perylene	2200	0	1600	73		0		39	130	50

## **Laboratory Control Sample/Laboratory Control Sample Duplicate Summary** SW-846

r vo.: <u>83409</u>

Client:

Chazen Companies

Analytical Method:

Lab Sample ID	Parameter	Spike	Result	Rec ŔPD	Qual	Low	Limits High RPD
PB16274BS	Phenol	1600	1500	94)		20	150
	bis(2-Chloroethyl)ether	1600	1300	81		37	114
	2-Chlorophenol	1600	1500	94 🖍		52	107
	2-Methylphenol	1600	1400	88		50	100
	2,2-oxybis(1-Chloropropane)	1600	1400	88		44	102
	3+4-Methylphenois	1600	1400	88		30	106
	N-Nitroso-di-n-propylamine	1600	1400	88.~		20	150
	Hexachloroethane	1600	1400	88		43	101
	Nitrobenzene-	1600	1300	81		50	109
	Isophorone	1600	1400	88		48	111
	2-Nitrophenol	1600	1500	94		52	116
	2,4-Dimethylphenol	1600	1500	94		47	109
	bis(2-Chloroethoxy)methane	1600	1400	88		51	111
	2,4-Dichlorophenol	1600	1500	94		55	109
¥	Naphthalene	1600	1500	94		34	120
\ \	4-Chloroaniline	1600	730	46		15	92
)	Hexachlorobutadiene	1600	1500	94		20	150
	4-Chloro-3-methylphenol	1600	1500	94 /		60	100
	2-Methylnaphthalene	1600	1500	94		49	115
	Hexachlorocyclopentadiene	3300	3600	109	*	20	107
	2,4,6-Trichlorophenol	1600	1700	106		50	112
	2,4,5-Trichlorophenol	1600	1500	94		55	105
	1,1-Biphenyl	1600	1600	100		20	150
	2-Chloronaphthalene	. 1600	1500	94		50	113
	2-Nitroaniline	1600	1500	94		52	110
	Dimethylphthalate	1600	1500	94		45	122
	Acenaphthylene	1600	1500	94		52	107
•	2,6-Dinitrotoluene	1600	1600	100		49	116
	3-Nitroaniline	1600	810	51		27	88
	Acenaphthene	1600	1600	100		65	100
	2,4-Dinitrophenol	3300	2800	85		26	131
	4-Nitrophenol	3300	1900	58 —		45	95
	Dibenzofuran	1600	1600	100		52	113
	2,4-Dinitrotoluene	1600	1600	100>		56	104
	Diethylphthalate	1600	1300	81		49	115
	4-Chlorophenyl-phenylether	1600	1600	100		37	127
_	Fluorene	1600	1600	100		47	117
1 )	4-Nitroaniline	1600	1300	81		41	115
	4,6-Dinitro-2-methylphenol	1600	1600	100		40	105
	N-Nitrosodiphenylamine	1600	1400	88		20	150 <b>18</b>
	4-Bromophenyl-phenylether	1600	1600	100		53	113
	Hexachlorobenzene	1600	1600	100		48	118

## Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

\o.: <u>S34</u>

Client:

S3409

Chazen Companies

Analytical Method:

Lab Sample ID	Parameter	Spike	Result	Rec RPD	Qual	Low	Limits High RPD
PB16274BS	Atrazine	1600	1500	94		37	122
	Pentachlorophenol	3300	3200	97		20	150
	Phenanthrene	1600	1800	112		20	150
	Anthracene	1600	1400	88 -		54	108
	Carbazole	1600	1500	94		54	117
	Di-n-butylphthalate	1600	1400	88		52	112
•	Fluoranthene	1600	1500	94		55	105
	Pyrene	1600	1500	94~		20	150
	Butylbenzylphthalate	1600	1500	94		55	120
	3,3-Dichlorobenzidine	1600	1000	62		31	111
	Benzo(a)anthracene	1600	1600	100		60	100
	Chrysene	1600	1600	100		51	115
	bis(2-Ethylhexyl)phthalate	1600	1500	94		54	124
	Di-n-octyl phthalate	1600	1500	94		53	122
	Benzo(b)fluoranthene	1600	1400	88		42	126
\	Benzo(k)fluoranthene	1600	1400	88		43	125
)	Benzo(a)pyrene	1600	1400	88		58	102
	Indeno(1,2,3-cd)pyrene	1600	1600	100		42	124
	Dibenz(a,h)anthracene	1600	1400	88		41	130
	Benzo(g,h,i)perylene	1600	1400	88		39	130
PB16346BS	Phenol	1600	1400	88 🗻		20	150
	bis(2-Chloroethyl)ether	1600	1300	81		37	114
	2-Chlorophenol	1600	1500	94 -		52	107
	2-Methylphenol	1600	1400	88		50	100
	2,2-oxybis(1-Chloropropane)	1600	1400	88		44	102
	3+4-Methylphenols	1600	1400	88	•	30	106
	N-Nitroso-di-n-propylamine	1600	1400	88 -		20	150
	Hexachloroethane	1600	1300	81		43	101
	Nitrobenzene	1600	1300	81		50	109
	Isophorone	1600	1400	88		48	111
	2-Nitrophenol	1600	1500	94		52	116
	2,4-Dimethylphenol	1600	1500	94		47	109
	bis(2-Chloroethoxy)methane	1600	1400	88		51	111
	2,4-Dichlorophenol	1600	1500	94		55	109
	Naphthalene	1600	1500	94		34	120
	4-Chloroaniline	1600	720	45		15	92
	Hexachlorobutadiene	1600	1500	94		20	150
. )	4-Chloro-3-methylphenol	1600	1500	94 -		60	100
	2-Methylnaphthalene	1600	1500	94		49	115
	Hexachlorocyclopentadiene	3300	3200	97		20	107 <b>19</b>
	2,4,6-Trichlorophenol	1600	1700	106		50	112
	2,4,5-Trichlorophenol	1600	1600	100		55	105

## Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

o.: <u>S3409</u>

Chazen Companies

fothed. TOTAL

Analytical Method:

Lab Sample ID	Parameter		Spike	Result	Rec RPD	Qual	Low	Limits High RPD
PB16346BS	1,1-Biphenyl		1600	1600	100		20	150
	2-Chloronaphthalene		1600	1500	94		50	113
	2-Nitroaniline		1600	1500	94		52	110
	Dimethylphthalate		1600	1500	94		45	122
	Acenaphthylene		1600	1500	94		52	107
	2,6-Dinitrotoluene		1600	1500	94		49	116
	3-Nitroaniline		1600	780	49		27	88
	Acenaphthene		1600	1600	100		65	100
	2,4-Dinitrophenol		3300	3100	94		26	131
	4-Nitrophenol		3300	2000	61 🗻		45	95
	Dibenzofuran		1600	1600	100		52	113
	2,4-Dinitrotoluene		1600	1600	100		56	104
	Diethylphthalate		1600	1400	88		49	115
	4-Chlorophenyl-phenylether		1600	1600	100		37	127
	Fluorene		1600	1600	100		47	117
\	4-Nitroaniline		1600	1100	69		41	115
)	4,6-Dinitro-2-methylphenol		1600	1600	100		40	105
	N-Nitrosodiphenylamine		1600	1600	100		20	150
	4-Bromophenyl-phenylether		1600	1600	100		53	113
·	Hexachlorobenzene		1600	1600	100		48	118
	Atrazine		1600	1600	100		37	122
	Pentachlorophenol		3300	3100	94		20	150
	Phenanthrene		1600	1700	106		20	150
	Anthracene		1600	1500	94		54	108
	Carbazole		1600	1400	88		54	117
	Di-n-butylphthalate		1600	1500	94		· 52	112
	Fluoranthene		1600	1500	94		55	105
	Pyrene		1600	1500	94		20	150
	Butylbenzylphthalate		1600	1500	94		55	120
	3,3-Dichlorobenzidine		1600	1100	69		31	111
	Benzo(a)anthracene		1600	1600	100		60	100
	Chrysene		1600	1500	94		51	115
	bis(2-Ethylhexyl)phthalate		1600	1500	94		54	124
	Di-n-octyl phthalate	$\sim$	1600	1500	. 94		53	122
	Benzo(b)fluoranthene		1600	1700	106		42	126
	Benzo(k)fluoranthene		1600	1400	88		43	125
`	Benzo(a)pyrene		1600	1500	94		58	102
)	Indeno(1,2,3-cd)pyrene		1600	1500	94		42	124
	Dibenz(a,h)anthracene	•	1600	1500	94		41	130
	Benzo(g,h,i)perylene		1600	1500	94		39	130 <b>20</b>

#### SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK01

Lab Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3409

SAS No.: \$3409

SDG NO.: \$3409

Lab File ID:

BE012657.D

Lab Sample ID:

PB16274B

Instrument ID:

BNAE

Date Extracted:

7/14/2004

Matrix: (soil/water)

SOIL

Date Analyzed:

7/15/2004

Level: (low/med) LOW

Time Analyzed:

18:06

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01	SLCS01	PB16274BS	BE012658.D	7/15/2004
02	SB-314-8DUP	S3409-03	BE012659.D	7/15/2004
03	SB-324-8	s3409-13	BE012660.D	7/15/2004
04	SB-044-8	s3409-05	BE012661.D	7/15/2004
05	SB-348-12DUP	S3409-12	BE012662.D	7/15/2004
06	SB-314-8	S3409-02	BE012664.D	7/15/2004
07	SB-0412-16	S3409-06	BE012665.D	7/15/2004
80	SB-074-8	S3409-08	BE012666.D	7/15/2004
09	SB-348-12	S3409-11	BE012667.D	7/15/2004
10	SB-334-8	s3409-09	BE012668.D	7/15/2004
11	SB-290-4	S3409-10	BE012669.D	7/15/2004
12	SB-184-8	s3409-07	BE012671.D	7/15/2004
13	SB-204-8	s3409-14	BE012672.D	7/15/2004
14	SB-034-8	S3409-04	BE012673.D	7/16/2004
15	SB-314-8DUPMS	S3409-03MS	BE012732.D	7/17/2004
16	SB-314-8DUPMSD	S3409-03MSD	BE012733.D	7/17/2004

COMMENTS:

#### SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

	•
SBLK0	2

Lab Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

\$3409 SAS No

SAS No.: \$3409

SDG NO.: \$3409

Lab File ID:

BE012796.D

Lab Sample ID:

PB16346B

Instrument ID:

BNAE

Date Extracted:

7/17/2004

Matrix: (soil/water)

SOIL

Date Analyzed:

7/19/2004

Level: (low/med)

LÓW

Time Analyzed:

17:39

#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01	SB-244-8	S3409-15	BE012802.D	7/19/2004
02	SB-264-8	S3409-16	BE012833.D	7/20/2004
03	S3567-11MS	\$3567-11MS	BE012847.D	7/20/2004
04	SLCS02	PB16346BS	BE012851.D	7/20/2004
05	S3567-12MSD	S3567-12MSD	BE012960.D	7/22/2004

COMMENTS:

#### SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name:

Chemtech Consulting Group

Case No.:

Contract:

CHAZ02

Lab Code:

BNAE

CHEM

S3409

SAS No.:

S3409

S3409

Lab File ID:

DFTPP Injection Date:

7/12/2004

Instrument ID:

BE012508.D

DFTPP Injection Time:

14:45

SDG NO.:

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	30.8-
68	Less than 2.0% of mass 69	0.0 ( 0.0 ).
69	Mass 69 relative abundance	54.5 -
70	Less than 2.0% of mass 69	0.0 ( 0.0)
127	40.0 - 60.0% of mass 198	59.0-
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0.
199	5.0 to 9.0% of mass 198	7.1 -
275	10.0 - 30.0% of mass 198	29.8.
365	Greater than 1% of mass 198	4.9
441	Present, but less than mass 443	14.0
442	Greater than 40% of mass 198	91.6
443	17.0 - 23.0% of mass 442	17.9(19.5)

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD080	80 ng BNA ICC	BE012509.D	7/12/2004	15:24
02	SSTD160	160 ng BNA ICC	BE012510.D	7/12/2004	15:47
03	SSTD020	20 ng BNA ICC	BE012511.D	7/12/2004	16:11
04	SSTD120	120 ng BNA ICC	BE012512.D	7/12/2004	16:35
05	SSTD050	50 ng BNA ICC	BE012513.D	7/12/2004	16:59

#### 5в

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Consulting Group Contract: CHAZ02

Lab File ID: BE012654.D DFTPP Injection Date: 7/15/2004

Instrument ID: BNAE DFTPP Injection Time: 16:42

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	31.8
68	Less than 2.0% of mass 69	0.0 ( 0.0 )
69	Mass 69 relative abundance	59.1 .
70	Less than 2.0% of mass 69	0.0 ( 0.0) 1
127	40.0 - 60.0% of mass 198	58.9
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0 -
199	5.0 to 9.0% of mass 198	6.6
275	10.0 - 30.0% of mass 198	29.1
365	Greater than 1% of mass 198	3.9
441	Present, but less than mass 443	8.9
442	Greater than 40% of mass 198	66.2
443	17.0 - 23.0% of mass 442	12.6( 19.1)

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD080	80 ng BNA CCC	BE012655.D	7/15/2004	17:06
02	SBLK01	PB16274B	BE012657.D	7/15/2004	18:06
03	SLCS01	PB16274BS	BE012658.D	7/15/2004	18:30
04	SB-314-8DUP	\$3409-03	BE012659.D	7/15/2004	18:54
05	SB-324-8	\$3409-13	BE012660.D	7/15/2004	19:18
06	SB-044-8	83409-05	BE012661.D	7/15/2004	19:42
07	SB-348-12DUP	\$3409-12	BE012662.D	7/15/2004	20:03
80	SB-314-8	\$3409-02	BE012664.D	7/15/2004	20:50
09	SB-0412-16	83409-06	BE012665.D	7/15/2004	21:14
10	SB-074-8	s3409-08	BE012666.D	7/15/2004	21:38
11	SB-348-12	83409-11	BE012667.D	7/15/2004	22:02
12	SB-334-8	83409-09	BE012668.D	7/15/2004	22:23
13	SB-290-4	s3409-10	BE012669.D	7/15/2004	22:47
14	SB-184-8	83409-07	BE012671.D	7/15/2004	23:34
15	SB-204-8	S3409-14	BE012672.D	7/15/2004	23:58
16	SB-034-8	S3409-04	BE012673.D	7/16/2004	00:22

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Co

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3409

SAS No.:

S3409

SDG NO.: \$3409

Lab File ID:

BE012708.D

DFTPP Injection Date:

7/17/2004

Instrument ID:

BNAE

DFTPP Injection Time:

01:00

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	31.8 1/
68	Less than 2.0% of mass 69	0.0 ( 0.0 ) 1
69	Mass 69 relative abundance	51.0
70	Less than 2.0% of mass 69	0.0 ( 0.0),1
127	40.0 - 60.0% of mass 198	55.5
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.1,
275	10.0 - 30.0% of mass 198	29.1
365	Greater than 1% of mass 198	4.2.
441	Present, but less than mass 443	10.2
442	Greater than 40% of mass 198	75.5
443	17.0 - 23.0% of mass 442	14.2( 18.8), 2

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD120	120 ng BNA CCC	BE012709.D	7/17/2004	01:21
02	SB-314-8DUPMS	S3409-03MS	BE012732.D	7/17/2004	10:24
03	SB-314-8DUPMSD	S3409-03MSD	BE012733.D	7/17/2004	10:48

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Consulting Group Contract: CHAZ02

Lab File ID: BE012794.D DFTPP Injection Date: 7/19/2004

Instrument ID: BNAE DFTPP Injection Time: 16:52

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	34.7-1-/
68	Less than 2.0% of mass 69	0.0 ( 0.0 )
69	Mass 69 relative abundance	54.2.
70	Less than 2.0% of mass 69	0.0 ( 0.0) 1
127	40.0 - 60.0% of mass 198	56.7.
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0,
199	5.0 to 9.0% of mass 198	7.3
275	10.0 - 30.0% of mass 198	29.4 .
365	Greater than 1% of mass 198	4.4
441	Present, but less than mass 443	14.3
442	Greater than 40% of mass 198	97.5
443	17.0 - 23.0% of mass 442	19,2(19,7)2

#### 1-Value is % mass 69

2-Value is % mass 442

•	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD050	50 ng BNA CCC	BE012795.D	7/19/2004	17:15
02	SBLK02	PB16346B	BE012796.D	7/19/2004	17:39
03	SB-244-8	s3409-15	BE012802.D	7/19/2004	19:59

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Consulting Group

Contract: CHAZ02

Lab Code: CH

CHEM Case No.:

S3409

S3409

SDG NO.: \$3409

Lab File ID:

BE012821.D

DFTPP Injection Date:

SAS No.:

7/20/2004

Instrument ID:

BNAE

DFTPP Injection Time:

03:26

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE ?
51	30.0 - 60.0% of mass 198	36.3
68	Less than 2.0% of mass 69	0.0 ( 0.0 ).
69	Mass 69 relative abundance	56.3
70	Less than 2.0% of mass 69	0.0 ( 0.0 / 1
127	40.0 - 60.0% of mass 198	59.8
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0.
199	5.0 to 9.0% of mass 198	7.0
275	10.0 - 30.0% of mass 198	27.5.
365	Greater than 1% of mass 198	3.6
441	Present, but less than mass 443	11.9
442	Greater than 40% of mass 198	76.5
443	17.0 - 23.0% of mass 442	14.2( 18.6)

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD120	120 ng BNA CCC	BE012822.D	7/20/2004	03:50
02	SB-264-8	S3409-16	BE012833.D	7/20/2004	08:07
03	S3567-11MS	\$3567-11MS	BE012847.D	7/20/2004	13:36

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Consulting Group Contract: CHAZ02

Lab File ID: BE012849.D DFTPP Injection Date: 7/20/2004

Instrument ID: BNAE DFTPP Injection Time: 16:21

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	33.9 .
68	Less than 2.0% of mass 69	0.0 ( 0.0 )
69	Mass 69 relative abundance	60.4
70	Less than 2.0% of mass 69	0.2 ( 0.3)1
127	40.0 - 60.0% of mass 198	59.7
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.2 -
275	10.0 - 30.0% of mass 198	21.2
365	Greater than 1% of mass 198	3.4 -
441	Present, but less than mass 443	10.4
442	Greater than 40% of mass 198	65.5-
443	17.0 - 23.0% of mass 442	13.5( 20.7)

#### 1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB . SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD050	50 ng BNA CCC	BE012850.D	7/20/2004	16:45
02	SLCS02	PB16346BS	BE012851.D	7/20/2004	17:07

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Consulting Group Contract: CHAZ02

Lab File ID: BE012933.D DFTPP Injection Date: 7/22/2004

Instrument ID: BNAE DFTPP Injection Time: 03:20

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	35.24/
68	Less than 2.0% of mass 69	0.0 ( 0.0 )
69	Mass 69 relative abundance	52.2
70	Less than 2.0% of mass 69	0.3 ( 0.6) 1
127	40.0 - 60.0% of mass 198	58.2
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	7.2~
275	10.0 - 30.0% of mass 198	30.0
365	Greater than 1% of mass 198	4.9
441	Present, but less than mass 443	12.5
442	Greater than 40% of mass 198	79.0
443	17.0 - 23.0% of mass 442	15.3(19.3)

1-Value is % mass 69

2-Value is % mass 442

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD120	120 ng BNA CCC	BE012934.D	7/22/2004	03:44
02	S3567-12MSD	S3567-12MSD	BE012960.D	7/22/2004	13:52

Name: Chemtech Consulting Group Contract: CHAZ02

Lab Code: CHEM Case No.: S3409 SAS No.: S3409 SDG NO.: S3409

EPA Sample No.: SSTD120 Date Analy

Date Analyzed: 7/17/2004

BE012709.D Time Analyzed: 01:21

Instrument ID: BNAE GC Column: RTX-5 SILMS ID: 032

	IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
12 HOUR STD	262984	3.46	911619	4.23	515336	5.33
UPPER LIMIT	525968	3.96	1823238	4.73	1030672	5.83
LOWER LIMIT	131492	2.96	455810	3.73	257668	4.83
EPA SAMPLE NO						
SB-314-8DUPMS	224116	3.46	796806	4.24	430353	5.33
SB-314-8DUPMSD	240068	3.46	855008	4.23	456018	5.33

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

Lab File ID:

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

(mm)

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

b Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3409 SAS No.:

o.: \$3409 🐃

SDG No.:

S3409

EPA Sample No.:

SSTD120

Date Analyzed:

7/17/2004

Lab File ID:

_____

Time Analyzed:

01:21

Instrument ID:

BE012709.D

BNAE

GC Column:

.

RTX-5 SILMS ID: 032

(mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT#
12 HOUR STD	937834	6.31	957831	8.35	728642	9.93
UPPER LIMIT	1875668	6.81	1915662	8.85	1457284	10.43
LOWER LIMIT	468917	5.81	478916	7.85	364321	9.43
EPA SAMPLE NO.			Ĺ			
SB-314-8DUPMS	748570	6.31	766769	8.40	666950	9.99
SB-314-8DUPMSD	796456	6.31	809895	8.36	707459	9.95

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

) Name: Chemtech Consulting Group Contract: CHAZ02

Lab Code: CHEM Case No.: s3409 SAS No.: S3409 SDG NO.: S3409

EPA Sample No.: SSTD120 Date Analyzed:

7/20/2004

Lab File ID: BE012822.D Time Analyzed: 03:50

Instrument ID: BNAE GC Column: RTX-5 SILMS ID: 032 (mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	262454	3.45	910098	4.22	515309	5.32
	UPPER LIMIT	524908	3.95	1820196	4.72	1030618	√ 5.82
	LOWER LIMIT	131227	2.95	455049	3.72	257655	4.82
	EPA SAMPLE NO.	· ·				`	
20	SB-264-8	210769	3.45	770083	4.23	459675	5.32
21	S3567-11MS	307678	3.45	1005221	4.22	505346	5.32

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

b Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

\$3409 SAS No.:

S3409

SDG No.:

S3409 -

EPA Sample No.:

SSTD120

Date Analyzed:

7/20/2004

Lab File ID:

BE012822.D

Time Analyzed:

03:50

Instrument ID:

____

BNAE

GC Column:

RTX-5 SILMS ID: 032

: 032 (mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	848408	6.29	1021367	8.31	728481	9.87
UPPER LIMIT	1696816	6.79	2042734	8.81	1456962	10.37
LOWER LIMIT	424204	5.79	510684	7.81	364241	9.37
EPA SAMPLE NO.		V				
SB-264-8	852668	6.31	835095	8.41	793438	10.00
S3567-11MS	882908	6.29	784408	8.32	484253	9.89

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Name: Chemtech Consulting Group Contract: CHAZ02

Case No.: Lab Code: CHEM S3409 SAS No.: S3409 SDG NO .: S3409

EPA Sample No.: SSTD120 Date Analyzed: 7/22/2004

BE012934.D Time Analyzed: 03:44 Instrument ID: BNAE GC Column: RTX-5 SILMS ID: 032 (mm)

	IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
12 HOUR SID	218565	3.43	741548	4.21	425213	5.30
UPPER LIMIT	437130	3.93	1483096	4.71	850426	5.80
LOWER LIMIT	109283	2.93	370774	3.71	212607	4.80
EPA SAMPLE NO.					/	
S3567-12MSD	296997	3.43	970084	4.21	481753	5.30

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

Lab File ID:

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

Name: Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

s3409

SAS No.:

S3409

SDG No.:

S3409

EPA Sample No.:

Date Analyzed:

SSTD120

7/22/2004

Lab File ID:

BE012934.D

Time Analyzed:

03:44

Instrument ID:

**BNAE** 

GC Column:

RTX-5 SILMS ID: 032

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	777069	6.26	839347	8.20	572930	9.74
UPPER LIMIT	1554138	6.76 0	1678694	8.70	1145860	10.24
LOWER LIMIT	388535	5.76	419674	7.70	286465	9.24
EPA SAMPLE NO.		V				
S3567-12MSD	843903	6.28	776513	8.32	395651	9.89

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

S3409

b Name: Chemtech Consulting Group Contract: CHAZ02

Lab Code:

CHEM

Case No.:

SAS No.:

s3409

SDG NO.:

S3409

(mm)

EPA Sample No.:

SSTD050

Date Analyzed:

7/19/2004

Lab File ID:

BE012795.D

Time Analyzed:

17:15

Instrument ID:

BNAE

GC Column:

RTX-5 SILMS ID: 032

	IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
12 HOUR STD	233898	3.45	863146	4.22	487052	5.32
UPPER LIMIT	467796	3.95	1726292	4.72	974104	5.82
LOWER LIMIT	116949	2.95	431573	3.72	243526	4.82
PPA SAMPLE NO.	*		-		/	
B SBLK02	226221	3.45	776644	4.23	472425	5.32
SB-244-8	214388	3.45	786615	4.23	468241	5.32

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

#### INTERNAL STANDARD AREA AND RT SUMMARY SEMIVOLATILE

S3409

b Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

SAS No.:

s3409

SDG No.:

S3409

EPA Sample No.:

SSTD050

Date Analyzed:

7/19/2004

Lab File ID:

Time Analyzed:

17:15

Instrument ID:

BE012795.D BNAE

GC Column:

RTX-5 SILMS

ID: 032

(mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	893354	6.29	908330	8.28	740072	9.84
UPPER LIMIT	1786708	6.79	1816660	8.78	1480144	10.34
LOWER LIMIT	446677	5.79	454165	7.78	370036	9.34
EPA SAMPLE NO.					C	
SBLK02	852222	6.28	872153	8.27	729195	9.82
SB-244-8	848229	6.29	767766	8,34	805619	9.91

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

b Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

\$3409 SAS No.:

S3409

SDG NO.:

S3409

(mm)

EPA Sample No.:

SSTD050

Date Analyzed:

i: 7/20/2004

+ .1. H41 - *D.

-

_. _ _ .

Lab File ID:

BE012850.D

Time Analyzed:

16:45

Instrument ID:

BNAE

GC Column:

RTX-5 SILMS ID: 032

: 032

5		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	241779	3.44	900829	4.22	494118	5.31
	UPPER LIMIT	483558	3.94	1801658	4.72	988236	5.81
	LOWER LIMIT	120890	2.94	450415	3.72	247059	4.81
	EPA SAMPLE NO.		/				
22	SLCS02	261325	3.44	899560	4.21	487437	5.31

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

> Name:

Chemtech Consulting Group

Contract:

CHAZ02

s3409

Lab Code:

CHEM

Case No.:

s3409

SAS No.: S3409 SDG No.:

EPA Sample No.:

SSTD050

BNAE

Date Analyzed: 7/20/2004

Time Analyzed:

16:45

Lab File ID: Instrument ID:

BE012850.D

GC Column:

RTX-5 SILMS ID: 032

(mm)

	IS4 (PHI AREA #	*	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR	STD 8945!	52 6.28	917914	8.29	723856	9.85
UPPER L	міт 178910	6.78	1835828	8.79	1447712	10.35
LOWER L	MIT 44727	76 5.78	458957	7.79	361928	9.35
EPA SAMPL	E NO.				v	
SLCS02	87945	6.28	905553	8.26	730163	9.81

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

b Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3409 SAS No.: S3409

SDG NO .:

S3409

EPA Sample No.:

SSTD080

Date Analyzed:

7/15/2004

Lab File ID:

BE012655.D

Time Analyzed:

17:06

Instrument ID:

BNAE

GC Column:

RTX-5 SILMS ID: 032

(mm)

		IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
	12 HOUR STD	298549	3.47	1061467	4.24	583395	5.34
	UPPER LIMIT	597098	3.97	2122934	4.74	1166790	5.84
	LOWER LIMIT	149275	2.97	530734	3.74	291698	4.84
	EPA SAMPLE NO.		V		/		
	SBLK01	252297	3.47	935217	4.25	535075	5.35
2	SLCS01	290016	3.47	1047761	4.25	555523	5.34
3	SB-314-8DUP	243917	3.47	869437	4.25	507809	5.34
	SB-324-8	253557	3.47	918540	4.25	521099	5.34
	SB-044-8	242766	3.47	880384	4.25	509795	5.34
}	SB-348-12DUP	242438	3.47	895375	4.25	510002	5.34
, [	SB-314-8	252504	3.47	921262	4.25	527162	5.34
, [	SB-0412-16	235908	3.47	877443	4.25	489320	5.34
, [	SB-074-8	229376	3.47	871535	4.25	496585	5.34
۱,	SB-348-12	237967	3.47	865524	4.25	497566	5.34
	SB-334-8	243386	3.47	878702	4.25	508414	5.34
	SB-290-4	223491	3.47	933341	4.25	533426	5.34
	SB-184-8	223393	3.47	929601	4.25	524717	5.34
	SB-204-8	212158	3.47	924537	4.25	541884	5.34
	SB-034-8	201437	3.48	875667	4.25	503447	5.34

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

b Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3409

SAS No.: S3409 SDG No.:

S3409

EPA Sample No.:

SSTD080

Date Analyzed:

7/15/2004

Lab File ID:

BNAE

Time Analyzed:

17:06

Instrument ID:

BE012655.D

GC Column:

RTX-5 SILMS ID: 032

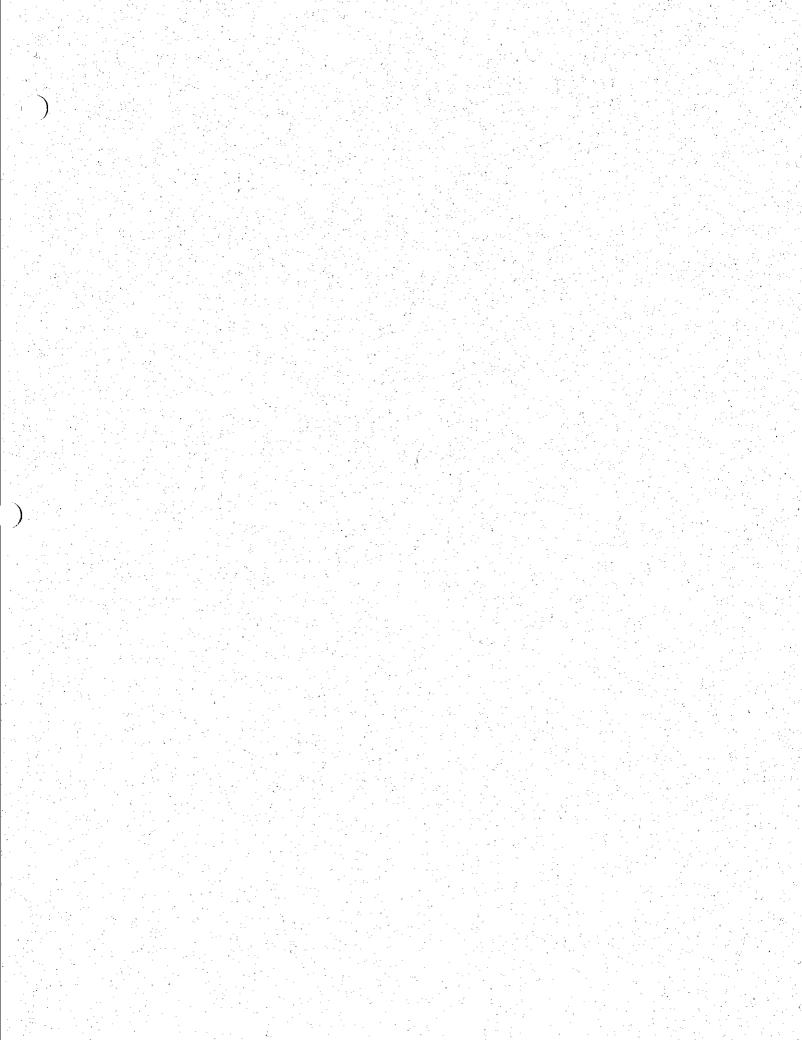
(mm)

		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	<u> </u>
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	12 HOUR STD	1058357	6.33	1076608	8.42	888030	10.03
	UPPER LIMIT	2116714	6.83	2153216	8.92	1776060	10.53
	LOWER LIMIT	529179	\$.83	538304	7.92	444015	9.53
	EPA SAMPLE NO.						/
01	SBLK01	917403	6.35	873920	8.48	874014	10.09
02	SLCS01	991138	6.32	1005169	8.32	938771	9.89
03	SB-314-8DUP	878680	6.33	831610	8.42	848418	10.02
)4	SB-324-8	902777	6.32	874617	8.38	889886	9.97
٦5	SB-044-8	886443	6.31	835485	8.33	861742	9.91
کی۔	SB-348-12DUP	895110	6.31	843130	8.29	862936	9.86
07	SB-314-8	916380	6.32	875227	8.36	907486	9.95
8	SB-0412-16	857754	6.31	818572	8.31	842037	9.88
9	SB-074-8	839889	6.30	774780	8.26	794605	9.83
.0	SB-348-12	863902	6.32	825171	8.40	840228	10.00
.1	SB-334-8	893872	6.31	840687	8.34	864744	9.92
.2	SB-290-4	922194	6.31	924382	8.31	938257	9.89
.3	SB-184-8	924570	6.32	930198	8.40	965736	10.00
.4	SB-204-8	986433	6.32	1021652	8.36	1002760	9.94
5	SB-034-8	894054	6.31	900056	8.30	915785	9.88

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12


AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.



#### DATA USABILITY SUMMARY REPORT

for

THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG: S3409 Sampled 6/29/04

SOIL SAMPLES for PCB

SB13 4-8 (S3409-01)

#### DATA ASSESSMENT

A PCB data package containing analytical results for one soil sample was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8082, addressed Aroclors 1016, 1221, 1232, 1242, 1248, 1254 and 1260. Laboratory data was evaluated according to the quality assurance quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000, and the cited method. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-24, Rev 1, June 1999, Standard Operating Procedure for the Validation of Organic Data Acquired Using SW-846 Method 8260B (Rev 2, Dec 1996) was used as a technical reference.

The results reported from SB13 4-8 have been qualified as estimations because the holding time limitation prior to extraction was grossly exceeded.

#### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible completely usable in its present form. Results that should be interpreted as estimations have been flagged "J" or "UJ". A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly, DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin Date: 10/18/04

#### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved, or are not analyzed within established holding times, may no longer be considered representative. Holding times are calculated from the time of sample receipt (VTSR). Samples must remain chilled to 4°C from the time of collection. Extractions must begin within 5 days of receipt. Analyses must be completed within 40 days of extraction. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a matrix spike, matrix spike duplicate, and a rinsate blank.

This sample delivery group contained one soil sample. The sample was collected from the Former Stillwater Boiler House site on 29Jun04 and shipped to the laboratory, via FedEx, on 01Jul04. The shipment arrived, intact, the following morning.

It is noted that the laboratory provided no documentation to indicate that the samples were properly chilled at the time of receipt. Although data has not been qualified due to this omission, it should be noted that such errors seriously limit the defensibility of reported data.

SB13 4-8 was held in the laboratory for 12 days prior to being extracted on 14Jul04. The sample was analyzed on 28Jul04. The sample was diluted and reanalyzed on 29Jul04 to obtain an Aroclor 1260 measurement within the range of calibration. All data reported from SB13 4-8 has been qualified as an estimation because the holding time prior to extraction was grossly exceeded.

AR1260 was detected in SB13 4-8 at a concentration that exceeded the range of calibration. The sample was reanalyzed on 29Jul04 to obtain a result within the calibration range. The AR1260 concentrations obtained from the analytical column and the verification column differed by only 4% during the original analysis. The chromatographic peak pattern provided a conclusive identification on both columns. Although the diluted sample produced results from both columns that differed by 27%, the concentrations reported from the original and diluted sample were in close agreement.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank. Any sample concentration less than 5 times the level determined in a blank must be qualified.

One method blank was processed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination.

#### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, Quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed 27Jul04. Standards of 50, 250, 500, 750 and 1000  $\mu g/l$  were included for five congeners each of AR1016 and AR1260. A single mid-range standard was run for the remaining Aroclors. Each congener curve demonstrated an acceptable degree of linearity on both the analytical column and the verification column.

Calibration verifications bracketed the analysis of program samples. Each CCV of AR1016 and AR1260 demonstrated an acceptable level of instrument stability.

#### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared. The tetrachloro-m-xylene and decachlorobipheyl additions to each program sample produced acceptable recoveries, between 97% and 122%. Every recovery was well within the ASP range of acceptance, 30%-150%.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte concentrations
to a sample, prior to analysis. Analyte recoveries provide an
indication of laboratory accuracy. The analysis of a duplicate spiked
aliquot provides a measurement of precision.

A sample from an unrelated delivery group was selected for matrix spiking. Aroclors 1016 and 1260 were added to two portions of this sample. Recoveries between 54% and 77% were reported. Although the lowest recovery fell outside the laboratory's range of acceptance, data has been left unqualified. This performance, alone, does not warrant data qualifications.

A spiked blank (LCS) was also extracted and analyzed with this group of samples. This LCS produced acceptable recoveries of AR1016 and AR1260 (87%-85%).

#### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicates were not included in this group of samples.

