FORMER DARBY DRUGS DISTRIBUTION CENTER 80-100 BANKS AVENUE ROCKVILLE CENTRE, NEW YORK BROWNFIELD CLEANUP PROGRAM ID: C130140

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

Submitted To:

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway Albany, New York 12233-7015

Prepared For:

AvalonBay Communities, Inc. 135 Pinelawn Road, Suite 130 South Melville, New York 11747

Prepared By:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705 Kris Almskog, Senior Project Manager Thomas Melia, Senior Hydrogeologist

krisa@pwgrosser.com thomasm@pwgrosser.com

PWGC Project Number: AVB0801

P.W. GROSSER CONSULTING, INC. PROJECT No. AVB0801

SUPPLEMENTAL REMEDIAL INVESTIGATION REPORT

FORMER DARBY DRUGS DISTRIBUTION CENTER
80-100 BANKS AVENUE
ROCKVILLE CENTER, NEW YORK
BROWNFIELD CLEANUP PROGRAM ID: C130140

November 24, 2009

TABLE	OF CON	NTENTS	PAGE
1.0	INTRO	DDUCTION	1
	1.1	Site Description	
	1.2	Site History	
	1.3	Project Background	
	1.4	Previous Investigations	
		1.4.1 Preliminary Soils and Foundation Investigation Report	
		1.4.2 Phase I Environmental Site Assessment	
		1.4.3 Phase II Environmental Investigation	
		1.4.4 Remedial Investigation	
2.0	INVES	STIGATION	
	2.1	Field Investigation and Technical Approach	
	2.2	Geophysical Survey	
		2.2.1 Ground Penetrating Radar/Pipe Tracing	
		2.2.2 Dye/Flush Testing	
		2.2.3 Gamma Logging	
	2.3	Leaching Structure Characterization	
	2.0	2.3.1 Storm Water Drainage Structures	
		2.3.2 Industrial Discharge Structures	
	2.4	Source Area Delineation	
	2.5	Soil and Groundwater Evaluation	
	2.0	2.5.1 Soil Borings	
		2.5.2 Groundwater Sampling Points	
		2.5.3 Supply, Diffusion and Monitoring Well Sampling	
	2.6	Evaluation of Groundwater Quality beneath Clay Layer	
	2.7	Soil Vapor Evaluation	
	2.7	Data Analysis	
3.0		ROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING	
3.0	3.1	Site Topography	
	3.1	Surrounding Land Use	
	3.3	Regional Geology/Hydrogeology	
	3.4	Site Geology/Hydrogeology	
4.0		IRE AND EXTENT OF CONTAMINATION	
4.0	4.1	Identification of Source Areas	
	4.1	Soil Impacts	
	4.2	4.2.1 Additional Source Area Delineation	
		4.2.1 Additional source Area Delineation	
		4.2.3 Storm Water Drainage Structures	
		4.2.4 Industrial Leaching Pools	
	4.3		
	4.3	Groundwater Impacts	
		no. i onaliew Groundwater	20
	1 1	4.3.2 Deep Groundwater	
	4.4 4.5	Soil-Vapor Impacts	
	4.3	Qualitative Exposure Assessment	
		4.5.1 Water Supply Wells	
	1 4	· · · · · · · · · · · · · · · · · · ·	
	4.6	Quality Assurance/Quality Control	
		4.6.1 QA/QC Samples	
г о	CON	4.6.2 Data Usability and Validation	
5.0		CLUSIONS AND RECOMMENDATIONS	
	5.1	Conclusions F. 1.1 Source Areas	
		5.1.1 Source Areas	
		5.1.2 Soil	
		5.1.3 Groundwater	
		5.1.4 Soil Vapor	
	5.2	Recommendations	
		5.2.1 Responsible Party	
	BE	5.2.2 Volunteer	
6.0	KEFER	RENCES	40

FIGURES

Figure 1

Site Location Map

Figure 2	Site Plan		
Figure 3	Subsurface Drainage Structure Locations		
Figure 4	Soil Boring Locations		
	Figure 5 Historic Soil Sample Locations and Results Figure 6 Shallow Groundwater Sample Locations Figure 7 Historic Shallow Groundwater Sample Locations and Results Figure 8 Deep Groundwater Sample Locations		
0			
Figure 9			
Figure 10	Surrounding Land Use		
Figure 11	Geologic Cross Sections A & B		
Figure 12			
Figure 13			
Figure 14	Deep Groundwater Contour Map		
9			
TABLES			
Table 1	Subsurface Drainage Structure Construction Details		
Table 2			
Table 3	Monitoring/Supply/Diffusion Well Construction Details Soil Sample Analytical Data Summary – Volatile Organic Compounds		
Table 3			
Table 5	Soil Sample Analytical Data Summary - Semi-Volatile Organic Compounds Soil Sample Analytical Data Summary - Pesticides/PCBs/Metals		
Table 6	Subsurface Drainage Structure Sample Analytical Data Summary – Volatile Organic Compounds		
Table 7	Subsurface Drainage Structure Sample Analytical Data Summary – Volatile Organic Compounds Subsurface Drainage Structure Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 8	Subsurface Drainage Structure Sample Analytical Data Summary – Semi-Volatile Organic Compounds Subsurface Drainage Structure Sample Analytical Data Summary – Metals		
Table 9	Historic Storm Drain Sample Analytical Data Summary - Volatile Organic Compounds		
Table 10	Historic Storm Drain Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 11	Historic Storm Drain Sample Analytical Data Summary – Metals		
Table 12	Groundwater Sample Analytical Data Summary – Volatile Organic Compounds		
Table 13	Groundwater Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 14	Groundwater Sample Analytical Data Summary – Pesticides/PCBs/Metals		
Table 15	Groundwater Vertical Profile Sample Analytical Data Summary – Volatile Organic Compounds		
Table 16	Soil-Vapor Sample Analytical Data Summary - Volatile Organic Compounds		
Table 17	Public Supply Well Construction Details		
Table 18	Groundwater QA/QC Sample Analytical Data Summary – Volatile Organic Compounds		
Table 19	Groundwater QA/QC Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 20	Groundwater QA/QC Sample Analytical Data Summary – Pesticides/PCBs/Metals		
Table 21	Soil QA/QC Sample Analytical Data Summary – Volatile Organic Compounds		
Table 22	Soil QA/QC Sample Analytical Data Summary – Semi-Volatile Organic Compounds		
Table 23	Soil QA/QC Sample Analytical Data Summary – Pesticides/PCBs/Metals		
Table 24	Trip Blank Sample Analytical Data Summary – Volatile Organic Compounds		

APPENDICES

Appendix A	NYSDEC Correspondence
Appendix B	Gamma Logs
Appendix C	Soil Boring Logs
Appendix D	Well Sampling Logs
Appendix E	Well Construction Logs
Appendix F	Laboratory Analytical Reports
Appendix G	Data Validation Report

Due to size constraints, Appendices E & F have not been reproduced in this volume and are included in the attached electronic version of this report.

1.0 INTRODUCTION

P.W. Grosser Consulting Inc. (PWGC) was contracted by Avalon Bay Communities, Inc. (Avalon Bay) of Melville, New York and Darby Drug Co., Inc. (Darby) of Westbury, New York to perform a Supplemental Remedial Investigation (RI) at the property located at 80-100 Banks Avenue, Rockville Centre, New York. Redevelopment plans for the property, the former Darby Drugs pharmaceutical product warehouse and distribution center, include two residential complexes and associated grounds. Based on the historical use of the property and the confirmed presence of chlorinated solvents, the site was accepted into the New York State Brownfields Cleanup Program (BCP). This report has been prepared to document the results of the Supplemental RI performed at the site, as required under the BCP.

Areas of concern addressed by this Supplemental RI are detailed in the approved Supplemental Remedial Investigation Work Plan (SRIWP) prepared by PWGC dated April 2008. Additional investigation activities were completed following a February 23, 2009 email request by NYSDEC and follow conversations. This Supplemental RI Report is intended to address potential areas of concern within the property boundary of the site only, and does not address areas of concern outside of the property boundary. The on-site and off-site components of this project have been separated into two Operable Units (OU) which will be managed by separate and distinct parties. The on-site component will be addressed under a Brownfield Cleanup Agreement between ARC Chase Partners, LLC, Avalon Bay Communities, Inc. (AvalonBay) and the New York State Department of Environmental Conservation (NYSDEC). The off-site component has been designated as Operable Unit 2 (OU2) and will be addressed under an Order on Consent between the NYSDEC and Darby Drug Group Companies, Inc. (Darby).

1.1 Site Description

The subject site is located at 80-100 Banks Avenue in the Village of Rockville Centre, New York. The site is located within the Town of Hempstead and Nassau County. The site is situated at the northwest corner of the intersection of Nassau Street and Banks Avenue. The property is identified as Section 38, Block 539, Lots 27 and 30 by the Nassau County Department of Assessment. The site is approximately 7.1 acres and is currently improved with a one-story, 150,000 square foot warehouse building and a 2-story 24,000 square foot office building, both of masonry construction. A Vicinity Map is included as **Figure 1**; a Site Plan is included as **Figure 2**.

The subject site was recently purchased by Avalon Bay and was formerly owned by Darby, which ceased operation at the site in November 2000. Darby had occupied the building since 1978 and operated it as a pharmaceutical product warehouse and distribution center. Demolition of the existing structures and the phased development of two residential buildings consisting of a 100,492 square foot (footprint) north complex and a 60,128 square foot (footprint) south complex are planned.

1.2 Site History

According to title information provided by Darby, the 80 Banks Avenue parcel was owned by the RVC Urban Renewal Agency until 1971, when it was sold to the partnership of Walter G. Stackler, Leonard L. Frank and Herbert Z. Gold. The parcel remained under the ownership of various forms of the original partnership until it was purchased by Darby Drug Co., Inc. in 1978. The 100 Banks Avenue parcel has a similar history and was owned by

the RVC Urban Renewal Agency prior to 1972. From 1972 to 1973 the title lists Stafgo Corporation as the owner. In 1973, ownership of the parcel was transferred by Stafgo Corporation to 420 Doughty Blvd Corporation, which merged with Darby Drug Co. Inc. in 1975. In 1993 the 80 Banks Avenue and 100 Banks Avenue property was transferred to Darby Group Companies, Inc by the successor-in-interest to Darby Drug Co., Inc.