SUMMARY OF QUALIFIED DATA

Former Stillwater Boiler House site

HOLD TIME

ALL J/UJ SB13 4-8 (S3409-01)

#### **PCB**

SDG No.: \$3409

Client:

Chazen Companies

Date Received: Matrix: File ID:	7/2/2004 SOIL 3PS0130.D
File ID:	3PS0130.D
Instrument ID:	ECD3
Analytical Run ID:	3PS072704
Associated Blank:	PB16220B
Extract Vol:	5000

Parameter	CAS Number	Concentration	C	RDL.	MDL	Units
TARGETS				<del></del>		
AROCLOR 1016	12674-11-2	< 6.2	· & \	20	6.2	ug/Kg
AROCLOR 1221	11104-28-2	< 4.2	10)	20	4.2	ug/Kg
AROCLOR 1232	11141-16-5	< 2.9	M SUJ	20	. 2.9	ug/Kg
AROCLOR 1242	53469-21-9	< 3.7	x) ( -	20	3.7	ug/Kg
AROCLOR 1248	12672-29-6	< 4.3	X	20	4.3	ug/Kg
AROCLOR 1254	11097-69-1	< 1.6	( اور	20	1.6	ug/Kg
Aroclor 1260	11096-82-5 48	30 <del>-460</del> D:	J 🗷	20	3.5	ug/Kg
SURROGATES						
Tetrachloro-m-xylene	877-09-8	20,49	102 %	50 - 132		SPK: 20
Decachlorobiphenyl	2051-24-3	19.44	97 %	58 - 125		SPK: 20

M

#### PCB

SDG No.: \$3409

Client:

Chazen Companies

Date Received:	7/2/2004
Matrix:	SOIL
File ID:	3PS015LD
Instrument ID:	ECD3
Analytical Run ID:	3PS072704
Associated Blank:	PB16220B
Extract Vol:	5000
	Analytical Run ID: Associated Blank:

Parameter	CAS Number	Concentration	С	RÐL	MDL	Units
TARGETS	<del></del>		<del> </del>	·····		
AROCLOR 1016	12674-11-2	< 62	UD	200	62	ugakg
AROCLOR 1221	11104-28-2	< 42		200	42	ug/Kg
AROCLOR 1232	11141-16-5	< 29 5°C	TUD \	200	29.	ug/Kg
AROCLOR 1242	53469-21-9	< 37	(UD	200	37	ug/K.g
AROCLOR 1248	12672-29-6	< 43	TUD 5'	200	43	ug/K.g
AROCLOR 1254	11097-69-1	16 0 V	UD'	200	16	ug/Kg
AROCLOR 1260	11096-82-5	480	DP	200	35	ug/Kg
SURROGATES		<b>A</b> A	$\sim$			
Tetrachloro-m-xylene	877-09-8	24.5	<b>D</b> 2%	50 - 132		SPK: 20
Decachlorobiphenyl	2051-24-3	22.6	113 %	58 - 125		SPK: 20

M

#### Sucrogate Summary SW-846

SDG No.:

S3409

Client:

Chazen Companies

Analytical Method:

EPA SW-846 8082

				<del></del>			Lin	its
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery	Qual	Low	High
PB16220B	PB16220B	Tetrachloro-m-xylene	20	12.71	64		50,00	132.00
		Decachlorobiphenyl	20	14.63	73		58.00	125.00
PB16220BS	PB16220BS	Tetrachloro-m-xylene	20	15.7	78		50.00	132.00
		Decachlorobiphenyl	20	17.58	88		58.00	125.00
S3409-01	SB-134-8	Tetrachloro-m-xylene	20	20.49	102 🗸		50.00	132.00
		Decachlorobiphenyl	20	19.44	97 🗸	•	58.00	125.00
S3417-07MS	S3417-07MS	Tetrachloro-m-xylene	20	13.76	69		50.00	132.00
		Decachlorobiphenyl	20	15.8	79		58.00	125.00
S3417-07MSD	S3417-07MSD	Tetrachloro-m-xylene	20	13.29	66		50.00	132.00
		Decachlorobiphenyl	20	15.71	79		58.00	125.00
S3409-01DL	SB-134-8DL	Tetrachloro-m-xylene	20	24.5	122 🗸		50.00	132.00
		Decachlorobiphenyl	20	22.6	113 🗸		58.00	125.00

#### Chemtech

#### Matrix Spike/Matrix Spike Duplicate Summary SW-846

SDG No.:

S3409

Client:

Chazen Companies

Analytical Method:

EPA SW-846 8082

Analytical Metho	g: EPA SW-846 8082		Sample					Limits	
Lab Sample ID	Parameter	Spike	Result	Result	Rec RPI	Qual	Low	High	RPD
Client Sample ID:	S3417-07MS								
S3417-07MS	AROCLOR 1016	65.6	14.36	50	54	*	55	128	
	AROCLOR 1260	65.6	. 0	49	75		58	140	
Client Sample ID:	S3417-07MSD								
S3417-07MSD	AROCLOR 1016	66.4	14.36	53	58	7	55	128	20
	AROCLOR 1260	66.4	0	51	77	3	58	140	20

#### Chemtech

#### Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

S3409

Client:

Chazen Companies

Analytical Method:

EPA SW-846 8082

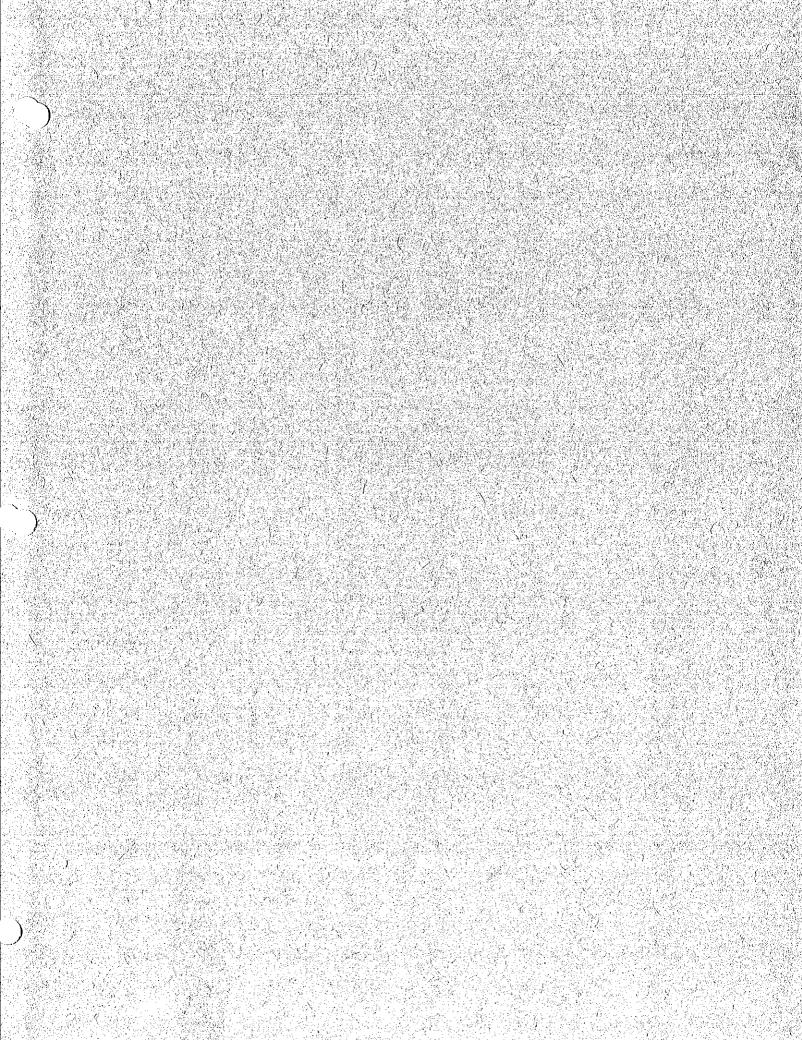
Attach from the	22712011		,		<u> </u>		Limits	
Lab Sample ID	Parameter	Spike	Result	Rec RPD	Qual	Low	High	RPD
PB16220BS	AROCLOR 1016	65.6	57	87		70	130	<del></del>
	AROCLOR 1260	65,6	56	85		70	130	

#### PESTICIDE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

<del></del>	
]	PB16220B

Lab Name:	Chemtech			Contract:	Chaze	n Companies	
Lab Code:	CTECH	Case No.:	83409	SAS No.: S	3409	SDG No.:	\$3409
Lab Sample I	D: PB16220B			Lab File ID:	3PS	0128.D	
Matrix: (sc	oil/water) SOII	ı		Extraction: (	(Type)	SONC	
Sulfur Clean	nup: (Y/N) N			Date Extracte	ed: 7/	14/2004	
Date Analyze	ad (1): 7/28/20	004		Date Analyzed	1 (2):	7/28/2004	
Time Analyze	ed (1): <u>18:24</u>			Time Analyzed	i (2):	18:24	
Instrument I	D (1): ECD3			Instrument ID	(2):	ECD3	
GC Column (1	)· MTY_5	<b>፣ኩ</b> ・ በ 53	(mm)	GC Calema (2)	. Letter	ታ የማለማ ተ	D. O. ED. (


#### THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED 1	DATE ANALYZED 2
PB16220BS	PB16220BS	3PS0129.D	7/28/2004	7/28/2004
SB-134-8	53409-01	3PS0130.D	7/28/2004	7/28/2004
S3417-07MS	S3417-07MS	3PS0132.D	7/28/2004	7/28/2004
S3417-07MSD	S3417-07MSD	3PS0133.D	7/28/2004	7/28/2004
SB-134-8DL	S3409-01DL	3PS0151.D	7/29/2004	7/29/2004

COMMENTS:	

### DATAVAL, INC. Environmental Data Validation

JAMES B. BALDWIN, JR. Phone/Fax (607) 642-5460 578 Endwell, NY 13760



#### DATA USABILITY SUMMARY REPORT

for

#### THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

## FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3529 Sampled 7/8/04

#### AQUEOUS SAMPLES for METALS

MW-1	(S3529-01)
MW-6	(S3529-02)
MW-2	(S3529-03)
MW-3	(S3529-04)
MW-4	(S3529-05)
MW-5	(S3529-06)
MW-3DUP	(S3529-08)

#### DATA ASSESSMENT

An inorganics data package containing analytical results for seven aqueous samples was received from The Chazen Companies on The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses were performed using SW-846 methods 6010 and 7471. Laboratory data was evaluated according to the quality assurance / quality control requirements of the York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region Functional Guidelines (SOW HW-2, Rev. 11, Jan. ΙI Evaluation of Metals Data for the Contract Laboratory Program) was used as a technical reference.

The selenium concentrations from MW-6 and MW-2, and the thallium results from each sample have been qualified as estimations due to poor CRDL performance.

Sodium and potassium results have been qualified as estimations due to poor serial dilution results.

#### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed strict QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data However, DATAVAL, Inc. does not warrant interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 10/18/04

#### SAMPLE HISTORY

Sample holding times are calculated between the time of laboratory receipt (VTSR) and the time of analysis. Mercury samples must be analyzed within 26 days of receipt; the remaining metals within 180 days. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a laboratory split duplicate, a matrix spiked sample, and a rinsate blank.

This sample delivery group contained seven aqueous samples. The samples were collected from the Former Stillwater Boiler House site 08Jul04. They were shipped to the laboratory, via FedEx on the day of collection. They were received, intact, on 10Jul04.

Sample preservation was not documented on the Chain of Custody. However, checks made at the time of analysis indicated that each sample aliquot had been stabilized at the proper pH.

The samples were digested for ICP metals and mercury on 15Jul04. Mercury determinations were completed on 15Jul04. ICP analyses were finished on 16Jul04. Program holding time limitations were satisfied.

#### CALIBRATIONS

Calibration curves are constructed, using certified materials, to define the linear range of each analytical instrument. Beyond this range, measurements cannot be made with confidence. The calibration curve is immediately tested by analyzing an initial calibration verification standard (ICV). Continuing verifications (CCV) must bracket each group of up to ten samples. ICV and CCV recoveries must meet established criteria.

ICP calibrations were performed with a blank and three standards. Calibrations for mercury were performed with a blank and five standards. The lowest mercury standard equaled CRDL. The mercury calibration curve demonstrated an acceptable degree of linearity.

Each instrument calibration was immediately verified by the analysis of an ICV standard. Continuing calibration checks were made following each group of 10 samples. Each calibration check that was used to bracket samples from this program satisfied the program acceptance criteria.

CONTRACT REQUIED DETECTION LIMIT STANARDS (CRDL)

To verify instrument linearity near CRDL, an ICP standard at a

concentration of twice CRDL (CRI) is analyzed at the beginning and end of each analytical sequence. A standard equaling CRDL (CRA) must be included in each atomic adsorption sequence. CRDL standards must produce a recovery between 80% and 120%.

The CRDL results reported by the laboratory included unacceptable recoveries of selenium (124%) and thallium (76%). Based on these indications of bias, the selenium concentrations reported from MW-2 and MW-6, and the negative thallium result from each program sample has been qualified as an estimation.

It is noted that the laboratory did not analyze CRDL standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this discrepancy. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Preparation blanks are carried through the digestion process with each group of samples to evaluate general laboratory technique. Calibration blanks are run periodically to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

An initial blank (ICB) was analyzed following the calibration in each analytical sequence. Additional blanks were analyzed after every ten samples (CCB) and at the end of each sequence. Preparation blanks were digested, prior to analysis, with each group of samples. Each laboratory prepared blank that was associated with samples from this program was free of analyte contamination exceeding CRDL.

#### INTERFERENCE CHECK SAMPLE (ICS)

ICS standards are analyzed at the beginning and end of each ICP analysis sequence to verify background and inter-element correction factors. The recoveries of specified analytes are measured in the presence of interfering concentrations of aluminum, calcium, magnesium and iron.

Interference check standards, ICSA and ICSAB, were included in each ICP analysis sequence. Each interference check standard that was used to bracket samples from this program produced recoveries within the range of acceptance, 80% - 120%.

It is noted that the laboratory did not analyze ICS standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this discrepancy. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

#### PREDIGESTION SPIKE

The recovery of spike concentrations added to samples prior to digestion and analysis demonstrates measurement bias caused by sample matrix effects. Predigestion spikes must be recovered within control limits of 75% - 125%.

MW-3 was selected for matrix spiking. The required analytes were added to two portions of this sample. With the exception of calcium and sodium, each of these additions was recovered successfully. The concentrations of calcium and sodium in the unspiked aliquot of MW-3 exceeded four times the level of the spike. The recoveries produced by this pair of metals should not be considered. Data qualifications are not required.

#### **DUPLICATES**

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Laboratory split duplicates of MW-3 were processed with this group of samples. The concentrations obtained from this duplicate pair differed by less than 20% RPD or CRDL. An acceptable level of measurement precision was demonstrated.

Field split duplicates of MW-3 were also included in this delivery group. Each analyte that was present in MW-3, at a concentration above CRDL, produced a result in the duplicate sample that differed by less than 50% RPD. The program requirement was satisfied.

#### LABORATORY CONTROL STANDARD

Laboratory control samples are prepared by adding analytes to clean sand or reagent water. Analyte concentrations are then determined without interferences caused by sample matrix effects.

An aqueous LCS standard was digested and analyzed with this group of samples. Acceptable recoveries were reported for each targeted analyte.

#### FICP SERIAL SILUTION SAMPLE

Possible matrix effects are verified by the process of serial 1:5 dilutions. Samples are diluted to reduce contributions that might bias measurements. The original sample result, and the corrected concentration of the diluted sample compared. Sample data is qualified if the original concentrations are not recovered within 10%. Analytes with initial concentrations below 50 times IDL are not considered.

MW-3 was prepared as a serial dilution. Of the analytes present in the undiluted aliquot of this sample, at a concentration exceeding 50 times IDL, only potassium (34%) and sodium (17%) differed from the diluted result by more than 10%. Sodium and potassium results have been qualified as estimations.

# SUMMARY OF QUALIFIED DATA

Sampled 08Jul04

Former Stillwater Boiler House site

SER DILUTE SODIUM	6120003	1550007	155000J	1290007	63100J	1170003	1070007
SER DILUTE POTASSIUM	124007	13300J	€8901	16200J	6230J	3480J	13700J
CRDL THALLIUM	UJ	UJ	UJ	UJ	UJ	UJ	បា
CRDL SELENIUM		5.897	5.79J				
	(\$3529-01)	(83529-02)	(\$3529-03)	(\$3529-04)	(83529-05)	(83529-06)	M-3DUP (S3529-08)
	MW-1	MM-6	MM-2	MW-3	MW-4	MM-5	MW-3DU

#### Metals

#### -1-INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3529	Method Type:	SW846	

Sample ID: S3529-01 Client ID: MW-1

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3529 SAS No.: S3529

Matrix: WATER Date Received: 7/10/2004 Level: LOW

% Solids:

CAS No.	Analyte	Concentration	Units	С	Qual	М	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	429	ug/L			P	180	P1	P107154
7440-36-0	Antimony	6.600	ug/L	U		P	6.600	P1	P107154
7440-38-2	Arsenic	4.840	ug/L	U		P	4.840	P1	P107154
7440-39-3	Barium	145	ug/L	J		P	11.0	P1	P107154
7440-41-7	Beryllium	1.060	ug/L	U		P	1.060	P1	P107154
<i>)</i> 7440-43-9	Cadmium	0.994	ug/L	U		P	0.994	P1	P107154
7440-70-2	Calcium	214000	ug/L			P	1740	P1 ·	P107154
7440-47-3	Chromium	1.370	ug/L	J		P	1.220	· P1	P107154
7440-48-4	Cobalt	2.380	ug/L	U		P	2.380	P1	P107154
7440-50-8	Copper	1.460	ug/L	J		P	0.739	P1	P107154
7439-89-6	Iron	672	ug/L			P	29.0	P1	P107154
7439-92-1	Lead	4.540	ug/L	J		P	1.790	P1	P107154
7439-95-4	Magnesium	41500	ug/L			P	254	P1	P107154
7439-96-5	Manganese	315	ug/L			P	0.195	P1	P107154
7439-97-6	Mercury	0.06	ug/L	J		CV	0.03	CV2	071504B
7440-02-0	Nickel	5.550	ug/L	U		P	5.550	P1	P107154
7440-09-7	Potassium	12400	ug/L	I		P	51.0	P1	P107154
7782-49-2	Selenium	5.240	ug/L	U		P	5.240	P1	P107154
7440-22-4	Silver	3.380	ug/L	U		P	3.380	Pl	P107154
7440-23-5	Sodium	612000	ug/L	الحصان الحمان	ſ	P	189	P1	P107154
7440-28-0	Thallium	5.780	ug/L	J8/ (	1つ	P	5.780	P1	P107154
7440-62-2	Vanadium	1.860	ug/L	U		P	1.860	P1	P107154
7440-66-6	Zinc	26.6	ug/L			P	8.110	P1	P107154



#### Metals

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies		SDG No.: S	3529	Method Type: SW846			
Color Before:	COLORLESS COLORLESS	Clarity Before:	CLEAR	Texture: Artifacts:			
Comments: _		· · · · · · · · · · · · · · · · · · ·					

#### Metals

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

lient: Chazen Companies	SDG No.: S3529		Method Type: SW846
Sample ID: S3529-02		Client ID: MW-6	
Contract: Chazen Companie	Lab Code: CHEMED	Case No.: S3529	SAS No.: S3529
Matrix: WATER	Date Received: 7/10/2004	Level: LOW	

% Solids:

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	43400	ug/L			P	180	P1	P107154
7440-36-0	Antimony	6.600	ug/L	U		P	6.600	P1	P107154
7440-38-2	Arsenic	33.3	ug/L			P	4.840	P1	P107154
7440-39-3	Barium	329	ug/L			P	11.0	<b>P</b> 1	P107154
7440-41-7	Beryllium	2.650	ug/L	J		P	1.060	P1	P107154
h440-43-9	Cadmium	3.340	ug/L	J		P	0.994	P1	P107154
7440-70-2	Calcium	168000	ug/L			P	1740	<b>P</b> 1	P107154
7440-47-3	Chromium	54.0	ug/L			P	1.220	P1	P107154
7440-48-4	Cobalt	42.7	ug/L	J		P	2.380	P1	P107154
7440-50-8	Copper	147	ug/L			P	0.739	P1	P107154
7439-89-6	Iron	82800	ug/L			P	29.0	P1	P107154
7439-92-1	Lead	78.3	ug/L			P	1.790	P1	P107154
7439-95-4	Magnesium	41600	ug/L			P	254	PI	P107154
7439-96-5	Manganese	2120	ug/L			P	0.195	P1	P107154
7439 <b>-</b> 97-6	Mercury	0.24	ug/L			CV	0.03	CV2	071504B
7440-02-0	Nickel	103	ug/L			P	5.550	P1	P107154
7440-09-7	Potassium	13300	ug/L	J		P	51.0	P1	P107154
7782-49-2	Selenium	5.890	ug/L	11		P	5.240	P1	P107154
7440-22-4	Silver	3.380	ug/L	U		P	3.380	P1	P107154
7440-23-5	Sodium	155000	ug/L	J		P	189	P1	P107154
7440-28-0	Thallium	5.780	ug/L	JO U	丁 -	P	5.780	P1	P107154
7440-62-2	Vanadium	56.0	ug/L			P	1.860	P1	P107154
7440-66-6	Zinc	313	ug/L			P	8.110	P1	P107154

2003

### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies		SDG No.: S	3529	Method Type: SW846		
Color Before: Color After:	BROWN YELLOW	Clarity Before:	CLOUDY	Texture:		
Comments: _		· · · · · · · · · · · · · · · · · · ·				

# - 1 - INORGANIC ANALYSIS DATA PACKAGE

ient: Chazen Companies	SDG No.: S3529	]	Method Type: SW846
Sample ID: S3529-03		Client ID: MW-2	
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: \$3529	SAS No.: S3529
Matrix: WATER % Solids:	Date Received: 7/10/2004	Level: LOW	

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	1830	ug/L			P	180	P1	P107154
7440-36-0	Antimony	6.600	ug/L	U		P	6.600	P1	P107154
7440-38-2	Arsenic	4.840	ug/L	U		P	4.840	P1	P107154
7440-39-3	Barium	62.5	ug/L	J	-	P	11.0	P1	P107154
7440-41-7	Beryllium	1.060	ug/L	U		P	1.060	P1	P107154
, 1440-43-9	Cadmium	0.994	ug/L	U		P	0.994	P1	P107154
7440-70-2	Calcium	92300	ug/L			P	1740	P1	P107154
7440-47-3	Chromium	1.840	ug/L	J		P	1.220	P1	P107154
7440-48-4	Cobalt	2.380	ug/L	U		P	2.380	P1	P107154
7440-50-8	Copper	40.4	ug/L			P	0.739	P1	P107154
7439-89-6	Iron	3610	ug/L			P	29.0	P1 ·	P107154
7439-92-1	Lead	18.4	ug/L			P	1.790	P1	P107154
7439-95-4	Magnesium	13800	ug/L			P	254	P1	P107154
7439-96-5	Manganese	347	ug/L			P	0.195	P1	P107154
7439-97-6	Mercury	0.03	ug/L	U		CV	0.03	CV2	071504B
7440-02-0	Nickel	5.550	ug/L	U		Ρ.	5.550	<b>P</b> 1	P107154
7440-09-7	Potassium	6890	ug/L	J		. P	51.0	P1	P107154
7782-49-2	Selenium	5.790	ug/L	ブゴ		P	5.240	P1 .	P107154
7440-22-4	Silver	3.380	ug/L	U		P	3.380	P1	P107154
7440-23-5	Sodium	155000	ug/L	J		P	189	P1	P107154
7440-28-0	Thallium	5.780	ug/L	メリ	つ	P	5.780	P1	P107154
7440-62-2	Vanadium	1.860	ug/L	U		P	1.860	P1	P107154
7440-66-6	Zinc	38.8	ug/L			P	8.110	P1 ·	P107154

M3

# - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies		SDG No.: 83529	Method Type: SW846
Color Before:	COLORLESS COLORLESS	Clarity Before: CLEAR Clarity After: CLEAR	Texture: Artifacts:
Comments:			

- 1 -INORGANIC ANALYSIS DATA PACKAGE

Chazen Companies	SDG No.: \$3529	Meth	Method Type: SW846		
Sample ID: S3529-04		Client ID: MW-3		_ 	
Contract: Chazen Companies	Lab Code: CHEMED	Case No.: S3529	SAS No.: S3529	_	
Matrix: WATER	Date Received: 7/10/2004	Level: LOW			

% Solids:

CAS No.	Analyte	Concentration	Units	C	Qual	М	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	643	ug/L			P	180	P1	P107154
7440-36-0	Antimony	6.600	ug/L	U		P	6.600	P1	P107154
7440-38-2	Arsenic	4.840	ug/L	U		P	4.840	P1	P107154
7440-39-3	Barium	108	ug/L	J		P	11.0	P1	P107154
7440-41 7	Beryllium	1.060	ug/L	U		P	1.060	P1	P107154
40-43-9	Cadmium	0.994	ug/L	U		P	0.994	P1	P107154
7440-70-2	Calcium	143000	ug/L			P	1740	P1	P107154
7440-47-3	Chromium	1.620	ug/L	J	•	P	1.220	P1	P107154
7440-48-4	Cobalt	2.380	ug/L	U		P	2.380	P1	P107154
7440-50-8	Copper	26.5	ug/L			P	0.739	P1	P107154
7439-89-6	Iron	1090	ug/L			P	29.0	P1	P107154
7439-92-1	Lead	14.2	ug/L			P	1.790	P1	P107154
7439-95-4	Magnesium	15500	ug/L			P	254	P1	P107154
7439-96-5	Manganese	46.3	ug/L			P	0.195	P1	P107154
7439-97-6	Mercury	0.03	ug/L	U		CV	0.03	CV2	071504B
7440-02-0	Nickel	5.550	ug/L	U		p	5.550	P1	P107154
<b>7440-</b> 09-7	Potassium	16200	ug/L	J		P	51.0	Pi	P107154
7782-49-2	Selenium	5.240	ug/L	U		P	5.240	P1	P107154
7440-22-4	Silver	3.380	ug/L	U		P	3.380	P1	P107154
7440 <b>-</b> 23-5	Sodium	129000	ug/L	J		P	189	P1	P107154
7440-28-0	Thallium	5.780	ug/L	NO	つ	P	5.780	P1	P107154
7440-62-2	Vanadium	1.900	ug/L	J		P	1.860	P1	P107154
7440-66-6	Zinc	42.3	ug/L	•		P	8.110	P1	P107154

M

## - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies		SDG No.: S3	3529	Method Type: SW846		
Color Before:	COLORLESS COLORLESS	Clarity Before:	CLEAR	Texture:		
Comments: _				·		

# - 1 - INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3529	 Method Type:	SW846

Sample ID: S3529-05 Client ID: MW-4

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3529 SAS No.: S3529

Matrix: WATER Date Received: 7/10/2004 Level: LOW

% Solids:

CAS No.	Analyte	Concentration	Units	С	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	532	ug/L			P	180	P1	P107154
7440-36-0	Antimony	6.600	ug/L	U		P	6.600	P1	P107154
7440-38-2	Arsenic	4.840	ug/L	U		P	4.840	P1	P107154
7440-39-3	Barium	67.5	ug/L	J	-	P	11.0	P1	P107154
7440-41-7	Beryllium	1.060	ug/L	U		P	1.060	P1	P107154
)440-43-9	Cadmium	0.994	ug/L	U		P	0.994	P1	P107154
7440-70-2	Calcium	90400	ug/L			P	1740	P1	P107154
7440-47-3	Chromium	1.370	ug/L	J		P	1.220	P1	P107154
7440-48-4	Cobalt	2.380	ug/L	U		P	2.380	P1	P107154
7440-50-8	Copper	16.0	ug/L	J		P	0.739	P1	P107154
7439-89-6	Iron	723	ug/L			P	29.0	P1	P107154
7439-92-1	Lead	11.7	ug/L			P	1.790	P1	P107154
7439-95-4	Magnesium	13400	ug/L			P	254	P1	P107154
7439-96-5	Manganese	607	ug/L			P	0.195	P1	P107154
<b>7</b> 439-97-6	Mercury	0.08	ug/L	J		CV	0.03	CV2	071504B
7440-02-0	Nickel	5.550	ug/L	U		P	5.550	Pi	P107154
7440-09-7	Potassium	6230	ug/L	J		P	51.0	P1	P107154
7782-49-2	Selenium	5.240	ug/L	U		P	5.240	P1	P107154
7440-22-4	Silver	3.380	ug/L	U		P	3.380	P1	P107154
7440-23-5	Sodium	63100	ug/L	J		P	189	P1	P107154
7440-28-0	Thallium	5.780	ug/L	ما محقر	ク	P	5.780	P1	P107154
7440-62-2	Vanadium	1.900	ug/L	J		P	1.860	P1	P107154
7440-66-6	Zinc	44.9	ug/L			P	8.110	P1	P107154

Y/S

# - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies		SDG No.: \$3529	Method Type: SW846
Color Before:	COLORLESS COLORLESS	Clarity Before: CLEAR Clarity After: CLEAR	
Comments: _			

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Chazen Companies		SDG No.: S3529	M	Method Type: SW846		
Samp	ole ID: S3529-06		Client ID: MW-5			
Conti	ract: Chazen Companies	Lab Code: CHEMED	Case No.: S3529	SAS No.: \$3529		
Matri		Date Received: 7/10/2004	Level: LOW			

Analytical Run CAS No.  $\mathbf{C}$ DLAnalyte Concentration Units Qual M Instrument ID P 7429-90-5 11200 Aluminum ug/L 180 P1 P107154 7440-36-0 Antimony 6.600 ug/L U P 6.600 P1 P107154 7440-38-2 Arsenic P 10.1 ug/L 4.840 P1 P107154 7440-39-3 Barium 129 ug/L J P 11.0 P1 P107154 7440-41-7 Beryllium 1.460 ug/L J P 1.060 P1 P107154 }440-43-9 Cadmium 0.994 ug/L U P 0.994 PI P107154 7440-70-2 Calcium 138000 ug/L P 1740 P1 P107154 7440-47-3 Chromium 14.6 ug/L P 1.220 P1 P107154 7440-48-4 Cobalt 7.820 P ug/L J 2.380 ₽1 P107154 7440-50-8 Copper 33.5 ug/L P 0.739 **P1** P107154 7439-89-6 19900 Iron ug/L P 29.0 P107154 PI 7439-92-1 38.1 P 1.790 Lead ug/L P1 P107154 7439-95-4 Magnesium 49400 ug/L P 254 P1 P107154 7439-96-5 Manganese 872 ug/L P 0.195 **P1** P107154 7439-97-6 Mercury 0.18 ug/L J CV 0.03 CV2 071504B 7440-02-0 Nickel P 5.550 23.6 ug/L **P**1 P107154 7440-09-7 Potassium 3480 ug/L P 51.0 P1 P107154 7782-49-2 Selenium 5.240 U P P107154 ug/L 5.240 **P1** ug/L 7440-22-4 Silver 3.380 P 3.380 P107154 P1 I ug/L 7440-23-5 Sodium 117000 P 189 Р1 P107154 X UD ug/L 7440-28-0 Thallium 5.780 P 5.780 **P**1 P107154 7440-62-2 Vanadium 16.2 ug/L P 1.860 P1 P107154 7440-66-6 Zinc 128 p 8.110 P1 P107154 ug/L

NB

# - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chazen Companies		SDG No.: S	3529	Method Type: SW846		
Color Before:	BROWN	Clarity Before: Clarity After:	CLOUDY CLEAR	Texture: Artifacts:		
Comments: _						

#### - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client:	Chazen Companies	SDG No.:	S3529	Method Type	: SW84€	5
	•		_			•

Sample ID: S3529-08 Client ID: MW-3DUP

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3529 SAS No.: S3529

Matrix: WATER Date Received: 7/10/2004 Level: LOW

% Solids:

CAS No.	Analyte	Concentration	Units	C	Qual	M	DL	Instrument ID	Analytical Run
7429-90-5	Aluminum	972	ug/L			P	180	- P1	P107154
7440-36-0	Antimony	6.600	ug/L	U		P	6.600	P1	P107154
7440-38-2	Arsenic	5.840	ug/L	J		P	4.840	P1	P107154
7440-39-3	Barium	98.9	ug/L	J		P	11.0	P1	P107154
7440-41-7	Beryllium	1.060	ug/L	U		P	1.060	P1	P107154
, 440-43-9	Cadmium	0.994	ug/L	U		P	0.994	P1	P107154
7440-70-2	Calcium	123000	ug/L			P	1740	P1	P107154
7440-47-3	Chromium	1.820	ug/L	J		. Р	1.220	P1	P107154
7440-48-4	Cobalt	2.380	ug/L	U		P	2.380	P1	P107154
7440 <b>-</b> 50-8	Copper	40.1	ug/L			P	0.739	P1 .	P107154
7439-89-6	Iron	1790	ug/L			P	29.0	P1	P107154
7439-92-1	Lead	21.1	ug/L			P	1.790	P1	P107154
7439-95-4	Magnesium	13600	ug/L			P	254	P1	P107154
7439 <b>-</b> 96-5	Manganese	59.7	ug/L			P	0.195	P1	P107154
7439 <b>-</b> 97-6	Mercury	0.08	ug/L	J		CV	0.03	CV2	071504B
7440-02-0	Nickel	5.550	ug/L	U		P	5.550	P1	P107154
7440-09-7	Potassium	13700	ug/L	ゴ		P	51.0	P1 .	P107154
7782-49-2	Selenium	5.240	ug/L	U		P	5.240	P1	P107154
7440-22-4	Silver	3.380	ug/L	U		P	3.380	P1	P107154
7440-23-5	Sodium	107000	ug/L	J		P	189	P1	P107154
7440-28-0	Thallium	5.780	ug/L	ما تعر	<b>/</b> ]	P	5.780	P1	P107154
7440-62-2	Vanadium	1.940	ug/L	J		P	1.860	P1	P107154
7440-66-6	Zinc	51.4	ug/L			P	8.110	P1	P107154

 $\gamma\gamma\gamma$ 

# - 1 -INORGANIC ANALYSIS DATA PACKAGE

Client: Chaz	zen Companies	<b>SDG No.:</b> S3	3529	Method Type: SW846		
Color Before:	COLORLESS COLORLESS	Clarity Before: Clarity After:	CLOUDY CLEAR	Texture:		
Comments:		40.		····		

#### - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

**SAS No.:** S3529

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	. <b>M</b>	Analysis Date	Analysis Time	Run Number
ICV01									
	minum	2588.40	2482.0	104.3	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ant	imony	1026.93	992.0	103.5	90.0 - 110.0	` <b>P</b>	7/15/2004	10:04	P107154
Ars	enic	1004.36	996.0	100.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Bar	ium	540.48	502.0	107.7	90.0 - 110.0	P	7/15/2004	10:04	P107154
Ber	yllium	500.54	493.0	101.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Cad	mium	516.51	494.0	104.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Calc	eium	10464.50	10180.0	102.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Chr	omium	507.81	490.0	103.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Cob	alt	518.82	496.0	104.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Cop	per	507.36	490.0	103.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
/ Iron	L	4945.28	5107.0	96.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Lead	d	1023.10	996.0	102.7	90.0 - 110.0	P	7/15/2004	10:04	P107154
Mag	gnesium	6234.40	6003.0	103.9	90.0 - 110.0	P	7/15/2004	10:04	P107154
Mar	nganese	521.24	495.0	105.3	90.0 - 110.0	P	7/15/2004	10:04	P107154
Mer	cury	3.93	4.1	95.9	90.0 - 110.0	CV	7/15/2004	13:32	071504B
Nick	cel	515.40	492.0	104.8	90.0 - 110.0	P	7/15/2004	10:04	P107154
Pota	ssium ,	9047.87	10008.0	90.4	90.0 - 110.0	P	7/15/2004	10:04	P107154
Sele	nium	1024.40	1005.0	101.9	90.0 - 110.0	P	7/15/2004	10:04	P107154
Silve	er	517.50	495.0	104.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Sodi	ium	9456.94	10039.0	94.2	90.0 - 110.0	P	7/15/2004	10:04	P107154
Thal	llium	1021.64	1027.0	99.5	90.0 - 110.0	P	7/15/2004	10:04	P107154
Van	adium	488.99	501.0	97.6	90.0 - 110.0	P	7/15/2004	10:04	P107154
Zinc	;	1056.90	1000.0	105.7	90.0 - 110.0	P	7/15/2004	10:04	P107154

#### - 2a ~

#### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

Initial Calibration Source:

EPA-ICV

**Continuing Calibration Source:** 

_EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	.% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV36					/				
	minum	9762.80	10000.0	_{97.6} /	90.0 - 110.0	P	7/16/2004	03:15	P107154
Ant	imony	5057.06	5000.0	101.1	90.0 - 110.0	P	7/16/2004	03:15	P107154
Ars	enic	5265.08	5000.0	105.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
Bar	ium	10324.69	10000.0	103.2	90.0 - 110.0	P	7/16/2004	03:15	P107154
Ber	yllium	254.05	250.0	101.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
Cad	lmium	2582,99	2500.0	103.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
Calc	cium	25325.23	25000.0	101.3	90.0 - 110.0	P	7/16/2004	03:15	P107154
Chr	omium	972.22	1000.0	97.2	90.0 - 110.0	P	7/16/2004	03:15	P107154
Cob	alt	2425,44	2500.0	97.0	90.0 - 110.0	P	7/16/2004	03:15	P107154
, Cop	per	1177.69	1250.0	94.2	90.0 - 110.0	P	7/16/2004	03:15	P107154
) Iron	<u>L</u>	4637.71	5000.0	92.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
Lead	đ	4914.12	5000.0	98.3	90.0 - 110.0	. <b>P</b>	7/16/2004	03:15	P107154
Mag	gnesium	24496.46	25000.0	98.0	90.0 - 110.0	P	7/16/2004	03:15	P107154
. Mar	iganese	2408.75	2500.0	96.4	90.0 - 110.0	. Р	7/16/2004	03:15	P107154
Nicl	kel	2518.87	2500.0	100.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
Pota	ıssium	25710.20	25000.0	102.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
Sele	nium	5291.54	5000.0	105.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
Silv	er	1332.94	1250.0	106.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
Sodi	ium	26248.96	25000.0	105.0	90.0 - 110.0	P	7/16/2004	03:15	P107154
Tha	llium	5380.38	5000.0	107.6	90.0 - 110.0	P	7/16/2004	03:15	P107154
Van	adium	2369.13	2500.0	94.8	90.0 - 110.0	P	7/16/2004	03:15	P107154
Zinc	<b>;</b>	2503.02	2500.0	100.1	90.0 - 110.0	P	7/16/2004	03:15	P107154

### - 2a -

### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

_EPA-LV

Sample ID	Analyte	Result .ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV37					/				
Al	uminum	9593.74	10000.0	95.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ar	ntimony	4991.07	5000.0	99.8	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ar	senic	5192.98	5000.0	103.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ba	rium	10178.74	10000.0	101.8	90.0 - 110.0	P	7/16/2004	03:41	P107154
Be	ryllium	249.52	250.0	99.8	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ca	dmium	2539.92	2500.0	101.6	90.0 - 110.0	P	7/16/2004	03;41	P107154
Ca	leium	24860.61	25000.0	99.4	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ch	romium	954.38	1000.0	95.4	90.0 - 110.0	P	7/16/2004	03;41	P107154
Co	balt	2382.90	2500.0	95.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
∖ Co	pper	1157.37	1250.0	92.6	90.0 - 110.0	P	7/16/2004	03:41	P107154
) Iro	on	4515.42	5000.0	90.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
Lea	ad	4856.04	5000.0	97.1	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ma	agnesium	24065.13	25000.0	96.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
Ma	anganese	2363.52	2500.0	94.5	90.0 - 110.0	P	7/16/2004	03:41	P107154
Nic	ckel	2479.54	2500.0	99.2	90.0 - 110.0	P	7/16/2004	03:41	P107154
Pot	tassium	25293.12	25000.0	101.2	90.0 - 110.0	P	7/16/2004	03:41	P107154
Sel	lenium	5263.64	5000.0	105.3	90.0 - 110.0	P	7/16/2004	03:41	P107154
Sil	ver	1312.90	1250.0	105.0	90.0 - 110.0	P	7/16/2004	03:41	P107154
Soc	dium	25972.70	25000.0	103.9	90.0 - 110.0	P	7/16/2004	03:41	P107154
Tha	allium	5322.28	5000.0	106.4	90.0 - 110.0	P	7/16/2004	03:41	P107154
Var	nadium	2322.14	2500.0	92.9	90.0 - 110.0	Р.	7/16/2004	03:41	P107154
Zin	nc	2461.10	2500.0	98.4	90.0 - 110.0	P	7/16/2004	03:41	P107154