Although Darby occupied the 80 Banks Avenue premises since 1978 and the 100 Banks Avenue property from 1973, no information regarding previous operators except as set forth above or tenants of either parcel has been identified other than Downen-Zier Knits, Inc. which leased the 80 Banks Avenue property from 1972 to 1978. Downen-Zier went bankrupt in 1978. Unverified information indicates that a rug cleaning or carpet manufacturing business may have occupied the property prior to Darby's acquisition of the 80 Banks Ave property; however, this could not be confirmed.

1.3 Project Background

The chlorinated solvent, tetrachloroethene (PCE), was first identified in shallow soil beneath the southwestern portion of the building, during a Phase II investigation performed at the site in November 2003. It is believed that PCE may have been released between 1972 and 1978, during the time that a textile company leased the southern portion of the site (80 Banks Avenue). A Remedial Investigation (RI), performed in accordance with NYSDEC Draft DER-10, Technical Guidance for Site Investigation and Remediation (DER10), was initiated in March 2004, to characterize the nature and extent of PCE in soil and groundwater at the site. The results of the investigation, as documented in the Draft RI Report (PWGC, 8/04), recommended an Interim Remedial Measure (IRM) to remove mobile and residual dense non-aqueous phase liquid (DNAPL). The site was accepted into New York State's Brownfield Clean-up Program (BCP), and a Brownfield Clean-up Agreement (BCA) was executed on June 29, 2005. Upon review of the RI Report, NYSDEC provided multiple comments in an August 15, 2005 letter, including providing further detail about initial investigation sample collection techniques and the need to further evaluate and investigate additional on-site areas of concern.

An IRM Work Plan was approved by the NYSDEC May 12, 2006. The IRM Work Plan addresses source areas of PCE contamination, by removing DNAPL that has accumulated at a clay boundary (11-17 ft below surface), and by excavating residually impacted soils down to the clay surface.

A September 20, 2007 NYSDEC letter to Environmental Business Consultants, Inc. (EBC), the consultant representing Darby for the off-site investigation portion of the BCP, requested additional areas of concern to be investigated as part of the Work Plan for OU2 (off-site). Although this letter focuses on the previously submitted OU2 Work Plan, several of the comments requested further investigation within the property boundary, including investigation of 14 leaching pools on the western side of the building and groundwater sampling outside the source area beneath the clay layer. The letter included a copy of a 1971 State Pollution Discharge Elimination System Permit (SPDES) application for the site which detailed the proposed locations of three supply wells, four diffusion wells, and 14 leaching pools located on the western portion of the property. Although the presence of these structures was suspected during previous investigation, the application illustrates the likely locations of the leaching pool system.

A Supplemental Remedial Investigation Work Plan (SRIWP) to address on-site areas of concern was submitted to the NYSDEC by PWGC on behalf of AvalonBay in April 2008. The SRIWP was approved by the NYSDEC and released for public comment on May 12, 2008. Following close of the public comment period, PWGC submitted a response to comments amending the SRIWP to the NYSDEC (dated August 6, 2008). The NYSDEC granted final approval to the SRIWP on August 7, 2008. Copies of PWGC's response to public comments and copies of NYSDEC correspondence are included in **Appendix A**. In February 2009, following completion of initial supplemental investigation activities and NYSDEC review of the groundwater data, NYSDEC requested that three additional monitoring wells be installed in the northern portion of the site and several existing monitoring wells be resampled for metals analysis.

1.4 Previous Investigations

1.4.1 Preliminary Soils and Foundation Investigation Report

Melick-Tully and Associates (MT&A) installed a number of borings at the subject property as part of a geotechnical analysis of site conditions to assist in the design of the proposed apartment buildings. The geotechnical investigation initially consisted of six soil borings with a recommendation that monitoring wells be installed for the basement design. Six monitoring wells were installed between January and May 2003. Based on MT&A geotechnical borings, geology beneath the site consists of one to four feet of sand fill material underlain by orange-tan sand with gravel to a depth of approximately 12 to 16 feet below grade. Beneath the sand and gravel unit is black, silty clay, which was determined to be approximately nine feet thick.

MT&A reported that the depth to groundwater at the site varies between five to nine feet below grade depending upon surface elevation. The water table was determined to exist within the sand unit situated above the black, silty clay unit. Groundwater flow was determined to vary from a westerly to a southerly direction as you move west to east across the site.

1.4.2 Phase I Environmental Site Assessment

A Phase I Environmental Site Assessment (Phase I ESA) was conducted by EcolSciences, Inc. (ESI) in March 2002 to identify potential recognized environmental conditions (RECs) associated with the subject site. The Phase I ESA included a review of available title and deed records, historical aerial photographs and maps, readily available local records, an environmental database search, including federal and state listings, and a site reconnaissance.

During site reconnaissance, ESI identified an electrical panel on the western wall of the southern warehouse area containing circuit breakers labeled "well pumps" and "dry cleaning still unit". In addition, six vertical steel pipes were discovered beneath square metal covers outside the building in the west parking area. Three of the pipes were located outside the building along the western wall and were believed to be inactive pumping wells for processing water. The remaining three pipes were located along the southern edge of the parking lot and were believed to be inactive injection wells.

The document search yielded no information on a dry cleaning operation, but records were obtained from the

Nassau County Department of Health (NCDH) detailing the proper removal of four heating oil underground

storage tanks (USTs). UST removals were witnessed by the NCDH; each tank excavation was observed to be clean

and no holes were identified in the tanks. ESI's Phase I ESA recommended the collection of soil samples in the

vicinity of the former UST locations to verify that no discharges occurred, and a test boring program beneath the

concrete floor to assess potential impacts from possible former dry cleaning operation at the site.

1.4.3 Phase II Environmental Investigation

A Phase II Environmental Investigation was performed by ESI in November 2003. ESI identified a total of seven

areas of concern (AOC) as part of their scope of work. In addition to the former heating oil tanks and the former potential dry cleaning still unit, other AOCs were identified as a result of further field observation and a

geophysical survey performed as part of the Phase II investigation. A total of nineteen borings were installed

during the investigation with thirty-one soil samples submitted for analysis. Eleven groundwater samples were

collected and analyzed including five from soil boring locations and six from pre-existing monitoring wells installed

by MT&A. The AOCs identified by ESI and results of the Phase II Investigation are as follows:

North Fuel Oil UST

During the geophysical survey, an asphalt patch was identified near the northwest corner of the building,

adjacent to the loading dock area. This patch represented the area where two 5,000 gallon fuel-oil USTs were

formerly located. As documented in the Phase I ESA report, the USTs were removed under the oversight of the

NCDH in 1995 when the heating system was converted to natural gas. The geophysical survey did not identify

anomalies indicative of the presence of USTs in the vicinity of the patch.

Three soil borings were installed in the vicinity of the patch, with soil samples collected from immediately above

the water table (7.5 feet below grade). Soil samples were collected to verify that a release did not occur from

the removed USTs, since endpoint samples were not collected during the tank removal. Samples were analyzed

for volatile organic compounds (VOCs) by USEPA Method 8260B and semi-volatile organic compounds (SVOCs)

by USEPA Method 8270 (base neutral [BN] compounds). Based on analytical data it did not appear that a

release occurred from the former fuel-oil USTs.

Southwest Fuel Oil UST

A second asphalt patch was identified outside the boiler room located within the southwest corner of the

warehouse building. According to the Phase I ESA, two 2,500 gallon USTs were removed from this area in 1995

when the heating system was converted to natural gas. The geophysical survey did not identify anomalies

indicative of the presence USTs in the vicinity of the patch. As with the northern UST location, three soil borings

were installed in the vicinity of the asphalt patch. Again, soil samples were collected from immediately above the

water table and analyzed for VOCs by USEPA Method 8260 and SVOCs by USEPA Method 8270 (BN). Based on

analytical data, it did not appear that a release had occurred from the former fuel-oil USTs.

Dry Cleaning Still Unit

Several soil borings were installed in the southwest portion of the site, both inside and outside of the building, to

assess potential impact from the suspected former presence of a dry cleaning unit, as noted in the Phase I ESA.

Shallow (<5 feet) and deep (immediately above the clay layer @ 12 to 16 feet below grade) samples were

collected and analyzed for VOCs by USEPA Method 8260. Soil sample analytical data identified significant

concentrations of tetrachloroethene (PCE), a compound commonly associated with dry cleaning processes. The

highest shallow (<5 ft) PCE concentrations found within the building were in samples collected from soil borings DC1 and DC4, at 93,000 ppb and 110,000 ppb respectively. The Recommended Soil Cleanup Objective (RSCO)

for PCE as specified in NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046,

Determination of Soil Cleanup Objectives and Soil Cleanup Levels (January 24, 1994) is 1,400 ppb (note - TAGM

4046 RSCOs were used as cleanup objectives prior to the issuance of 6 NYCRR Part 375 Soil Cleanup Objectives in

December 2006; data collected prior to December 2006 are compared to the RSCOs since this investigation pre-

dated 6 NYCRR Part 375).

Higher PCE concentrations were detected at the clay surface (approximately 15.5 feet below grade) in samples

collected from soil borings DC2 and DC3, roughly 40 feet south of soil borings DC1 and DC4. PCE concentrations

at the clay layer were 110,000 ppb in the sample collected from soil boring DC2 and 19 million ppb in the sample

collected from soil boring DC3. Since the deeper samples were collected below the water table, the

concentration in excess of the pure product solubility detected in DC3 indicates that dense non-aqueous phase

liquid (DNAPL) is present above the clay.

PCE was detected at concentrations ranging from 2.4 ppb to 7,400 ppb in shallow soil samples collected from the

exterior of the southwestern portion of the warehouse building. The highest shallow PCE concentration was

detected in the sample collected from soil boring WP3. PCE was detected at concentrations ranging from 3.6

ppb to 2,100 ppb in deep soil samples collected from the exterior of the southwestern portion of the warehouse

building. The highest deep PCE concentration was detected in the sample collected from soil boring B2 location,

adjacent to the south wall of the building.

Exterior Subsurface Structure/Interior Battery Charging Area

The geophysical survey identified a potential rectangular subsurface structure adjacent to the asphalt patch

(former UST location) near the southwest corner of the building. Below grade piping, identified by magnetic

imaging, was identified leading from this potential structure toward the building in an area formerly used by Darby

as a battery charging area. A soil boring was installed through the potential structure and both shallow (above

the water table) and deep (above the clay) soil samples were collected. PCE was detected at 7.5 ppb and

7,400 ppb, respectively.

Potential Injection Wells

During the geophysical survey, below grade piping was identified from the southwest corner of the building to

three three-foot by three-foot vaults at the southwest properly boundary. Horizontal below grade piping was also

identified connecting the vaults. Each vault contained four-inch vertical piping assembly resembling a well head.

Groundwater was recorded at a depth of six feet below grade within in one of the suspected wells with the total

depth of the well measured at approximately 14 feet below grade.

Two soil borings were installed adjacent to two separate vaults. Both shallow (above the water table) and deep

(above the clay) soil samples were collected and analyzed for VOCs by USEPA Method 8260. Very low

concentrations of PCE (2.4 and 2.6 ppb) were detected in the shallow soil samples. Concentrations in the deeper

soil samples varied significantly. The concentration of PCE from the area coinciding with the eastern most vault

was 3.6 ppb (soil boring WP1), while the concentration of PCE from the vicinity of the western most vault was

16,000 ppb (soil boring WP3), which exceeds the NYSDEC RSCO of 1,400 ppb.

Potential Vapor Vent

Vent duct work was observed leading from the area of the former dry cleaning still unit towards an outlet port on

the south exterior wall of the building. A soil boring was installed adjacent to the outside the vent port. A soil

sample from the interval above the clay was collected and analyzed for VOC by USEPA Method 8260. PCE was

detected at a concentration of 2,100 ppb.

Metal Shop Vent

Based on field observations, a metal shop was identified along the western wall of the building, approximately 130

feet north of the battery recharging area. A soil sample directly below the asphalt pavement was collected

outside of this part of the building, beneath an exterior vent port. The sample was analyzed for priority pollutant

metals by USEPA Method 6010B. Chromium (30.7 ppm), Copper (35.4 ppm), nickel (16.9 ppm), and zinc (105

ppm) were detected at concentrations exceeding their respective RSCOs. Based on the relatively low

concentrations detected and the collection of the sample immediately below the asphalt, it is unclear if the

detection of these compounds is associated with former on-site activities.

Groundwater Sampling Results

During the Phase II Investigation, ESI collected groundwater samples from five temporary groundwater sampling

points and six pre-existing monitoring wells installed by MT&A. Groundwater samples were analyzed for VOCs by

USEPA Method 8260. The results of the groundwater analyses identify PCE as the predominant compound

detected. The highest concentrations of PCE were detected adjacent to the west wall of the warehouse

building with concentrations ranging from 1,800 ppb to 5,800 ppb.

1.4.4 Remedial Investigation

A Remedial Investigation (RI) was conducted by PWGC in March 2004 to determine the nature and extent of

contamination at the site and to characterize potential threats to public health or the environment caused by the

release of hazardous substances, pollutants, or contaminants from the site. Previous investigations performed at

the site had identified a concentration of chlorinated VOCs, primarily PCE, in soils beneath the southwest portion

of the warehouse building. PCE impact is believed to have originated during the time that a textile company

(Downen-Zier Knits) and/or a rug cleaning or processing operation existed onsite (which may possibly have

occupied a portion of the premises prior to 1978).

The results of the RI confirmed the findings of the previous investigations and supported a release scenario of liquid

 $\hbox{phase PCE beneath the floor in the southwestern portion of the warehouse building. From there, PCE, as DNAPL,}\\$

migrated along the clay surface to a low point approximately 50 feet east of the release point. Based on PCE

concentrations in soil and groundwater, sufficient evidence existed to indicate that DNAPL was present beneath

the site.

A competent clay layer, reportedly measuring approximately nine feet thick, had been documented throughout

the site during the 2003 geotechnical investigation. The presence of clay appeared to have limited the vertical

migration of PCE in the soil column to a maximum depth of 18 feet below grade. The clay surface was deepest in

borings beneath the building and shallowest in borings at the property boundaries.

PCE impact in shallow soil, at concentrations exceeding the RSCO of 1,400 ppb, was limited to an area measuring

approximately 40 feet by 60 feet. PCE impact in deeper soils was found to be more extensive covering an area

roughly 180 feet by 160 feet. Significant PCE impact in soil was also found at the clay surface in samples collected

from beneath the north end of the west parking area, in the general vicinity of a suspected leaching structure.

The structure, if present, may have received VOC-contaminated process water from the building. The presence

of DNAPL and high PCE concentrations in soil was determined to be acting as a continuing source of

contamination to shallow groundwater beneath the site.

Based on groundwater sampling data, a shallow groundwater plume of chlorinated VOCs, primarily PCE, was

determined to be emanating from the source area beneath the southwestern portion of the warehouse building.

PCE was detected at concentrations exceed in the pure product solubility in soil and groundwater samples

collected from within the presumed source area, providing further evidence of DNAPL in this area. The plume

appeared to be migrating off-site toward the south. PCE was detected at concentrations up to 28,000 ppb in

groundwater samples collected at the south property line. Based on the historic use of the property, the plume

may have been in transit since 1978 or sometime prior.

High VOC concentrations were also detected in a single groundwater sample location (B9) at the western

property boundary, which does not appear to be related to the plume emanating from the known source area.

Dissolved VOCs at this location displayed a much higher ratio of 1,2-dichloroethene (1,2-DCE) and trichloroethene

(TCE) to PCE, indicating that reductive dechlorinization was occurring in this area. The origin of the VOCs

detected in the groundwater sample collected from B9 are unknown, but may be associated with a below grade

drainage structure suspected to be in the area.

The vertical migration of DNAPL appeared to have been contained by the presence of the clay layer beneath

the site. The RI recommended that, since chlorinated solvents have been known to cause desiccant fracturing of

certain clays, groundwater quality beneath the clay layer should be evaluated.

The isolated presence of PCE in the deep soil sample from soil boring B8 and the circular mark-outs from the ESI

geophysical survey, suggested that a drainage structure exists in the area which may have, at one time, received

processing waste from the building. If the structure is present, it may be the source of the VOCs in groundwater

detected at groundwater sampling location B9 at the western property boundary. The RI recommended that, to investigate this issue, test pits should be installed at the circular mark-outs to determine if subsurface drainage structures are present. If drainage structures are present, samples should be collected to determine if they have been impacted by improper wastewater disposal, and if so, the extent of impact should be determined. Drain lines entering the structure should be traced to verify the point of origin, and to investigate the possibility of secondary drainage structures. Furthermore, the RI recommended that additional groundwater delineation should be performed in this area to identify the source and migration route of the VOCs detected in the groundwater sample collected from location B9.

Based on the results of the RI, PWGC recommended that a IRM consisting of the recovery of DNAPL from within the source area and sequenced excavation of PCE impacted soils from beneath the southwestern portion of the warehouse building. The excavation plan called for utilization of sheet piling installed to the clay surface to isolate sections of the source area for excavation and dewatering to prevent mixing of contaminated and clean groundwater.

2.0 INVESTIGATION

The purpose of the Supplemental RI was to collect data of sufficient quality and quantity to augment the March

2004 RI and adequately characterize the nature and extent of contamination at the site, evaluate contaminant migration, characterize the potential exposure to human health and the environment and select the most

appropriate remedial technology. This Supplemental RI is intended to address potential areas of concern within

the property boundary of the site only, and did not address areas of concern outside the property boundary.

Work was performed in accordance with the approved SRIWP and NYSDEC Draft DER-10 Technical Guidance for

Site Investigation and Remediation, December 2002.

2.1 Field Investigation and Technical Approach

The results of the preliminary soils and foundation investigation performed by MT&A, the Phase I and Phase II

Investigations performed by ESI, and the RI performed by PWGC were used as a guide in selecting field sampling

locations to verify subsurface conditions.

The primary objective of the work was to collect information and field data necessary to address NYSDEC

comments pertaining to on-site issues as detailed in correspondence dated August 15, 2005 and September 20,

2007 (see Appendix A).

The scope of work included the following tasks:

Ground penetrating radar (GPR) survey.

Characterization of leaching structures located at the property.

Evaluation of interior and exterior soil vapor quality.

• Evaluation of groundwater quality beneath the clay layer.

Further delineation of subsurface soil impacts in the vicinity of the suspected source area.

• Evaluation of soil and groundwater quality beneath the northern portion of the site.

2.2 Geophysical Survey

2.2.1 Ground Penetrating Radar/Pipe Tracing

In an effort to better determine outflow of the interior drains and piping and potential overflow structures related

to the known and suspected leaching pools, a geophysical survey was performed to identify the following:

Subsurface piping and discharge points associated with floor drains within the warehouse building.

• Discharge points of unidentified piping within the warehouse building.

• Locations of potential leaching structures beneath the property.

• Usage of each structure (i.e., storm water drainage, industrial discharge).

A geophysical investigation to identify the items detailed above was performed on August 28, 2008 by Utility

Detection, Inc. (UDI) of Melville, New York. The survey performed by UDI utilized ground penetrating radar (GPR),

a magnetometer and pipe snake to search for anomalies representative of leaching structures and piping based

on size and instrument response.

Multiple potential drainage structures (two floor drains and five 4-inch diameter pipes of undetermined usage) are

present within the existing building. Dye/flush testing performed during the March 2004 RI did not identify discharge points for these structures. During previous investigations, the presence of 24 on-site leaching structures,

believed to be storm drains were documented. Also present are two solid manhole covers at grade, which are

related to the municipal sanitary and storm sewer system lines running beneath the eastern portion of the site.