# - 2a -INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Chazen Companies

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

**Initial Calibration Source:** 

EPA-ICV

**Continuing Calibration Source:** 

EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV38				,	/				
	luminum	9601.94	10000.0	96.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
Α	ntimony	5001.62	5000.0	100.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
Α	rsenic	5248.07	5000.0	105.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
В	arium	10230.46	10000.0	102.3	90.0 - 110.0	P	7/16/2004	04:10	P107154
В	eryllium	252.16	250.0	100.9	90.0 - 110.0	P	7/16/2004	04:10	P107154
C	admium	2572.98	2500.0	102.9	90.0 - 110.0	P	7/16/2004	04:10	P107154
C	alcium	25103.04	25000.0	100.4	90.0 - 110.0	P	7/16/2004	04:10	P107154
C	hromium	961.18	1000.0	96.1	90.0 - 110.0	P	7/16/2004	04:10	P107154
C	obalt	2397.10	2500.0	95.9	90.0 - 110.0	P	7/16/2004	04:10	P107154
\ C	opper	1153.26	1250.0	92.3	90.0 - 110.0	P	7/16/2004	04:10	P107154
) Ir	on	4591.92	5000.0	91.8	90.0 - 110.0	P	7/16/2004	04:10	P107154
L	ead	4875.89	5000.0	97.5	90.0 - 110.0	P	7/16/2004	04:10	P107154
M	lagnesium .	24150.30	25000.0	96.6	90.0 - 110.0	P	7/16/2004	04:10	P107154
M	langanese	2374,12	2500.0	95.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
N	ickel	2502.68	2500.0	100.1	90.0 - 110.0	P	7/16/2004	04:10	P107154
Pe	otassium	25255.55	25000.0	101.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
S	elenium	5251.14	5000.0	105.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
Si	ilver	1321.64	1250.0	105.7	90.0 - 110.0	₽	7/16/2004	04:10	P107154
Se	odium	26038.23	25000.0	104.2	90.0 - 110.0	P	7/16/2004	04:10	P107154
T	hallium	5357.04	5000.0	107.1	90.0 - 110.0	P	7/16/2004	04:10	P107154
V	anadium	2324.23	2500.0	93.0	90.0 - 110.0	P	7/16/2004	04:10	P107154
Z	inc	2477.18	2500.0	99.1	90.0 - 110.0	P	7/16/2004	04:10	P107154

# Metals - 2b CRDL STANDARD FOR AA & ICP

Client: Chazen Companies	
--------------------------	--

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

AA CRDL Standard Source:

ICP CRDL Standard Source:

INOR-VEN

ample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	M	Analysis Date	Analysis Time	Run Number
CDY01					/				
CRI01	minum	411.60	400.0	102.9	75 - 125	P	51151000A	10.15	
	imony	123.60	120.0	102.9	75 - 125		7/15/2004	10:15	P107154
Arse	•	23.81	20.0	119.0	75 - 125 75 - 125	P	7/15/2004	10:15	P107154
Bari		396.57	400.0	99.1		P	7/15/2004	10:15	P107154
	yllium	10.44	10.0	104.4	75 - 125	P	7/15/2004	10:15	P107154
•	mium	10.44	10.0	104.4	75 - 125	P	7/15/2004	10:15	P107154
Cau		9972.47	10000.0		75 - 125	P	7/15/2004	10:15	P107154
	omium			99.7	75 - 125	P	7/15/2004	10:15	P107154
		20.64	20.0	103.2	75 - 125	P	7/15/2004	10:15	P107154
Cob		102.91	100.0	102.9	75 - 125	P	7/15/2004	10:15	P107154
Cop	-	50.98	50.0	102.0	75 - 125	P	7/15/2004	10:15	P107154
Iron		218.145	200.0	109.07	75 - 125	P	7/15/2004	10:15	P107154
Lead		6.42	6.0	107.0	75 - 125	P	7/15/2004	10:15	P107154
Mag	nesium	9958.20	10000.0	99.6	75 - 125	P	7/15/2004	10:15	P107154
Man	ganese	31.82	30.0	106.1	75 - 125	P	7/15/2004	10:15	P107154
Merc	cury	0.14	0.2	70.0	0 - 200	CV	7/15/2004	13:42	071504B
Nick	cel	86.11	80.0	107.6	75 - 125	P	7/15/2004	10:15	P107154
Sele	nium	8.06	10.0	80.6	75 - 125	P	7/15/2004	10:15	P107154
Silve	er	21.66	20.0	108.3	75 - 125	P	7/15/2004	10:15	P107154
Thal	lium	17.72	20.0	88.6	75 - 125	P	7/15/2004	10:15	P107154
Vana	adium	104.72	100.0	104.7	75 - 125	P	7/15/2004	10:15	P107154
Zinc	:	43.43	40.0	108.6	75 - 125	P	7/15/2004	10:15	P107154

# Metals - 2b CRDL STANDARD FOR AA & ICP

Client:	Chazen Companies

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

**SAS No.:** S3529

AA CRDL Standard Source:

ICP CRDL Standard Source:

INOR-VEN

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	M	Analysis Date	Analysis Time	Run Number
					<u> </u>				
CRI02									
	ıminum	404.90	400.0	101.2	75 - 125	P	7/15/2004	18:08	P107154
Ant	timony	120.01	120.0	100.0	75 - 125	P	7/15/2004	18:08	P107154
Ars	enic	23.34	20.0	11 <b>6.7</b> ·	75 - 125	P	7/15/2004	18:08	P107154
Bar	ium	384.90	400.0	96.2	75 - 125	P	7/15/2004	18:08	P107154
Ber	yllium	10.32	10.0	103.2	75 - 125	P	7/15/2004	18:08	P107154
Cac	lmium	10.54	10.0	105.4	75 - 125	p	7/15/2004	18:08	P107154
Cal	cium	9680.49	10000.0	96.8	75 - 125	P	7/15/2004	18:08	P107154
Chr	omium	21.28	20.0	106.4	75 - 125	P	7/15/2004	18:08	P107154
Col	oalt	101.64	100.0	101.6	75 - 125	P	7/15/2004	18:08	P107154
Cor	per	50.30	50.0	100.6	75 - 125	P	7/15/2004	18:08	P107154
Iror	1	218.980	200.0	109.49	75 - 125	P	7/15/2004	18:08	P107154
Lea	d	6.18	6.0	103.0	75 - 125	P	7/15/2004	18:08	P107154
Maį	gnesium	9670.15	10000.0	96.7	75 - 125	P	7/15/2004	18:08	P107154
Mar	nganese	31.68	30.0	105.6	75 - 125	p	7/15/2004	18:08	P107154
Nic	kel	84.26	80.0	105.3	75 - 125	P	7/15/2004	18:08	P107154
Sele	nium	9.04	10.0	90.4	75 - 125	P	7/15/2004	18:08	P107154
Silv	er	21.17	20.0	105.8	75 - 125	P	7/15/2004	18:08	P107154
Tha	llium	17.86	20.0	89.3	75 - 125	P	7/15/2004	18:08	P107154
Van	adium	104.64	100.0	104.6	75 - 125	P	7/15/2004	18:08	P107154
Zino	>	42.60	40.0	106.5	75 - 125	P	7/15/2004	18:08	P107154

# Metals - 2b CRDL STANDARD FOR AA & ICP

	•	
Client:	Chazen Companies	SDG No.: S3529

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3529 SAS No.: S3529

AA CRDL Standard Source:

ICP CRDL Standard Source: INOR-VEN

ICP C	RDL Standard Sou	rce: <u>INC</u>	OR-VEN	1					
Sample II	D Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	М	Analysis Date	Analysis Time	Run Number
CRI03	<b>;</b>								
	Aluminum	410.01	400.0	102.5	75 - 125	P	7/16/2004	02:06	P107154
	Antimony	121.09	120.0	100.9	75 - 125	Ρ.	7/16/2004	02:06	P107154
	Arsenic	20.57	20.0	102.8	75 - 125	P	7/16/2004	02:06	P107154
	Barium	384.44	400.0	96.1	75 - 125	p	7/16/2004	02:06	P107154
	Beryllium	10.48	10.0	104.8	75 - 125	P	7/16/2004	02:06	P107154
	Cadmium	9.70	10.0	97.0	75 - 125	P	7/16/2004	02:06	P107154
	Calcium	9684.86	10000.0	96.8	75 - 125	P	7/16/2004	02:06	P107154
,	Chromium	20.68	20.0	103.4	75 - 125	P	7/16/2004	02:06	P107154
	Cobalt	102.20	100.0	102.2	75 - 125	P	7/16/2004	02:06	P107154
)	Copper	50.56	50.0	101.1	75 - 125	P	7/16/2004	02:06	P107154
<i>!</i> :	Iron	209.505	200.0	104.75	75 - 125	P	7/16/2004	02:06	P107154
	Lead	6.53	6.0	108.8	75 - 125	P	7/16/2004	02:06	P107154
]	Magnesium	9682.30	10000.0	96.8	75 - 125	P	7/16/2004	02:06	P107154
]	Manganese	31.60	30.0	105.3	75 - 125	P	7/16/2004	02:06	P107154
]	Nickel	84.32	80.0	105,4	75 - 125	P	7/16/2004	02:06	P107154
;	Selenium	12.42	10.0	124.2	75 - 125	P	7/16/2004	02:06	P107154
:	Silver	21.57	20.0	107.8	75 - 125	P	7/16/2004	02:06	P107154
•	Thallium	15.16	20.0	75.8	75 - 125	P	7/16/2004	02:06	P107154
,	Vanadium	104,99	100.0	105.0	75 - 125	P	7/16/2004	02:06	P107154
2	Zinc	42.10	40.0	105.2	75 - 125	Ρ	7/16/2004	02:06	P107154

#### - 3a -

#### INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

Sample L	D Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
-f										
ICB01	Aluminum	180.1	+/-200.0	. Ŭ	180.1	200.0	p	7/15/2004	10.05	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/15/2004	10:07	P107154
	Arsenic	4.8	+/-10.0	Ü	4.8	10.0	P	7/15/2004	10:07	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/15/2004	10:07	P107154
	Beryllium	1.1	+/-5.0	υ	1,1	5.0	P	7/15/2004	10:07	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/15/2004	10:07	P107154
	Calcium	1.0 1744.7	+/-5000.0	U	1.0 1 <b>744.7</b>	5000.0	P	7/15/2004	10:07	P107154
	Chromium	1,744.7	+/-10.0	U	1,44.7	10.0	P	7/15/2004	10:07	P107154 P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	г Р	7/15/2004	10:07	P107154 P107154
	Copper	0.7	+/-25.0	υ	0.7	25.0			10:07	
							P	7/15/2004	10:07	P107154
)	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/15/2004	10:07	P107154
.'	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/15/2004	10:07	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/15/2004	10:07	P107154
	Manganese	0.2	+/-15.0	U	0.2	15.0	P	7/15/2004	10:07	P107154
	Mercury	-0.04	+/-0.20	J	0.03	0.20	CV	7/15/2004	13:34	071504B
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/15/2004	10:07	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/15/2004	10:07	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/15/2004	10:07	P107154
	Silver	3,4	+/-10.0	U	3.4	10.0	P	7/15/2004	10:07	P107154
	Sodium	-267.5	+/-5000.0	J	189.5	5000.0	P	7/15/2004	10:07	P107154
	Thallium	5.8	ý_ +/-10.0	.U	5.8	10.0	P	7/15/2004	10:07	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/15/2004	10:07	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/15/2004	10:07	P107154

#### Metals - 3a -

### INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

								·		
Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
										11 1111111
CCB36		100.1			/	2000				
	Aluminum	180.1	+/-200.0	U	180.1	200.0	P	7/16/2004	03:17	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/16/2004	03:17	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	03:17	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	03:17	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	03:17	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	03:17	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	03:17	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	03:17	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	03:17	P107154
	Copper	-1.3	+/-25.0	J	0.7	25.0	P	7/16/2004	03:17	P107154
_	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/16/2004	03:17	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	03:17	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/16/2004	03:17	P107154
	Manganese	-0.4	+/-15.0	J	0.2	15.0	P	7/16/2004	03:17	P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	03:17	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/16/2004	03:17	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	03:17	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/16/2004	03:17	P107154
	Sodium	-413.9	+/-5000.0	J	189.5	5000.0	P	7/16/2004	03:17	P107154
	Thallium	5.8	+/-10.0	U	5.8	10.0	P	7/16/2004	03:17	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	Р.	7/16/2004		P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/16/2004	03:17	P107154
	Zille	6.1	17-20.0	U	0.1	20.0	Г	7/10/2004	03:17	1107334

#### - 3a -

### INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

Sample ID	) Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB37										
ССВЭТ	Aluminum	180.1	+/-200.0	υ <b>/</b>	180.1	200.0	P	7/16/2004	03:43	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/16/2004	03:43	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	03:43	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	03:43	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	03:43	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	03:43	P107154
	Calcium	1744.7	+/-5000.0	U	1744.7	5000.0	P	7/16/2004	03:43	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	03:43	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	03:43	P107154
	Copper	-1.5	+/-25.0	J	0.7	25.0	P	7/16/2004	03:43	P107154
`	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/16/2004	03:43	P107154
_)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	03:43	P107154
	Magnesium	254.2	+/-5000.0	υ	254.2	5000.0	P	7/16/2004	03:43	P107154
	Manganese	-0.5	+/-15.0	J	0.2	15,0	P	7/16/2004	03:43	P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	03:43	P107154
	Potassium	51.0	+/-5000.0	U	51.0	5000.0	P	7/16/2004	03:43	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	03:43	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/16/2004	03:43	P107154
	Sodium	-292.5	+/-5000.0	J	189.5	5000.0	P	7/16/2004	03:43	P107154
	Thallium	8.0	+/-10.0	J	5.8	10.0	P	7/16/2004	03:43	P107154
	Vanadium	1.9	+/-50.0	U.	1.9	50.0	P	7/16/2004	03:43	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	p	7/16/2004	03:43	P107154

#### - 3a -INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

Sample ID	Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB38										
	Aluminum	180.1	+/-200.0	U /	180.1	200.0	P	7/16/2004	04:12	P107154
	Antimony	6.6	+/-60.0	U	6.6	60.0	P	7/16/2004	04:12	P107154
	Arsenic	4.8	+/-10.0	U	4.8	10.0	P	7/16/2004	04:12	P107154
	Barium	11.0	+/-200.0	U	11.0	200.0	P	7/16/2004	04:12	P107154
	Beryllium	1.1	+/-5.0	U	1.1	5.0	P	7/16/2004	04:12	P107154
	Cadmium	1.0	+/-5.0	U	1.0	5.0	P	7/16/2004	04:12	P107154
	Calcium	1744.7	+/-5000.0	υ	1744.7	5000.0	P	7/16/2004	04:12	P107154
	Chromium	1.2	+/-10.0	U	1.2	10.0	P	7/16/2004	04:12	P107154
	Cobalt	2.4	+/-50.0	U	2.4	50.0	P	7/16/2004	04:12	P107154
	Copper	-1.4	+/-25.0	J	0.7	25.0	P	7/16/2004	04:12	P107154
1	Iron	29.0	+/-100.0	U	29.0	100.0	P	7/16/2004	04:12	P107154
)	Lead	1.8	+/-5.0	U	1.8	5.0	P	7/16/2004	04:12	P107154
	Magnesium	254.2	+/-5000.0	U	254.2	5000.0	P	7/16/2004	04:12	P107154
	Manganese	-0.5	+/-15.0	J	0.2	15.0	P	7/16/2004	04:12	P107154
	Nickel	5.5	+/-40.0	U	5.5	40.0	P	7/16/2004	04;12	P107154
	Potassium	-74.0	+/-5000.0	J	51.0	5000.0	P	7/16/2004	04:12	P107154
	Selenium	5.2	+/-10.0	U	5.2	10.0	P	7/16/2004	04:12	P107154
	Silver	3.4	+/-10.0	U	3.4	10.0	P	7/16/2004	04:12	P107154
	Sodium	-659.7	+/-5000.0	J	189.5	5000.0	P	7/16/2004	04:12	P107154
	Thallium	7,1	+/-10.0	J	5.8	10.0	P	7/16/2004	04:12	P107154
	Vanadium	1.9	+/-50.0	U	1.9	50.0	P	7/16/2004	04:12	P107154
	Zinc	8.1	+/-20.0	U	8.1	20.0	P	7/16/2004	04:12	P107154

#### - 4 -INTERFERENCE CHECK SAMPLE

Client: Chazen Companies

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

**SAS No.:** S3529

ICS Source:

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-A0	1							
ICS-AU	Aluminum	477000	519000	91.9	80 - 120	7/15/2004	10:22	P107154
	Antimony	-2.7	-		0 - 0	7/15/2004	10:22	P107154
	Arsenic	-1.2			0 - 0	7/15/2004	10:22	P107154
	Barium	-1.4			0 - 0	7/15/2004	10:22	P107154
	Beryllium	0.10			0 - 0	7/15/2004	10:22	P107154
	Cadmium	8.7			0 - 0	7/15/2004	10:22	P107154
	Calcium	429000	491900	87.2	80 - 120	7/15/2004	10:22	P107154
	Chromium	18.3	20	91.5	80 - 120	7/15/2004	10:22	P107154
	Cobalt	0.74			0 - 0	7/15/2004	10:22	P107154
	Copper	5.6			0 - 0	7/15/2004	10:22	P107154
	Iron	168000	195000	86.2	80 - 120	7/15/2004	10:22	P107154
	Lead	4.7			0 - 0	7/15/2004	10:22	P107154
	Magnesium	507000	542000	93.5	80 - 120	7/15/2004	10:22	P107154
÷	Manganese	-3.8			0 - 0	7/15/2004	10:22	P107154
	Nickel	-2.1			0 - 0	7/15/2004	10:22	P107154
	Potassium	88.0			0 - 0	7/15/2004	10:22	P107154
	Selenium	4.1			0 - 0	7/15/2004	10:22	P107154
	Silver	1.7			0 - 0	7/15/2004	10:22	P107154
	Sodium	-439			0 - 0	7/15/2004	10:22	P107154
	Thallium	-11.8			0 - 0	7/15/2004	10:22	P107154
	Vanadium	-3.0			0 - 0	7/15/2004	10:22	P107154
	Zinc	-1.7			0 - 0	7/15/2004	10:22	P107154

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

ICS Source:

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-AB	01		·					
	Aluminum	493000	514000	95.9	80 - 120	7/15/2004	10:26	P107154
	Antimony	579	518	111.8	80 - 120	7/15/2004	10:26	P107154
	Arsenic	98.1	102	96.2	80 - 120	7/15/2004	10:26	P107154
	Barium	508	456	111.4	80 - 120	7/15/2004	10:26	P107154
	Beryllium	438	458	95.6	80 - 120	7/15/2004	10:26	P107154
	Cadmium	906	910	99.6	80 - 120	7/15/2004	10:26	P107154
	Calcium	442000	489000	90.4	80 - 120	7/15/2004	10:26	P107154
	Chromium	452	455	99.3	80 - 120	7/15/2004	10:26	P107154
	Cobalt	461	430	107.2	80 - 120	7/15/2004	10:26	P107154
	Copper	513	506	101.4	80 - 120	7/15/2004	10:26	P107154
	Iron	174000	194600	89.4	80 - 120	7/15/2004	10:26	P107154
	Lead	51.8	49	105.7	80 - 120	7/15/2004	10:26	P107154
	Magnesium	522000	540600	96.6	80 - 120	7/15/2004	10:26	P107154
	Manganese	452	438	103.2	80 - 120	7/15/2004	10:26	P107154
	Nickel	879	846	103.9	80 - 120	7/15/2004	10:26	P107154
	Potassium	90.5			80 - 120	7/15/2004	10:26	P107154
	Selenium	51.0	47	108.5	80 - 120	7/15/2004	10:26	P107154
	Silver	213	196	108.7	80 - 120	7/15/2004	10:26	P107154
	Sodium	-132			80 - 120	7/15/2004	10:26	P107154
	Thallium	81.6	89	91.7	80 - 120	7/15/2004	10:26	P107154
	Vanadium	454	452	100.4	80 - 120	7/15/2004	10:26	P107154
	Zinc	992	958	103.5	80 - 120	7/15/2004	10:26	P107154

# INTERFERENCE CHECK SAMPLE

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

ICS Source:

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Number
ICS-A0	2							
	Aluminum	482000	519000	92.9	80 - 120	7/15/2004	18:15	P107154
	Antimony	-6.4			0 - 0	7/15/2004	18:15	P107154
	Arsenic	-3.9			0 - 0	7/15/2004	18:15	P107154
	Barium	-2.6			0 - 0	7/15/2004	18:15	P107154
	Beryllium	0.12			0 - 0	7/15/2004	18:15	P107154
	Cadmium	7.2			0 - 0	7/15/2004	18:15	P107154
	Calcium	432000	491900	87.8	80 - 120	7/15/2004	18:15	P107154
	Chromium	18.1	20	90.5	80 - 120	7/15/2004	18:15	P107154
	Cobalt	-1.5			0 - 0	7/15/2004	18:15	P107154
	Copper	4.8			0 - 0	7/15/2004	18:15	P107154
	Iron	166000	195000	85.1	80 - 120	7/15/2004	18:15	P107154
	Lead	5.9			0 - 0	7/15/2004	18:15	P107154
	Magnesium	508000	542000	93.7	80 - 120	7/15/2004	18:15	P107154
	Manganese	-3.6			0 - 0	7/15/2004	18:15	P107154
	Nickel	-2.9			0 - 0	7/15/2004	18:15	P107154
	Potassium	86.2			0 - 0	7/15/2004	18:15	P107154
	Selenium	8.6			0 - 0	7/15/2004	18:15	P107154
	Silver	0.62			0 - 0	7/15/2004	18:15	P107154
	Sodium	-90.8			0 - 0	7/15/2004	18:15	P107154
	Thallium	-12.9			0 - 0	7/15/2004	18:15	P107154
	Vanadium	-2.7			0 - 0	7/15/2004	18:15	P107154
	Zinc	-2.0			0 - 0	7/15/2004	18:15	P107154

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

ICS Source:

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-AB	302					-	-	
	Aluminum	485000	514000	94.4	80 - 120	7/15/2004	18:17	P107154
	Antimony	564	518	108.9	80 - 120	7/15/2004	18:17	P107154
	Arsenic	92.1	102	90.3	80 - 120	7/15/2004	18:17	P107154
	Barium	494	456	108.3	80 - 120	7/15/2004	18:17	P107154
	Beryllium	425	458	92.8	80 - 120	7/15/2004	18:17	P107154
	Cadmium	877	910	96.4	80 - 120	7/15/2004	18:17	P107154
	Calcium	433000	489000	88.5	80 - 120	7/15/2004	18:17	P107154
	Chromium	435	455	95.6	80 - 120	7/15/2004	18:17	P107154
	Cobalt	444	430	103.3	80 - 120	7/15/2004	18:17	P107154
	Copper	496	506	98.0	80 - 120	7/15/2004	18:17	P107154
	Iron	167000	194600	85.8	80 - 120	7/15/2004	18:17	P107154
	Lead	48.6	49	99.2	80 - 120	7/15/2004	18:17	P107154
	Magnesium	509000	540600	94.2	80 - 120	7/15/2004	18:17	P107154
	Manganese	436	438	99.5	80 - 120	7/15/2004	18:17	P107154
	Nickel	850	846	100.5	80 - 120	7/15/2004	18:17	P107154
	Potassium	59.8			80 - 120	7/15/2004	18:17	P107154
	Selenium	39.2	47	83.4	80 - 120	7/15/2004	18:17	P107154
	Silver	205	196	104.6	80 - 120	7/15/2004	18:17	P107154
	Sodium	-28.1	1		80 - 120	7/15/2004	18:17	P107154
	Thallium	71.2	89	80.0	80 - 120	7/15/2004	18:17	P107154
	Vanadium	437	452	96.7	80 - 120	7/15/2004	18:17	P107154
	Zinc	961	958	100.3	80 - 120	7/15/2004	18:17	P107154

Client: Chazen Companies

**SDG No.:** S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

ICS Source:

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-A0	3				/			
	Aluminum	480000	519000	92.5	80 - 120	7/16/2004	02:11	P107154
	Antimony	-5.0			0 - 0	7/16/2004	<b>02</b> :11	P107154
	Arsenic	-1.9			0 - 0	7/16/2004	02:11	P107154
	Barium	-2.6			0 - 0	7/16/2004	02:11	P107154
	Beryllium	0.095			0 - 0	7/16/2004	02:11	P107154
•	Cadmium	7.5			0 - 0	7/16/2004	02:11	P107154
	Calcium	431000	491900	87.6	80 - 120	7/16/2004	02:11	P107154
	Chromium	18.0	20	90.0	80 - 120	7/16/2004	02:11	P107154
	Cobalt	-0.28			0 - 0	7/16/2004	02:11	P107154
	Copper	4.8			0 - 0	7/16/2004	02:11	P107154
	Iron	167000	195000	85.6	80 - 120	7/16/2004	02:11	P107154
	Lead	3.8			0 - 0	7/16/2004	02:11	P107154
	Magnesium	509000	542000	93.9	80 - 120	7/16/2004	02:11	P107154
	Manganese	-3.2			0 - 0	7/16/2004	02:11	P107154
	Nickel	-2.8			0 - 0	7/16/2004	02:11	P107154
	Potassium	81.9			0 - 0	7/16/2004	02:11	P107154
	Selenium	2.9			0 - 0	7/16/2004	02:11	P107154
	Silver	1.1			0 - 0	7/16/2004	02:11	P107154
	Sodium	-347			0 - 0	7/16/2004	02:11	P107154
	Thallium	-17.7			0 - 0	7/16/2004	02:11	P107154
	Vanadium	-2.0			0 - 0	7/16/2004	02:11	P107154
	Zinc	-2.0			0 - 0	7/16/2004	02:11	P107154

Client: Chazen Companies

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

ICS Source:

Instrument ID:

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Numbe
ICS-AB	03				/ .			
	Aluminum	493000	514000	95.9	80 - 120	7/16/2004	02:16	P107154
	Antimony	566	518	109.3	80 - 120	7/16/2004	02:16	P107154
	Arsenic	94.3	102	92.5	80 - 120	7/16/2004	02:16	P107154
	Barium	502	456	110.1	80 - 120	7/16/2004	02:16	P107154
•	Beryllium	433	458	94.5	80 - 120	7/16/2004	02:16	P107154
	Cadmium	891	910	97.9	80 - 120	7/16/2004	02:16	P107154
	Calcium	440000	489000	90.0	80 - 120	7/16/2004	02:16	P107154
	Chromium	445	455	97.8	80 - 120	7/16/2004	02:16	P107154
	Cobalt	452	430	105.1	80 - 120	7/16/2004	02:16	P107154
	Copper	506	506	100.0	80 - 120	7/16/2004	02:16	P107154
	Iron	.171000	194600	87.9	80 - 120	7/16/2004	02:16	P107154
	Lead	51.7	49	105.5	80 - 120	7/16/2004	02:16	P107154
	Magnesium	519000	540600	96.0	80 - 120	7/16/2004	02:16	P107154
	Manganese	446	438	101.8	80 - 120	7/16/2004	02:16	P107154
	Nickel	866	846	102.4	80 - 120	7/16/2004	02:16	P107154
	Potassium	65.9			80 - 120	7/16/2004	02:16	P107154
	Selenium	43.7	47	93.0	80 - 120	7/16/2004	02:16	P107154
	Silver	209	196	106.6	80 - 120	7/16/2004	02:16	P107154
	Sodium	-15.7			80 - 120	7/16/2004	02:16	P107154
	Thallium	78.9	89	88.7	80 - 120	7/16/2004	02:16	P107154
	Vanadium	447	452 .	98.9	80 - 120	7/16/2004	02:16	P107154
	Zinc	975	958	101.8	80 - 120	7/16/2004	02:16	P107154

- 5a -

#### MATRIX SPIKE SUMMARY

)			IVI	AIKI	IX SPIKE SI	JIVIIVI	ARY			
Client: Cl	hazen Comp	anies	Level	:	LOW	_	SDG No.:	_S3529		•
Contract:	Chazen	Companies	Lab	Code:	СНЕМЕО		Case No.: S	3529	`s	AS No.: S3529
Matrix:	WATE	R	Sample ID:	S35	529-01	Cli	ent ID: MW-1	S		
Percent Sc	olids for Sa	mple: 0.00	Spiked ID:	S352	29-01S	Per	cent Solids for	Spike Sampl	e: 0.00	
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result	C	Spike Added	% Recovery	Qual	М
Mercury	ug/L	80 - 120	3.9200		0.0600		4.00	96.5	/	CV

- 5a -

### MATRIX SPIKE DUPLICATE SUMMARY

Units	Acceptance Limit %R	MSD Result	С	Sample Result	<b>C</b> -	Spike Added	% Recovery	Qual	M	
Percent Solids for Sample: 0.00		Spiked ID:	Spiked ID: S3529-01SD			cent Solids for	Spike Sampl	e: 0.00		
<u>WATE</u>	R	Sample ID: \$3529-01			Clie	ent ID: MW-1				
Chazen	Lab Code: CHEMED				Case No.: S	3529	8	SAS No.: S3529		
Client: Chazen Companies				LOW		SDG No.:				
	Chazen WATE	Chazen Companies  WATER  lids for Sample: 0.00  Acceptance	Chazen Companies Lab ( WATER Sample ID: lids for Sample: 0.00 Spiked ID:  Acceptance MSD	Chazen Companies Lab Code:  WATER Sample ID: S35  lids for Sample: 0.00 Spiked ID: S352  Acceptance MSD	Chazen Companies  Lab Code: CHEMED  WATER  Sample ID: S3529-01  lids for Sample: 0.00  Spiked ID: S3529-01SD  Acceptance  MSD  Sample	Chazen Companies Lab Code: CHEMED  WATER Sample ID: S3529-01 Clic lids for Sample: 0.00 Spiked ID: S3529-01SD Per  Acceptance MSD Sample	Chazen Companies       Lab Code:       CHEMED       Case No.:       S         WATER       Sample ID:       S3529-01       Client ID:       MW-1         lids for Sample:       0.00       Spiked ID:       S3529-01SD       Percent Solids for         Acceptance       MSD       Sample       Spike	Chazen Companies Lab Code: CHEMED Case No.: \$3529  WATER Sample ID: \$3529-01 Client ID: MW-1SD  lids for Sample: 0.00 Spiked ID: \$3529-01SD Percent Solids for Spike Sample  Acceptance MSD Sample Spike %	Chazen Companies       Lab Code:       CHEMED       Case No.:       \$3529       \$8         WATER       Sample ID:       \$3529-01       Client ID:       MW-1SD         lids for Sample:       0.00       Spiked ID:       \$3529-01SD       Percent Solids for Spike Sample:       0.00         Acceptance       MSD       Sample       Spike       %	

# Metals - 5a -

MATRIX SPIKE SUMMARY

Client: Chazen Companies

LOW

SDG No.:

_S3529

Contract:

Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

Matrix:

WATER

Sample ID:

S3529-04

Client ID: MW-3S

Percent Solids for Sample: 0.00

Spiked ID:

S3529-04S

Percent Solids for Spike Sample: 0.00

rereent Sonds for Sample: 0.00		ърікеа дл:	833	83529-048		cent Solids for				
Analyte	Units	Acceptance Limit %R	Spiked Result	C	Sample Result	С	Spike Added	% Recovery Qual	M	
Aluminum	ug/L	80 - 120	2576.2000		643.3400		2000.00	96.6	P	···
Antimony	ug/L	80 - 120	737.5550		6.5990	U	800.00	92.2	P	
Arsenic	ug/L	80 - 120	771.3950		4.8450	U	800.00	96.4	P	
Barium	ug/L	80 - 120	2085.8350		108.2450	J	2000.00	98.9	P	
Beryllium	ug/L	80 - 120	176.7150		1.0650	U	200.00	88.4	P	
Cadmium	ug/L	80 - 120	187.3600		0.9940	U/	200.00	93.7	P	
Calcium	ug/L	80 - 120	135642.2000		143070.3000		5000.00	-148.6	P	
Chromium	ug/L	80 - 120	357.3150		1.6200	j	400.00	88.9	P	
Cobalt	ug/L	80 - 120	179.3950		2.3820	υ	200.00	89.7	P	
Copper	ug/L	80 - 120	295.6450		26,4650		300.00	89.7	P	
Iron	ug/L	80 - 120	3680.8650		1089,3300		3000.00	86.4	P	
Lead	ug/L	80 - 120	925.1900		14.1700		1000.00	91.1	P	
M. sium	ug/L	80 - 120	16275.6300		15509.7100		2000.00	38.3	P	
Manganese	ug/L	80 - 120	223.5350		46.2900		200.00	88.6	P	
Nickel	ug/L	80 - 120	460.5100		5.5480	U	500.00	92.1	P	
Potassium	ug/L	80 - 120	27042.6000		16169.6200		10000.00	108.7	P	
Selenium	ug/L	80 - 120	1875.1000		5.2350	U	2000.00	93.8	P	
Silver	ug/L	80 - 120	73.0150		3.3790	U >	75.00	97.4	P	
Sodium	ug/L	80 - 120	118611.5000		128900.2000		3000.00	(-343.0)	P	
Thallium	ug/L	80 - 120	1978.9800		5.7780	U	2000.00	98.9	P	
Vanadium	ug/L	80 - 120	260.2900		1.9050	J	300.00	86.1	P	
Zinc	ug/L	80 - 120	234.0000		42.2750		200.00	95.9	P	

- 5a -

# MATRIX SPIKE DUPLICATE SUMMARY

Client: Chazen Companies

Level:

SDG No.:

Contract:

Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

Matrix:

WATER

Sample ID:

S3529-04

Client ID: MW-3SD

Percent Solids for Sample: 0.00

Percent Solids for Sample: 0.00			Spiked ID:	S35	29-04SD	Per	cent Solids for	0		
Analyte	Units	Acceptance Limit %R	MSD Result	C	Sample Result	C	Spike Added	% Recovery Qua	ı M	
Aluminum	ug/L	80 - 120	2558.3750		643.3400		2000.00	95.8	P	-
Antimony	ug/L	80 - 120	734.1500		6.5990	U	800.00	91.8	P	
Arsenic	ug/L	80 - 120	765.9700		4.8450	U	800.00	95.7	P	
Barium	ug/L	80 - 120	2076.4100		108.2450	J	2000.00	98.4	P	
Beryllium	ug/L	80 - 120	174.3600		1.0650	υ	200.00	87.2	P	
Cadmium	ug/L	80 - 120	185.4500		0.9940	U /	200.00	92.7_	P	
Calcium	ug/L	80 - 120	133780.7000		143070.3000		5000.00	(-185.8)	P	
Chromium	ug/L	80 - 120	352.0950		1.6200	J	400.00	87.6	P	
Cobalt	ug/L	80 - 120	176.2800		2.3820	U	200.00	88,1	P	
Copper	ug/L	80 - 120	291.8300		26.4650		300.00	88.5	P	
Iron	ug/L	80 - 120	3571.8950		1089.3300		3000.00	82.8	P	
Lead	ug/L	80 - 120	916.0200		14.1700		1000.00	90.2	P	
N )sium	ug/L	80 - 120	16101.6400		15509.7100		2000.00	29.6	P	
Manganese	ug/L	80 - 120	220.2100		46.2900		200.00	87.0	P	
Nickel	ug/L	80 - 120	455.7000		5.5480	Ú	500.00	91.1	P	
Potassium	ug/L	80 - 120	26875.5200		16169.6200		10000.00	107.1	P	
Selenium	ug/L	80 - 120	1860.4800		5.2350	U	2000.00	93.0	p	
Silver	ug/L	80 - 120	72.0150		3.3790	U/	75.00	96.0	р	
Sodium	ug/L	80 - 120	118122.3000		128900.2000		3000.00	(-359.3)	P	
Thallium	ug/L	80 - 120	1971.2150		5.7780	U	2000.00	98.6	P	
Vanadium	ug/L	80 - 120	255.9450		1.9050	J	300.00	84.7	P	
Zinc	ug/L	80 - 120	230.7100		42.2750		200.00	94.2	P	

- 6 -

#### **DUPLICATE SAMPLE SUMMARY**

ent: Chazen Companies

Level:

LOW

SDG No.:

<u>Ş3529</u>

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: \$3529

SAS No.: S3529

Matrix:

WATER

Sample ID: __S3529-01

Client ID: MW-1D

Percent Solids for Sample: 0.00

Duplicate ID: S3529-01D

1 creent somus for Sample. 0.00			Duplicate ID:	Duplicate ID: 55529-01D				Percent Sonds for Duplicate: 0.00					
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	М	····			
Mercury	ug/L		0.0600		0.0350	, J	52.6		CV		_		

Chemtech Consulting Group

Metals

- 6 -

**DUPLICATE SAMPLE SUMMARY** 

ent: Chazen Companies

Level:

LOW

<u>\$3529</u>

Contract:

Chazen Companies

Lab Code:

SDG No.:

CHEMED

SAS No.: S3529

Matrix:

**WATER** 

Sample ID: <u>\$3529-018</u>

Client ID: MW-1SD

Percent Solids for Sample: 0.00

Duplicate ID: S3529-01SD

Percent Solids for Duplicate: 0.00

			2 aparente 12	2 apricate 12. 55525 0152			at Solids 10	 		
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	c	RPD	Qual	M	
Mercury	ug/L		3.920	0	4.1200		5.0		CV	

#### Metals - 6 -**DUPLICATE SAMPLE SUMMARY**

ent: Chazen Companies

Level:

LOW

SDG No.:

\$3529

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: §3529

SAS No.: S3529

Matrix:

WATER

Sample ID: <u>\$3529-04</u>

Client ID: MW-3D

Percent Solids for Sample: 0.00

Dunlicate ID: S3529-04D

Percent Solids for Sample: 0.00		Duplicate ID: S3529-04D			Perce						
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M		
Aluminum	ug/L	200.0000	643.3400		643.7200		0.1	,	P		
Antimony	ug/L		6.5990	U	6.5990	U			P		
Arsenic	ug/L		4.8450	U	4.8450	U			P		
Barium	ug/L		108.2450	J	108.8750	J	0.6		P		
Beryllium	ug/L		1.0650	U	1.0650	U			P		
Cadmium	ug/L		0.9940	U	0.9940	U			P		
Calcium	ug/L		143070.3000		144210.1000		0.8		P		
Chromium	ug/L		1.6200	J	1.6200	J	0.0		P		
Cobalt	ug/L		2.3820	U	2.3820	U			P		
Copper	ug/L	25.0000	26.4650		26.7300		1.0		P		
Iron	ug/L		1089.3300		1098.6200		0.8		P		
Lead	ug/L	5.0000	14.1700		15.7550		10.6		P		
M sium	ug/L	5000.0000	15509.7100		15644.7600		0.9		P		
Manganese	ug/L	15.0000	46.2900		46.9400		1.4		P		
Nickel	ug/L		5.5480	U	5.5480	U			P		
Potassium	ug/L	5000.0000	16169.6200		16235.2500		0.4		P		
Selenium	ug/L		5.2350	U	5.2350	U			P		
Silver	ug/L		3.3790	U	3.3790	U			P		
Sodium	ug/L		128900.2000		129857.2000		0.7		P		
<b>Fhallium</b>	ug/L		5.7780	U	5.7780	U	,		P		
Vanadium	ug/L		1.9050	J	1.8650	U	200.0		P		
Zinc	ug/L	20.0000	42.2750		42.6300		0.8		P	٠,	

#### Metals - 6 -**DUPLICATE SAMPLE SUMMARY**

.ent: Chazen Companies

Level:

LOW

SDG No.:

S3529

Contract:

Chazen Companies

Lab Code:

CHEMED

Case No.: S3529

SAS No.: S3529

Matrix:

WATER

Sample ID: <u>\$3529-048</u>

Client ID: MW-3SD

Percent Solids for Sample: 0.00

Duplicate ID: S3529-04SD

Percent Solids for Duplicate: 0.00

Percent Solids for Sample: 0.00		Duplicate ID: S	Percent Solids for Duplicate: 0.00									
Analyte	Units	Acceptance Limit	Sample Result	C	Duplicate Result	C	RPD	Qual	M			
Aluminum	ug/L		2576.2000		2558.3750		0.7	/-	P			_
Antimony	ug/L		737,5550		734.1500		0.5		P			
Arsenic	ug/L		771.3950		765.9700		0.7		P			
Barium	ug/L		2085.8350		2076.4100		0.5		P			
Beryllium	ug/L		176.7150		174.3600		1.3		P			
Cadmium	ug/L		187.3600		185.4500		1.0		P			
Calcium	ug/L		135642.2000		133780.7000		1.4		P			
Chromium	ug/L		357.3150		352.0950		1.5		P			
Cobalt	ug/L		179.3950		176.2800		1.8		P			
Copper	ug/L		295.6450		291.8300		1.3		P			
Iron	ug/L		3680.8650		3571.8950		3.0		P			
Lead	ug/L		925.1900		916.0200		1.0		P			
M zsium	ug/L		16275.6300		16101.6400		1.1		P			
Manganese	ug/L		223.5350		220.2100		1.5		P			
Nickel	ug/L		460.5100		455.7000	v	1.0		P			
Potassium	ug/L		27042.6000		26875.5200		0.6		P			
Selenium	ug/L		1875.1000		1860.4800		0.8		P			
Silver	ug/L		73.0150		72.0150		1.4		P			
Sodium	ug/L		118611.5000		118122.3000		0.4		P			
Thallium	ug/L		1978.9800		1971.2150		0.4		P			
Vanadium	ug/L		260.2900		255.9450		. 1.7		P			
Zinc	ug/L		234.0000		230.7100	٠,,	1.4		P			

#### Metals

### LABORATORY CONTROL SAMPLE SUMMARY

Client: Chazen Companies

SDG No.: S3529

Contract: Chazen Companies

Lab Code: CHEMED

Case No.: S3529

SAS No.: S3529

Aqueous LCS Source: EPA-ICV

Aqueous	Aqueous LCS Source: EPA-ICV				Solid	LCS Source:			
Sample ID	Analyte	Units	True Value	Result	C	% Recovery	Acceptance Limits	M	
PB16258E	BS					/			
	Aluminum	ug/L	2000.0	2028.04		101.4	80.0 - 120.0	P	
	Antimony	ug/L	800.0	822.48		102.8	80.0 - 120.0	P	
	Arsenic	ug/L	800.0	879.72		110.0	80.0 - 120.0	P	
	Barium	ug/L	2000.0	2285.84		114.3	80.0 - 120.0	P	
	Beryllium	ug/L	200.0	203.34		101.7	80.0 - 120.0	P	
	Cadmium	ug/L	200.0	220.32		110.2	80.0 - 120.0	P	
	Calcium	ug/L	5000.0	5396.12		107.9	80.0 - 120.0	P	
	Chromium	ug/L	400.0	412.26		103.1	80.0 - 120.0	P	
	Cobalt	ug/L	200.0	203.30		101.6	80.0 - 120.0	P	
	Copper	ug/L	300.0	291.54		97.2	80.0 - 120.0	P	
	Iron	ug/L	3000.0	2738.36		91.3	80.0 - 120.0	P	
	Lead	ug/L	1000.0	1028.38		102.8	80.0 - 120.0	P	
	Magnesium	ug/L	2000.0	2050.86	J	102.5	80.0 - 120.0	P	
/	Manganese	ug/L	200.0	206.02		103.0	80.0 - 120.0	P	
	Nickel	ug/L	500.0	534.50		106.9	80.0 - 120.0	P	
	Potassium	ug/L	10000.0	11212.33		112.1	80.0 - 120.0	P	
	Selenium	ug/L	2000.0	2188.46		109.4	80.0 - 120.0	P	
	Silver	ug/L	75.0	82.68		110.2	80.0 - 120.0	P	
	Sodium	ug/L	3000.0	2966,42	J	98.9	80.0 - 120.0	P	
	Thallium	ug/L	2000.0	2194.40		109.7	80.0 - 120.0	P	
	Vanadium	ug/L	300.0	295.35		98.4	80.0 - 120.0	P	
	Zine	μ <mark>g</mark> /L	200.0	203.95		102.0	80.0 - 120.0	P.,,	

#### Metals

- 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Ch	azen Companics		······	SDG No.: \$3529	
Contract:	Chazen Companies	<del></del> -	Lab Code: CHEMED	Case No.: S3529	SAS No.: <u>S3529</u>
Matrix:	WATER	Level:	LOW	Client ID: MW-1L	

Sample ID: S3529-01 Serial Dilution ID: S3529-01L

Analyte	Initial Result ug/L	C	Serial Result ug/L	C	% Difference	Qual	Acceptance Limits	M		
Mercury	0.06		0.16	U	100.0		10.00 %	CV	,	

Zinc

42.28

40.54

U

100.0

10.00 %

P

#### Metals

#### - 9 -SERIAL DILUTION SAMPLE SUMMARY

Client: Chazen Companies SDG No.: S3529

Contract: Chazen Companies Lab Code: CHEMED Case No.: S3529 SAS No.: S3529

 Matrix:
 WATER
 Level:
 LOW
 Client ID:
 MW-3L

 Sample ID:
 S3529-04
 Serial Dilution ID:
 S3529-04

Serial Dilution ID: S3529-04L Initial Serial Result Result % Acceptance Analyte ug/L  $\mathbf{C}$ ug/L  $\mathbf{C}$ Difference Qual Limits M Aluminum 643.34 900.54 U 100.0 10.00 % P Antimony 6.60 U 33.00 U 10.00 % P Arsenic 4.84 U 24.22 U 10.00 % P Barium J J 108.24 96.10 11,2 10.00 % P Beryllium 1.06 U 5.32 U 10.00 % P Cadmium 0.99 U 4.97 U 10.00 % P Calcium 143070.30 153261.60 7.1 10.00 % P Chromium 1.62 J 6.10 U 100.0 10.00 % P Cobalt 2.38 U 11.91 U 10.00 % P Copper 26.46 19,92 J 24.7 10.00 % Iron 1089.33 1108.60 1.8 10.00 % P 14.17 22.78 J 60.8 10.00 % P 15509.70 Magnesium 16079.40 J 3.7 10.00 % P 46.29 Manganese 45.45 J 1.8 10.00 % Nickel 5.55 U 27.74 U 10.00 % P 16169.62 J Potassium 10728.33 10.00 % P Selenium 5.24 U U 26.18 10.00 % P Silver U 3.38 16.90 U 10.00 % P 128900.20 Sodium 17.2 106732.00 10.00 % P Thallium U 5.78 28.89 U 10.00 % P 100.0 Vanadium 1.90 J 9.32 U 10.00 % P

#### DATA USABILITY SUMMARY REPORT

for

#### THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

# FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3529 Sampled 7/8/04

#### AQUEOUS SAMPLES for VOLATILE ORGANICS

MW-1	(S3529-1)
MW-6	(S3529-2)
MW-2	(S3529-3)
MW-3	(S3529-4)
MW-4	(S3529-5)
MW-5	(S3529-6)
TRIP BLK	(S3529-7)
MM-3DITP	(\$3529-8)

#### DATA ASSESSMENT

A volatile organics data package containing analytical results for seven aqueous samples and a trip blank was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, supporting information. The samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. performed according to SW-846 Method 8260B, addressed Target Compound List analytes. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-24, Rev 1, June 1999, Standard Operating Procedure for the Validation of Organic Data Acquired Using SW-846 Method 8260B (Rev 2, Dec 1996) was used as a technical reference.

The methylene chloride concentrations present in MW-4 and MW-5 have been qualified as estimations because they may represent laboratory artifacts.

#### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

ames B. Baldwin

Date.

#### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the time of sample receipt (VTSR). Samples must remain chilled to 4°C between the time of collection and the time of analysis. Acid preserved VOA samples must be analyzed within 10 days of receipt, unpreserved samples within 7 days. The holding time for soils is 10 days. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a matrix spike, matrix spike duplicate, and a rinsate blank.

This sample delivery group contained seven aqueous samples and a trip blank. The samples were collected from the Former Stillwater Boiler House site on 08Jul04. They were shipped to the laboratory, via FedEx, on the day of collection. The shipment arrived, intact, on 10Jul04.

It is noted that the laboratory provided no documentation to indicate that the samples were properly chilled at the time of receipt. Although data has not been qualified, it should be noted that such omissions seriously limit the defensibility of reported data.

Sample preservation was not documented in the field custody record or verified at the time of laboratory receipt. Checks made at the time of analysis revealed that MW-2 MW-4 and MW-3DUP were not properly stabilized. However, the analysis of each sample was completed on 16Jul04, within the holding time limit for unpreserved samples. Data qualifications are not required.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank. Any sample concentration less than 5 times the level determined in a blank must be qualified. The qualification criteria is extended to ten times the concentration observed in blanks for common laboratory artifacts. These include acetone, methylene chloride and 2-butanone. Chloroform is also frequently present as a laboratory artifact.

One method blank and a trip blank were analyzed with this group of samples. Both of these blanks demonstrated acceptable chromatography and were free of targeted analyte contamination. Although not present in blanks, traces of methylene chloride were present in MW-4 (2.2  $\mu$ g/l) and MW-5 (1.6  $\mu$ g/l). Because methylene chloride is frequently present as a laboratory artifact, these concentrations have been flagged as estimations. Their presence should only be considered significant if consistent with site history.

#### MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of BFB was analyzed prior to each analytical sequence and during every 12-hour period of instrument operation. An Instrument Performance Check Form is present for each BFB evaluation. The BFB tunes associated with this group of samples satisfied the program acceptance criteria.

#### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 14Jul04. Standards of 1, 10, 50, 100 and 200  $\mu$ g/l were included. During this calibration, most analytes produced the required levels of response and demonstrated an acceptable degree of linearity.

Although each bromomethane standard produced the required level of response, poor linearity was demonstrated. This performance indicates that errors would be expected in measurements of bromomethane, but this analyte would be detected if present in samples. Because bromomethane was not detected in samples, data has been left unqualified.

A continuing calibration verification was performed on 16Jul04, prior to the analysis of program samples. Although each analyte produced the required level of response during this check, the response of tetrachloroethene demonstrated an unacceptably large positive shift. However, because tetrachloroethene was not detected in samples, data has been left unqualified.

#### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared; appropriate acceptance criteria applied. Although the laboratory evaluated surrogate performance by applying in-house control limits, the recovery of each surrogate also satisfied ASP requirements.

#### INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated

relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 50%. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to these limits, acceptable performance was demonstrated.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide
an indication of laboratory accuracy. The analysis of a duplicate
spiked aliquot provides a measurement of precision.

A spiked sample was not analyzed with this group of samples. Recoveries for a pair of spiked blanks were reported. Although these spikes produced acceptable recoveries, they provided no indication of sample matrix interferences that might bias measurements. The laboratory should be cautioned against such omissions in the future.

#### **DUPLICATES**

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects or poor laboratory technique.

Field split duplicates of MW-3 were included in this delivery group. Both of these samples were free of targeted analytes. An acceptable level of precision was demonstrated.

#### REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

Former Stillwater Boiler House site

Sampled 08Jul04

BLANKS METHYLENE CHLORIDE

2.2J 1.6J MW-1 (S3529-01) MW-6 (S3529-02) MW-2 (S3529-03) MW-3 (S3529-04) MW-4 (S3529-05) MW-5 (S3529-05) MW-5 (S3529-06)

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-01

Date Collected: Date Analyzed:

7/8/2004 7/16/2004

8260

5.0

Units:

mL

File ID:

VG071616.D

Dilution: Analytical Method:

Sample Wt/Wol:

Soil Aliquot Vol:

Client ID:

<u>MW-1</u>

Date Received:

Matrix: 4....

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/10/2004 WATER

VG071404

**MSVOAG** VBG0716W2

Parameter	CAS Number	Concentration	$\mathbf{c}$	RDL	MDL	Units
TARGETS		······································				· · · · · · · · · · · · · · · · · · ·
Dichlorodifluoromethane	75-71-8	< 0.33	U	5.0	0.33	ug/L
Chloromethane	74-87-3	< 0.68	Ū	5.0	0.68	ug/L
Vinyl chloride	75-01-4	< 0.27	U	5.0	0.27	ug/L
Bromomethane	74-83-9	< 0.78	U	5.0	0.78	ug/L
Chloroethane	75-00-3	< 0.88	Ü	5.0	0.88	ug/L
Trichlorofluoromethane	75-69-4	< 0.58	U.	5.0	0.58	ug/L
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	U	5.0	0.69	ug/L
1,1-Dichloroethene	75-35-4	< 0.32	Ū	5.0	0.32	ug/L
tone	67-64-1	< 3.3	Ü	25	3.3	ug/L
Carbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L
Methyl tert-butyl Ether	1634-04-4	< 0.36	Ū	5.0	0.36	ug/L ug/L
Methyl Acetate	79-20-9	< 0.83	U	5.0	0.83	ug/L
Methylene Chloride	75-09-2	< 0.62	Ū	5.0	0.62	ug/L ug/L
rans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L ug/L
1,1-Dichloroethane	75-34-3	< 0.22	Ü	5.0	0.22	ug/L ug/L
Cyclohexane	110-82-7	< 0.37	Ü	5.0	0.37	ug/L ug/L
2-Butanone	78-93-3	< 2.8	Ū	25	2.8	ug/L
Carbon Tetrachloride	56-23-5	< 0.47	U	5.0	0.47	ug/L
cis-1,2-Dichloroethene	156-59-2	< 0.77	Ū.	5.0	0.77	ug/L ug/L
Chloroform	67-66-3	< 0.58	Ū	5.0	0.58	ug/L ug/L
,1,1-Trichloroethane	71-55-6	< 0.41	Ū	5.0	0.41	ug/L ug/L
Methylcyclohexane	108-87-2	< 0.58	U	5.0	0.58	ug/L ug/L
Benzene	71-43-2	< 0.24	Ū	5.0	0.24	ug/L ug/L
,2-Dichloroethane	107-06-2	< 0.32	Ū	5.0	0.32	ug/L ug/L
Crichloroethene	79-01-6	< 0.67	Ū	5.0	0.67	ug/L ug/L
,2-Dichloropropane	78-87 <b>-</b> 5	< 0.63	Ū	5.0	0.63	ug/L ug/L
Bromodichloromethane	75-27-4	< 0.35	Ū.	5.0	0.35	ug/L ug/L
-Methyl-2-Pentanone	108-10-1	< 1.3	Ū	25	1.3	ug/L ug/L
<b>`oluene</b>	108-88-3	< 0.39	U	5.0	0.39	ug/L ug/L
^- \rangle-Dichloropropene	10061-02-6	< 0.42	Ū	5.0	0.42	ug/L ug/L
	10061-01-5	< 0.15	Ü	5.0	0.42	ug/L ug/L
,1,2-Trichloroethane	79-00-5	< 0.52	· U	5.0	0.13	ug/L ug/L
-Hexanone	591-78-6	< 0.66	บ	25	0.66	ug/L ug/L
ibromochloromethane	124-48-1	< 0.38	υ	5.0	0.38	
	•	M	. •	5.0	0.50	ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-01

Date Collected:

7/8/2004

Date Analyzed: File ID:

7/16/2004 VG071616.D

5.0

Units:

mL

Dilution:

Analytical Method: <u>8260</u>

Sample Wt/Wol:

Soil Aliquot Vol:

Date Received:

Matrix:

Client ID:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol: % Moisture:

MW-1

7/10/2004 WATER

VG071404 **MSVOAG** 

VBG0716W2

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.63	Ü	5.0	0.63	ug/L
Tetrachloroethene	127-18-4	< 0.33	Ū	5.0	0.33	ug/L ug/L
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.37	ug/L
m/p-Xylenes	136777-61-2	< 0.96	U	5.0	0.41	ug/L
o-Xylene	95-47-6	< 0.37	·U	5.0	0.37	ug/L
Styrene	100-42-5	< 0.34	U	5.0	0.34	ug/L
Bromoform	75-25-2	< 0.25	Ŭ	5.0	0.34	ug/L
Isopropylbenzene	98-82-8	< 0.33	Ū	5.0	0.23	ug/L
1/2,2-Tetrachloroethane	79-34-5	< 0.50	U	5.0	*	ug/L
Dichlorobenzene	541-73-1	< 0.37	Ū		0.50	ug/L
1,4-Dichlorobenzene	106-46-7	< 0.39	U	5.0	0.37	ug/L
1,2-Dichlorobenzene	95-50-1	< 0.37	U	5.0	0.39	ug/L
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	5.0	0.37	ug/L
1,2,4-Trichlorobenzene	120-82-1	< 0.29		5.0	0.94	ug/L
	120-02-1	× 0.29	Ū	5.0	0.29	ug/L
SURROGATES 1,2-Dichloroethane-d4	17070 07 0	<b>"</b> 1				
Dibromofluoromethane	17060-07-0	51.34	103 %	72 - 119		SPK: 50
Toluene-d8	1868-53-7	53.63	107 %	85 - 115		SPK: 50
	2037-26-5	52.84	106 %	81 - 120		SPK: 50
4-Bromofluorobenzene	460-00-4	53.59	107 %	76 - 119		SPK: 50
INTERNAL STANDARDS						
Pentafluorobenzene	363-72-4	981378	4.61	•		
1,4-Difluorobenzene	540-36-3	1696653	5.35			
Chlorobenzene-d5	3114-55-4	1765581	8.60	-		
1,4-Dichlorobenzene-d4	3855-82-1	921981	10.74			

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-02

Date Collected: Date Analyzed:

7/8/2004 7/16/2004

File ID:

VG071617.D

Units:

mL

Dilution: Analytical Method:

8260 5.0

Sample Wt/Wol:

Soil Aliquot Vol:

Client ID:

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol: % Moisture:

7/10/2004

MW-6

WATER

VG071404

**MSVOAG** 

**VBG0716W2** 

22

Parameter	CAS Number	Concentration	c	RDL	MDL	Units
TARGETS		<del></del>	<del></del>		·	·
Dichlorodifluoromethane	75-71-8	< 0.33	U	5.0	0.33	ug/L
Chloromethane	74-87-3	< 0.68	U	5.0	0.68	ug/L
Vinyl chloride	75-01-4	< 0.27	U -	5.0	0.27	ug/L
Bromomethane	74-83-9	< 0.78	U	5.0	0.78	ug/L
Chloroethane	75-00-3	< 0.88	· U	5.0	0.88	ug/L
Trichlorofluoromethane	75-69-4	< 0.58	U	5.0	0.58	ug/L
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	U	5.0	0.69	ug/L
1,1-Dichloroethene	75-35-4	< 0.32	U	5.0	0.32	ug/L
)tone	67-64-1	< 3.3	U	25	3.3	ug/L
Carbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L
Methyl tert-butyl Ether	1634-04-4	< 0.36	U	5.0	0.36	ug/L
Methyl Acetate	79-20-9	< 0.83	U	5.0	0.83	ug/L
Methylene Chloride	75-09-2	< 0.62	U	5.0	0.62	ug/L
trans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L
1,1-Dichloroethane	75-34-3	< 0.22	U	5.0	0.22	ug/L
Cyclohexane	110-82-7	< 0.37	υ.	5.0	0.37	ug/L
2-Butanone	78-93-3	< 2.8	U ·	25	2.8	ug/L ug/L
Carbon Tetrachloride	56-23-5	< 0.47	U	5.0	0.47	ug/L
cis-1,2-Dichloroethene	156-59-2	< 0.77	U	5.0	0.77	ug/L
Chloroform	67-66-3	< 0.58	U	5.0	0.58	ug/L
1,1,1-Trichloroethane	71-55-6	< 0.41	U	5.0	0.41	ug/L
Methylcyclohexane	108-87-2	< 0.58	U	5.0	0.58	ug/L
Benzene	71-43-2	< 0.24	Ū	5.0	0.24	ug/L
1,2-Dichloroethane	107-06-2	< 0.32	U	5.0	0.32	ug/L
Trichloroethene	79-01-6	< 0.67	Ü.	5.0	0.67	ug/L
1,2-Dichloropropane	78-87-5	< 0.63	U	5.0	0.63	ug/L ug/L
Bromodichloromethane	75-27-4	< 0.35	U	5.0	0.35	ug/L ug/L
4-Methyl-2-Pentanone	108-10-1	< 1.3	Ū	25	1.3	ug/L ug/L
Foluene	108-88-3	< 0.39	U	5.0	0.39	ug/L ug/L
%-Dichloropropene	10061-02-6	< 0.42	Ü	5.0	0.42	ug/L ug/L
	10061-01-5	< 0.15	Ŭ ·	5.0	0.15	ug/L
,1,2-Trichloroethane	79-00-5	< 0.52	U	5,0	0.52	ug/L ug/L
-Hexanone	591-78-6	< 0.66	Ù	25	0.66	ug/L
Dibromochloromethane	124-48-1	< 0.38	a U	5.0	0.38	ug/L ug/L
		·	$T^{*}$		0.00	

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-02

Date Collected: Date Analyzed: 7/8/2004

File ID:

7/16/2004 VG071617.D

Dilution:

<u>8260</u>

5.0

Units:

mL

Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

Client ID:

Date Received:

Matrix:

Analytical Run ID: Instrument ID:

Associated Blank:

Soil Extract Vol:

% Moisture:

<u>MW-6</u>

7/10/2004

WATER

VG071404

**MSVOAG** 

VBG0716W2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.63	U	5.0	0.63	ug/L
Tetrachloroethene	127-18-4	< 0.33	Ū	5.0	0.33	ug/L
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.41	ug/L
m/p-Xylenes	136777-61-2	< 0.96	U	5.0	0.96	ug/L
o-Xylene	95-47-6	< 0.37	Ü .	5.0	0.37	ug/L
Styrene	100-42-5	< 0.34	U	5.0	0.34	ug/L ug/L
Bromoform	75-25-2	< 0.25	U	5.0	0.25	ug/L
Isopropylbenzene	98-82-8	< 0.33	U	5.0	0.33	ug/L
12,2-Tetrachloroethane	79-34-5	< 0.50	U	5.0	0.50	ug/L
Dichlorobenzene	541-73-1	< 0.37	Ū	5.0	0.37	ug/L ug/L
1,4-Dichlorobenzene	106-46-7	< 0.39	U	5.0	0.37	ug/L ug/L
1,2-Dichlorobenzene	95-50-1	< 0.37	U	5.0	0.37	ug/L ug/L
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	5.0	0.94	ug/L
1,2,4-Trichlorobenzene	120-82-1	< 0.29	Ū	5.0	0.29	ug/L
SURROGATES				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*****	••• •• •• •• •• •• •• •• •• •• •• •• ••
1,2-Dichloroethane-d4	17060-07-0	52.58	105 %	72 - 119		SPK: 50
Dibromofluoromethane	1868-53-7	51.71	103 %	85 - 115		SPK: 50
Toluene-d8	2037-26-5	49.78	100 %	81 - 120		SPK: 50
4-Bromofluorobenzene	460-00-4	52.61	105 %	76 - 119		SPK: 50
INTERNAL STANDARDS						
Pentafluorobenzene	363-72-4	951893	4.61			
1,4-Difluorobenzene	540-36-3	1672103	5.35	<b>A</b> .		
Chlorobenzene-d5	3114-55-4	1739901	8.60	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
1,4-Dichlorobenzene-d4	3855-82-1	902964	10.74	J11		
						· ·

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-03

Date Collected: Date Analyzed: 7/8/2004 7/16/2004

File ID:

VG071618.D

Dilution: Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: <u>8260</u>

5.0 Units: mL Client ID:

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank: Soil Extract Vol:

% Moisture:

MW-2

7/10/2004

WATER VG071404

**MSVOAG** 

**VBG0716W2** 

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS			·			
Dichlorodifluoromethane	75-71-8	< 0.33	Ū	5.0	0.33	ug/L
Chloromethane	74-87-3	< 0.68	U	5.0	0.68	ug/L
Vinyl chloride	75-01-4	< 0.27	U	5.0	0.27	ug/L
Bromomethane	74-83-9	< 0.78	Ù	5.0	0.78	ug/L
Chloroethane	75-00-3	< 0.88	U	5.0	0.88	ug/L
Trichlorofluoromethane	75-69-4	< 0.58	U	5.0	0.58	ug/L ug/L
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	U	5.0	0.69	ug/L
1,1-Dichloroethene	75-35-4	< 0.32	U	5.0	0.32	ug/L
ytone	67-64-1	< 3.3	U	25	3.3	ug/L ug/L
ાં bon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L
Methyl tert-butyl Ether	1634-04-4	< 0.36	U	5.0	0.36	ug/L
Methyl Acetate	79 <b>-</b> 20-9	< 0.83	U	5.0	0.83	ug/L
Methylene Chloride	75-09-2	< 0.62	Ū	5.0	0.62	ug/L
trans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L ug/L
1,1-Dichloroethane	75-34-3	< 0.22	Ū	5.0	0.22	ug/L ug/L
Cyclohexane	110-82-7	< 0.37	U	5.0	0.37	ug/L
2-Butanone	78-93-3	< 2.8	U	25	2.8	ug/L ug/L
Carbon Tetrachloride	56-23-5	< 0.47	U	5.0	0.47	ug/L
cis-1,2-Dichloroethene	156-59-2	< 0.77	U	5.0	0.77	ug/L ug/L
Chloroform	67-66-3	< 0.58	Ū	5.0	0.58	ug/L ug/L
,1,1-Trichloroethane	71-55-6	< 0.41	U	5.0	0.41	ug/L ug/L
Methylcyclohexane	108-87-2	< 0.58	U ·	5.0	0.58	ug/L ug/L
Benzene	71-43-2	< 0.24	U	5.0	0.24	ug/L ug/L
,2-Dichloroethane	107-06-2	< 0.32	Ū.	5.0	0.32	ug/L ug/L
richloroethene	79-01-6	< 0.67	Ū	5.0	0.67	ug/L ug/L
,2-Dichloropropane	78-87-5	< 0.63	U	5.0	0.63	ug/L ug/L
Bromodichloromethane	75-27-4	< 0.35	U	5.0	0.35	ug/L ug/L
-Methyl-2-Pentanone	108-10-1	< 1.3	U	25	1.3	
oluene -	108-88-3	< 0.39	Ü	5.0	0.39	ug/L
¹ ³ Dichloropropene	10061-02-6	< 0.42	U	5.0	0.39	ug/L
,3-Dichloropropene	10061-01-5	< 0.15	Ū.	5.0	0.42	ug/L
,1,2-Trichloroethane	79-00-5	< 0.52	U	5.0	0.13	ug/L
-Hexanone	591-78-6	< 0.66	U .	25	0.66	ug/L <b>29</b>
ibromochloromethane	124-48-1	< 0.38	U	5.0	0.38	ug/L ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-03

Date Collected: Date Analyzed:

7/8/2004 7/16/2004

File ID:

VG071618.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 8260 5.0

Units: mL Client ID:

Date Received:

Matrix:

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

<u>MW-2</u>

7/10/2004

WATER

VG071404

**MSVOAG** 

**VBG0716W2** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.63	U	5.0	0.63	ug/L
Tetrachloroethene	127-18-4	< 0.33	, <b>U</b>	5.0	0.33	ug/L
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.41	ug/L
m/p-Xylenes	136777-61-2	< 0.96	U	5.0	0.96	ug/L
o-Xylene	95-47-6	< 0.37	Ŭ	5.0	0.37	ug/L
Styrene	100-42-5	< 0.34	U	5.0	0.34	ug/L
Bromoform	75-25-2	< 0.25	U	5:0	0.25	ug/L
Isopropylbenzene	98-82-8	< 0.33	·U	5.0	0.33	ug/L
1 2,2-Tetrachloroethane	79-34-5	< 0.50	U	5.0	0.50	ug/L
. , Dichlorobenzene	541-73-1	< 0.37	Ū	5.0	0.37	ug/L
1,4-Dichlorobenzene	106-46-7	< 0.39	U	5.0	0.39	ug/L ug/L
1,2-Dichlorobenzene	95-50-1	< 0.37	U	5.0	0.37	ug/L ug/L
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	5.0	0.94	ug/L
1,2,4-Trichlorobenzene	120-82-1	< 0.29	U	5.0	0.29	ug/L ug/L
SURROGATES		-				
1,2-Dichloroethane-d4	17060-07-0	55	110 %	72 - 119		SPK: 50
Dibromofluoromethane	1868-53-7	52.7	105 %	85 - 115		SPK: 50
Toluene-d8	2037-26-5	53.4	107 %	81 - 120		SPK: 50
4-Bromofluorobenzene	460-00-4	54.78	110 %	76 - 119		SPK: 50
INTERNAL STANDARDS						
Pentafluorobenzene	363-72-4	896184	4.61			•
1,4-Difluorobenzene	540-36-3	1597223	5.34			•
Chlorobenzene-d5	3114-55-4	1711623	8.59			
1,4-Dichlorobenzene-d4	3855-82-1	861685	10.74	•		

SDG No.:

S3529

Client:

Chazen Companies

Sample ID:

S3529-04

7/8/2004

Date Collected: Date Analyzed: File ID:

7/16/2004 VG071619.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol:

8260 5.0 Units:

 $\mathbf{m}\mathbf{L}$ 

Client ID;

Date Received: Matrix:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

**MSVOAG** 

7/10/2004

MW-3

VBG0716W2

36

WATER

VG071404

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS	· · · · · · · · · · · · · · · · · · ·		<del></del>			· · · · · · · · · · · · · · · · · · ·
Dichlorodifluoromethane	75-71-8	< 0.33	U	5.0	0.33	ug/L
Chloromethane	74-87-3	< 0.68	Ū	5.0	0.68	ug/L ug/L
Vinyl chloride	75-01-4	< 0.27	U	5.0	0.27	ug/L
Bromomethane	74-83-9	< 0.78	· Ū	5.0	0.78	ug/L ug/L
Chloroethane	75-00-3	< 0.88	Ū.	5.0	0.88	ug/L ug/L
Trichlorofluoromethane	75 <b>-</b> 69-4	< 0.58	Ū	5.0	0.58	ug/L ug/L
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	Ü	5.0	0.69	ug/L
1,1-Dichloroethene	75-35-4	< 0.32	U	5.0	0.32	ug/L
tone	67-64-1	< 3.3	Ü	25	3.3	ug/L
Carbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L
Methyl tert-butyl Ether	1634-04-4	< 0.36	Ū	5.0	0.36	ug/L ug/L
Methyl Acetate	79-20-9	< 0.83	U	5.0	0.83	ug/L ug/L
Methylene Chloride	75-09-2	< 0.62	Ū	5.0	0.62	ug/L ug/L
trans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L ug/L
1,1-Dichloroethane	75-34-3	< 0.22	U	5.0	0.22	ug/L ug/L
Cyclohexane	110-82-7	< 0.37	U	5.0	0.37	ug/L ug/L
2-Butanone	78-93-3	< 2.8	Ū	25	2.8	ug/L ug/L
Carbon Tetrachloride	56-23-5	< 0.47	Ū	5.0	0.47	ug/L
cis-1,2-Dichloroethene	156-59-2	< 0.77	U	5.0	0.77	ug/L ug/L
Chloroform	67-66-3	< 0.58	Ū	5.0	0.58	ug/L
1,1,1-Trichloroethane	71-55-6	< 0.41	Ū	5.0	0.41	ug/L ug/L
Methylcyclohexane	108-87-2	< 0.58	υ	5.0	0.58	ug/L
Benzene	71-43-2	< 0.24	Ū	5.0	0.24	ug/L
1,2-Dichloroethane	107-06-2	< 0.32	Ŭ	5.0	0.32	ug/L
Trichloroethene	79-01-6	< 0.67	U	5.0	0.67	ug/L ug/L
1,2-Dichloropropane	78-87 <del>-</del> 5	< 0.63	Ū	5.0	0.63	ug/L ug/L
Bromodichloromethane	75-27-4	< 0.35	U	5.0	0.35	ug/L ug/L
4-Methyl-2-Pentanone	108-10-1	< 1.3	Ū	25	1.3	ug/L ug/L
Toluene	108-88-3	< 0.39	U	5.0	0.39	ug/L ug/L
t 1 3 Dichloropropene	10061-02-6	< 0.42	U	5.0	0.42	ug/L ug/L
4. /3-Dichloropropene	10061-01-5	. < 0.15	Ū ,	5.0	0.15	ug/L ug/L
1,1,2-Trichloroethane	79-00-5	< 0.52	Ū	5.0	0.13	ug/L ug/L
2-Hexanone	591-78-6	< 0.66 M	Ū	25	0.52	ug/L ug/L
Dibromochloromethane	124-48-1	< 0.38	Ŭ .	5.0	0.38	ug/L ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

Date Collected: Date Analyzed:

7/8/2004 7/16/2004

File ID: Dilution: VG071619.D

**8260** 

5.0

Units:

mL

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: S3529-04

Client ID:

MW-3

Date Received:

Matrix:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

7/10/2004

WATER VG071404

**MSVOAG VBG0716W2** 

Parameter	CAS Number	Concentration	С	DDY		
12 52		<u></u>		RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.63	U ·	5.0	0.63	ug/L
Tetrachloroethene	127-18-4	< 0.33	. <b>U</b>	5.0	0.33	ug/L
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.41	ug/L
m/p-Xylenes	136777-61-2	< 0.96	U	5.0	0.96	ug/L
o-Xylene	95-47-6	< .0.37	U	5.0	0.37	ug/L
Styrene	100-42-5	< 0.34	U	5.0	0.34	ug/L
Bromoform	75-25-2	< 0.25	U	5.0	0.25	ug/L
Isopropylbenzene	98-82-8	< 0.33	U	5.0	0.33	ug/L ug/L
¹ 2,2-Tetrachloroethane	79-34-5	< 0.50	Ū	5.0	0.50	ug/L
., ² Dichlorobenzene	541-73-1	< 0.37	· Ū	5.0	0.37	ug/L ug/L
1,4-Dichlorobenzene	106-46-7	< 0.39	Ū	5.0	0.37	_
1,2-Dichlorobenzene	95-50-1	< 0.37	Ū	5.0	0.39	ug/L
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	5.0	0.94	ug/L
1,2,4-Trichlorobenzene	120-82-1	< 0.29	U	5.0		ug/L
SURROGATES		0.29	0	5.0	0.29	ug/L
1,2-Dichloroethane-d4	17060-07-0	53.04	1000			
Dibromofluoromethane	1868-53-7		106 %	72 - 119		SPK: 50
Toluene-d8	2037-26-5	53.35	107 %	85 - 115		SPK: 50
4-Bromofluorobenzene		51.13	102 %	81 - 120		SPK: 50
	460-00-4	53.14	106 %	76 - 119		SPK: 50
INTERNAL STANDARDS		e e				
Pentafluorobenzene	363-72-4	909216	4.61			
1,4-Difluorobenzene	540-36-3	1623326	5.35			
Chlorobenzene-d5	3114-55-4	1710673	8.60			
1,4-Dichlorobenzene-d4	3855-82-1	857189	10.73		•	
•			•			

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-05

Date Collected:

7/8/2004

Date Analyzed: File ID:

VG071620.D

Dilution: Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 7/16/2004

5.0

**8260** 

Units: mL Client ID:

Date Received:

Matrix: Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

MW-4

7/10/2004

WATER

VG071404

**MSVOAG** VBG0716W2

Parameter'	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Dichlorodifluoromethane	75-71-8	< 0.33	, U	5.0	0:33	ug/L
Chloromethane	74-87-3	< 0.68	U	- 5.0	0.68	ug/L
Vinyl chloride	75-01 <b>-</b> 4	< 0.27	U	5.0	0.27	ug/L
Bromomethane	74-83-9	< 0.78	U	5.0	0.78	ug/L
Chloroethane	75-00-3	< 0.88	U	5.0	0.88	ug/L
Trichlorofluoromethane	75-69-4	< 0.58	. U	5.0	0.58	ug/L
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	U	5.0	0.69	ug/L
1,1-Dichloroethene	75-35-4	< 0.32	υ	5.0	0.32	ug/L
one	67-64-1	< 3.3	U	25	3.3	ug/L
Carbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L
Methyl tert-butyl Ether	1634-04-4	< 0.36	U	5.0	0.36	ug/L
Methyl Acetate	79-20-9	< 0.83	U	5.0	0.83	ug/L
Methylene Chloride	75-09-2	2.2 J	15		0.62	ug/L
trans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L
1,1-Dichloroethane	75-34-3	< 0.22	· U	5.0	0.22	ug/L
Cyclohexane	110-82-7	< 0.37	U	5.0	0.37	ug/L
2-Butanone	78-93-3	< 2.8	Ū	25	2.8	ug/L
Carbon Tetrachloride	56-23-5	< 0.47	Ü	5.0	0.47	ug/L
cis-1,2-Dichloroethene	156-59-2	< 0.77	U	5.0	0.77	ug/L
Chloroform	67-66-3	< 0.58	Ū	5.0	0.58	ug/L
1,1,1-Trichloroethane	71-55-6	< 0.41	U	5.0	0.41	ug/L
Methylcyclohexane	108-87-2	< 0.58	U	5.0	0.58	ug/L ug/L
Benzene	71-43-2	< 0.24	Ū	5.0	0.24	ug/L ug/L
1,2-Dichloroethane	107-06-2	< 0.32	U	5.0	0.32	ug/L ug/L
Trichloroethene	79-01-6	< 0.67	Ū	5.0	0.67	ug/L
1,2-Dichloropropane	78-87-5	< 0.63	U ·	5.0	0.63	ug/L ug/L
Bromodichloromethane	75-27-4	< 0.35	U	5.0	0.35	ug/L
4-Methyl-2-Pentanone	108-10-1	< 1.3	Ū	25	1.3	ug/L ug/L
Toluene	108-88-3	< 0.39	U	5.0	0.39	ug/L
† ^Dichloropropene	10061-02-6	< 0.42	Ū	5.0	0.42	
C. 3-Dichloropropene	10061-01-5	< 0.15	U	5.0	0.42	ug/L ug/L
1,1,2-Trichloroethane	79-00-5	< 0.52	U A	5.0	0.13	/T
2-Hexanone	591-78-6	< 0.66	υd	25	0.52	ug/L 43
Dibromochloromethane	124-48-1	< 0.38	υ )	5.0	0.38	ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

7/8/2004

Date Collected: Date Analyzed: File ID;

7/16/2004 VG071620.D

5.0

Units:

mL

Dilution:

Analytical Method: **8260** 

Sample Wt/Wol:

Soil Aliquot Vol:

S3529-05

Client ID:

<u>MW-4</u>

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/10/2004

WATER

VG071404

MSVOAG VBG0716W2

	and the second s				4 A	
Parameter	CAS Number	Concentration	$\mathbf{c}$	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.63	U	5.0	0.63	ug/L
Tetrachloroethene	127-18-4	< 0.33	U	5.0	0.33	ug/L
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.41	ug/L
m/p-Xylenes	136777-61-2	< 0.96	U ·	5.0	0.96	ug/L
o-Xylene	95-47-6	< 0.37	Ü	5.0	0.37	ug/L
Styrene	100-42-5	< 0.34	U	5.0	0.34	ug/L
Bromoform	75-25 <b>-</b> 2	< 0.25	U	5.0	0.25	ug/L
Isopropylbenzene	98-82-8	< 0.33	U	5.0	0.33	ug/L
2,2-Tetrachloroethane	79-34-5	< 0.50	Ū		0.50	ug/L
1,JuDichlorobenzene	541-73-1	< 0.37	U	5.0	0.37	ug/L ug/L
1,4-Dichlorobenzene	106-46-7	< 0.39	U	5.0	0.39	ug/L
1,2-Dichlorobenzene	95-50-1	< 0.37	U	5.0	0.37	ug/L
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	Ü	5.0	0.94	ug/L ug/L
1,2,4-Trichlorobenzene	120-82-1	< 0.29	Ū	5.0	0.29	ug/L ug/L
SURROGATES						
1,2-Dichloroethane-d4	17060-07-0	57.35	115 %	72 - 119		SPK: 50
Dibromofluoromethane	1868-53-7	53.37	107 %	85 - 115		SPK: 50
Toluene-d8	2037-26-5	53.64	107 %	81 - 120		SPK: 50
4-Bromofluorobenzene	460-00-4	54.56	109 %	76 - 119		SPK: 50
INTERNAL STANDARDS						
Pentafluorobenzene	363-72-4	863466	4.61			
1,4-Difluorobenzene	540-36-3	1560124	5.34			•
Chlorobenzene-d5	3114-55-4	1677283	8.60			
1,4-Dichlorobenzene-d4	3855-82-1	850597	10.74			•
				A -		