In addition to the previously identified floor drains, pipe runs and leaching structures, a site plan included in a

State Pollution Discharge Elimination System (SPDES) permit application for the site illustrated 14 leaching structures

within the western parking area, eight leaching structures within the southern parking area, three supply wells

outside the western wall of the warehouse building (near the southwest corner of the building) and four diffusion

wells along the western property boundary in the southern parking area.

Nine of the leaching structures identified in the 1971 SPDES permit site plan appear to be included among the 24

structures confirmed to be present at the site. The permit does not include information regarding the usage of the

leaching structures identified in the site plan. The locations of the diffusion wells and several leaching structures,

as illustrated in the 1971 SPDES permit application; do not correspond to the actual locations of the wells and

structures. A copy of the SPDES Permit is included in **Appendix A**.

A magnetometer and pipe snake were used to trace four 4-inch diameter pipes (cut off at grade) located

adjacent to the inside of the western wall of the warehouse building (near the southwest corner), one 4-inch

diameter pipe (cut off at grade) adjacent to the southern wall of the warehouse building and one floor drain

located in the southwest boiler room. Three of the pipes adjacent to the western wall were traced to the supply

wells identified outside that portion of the building. The fourth pipe located adjacent to the western wall was

traced south toward the diffusion well system where it met a "T" junction and a pipe running east-west parallel to

the southern property boundary from diffusion well DIFFW-01 to diffusion well DIFFW-04. The pipe located

adjacent to the southern wall and the floor drain in the south boiler room were obstructed at approximately two

feet below grade and could not be traced using the magnetometer/snake. The southern pipe and boiler room

floor drain were traced via test pits excavated outside the southern wall of the building. The 4-inch diameter pipe

adjacent to the southern wall was determined to be connected to a manifold/valve system related to the

diffusion well system in a vault located at the southern property boundary near diffusion well DIFFW-04. The floor

drain in the southern boiler room was determined to discharge to an exterior leaching structure (LP-01) not

finished to grade.

In addition to the magnetometer and pipe snake, a GPR survey was performed throughout the western and

southern parking areas to identify potential below grade leaching structures and anomalies. The presence of

nine structures (all finished to grade) throughout this area had been confirmed prior to implementation of the GPR

survey. The GPR survey identified 19 additional structures beneath the western and southern parking areas.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716

Eighteen of the additional structures appeared to be storm drain overflow pools; one was determined to be an

industrial leaching pool (LP-01) which received discharge from the floor drain located within the southern boiler

room. The GPR survey did not identify any piping that would indicate that the storm drain structures beneath the

southern and western parking areas received discharge from within the warehouse building.

Overflow piping associated with on-site leaching structures was traced using a magnetometer and pipe snake to

identify potential unknown structures. No evidence of previously undetected structures was identified in storm

drains located within the northern parking area; no evidence indicating pools within the northern parking area

had received discharge from within the building was identified.

Following completion of the geophysical survey, test pits were excavated where leaching structures were

expected to be located based on the 1971 SPDES permit and/or the presence of overflow piping within identified

structures, but were not identified during the geophysical survey. Three test pit areas were excavated within the

southern and western parking areas at locations that corresponded to leaching structures locations in the SPDES

permit site plan. No structures were identified within these test pit areas. Two overflow pipes were identified within

one storm drain (DW-29) located outside the southern portion of the office building. Test pits excavated around

this pool identified one previously unknown overflow pool (DW-28). The discharge point, if any exists, of the

second overflow pipe could not be determined due to the presence of underground utilities in the area (i.e., electric and telephone lines) which limited the area in which additional exploratory excavation could be

performed.

Subsurface leaching structures and overflow piping identified by the geophysical survey and test pit areas are

illustrated in Figure 3.

2.2.2 Dye/Flush Testing

Dye/flush testing was performed on drains within the onsite structures to confirm discharge points. Based on

dye/flush testing:

Sinks and drains in the northern portion of the warehouse building (including the floor drain in the northern

boiler room and slop sink in a utility closet) discharge to the municipal sewer system via a sewer

connection at the east site of the office building.

Sinks and drains in the southern portion of the warehouse building (not including the floor drain in the

southern boiler room) discharge to the municipal sewer system via a sewer connection at the southeast

corner of the warehouse building.

The floor drain in the southern boiler room discharges to a leaching pool near the southwest corner of the

warehouse building (leaching pool LP-01).

Sinks and drains in the office building discharge to the municipal sewer system via a sewer connection at

the east site of the office building.

Discharge locations for floor drains and piping identified within the existing structures were confirmed by the

geophysical survey and/or dye/flush testing. Floor drain, piping and discharge locations are illustrated in Figure 3.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

2.2.3 Gamma Logging

In an effort to determine the depth and thickness of the clay layer and lithology beneath the clay layer, augers

were driven to 100 feet below grade following completion of vertical profile sampling at each location and a

gamma geophysical log was performed through the open augers. Following completion of gamma logging,

penetrations through the clay layer were sealed with bentonite pellets to a depth above the top of the clay layer

and augers were removed from the borehole. Gamma logs are included as Appendix B.

Results of the gamma logging at the vertical profile locations indicate that the highest gamma readings were

generally present from approximately 12 feet below grade to 30 feet below grade, followed by a zone of lower

gamma readings from 30 feet below grade to approximately 55 feet below grade, and then followed by another

increase in gamma readings from 55 feet below grade to 100 feet below grade. Elevated gamma readings are

generally indicative of fine silt and clay containing soils.

2.3 **Leaching Structure Characterization**

Sediment samples were collected from seven storm water drywells (identified as SD-1 through SD-7) during

implementation of the March 2004 RI. To determine if remaining on-site leaching structures had been impacted

by historic site operations, soil/sediment samples were collected from each on-site leaching structure (excluding

those from which samples were collected in 2004), including those identified during the geophysical survey/test

pit excavation. Samples were collected in accordance with United States Environmental Protection Agency

(USEPA) Underground Injection Control (UIC) program and Nassau County Department of Health (NCDH)

procedures.

Subsurface drainage structure locations are illustrated in Figure 3, and drainage structure construction details,

including structure ID, depth and diameter are summarized in Table 1. Based on inspection of subsurface

drainage structures and the observed depth to the clay layer present at the site, it does not appear that the

leaching structures extend beneath the clay layer.

2.3.1 Storm Water Drainage Structures

A total of 43 leaching structures were identified that appeared to be used primarily for storm water drainage.

One structure (DW-42) located in the northern loading dock area was determined to be a solid bottomed catch

basin leaving a total of 42 storm water drywells present at the site. One shallow soil/sediment sample was

collected from each of the 42 structures from which a sample was not collected during implementation of the

2004 RI (a total of 36 samples were collected). No sample was collected from catch basin DW-42, which was

determined to be a solid bottomed structure. Samples were collected using a properly decontaminated stainless

steel hand auger. Soil/sediment was collected from zero to six inches below the base of each structure at three

locations. Soils from each of the three grab samples within each structure were screened with a photo-ionization

detector (PID); the grab sample exhibiting the highest PID response was collected for VOC analysis. Remaining

soils collected from each of the three points were homogenized in a stainless steel mixing bowl prior to sample

collection.

Storm water drainage structure locations are illustrated in Figure 3.

2.3.2 Industrial Discharge Structures

Only one structure (LP-01) was identified that appeared to have been used primarily for discharge of industrial

wastewater. The structure received discharge from a floor drain located in the boiler room in the southern portion

of the warehouse building. One shallow and one deep soil/sediment sample was collected from the structure.

The shallow sample was collected using a properly decontaminated stainless steel hand auger from zero to six

inches below the base of the structure at three locations. Soils from each of the three grab samples were

screened with a PID; the grab sample exhibiting the highest PID response was collected for VOC analysis.

Remaining soils collected from each of the three points were homogenized in a stainless steel mixing bowl prior to

sample collection.

The deep sample was collected using a properly decontaminated stainless steel hand auger advanced inside a

PVC outer casing to prevent the boring from collapsing. The sample was collected from a depth corresponding

to the two-foot interval (nine to 11 feet below grade) immediately above the clay layer present beneath the site,

as determined by location specific field observations. Collected soils were field screened for the presence of

VOCs using a PID.

Industrial wastewater discharge structure locations are illustrated in Figure 3.

2.4 Source Area Delineation

To further delineate the extent of the source area documented by the 2004 RI, soil borings were installed adjacent

to the source area location to quantify the horizontal extent of subsurface impact. Six soil borings (SB-2008-09

through SB-2008-14) were installed around the perimeter of the suspected source area, both inside and outside

the building. Delineation borings were concentrated in areas from which a sufficient number of samples were not

previously collected during the ESI Phase II ESA and the March 2004 RI. Soil boring locations are illustrated in Figure

4; soil boring logs are included in Appendix C. Historic soil boring locations, from previous investigations, are

illustrated in Figure 5.

Soil borings were installed utilizing a Geoprobe® direct-push drill rig outfitted with a macro-core sampler and

dedicated acetate liners. Soils were collected continuously from ground surface to a depth corresponding to the

top of the clay layer present beneath the site as determined by location specific field observations. Soils were

field-screened for the presence of VOCs using a PID. Non-dedicated sampling equipment was decontaminated

prior to the collection of each sample.

Two soil samples were collected at each boring location. Samples were collected from the interval within the

vadose zone (approximately zero to nine feet below grade) exhibiting the highest PID response, and the interval

immediately above the clay layer. If no PID response above background concentrations was observed in soils

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

collected from within the vadose zone, a sample was collected from the interval immediately above the water

table interface.

The SRIWP included a provision to install step-out borings at boring locations where field observations and/or PID

response identified the presence of impacted soil. However, no evidence of impacted soil was identified at

boring locations SB-2008-09 through SB-2008-14; as such, the installation of step out borings was not warranted.

2.5 Soil and Groundwater Evaluation

To evaluate general soil and groundwater quality beneath the site, eight soil borings (SB-2008-01 through SB-2008-

08) and nine temporary groundwater sampling points (GW-2008-01 through GW-2008-08 and GW-2008-15) were

installed throughout the property. Boring locations were chosen to provide a representative sample of general

soil and groundwater conditions at the subject property and were not biased towards any potential areas of

concern.

In addition, groundwater samples were collected from each of the existing supply, diffusion and monitoring wells

at the site. Soil borings, temporary groundwater sampling points, and supply, diffusion, and monitoring well

locations are illustrated in Figure 4 and Figure 6. Soil boring logs are included as Appendix C; well sampling logs

are included as **Appendix D**. Historic groundwater sample locations, from previous investigations, are illustrated in

Figure 5.

2.5.1 Soil Borings

A total of eight soil borings were installed utilizing a Geoprobe® direct-push drill rig outfitted with a macro-core

sampler and dedicated acetate liners. Soils were collected continuously from ground surface to a depth

corresponding to the top of the clay layer present beneath the site, as determined by location specific field

observations. Soils were field-screened for the presence of VOCs using a PID. Non-dedicated sampling

equipment was decontaminated prior to the collection of each sample.

One soil sample was collected at each boring location from the interval exhibiting the highest PID response. If no

PID response above background concentrations was observed, a sample was collected from the interval

immediately above the water table.

The SRIWP included a provision to install step-out borings at boring locations where field observations and/or PID

response identified the presence of impacted soil. However, no evidence of impacted soil was identified at

boring locations SB-2008-01 through SB-2008-08; as such, installation of step out borings was not warranted

2.5.2 Groundwater Sampling Points

A total of nine temporary groundwater sampling points were installed at the site. Groundwater samples were

collected from a depth of approximately three feet below the water table. At each sampling location, a four-

foot long screen point sampler was driven to the desired depth (approximately one foot of screen above the

water table, three feet below the water table) using a Geoprobe® direct-push drill rig. At the desired depth,

dedicated polyethylene tubing fitted with a stainless steel check valve was inserted through the probe rods into

the water bearing zone. The tubing was oscillated by hand and/or connected to a peristaltic pump to draw water to the surface. Prior to sampling, approximately three to five times the volume of standing water within the probe rods was purged to reduce sample turbidity. Non-dedicated sampling equipment was decontaminated

prior to the collection of each sample.

2.5.3 Supply, Diffusion and Monitoring Well Sampling

Prior to sampling, the depth to water and depth to bottom of each supply, diffusion, and monitoring well was measured. Water level measurements were obtained with an electronic water level probe. Three to five well casing volumes of standing water were removed from each well prior to sample collection. The wells were purged using a submersible pump fitted with dedicated polyethylene tubing. Field readings (pH, temperature and conductivity) were recorded during purging, initially and for each well volume. Groundwater samples were collected with a dedicated, disposable high-density polyethylene bailer suspended by a polypropylene cord.

Non-dedicated sampling equipment was decontaminated prior to the collection of each sample.

Based on their total depths, supply wells SW-01through SW-03 and diffusion wells DIFFW-01 through DIFFW-04 appear likely to be screened within and/or slightly below the clay layer (see **Table 2** for well measurement details), and as such analytical data from these wells have been included in the evaluation of water quality beneath the

clay layer.

Previously installed monitoring well MW-3 could not be located during implementation of the Supplemental RI; as

such, no sample was collected.

2.6 Evaluation of Groundwater Quality beneath Clay Layer

To evaluate groundwater quality in the deeper aquifer segment, four temporary vertical profile wells were installed throughout the southern and western portions of the property and three monitoring wells (MW-7, MW-8 and MW-9) were installed throughout the northern portion of the property. Deep groundwater sample locations

are illustrated in Figure 8.

2.6.1 Temporary Vertical Profile Wells

Temporary vertical profile wells were installed using a track mounted Geoprobe® outfitted for both direct-push and rotary drilling. Three inch inside-diameter augers were advanced to approximately two feet into the top of the clay layer. A smaller diameter direct push rod, fitted with a four-foot, stainless steel, drop-down sampling screen, was inserted inside the hollow stem augers and advanced down through the clay layer using direct push technology to the required sampling depth. Installation of outer hollow augers into the top of the clay was intended to isolate potentially impacted soil and/or groundwater above the clay layer from the smaller diameter sampling equipment, minimizing the migration of impacted soil and groundwater downward through the

penetration in the clay layer.

At each vertical profile location, groundwater samples were collected at 20 foot intervals beginning at 20 feet below grade and continuing to 100 feet below grade. Five groundwater samples were collected at each vertical profile location. At each location, samples were collected from the shallowest interval first and continued

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

progressively through the deeper intervals. At each sampling interval, a four-foot long screen point sampler was

driven to the desired depth using a Geoprobe® direct-push drill rig. At the desired depth, dedicated

polyethylene tubing fitted with a stainless steel check valve was inserted through the probe rods into the water

bearing zone. The tubing was oscillated by hand and/or connected to a peristaltic pump to draw water to the

surface. Prior to sampling, attempts were made to purge approximately three to five times the volume of

standing water within the probe rods to reduce sample turbidity. However, in several of the sample locations and

depths, the rods were pumped dry, due to poor recharge rates, and then sampled upon recharge. Many of the

samples collected were visibly turbid, likely due to fine grained soils within the aquifer.

Following collection of groundwater samples from each vertical profile location, the groundwater sampler and

direct-push rods were removed from the borehole. The penetration through the clay layer was sealed with

bentonite pellets to a depth above the top of the clay layer and augers were removed from the borehole.

In addition to the four vertical profile locations, it appears, based on total well depths, that supply wells SW-01

through SW-03 and diffusion wells DIFFW-01 through DIFFW-04 are screened below the clay layer (see Table 2 for

well construction details), and as such have been included in the evaluation of water quality beneath the clay

layer.

2.6.2 Deep Monitoring Wells (Northern Portion of Site)

Monitoring wells MW-7, MW-8, and MW-9 were installed in the northern portion of the site following a request from

NYSDEC after a review of the SRI preliminary data. Installation of these three wells was not included in the SIWP,

but was requested by NYSDEC in February 2009 following completion of initial field activities.

Monitoring wells MW-7, MW-8, and MW-9 were installed using a rotary drill rig outfitted for hollow stem auger (HSA)

drilling. Monitoring wells were installed to a depth of approximately 46 feet bgs. Wells were constructed of 2-inch

diameter, schedule 40 PVC casing and 0.010 inch slot screen. Wells consisted of a one foot sump, 10 feet of

screen set at approximately 35 to 45 feet bgs and solid riser to surface. Screen intervals were set below the

shallow clay layer. For each monitoring well, a gravel pack of No. 2 morie sand was installed to 4 feet above the

top of the screen, with a minimum two-foot thick bentonite seal. Cement/bentonite grout was installed from the

bentonite seal to approximately 5 feet below grade to fill remaining void space as the augers were removed from

the borehole. Drill cuttings were containerized for proper disposal. Wells were finished flush to grade with limited

access manholes and risers were fitted with water tight caps. Monitoring well construction logs are included as

Appendix E.

Following installation, wells were left undisturbed for five days to allow the bentonite seal and grout to set after

which, wells were developed using the overpurge method. Wells were purged until field parameters (pH,

temperature and turbidity) stabilized. Development water was drummed for proper disposal. Following

development, monitoring wells MW-7, MW-8 and MW-9 were surveyed to determine relative casing elevations

and locations in reference to existing site structures. Elevations were tied in to the pre-existing monitoring well

network.

Prior to sampling, the depth to water and depth to bottom of each monitoring well was measured. Water level

measurements were obtained with an electronic water level probe. Three to five well casing volumes of standing

water were removed from each well prior to sample collection. The wells were purged using a submersible pump fitted with dedicated polyethylene tubing. Field readings (pH, temperature and conductivity) were recorded

during purging, initially and for each well volume. Groundwater samples were collected with a dedicated,

disposable high-density polyethylene bailer suspended by a polypropylene cord. Non-dedicated sampling

equipment was decontaminated prior to the collection of each sample.

2.7 **Soil Vapor Evaluation**

A total of twelve soil vapor sampling points, three within the northern portion of the warehouse, two within the

southern portion of the warehouse and five within the asphalt paved parking areas surrounding the existing

buildings, were installed throughout the property. Soil vapor sampling point locations are illustrated in Figure 9.

Soil vapor sampling point installation and sample collection was performed in accordance with New York State

Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October

2006), and United States Environmental Protection Agency (USEPA) Standard Operating Procedure (SOP) 2042,

Soil Gas Sampling.

Soil vapor sampling points were installed using a Geoprobe® direct-push drill rig to a depth of 5.5 feet below

existing grade. Each sampling point was constructed of a dedicated stainless steel screen fitted with

polyethylene tubing. Washed #1 crushed stone was added to create a sampling zone 1 to 2 feet in length. The

sampling point was sealed above the sampling zone with bentonite slurry to grade to prevent outdoor air

infiltration. Soil vapor samples were collected into SUMMA® canisters fitted with pre-set flow regulators. The

laboratory provided certified-clean canisters with an initial vacuum of approximately -30 inches of mercury (inHg)

for sample collection and flow regulators pre-set to provide uniform sample collection for a 2-hour sampling

period.

2.8 **Data Analysis**

Soil, groundwater and soil-vapor samples were delivered to Alpha Analytical Labs (Alpha) of Westboro,

Massachusetts for analysis. Analytical services provided by Alpha were performed in accordance with NYSDEC

Analytical Sampling Protocol (ASP) with Category B deliverables (ASP-B). Analytical services included analysis of

soil and groundwater samples for Target Compound List (TCL) VOCs by USEPA Method 8260, TCL SVOCs by USEPA

Method 8270, Target Analyte List (TAL) Metals by USEPA Methods 6010/7000, pesticides by USEPA Method 8081,

and PCBs by USEPA Method 8082 and analysis of soil-vapor samples for VOCs by USEPA method TO-15.

Laboratory analytical reports (results only) are included as Appendix F; full laboratory data packages are

included on the enclosed CD-ROM.