SDG No.:

S3529

Client:

Chazen Companies

Sample ID:

S3529-06

7/8/2004

Date Collected: Date Analyzed:

7/16/2004

File ID: Dilution: VG071621.D

Analytical Method: Sample Wt/Wol:

Soil Aliquot Vol:

8260 5.0 Units: mL Client ID:

<u>MW-5</u>

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/10/2004

WATER

VG071404 **MSVOAG** 

VBG0716W2

Parameter	CAS Number	Concentration	$\sqrt{\mathbf{C}}$	RDL	MDL	Units	
TARGETS			<del>,</del>			· <u>-</u>	
Dichlorodifluoromethane	75-71-8	< 0.33	U	5.0	0.33	ug/Ŀ	-
Chloromethane	74-87-3	< 0.68	U	5.0	0.68	ug/L	
Vinyl chloride	75-01-4	< 0.27	- · U	5.0	0.27	ug/L	
Bromomethane	74-83-9	< 0.78	Ü	5.0	0.78	ug/L	
Chloroethane	75-00-3	< 0.88	η. Π	5.0	0.88	ug/L	
Trichlorofluoromethane	75-69-4	< 0.58	U	5.0	0.58	ug/L	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	U	5.0	0.69	ug/L	
1,1-Dichloroethene	75-35-4	< 0.32	U	5.0	0.32	ug/L	
one	67-64-1	< 3.3	Ű	25	3.3	ug/L	
Carbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L	
Methyl tert-butyl Ether	1634-04-4	< 0.36	U	5.0	0.36	ug/L	
Methyl Acetate	79-20-9	< 0.83	U	5.0	0.83	ug/L	
Methylene Chloride	75-09-2	1.6 J	1	5.0	0.62	ug/L	
trans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L ug/L	
1,1-Dichloroethane	75-34-3	< 0.22	Ŭ ·	5.0	0.22	ug/L ug/L	
Cyclohexane	110-82-7	< 0.37	Ū	5.0	0.37	ug/L	
2-Butanone	78-93 <b>-</b> 3	< 2.8	Ü	25	2.8	ug/L ug/L	
Carbon Tetrachloride	56-23-5	< 0.47	U	5.0	0.47	ug/L ug/L	
cis-1,2-Dichloroethene	156-59-2	< 0.77	U	5.0	0.77	ug/L	
Chloroform	67-66-3	< 0.58	Ū	5.0	0.77	ug/L ug/L	
1,1,1-Trichloroethane	71-55-6	< 0.41	Ū	5.0	0.41	ug/L ug/L	
Methylcyclohexane	108-87-2	< 0.58	U	5.0	0.58	ug/L ug/L	
Benzene	71-43-2	< 0.24	Ū	5.0	0.24	ug/L ug/L	
1,2-Dichloroethane	107-06-2	< 0.32	Ū	5.0	0.32	ug/L ug/L	
Trichloroethene	79-01-6	< 0.67	U	5.0	0.67	ug/L ug/L	
1,2-Dichloropropane	78-87-5	< 0.63	U	5.0	0.63	ug/L ug/L	
Bromodichloromethane	75-27-4	< 0.35	Ū	5.0	0.35		
4-Methyl-2-Pentanone	108-10-1	< 1.3	Ū	25	1.3	ug/L	
Toluene	108-88-3	< 0.39	U	5.0	0.39	ug/L	
Dichloropropene	10061-02-6	< 0.42	U	5.0		ug/L	
1,3-Dichloropropene	10061-01-5	< 0.15	U	5.0	0.42	ug/L	
1,1,2-Trichloroethane	79-00-5	< 0.52	U .	-	0.15	ug/L	
2-Hexanone	591-78-6	< 0.66	υ A	$\int_{35}^{5.0}$	0.52	ug/L	51
Dibromochloromethane	124-48-1	< 0.38	υ ()	7 25 5.0	0.66 0.38	ug/L ug/L	

SDG No.;

S3529

Client:

**Chazen Companies** 

Sample ID:

Date Collected:

7/8/2004

Date Analyzed: File ID:

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: S3529-06

7/16/2004 VG071621.D

> **8260** 5.0 Units: mL

Client ID:

Date Received:

Matrix: Analytical Run ID: Instrument ID: Associated Blank:

Soil Extract Vol: % Moisture:

<u>MW-5</u>

7/10/2004

WATER VG071404

**MSVOAG VBG0716W2** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
1,2-Dibromoethane	106-93-4	< 0.63	U	5.0	0.63	ug/L	—
Tetrachloroethene	127-18-4	< 0.33	U	5.0	0.33	ug/L	
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L	
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.41	ug/L	
m/p-Xylenes	136777-61-2	< 0.96	υ	5.0	0.96	ug/L	
o-Xylene	95-47-6	< 0.37	· U	5.0	0.37	ug/L	
Styrene	100-42-5	< 0.34	U	5.0	0.34	ug/L	
Bromoform	75-25-2	< 0.25	U	5.0	0:25	ug/L	
Isopropylbenzene	98-82-8	< 0.33	U	5.0	0.33	ug/L	
3,2-Tetrachloroethane	79-34-5	< 0.50	; U	5.0	0.50	ug/L	ŧ
.,Dichlorobenzene	541-73-1	< 0.37	Ū	5.0	0.37	ug/L	
1,4-Dichlorobenzene	106-46-7	< 0.39	. U	5.0	0.39	ug/L	
1,2-Dichlorobenzene	95-50-1	< 0.37	U	5.0	0.37	ug/L	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	5.0	0.94	ug/L	
1,2,4-Trichlorobenzene	120-82-1	< 0.29	U	5.0	0.29	ug/L	-
SURROGATES							
1,2-Dichloroethane-d4	17060-07-0	56.72	113 %	72 - 119		SPK: 50	
Dibromofluoromethane	1868-53-7	51.32	103 %	85 - 115		SPK: 50	
Toluene-d8	2037-26-5	49.7	99 %	81 - 120		SPK: 50	
4-Bromofluorobenzene	460-00-4	52.18	104 %	76 - 119	* 1	SPK: 50	
INTERNAL STANDARDS		•					
Pentafluorobenzene	363-72-4	856931	4.61			•	
1,4-Difluorobenzene	540-36-3	1617324	5.35	_			
Chlorobenzene-d5	3114-55-4	1650586	8.59	M			
1,4-Dichlorobenzene-d4	3855-82-1	836688	10.74	11.1			

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-07

Date Collected: Date Analyzed: 7/8/2004

File ID:

VG071607.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol:

7/16/2004

8260 Units: 5.0 mL Client ID:

TRIPBLANK

Date Received:

Matrixical

Analytical Run ID:

Instrument ID: Associated Blank: Soil Extract Vol:

% Moisture:

7/10/2004

WATER

VG071404

MSVOAG **VBG0716W2** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	
TARGETS	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				
Dichlorodifluoromethane	75-71-8	< 0.33	Ū	5.0	0.33	ug/L	
Chloromethane	74-87-3	< 0.68	U	5.0	0.68	ug/L	
Vinyl chloride	75-01-4	< 0.27	U	5.0	0.27	ug/L	
Bromomethane	74-83-9	< 0.78	U	5.0	0.78	ug/L	
Chloroethane	75-00-3	< 0.88	Ü	5.0	0.88	ug/L	
Trichlorofluoromethane	75-69-4	< 0.58	U	5.0	0.58	ug/L	
1,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	U	5.0	0.69	ug/L	•
1,1-Dichloroethene	75-35-4	< 0.32	U	5.0	0.32	ug/L	
jone	67-64-1	< 3.3	U	25	3.3	ug/L	
Carbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L	-
Methyl tert-butyl Ether	1634-04-4	< 0.36	U	5.0	0.36	ug/L	
Methyl Acetate	79-20-9	< 0.83	U	5.0	0.83	ug/L	
Methylene Chloride	75-09-2	< 0.62	U	5.0	0.62	ug/L	
trans-1,2-Dichloroethene	156-60-5	< 0.51	U	5.0	0.51	ug/L	-
1,1-Dichloroethane	75-34-3	< 0.22	. U	5.0	0.22	ug/L	
Cyclohexane	110-82-7	< 0.37	U	5.0	0.37	ug/L	
2-Butanone	78-93-3	< 2.8	U	25	2.8	ug/L	
Carbon Tetrachloride	56-23-5	< 0.47	U	5.0	0.47	ug/L	
cis-1,2-Dichloroethene	156-59-2	< 0.77	U	5.0	0.77	ug/L	
Chloroform	67-66-3	< 0.58	U	5.0	0.58	ug/L	
1,1,1-Trichloroethane	71-55-6	< 0.41	U	5.0	0.41	ug/L	
Methylcyclohexane	108-87-2	< 0.58	U	5.0	0.58	ug/L	
Benzene	71-43-2	< 0.24	Ū	5.0	0.24	ug/L	
1,2-Dichloroethane	107-06-2	< 0.32	U	5.0	0.32	ug/L	
Trichloroethene	79-01-6	< 0.67	U	5.0	0.67	ug/L	٠
1,2-Dichloropropane	78-87-5	< 0.63	U	5.0	0.63	ug/L	•
Bromodichloromethane	75-27-4	< 0.35	U	5.0	0.35	ug/L	
4-Methyl-2-Pentanone	108-10-1	< 1.3	U	25	1.3	ug/L	
Toluene	108-88-3	< 0.39	U	5.0	0.39	ug/L	
† ~ Dichloropropene	10061-02-6	< 0.42	U .	5.0	0.42	ug/L	-,
راً الله الله الله الله الله الله الله ال	10061-01-5	< 0.15	U	5.0	0.15	ug/L	20 4 to 20
1,1,2-Trichloroethane	79-00-5	< 0.52	U	5.0	0.52	ug/L	^^
2-Hexanone	591-78-6	< 0.66	υΛ	25	0.66	ug/L	60
Dibromochloromethane	124-48-1	< 0.38	Մ ()	5.0	0.38	ug/L	

nadital different men

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-07

Date Collected:

7/8/2004 7/16/2004

Date Analyzed: File ID:

VG071607.D

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol:

**8260** 

5.0 Units: mL Client ID:

TRIPBLANK

Date Received:

Matrix

Analytical Run ID:

Instrument ID: Associated Blank:

Soil Extract Vol:

% Moisture:

7/10/2004

WATER

VG071404

MSVOAG

VBG0716W2

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	- : <u> : : - : - : - : - : - : - :</u>
1,2-Dibromoethane	106-93-4	< 0.63	U	5.0	0.63	ug/L	
Tetrachloroethene	127-18-4	< 0.33	U	5.0	0.33	ug/L	
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L	
Ethyl Benzene	100-41-4	< 0.41	Ū	5.0	0.41	ug/L ug/L	
m/p-Xylenes	136777-61-2	< 0.96	U	5.0	0.96	ug/L ug/L	
o-Xylene	95-47-6	< 0.37	- U	5.0	0.37	ug/L ug/L	
Styrene	100-42-5	< 0.34	Ū	5.0	0.34	ug/L ug/L	
Bromoform	75-25-2	< 0.25	υ	5.0	0.25	ug/L	
Isopropylbenzene	98-82-8	< 0.33	U	5.0	0.33	ug/L	
2,2-Tetrachloroethane	79-34-5	< 0.50	Ü.	5.0	0.50	ug/L ug/L	A12.5
.,Dichlorobenzene	541-73-1	< 0.37	Ū	5.0	0.37	ug/L ug/L	
1,4-Dichlorobenzene	106-46-7	< 0.39	Ū	5.0	0.37	ug/L ug/L	
1,2-Dichlorobenzene	95-50-1	< 0.37	U	5.0	0.37	ug/L	
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	υ	5.0	0.94	ug/L ug/L	
1,2,4-Trichlorobenzene	120-82-1	< 0.29	Ü	5.0	0.29	ug/L ug/L	
SURROGATES				3.0	0.29	ug/L	
1,2-Dichloroethane-d4	17060-07-0	54.55	109 %	72 - 119		SPK: 50	
Dibromofluoromethane	1868-53-7	51.6	103 %	85 - 115		SPK: 50	•
Toluene-d8	2037-26-5	49.24	98 %	81 - 120		SPK: 50	
4-Bromofluorobenzene	460-00-4	50.13	100 %	76 - 119		SPK: 50	
INTERNAL STANDARDS Pentafluorobenzene	262.72.4	001660	a mar				
1,4-Difluorobenzene	363-72-4	901660	4.61		•	•	
Chlorobenzene-d5	540-36-3	1660210	5.35				
·	3114-55-4	1704055	8.60	Λ			
1,4-Dichlorobenzene-d4	3855-82-1	841844	10.74	$\mathcal{A}$			
				(41)			

SDG No.:

S3529

Client:

Chazen Companies

Sample ID:

S3529-08

Date Collected: Date Analyzed:

7/16/2004

File ID:

VG071622.D Dilution: Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: 7/8/2004

**8260** 5.0 Units: mL Client ID:

Date Received:

Matrix: Analytical Run ID:

Instrument ID: Associated Blank: Soil Extract Vol:

% Moisture:

MW-3DUP

7/10/2004

WATER --VG071404

**MSVOAG VBG0716W2** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units	•
TARGETS				<del></del>		<del></del>	·
Dichlorodifluoromethane	75-71-8	< 0.33	U	5.0	0.33	ug/L	
Chloromethane	74-87-3	< 0.68	U	5.0	0.68	ug/L	
Vinyl chloride	75-01-4	< 0.27	·U	5.0	0.27	ug/L	
3romomethane	74-83-9	< 0.78	U	5.0	0.78	ug/L	
Chloroethane	75-00-3	< 0.88	Ū	5.0	0.88	ug/L	
Crichlorofluoromethane	75-69-4	< 0.58	U	5.0	0.58	ug/L	
,1,2-Trichlorotrifluoroethane	76-13-1	< 0.69	Ū	5.0	0.69	ug/L	
,1-Dichloroethene	75-35-4	< 0.32	Ü	5.0	0.32	ug/L	
tone	67-64-1	< 3.3	Ü	25	3.3	ug/L ug/L	59
arbon disulfide	75-15-0	< 0.39	U	5.0	0.39	ug/L ug/L	
Aethyl tert-butyl Ether	1634-04-4	< 0.36	U .	5.0	0.36	ug/L ug/L	
Lethyl Acetate	79 <b>-</b> 20-9	< 0.83	U	5.0	0.83	ug/L ug/L	
lethylene Chloride	75-09-2	< 0.62	Ū	5.0	0.62		
ans-1,2-Dichloroethene	156-60-5	< 0.51	Ū	5.0	0.51	ug/L	
,l-Dichloroethane	75-34-3	< 0.22	U	5.0	0.22	ug/L	
yclohexane	110-82-7	< 0.37	U	5.0	0.22	ug/L	
-Butanone	78-93-3	< 2.8	Ū	25	2.8	ug/L	
arbon Tetrachloride	56-23-5	< 0.47	U	5.0	0.47	ug/L	
s-1,2-Dichloroethene	156-59-2	< 0.77	Ū	5.0	0.47	ug/L	
hloroform	67-66-3	< 0.58	U	5.0	0.77	ug/L	
1,1-Trichloroethane	71-55-6	< 0.41	·U	5.0	0.38	ug/L	
lethylcyclohexane	108-87-2	< 0.58	U	5.0	0.41	ug/L	
enzene	71-43-2	< 0.24	U	5.0	0.38	ug/L	
2-Dichloroethane	107-06-2	< 0.32	Ü	5.0	0.24	ug/L	
ichloroethene	79-01-6	< 0.67	U	5.0	0.32	ug/L	
2-Dichloropropane	78-87-5	< 0.63	U	5.0		ug/L	
omodichloromethane	75-27-4	< 0.35	U	5.0	0.63	ug/L	
Methyl-2-Pentanone	108-10-1	< 1.3	, U	3.0 25	0.35	ug/L	
luene	108-88-3	< 0.39	U	5.0	1.3	ug/L	
² Dichloropropene	10061-02-6	< 0.42	n .	5.0	0.39	ug/L	
,3-Dichloropropene	10061-01-5	< 0.15	U		0.42	ug/L	
,2-Trichloroethane	79-00-5	< 0.52	U ,		0.15	ug/L	•• "
Hexanone	591-78-6	< 0.66	-/1	5.0	0.52	ug/L	67
bromochloromethane	124-48-1	< 0.38	n W	$ \begin{array}{ccc} 7 & 25 \\ 5.0 \end{array} $	0.66	ug/L	

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

Date Collected: Date Analyzed:

7/8/2004 7/16/2004

File ID:

VG071622.D

<u>8260</u>

5.0

Units:

mL

Dilution:

Analytical Method:

Sample Wt/Wol: Soil Aliquot Vol: S3529-08

Client ID:

MW-3DUP

7/10/2004

Date Received:

Matrix:

Analytical Run ID: Instrument ID:

Associated Blank: Soil Extract Vol:

% Moisture:

WATER VG071404

**MSVOAG** 

**VBG0716W2** 

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
1,2-Dibromoethane	106-93-4	< 0.63	Ü	5.0	0.63	ug/L
Tetrachloroethene	127-18-4	< 0.33	U	.5.0	0.33	ug/L
Chlorobenzene	108-90-7	< 0.37	U	5.0	0.37	ug/L ug/L
Ethyl Benzene	100-41-4	< 0.41	U	5.0	0.41	ug/L ug/L
m/p-Xylenes	136777-61-2	< 0.96	U	5.0	0.96	ug/L ug/L
o-Xylene	95-47-6	< 0.37	Ū	5.0	0.37	ug/L ug/L
Styrene	100-42-5	< 0.34	· U	5.0	0.34	ug/L
Bromoform	75-25-2	< 0.25	U .	5.0	0.34	ug/L ug/L
Isopropylbenzene	98-82-8	< 0.33	U	5.0	0.23	· <del>-</del>
¹ 2,2-Tetrachloroethane	79-34-5	·< ···· 0.50 ···	Ū	5.0	·····0.50······	ug/L
.,. Dichlorobenzene	541-73-1	< 0.37	U	5.0	0.37	ug/L
1,4-Dichlorobenzene	106-46-7	< 0.39	U	5.0	0.37	ug/L
1,2-Dichlorobenzene	95-50-1	< 0.37	Ū ·	5.0	0.39	ug/L
1,2-Dibromo-3-Chloropropane	96-12-8	< 0.94	U	5.0	0.57	ug/L
1,2,4-Trichlorobenzene	120-82-1	< 0.29	U	5.0	0.94	ug/L
SURROGATES 1,2-Dichloroethane-d4	17060-07-0	·			0.29	ug/L
Dibromofluoromethane	1868-53-7	55.54	111 %	72 - 119		SPK: 50
Toluene-d8		49.12	98 %	85 - 115		SPK: 50
4-Bromofluorobenzene	2037-26-5	49.74	99 %	81 - 120		SPK: 50
	460-00-4	52.45	105 %	76 - 119		SPK: 50
INTERNAL STANDARDS Pentafluorobenzene	363-72-4	850861	4.60		-	
1,4-Difluorobenzene	540-36-3	1622409	5.35	•		
Chlorobenzene-d5	3114-55-4	1637652	8.59			
1,4-Dichlorobenzene-d4	3855-82-1	834628	10.74	1		
	•			$\sim$ 15		

#### Surrogate Summary SW-846

SDG No.:

S3529

v.. <u>5552</u>

**Chazen Companies** 

Analytical Method:

Lab Sample ID	Client ID	Payamatan	<u>.</u> .		_	Lin	
Zao Sample ID		Parameter	Spike	Result	Recovery Qual	Low	High
BLKMS	VBLK01MS	1,2-Dichloroethane-d4	50	51.42	103	72.00	119.00
		Dibromofluoromethane	50	51.24	102	85.00	115.00
		Toluene-d8	50	51.67	103	81.00	120.00
		4-Bromofluorobenzene	50	52.73	105	76.00	119.00
BLKMSD	VBLK01MSD	1,2-Dichloroethane-d4	50	49.67	99	72.00	119.00
en e	ter w	Dibromofluoromethane	50	48.79	98	85.00	115.00
		Toluene-d8	50	49.22	98	81.00	120.00
S		4-Bromofluorobenzene	50	49.93	100	76.00	119,00
BSG0716W1	VLCS01	1,2-Dichloroethane-d4	50	57.01	114	*	119.00
		Dibromofluoromethane	50	51.37	103	85.00	115.00
		Toluene-d8	50	51.59	103	81.00	120.00
		4-Bromofluorobenzene	50	53.29	107	76.00	119.00
S3529-01	MW-1	1,2-Dichloroethane-d4	50	51.34	103	72.00	119.00
		Dibromofluoromethane	50	53.63	107	85.00	115.00
	•	Toluene-d8	50	52.84	106	81.00	120.00
		4-Bromofluorobenzene	50	53.59	107 🗸	76.00	119.00
S3529-02	MW-6	1,2-Dichloroethane-d4	50	52.58	105	72.00	119.00
)		Dibromofluoromethane	50	51.71	103	85.00	115.00
		Toluene-d8	50	49.78	100	81.00	120.00
	•	4-Bromofluorobenzene	50	52.61	105		119.00
S3529-03	MW-2	1,2-Dichloroethane-d4	50	55	110	72.00	119.00
$x_{ij} = x_{ij} + x_{ij} = x_{ij}$		Dibromofluoromethane	50	52.7	105	•	115.00
		Toluene-d8	50	53.4	107		120.00
	•	4-Bromofluorobenzene	50	54.78	110		119.00
S3529-04	MW-3	1,2-Dichloroethane-d4	50	53.04	106		119.00
*		Dibromofluoromethane	50	53.35	107		115.00
		Toluene-d8	50	51.13	102	1.	120.00
		4-Bromofluorobenzene	. 50	53.14	106		119.00
S3529-05	MW-4	1,2-Dichloroethane-d4	50	57.35	115		119.00
		Dibromofluoromethane	50	53.37	107	85.00	
	* .	Toluene-d8	50	53.64	107		120.00
	•	4-Bromofluorobenzene	50	54.56	109		119.00
S3529-06	MW-5	1,2-Dichloroethane-d4	50	56.72	113 /		119.00
		Dibromofluoromethane	50	51.32	103	85.00	
		Toluene-d8	50	49.7	99		120.00
		4-Bromofluorobenzene	-50	52.18	104		119.00
S3529-07	TRIPBLANK	1,2-Dichloroethane-d4	50	54.55	109		119.00
		Dibromofluoromethane	50	51.6	103		115.00
)		Toluene-d8	50	49.24	98		120.00
ing!		4-Bromofluorobenzene	50	50.13	100		119.00
S3529-08	MW-3DUP	1,2-Dichloroethane-d4	50	55.54	111/	72.00 <b>7</b> 1	
•	•	Dibromofluoromethane	50	49.12	98		115.00
	·					- 00.00 I	12100

## Surrogate Summary SW-846

SDG No.:

S3529

`jent:

**Chazen Companies** 

Analytical Method:

Lab Sample ID	CIII and VD			•			Lin	ıits
	Client ID	Parameter	Spike	Result	Recovery	Qual	Low	High
S3529-08	MW-3DUP	Toluene-d8	50	49.74	99	gestion and their	81.00	120.00
	•	4-Bromofluorobenzene	50	52.45	105		76.00	119.00
VBG0716W2	VBLK01	1,2-Dichloroethane-d4	50	52.61	105		72.00	119.00
		Dibromofluoromethane	50	52.02	104		85.00	115.00
		Toluene-d8	50	51.94	104	* .	81.00	120.00
•		4-Bromofluorobenzene	50	52.01	104		76.00	119.00

### Matrix Spike/Matrix Spike Duplicate Summary

SW-846

SDG No.:

S3529

Client:

Chazen Companies

nalytical Method:

Lab Sample ID	Parameter	Spike	Sample Result	Result	Rec	RPD	Qual	Low	Limits High	RPD
Client Sample ID	: VBLK01MS	word of the second section of the second section of	1.344			· Ang. in	No Viger Te	August 19 a vita ki	the Market	etica e a gran
BLKMS	1,1-Dichloroethene	50	0.0	56	112		-	70	140	
	Benzene	: 50	0.0	53	106			79	130	
	Trichloroethene	50	0.0	. 60	120			69	153	
	Toluene	50	0.0	53	106			81	133	
	Chlorobenzene	50	0.0	49	98			79	122	
Client Sample ID:	VBLK01MSD							٠.		
BLKMSD	1,1-Dichloroethene	50	0.0	60	120	7 1		70	140	14
•	Benzene	50	0.0	51	102	4		79	130	11
	Trichloroethene	50	0.0	. 59	118	2		69	153	14
	Toluene	50	0.0	52	104	2		81	133	13
	Chlorobenzene	50	0.0	51	102	4		79	122	13

Chemtech

### Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

S3529

Client:

Chazen Companies

halytical Method:

Lab Sample ID	Parameter	•	Spike	Result	Rec RPD	Qual	Low	Limits High RPD
BSG0716W1	1,1-Dichloroethene	1999 - State House State of State of the Sta	20	20	100	said said de l'oc	70	130
	Benzene		20	18	90		70	130
	Trichloroethene		20	19	95		70	130
	Toluene		20	18	90	٠.	70	130
	Chlorobenzene		20	16	80		70	130

### VOLATILE METHOD BLANK SUMMARY

EPA	SAMPLE	NO.	
	VBLK01		

ab Name:

Chemtech

Contract:

CHAZ02

Lab Code:

CTECH

Case No.:

S3529

SAS No.:

S3529

SDG NO.:

S3529

Lab File ID:

VG071605.D

Lab Sample ID:

VBG0716W2

Date Analyzed:

7/16/2004

Time Analyzed:

01:46

GC Column:

ID:

0.18

(mm)

Heated Purge: (Y/N)

N

Instrument ID:

MSVOAG

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	TIME ANALYZED
TRIPBLANK	S3529-07	VG071607.D	02:31
VLCS01	BSG0716W1	VG071612.D	04:25
VBLK01MS	BLKMS	VG071613.D	04:49
VBLK01MSD	BLKMSD	VG071614.D	05:12
MW-1	\$3529-01	VG071616.D	05:58
MW-6	s3529-02	VG071617.D	06:21
MW-2	s3529-03	VG071618.D	06:44
MW-3	s3529-04	VG071619.D	07:08
MW-4	s3529-05	VG071620.D	07:31
MW-5	s3529-06	VG071621.D	07:53
MW-3DUP	S3529-08	VG071622.D	08:16

COMMENTS:					
•	 <del></del>		 <del></del>		·

#### 5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name:

Chemtech

Contract: CHAZ02

Lab Code:

CTECH

Case No.:

\$3529

(mm)

SAS No.: \$3529

SDG No.: <u>\$3529</u>

Lab File ID:

VG071401.D

BFB Injection Date:

7/14/2004

Instrument ID:

MSVOAG

BFB Injection Time:

GC Column:

10:30

RTX624 ID:

0.18

Heated Purge: Y/N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	22.2 (
75	30.0 - 60.0% of mass 95	48.6
95	Base Peak, 100% relative abundance	100.0
- 96	5.0 - 9.0% of mass 95	6.6
173	Less than 2.0% of mass 174	0.2( 0.2 .1
174	50.0 - 100.0% of mass 95	73.7
175	5.0 - 9.0% of mass 174	5.4 ( 7.4 1
176	95.0 - 101.0% of mass 174	72.6 ( 98.5 1
177	5.0 - 9.0% of mass 176	4.9 ( 6.8 2

1-Value is % mass 174

2-Value is % mass 176

### THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
VSTD001	1 PPB ICC	VG071402.D	7/14/2004	10:55
VSTD010	10 PPB ICC	VG071403.D	7/14/2004	11:18
VSTD050	50 PPB ICC	VG071404.D	7/14/2004	11:42
VSTD100	100 PPB ICC	VG071405.D	7/14/2004	12:05
VSTD200	200 PPB ICC	VG071406.D	7/14/2004	12:28

#### 5A

### VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: Chemtech Contract: CHAZ02

Lab File ID: VG071601.D BFB Injection Date: 7/16/2004

Instrument ID: MSVOAG BFB Injection Time: 00:15

GC Column: RTX624 ID: 0.18 (mm) Heated Purge: Y/N N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50	15.0 - 40.0% of mass 95	25.8
75	30.0 - 60.0% of mass 95	49.7
95	Base Peak, 100% relative abundance	100.0
96	5.0 - 9.0% of mass 95	6.7
173	Less than 2.0% of mass 174	0.1( 0.0 1
174	50.0 - 100.0% of mass 95	59.9
175	5.0 - 9.0% of mass 174	5.1 ( 8.4 1
176	95.0 - 101.0% of mass 174	57.5 ( 96.0.1
177	5.0 - 9.0% of mass 176	4.0 ( 7,0 2

1-Value is % mass 174

2-Value is % mass 176

#### THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

ministra de la compania del la compania de la compania de la compania de la compania del la compania de  la compania de la compania de la compania de la compania del la compa	commence of the second to the second of the	LAB	DATE	TIME
SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
VSTD050	50 PPB CCC	VG071602.D	7/16/2004	00:38
VBLK01	VBG0716W2	VG071605.D	7/16/2004	01:46
TRIPBLANK	s3529-07	VG071607.D	7/16/2004	02:31
VLCS01	BSG0716W1	VG071612.D	7/16/2004	04:25
VBLK01MS	BLKMS	VG071613.D	7/16/2004	04:49
VBLK01MSD	BLKMSD	VG071614.D	7/16/2004	05:12
MW-1	s3529-01	VG071616.D	7/16/2004	05:58
MW-6	s3529-02	VG071617.D	7/16/2004	06:21
MW-2	s3529-03	VG071618.D	7/16/2004	06:44
MW-3	s3529-04	VG071619.D	7/16/2004	07:08
MW-4	s3529-05	VG071620.D	7/16/2004	07:31
MW-5	s3529-06	VG071621.D	7/16/2004	07:53
MW-3DUP	s3529-08	VG071622.D	7/16/2004	08:16

#### VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Chemtech Contract CHAZ02

Lab Code: CTECH Case No.: S3529 SAS No.: S3529 SDG No.: S3529

Lab File ID: VG071602.D Date Analyzed: 7/16/2004

Instrument ID: MSVOAG Time Analyzed: 00:38

GC Column: RTX624 ID: 0.1 (mm) Heated Purge: (Y/N) N

	IS1 AREA #	RT#	IS2 AREA #	RT #	IS3 AREA #	RT #
12 HOUR STD	890332	4.61	1612659	5.34	1590682	8.59
UPPER LIMIT	1780664	5.11	3225318	5.84	3181364	9.09
LOWER LIMIT	445166	4.11	806330	4.84	795341	8.09
SAMPLE NO.					· · · · · ·	
VBLK01	943188	4.61	1689299	5.35	1696241	8.60
TRIPBLANK	901660	4.61	1660210	5.35	1704055	8.60
VLCS01	854709	4.61	1535848	5.34	1586534	8.60
VBLK01MS	853996	4.60	1518804	5.34	1574220	8.60
VBLK01MSD	904831	4.60	1674501	5.35	1642471	8.59
MW-1	981378	4.61	1696653	5.35	1765581	8.60
™MW-6	951893	4.61	1672103	5.35	1739901	8.60
MW-2	896184	4.61	1597223	5.34	1711623	8.59
MW-3	909216	4.61	1623326	5.35	1710673	8.60
MW-4	863466	4.61	1560124	5.34	1677283	8.60
MW-5	856931	4.61	1617324	5.35	1650586	8.59
MW-3DUP	850861	4.60	1622409	5.35	1637652	8.59

IS1 = Pentafluorobenzene

IS2 = 1,4-Difluorobenzene

IS3 = Chlorobenzene-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT LOWER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

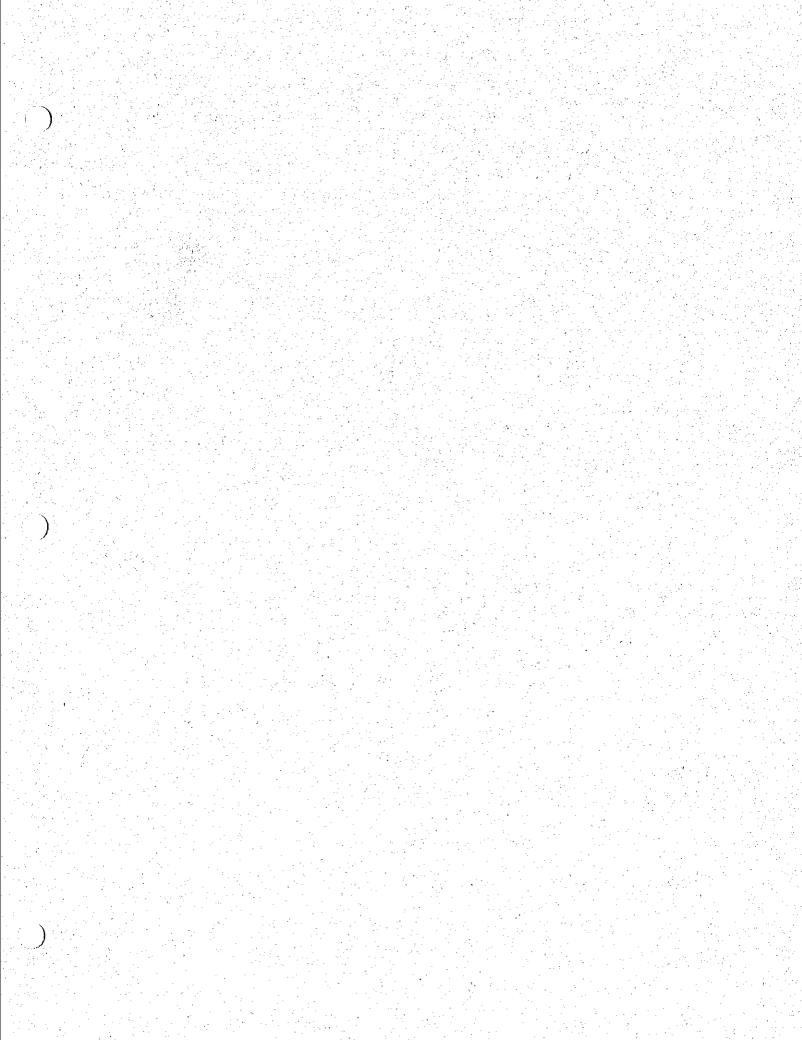
^{*} Values outside of QC limits.

#### VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Chemtech Lab Name: Contract: CHAZ02 Lab Code: SAS No.: CTECH Case No. S3529 SDG No.: S3529 S3529 Lab File ID: VG071602.D Date Analyzed: 7/16/2004 Instrument ID: **MSVOAG** Time Analyzed: 00:38 GC Column: RTX624 ID: 0.1 (mm)

Heated Purge: (Y/N)

N


<u></u>		<del></del>	• •	<del></del>	
	IS4 AREA #	RT#			
12 HOUR STD	837331	10.74			
UPPER LIMIT	1674662	11.24			- <b></b>
LOWER LIMIT	418666	10.24			
SAMPLE NO.					
VBLK01	871167	10.74			
TRIPBLANK	841844	10.74			
VLCS01	830037	10.74			
VBLK01MS	849788	10.74			
VBLK01MSD	868992	10.73			
MW-1	921981	10.74			
MW-6	902964	10.74	 a -		
MW-2	861685	10.74			<u></u>
MW-3	857189	10.73			
MW-4	850597	10.74			
MW-5	836688	10.74		· .	<u> </u>
MW-3DUP	834628	10.74	,		

IS4 = 1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.



#### DATA USABILITY SUMMARY REPORT

for

THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3529 Sampled 7/8/04

## AQUEOUS SAMPLES for SEMIVOLATILE ORGANICS

)
)
)
)
)
)
)

#### DATA ASSESSMENT

A semivolatile organics data package containing analytical results for seven aqueous samples was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8270C, addressed Target Compound List analytes. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-22, Rev 2, SOP for the Validation of Organic Data Acquired Using SW-846 Method 8270C, June 2001) was used as a technical reference.

The presence of bis(2-ethylhexyl)phthalate and Condensation Product (ACP) in every program sample is assumed to represent a laboratory artifact. The phthalate and the ACP should be considered undetected in each samples.

The acid fraction of each program sample has been qualified as an estimation due to poor surrogate standard recoveries.

The Tentatively Identified Compounds (TIC) reported from each program sample have been corrected to reflect identifications that are supported by the library searches included in the raw data.

#### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Reported concentrations that are felt to provide a usable estimation of the conditions being measured have been flagged "J" and "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No concentration, even if it has passed all QC testing, No compound guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin Date: 10/18/04

#### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved, or are not analyzed within established holding times, may no longer be considered representative. Holding times are calculated from the time of receipt (VTSR). Samples must remain chilled to 4°C from the time of collection. Extractions must begin within 5 days of receipt. Analyses must be completed within 40 days of extraction. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a matrix spike, matrix spike duplicate, and a rinsate blank.

This sample delivery group contained six groundwater samples and a field duplicate. The samples were collected from the Former Stillwater Boiler House site 08Jul04. They were shipped to the laboratory, via FedEx on the day of collection. They were received, intact, on 10Jul04. The entire group of samples was extracted on 14Jul04. Analyses were completed on 20Jul04. Program holding time limitations were satisfied.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank. Any sample concentration less than 5 times the level determined in a blank must be qualified. The qualification criteria is extended to ten times the concentration observed in blanks for common laboratory artifacts. These include phthalate esters.

One method blank was processed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination. Although not present in the method blank, bis(2-ehtylhexyl)phthalate was detected in each program sample. The presence of this phthalate is assumed to represent a laboratory artifact. However, because the phthalate was not present in blanks, it cannot be removed from sample reports. Bis(3-ethylhexyl)phthalate concentrations have been flagged as estimations. They should only be considered significant if consistent with site history.

4-Hydroxy-4-methyl-2-pentanone, an Aldol Condensation Product, was reported as a Tentatively Identified Compound (TIC), in the method blank and each program sample. This artifact has been removed from sample reports.

#### MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

An Instrument Performance Check Standard of DFTPP was analyzed prior to each analytical sequence and during every 12-hour period of instrument operation. An Instrument Performance Check Form is

present for each DFTPP evaluation. The DFTPP tunes associated with this group of samples satisfied the program acceptance criteria.

#### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed on 10Jul04. Standards of 20, 50, 80, 120 and 160 ng were included. The calibration curve for each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity.

Calibration verifications were performed on 15Jul04 and 19Jul04, prior to the analysis of samples from this program. When compared to the initial calibration, these checks demonstrated an acceptable level of instrument stability.

#### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared. The laboratory's in-house acceptance criteria was applied. However, when compared to the ASP criteria, the phenol-d5 and 2-fluorophenol additions to every program sample except MW-3DUP produced an unacceptably low recovery. Based on this performance, the aid fraction of every sample except MW-3DUP has been qualified as an estimation.

#### INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than a factor of two. When compared to the preceding calibration check, retention times may not vary by more than 30 seconds.