3.0 HYDROGEOLOGIC ASSESSMENT AND PHYSICAL SETTING

3.1 Site Topography

The topography of the site and surrounding area was reviewed from the USGS 7.5 minute series topographic map for the Lynbrook, New York quadrangle. The subject property has an elevation of approximately 17 feet above

National Geodetic Vertical datum (NGVD) at the north end of the site, sloping to an elevation of approximately

10 feet above NGVD at the southern end of the site. Paved areas slope locally to drainage structures positioned

through out the property. There is little topographic relief on the subject property and surrounding area.

3.2 Surrounding Land Use

The site is situated in a mixed industrial, residential and commercial area of the Village of Rockville Centre. The

adjacent land uses, as illustrated in Figure 10, include:

North – multi-family housing complex

• South - vacant one-story building; Metropolitan Transit Authority (MTA) Long Island Bus Depot; Rockville

Racquet Club

East – church; four-story office building; one-story office/industrial building

• West - Morgan Day's Park; Smith Pond

3.3 Regional Geology/Hydrogeology

The hydrogeologic setting of Long Island is well documented and consists of impermeable bedrock composed of

schist and gneiss, overlain by a series of unconsolidated glacial deposits. Thicknesses of these deposits range from

zero in northern Queens, where the bedrock is exposed, to more than 2,000 feet in the southern parts of Nassau and Suffolk Counties. The glacial advance is marked by two terminal moraines, which form an east-west trending

line of deposits with a maximum altitude of 400 feet. A gently sloping outwash plain composed of well-sorted and

permeable sand and gravel extends south of the moraine to the shore, with a slope of approximately 20 feet/mile

(Cohen).

The lowest unit in the sequence is the Raritan Formation, which overlies an erosional bedrock surface composed

of granite, diorite, gneiss and schist (Lubke, 1964). The Raritan formation includes the Lloyd Sand Member, which

consists of sands and gravels of moderate permeability forming the Lloyd Aquifer and the Raritan Clay Member,

which consists of very low permeable clay known as the Raritan Confining unit.

The Raritan Formation is overlain by the Magothy Formation, which consists of up to 1,000 feet of highly stratified

layers of sand, gravel, silt and clay, which dip gently to the southeast. The Magothy Formation is the principal

aquifer for Long Island, and is the main source of water for public supply (Kilburn and Krulikas, 1987). The

saturated thickness of the Magothy Aquifer in the vicinity of the site is 600 feet with an estimated hydraulic

conductivity of 56 feet/day (McClymonds and Franke, 1972).

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Along the south shore of Long Island, the Magothy is confined by a 40 to 90 foot thick low permeability sequence

of clay, silty clay and fine sand known as the Gardiner's Clay. Although the Gardiner's Clay has been mapped

north of Sunrise Highway in the Rockville Center area (Doriski, 1981), the clay appears to be absent along the

Hempstead Lake - Mill River corridor. As such, it is not known if the Magothy Aquifer is confined by the Gardiner's

Clay in the immediate vicinity of the site.

In this area of Nassau County, the Upper Glacial Aquifer overlies either the Magothy Aquifer, or the Gardiner's

Clay, where present. Upper glacial deposits consist mainly of stratified beds of fine to coarse sand and gravel but

also contain beds of silt and clay (Kilburn and Krulikas, 1987). The Upper Glacial Aquifer contains the water table

in most of the area. The estimated hydraulic conductivity of the Upper Glacial Aquifer is 270 feet/day

(McClymonds and Franke, 1972).

The site is situated some distance south of a regional groundwater divide located along the terminal moraine,

where groundwater flows to the north, west and south. Located south of the divide, groundwater in the vicinity of

the site generally flows in a southwesterly direction toward the Mill River and Hempstead Bay.

3.4 Site Geology/Hydrogeology

The site overlies an interconnected aquifer system consisting of the upper glacial deposits and the underlying

Magothy Formation. Depth to groundwater in the underlying Upper Glacial Aquifer ranges from approximately 5

to 10 feet below ground surface (bgs). The lithologic description of the sediments from soil borings advanced

during this and previous investigations at the site identifies the materials as fine to coarse sand with small amounts

of gravel to a depth of 12 to 18 feet below surface. Below the sand is a silty clay layer, which was documented to

be approximately nine feet thick in the MT&A geotechnical boring report. The presence of the clay layer was visually confirmed at soil boring locations PWG-SB-2008-01 through PWG-SB-2008-14 installed during the

Supplemental RI. Geologic cross sections illustrating the depth of the clay layer are included as Figure 11 and

Figure 12.

Gamma geophysical logs completed at the four vertical profile locations indicate that the highest gamma

readings were generally present from approximately 12 feet below grade to 30 feet below grade, followed by a

zone of lower gamma readings from 30 feet below grade to approximately 55 feet below grade, and then

followed by another increase in gamma readings from 55 feet below grade to 100 feet below grade. Elevated

gamma readings are generally indicative of fine silt and clay containing soils. Soil samples were not collected at

vertical profile locations; as such, the presence of the clay confining layer was not visually confirmed at these

locations.

Groundwater elevation data, recorded on October 3, 2008, was used to prepare a shallow groundwater contour

map, included as Figure 13. As illustrated in Figure 13, shallow groundwater flow is generally to the south-

southwest with an average gradient of 0.01 foot/foot.

Groundwater elevation data for monitoring wells MW-7, MW-8 and MW-9 which were installed in the northern portion of the property and screened below the clay layer was used to generate a deep groundwater contour map, included as **Figure 14**. As illustrated in **Figure 14**, deep groundwater flow in the northern area of the site is toward the southwest with an average gradient of 0.002 foot/foot. Due to the lack of accurate construction details for supply and diffusion wells present at the site, these wells could not be used in determination of deep groundwater flow at the site.

Table 2 provides a summary of the monitoring well elevation data including total well depth, screened interval, casing elevation and the measured depth to water.

NATURE AND EXTENT OF CONTAMINATION 4.0

This section details the Supplemental RI findings and analytical data. Analytical data is compared to NYSDEC,

NYSDOH and USEPA standards, cleanup objectives and guidance values, as appropriate. Regulatory standards

and guidance values used to evaluate analytical data are detailed below.

Soil sample analytical data are compared to both the Unrestricted Use and Restricted Residential Soil Cleanup

Objectives (SCO) specified in 6 NYCRR Part 375-6, Remedial Program Soil Cleanup Objectives (December 2006).

SCOs specified in 6 NYCRRR Part 375-6 were established for use in remediating Inactive Hazardous Waste Disposal

Site Remedial Program, Brownfield Cleanup Program and Environmental Restoration Program sites and are based

on the protection of health and ecological resources.

Typically, analytical data for soil samples collected from subsurface drainage structures (e.g., storm drains and

leaching pools) compared to the Recommended Soil Cleanup Objectives (RSCO) specified in NYSDEC Technical

Administrative and Guidance Memorandum (TAGM) 4046, Determination Of Soil Cleanup Objectives and

Cleanup Levels (January 1994) in accordance with NCDH and USEPA UIC Program procedures. However,

because the subject property has been accepted into the BCP, subsurface drainage structure soil sample

analytical data are compared to the Unrestricted Use SCOs and Restricted Residential SCOs specified in 6 NYCRR

Part 375-6, as required by the BCP. The RSCOs and Unrestricted Use SCOs are approximately equal for the VOCs

of concern at the site.

Groundwater sample analytical data is compared to the NYSDEC Class GA Ambient Water Quality Standards

(AWQS) as specified in Technical Operation and Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards

and Guidance Values and Groundwater Effluent Limitations (June 1998, with January 1999 Errata Sheet and April

2000 and June 2004 Addendums).

Soil vapor analytical results were compared to the Deep Soil-Gas Target Levels as specified in USEPA Draft

Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor

Intrusion Guidance).

Based on the March 2004 RI findings, the primary chemicals of potential concern (COPC) to be encountered at

the site are PCE and its degradation products: TCE, cis-1,2-dichloroethene, trans-1,2-dichloroethene, 1,1-

dichloroethene and vinyl chloride.

Soil, groundwater and soil-vapor sample locations are illustrated in Figure 4, Figure 6, Figure 8 and Figure 9;

analytical data are summarized in Table 3 through Table 16. Laboratory analytical reports are included as

Appendix F (results only)...

4.1 Identification of Source Areas

Results of previous soil sampling programs (see section 1.4) indicate that the primary source of residual VOC

contamination is beneath the southwestern corner of the warehouse building. These impacted soils appear to

act as a continuing source for VOC impact to groundwater at and downgradient of the subject property.

A secondary potential source area was identified in the northwest corner of the western parking area (soil boring

location B-8) during the 2004 RI. The 2004 RI concluded that elevated PCE concentrations in this area may have

been due to PCE discharges to storm drains in this area. However, based on samples collected from storm drains

DW-01 and DW-02 during the supplemental RI, it does not appear that storm drains in this area have been

significantly impacted by PCE discharges (see section 4.2.3).

4.2 Soil Impacts

4.2.1 Additional Source Area Delineation

At each boring installed adjacent to the previously identified source area (SB-2008-09 through SB-2008-14), soil

samples were collected from both above and below the water table. Each sample was analyzed for TCL VOCs

by USEPA Method 8260B; two samples were also analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by

USEPA Method 6010, pesticides by USEPA Method 8081 and PCBs by USEPA Method 8082.

PCE was not detected at concentrations exceeding its Unrestricted Use SCO of 1,300 ppb in samples collected

from borings SB-2008-09 through SB-2008-14. Low level (below Unrestricted Use SCO) PCE concentrations were

detected in both shallow and deep samples collected from borings SB-2008-10, SB-2008-13 and SB-2008-14.

Concentrations in shallow samples ranged from 5.5 ppb (SB-2008-10 @ 5-10) to 56 ppb (SB-2008-14 @ 0-5).

Concentrations in deep samples ranged from 44 ppb (SB-2008-13 @ 10-15') to 290 ppb (SB-2008-14 @ 10-15'). At each source area delineation boring location at which PCE was detected, concentrations were higher in the

3 -----

deep sample (collected from below the water table). PCE was the sole VOC detected in the source area

delineation soil samples.