The laboratory correctly calculated control limits for internal standard response and retention times. When compared to this criteria an acceptable response was reported for each internal standard addition to this group of samples.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte
concentrations to a sample, prior to analysis. Analyte recoveries
provide an indication of laboratory accuracy. The analysis of a
duplicate spiked aliquot provides a measurement of precision.

A spiked sample was not analyzed with this group of samples. Recoveries for a pair of spiked blanks were reported. Although these spikes produced acceptable recoveries, they provided no indication of sample matrix affects that might bias measurements. The laboratory should be cautioned against such omissions in the future.

#### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicates of MW-3 were included in this delivery group. Both samples contained a trace of the phthalate artifact and were otherwise clean. An acceptable level of precision was demonstrated.

#### SAMPLE INFORMATION

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

The Tentatively Identified Compounds (TIC) reported from each sample included an Aldol Condensation Product (ACP). This artifact has been removed from each report. The TIC's reported from each sample also included several identifications that were not supported by the library searches included in the raw data. Each report has been edited to include appropriate identifications.

SUMMARY OF QUALIFIED DATA

Sampled 08Jul04

Former Stillwater Boiler House site

SPECTRA ID TIC	CORRECT						
SURROGATE ACIDS	ALL UJ						
BLANK PHTHALATE	0.340	0.340	0.350	0.340	0.340	0.340	0.340
BLANK ALDOL	REMOVE						
	(83529-01)	(83529-02)	(83529-03)	(83529-04)	(83529-05)	(83529-06)	TW-3DUP (S3529-08)
	MM-1	MM-6	MW-2	MM-3	MW-4	MW-5	MW-3DU

SDG No.:

Associated Blank:

S3529

Client:

**Chazen Companies** 

 Sample ID:
 \$\frac{\text{S3529-01}}{2004}\$

 Date Collected:
 \$\frac{7/8/2004}{2004}\$

 Date Analyzed:
 \$\frac{7/14/2004}{2004}\$

 Dilution:
 \$1\$

 Analytical Method:
 \$\frac{8270}{950.0}\$

 Sample Wt/Wol:
 \$\frac{950.0}{2}\$

 Injection Vol:
 \$2\$

PB16271B

Client ID: MW-1

Date Received: Matrix: File ID:

7/10/2004 WATER BB017031.D

Instrument ID: BNAB
Analytical Run ID: BI

BB071004

Extract Vol: % Moisture:

Parameter	CAS Number	Concentration	<b>C</b> .	RDL	MDL	Units
TARGETS					·	
Benzaldehyde	100-52-7	< 1.7	Ü	11	1.7	·ug/L
Phenol	108-95-2	< 0.430	AUJ.	.11	0.430	ug/L
bis(2-Chloroethyl)ether	111-44-4	< 0.330	U ,	11	0.330	ug/L
2-Chlorophenol	95-57-8	< 0.730	せいつ	11	0.730	ug/L
2-Methylphenol	95-48-7	< 1.1	みしつ	11	1.1	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.840	. U	1.1	0.840	ug/L
cetophenone	98-86-2	< 0.560	$- \mathcal{D}_{i} = 0$	. L	0.560	ug/L
3+4-Methylphenols	106-44-5	< 1.1	ゼロゴ	11	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.770	U	11	0.770	ug/L
Hexachloroethane	67-72-1	< 0.920	U	11	0.920	ug/L
Nitrobenzene	98-95-3	< 0.380	Ü	11	0.380	ug/L
Isophorone	78-59-1	< 0.480	U	11	0.480	ug/L
2-Nitrophenol	88-75-5	< 0.270	JE UJ	11	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.470	JUJ	11	0.470	ug/L
bis(2-Chloroethoxy)methane	111-91-1	< 0.450	U .	11	0.450	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	200	11	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	1·1	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.1	U	11	4.1	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	U	11	0.380	ug/L
Caprolactam	105-60-2	< 0.510	U	11	0.510	ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.300	AU)	11	0.300	ug/L
2-Methylnaphthalene	91-57-6	< 0.500	U	11	0.500	ug/L
Hexachlorocyclopentadiene	77-47-4	< 0.460	U	11	0.460	ug/L
2,4,6-Trichlorophenol	88-06-2	< 0.290	DUJ	11	0.290	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.590	ガレゴ	11	0.590	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	11	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	U	11	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	U	11	0.300	ug/L
Dimethylphthalate	131-11-3	< 0.260	U	11	0.260	ug/L
Acenaphthylene	208-96-8	< 0.440	U MY	. 11	0.440	<b>20</b>

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-01

Date Collected: Date Analyzed: Date Extracted:

7/15/2004

2

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

7/8/2004

7/14/2004

8270 950.0

PB16271B

Client ID:

Date Received:

Matrix: File ID:

Instrument ID: Analytical Run ID:

**Extract Vol:** % Moisture: MW-1

7/10/2004

WATER

BB017031,D

**BNAB** 

BB071004

1000 100

Parameter	CAS Number	Concentration	<b>C</b> .	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 0.420	U	- 11	0.420	ug/L
3-Nitroaniline	99-09-2	< 1.1	U	11	1.1	ug/L
Acenaphthene	83-32-9	< 0.240	U .	11	0.240	ug/L
2,4-Dinitrophenol	51-28-5	< 0.190	ルしつ	11	0.190	ug/L
4-Nitrophenol	100-02-7	< 0.950	ガロコ	11	0.950	ug/L
Dibenzofuran	132-64-9	< 0.320	U	11	0.320	ug/L
A-Dinitrotoluene	121-14-2	< 0.340	. <b>U</b>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.340	ug/L
Diethylphthalate	84-66-2	< 0.340	U	11	0.340	ug/L
4-Chlorophenyl-phenylether	7005-72-3	< 0.370	U	11	0.370	ug/L
Fluorene	86-73-7	< 0.170	U	11	0.170	ug/L
4-Nitroaniline	100-01-6	< 0.840	U	11	0.840	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.5	BUJ	11	1.5	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.280	υ	11	0.280	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	Ū	11	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.230	U	11	0.230	ug/L
Atrazine	1912-24-9	< 0.480	ប	11	0.480	ug/L
Pentachlorophenol	87-86-5	< 0.390	JUD :	11	0.390	ug/L
Phenanthrene	85-01-8	< 0.280	U	11	0.280	ug/L
Anthracene	120-12-7	< 0.160	U	11	0.160	ug/L
Carbazole	86-74-8	< 0.310	Ū	11	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.099	ΰ	11	0.099	ug/L
Fluoranthene	206-44-0	< 0.210	U	11	0.210	ug/L
Pyrene	129-00-0	< 0.250	U	11	0.250	ug/L
Butylbenzylphthalate	85-68-7	< 0.300	<b>u</b>	11	0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	U	11 .	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.230	U	11	0.230	ug/L
Chrysene	218-01-9	< 0.390	U .	11	0.390	ug/L
's(2-Ethylhexyl)phthalate	117-81-7	< 220.34	~ U	<b>/</b> 11	0.350	ug/L
Di-n-octyl phthalate	117-84-0	< 0.170	U	11	0.170	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.230	U a/	11	0.230	ug/L <b>21</b>
•			$\sim$	<b>'</b> A		41

SVOCMS Group1

SDG No.: S3529

Associated Blank:

Client:

**Chazen Companies** 

 Sample ID:
 \$3529-01

 Date Collected:
 7/8/2004

 Date Analyzed:
 7/15/2004

 Date Extracted:
 7/14/2004

 Dilution:
 1

 Analytical Method:
 8270

 Sample Wt/Wol:
 950.0

 Injection Vol:
 2

PB16271B

Client ID: <u>MW-1</u>

Date Received:
Matrix:
File ID:
Instrument ID:

7/10/2004 WATER BB017031.D BNAB

Analytical Run ID:
Extract Vol:
% Moisture:

BB071004

Parameter	CAS Number	Concentration	<b>C</b>	RDL	MDL	Units
TARGETS			· · · · · · · · · · · · · · · · · · ·			
Benzo(k)fluoranthene	207-08-9	< 0.390	U ·	11	0.390	ug/L
Benzo(a)pyrene	50-32-8	< 0.450	U	11	0.450	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.290	U	··] .11 ··	0.290	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.290	Ü.	11	0.290	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.430	U	11	0.430	ug/L
SURROGATES						<del></del>
Fluorophenol	367-12-4	68.3	23 %	21 - 100	eta Seta de	SPK: 300
Phenol-d5	13127-88-3	44.77	15 %	10 - 94		SPK: 300
Nitrobenzene-d5	4165-60-0	131.94	66 %	35 - 1.14		SPK: 200
2-Fluorobiphenyl	321-60-8	142.51	71 %	43 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	148.73	50 %	10 - 123		SPK: 300
Terphenyl-d14	1718-51-0	90.87	45 %	33 - 141		SPK: 200
INTERNAL STANDARDS				· · · · · · · · · · · · · · · · · · ·		**********
1,4-Dichlorobenzene-d4	3855-82-1	429684	6.52			
Naphthalene-d8	1146-65-2	1623489	8.83		•	
Acenaphthene-d10	15067-26-2	819501	12.31			
Phenanthrene-d10	1517-22-2	1240586	15.30	•		
Chrysene-d12	1719-03-5	940291	20.68			A
Perylene-d12	1520-96-3	802853	24.05			•
FENTITIVE IDENTIFIED CO	MPOUNDS					
ACP		6.2	AB	4.15		<del> ug/L</del>
Tetradecanoie acid by Janie a	44638 ا	3.2	J	16.46		ug/L
Olcio Acid unknown	112801	10	J	17.90		ug/L
1-Detadecanol a (cehe (	112925	6.7	. J	20.38		ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-02

Client ID:

MW-6

Date Collected:

7/8/2004

Date Received:

7/10/2004

Date Analyzed:

7/15/2004

Matrix: File ID:

WATER

Date Extracted:

7/14/2004

BB017033.D

Dilution: Analytical Method:

8270

**BNAB** 

Sample Wt/Wol:

960.0

Analytical Run ID:

BB071004

Injection Vol:

Extract Vol: % Moisture:

Instrument ID:

1000 100

Associated Blank:

PB16271B

Parameter	CAS Number	Concentration	on C	RDL	MDL	Units
TARGETS				· · · · · · · · · · · · · · · · · · ·		
Benzaldehyde	100-52-7	< 1.7	U	10	1.7	ug/L
Phenol	108-95-2	< 0.430	みしつ	10	0.430	ug/L
bis(2-Chloroethyl)ether	1-1-1-44-4	< 0.330	<b>U</b>	10	0.330	ug/L
2-Chlorophenol	95-57-8	< 0.730	* WUJ	10.	0.730	ug/L
2-Methylphenol	95-48-7	< .1.1	<b>EUD</b>	10	1.1	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.830	Ú	10	0.830	ug/L
cetophenone	98-86-2	·∽ < 0.550	M	1-0	0.550	ug/L
3+4-Methylphenols	106-44-5	< 1.1	という	10	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.770	U	10	0.770	ug/L
Hexachloroethane	67-72-1	< 0.910	U	10	0.910	ug/L
Nitrobenzene	98-95-3	< 0.380	U	10	0.380	ug/L
Isophorone	78-59-1	< 0.480	$^{-}$ U	10	0.480	ug/L
2-Nitrophenol	88-75-5	< 0.270	CUK	. 10	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.460	メして	10	0.460	ug/L
bis(2-Chloroethoxy)methane	111-91-1	< 0.440	U	10	0.440	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	JU UJ	10	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	10	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.1	Ū	10	4.1	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	U	10	0.380	ug/L
Caprolactam	105-60-2	< 0.510	Ū	10	0.510	ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.300	CUK	10	0.300	ug/L
2-Methylnaphthalene	91-57-6	< 0.500	U	10	0.500	ug/L
Hexachlorocyclopentadiene	77-47-4	< 0.450	Ū	1,0	0.450	ug/L
2,4,6-Trichlorophenol	88-06-2	< 0.280	- CU K	10	0.280	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.580	W 00	10	0.580	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	10	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	U	10	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	U	10	0.300	ug/L
Dimethylphthalate	131-11-3	< 0.260	U	10	0.260	ug/L
Acenaphthylene	208-96-8	< 0.430	) "	10	0.430	սց/L <b>33</b>

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-02

Client ID:

**MW-6** 

Date Collected:

7/8/2004

7/15/2004

Matrix: File ID:

Date Received:

Instrument ID:

Analytical Run ID:

7/10/2004

Date Analyzed: Date Extracted:

7/14/2004

WATER

Dilution:

BB017033.D

Analytical Method:

<u>8270</u>

BNAB

Sample Wt/Wol:

960.0

BB071004

Injection Vol:

1000

Associated Blank:

PB16271B

Extract Vol: % Moisture: 100

Parameter	CAS Number	Concentration	$\mathbf{c}$	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 0.410	U	10	0.410	ug/L
3-Nitroaniline	99-09-2	< 1.0	U	10	1.0	ug/L
Acenaphthene	83-32-9	< 0.240	U	10	0.240	ug/L
2,4-Dinitrophenol	51-28-5	< 0.190	JU V	10	0.190	ug/L
4-Nitrophenol	100-02-7	< 0.940	WUJ	10	0.940	ug/L
Dibenzofuran	132-64-9	< 0.310	U	10	0.310	ug/L
)4-Dinitrotoluene	121-14-2	< 0.340	Sec		0.340	ug/L
Ďiethylphthalate	84-66-2	< 0.340	$\cdot$ $\mathbf{U}$	10	0.340	ug/L
4-Chlorophenyl-phenylether	7005-72-3	< 0.360	U	10	0.360	ug/L
Fluorene	86-73-7	< 0.170	U .	10	0.170	ug/L
4-Nitroaniline	100-01-6	< 0.830	U	10	0.830	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.4	AU)	10	1,4	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.280	U	10	0.280	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	. U	10	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.230	U	10	0.230	ug/L
Atrazine	1912-24-9	< 0.480	U	10	0.480	ug/L
Pentachlorophenol	87-86-5	< 0.390	JHUJ.	10	0.390	ug/L
Phenanthrene	85-01-8	< 0.270	U	10	0.270	ug/L
Anthracene	120-12-7	< 0.160	U	10	0.160	ug/L
Carbazole	86-74-8	< 0.310	U	10	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.098	U	10	0.098	ug/L
Fluoranthene	206-44-0	< 0.210	U	10	0.210	ug/L
Pyrene	129-00-0	< 0.250	U	10	0.250	ug/L
Butylbenzylphthalate	85-68-7	< 0.300	. Se <b>U</b> . Se . Sees.		0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	U	10	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.220	U	10	0.220	ug/L
Chrysene	218-01-9	< 0.380	U	10	0.380	ug/L
is(2-Ethylhexyl)phthalate	117-81-7	2-1.6 0.34 V	* U	10	0.340	ug/L
ان-n-octyl phthalate	117-84-0	< 0.170	U	10	0.170	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.230	U	10	0.230	ug/L <b>34</b>

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-02

Date Collected: Date Analyzed:

Date Extracted:

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

7/8/2004 7/15/2004

7/14/2004

8270 960.0

PB16271B

Client ID:

Date Received:

Matrix:

File ID: Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

**MW-6** 

7/10/2004

WATER

BB017033.D

**BNAB** 

BB071004

1000

Parameter	CAS Number	Concentration	<b>c</b>	RDL	MDL	Units
TARGETS						······································
Benzo(k)fluoranthene	207-08-9	< 0.380	U	10	0.380	ug/L
Benzo(a)pyrene	50-32-8	< 0.450	U	10	0.450	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0,290	U		0.290	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.290	Ù	10	0.290	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.420	U	10	0.420	ug/L
SURROGATES					<del></del>	· · · · · · · · · · · · · · · · · · ·
Fluorophenol	367-12-4	72.96	24 %	21 - 100	talange, maramatan a	SPK: 300
Phenol-d5	13127-88-3	48.83	16 %	10 - 94		SPK: 300
Nitrobenzene-d5	4165-60-0	127.57	64 %	35 - 114		SPK: 200
2-Fluorobiphenyl	321-60-8	131.9	66 %	43 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	146.74	49 %	10 - 123	- •	SPK: 300
Terphenyl-d14	1718-51-0	89	44 %	33 - 141		SPK: 200
INTERNAL STANDARDS				······································		
1,4-Dichlorobenzene-d4	3855-82-1	426781	6.52		,	
Naphthalene-d8	1146-65-2	1670398	8.83	•		
Acenaphthene-d10	15067-26-2	830525	12.31			
Phenanthrene-d10	1517-22-2	1234791	15.30			
Chrysene-d12	1719-03-5	907514	20.68			
Perylene-d12	1520-96-3	786777	24.04	÷ .		
TENTITIVE IDENTIFIED COM	POUNDS					
ACP-		6.4	AB	4.15		uz/L
1-Hexanol, 2 ethyl- unknum	104767	8.2	<b>J</b>	6.64	in the second se	ug/L
t, <del>2'Benzenedicarbonitrile, 4 amino</del>	56765798	3.8	J	8.13		ug/L
Fluoro-K-nitrophenol	1526176	3.2	J	8.36		ug/L
Ethanol, 2-[(2-ethylbexyl)oxy]	1559359	3.6	J	9.30		ug/L
Ricyclo[2.2.1]hept-2 ene, 5 etheny	3048644	2.0	J	10.54		ug/L
hisopropyl other unknown	108203	5.3	J	14.99		ug/L
Hexadecanoic acid	57103	3.6	J	16.46		ug/L
Ethanol, 2-[2-(2-methoxyethoxy)ct-	112356	5.9	J	17.28		u <b>35</b>

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-02

Client ID:

MW-6

Date Collected:

7/8/2004

7/15/2004

Matrix:

7/10/2004

Date Analyzed:

Date Received:

WATER

Date Extracted: Dilution:

7/14/2004

File ID:

BB017033.D

Analytical Method:

<u>8270</u>

Instrument ID: Analytical Run ID: **BNAB** BB071004

Sample Wt/Wol:

960.0

Extract Vol:

Injection Vol:

2

% Moisture:

1000 100

Associated Blank:

PB16271B

- Marie Company and Company						
Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TENTITIVE IDENTIFIED COM	<b>MPOUNDS</b>					·
Oleic Acid Organic acid	112801	15	J	17.90		ug/L
Octadecanoic actd un Knew-	57114	2.6	J	18.05		ug/L
3,6,9,12,15 Pontaoxanonadcean-1-		3.8	,. <b>J</b>			ug/L
1-Nonadccanolynknown	<b>~</b> 1454848	4.5	. <b>J</b>	20.38		ug/L
Thiazolidine in kurn	504789	3.4	J	21.14	* .	ug/L
Bis(2-chloroisonropyl) ether	39638329	2.1	J	22.71		ug/L
Dodecanol vy kum	10203288	2.3	J	25,48		ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-03

Client ID:

MW-2

Date Collected:

7/8/2004

7/10/2004

Date Analyzed:

7/19/2004

Matrix: File ID: WATER

Date Extracted: Dilution:

7/14/2004

BB017087.D

Analytical Method:

8270

**BNAB** 

Sample Wt/Wol:

BB071004

Injection Vol:

940.0

Analytical Run ID: Extract Vol:

Date Received:

Instrument ID:

1000

2

% Moisture:

100

Associated Blank:

PB16271B

Parameter	CAS Number	Concentratio	n C	RDL	MDL	Units
TARGETS		· · · · · · · · · · · · · · · · · · ·				
Benzaldehyde	100-52-7	< 1.8	U	11	1.8	ug/L
Phenol	108-95-2	< 0.440	XV)	11	0.440	ug/L
bis(2-Chloroethyl)ether	111-44-4	< 0.330	U ···	11	0.330	ug/L
2-Chlorophenol	95-57-8	< 0.740	DUD	11	0.740	ug/L
2-Methylphenol	95-48-7	< 1.2	かいり	11	1.2	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.850	U	11	0.850	ug/L
cetophenone	98-86-2	< 0.560	$\mathbf{v}$	11.	0.560	ug/L
3+4-Methylphenols	106-44-5	< 1.1	ルの	11	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.780	U	1,1	0.780	ug/L
Hexachloroethane	67-72-1	< 0.930	U	11	0.930	ug/L
Nitrobenzene	98-95-3	< 0.380	U	11	0.380	ug/L
Isophorone	78-59-1	< 0.490	U	11	0.490	ug/L
2-Nitrophenol	88-75-5	< 0.270	W ( )	11	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.470	せいつ	11	0.470	ug/L
bis(2-Chloroethoxy)methane	111-91-1	< 0.450	U	i 1	0.450	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	せいつ	11	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	11	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.2	U	11	4.2	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	U	11	0.380	ug/L
Caprolactam	105-60-2	< 0.520	U	11	0.520	ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.310	CUK	$\Pi$	0.310	ug/L
2-Methylnaphthalene	91-57-6	< 0.510	U	11	0.510	ug/L
Hexachlorocyclopentadiene	77-47-4	< 0.460	·U	1-1	0.460	ug/L
2,4,6-Trichlorophenol	88-06-2	< 0.290	JU UD		0.290	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.590	JU UJ	11	0.590	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	11	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	U	11	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	υ	11	0.300	ug/L
Jimethylphthalate	131-11-3	< 0.260	U	11	0.260	ug/L
Acenaphthylene	208-96-8	< 0.440	1 U	11	0.440	ug/J <b>60</b>

**SVOCMS** Group1

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-03

7/8/2004

Date Collected: Date Analyzed: Date Extracted:

7/19/2004 7/14/2004

Dilution: Analytical Method:

Sample Wt/Wol:

Injection Vol: Associated Blank:

PB16271B

<u>8270</u>

940.0

Client ID:

Date Received:

Matrix: File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

<u>MW-2</u>

7/10/2004

WATER

BB017087.D

**BNAB** 

BB071004

1000

100

Parameter	CAS Number	Concentration	n C	RDL	MDL	Units
TARGETS			· · · · · · · · · · · · · · · · · · ·			
2,6-Dinitrotoluene	606-20-2	< 0.420	U	11	0.420	ug/L
3-Nitroaniline	99-09-2	< 1.1	U	. 11	1.1	ug/L
Acenaphthene	83-32-9	< 0.240		11 -	0.240	ug/L
2,4-Dinitrophenol	51-28-5	< 0.190	AU)	11	0.190	ug/L
4-Nitrophenol	100-02-7	< 0.960	V UJ	11	0.960	ug/L
Dibenzofuran	132-64-9	< 0.320	U J	11	0.320	ug/L
4-Dinitrotoluene	121-14-2	eu < ∙0.340 · . · .	U.	11	0.340	⊸ug/L
Diethylphthalate	84-66-2	< 0.350	Ŭ	11	0.350	ug/L
4-Chlorophenyl-phenylether	7005-72-3	< 0.370	ับ	11	0.370	ug/L
Fluorene	86-73-7	< 0.180	U	11	0.180	ug/L
4-Nitroaniline	100-01-6	< 0.850	U	11	0.850	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.5	NO	11	1,5	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.290	U	11	0.290	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	U	11	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.240	Ū	- 11	0.240	ug/L
Atrazine	1912-24-9	< 0.490	U	11	0.490	ug/L
Pentachlorophenol	87-86-5	< 0.400	メレコ	11	0.400	ug/L
Phenanthrene	85-01-8	< 0.280	U	1.1	0.280	ug/L
Anthracene	120-12-7	< 0.160	U	11	0.160	ug/L
Carbazole	86 <b>-</b> 74-8	< 0.310	U	11	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.100	<b>U</b>	11	0.100	ug/L
Fluoranthene	206-44-0	< 0.210	U	11	0.210	ug/L
Pyrene	129-00-0	< 0.250	U	.11	0.250	ug/L
Butylbenzylphthalate	85-68-7	< 0.300	<del>U</del>		0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	U	11	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.230	U	11	0.230	ug/L
Chrysene	218-01-9	< 0.390	∠U.	11	0.390	ug/L
is(2-Ethylhexyl)phthalate	117-81-7	6 32 0,35	120	11	0.350	ug/L
i-n-octyl phthalate	117-84-0	< 0.180	U	11	0.180	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.240	ΰ	11	0.240	
	•	N	N_	•		ug/L 61
		Ji		·	CV	OCMS Groun1

**SVOCMS** Group1

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-03

7/8/2004

7/19/2004

7/14/2004

Date Collected: Date Analyzed:

Date Extracted:

Dilution: Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270 940.0

PB16271B

Client ID:

Date Received:

Matrix: File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

**MW-2** 

7/10/2004

WATER

RB017087.D

**BNAB** 

BB071004

1000

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 0.390	Ú	11	0.390	ug/L
Benzo(a)pyrene	50-32-8	< 0.460	U	11	0.460	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.300	U		0.300	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.300	U	11.	0.300	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.430	U	11	0.430	ug/L
SURROGATES						
-Fluorophenol	367-12-4	57.27	19 %	21 - 100	references the Burney Brown, i.e.	SPK: 300
Phenol-d5	13127-88-3	38.19	13 %	10 - 94	•	SPK: 300
Nitrobenzene-d5	41.65-60-0	104.63	52 %	35 - 114		SPK: 200
2-Fluorobiphenyl	321-60-8	110.81	55 %	43 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	132.22	44 %	10 - 123		SPK: 300
Terphenyl-d14	1718-51-0	85.01	43 %	33 - 141		SPK: 200
INTERNAL STANDARDS			1	· · · · · · · · · · · · · · · · · · ·		
1,4-Dichlorobenzene-d4	3855-82-1	318661	6.43			
Naphthalene-d8	1146-65-2	1221543	8.74			•
Acenaphthene-d10	15067-26-2	644508	12.21			
Phenanthrene-d10	1517-22-2	924377	15.20			
Chrysene-d12	1719-03-5	670151	20.57			
Perylene-d12	1520-96-3	530777	23.87			
TENTITIVE IDENTIFIED CON	MPOUNDS	·		·		
ACP		5.4	-AB-	4.07		
Hexadecanoic acid	57103	2.5	<b>J</b>	16.37		ug/L ug/L
Oleic Acid ovyamic acid	112801	6.6	J.	17.81	· == 1	ug/L
1-Dotriacontanol a (cehe	6624799	3.2	I	20.43		ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-04

Client ID:

MW-3

Date Collected:

7/8/2004

Date Received:

7/10/2004

Date Analyzed:

7/15/2004

Matrix: File ID:

Date Extracted:

7/14/2004

WATER

Dilution:

RB017036.D

Analytical Method:

Instrument ID: Analytical Run ID: BNAB

Sample Wt/Wol:

8270

Injection Vol:

960.0

Extract Vol:

BB071004

2

% Moisture:

1000 100

Associated Blank:

PB16271B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS			· · · · · · · · · · · · · · · · · · ·		: .	
Benzaldehyde	100-52-7	< 1.7	U	10	1.7	ug/L
Phenol	108-95-2	< 0.430	EUD.	10	0.430	ug/L
bis(2-Chloroethyl)ether	111-44-4	······································	U	10	0.330	ug/L
2-Chlorophenol	95-57-8	< 0.730	おいj	10	0.730	ug/L
2-Methylphenol	95-48-7	< 1.1	せいつ	10	1.1	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.830	υĞ	10	0.830	ug/L
cetophenone	98-86-2	< 0.550	U - w	======================================	*** **0.550** *	ug/L-
3+4-Methylphenols	106-44-5	< 1.1	JH:UJ	10	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.770	U	10	0.770	ug/L
Hexachloroethane	67-72-1	< 0.910	U	10.	0.910	ug/L
Nitrobenzene	98-95 <b>-</b> 3	< 0.380	U	10	0.380	ug/L
Isophorone	78-59-1	< 0.480	U	10	0.480	ug/L
2-Nitrophenol	88-75-5	< 0.270	XUJ	10	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.460	JU UJ	10	0.460	ug/L
bis(2-Chloroethoxy)methane	111-91-1	< 0.440	U	10	0.440	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	としつ	10	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	10	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.1	U	10	4.1	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	Ū	10	0.380	ug/L
Caprolactam	105-60-2	< 0.510	U	10	0.510	ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.300	Dr (C)	10	0.300	ug/L
2-Methylnaphthalene	91-57 <b>-</b> 6	< 0.500	U	10	0.500	ug/L
Hexachlorocyclopentadiene	77-47-4	< 0.450	U	10	0.450	ug/L
2,4,6-Trichlorophenol	88-06-2	< 0.280	- CU M	5 - 5 - <b>10</b> - 5 - 5 - 5	0.280	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.580	W (C) W	10	0.580	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	10	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	U	10	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	U	10	0.300	ug/L
ப்methylphthalate	131-11-3	< 0.260	U	10	0.260	ug/L
Acenaphthylene	208-96-8	< 0.430	Ū "	10	0.430	ս <u>ց/</u> Լ

**SVOCMS Group1** 

SDG No.: S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-04

**MW-3** 

7/10/2004

BB017036.D

BB071004

WATER

Date Collected:

7/8/2004

7/15/2004

Date Analyzed: Date Extracted:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270 960.0

PB16271B

Client ID:

Date Received:

Matrix:

File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

1000

100.

**BNAB** 

TARGETS  2,6-Dinitrotoluene  3-Nitroaniline  Acenaphthene  2,4-Dinitrophenol  4-Nitrophenol  Dibenzofuran  4-Dinitrotoluene  Diethylphthalate  4-Chlorophenyl-phenylether	606-20-2 99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7	< 0.410 < 1.0 < 0.240 < 0.190 < 0.940 < 0.310 < 0.340 < 0.360 < 0.170	ט ע די ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט ט	10 10 10 10 10 10	0.410 1.0 0.240 0.190 0.940 0.310 -0.340	ug/L ug/L ug/L ug/L ug/L ug/L
3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 4-Dinitrotoluene Diethylphthalate	99-09-2 83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7	< 1.0 < 0.240 < 0.190 < 0.940 < 0.310 < 0.340 < 0.340 < 0.360	υ Συ Συ υ υ	10 10 10 10 10	1.0 0.240 0.190 0.940 0.310	ug/L ug/L ug/L ug/L ug/L
Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 4-Dinitrotoluene Diethylphthalate	83-32-9 51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7	<ul> <li>&lt; 0.240</li> <li>&lt; 0.190</li> <li>&lt; 0.940</li> <li>&lt; 0.310</li> <li>&lt; 0.340</li> <li>&lt; 0.360</li> </ul>	U XVJ U U U	10 10 10 10	1.0 0.240 0.190 0.940 0.310	ug/L ug/L ug/L ug/L ug/L
2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 4-Dinitrotoluene Diethylphthalate	51-28-5 100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7	< 0.190 < 0.940 < 0.310 < 0.340 < 0.340 < 0.360	רט של ט ט ט	10 10 10	0.190 0.940 0.310 	ug/L ug/L ug/L ug/L ug/L
4-Nitrophenol Dibenzofuran 4-Dinitrotoluene Diethylphthalate	100-02-7 132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7	< 0.940 < 0.310 < 0.340 < 0.360	υ υ υ	10 10	0.190 0.940 0.310 	ug/L ug/L ug/L ug/L
Dibenzofuran  4-Dinitrotoluene Diethylphthalate	132-64-9 121-14-2 84-66-2 7005-72-3 86-73-7	< 0.310 < 0.340 < 0.340 < 0.360	Ŭ 	10	0.940 0.310 0.340	ug/L ug/L ug/L
4-Dinitrotoluene Diethylphthalate	121-14-2	< 0.340 < 0.360	Ŭ 	10	0:340	ug/L ug/L
Diethylphthalate	84-66-2 7005-72-3 86-73-7	< 0.340 < 0.360	U			ug/L
	7005-72-3 86-73-7	< 0.360		10	0.340	
4-Chlorophenyl-phenylether	86-73-7		<b>T</b> T .		0.5.10	ug/L
		~ 0.170	U	10	0.360	ug/L
Fluorene		< 0.170	U	10	0.170	ug/L
4-Nitroaniline	100-01-6	< 0.830	U	10	0.830	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.4	という	10	1.4	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.280	U	10	0.280	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	U	10	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.230	U	10	0.230	ug/L
Atrazine	1912 <b>-</b> 24-9	< 0.480	U	10	0.480	ug/L
Pentachlorophenol	87-86-5	< 0.390	2000	10	0.390	ug/L
Phenanthrene	85-01-8	< 0.270	U	10	0.270	ug/L
Anthracene	120-12-7	< 0.160	U.	10	0.160	ug/L
Carbazole	86-74-8	< 0.310	U	10	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.098	U	10	0.098	ug/L
Fluoranthene	206-44-0	< 0.210	U	10	0.210	ug/L
Pyrene	129-00-0	< 0.250	U	10	0.250	ug/L
Butylbenzylphthalate	85-68-7	< 0.300			0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	U	10	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.220	U	10	0.220	ug/L
Chrysene	218-01-9	< 0.380	<b>∠</b> U	10	0.380	ug/L
is(2-Ethylhexyl)phthalate	117-81-7	L-25-0.34	120	10	0.340	ug/L
Ji-n-octyl phthalate	117-84-0	< 0.170	, U	10	0.170	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.230	U.	10	0.230	u <u>e</u> /I <b>74</b>

SVOCMS Group1

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID: S3529-04 Date Collected: 7/8/2004 Date Analyzed: 7/15/2004 Date Extracted: 7/14/2004 Dilution: Analytical Method: 8270 Sample Wt/Wol: 960.0 Injection Vol: Associated Blank: PB16271B

Client ID: MW-3

Date Received: Matrix: File ID:

7/10/2004 WATER BB017036.D

Instrument ID: BNAB
Analytical Run ID: BI

BB071004

Extract Vol: % Moisture:

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS		<del></del>				
Benzo(k)fluoranthene	207-08-9	< 0.380	U	10	0.380	ug/L
Benzo(a)pyrene	50-32-8	< 0.450	U	10	0.450	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.290	U		0.290	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.290	U	10	0.290	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.420	U	10	0.420	ug/L
SURROGATES			·			
Fluorophenol	367-12-4	81.89	27 %	21 - 100	en en de la companya	SPK: 300
Phenol-d5	13127-88-3	54.77	18 %	10 - 94		SPK: 300
Nitrobenzene-d5	4165-60-0	127.05	64 %	35 - 114		SPK: 200
2-Fluorobiphenyl	321-60-8	130.09	65 %	43 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	158.7	53 %	10 - 123		SPK: 300
Terphenyl-d14	1718-51-0	90.45	.45 %	33 - 141		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	430782	6.52			
Naphthalene-d8	1146-65-2	1712630	8.82		•	
Acenaphthene-d10	15067-26-2	841466	12.30			
Phenanthrene-d10	1517-22-2	1232600	15.30			-
Chrysene-d12	1719-03-5	930073	20.68			
Perylene-d12	1520-96-3	790767	24.04	* * * * * * * * * * * * * * * * * * * *		
TENTITIVE IDENTIFIED CO	MPOUNDS				<del></del>	
ACP		6.3	AB	4.14		— <u>ug/L</u> - R
Hexadecanoic acid	57103	2.8	$\mathbf{J}_{1}$	16.46		ug/L
Decentit organic aci	<b>2</b> ₁₁₂₈₀₁	8.6	J	17.90		ug/L
4-Tetradocanol a (cehe (	1653334	4.2	. Л	20.38		ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-05

7/8/2004

Date Analyzed: Date Extracted:

7/15/2004 7/14/2004

8270

960.0

PB16271B

Dilution:

Date Collected:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

MW-4

Date Received:

Matrix:

Client ID:

7/10/2004 WATER

File ID:

BR017035.D BNAB

Instrument ID:

Analytical Run ID:

BB071004

Extract Vol:

1000 100

% Moisture:

Parameter	CAS Number	Concentrati	on C	RDL	MDL	Units
TARGETS		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
Benzaldehyde	100-52-7	< 1.7	U	10	1.7	ug/L
Phenol	108-95-2	< 0.430	#UJ	10	0.430	ug/L
bis(2-Chloroethyl)ether	111-44-4	<- 0.330	U		0.330	ug/L
2-Chlorophenol	95-57-8	< 0.730	XOUT	10	0.730	ug/L
2-Methylphenol	95-48-7	< 1.1	から	10	1.1	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.830	U	10	0.830	ug/L
cetophenone	98-86-2	< 0.550	su <b>U</b>	· · · · · · · · · · · · · · · · · · ·	0.550	ug/L
3+4-Methylphenols	106-44-5	< 1.1	メン	10	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.770	U	10	0.770	ug/L
Hexachloroethane	67-72-1	< 0.910	. U	10	0.910	ug/L
Nitrobenzene	98-95-3	< 0.380	U	10	0.380	ug/L
Isophorone	78-59-1	< 0.480	U	10	0.480	ug/L
2-Nitrophenol	88-75-5	< 0.270	10 M	10	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.460	X VJ	10	0.460	ug/L
bis(2-Chloroethoxy)methane	111-91-1	< 0.440	U	10	0.440	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	XUJ	10	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	10	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.1	U	10	4.1	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	U	10	0.380	ug/L
Caprolactam	105-60-2	< 0.510	U	10	0.510	ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.300	XVO	10	0.300	ug/L
2-Methylnaphthalene	91-57 <b>-</b> 6	< 0.500	U	10	0.500	ug/L
Hexachlorocyclopentadiene	77-47-4	< 0.450	U	10	0.450	ug/L
2,4,6-Trichlorophenol	88-06-2	< 0.280	כט ע	10	0.280	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.580	IN US	. 10	0.580	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	10	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	·U	10	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	Ü	10	0.300	ug/L
dimethylphthalate	131-11-3	< 0.260	Ü	10	0.260	ug/L
Acenaphthylene	208-96-8	< 0.430	a U	10	0.430	
	·	M	NY	~~	0,150	86
			V			

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-05

Client ID:

MW-4

Date Collected:

7/8/2004

Date Received: Matrix:

7/10/2004

Date Analyzed: Date Extracted: 7/15/2004 7/14/2004

File ID:

WATER BB017035.D

Dilution:

Instrument ID:

**BNAB** 

Analytical Method:

8270

Analytical Run ID:

BB071004

Sample Wt/Wol:

960.0

Extract Vol:

1000

Injection Vol:

% Moisture:

100

Associated	Blank:
------------	--------

PB16271B

Parameter	CAS Number	Concentration	on C	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 0.410	U	1.0	0.410	ug/L
3-Nitroaniline	99-09-2	< 1.0	Ú	10	1.0	ug/L
Acenaphthene	83-32-9	< 0.240	U		0.240	···ug/L
2,4-Dinitrophenol	51-28-5	< 0.190	XU)	10	0.190	ug/L
4-Nitrophenol	100-02-7	< 0.940	D VO	10	0.940	ug/L
Dibenzofuran	132-64-9	< 0.310	Ű	10	0.310	ug/L
\4-Dinitrotoluene	121-14-2	< .0.340	e trace Unanger		0.340	-g- -ug/L
Diethylphthalate	84-66-2	< 0.340	U	10	0.340	ug/L
4-Chlorophenyl-phenylether	7005-72-3	< 0.360	Ū	10	0.360	ug/L
Fluorene	86-73-7	< 0.170	U	10	0.170	ug/L
4-Nitroaniline	100-01-6	< 0.830	U	10	0.830	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.4	JY UJ	10	1.4	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.280	U	10	0.280	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	U	10	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.230	U	10	0.230	ug/L
Atrazine	1912-24-9	< 0.480	U	10	0.480	ug/L
Pentachlorophenol	87-86-5	< 0.390	JUJ (	10	0.390	ug/L
Phenanthrene	85-01-8	< 0.270	Ū	10	0.270	ug/L
Anthracene	120-12-7	< 0.160	U	10	0.160	ug/L
Carbazole	86-74-8	< 0.310	U .	10	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.098	U	10	0.098	ug/L
Fluoranthene	206-44-0	< 0.210	Ü	10	0.210	ug/L
Pyrene	129-00-0	< 0.250	U	. 10	0.250	ug/L
Butylbenzylphthalate	85-68-7	< 0.300	·U:		0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	Ū	10 .	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.220	U	10	0.220	ug/L
Chrysene	218-01-9	< 0.380	U	10	0.380	ug/L
'is(2-Ethylhexyl)phthalate	117-81-7	∠ <del>2.6-</del> 0,34	1×U	10	0.340	ug/L
Ji-n-octyl phthalate	117-84-0	< 0.170	ָ ט ·	10	0.170	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.230	U	10	0.230	ug/L <b>87</b>

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-05

MW-4

Date Collected:

7/8/2004

Date Analyzed: Date Extracted:

7/15/2004 7/14/2004

Dilution:

**Analytical Method:** Sample Wt/Wol:

8270

Injection Vol:

960.0

Associated Blank:

lycloliexane, isocyanato

2 PB16271B

3173533

Client ID:

Date Received:

Matrix:

File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

7/10/2004

WATER

BB017035.D

25.45

**BNAB** 

BB071004

1000

100

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS				· •		
Benzo(k)fluoranthene	207-08-9	< 0.380	U	10	0.380	ug/L
Benzo(a)pyrene	50-32-8	< 0.450	U	10	0.450	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.290	U	10	0.290	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.290	U	10	0.290	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.420	Ų	10	0.420	ug/L
SURROGATES				·		
Fluorophenol	367-12-4	69.61	23 %	21 - 100	ertokinatorika (a. di. 1821)	SPK: 300
Phenol-d5	13127-88-3	45.9	15 %	10 - 94		SPK: 300
Nitrobenzene-d5	4165-60-0	126.26	63 %	35 - 114		SPK: 200
2-Fluorobiphenyl	321-60-8	131.38	66 %	43 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	146.75	49 %	10 - 123	•	SPK: 300
Terphenyl-d14	1718-51-0	88.38	44 %	33 - 141		SPK: 200
INTERNAL STANDARDS			<del></del>			
1,4-Dichlorobenzene-d4	3855-82-1	418590	6.52			
Naphthalene-d8	1146-65-2	1613450	8.83			
Acenaphthene-d10	15067-26-2	805076	12.31		•	
Phenanthrene-d10	1517-22-2	1164945	15.30			
Chrysene-d12	1719-03-5	891432	20.68			
Perylene-d12	1520-96-3	770175	24.04			
TENTITIVE IDENTIFIED COM	MPOUNDS	·			<del></del>	
ACP	· · · · · · · · · · · · · · · · · · ·	6.2	AB	4.14		ug/L k
Hexadecanoic acid	57103	3.8	J	16.46		ug/L
Oloio Acid organic acid	112801	21	J	17.91		ug/L
Unknown		3.1	J	18.88		ug/L
1-Eicosanol a (c. h. (	629969	6.0	J	20.38		ug/L
Thiazolidine unknown	504789	2.0	J	22.65		ug/L
	0.1.00.00					<del>-</del> .