Samples collected from borings SB-2008-10 (5-10') and SB-2008-14 (10-15') were also analyzed for SVOCs, metals,

pesticides and PCBs. SVOCs, metals, pesticides and PCBs were not detected at concentrations exceeding their

respective Unrestricted Use SCO in either sample.

Additional source area delineation sampling appears to confirm the conclusions of the March 2004 RI indicating

that the source area for PCE contamination at the site is limited to the area beneath the southwest portion of the

warehouse building.

Soil boring locations are illustrated in Figure 4; soil sample analytical data are summarized in Table 3, Table 4 and

Table 5.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

4.2.2 General Soil Quality

At each boring installed throughout the northern portion of the subject site (SB-2008-01 through SB-2008-08), one

soil sample was collected from above the water table. Each sample was analyzed for TCL VOCs by USEPA

Method 8260B; two samples were also analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by USEPA

Method 6010, pesticides by USEPA Method 8081 and PCBs by USEPA Method 8082.

VOCs were not detected at concentrations exceeding the laboratory method detection limit (MDL) in samples

collected from soil borings SB-2008-01 through SB-2008-08.

Samples collected from borings SB-2008-01 (5-10') and SB-2008-08 (5-10') were also analyzed for SVOCs, metals,

pesticides and PCBs. Lead and 4,4'-DDT were detected at concentrations exceeding their respective

Unrestricted Use SCO in the sample collected from boring SB-2008-01; however, in both cases the compound was

detected at a concentration below its Restricted Residential SCO. Additional metals, SVOCs, pesticides and PCBs

were not detected at concentrations exceeding their respective Unrestricted Use SCO in the sample collected

from boring location SB-2008-01. SVOCs, pesticides, PCBs and metals were not detected at concentrations

exceeding their respective Unrestricted Use SCO in the sample collected from boring location SB-2008-08.

Based on soil sampling results, it does not appear that significant soil impacts are present at the site outside the

presumed PCE source area beneath the southwest portion of the warehouse building. Although low level

concentrations (below Restricted Residential SCOs) of lead and 4,4'-DDT were detected in the sample collected

from boring SB-2008-01, it appears the sample contained non-native (fill) material. The presence of non-native

material and the lack of elevated concentrations of these compounds elsewhere throughout the site indicates

that their presence is likely related to the presence of non-native fill material, rather than a release or improper

chemical disposal at the subject site.

Soil boring locations and PCE concentrations are illustrated in Figure 4; soil sample analytical data are summarized

in Table 3, Table 4 and Table 5.

4.2.3 Storm Water Drainage Structures

Samples were collected from 36 storm water drainage structures during the Supplemental RI and seven storm

water drainage structures during the 2004 RI. Each sample collected during the Supplemental RI was analyzed for

TCL VOCs by USEPA Method 8260B, TCL SVOCs by USEPA Method 8270C and TAL metals by USEPA Method 6010.

Sample collected during the 2004 RI were analyzed for VOCs by USEPA Method 8260, SVOCs by USEPA Method

8270C and RCRA metals by USEPA Method 6010 in accordance with NCDH procedures.

PCE and its degradation products were detected in soil samples collected from nine (DW-03, 06, 07, 10, 15, 16, 17,

18, & 19) of 36 storm water drainage structures from which samples were collected during implementation of the

Supplemental RI and two (SD-1 & SD-3) of seven storm water drainage structures from which samples were

collected during implementation of the 2004 RI. It should be noted that drainage structures identified as DW-07

and SD-3 are the same structure. In each case, the concentrations detected were below the respective

Unrestricted Use SCO for each compound. PCE concentrations ranged from 6.4 ppb (DW-07) to 190 ppb (DW-17)

during current sampling and from 20 ppb (SD-1) to 1,100 ppb (SD-3) during March 2004 sampling.

Storm water drainage structure DW-07 (identified as SD-03 during the 2004 RI) was the only structure from which a

sample was collected during the 2004 RI and the Supplemental RI. PCE concentrations in this structure decreased from 1,100 ppb in 2004 to 6.4 ppb in 2008. Based upon PCE concentrations detected in this drainage structure

during the 2004 RI, it was listed as a potential source area that may have received VOC contaminated process

water from the building.

Storm water drainage structures in which PCE and its degradation products were detected were limited to the

southwestern portion of the property. Based on the locations of the structures impacted with PCE, the

concentrations detected and the shallow groundwater table at the site, it appears likely that PCE impact in these

structures is related to groundwater impact at the site rather than improper discharges to individual structures.

VOCs other than PCE and its degradation products were detected in samples collected from 13 (DW-01, DW-02,

DW-03, DW-07, DW-10, DW-11, DW-14, DW-30, DW-33, DW-34, DW-37, DW-38, & DW-39) of 36 storm water drainage

structures from which samples were collected during implementation of the Supplemental RI and five (SD-1, SD-3,

SD-4, SD-5, & SD-7) of seven storm water drainage structures from which samples were collected during

implementation of the 2004 RI. The sole VOC detected at concentrations exceeding its Unrestricted Use SCO (50

ppb) was acetone in samples collected from drainage structures DW-30, DW-37, DW-38 and DW-39 during

implementation of the Supplemental RI, and storm drain SD-1 during implementation of the 2004 RI. The Data

Usability and Validation Report, detailed in Section 4.6.2, recommends that caution be used with acetone

concentrations from these samples, because chromatographic peaks were observed in raw data for these

compounds in associated method blanks, and acetone is a common laboratory contaminants and low

concentrations observed in soil samples may no be site related.

SVOCs were detected at concentrations exceeding their respective Unrestricted Use SCOs and Restricted

Residential SCOs in samples collected from storm water drainage structures DW-30, DW-38 and DW-39 during

implementation of the Supplemental RI. SVOCs detected at elevated concentrations included benzo(a)pyrene,

benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene. The SVOCs detected are

generally petroleum related and their presence in drainage structures receiving run-off from parking areas is

typical. SVOCs were not detected at concentrations exceeding their respective Unrestricted Use SCOs in samples

collected from storm water drainage structures SD-1 through SD-7 during implementation of the 2004 RI.

Metals were detected at concentrations exceeding their respective Unrestricted Use SCOs in samples collected

from 22 (DW-01, DW-02, DW-07, DW-10, DW-11, DW-14, DW-17, DW-19, DW-20, DW-23, DW-24, DW-26 DW-28, DW-

30, DW-31, DW-33, DW-34, DW-37, DW-38, DW-39, DW-40 & LP-01) of 36 storm water drainage structures from which

samples were collected during implementation of the Supplemental RI; of those 20 pools, metals were detected

at concentrations exceeding their respective Restricted Residential SCOs in samples collected from seven (DW-

01, DW-20, DW-30, DW-31, DW-34, DW-37, & DW-40). Metals were detected at concentrations exceeding their

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

respective Unrestricted Use SCOs in samples collected from six (SD-1, SD-3, SD-4, SD-5, SD-6, & SD-7) of seven storm

water drainage structures from which samples were collected during implementation of the 2004 RI; of those six

pools, metals were detected at concentrations exceeding their respective Restricted Residential SCOs in samples

collected from four (SD-1, SD-3, SD-4, & SD-6)..

Subsurface drainage structure locations are illustrated in Figure 3. Subsurface drainage structure soil sample

analytical data are summarized in Table 6, Table 7 and Table 8; historic storm water drainage structure analytical

data are summarized in Table 9, Table 10 and Table 11.

4.2.4 Industrial Leaching Pools

A shallow and deep sample were collected from the sole industrial leaching pool (LP-01) present at the site. Each

sample was analyzed for TCL VOCs by USEPA Method 8260B, TCL SVOCs by USEPA Method 8270C and TAL metals

by USEPA Method 6010.

PCE and its degradation products were detected in both the shallow and deep samples collected from industrial

leaching pool LP-01. In each sample, the concentrations detected were below the respective Unrestricted Use

SCO for each compound. PCE was detected at 120 ppb in the shallow sample and 4.9 ppb in the deep sample.

VOCs other than PCE were not detected above the laboratory MDL.

SVOCs were not detected above their respective Unrestricted Use SCOs in either the shallow or deep sample

collected from industrial leaching pool LP-01.

Copper and zinc were the only metals detected at concentrations exceeding their respective Unrestricted Use

SCOs in the shallow sample collected from industrial leaching pool LP-01. Zinc was also detected at a

concentration exceeding its Unrestricted Use SCO in the deep sample collected from industrial leaching pool LP-

01.

Subsurface drainage structure locations are illustrated in Figure 3; subsurface drainage structure soil sample

analytical data are summarized in Table 6, Table 7 and Table 8.

4.3 Groundwater Impacts

4.3.1 Shallow Groundwater

Groundwater samples collected from temporary sampling points GW-2008-01 through GW-2008-08, GW-2008-13

through GW-2008-15 and monitoring wells MW-1, MW-2, MW-4, MW-5 and MW-6 were used to evaluate shallow

groundwater quality. Each sample was analyzed for TCL VOCs by USEPA Method 8260B; five samples were also

analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by USEPA Method 6010, pesticides by USEPA Method

8081 and PCBs by USEPA Method 8082. Well measurement details are summarized in Table 2.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

PCE and its degradation products were detected at concentrations exceeding their respective NYSDEC AWQS in

samples collected from three of eleven temporary groundwater sampling points (GW-2008-13, GW-2008-14 and

GW-2008-15) and one of five monitoring wells (MW-6). Other than PCE and its degradation products, VOCs were

not detected at concentrations above their respective AWQS in shallow groundwater samples collected from the

site. Each of the samples in which PCE and its degradation products were detected was collected from the

southwestern portion of the subject property.