2.2

88

ug/L

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-06

Client ID:

MW-5

Date Collected: Date Analyzed: 7/8/2004

7/15/2004

Date Extracted:

7/14/2004

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

8270 960.0

2 PB16271B

Date Received:

Matrix: File ID:

Instrument ID:

Analytical Run ID: Extract Vol:

% Moisture:

7/10/2004

WATER

BB017034.D

BNAB

BB071004

1000

Parameter	CAS Number	Concentration	c	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 1.7	·U	10	1.7	ug/L
Phenol	108-95-2	< 0.430	X (V)	10	0.430	ug/L
bis(2-Chloroethyl)ether	:1111-44-4	< 0.330	υ		0.330	ug/L
2-Chlorophenol	95-57-8	< 0.730	2003	10	0.730	ug/L
2-Methylphenol	95-48-7	< 1.1	メッシ	10	1.1	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.830	U .	10	0.830	ug/L
cetophenone	98-86-2	< 0.550	υ		0.550	ug/L ** *
3+4-Methylphenols	106-44-5	< 1.1	JE UJ	10	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.770	U	10	0.770	ug/L
Hexachloroethane	67-72-1	< 0.910	U	10	0.910	ug/L
Nitrobenzene	98-95-3	< 0.380	U	10	0.380	ug/L
Isophorone	78-59-1	< 0.480	U	10	0.480	ug/L
2-Nitrophenol	88-75-5	< 0.270	000	10	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.460	XUJ	10	0.460	ug/L
bis(2-Chloroethoxy)methane	111-91-1	< 0.440	U	10	0.440	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	X U)	10	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	10	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.1	U	10	4.1	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	U	10	0.380	ug/L
Caprolactam	105-60-2	< 0.510	U	10	0.510	ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.300	X(V)	10	0.300	ug/L
2-Methylnaphthalene	91-57-6	< 0.500	U	10	0.500	ug/L
Hexachlorocyclopentadiene	77-47-4	< 0.450	U	10	0.450	ug/L
2;4;6-Trichlorophenol	88-06-2	< 0.280	X 07		0.280	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.580	WUJ	10	0.580	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	10	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	U	10	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	U	10	0.300	ug/L
Jimethylphthalate	131-11-3	< 0.260	U	10	0.260	ug/L
Acenaphthylene	208-96-8	< 0.430	U	10	0.430	-
		. (}I/				102

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

Date Analyzed: Date Extracted:

Dilution:

Date Collected:

Analytical Method:

Sample Wt/Wol: Injection Vol:

Associated Blank:

S3529-06

7/8/2004

7/15/2004 7/14/2004

> 8270 960.0

PB16271B

Client ID:

Date Received:

Matrix:

File ID: Instrument ID:

**Analytical Run ID:** Extract Vol:

% Moisture:

MW-5

7/10/2004

WATER

BB017034.D **BNAB** 

BB071004

	 -
100.	
100	
,	

Parameter	CAS Number	Concentration	<b>C</b>	RDL	MDL	Units
TARGETS					<del></del>	
2,6-Dinitrotoluene	606-20-2	< 0.410	U	10	0.410	ug/L
3-Nitroaniline	99-09-2	< 1.0	U	10	1.0	ug/L
Acenaphthene	83-32-9	< 0.240	U		0.240	ug/L
2,4-Dinitrophenol	51-28-5	< 0.190	としつ	10	0.190	ug/L
4-Nitrophenol	100-02-7	< 0.940	ביט על	10	0.940	ug/L
Dibenzofuran	132-64-9	< 0.310	U	10	0.310	ug/L
\4-Dinitrotoluene	121-14-2	< 0.340		·	0.340	· · · · · · · · · · · · · · · · · · ·
Diethylphthalate	84-66-2	< 0.340	U	10	0.340	ug/L
4-Chlorophenyl-phenylether	7005-72-3	< 0.360	υ	10	0.360	ug/L
Fluorene	86-73-7	< 0.170	U ·	10	0.170	ug/L
4-Nitroaniline	100-01-6	< 0.830	U	10	0.830	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.4	メレコ	10	1.4	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.280	ับ	10	0.280	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	U	10	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.230	U	10	0.230	ug/L
Atrazine	1912-24-9	< 0.480	U	10	0.480	ug/L
Pentachlorophenol	87-86-5	< 0.390	WV)	10	0.390	ug/L
Phenanthrene	85-01-8	< 0.270	U	10	0.270	ug/L
Anthracene	120-12-7	< 0.160	U	10	0.160	ug/L
Carbazole	86-74-8	< 0.310	U.	10	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.098	Ū	10	0.098	ug/L
Fluoranthene	206-44-0	< 0.210	U .	10	0.210	ug/L
Pyrene	129-00-0	< 0.250	U	10	0.250	ug/L
Butylbenzylphthalate	····85-68-7	< 0.300	Ψ	40.	0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	U	10	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.220	U	10	0.220	ug/L
Chrysene	218-01-9	< 0.380	U	10	0.380	ug/L
'vis(2-Ethylhexyl)phthalate	117-81-7	< 18 0,34	1+1	10	0.340	ug/L
. Ji-n-octyl phthalate	117-84-0	< 0.170	Ų	10	0.170	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.230	. ບ ∵ີ ບິ	10	0.230	^u <b>f</b> 03

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-06

**MW-5** 

Date Collected:

7/8/2004

Date Analyzed:

7/15/2004

Date Extracted: Dilution:

7/14/2004

Analytical Method:

Sample Wt/Wol:

8270 960.0

Injection Vol: Associated Blank:

Heptadecane,

2

PB16271B

Client ID:

Date Received:

Matrix:

File ID:

**Instrument ID:** Analytical Run ID:

Extract Vol:

% Moisture:

7/10/2004

WATER

**BB017034.D** 

**BNAB** 

BB071004

1000

15.08

100

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 0.380	U	10	0.380	ug/L
Benzo(a)pyrene	50-32-8	< 0.450	U	10	0.450	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.290	U		0.290	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.290	U	10	0.290	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.420	U	10	0.420	ug/L
SURROGATES				······································		
Fluorophenol	367-12-4	59.34	20 %	21 - 100	A STATE OF THE STA	SPK: 300
Phenol-d5	13127-88-3	42.3	14 %	10 - 94		SPK: 300
Nitrobenzene-d5	4165-60-0	128.77	64 %	35 - 114	·	SPK: 200
2-Fluorobiphenyl	321-60-8	127.65	64 %	43 - 116		SPK: 200
2,4,6-Tribromophenol	118-79-6	137.59	46 %	10 - 123		SPK: 300
Terphenyl-d14	1718-51-0	94.89	47 %	33 - 141		SPK: 200
INTERNAL STANDARDS				······································		
1,4-Dichlorobenzene-d4	3855-82-1	422217	6.52			
Naphthalene-d8	1146-65-2	1595829	8.83		٠	•
Acenaphthene-d10	15067-26-2	830608	12.31			
Phenanthrene-d10	1517-22-2	1189297	15.30	•		
Chrysene-d12	1719-03-5	904022	20.68			
Perylene-d12	1520-96-3	791994	24.04		٠	
TENTITIVE IDENTIFIED C	OMPOUNDS					<del>.</del>
ACP		6.7	<del>- AD</del>	4.14	<del></del>	<del>−−−ug/L</del>
1-Todo-2,3-cpoxypropane	624577	14	<b>J</b>	4.61	. washing in a way to the control of	ug/L
1,4-Cyclohexanedione unknown		5.3	J	5.26		ug/L
LHexanol, 2-othyla (c. L.	<b>L</b> 104767	13	J	6.64	-	ug/L
Ethanol, 2-[(2-ethylldexylldxy]	1559359	5.7	J	9.30		ug/L
Benzoic acid Adichloro-	51445	47	J	12.58		ug/L
leptadeoane a (Kanz	629787	9.3	J	14.17		ug/L
Ethanol, 2-[2-(2-butoxyethoxy)	<del>ethc 1</del> 43226	. 10	<b>j</b>	14.99	gades da la La la	ug/L

8.1

## SVOC

SDG No.:

Associated Blank:

S3529

Client:

**Chazen Companies** 

PB16271B

Sample ID: S3529-06 Client ID: MW-5 Date Collected: 7/8/2004 Date Received: 7/10/2004 Date Analyzed: 7/15/2004 Matrix: WATER Date Extracted: 7/14/2004 File ID: BB017034.D Dilution: Instrument ID: **BNAB Analytical Method:** 8270 Analytical Run ID: BB071004 Sample Wt/Wol: 960.0 **Extract Vol:** 1000 Injection Vol: % Moisture: 100

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TENTITIVE IDENTIFIED COM	APOUNDS					
Dodecane, 2-mothyl-6-propyl-	55045084	6.7	J	15.94		ug/L
Hexadecanoic acid	57103	4.0	J	16.46		ug/L
2-Hexadecanol unknum	14852314	12	J	16.78		ug/L
Unknown	•	11	J ·	17.28	•	ug/L
Oleic Acid	112801	21	j	17.91	e.	ug/L
Ethanol, 2-(2-butoxyethoxy)	112345	26	J	18.88	٠	ug/L
6,9,12,15-Pentaoxanonadecan-L	1786943	6.8	· J	19.32	entropy of the second	ug/L
Licosene, (E) unknown	74685306	5.2	J	20.38		ug/L
-Ethanol, 2-[2-[2-[4-(1,1,3,3-tetram	£_2315620	4.0	J	20.98		ug/L
1.1-Bis(3.6.9.12.15-pentaoxaevelo	<del>-</del> 0	6.1	J	21.13		ug/L
2-Undecene, 4,5-dimethyl-, [R@,S	55170939	3.9	J	21.70		ug/L
Acctaldehyde, tetramer	108623	18	<b>J</b>	22.66		ug/L
- Hydrazine; (2-phenylethyl)-	51718	5.3	J	22.70		ug/L
2,5,8,11,14 Pontaoxahexadocan 16	23778521	4.5	. <b>J</b>	23.15		ug/L
Dicyclohexano 24-orown 8	17455231	8.5	J	25.36	•	ug/L
1,4,7,10,13,16 Hexpoxacyclocetad	17455139	5.0	J	25.47		ug/L



SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-08

Client ID:

MW-3DUP

Date Collected:

7/8/2004

Date Received: Matrix:

7/10/2004

Date Analyzed: Date Extracted: 7/15/2004

File ID:

WATER

Dilution:

7/14/2004

Instrument ID:

BB017032.D

Analytical Method:

<u>8270</u>

**BNAB** 

Sample Wt/Wol:

950.0

Analytical Run ID:

BB071004

Injection Vol:

Extract Vol: % Moisture:

1000 100

Associated Blank:

PB16271B

Parameter	CAS Number	Concentration	C	RDL	MDL	Units
TARGETS						
Benzaldehyde	100-52-7	< 1.7	U .	11	1.7	ug/L
Phenol	108-95-2	< 0.430	<b>V</b>	11	0.430	ug/L
bis(2-Chloroethyl)ether	111-44-4	<< 0.330	Π,		0.330	····ug/L
2-Chlorophenol	95-57-8	< 0.730	U	- 11	0.730	ug/L
2-Methylphenol	95-48-7	< 1.1	Ŭ	11	1.1	ug/L
2,2-oxybis(1-Chloropropane)	108-60-1	< 0.840	U ·	11	0.840	ug/L
cetophenone	98-86-2	···· < 0.560	$\cdots  U_{i_1} \cdots \cdots \cdots$		0:560	ug/L
3+4-Methylphenols	106-44-5	< 1.1	U ·	11	1.1	ug/L
N-Nitroso-di-n-propylamine	621-64-7	< 0.770	U	11	0.770	ug/L
Hexachloroethane	67-72-1	< 0.920	U	11	0.920	ug/L
Nitrobenzene	98-95-3	< 0.380	U	. 11	0.380	ug/L
Isophorone	78-59-1	< 0.480	U	11	0.480	ug/L
2-Nitrophenol	88-75-5	< 0.270	U	. 11	0.270	ug/L
2,4-Dimethylphenol	105-67-9	< 0.470	U	11	0.470	ug/L
bis(2-Chloroethoxy)methane	111 <b>-</b> 91-1	< 0.450	U .	11	0.450	ug/L
2,4-Dichlorophenol	120-83-2	< 0.290	Ú	11	0.290	ug/L
Naphthalene	91-20-3	< 0.270	U	11	0.270	ug/L
4-Chloroaniline	106-47-8	< 4.1	U	11	4.1	ug/L
Hexachlorobutadiene	87-68-3	< 0.380	U	11	0.380	ug/L
Caprolactam	105-60-2	< 0.510	U .	11	0.510	· ug/L
4-Chloro-3-methylphenol	59-50-7	< 0.300	U	11	0.300	ug/L
2-Methylnaphthalene	91-57-6	< 0.500	U	11	0.500	ug/L
Hexachlorocyclopentadiene	77 <b>-</b> 47-4	< 0.460	U	. 1.1	0.460	ug/L
2,4,6-Trichlorophenol	88-06-2	0.290	· A. · · · ·	$_{ m aug}_{ m M4}$ and $^{ m 2}$	0.290	ug/L
2,4,5-Trichlorophenol	95-95-4	< 0.590	· <b>U</b>	11	0.590	ug/L
1,1-Biphenyl	92-52-4	< 0.270	U	11	0.270	ug/L
2-Chloronaphthalene	91-58-7	< 0.390	U .	11	0.390	ug/L
Nitroaniline	88-74-4	< 0.300	U	11	0.300	ug/L
Dimethylphthalate	131-11-3	< 0.260	U	11	0.260	ug/L
Acenaphthylene	208-96-8	< 0.440	U	11	0.440	ug/L 138

SDG No.:

S3529

Client:

**Chazen Companies** 

Sample ID:

S3529-08

Date Collected: Date Analyzed: Date Extracted:

Dilution:

Analytical Method:

Sample Wt/Wol:

Injection Vol:

Associated Blank:

7/8/2004

7/15/2004 7/14/2004

> 8270 950.0

PB16271B

Client ID:

Date Received:

Matrix: File ID:

Instrument ID:

**Analytical Run ID:** Extract Vol:

% Moisture:

MW-3DUP

7/10/2004

WATER

BB017032.D

**BNAB** 

BB071004

1000

Parameter	CAS Number	Concentratio	n C	RDL	MDL	Units
TARGETS						
2,6-Dinitrotoluene	606-20-2	< 0.420	. U	11	0.420	ug/L
3-Nitroaniline	99-09-2	< 1.1	U	11	1.1	ug/L
Acenaphthene	83-32-9	< 0.240	U U		0.240	ug/L
2,4-Dinitrophenol	51-28-5	< 0.190	U	11	0.190	ug/L
4-Nitrophenol	100-02-7	< 0.950	U ·	11	0.950	ug/L
Dibenzofuran	132-64-9	< 0.320	U	11	0.320	ug/L
\4-Dinitrotoluene	···121-14-2 ··· ·	<	,,	·		ug/L
Diethylphthalate	84-66-2	< 0.340	Ū	11	0.340	ug/L
4-Chlorophenyl-phenylether	7005-72-3	< 0.370	U	- 11	0.370	ug/L
Fluorene	86-73-7	< 0.170	U	11	0.170	ug/L
4-Nitroaniline	100-01-6	< 0.840	U	11	0.840	ug/L
4,6-Dinitro-2-methylphenol	534-52-1	< 1.5	U	11	1.5	ug/L
N-Nitrosodiphenylamine	86-30-6	< 0.280	U.	11	0.280	ug/L
4-Bromophenyl-phenylether	101-55-3	< 0.170	U	11	0.170	ug/L
Hexachlorobenzene	118-74-1	< 0.230	U	11	0.230	ug/L
Atrazine	1912-24-9	< 0.480	U .	11	0.480	ug/L
Pentachlorophenol	87-86-5	< 0.390	U	11	0.390	ug/L
Phenanthrene	85-01-8	< 0.280	U	11	0.280	ug/L
Anthracene	120-12-7	< 0.160	U	11	0.160	ug/L
Carbazole	86-74-8	< 0.310	U	11	0.310	ug/L
Di-n-butylphthalate	84-74-2	< 0.099	Ü	11	0.099	ug/L
Fluoranthene	206-44-0	< 0.210	U	11	0.210	ug/L
Pyrene	129-00-0	< 0.250	·U	11	0.250	ug/L
Butylbenzylphthalate	85-68-7	< 0.300	υ Մ		0.300	ug/L
3,3-Dichlorobenzidine	91-94-1	< 1.6	U.	11	1.6	ug/L
Benzo(a)anthracene	56-55-3	< 0.230	U	11	0.230	ug/L
Chrysene	218-01-9	< 0.390	U	11	0.390	ug/L
is(2-Ethylhexyl)phthalate	117-81-7	2 <del>20</del> 034	180	11	0.350	ug/L
Ji-n-octyl phthalate	117-84-0	< 0.170	· U	11	0.170	ug/L
Benzo(b)fluoranthene	205-99-2	< 0.230	U	11	0.230	ug/L <b>139</b>

SDG No.:

S3529

Client:

Dilution:

**Chazen Companies** 

Sample ID:

S3529-08

Client ID:

MW-3DUP

Date Collected: Date Analyzed:

7/8/2004

7/15/2004

7/14/2004

Date Extracted:

Analytical Method:

**8270** 

Sample Wt/Wol:

950.0

Injection Vol: Associated Blank:

PB16271B

Date Received:

Matrix:

File ID:

Instrument ID:

Analytical Run ID:

Extract Vol: % Moisture: 7/10/2004

WATER

BB017032.D

BNAB

BB071004

1	00	

Parameter	CAS Number	Concentration	C	RDL	MDL .	Units
TARGETS						
Benzo(k)fluoranthene	207-08-9	< 0.390	U	11	0.390	ug/L
Benzo(a)pyrene	50-32-8	< 0.450	U ·	11	0.450	ug/L
Indeno(1,2,3-cd)pyrene	193-39-5	< 0.290	· U - · · · · ·	11	0.290	ug/L
Dibenz(a,h)anthracene	53-70-3	< 0.290	U	1.1	0.290	ug/L
Benzo(g,h,i)perylene	191-24-2	< 0.430	U	11	0.430	ug/L
SURROGATES						
Fluorophenol	367-12-4	78.11	26 %	21 - 100		SPK: 300
Phenol-d5	13127-88-3	52.76	18 %	10 - 94	•	SPK: 300
Nitrobenzene-d5	4165-60-0	122.51	61 %	35 - 114		SPK: 200
2-Fluorobiphenyl	321-60-8	126.29	63 %	43 - 116	· ·	SPK: 200
2,4,6-Tribromophenol	118-79-6	148.6	50 %	10 - 123		SPK: 300
Terphenyl-d14	1718-51-0	100.75	50 %	33 - 141		SPK: 200
INTERNAL STANDARDS						
1,4-Dichlorobenzene-d4	3855-82-1	426512	6.52			
Naphthalene-d8	1146-65-2	1711061	8.83			
Acenaphthene-d10	15067-26-2	847322	12.31			
Phenanthrene-d10	1517-22-2	1232393	15.30	ė.		
Chrysene-d12	1719-03-5	918637	20.68			
Perylene-d12	1520-96-3	784047	24.05			
TENTITIVE IDENTIFIED C	COMPOUNDS		· ·		,	•
ACP	<del></del>	6.2	AB	4.15		ug/L
Tetradecanoic acid agan's	t and the same of	2.5	J	16.46	year a management	ug/L
Oleic Acid aganize aci	112801	8.8	J	17.90		ug/L
1-Hexacosanol Un Lacus	506525	4.6	J	20.38		ug/L



# Surrogate Summary SW-846

SDG No.: ent:

S3529

Chazen Companies

Lab Sample ID	Client ID	Parameter	Spike	Dogult	Recovery Qual	1.57	mits
PB16271B	CDLVAL				Recovery Qual	Low	High
10102/10	SBLK01	2-Fluorophenol	300	209.32	70	21.00	100.00
·		Phenol-d5	300	220.82	74	10.00	94.00
		Nitrobenzene-d5	200	135.24	68	35.00	114.00
	•	2-Fluorobiphenyl	200	138.26	69	43.00	116.00
		2,4,6-Tribromophenol	300	168.63	56	10.00	123.00
PB16271BS	CT (7001	Terphenyl-d14	200	117.95	59	33.00	141.00
FB102/1B3	SLCS01	2-Fluorophenol	300	210.4	70	21.00	100.00
		Phenol-d5	300	216.69	72	10.00	94.00
		Nitrobenzene-d5	200	141.43	71	35.00	114.00
		2-Fluorobiphenyl	200	144.26	72	43.00	116.00
		2,4,6-Tribromophenol	300	175.08	58	10.00	123.00
		Terphenyl-d14	200	119.55	60	33.00	141.00
S3529-01	MW-1	2-Fluorophenol	300	68.3	23	21.00	100.00
		Phenol-d5	300	44.77	15	10.00	94.00
		Nitrobenzene-d5	200	131.94	66	35.00	114.00
		2-Fluorobiphenyl	200	142.51	71	43.00	116.00
e free		2,4,6-Tribromophenol	300	148.73	50	10.00	123.00
)		Terphenyl-d14	200	90.87	45		141.00
S3529-02	MW-6	2-Fluorophenol	300	72.96	(24)	21.00	100.00
		Phenol-d5	300	48.83	(16)	10.00	94.00
		Nitrobenzene-d5	200	127.57	64	35.00	114.00
-	*	2-Fluorobiphenyl	200	131.9	66	43.00	116.00
		2,4,6-Tribromophenol	300	146.74	49	-	
		Terphenyl-d14	200	89	45_		123.00
3529-03	MW-2	2-Fluorophenol	300	57.27	(19) *		141.00
		Phenol-d5	300	38.19	(13)		100.00
		Nitrobenzene-d5	200	104.63	52	10.00	94.00
•		2-Fluorobiphenyl	200	110.81			114.00
	• •	2,4,6-Tribromophenol	300	132.22	55	43.00	
		Terphenyl-d14	200		44		123.00
3529-04	MW-3	2-Fluorophenol		85.01	43		141.00
		Phenol-d5	300	81.89	(1) (18)		100.00
-		Nitrobenzene-d5	300	54.77		10.00	94.00
		2-Fluorobiphenyl	200	127.05	64		114.00
ee' .		2,4,6-Tribromophenol	the state of the s	130.09	65	43.00	2.50
	-	Terphenyl-d14	300	158.7	53		123.00
3529-05	MW-4		200	90.45	45		141.00
	.*±	2-Fluorophenol Phenol-d5	300	69.61	23		100.00
<u>,                                    </u>			300	45.9	(15)	10.00	94.00
)		Nitrobenzene-d5		126.26	63	35.00 1	114.00
		2-Fluorobiphenyl		131.38	66	43.00 . 1	
		2,4,6-Tribromophenol		146.75	49	10.00 <b>7</b> 1	.23.00
	2	Terphenyl-d14	200	88.38	44	33.00 1	41.00

## Surrogate Summary SW-846

SDG No.:

3529

)nt:

**Chazen Companies** 

Analytical Method:

EPA SW-846 8270

Lab Sample ID	Client ID	Pausanakan		~			Lin	
Lab Sample 1D	Chem ID	Parameter	<del></del>	Spike	Result	Recovery Qual	Low	High
S3529-06	MW-5	2-Fluorophenol	and the second	300	59.34	(20) *	21.00	100.00
		Phenol-d5		300	42.3	<u>(14)</u>	10.00	94.00
		Nitrobenzene-d5		200	128.77	64	35.00	114.00
		2-Fluorobiphenyl		200	127.65	64	43.00	116.00
		2,4,6-Tribromophenol		300	137.59	46	10.00	123.00
		Terphenyl-d14		200	94.89	47,	33.00	141.00
S3529-08	MW-3DUP	2-Fluorophenol		300	78.11	26 .	21.00	100.00
•		Phenol-d5	•	300	52.76	18	10.00	94.00
		Nitrobenzene-d5	•	200	122.51	61	35.00	114.00
		2-Fluorobiphenyl		200 .	126.29	63	43.00	116.00
		2,4,6-Tribromophenol		300	148.6	50	10.00	123.00
		Terphenyl-d14		200	100.75	50	33.00	141.00
	The state of the s							

# Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

S3529

Cuent:

**Chazen Companies** 

سر alytical Method:

EPA SW-846 8270

Lab Sample ID	Parametor		Spike	Result	Rec RPD	Qual	Low	Limits	DDD
PB16271BS	Phenol					Quar		High	RPD
15,05,155	bis(2-Chloroethyl)ether		50	40	80		18	37	
	2-Chlorophenol		50	38	76 -		47	94	
	2-Methylphenol	•	50	37	74		45	87	
•	2,2-oxybis(1-Chloropropane)	•	50	40	80		28	89	•
	3+4-Methylphenols	•	50	36	72		44 :_	99	
4	N-Nitroso-di-n-propylamine		50	40	80		35	110	
	Hexachloroethane		50	38	76 🖍	7 - 1	48	96	
	Nitrobenzene		50	37	74		38	104	
	Isophorone		50	38	76		51	100	
	2-Nitrophenol		50	40	80		57	99	
	2,4-Dimethylphenol		50	43	86		50	105	
	bis(2-Chloroethoxy)methane		50	40	80		44	97	
in and a summer of the second	2,4-Dichlorophenol		50	42	84		65	100	
	Naphthalene		. 50	42	84	*	50	94	
	4-Chloroaniline	•	50	38	76		57	99	
	Hexachlorobutadiene		50	11	. 22		20	. 84	
1	4-Chloro-3-methylphenol		50	42	84		44	103	
	2-Methylnaphthalene	Č	50	46	92		39	101	
	Hexachlorocyclopentadiene		. 50	38	76		56	104	
	2,4,6-Trichlorophenol		100	71	71		20	100	
	2,4,5-Trichlorophenol		50	40	80	•	45	99	
	1,1-Biphenyl		50	40	80		43	102	
	2-Chloronaphthalene	•	50.	45	90		20	150	
	2-Nitroaniline		50	43	86		56	103	
	Dimethylphthalate		50	43	86		55	113	
	Acenaphthylene		50	44	88		58	105	
	2,6-Dinitrotoluene		50	43	86		60	98	
	3-Nitroaniline		50	43	86		60	103	
~	Acenaphthene		50	24	48		25	. 96	
	2,4-Dinitrophenol	•	50	43	86		56	104	
	4-Nitrophenol		100	84	84		20	112	
	Dibenzofuran		100	94	<u>94</u>		20	115	
	2,4-Dinitrotoluene		50	40	80		50	130	
	Diethylphthalate		50	44	88/		57	103	
	4-Chlorophenyl-phenylether		50	44	88		58	103	
	Fluorene		50	38	76		45	105	
	4-Nitroaniline		50	41	82		61	104	
`	4,6-Dinitro-2-methylphenol		50	44	88		41	126	
)	N-Nitrosodiphenylamine		50	46	92		35	105	
·			50	45	90		70 -	115	
	4-Bromophenyl-phenylether Hexachlorobenzene		50	43	86		60	1109	
•	TACAMONOROUGHIZEHE		50	42	84		56	110	

## Laboratory Control Sample/Laboratory Control Sample Duplicate Summary

SW-846

SDG No.:

S3529

Client:

Chazen Companies

. ... alytical Method:

EPA SW-846 8270

Lab Sample ID	Parameter		Spike	Result	Rec RPD	Qual	Low	Limits High	
PB16271BS	Atrazine	er allegeration	50	45	90		20	150	
	Pentachlorophenol	· ·	100	71	مر 71		20	125	
	Phenanthrene		50	45	90		60	110	
	Anthracene	•	50	44	88		-60	110	
_	Carbazole		50	52	104		57	115	
	Di-n-butylphthalate	1	50	44	88		58	103	-
•	Fluoranthene	÷ . *	50	43	86		60	110	
	Pyrene		50	44	88		50	110	
	Butylbenzylphthalate		50	47	94.	:	-57	115	
	3,3-Dichlorobenzidine		50	28	56		33	121	
	Benzo(a)anthracene		50	46.	92		60	105	
	Chrysene		50	45	90		57	108	
	bis(2-Ethylhexyl)phthalate		- 50	48	96		58	123	
	Di-n-octyl phthalate		50	49	98		66	124	
•	Benzo(b)ffuoranthene		50	38	76		49	116	
	Benzo(k)fluoranthene		50	41	82		52	111	
	Benzo(a)pyrene		50	41	82		58	102	
)	Indeno(1,2,3-cd)pyrene	\$	50	44	88		35	127	•
. /	Dibenz(a,h)anthracene		50	42	84		53	127	
	Benzo(g,h,i)perylene		50	40	80		42	121	

#### SEMIVOLATILE METHOD BLANK SUMMARY

EPA SAMPLE NO.

SBLK01	+ 1,	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		

Lab Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

\$3529

SAS No.:

s3529

SDG NO.: S3529

Lab File ID:

BB017029.D

Lab Sample ID:

PB16271B

Instrument ID:

BNAB

LOW

Date Extracted:

7/14/2004

Matrix: (soil/water)

WATER

Date Analyzed:

7/15/2004

Level: (low/med)

____

Time Analyzed:

18:39

## THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:

EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
SLCS01	PB16271BS	BB017030.D	7/15/2004
MW-1	s3529-01	BB017031.D	7/15/2004
MW-3DUP	S3529-08	BB017032.D	7/15/2004
MW-6	s3529-02	BB017033.D	7/15/2004
MW-5	s3529-06	BB017034.D	7/15/2004
MW-4	S3529-05	BB017035.D	7/15/2004
MW-3	\$3529-04	BB017036.D	7/15/2004
MW-2	s3529-03	BB017087.D	7/19/2004

COMMENTS:		
COMMENTS:		
		_

## SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3529

SAS No.:

s3529

SDG NO.:

S3529

Lab File ID:

________

DFTPP Injection Date:

7/10/2004

Instrument ID:

BB016874.D

BNAB

____

-----

DFTPP Injection Time:

17:17

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	44.0
68	Less than 2.0% of mass 69	0.1 ( 0.1)
69	Mass 69 relative abundance	49.1
70	Less than 2.0% of mass 69	0.2 ( 0.5) 1
127	40.0 ~ 60.0% of mass 198	48.8
197	Less than 1.0% of mass 198	0.1
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.4.
275	10.0 - 30.0% of mass 198	16.3
365	Greater than 1% of mass 198	1.4
441	Present, but less than mass 443	0.7 0.0)
442	Greater than 40% of mass 198	54.7
443	17.0 - 23.0% of mass 442	10.4(19.0)

1-Value is % mass 69

2-Value is % mass 442

## THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
1	SSTD080	80 ng BNA ICC	BB016875.D	7/10/2004	17:58
2	SSTD160	160 ng BNA ICC	BB016876.D	7/10/2004	18:39
₃	SSTD020	20 ng BNA ICC	BB016877.D	7/10/2004	19:21
1	SSTD120	120 ng BNA ICC	BB016878.D	7/10/2004	20:02
5 Į	SSTD050	50 ng BNA ICC	BB016879.D	7/10/2004	20:43

### SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

s3529

SAS No.:

s3529

SDG NO.:

S3529

Lab File ID:

BB017023.D

BNAB

DFTPP Injection Date:

7/15/2004

Instrument ID:

DFTPP Injection Time:

14:31

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198	44.1.2
68	Less than 2.0% of mass 69	0.0 ( 0.0).1
69	Mass 69 relative abundance	50.6
70	Less than 2.0% of mass 69	0.1 ( 0.1) 1
127	40.0 - 60.0% of mass 198	47.0
197	Less than 1.0% of mass 198	·
198	Base Peak, 100% relative abundance	0.0
199	5.0 to 9.0% of mass 198	
275	10.0 - 30.0% of mass 198	6.9
365	Greater than 1% of mass 198	15.5,
441	Present, but less than mass 443	1.0
442	Greater than 40% of mass 198	3.0
443	17.0 - 23.0% of mass 442	44.6 8.6 (19.3) 2

#### 1-Value is % mass 69

2-Value is % mass 442

## THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD080	80 ng BNA CCC	BB017024.D	7/15/2004	15:12
02	SBLK01	PB16271B	BB017029.D	7/15/2004	18:39
03	SLCS01	PB16271BS	BB017030.D	7/15/2004	19:20
14	MW-1	s3529-01	BB017031.D	7/15/2004	20:01
)5	MW-3DUP	s3529-08	BB017032.D	7/15/2004	20:42
6	MW-6	s3529-02	BB017033.D	7/15/2004	21:24
7	MW-5	<u>s</u> 3529-06	BB017034.D	7/15/2004	22:05
8	MW-4	s3529-05	BB017035.D	7/15/2004	22:47
9	MW-3	s3529-04	BB017036.D	7/15/2004	23:28

#### SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Tab Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No.:

S3529

SAS No.:

S3529

SDG NO.:

S3529

Lab File ID:

BB017082.D

BNAB

DFTPP Injection Date:

7/19/2004

Instrument ID:

DFTPP Injection Time:

12:55

m/e	ION ABUNDANCE CRITERIA		RELATIVE ABUNDANCE
51	30.0 - 60.0% of mass 198		48.1 🗸
68	Less than 2.0% of mass 69	· o.	
69	Mass 69 relative abundance	<u> </u>	50.5
70	Less than 2.0% of mass 69	o.	•
127	40.0 - 60.0% of mass 198		49.0
197	Less than 1.0% of mass 198		0.0.
198	Base Peak, 100% relative abundance		100.Q
199	5.0 to 9.0% of mass 198		6.1
275	10.0 - 30.0% of mass 198	<u> </u>	16.2
365	Greater than 1% of mass 198	<del></del>	1.2.
441	Present, but less than mass 443		8.5
442	Greater than 40% of mass 198	i	50.9
443	17.0 - 23.0% of mass 442	_{9.}	

1-Value is % mass 69

2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
01	SSTD080	80 ng BNA CCC	BB017083.D	7/19/2004	13:36
02	MW-2	s3529-03	BB017087.D	7/19/2004	16:04

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

Chemtech Consulting Group

Case No.:

Contract:

CHAZ02

Lab Code:

CHEM

s3529

SAS No.:

S3529

SDG No.: S3529

EPA Sample No.:

Lab File ID:

SSTD080

Date Analyzed:

7/15/2004

Time Analyzed:

15:12

BB017024.D

Instrument ID:

BNAB

GC Column: RTX-5 SILMS ID: 032

	IS1 (DCB) AREA #	RT #	IS2 (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
12 HOUR STD	452170	6.53	1705296	8.84	888999	12.3
UPPER LIMIT	904340	7.03	3410592	9.34	1777998	12.8
LOWER LIMIT	226085	603	852648	8.34	444500	11.8
EPA SAMPLE NO.		<i></i>			P	
SBLK01	433426	6.53	1729416	8.83	866826	12.3
SLCS01	425694	6.54	1628637	8.84	821564	12.3
MW-1	429684	6.52	1623489	8.83	819501	12.3
MW-3DUP	426512	6.52	1711061	8.83	847322	12.3
MW-6	426781	6.52	1670398	8.83	830525	12.3
MW-5	422217	6.52	1595829	8.83	830608	12.3
MW-4	418590	6.52	1613450	8.83	805076	12.3
MW-3	430782	6.52	1712630	8.82	841466	12.3

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Chemtech Consulting Group Contract: CHAZ02

ab Code: CHEM Case No.: S3529 SAS No.: S3529 SDG No.: S3529

EPA Sample No.: SSTD080 Date Analyzed: 7/15/2004

Lab File ID: BB017024.D Time Analyzed: 15:12

Instrument ID: BNAB GC Golumn: RTX-5 SILMS ID: 032 (mm)

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT#	IS6 (PRY) AREA #	RT #
12 HOUR STD	1393102	15.32	998082	20.71	808462	24.08
UPPER LIMIT	2786204	15.82	1996164	21.21	1616924	24.58
LOWER LIMIT	696551	14.82	499041	20.21	404231	23.58
EPA SAMPLE NO.						
SBLK01	1304194	15.30	989940	20.68	828421	24.05
SLCS01	1288420	15.31	917895	20.71	810635	24.09
MW-1	1240586	15.30	940291	20.68	802853	24.05
MW-3DUP	1232393	15.30	918637	20.68	784047	24.05
MW-6	1234791	15.30	907514	20.68	78 <i>6777</i>	24.04
MW-5	1189297	15.30	904022	20.68	791994	24.04
MW-4	1164945	15.30	891432	20.68	770175	24.04
MW-3	1232600	15.30	930073	20.68	790767	24.04

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12

IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area

AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT

RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

## SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name:

Chemtech Consulting Group

Contract:

CHAZ02

Lab Code:

CHEM

Case No :

S3529 SAS No.:

S3529

SDG NO.: S3529

EPA Sample No.:

SSTD080

Date Analyzed:

7/19/2004

Lab File ID:

Time Analyzed:

BB017083.D

13:36

Instrument ID:

BNAB

GC Column: RTX=5 SILMS ID: 032

(mm)

	IS1 (DCB) AREA #	RT#	ISŽ (NPT) AREA #	RT #	IS3 (ANT) AREA #	RT #
12 HOUR STD	293120	6.44	1073891	8.75	538353	12.23
UPPER LIMIT	586240	6.94	2147782	9.25	1076706	12.73
LOWER LIMIT	146560	5.94	536946	8.25	269177	11.73
EPA SAMPLE NO.		/				
MW-2	318661	6.43	1221543	8.74	644508	12.2

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.

### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: Chemtech Consulting Group Contract: CHAZ02

)ab Code: CHEM Case No.: S3529 SAS No.: S3529 SDG No.: S3529

EPA Sample No.: SSTD080 Date Analyzed: 7/19/2004

Lab File ID: BB017083.D Time Analyzed: 13:36

Instrument ID: BNAB. GC Column: RTX+5 SILMS ID: 032 (mm)

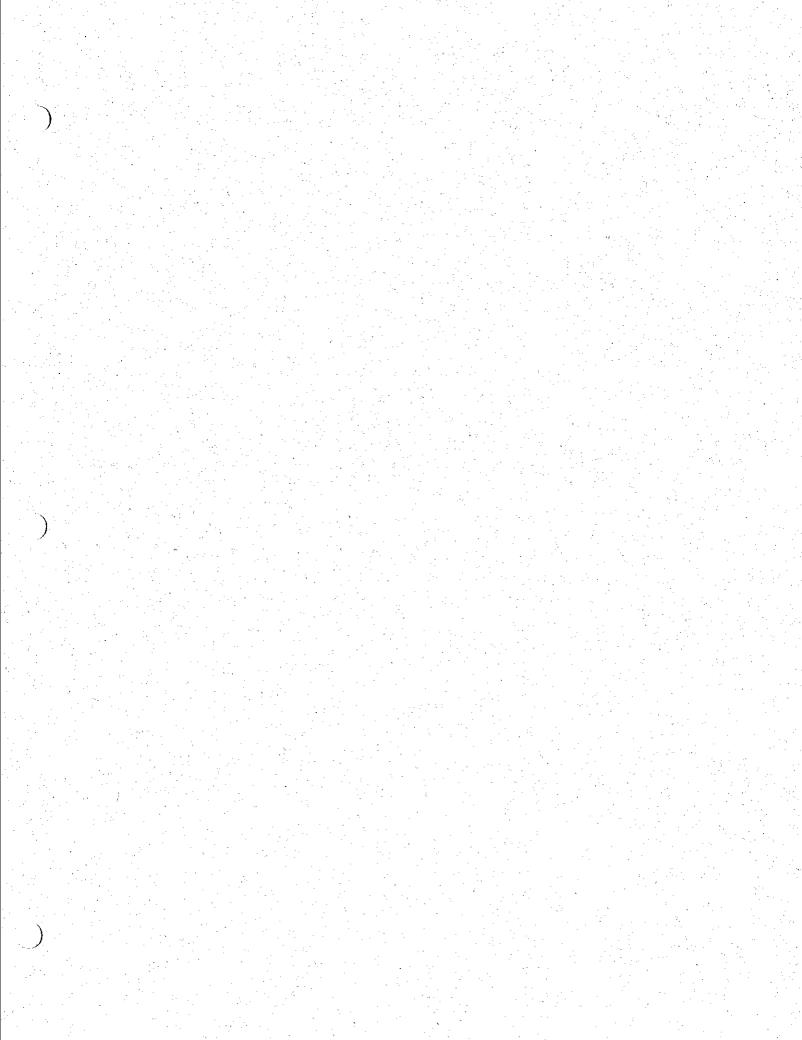
IS4 (PHN) IS5 (CRY) IS6 (PRY)

AREA # RT # AREA # RT # AREA # RT #

	IS4 (PHN) AREA #	RT #	IS5 (CRY) AREA #	RT #	IS6 (PRY) AREA #	RT #
12 HOUR STD	846165	15.22	595515	20.60	446551	23.91
UPPER LIMIT	1692330	15.72	1191030	21.10	893102	24.41
LOWER LIMIT	423083	14.72	297758	20.10	223276	23.41
EPA SAMPLE NO.		/				
MW-2	924377	15.20	670151	20.57	530777	23.87

IS4 (PHN) = Phenanthrene-d10

IS5 (CRY) = Chrysene-d12


IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = -50% of internal standard area

RT UPPER LIMIT = +0.50 minutes of internal standard RT RT UPPER LIMIT = -0.50 minutes of internal standard RT

[#] Column used to flag values outside QC limits with an asterisk.

^{*} Values outside of QC limits.



#### DATA USABILITY SUMMARY REPORT

for

THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3529 Sampled 7/8/04

#### AQUEOUS SAMPLES for PCB

MW-3 (S3529-04) MW-4 (S3529-05)

MW-3DUP (\$3529-08)

#### DATA ASSESSMENT

A PCB data package containing analytical results for three soil samples was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses, performed according to SW-846 Method 8082, addressed Aroclors 1016, 1221, 1232, 1242, 1248, 1254 and Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000, and the cited method. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-24, Rev 1, June 1999, Standard Operating Procedure for the Validation of Organic Data Acquired Using SW-846 Method 8260B (Rev 2, Dec 1996) was used as a technical reference.

#### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible, completely usable, and without qualifications in its present form. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly, DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin

Date: /0/18/04

#### SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved, or are not analyzed within established holding times, may no longer be considered representative. Holding times are calculated from the time of sample receipt (VTSR). Samples must remain chilled to 4°C from the time of collection. Extractions must begin within 5 days of receipt. Analyses must be completed within 40 days of extraction. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a matrix spike, matrix spike duplicate, and a rinsate blank.

This sample delivery group contained two groundwater samples and a field duplicate. The samples were collected from the Former Stillwater Boiler House site 08Jul04. They were shipped to the laboratory, via FedEx on the day of collection. They were received, intact, on 10Jul04. The laboratory record does not indicate that this group of samples was properly chilled at the time of receipt. This area of documentation should be improved. The entire group of samples was extracted on 14Jul04. Analyses were completed on 01Aug04. Program holding time limitations were satisfied.

#### **BLANKS**

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank. Any sample concentration less than 5 times the level determined in a blank must be qualified.

One method blank was processed with this group of samples. This blank demonstrated acceptable chromatography and was free of targeted analyte contamination.

#### CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, Quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration standards verify instrument stability.

The initial instrument calibration was performed 27Jul04. Standards of 50, 250, 500, 750 and 1000  $\mu$ g/l were included for five congeners each of AR1016 and AR1260. A single mid-range standard was run for the remaining Aroclors. Although every congener curve did not demonstrate an acceptable degree of linearity, the calibration did demonstrate that PCB would be detected if present in samples. Because PC was not present in samples, data has been left unqualified.

Calibration verifications bracketed the analysis of program samples. Both standards of AR1016 and AR1260 demonstrated an acceptable level of instrument stability.

#### SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Surrogate Summary Sheets were properly prepared. The tetrachloro-m-xylene and decachlorobipheyl additions to each program sample produced acceptable recoveries, between 58% and 122%. Every recovery was well within the ASP range of acceptance, 30%-150%.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS
Matrix spiking refers to the addition of known analyte concentrations
to a sample, prior to analysis. Analyte recoveries provide an
indication of laboratory accuracy. The analysis of a duplicate spiked
aliquot provides a measurement of precision.

A spiked sample was not analyzed with this group of samples. This omission represents a serious breach of AS protocol. A spiked program sample is required in every delivery group.

A spiked blank (LCS) was extracted and analyzed with this group of samples. This LCS produced acceptable recoveries of AR1016 and AR1260 (85%-75%). I is noted that this performance provides no indication of matrix effects that might bias the analysis of program samples.

#### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicates of MW-3 were included in this delivery group. PCB was not detected in either of these samples.

Former Stillwater Boiler House site

(\$3529-04) (\$3529-05) (\$3529-08) MW-3 MW-4 MW-3DUP

#### PCB

SDG No.:

S3529

Client:

Chazen Companies

Sample ID:

S3529-04

Client ID:

MW-3

Date Collected: Date Analyzed: 7/8/2004

8/1/2004 7/14/2004

Date Extracted: Dilution:

8082

Analytical Method: % Moisture:

100.0

Sample Wt/Vol: Injection Vol:

950 1

Date Received:

Matrix:

File ID:

Instrument ID: Analytical Run ID:

Associated Blank:

Extract Vol:

7/10/2004

WATER

2PS0525.D

ECD2 2PS072704

PB16272B

10000

Parameter	CAS Number	Concentration	C C	RDL	MDL	Units	
TARGETS	-			······································			
AROCLOR 1016	12674-11-2	< 0.130	U	0.53	- 0.130	ug/L	
AROCLOR 1221	11104-28-2	< 0.050	U	0.53	0.050	ug/L	
AROCLOR 1232	11141-16-5	< 0.050	U	0:53	0.050	ug/L	
AROCLOR 1242	53469-21-9	< 0.140	ប	0.53	0.140	ug/L	
AROCLOR 1248	12672-29-6	< 0.060	U	0.53	0.060	ug/L	
AROCLOR 1254	11097-69-1	< 0.030	Ŭ	0.53	0.030	ug/L	
AROCLOR 1260 SURROGATES	11096-82-5	< 0.0630	υ	0.53 ~	0:0630 ~~	ng/L	
Tetrachloro-m-xylene	877-09-8	21.3	106 %	40 - 135		SPK: 20	•
Decachlorobiphenyl	2051-24-3	15.7	78 %	42 - 133		SPK: 20	<b>)</b>



## PCB

SDG No.:

S3529

Client:

Chazen Companies

Sample ID:	S3529-05	Client ID:	IW-4
Date Collected:	7/8/2004	Date Received:	7/10/2004
Date Analyzed:	8/1/2004	Matrix:	WATER
Date Extracted:	7/14/2004	File ID:	2PS0526.D
Dilution:	1	Instrument ID:	ECD2
Analytical Method	1: 8082	Analytical Run ID:	2PS072704
% Moisture:	100.0	Associated Blank:	PB16272B
Sample Wt/Vol:	960	Extract Vol:	10000
Injection Vol:	1		

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS	-					
AROCLOR 1016	12674-11-2	< 0.130	U	0.52 -	0.130	ug/L
AROCLOR 1221	11104-28-2	< 0.050	U	0.52	0.050	ug/L
AROCLOR 1232	11141-16-5	< 0.050	·- <b>U</b>	0.52	0.050	ug/L .
AROCLOR 1242	53469-21-9	< 0.140	υ	0.52	0.140	ug/L
AROCLOR 1248	12672-29-6	< 0.060	U	0.52	0.060	ug/L
AROCLOR 1254	11097-69-1	< 0.030	υ	0.52	0.030	ug/L
AROCLOR 1260 SURROGATES	11096-82-5	< 0.0620	υ	0.52	0.0620	ug/L
Tetrachloro-m-xylene	877-09-8	14.87	74 %	40 - 135		SPK: 20
Decachlorobiphenyl	2051-24-3	11.57	58 %	42 - 133		SPK: 20



### PCB

SDG No.:

S3529

Client:

Chazen Companies

Sample ID:	S3529-08	Client ID: M	TW-3DUP
Date Collected:	7/8/2004	Date Received:	7/10/2004
Date Analyzed:	8/1/2004	Matrix:	WATER
Date Extracted:	7/14/2004	File ID:	2PS0527.D
Dilution:	1	Instrument ID:	ECD2
Analytical Metho	od: 8082	Analytical Run ID:	2PS072704
% Moisture:	100.0	Associated Blank:	PB16272B
Sample Wt/Vol:	960	Extract Vol:	10000
Injection Volv	1		

Parameter	CAS Number	Concentration	С	RDL	MDL	Units
TARGETS	<del>-</del>	<del></del>	······································		·····	
AROCLOR 1016	12674-11-2	< 0.130	U	0.52	. 0.130	ug/L
AROCLOR 1221	11104-28-2	< 0.050	U	0.52	0.050	ug/L
AROCLOR 1232	11141-16-5	< 0.050	· ប	0.52	0.050	. ug/L
AROCLOR 1242	53469-21-9	< 0.140	U	0.52	0.140	ug/L
AROCLOR 1248	12672-29-6	< 0.060	U	0.52	0.060	ug/L
AROCLOR 1254	11097-69-1	< 0.030	U	0.52	0.030	uġ/L
AROCLOR 1260 SURROGATES	11096-82-5	···· < 0.0620 ····	٠. ٨٠	0.52	0.0620	ug/L
Tetrachloro-m-xylene	877-09-8	15.31	77 %	40 - 135		SPK: 20
Decachlorobiphenyl	2051-24-3	12.5	62 %	42 - 133		SPK: 20



## Surrogate Summary SW-846

SDG No.: S3529
Client: Chazen Companies

Analytical Method:

EPA SW-846 8082

•		iant ID Parameter					Limits	
Lab Sample ID	Client ID	Parameter	Spike	Result	Recovery	Qual	Low	High
PB16272BS	PB16272BS	Tetrachloro-m-xylene	20	13	65		40.00	135.00
		Decachlorobiphenyl	20	24.33	122		42.00	133.00
S3529-04	MW-3	Tetrachloro-m-xylene	20	21.3	106 <		40.00	135.00
		Decachlorobiphenyl	20	15.7	78 🗸		42.00	133.00
S3529-05	MW-4	Tetrachloro-m-xylene	20	14.87	74v		40.00	135.00
		Decachlorobiphenyl	20	11.57	58.		42.00	133.00
S3529-08	MW-3DUP	Tetrachloro-m-xylene	20	15.31	77/		40.00	135.00
		Decachlorobiphenyl	20	12.5	62/		42.00	133.00
PB16272B	PB16272B	Tetrachloro-m-xylene	20	13.34	67		40.00	135.00
		Decachlorobiphenyl	20	15.93	80		42.00	133.00

## Laboratory Control Sample/Laboratory Control Sample Duplicate Summary SW-846

SDG No.:

S3529

Client:

Chazen Companies

Analytical Method:

EPA SW-846 8082

							Limits	
Lab Sample ID	Parameter	Spike	Result	Rec RPD	Qual	Low	High	RPD
PB16272BS	AROCLOR 1016	2.000	1.7	85		70	130	
	AROCLOR 1260	2.000	1.5	75		. 70	130	

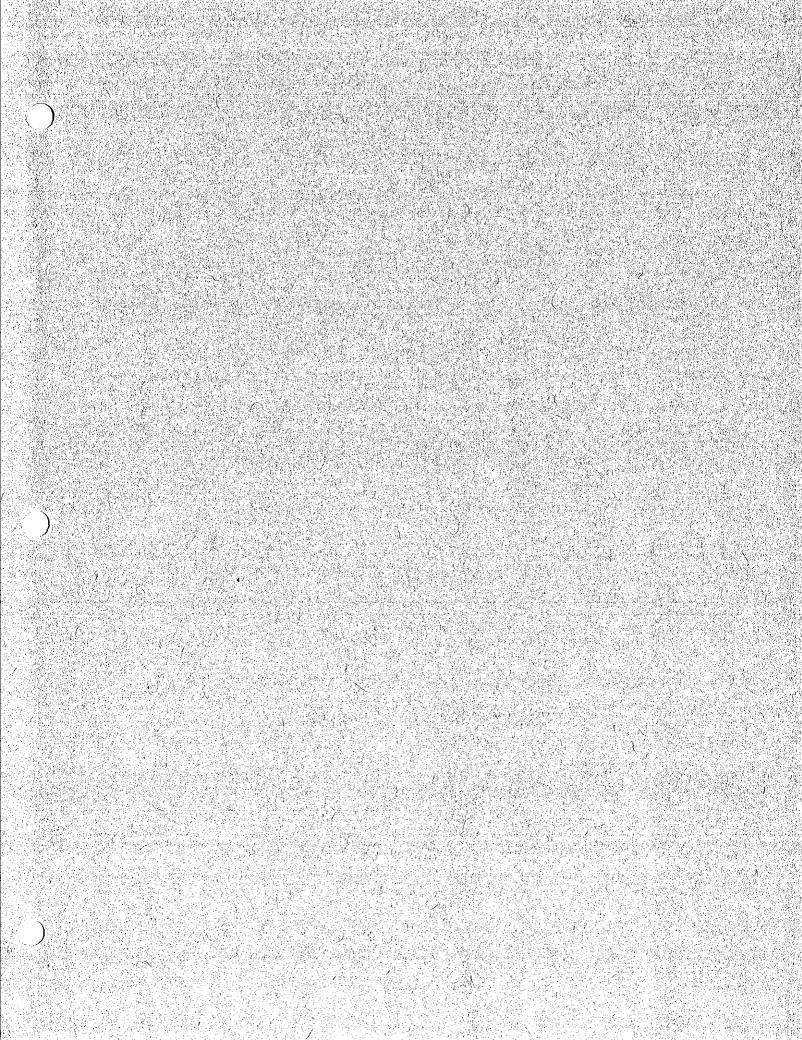
#### PESTICIDE METHOD BLANK SUMMARY

CLIENT SAMPLE NO.

PB16272B	

Lab Name: Chemtech		Contract: Cha	zen Companies	
Lab Code: CTECH Case No.:	S3529	SAS No.: <u>83529</u>	SDG No.:	\$3529
Lab Sample ID: PB16272B		Lab File ID: 2	PS0555.D	
Matrix: (soil/water) WATER	egon en el protestado, establea en la comoción	Extraction: (Type)	SEPF	. education of the contract of
Sulfur Cleanup: (Y/N) N		Date Extracted:	7/14/2004	
Date Analyzed (1): 8/2/2004		Date Analyzed (2):	8/2/2004	
Time Analyzed (1): 06:10		Time Analyzed (2):	06:10	
Instrument ID (1): ECD2		Instrument ID (2):	ECD2	
GC Column (1): RTX-5 ID: 0.53 (	(mm)	GC Column (2):	RTX-1701 I	D: 0.53 (mm)

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS AND MSD:


CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED 1	DATE ANALYZED 2
PB16272BS	PB16272BS	2PS0524.D	8/1/2004	8/1/2004
MW-3	S3529-04	2PS0525.D	8/1/2004	8/1/2004
MW-4	s3529-05	2PS0526.D	8/1/2004	8/1/2004
MW-3DUP	s3529~08	2PS0527.D	8/1/2004	8/1/2004

COMMENTS:

## DATAVAL, INC. Environmental Data Validation

JAMES B. BALDWIN, JR. Phone/Fax (607) 642-5460

520 Hooper Road, PMB 283 Endwell, NY 13760



### Data Usability Summary Report

## Former Stillwater Boiler House ID #B-00197-5

SAMPLED July 2004

SOIL SAMPLES SDG S3860

Inorganics (lead)

Prepared for:

THE CHAZEN COMPANIES
20 Gurley Avenue
Troy, New York 12182

Prepared by:

DATAVAL, Inc. 518 Hooper Rd., PMB 283 Endwell, NY 13760

#### DATA USABILITY SUMMARY REPORT

for

#### THE CHAZEN COMPANIES

20 Gurley Avenue

Troy, NY 12182

# FORMER STILLWATER BOILER HOUSE ID#B-001975-5 SDG:S3860 Sampled 7/28/04

#### SOIL SAMPLES for LEAD

SS-11	(S3860-1)
SS-12	(S3860-2)
SS-13	(S3860-3)
SS-14	(S3860-4)
SS-15	(93960-5)

#### DATA ASSESSMENT

An inorganics data package containing analytical results for five soil samples was received from The Chazen Companies on 21Sep04. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. samples, taken from the Former Stillwater Boiler House site (ID#B-00197-5), were identified by Chain of Custody documents and traceable through the work of CHEMTECH, the laboratory contracted for analysis. Analyses were performed using SW-846 methods 6010. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol, September 1989, Rev. 06/2000. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOW HW-2, Rev. 11, Jan. 1992, Evaluation of Metals Data for the Contract Laboratory Program) was used as a technical reference.

#### CORRECTNESS AND USABILITY

Reported data should be considered technically defensible, completely usable, and without qualifications in its present form. A detailed discussion of the review process follows.

Two facts should be considered by all data users. concentration, even if it has passed strict QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data However, DATAVAL, Inc. does not warrant interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin Date: 10/18/04

#### SAMPLE HISTORY

Sample holding times are calculated between the time of laboratory receipt (VTSR) and the time of analysis. Mercury samples must be analyzed within 26 days of receipt; the remaining metals within 180 days. Each sample delivery group, containing up to 20 samples, should include a field duplicate, a laboratory split duplicate, a matrix spiked sample, and a rinsate blank.

This sample delivery group contained five soil samples. The samples were collected from the Former Stillwater Boiler House site on 28Jul04. They were shipped to the laboratory on 29Jul04. The shipment arrived, intact, on 30Jul04. The samples were digested on 02Aug04 and analyzed for lead 04Aug04. Program holding time limitations were satisfied.

#### CALIBRATIONS

Calibration curves are constructed, using certified materials, to define the linear range of each analytical instrument. Beyond this range, measurements cannot be made with confidence. The calibration curve is immediately tested by analyzing an initial calibration verification standard (ICV). Continuing verifications (CCV) must bracket each group of up to ten samples. ICV and CCV recoveries must meet established criteria.

ICP calibrations were performed with a blank and three standards. Each instrument calibration was immediately verified by the analysis of an ICV standard. Continuing calibration checks were made following each group of 10 samples. Each calibration check that was used to bracket samples from this program satisfied the program acceptance criteria.

#### CONTRACT REQUIED DETECTION LIMIT STANARDS (CRDL)

To verify instrument linearity near CRDL, an ICP standard at a concentration of twice CRDL (CRI) is analyzed at the beginning and end of each analytical sequence. A standard equaling CRDL (CRA) must be included in each atomic adsorption sequence. CRDL standards must produce a recovery between 80% and 120%.

The CRDL results reported by the laboratory satisfied the program acceptance criteria.

It is noted that the laboratory did not analyze CRDL standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this discrepancy.

However, this issue should be brought to the laboratory's attention prior to the next sampling event.

#### BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Field blanks monitor sampling activities. Preparation blanks are carried through the digestion process with each group of samples to evaluate general laboratory technique. Calibration blanks are run periodically to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

An initial blank (ICB) was analyzed following the calibration in each analytical sequence. Additional blanks were analyzed after every ten samples (CCB) and at the end of each sequence. Preparation blanks were digested, prior to analysis, with each group of samples. Each laboratory prepared blank that was associated with samples from this program was free of analyte contamination exceeding CRDL.

#### INTERFERENCE CHECK SAMPLE (ICS)

ICS standards are analyzed at the beginning and end of each ICP analysis sequence to verify background and inter-element correction factors. The recoveries of specified analytes are measured in the presence of interfering concentrations of aluminum, calcium, magnesium and iron.

Interference check standards, ICSA and ICSAB, were included in each ICP analysis sequence. Each interference check standard that was used to bracket samples from this program produced recoveries within the range of acceptance, 80% - 120%.

It is noted that the laboratory did not analyze ICS standards at the end of each analytical sequence. Although the requirements of the cited methods were satisfied, ASP protocol was not. Data has not been qualified due to this discrepancy. However, this issue should be brought to the laboratory's attention prior to the next sampling event.

#### PREDIGESTION SPIKE

The recovery of spike concentrations added to samples prior to digestion and analysis demonstrates measurement bias caused by sample matrix effects. Predigestion spikes must be recovered within control limits of 75% - 125%.

A sample from an unrelated delivery group was selected for matrix spiking. Lead was added to two portions of this sample. Both additions were recovered successfully.

It should be noted that spike recoveries reported from unrelated samples provide no insight to matrix affects that might bias measurements in program samples. ASP protocol requires that program samples be used for matrix spiking.

#### DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Laboratory split duplicates of a sample from an unrelated delivery group were processed with this group of samples. This duplicate pair demonstrated an acceptable level of measurement precision.

Field split duplicates were not included in this delivery group.

#### LABORATORY CONTROL STANDARD

Laboratory control samples are prepared by adding analytes to clean sand or reagent water. Analyte concentrations are then determined without interferences caused by sample matrix effects.

A solid LCS standard was digested and analyzed with this group of samples. Acceptable recoveries were reported for each targeted analyte.

#### ICP SERIAL SILUTION SAMPLE

Possible matrix effects are verified by the process of serial dilutions. Samples are diluted 1:5 to reduce contributions that might bias measurements. The original sample result, and the corrected concentration of the diluted sample compared. Sample data is qualified if the concentrations are not recovered within 10%. Analytes with initial concentrations below 50 times IDL are not considered.

A sample from an unrelated delivery group was prepared as a serial dilution. The lead concentrations detected in the original sample and it's dilution differed by 10%. The program

acceptance criteria was satisfied. It is noted that this performance may not reflect interferences associated with the matrix of samples from this program.

Former Stillwater Boiler House site

Sampled 6/28/04 - 6/29/04

(\$3860-1) (\$3860-2) (\$3860-3) (\$3860-4) (\$3860-5)

SS-11 SS-12 SS-13 SS-14 SS-15 (



### Report of Analysis

Client: **Conti Enterprises Date Collected:** 7/28/2004 Date Received: 7/30/2004 Project: SDG No.: S3886 **Client Sample** SS-11 ID: Lab Sample ID: Matrix: SOILS3860-01 % Solids: 79.80

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7439-92-1	Lead	156	mg/Kg		0.129	1	8/2/2004	8/3/2004	EPA SW-846 6010
Comment	ts:								

MS



### Report of Analysis

Client: Date Collected: 7/28/2004 **Conti Enterprises** Date Received: 7/30/2004 Project: SDG No.: S3886 **Client Sample** SS-12 ID: Lab Sample ID: Matrix: SOIL S3860-02 % Solids: 78.00

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7439-92-1	Lead	106	mg/Kg		0.132	1	8/2/2004	8/3/2004	EPA SW-846 6010
Commer	nts:								

M



### Report of Analysis

Client: **Conti Enterprises**  Date Collected:

7/28/2004

Project:

Comments:

Date Received:

7/30/2004

SS-13

SDG No.:

S3886

**Client Sample** 

Matrix:

SOIL

ID: Lab Sample ID:

S3860-03

% Solids:

73.70

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7439-92-1	Lead	3290	mg/Kg		0.140	1	8/2/2004	8/3/2004	EPA SW-846 6010



### Report of Analysis

Client: Date Collected: 7/28/2004 **Conti Enterprises** Date Received: 7/30/2004 Project: SDG No.: S3886 Client Sample SS-14 ID: Lab Sample ID: Matrix:  $\mathbf{sol}$ S3860-04 % Solids: 70.80

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	n Date Prep	Date Anal.	Method
7439-92-1	Lead	984	mg/Kg		0.144	1	8/2/2004	8/3/2004	EPA SW-846 6010
Comme	nts:								
•									





## Report of Analysis

Client: **Conti Enterprises** Date Collected: 7/28/2004 Date Received: 7/30/2004 Project: SDG No.: S3886 Client Sample SS-15 ID: Lab Sample ID:  $\mathbf{SOIL}$ Matrix: S3860-05 % Solids: 75.70

CAS No.	Analyte	Conc.	Units	Qualifier	DL	Dilution	Date Prep	Date Anal.	Method
7439-92-1	Lead	4610	mg/Kg		0.136	I	8/2/2004	8/3/2004	EPA SW-846 6010
Comme	ats:								
								4	

M

## Metals - 2a INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Conti Enterprises SDG No.: S3886

Contract: Conti Enterprises Lab Code: CHEMED Case No.: S3860 SAS No.: S3860

Initial Calibration Source: EPA-ICV

Continuing Calibration Source: <u>FPA-LV</u>

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
		<del>_</del>	-8-		/				
ICV01 Lead		1036.81	996.0	104.1	90.0 - 110.0	P	8/3/2004	11:58	P108034
CCV01 Lead		5051.10	5000.0	101.0	90.0 - 110.0	P	8/3/2004	12:32	P108034
CCV02 Lead		5300.80	5000.0	106.0	90.0 - 110.0	P	8/3/2004	13:13	P108034
CCV03 Lead		5244.46	5000.0	104.9	90.0 - 110.0	P	8/3/2004	13:58	P108034
CCV04 Lead		5093.33	5000.0	101.9	90.0 - 110.0	P	8/3/2004	14:25	P108034
CCV05 Lead		5115.72	5000.0	102.3	90.0 - 110.0	P ⁻	8/3/2004	14:48	P108034
CCV06 Lead		5092.68	5000.0	101.9	90.0 - 110.0	P	8/3/2004	15:14	P108034
CCV07 Lead		5046.63	5000.0	100.9	90.0 - 110.0	P	8/3/2004	15:40	P108034
CCV08 Lead		5116.31	5000.0	102.3	90.0 - 110.0	P	8/3/2004	16:08	P108034
CCV09 Lead		5208.84	5000.0	104.2	90.0 - 110.0	P	8/3/2004	16:33	P108034
CCV10 Lead		4989.81	5000.0	99.8	90.0 - 110.0	P	8/3/2004	17:03	P108034
CCV11 Lead		4874.83	5000.0	97.5	90.0 - 110.0	P	8/3/2004	17:26	P108034
CCV12 - Lead		4813.98	5000.0	96.3	90.0 - 110.0	~ P	8/3/2004	17:53	P108034
CCV13 Lead		4719.90	5000.0	94.4	90.0 - 110.0	P	8/3/2004	18:18	P108034

#### - 2a -

### INITIAL AND CONTINUING CALIBRATION VERIFICATION

Client: Conti Enterprises

SDG No.: S3886

Contract: Conti Enterprises

Lab Code: CHEMED

Case No.: \$3860

SAS No.: \$3860

Initial Calibration Source:

EPA-ICV

Continuing Calibration Source:

EPA-LV

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window (%R)	M	Analysis Date	Analysis Time	Run Number
CCV14 Lead		5122.11	5000.0	102.4	90.0 - 110.0	P	8/3/2004	18:47	P108034
CCV15 Lead		5103.76	5000.0	102.I	90.0 - 110.0	P	8/3/2004	19:12	P108034
CCV16 Lead		5173.40	5000.0	103.5	90.0 - 110.0	P	8/3/2004	19:36	P108034
CCV17 Lead		5131.48	5000.0	102.6	90.0 - 110.0	P	8/3/2004	19:44	P108034

## Metals - 2b CRDL STANDARD FOR AA & ICP

Client: Conti Enterprises		SDG No.: S3886	<del></del>
Contract: Conti Enterprises	Lab Code: CHEMED	Case No.:	SAS No.: S3860
AA CRDL Standard Source:		S3860	

ICP CRDL Standard Source: INOR-VEN

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Advisory Limits (%R)	M	Analysis Date	Analysis Time	Run Number
CRI01	d	4.84	6.0	80.7	75 - 125	P	8/3/2004	12:13	P108034

## Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Conti Enterprises

SDG No.: S3886

Contract: Conti Enterprises

Lab Code: CHEMED

Case No.: S3860

SAS No.: S3860

			Result	Acceptance	Conc				Analysis	Analysis	
Sample I	D .	Analyte	ug/L	Limit	Qual	MDL	CRQL	M	Date	Time	Run
ICB01	Lead		1.8	+/-5.0	υ 🗸	1.8	5.0	P	8/3/2004	12:03	P108034
CCB01	Lead		-1.9	+/-5.0	1	1.8	5.0	P	8/3/2004	12:35	P108034
CCB02	Lead		1.8	+/-5.0	υ	1.8	5.0	P	8/3/2004	13:17	P108034
CCB03	Lead		1.8	+/-5.0	U	1.8	5.0	P	8/3/2004	14:00	P108034
CCB04	Lead		1.8	+/-5.0	U	1.8	5.0	P	8/3/2004	14:27	P108034
CCB05	Lead		-2.7	+/-5.0	J	1.8	5.0	P .	8/3/2004	14:52	P108034
CCB06	Lead		1.8	+/-5.0	υ	1.8	5.0	P	8/3/2004	15:16	P108034
CCB07	Lead		2.8	+/-5.0	J	1.8	5.0	P	8/3/2004	15:42	P108034
CCB08	Lead		-1.8	+/-5.0	J	1.8	5.0	P	8/3/2004	16:11	P108034
CCB09	Lead		1.8	+/-5.0	υ	1.8	5.0	P	8/3/2004	16:36	P108034
CCB10	Lead		1.8	+/-5.0	ប	1.8	5.0	P	8/3/2004	17:05	P108034
CCB11	Lead		1.8	+/-5.0	U	1.8	5.0	P	8/3/2004	17:28	P108034
CCB12	Lead	•	1.8	+/-5.0	U ·	1.8	5.0.	_P	8/3/2004	17:55	P108034
CCB13	Lead		-2.2	+/-5.0	J	1.8	5.0	P	8/3/2004	18:24	P108034

## Metals - 3a INITIAL AND CONTINUING CALIBRATION BLANK SUMMARY

Client: Conti Enterprises

SDG No.: S3886

Contract: Conti Enterprises

Lab Code: CHEMED

Case No.: S3860

SAS No.: S3860

Sample II	D Analyte	Result ug/L	Acceptance Limit	Conc Qual	MDL	CRQL	M	Analysis Date	Analysis Time	Run
CCB14	Lead	1.8	+/-5.0	υ <b>/</b>	1.8	5.0	P	8/3/2004	18:49	P108034
CCB15	Lead	1.8	+/-5.0	U	1.8	5.0	P	8/3/2004	19:14	P108034
CCB16	Lead	1.8	+/-5.0	U	1.8	5.0	P	8/3/2004	19:38	P108034
CCB17	Lead	-2.1	+/-5.0	J	1.8	5.0	P	8/3/2004	19:47	P108034

#### - 3b -PREPARATION BLANK SUMMARY

Client:

Conti Enterprises

SDG No.:

S3886

Instrument: P1

Sample ID	Analyte	Result (mg/Kg)	Acceptance Limit	Conc Qual	MDL mg/Kg	CRQL mg/Kg	M	Analysis Date	Analysi Time	s Run
PB00112BL		SOIL		Batch Numb	er: PB	00112	, "	Prep Date:	8/2/2	004
Lea	ıd	0.038	<0.500	υV	0.103	0.500	P	8/3/2004	17:36	P108034

#### -4-

#### INTERFERENCE CHECK SAMPLE

Client: Conti Enterprises

**SDG No.:** S3886

Contract: Conti Enterprises

Lab Code: CHEMED

Case No.: S3860

SAS No.: S3860

ICS Source:

EPA

Instrument ID:

P1 :

Sample ID	Analyte	Result ug/L	True Value ug/L	% Recovery	Acceptance Window %Rec	Analysis Date	Analysis Time	Run Number
ICS-A01								
L	ead	-5.3		_	0 - 0	8/3/2004	12:20	P108034
ICS-AB01	i			1	•			
L	ead	40.2	49	82.0 V	80 - 120	8/3/2004	12:26	P108034

### MATRIX SPIKE SUMMARY

Lead	mg/Kg	80 - 120	121.6830		9.7016		106.38	105.3		P	
Analyte	Units	Acceptance Limit %R	Spiked Result	С	Sample Result	С	Spike Added	% Recovery	Oual	. M	
Percent S	olids for Sa	mple: 94.00	Spiked ID:	S388	36-02S	Per	cent Solids fo	or Spike Sampl	e: 94.	00	
Matrix:	SOIL		Sample ID:	S38	86-02	Clie	ent ID: NJPA	CTOPORTAL(	(3)S		•
Contract:	Conti E	nterprises	Lab C	ode:	CHEMED		Case No.:	S3860	;	SAS No.: S3	860
Client: C	onti Enterpri	ses	Level:		LOW		SDG No.:	S3886			

#### MATRIX SPIKE DUPLICATE SUMMARY

Client: C	onti Enterpri	ses	Level:		LOW		SDG No.:	S3886		·*········
Contract:	Conti E	nterprises	Lab (	ode:	CHEMED	 	Case No.:	S3860	:	SAS No.: S3860
Matrix:	SOIL		Sample ID:	S38	86-02	Clie	ent <b>IO</b> : <u>NJP</u> 2	ACTOPORTAL	(3)SD	
Percent S	Percent Solids for Sample: 94.00		Spiked ID: S3886-02SD		Percent Solids for Spike Samp		le: 94.6	00		
Analyte	Units	Acceptance Limit %R	MSD Result	C	Sample Result	c_	Spike Added	% Recovery	Qual	M
Lead	mg/Kg	80 - 120	120.3910		9.7016		106.38	104.1		P

Metals
- 6 SAMPLE SUMMARY

		DUPLICA	LE SAMPLE SUP			
Client: Con	nti Enterprises	Level:	LOW	SDG No.:	S3886	
Contract:	Conti Enterprises	_ Lab Code:	CHEMED	Case No.:	S3860	SAS No.: \$3860
Matrix:	SOIL	Sample ID: S	3886-02	Client ID:	NJPACTOPORTAL	3)D
Percent Sol	lids for Sample: 94.00	Duplicate ID: 83	886-02D	Percent So	lids for Duplicate: 9	94.00
	Acceptance	Sample	Duplicate			

Result Limit Result Units Analyte mg/Kg 9.7016 9.6973

- 6 -

**DUPLICATE SAMPLE SUMMARY** 

Client: Conti Enterprises Level: LOW SDG No.: \$3886

Contract: Conti Enterprises Lab Code: CHEMED Case No.: S3860 SAS No.: S3860

Matrix: SOIL Sample ID: S3886-02S Client ID: NJPACTOPORTAL(3)SD

Percent Solids for Sample: 94.00 Duplicate ID: S3886-02SD Percent Solids for Duplicate: 94.00

Acceptance Sample Duplicate Units Result C Result C RPD Quál M Analyte Limit Lead 120.3910 1.1 mg/Kg 121.6830

## LABORATORY CONTROL SAMPLE SUMMARY

Client: Conti Enterprises				SDG No.: S3886							
Contract:	Conti Enterprise	es	Lab Cod	le: CHEMED		Case No.: S	3860	SAS No.: S3860			
Aqueous I	LCS Source:				Solid :	LCS Source:	EPA-ICV				
Sample ID	Analyte	Units	True Value	Result	C	% Recovery	Acceptance Limits	M			
PB00112BS	Lead	mg/Kg	100.0	97.2		97.2	80.0 - 120.0	P			

#### - 9 -SERIAL DILUTION SAMPLE SUMMARY

Matrix: WATER Level: LOW Client ID: NJPACTOPORTAL(3)L  Sample ID: S3886-02  Initial Result Result % Acceptance	Contract:	Conti Enterprises		L:	ab Code:	CHEMED		Case No.:	S3860	SAS No.:	S3860
Initial Serial Result % Acceptance	Matrix:	WATER	Level	: LOW	<u>.</u>		Client II	: NJPA	ACTOPORTAL(3)	L	
Result % Acceptance	Sample ID:	S3886-02					Serial Di	lution ID:	S3886-02L		
Analyte ug/L C ug/L C Difference Equal Limits M	Analyte		С		C	% Difference	<b>Ø</b> ual	Accepta Limit			.,

DATAVAL, INC.
Environmental Data Validation

JAMES B. BALDWIN, JR. Phone/Fax (607) 642-5460

Hooper Road, PMB 283 Endwell, NY 13760