Samples collected from each of the five monitoring wells present at the site (MW-1, MW-2, MW-4, MW-5 and MW-

6) were also analyzed for SVOCs, metals, pesticides and PCBs. SVOCs, pesticides and PCBs were not detected at

concentrations exceeding the laboratory MDL in shallow groundwater samples collected from the site. One or

more metal was detected at a concentration exceeding its NYSDEC AWQS in each of the shallow groundwater

samples submitted for analysis. Metals detected included aluminum, arsenic, beryllium, cadmium, chromium,

iron, lead, magnesium, manganese, mercury and nickel. As noted in well sampling logs (Appendix C)

groundwater samples collected from these monitoring wells were observed as turbid to very turbid. Due to the turbidity of the groundwater samples collected, it is possible that metals detected at elevated concentrations

may have been related to suspended solids in the samples rather than actual dissolved metals impact. Elevated

metals concentrations are commonly found in turbid groundwater samples due to nitric acid sample preservative

leaching metals from suspended solids. Based upon elevated metals concentrations detected in samples from

multiple storm water drainage structures throughout the site, an additional round of filtered samples were

collected from monitoring wells MW-4, MW-5 and MW-6 in August 2009. Monitoring wells MW-1 and MW-2 appear

to have been destroyed during demolition activities at the site between collection of initial samples and re-

sampling, as such it was not possible to collect filtered samples from these wells. Samples were filtered by the

analytical laboratory in accordance with the procedures detailed in USEPA SW-846.

Dissolved metals impact was not identified above NYSDEC AWQS in filtered samples collected from monitoring

wells MW-4, MW-5 and MW-6. Although filtered samples were not collected from monitoring wells MW-1 and MW-

2, based on the large reduction in metals concentrations between unfiltered and filtered samples collected from

monitoring wells MW-4, MW-5 and MW-6, it appears likely that initial unfiltered samples collected from monitoring

wells MW-1 and MW-2 were impacted by suspended solids within the samples.

Based on groundwater sampling results, shallow groundwater at the site is impacted with PCE and its degradation

products. It appears that the plume of impacted groundwater originates from the source area beneath the

southwestern portion of the warehouse building and is migrating south-southwest.

Shallow groundwater sample locations are illustrated in Figure 6; and shallow groundwater elevation contours are

illustrated in Figure 13. Groundwater sample analytical data are summarized in Table 12, Table 13 and Table 14.

4.3.2 Deep Groundwater

In addition to samples collected from temporary vertical profile wells VP-2008-01 through VP-2008-04, samples

collected from supply wells SP-01 through SP-03, diffusion wells DIFFW-01 through DIFFW-04 and monitoring wells

MW-7, MW-8 and MW-9 were used to evaluate groundwater quality beneath the clay layer. Although specific well construction details for supply and diffusion wells are unknown, based on total well depths, it appears likely

that these wells are screened within and/or slightly below the clay layer. Each sample was analyzed for TCL VOCs

by USEPA Method 8260B; two samples were also analyzed for TCL SVOCs by USEPA Method 8270C, TAL metals by

USEPA Method 6010, pesticides by USEPA Method 8081 and PCBs by USEPA Method 8082. Well measurement

details are summarized in Table 2.

PCE and/or its degradation products were detected at concentrations exceeding their NYSDEC AWQS in each

sample collected from vertical profile locations VP-01, VP-02 and VP-03 and diffusion wells DIFFW-01 through DIFFW-04. PCE and TCE were detected at concentrations below their respective NYSDEC AWQS in samples

collected from two of three supply wells (SW-02 and SW-03). PCE and its degradation products were not

detected above the laboratory MDL in samples collected from vertical profile location VP-04 and supply well SW-

01. At vertical profile locations VP-01, VP-02 and VP-03, PCE and/or its degradation products were detected at

concentrations exceeding their NYSDEC AWQS in samples collected as deep as 100 feet bgs.

At vertical profile location VP-01, PCE concentrations increased with sample depth with a peak concentration

detected in the sample collected from the 96 to 100 foot bgs interval (200 ppb). At vertical profile location VP-02,

PCE concentrations peaked in the sample collected from the 36 to 40 foot bgs interval (5,800 ppb); a second,

much smaller peak was also detected in the sample collected from the 96 to 100 foot bgs interval (280 ppb). At

vertical profile location VP-03, the peak PCE concentration was detected in the 56 to 60 foot bgs interval (91

ppb). At sample locations adjacent to the southern property boundary (i.e., VP-02, VP-03 and DIFFW-01 through

DIFFW-04) the highest PCE concentrations were generally detected between 30 and 60 feet bgs. At vertical

profile location VP-01, located adjacent to the western property boundary, the highest PCE concentration was detected at 100 feet bgs; a similar elevated concentration was also detected in the 100 foot sample collected

from vertical profile location VP-02 (located adjacent to the southern property boundary).

Samples collected from monitoring wells MW-7, MW-8 and MW-9 were analyzed for VOCs. No VOCs, including

PCE and its degradation products, were detected above the laboratory MDL in samples collected from these

wells.

Samples collected from supply well SW-01 and diffusion well DIFFW-01 were also analyzed for SVOCs, metals,

pesticides and PCBs. One SVOC (3-nitroaniline) was detected at a concentration exceeding its NYSDEC AWQS in

the sample collected from suspected supply well SW-01; SVOCs were not detected at concentrations exceeding

the laboratory MDL in the sample collected from diffusion well DIFFW-01. Iron, manganese and sodium were

detected at concentrations exceeding their NYSDEC AWQS in samples collected from diffusion well DIFFW-01 and

supply well SW-01; cadmium and copper were also detected at concentrations exceeding their respective

NYSDEC AWQS in the sample collected from diffusion well DIFFW-01. As noted in well sampling logs (Appendix C)

groundwater samples collected from these wells were observed as clear for SW-01 and slightly turbid for DIFW-01.

Due to the turbidity of the groundwater sample collected from DIFFW-01, it is possible that metals detected at

elevated concentrations may have been related to suspended solids in the samples rather than actual dissolved

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Seattle, WA • Greensboro, NC

metals impact. Elevated metals concentrations are commonly found in turbid groundwater samples due to the

nitric acid sample preservative leaching metals from suspended solids. Based upon the elevated level of copper

detected in the sample from DIFFW-01 and the detection of elevated metals concentrations in soils collected

from multiple storm water drainage structures throughout the site, filtered samples were collected from supply well

SW-01 and diffusion well DIFFW-01. Dissolved metals impact was not identified above NYSDEC AWQS in filtered

samples collected from these wells..

Pesticides and PCBs were not detected at concentrations exceeding the laboratory MDL in the samples

collected from suspected supply well SW-01 and diffusion well DIFFW-01.

Deep groundwater sample locations are illustrated in Figure 8. Groundwater sample analytical data are

summarized in Table 12, Table 13 and Table 14; vertical profile sample analytical data are summarized in Table 15.

4.4 **Soil-Vapor Impacts**

Twelve soil vapor samples were collected from throughout the site. Each sample was analyzed for VOCs by

USEPA Method TO-15.

Elevated PCE concentrations were detected in soil-vapor samples in the vicinity of and/or downgradient of the

documented source area. PCE and/or its degradation products were detected at concentrations exceeding

their respective USEPA Guidance Value (as listed for the 10⁻⁵ risk level) in soil-vapor samples collected at sampling

points SG-2008-03, SG-2008-09, SG-2008-11 and SG-2008-12, which were the Sample collected in closest proximity

to the presumed source area. Soil-vapor sample SG-2008-11, the soil-vapor sample collected nearest the

proposed excavation area exhibited the highest PCE concentration detected at 1,680,000 ug/m³. The soil-vapor

sample collected at location SG-2008-09, adjacent to the southern property boundary had a PCE concentration

of 9,660 ug/m³.

PCE concentrations detected in soil-vapor samples collected from the remainder of the subject site were below

its USEPA Guidance Value (as listed for the 10⁻⁵ risk level), ranging from non-detect (SG-2008-10) to a high of 62.2

ppb (SG-2008-07). PCE detected in upgradient soil-vapor samples is likely the result of dissipation of vapors from

the source area. PCE was detected at 9,660 ppb at sample location SG-2008-09 which was located adjacent to

the southern property boundary, indicating that soil-vapor impact in excess of USEPA guidance values likely

extends off-site to the south of the subject property. Elevated PCE concentrations in soil vapor appear to roughly

correlate with areas impacted with PCE in groundwater.

Soil-vapor sampling point locations are illustrated in Figure 9; soil-vapor sample analytical data are summarized in

Table 16.

4.5 **Qualitative Exposure Assessment**

The objective of the qualitative exposure assessment under the Brownfield Cleanup Program (BCP) is to identify

potential receptors to the contaminants of concern (COC) that are present at, or migrating from, the subject

property. The identification of exposure pathways describes the route that the COC takes to travel from the

source to the receptor. An identified pathway indicates that the potential for exposure exists; it does not imply

that exposures actually occur. Off-site investigation of contaminant plumes is not the responsibility of a party

considered to be a volunteer under the BCP. Off-site investigation (OU2) will be completed under an Order on

Consent between the NYSDEC and Darby Drug Group Companies, Inc. (Darby), the potential responsible party

(PRP).

Based on the concentration of VOCs currently in the source area, the concentration of VOCs migrating off-site

and the presumed length of time that the VOCs have been in transit (30 to 36 years) the following potential

receptors and exposure pathways have been identified:

Village of Rockville Centre water supply wells;

Groundwater to vapor intrusion in residential and commercial structures, and,

Smith Pond and Mill River

Each of the potential receptors and the exposure scenario is discussed in the following sections.

4.5.1 Water Supply Wells

A review of the NYSDEC inventory of documented wells (i.e. wells with permit numbers) and NCDH well records

was performed to identify public water supply wells within 1 mile downgradient or ½ mile cross-gradient or

upgradient of the site. These criteria was established to account for the high pumping rate and source water

influence associated with public supply wells and is consistent with the New York State Source Water Assessment

Program (SWAP) results.

Identified wells which met the specified distance and position criteria, were examined further to obtain specifics

on the well's construction details (depth, diameter, screen interval), pumping capacity and the aquifer in which it

was screened. Supply well construction details are summarized in Table 17.

Five wells were identified including three wells owned and operated by the Village of Rockville Centre in Lister

Park, and two wells on Tanglewood Road which are owned and operated by Long Island American Water. One

of the Rockville Centre Wells is no longer in use. The remaining four wells are all screened in the Magothy Aguifer

at depths of approximately 450 feet. It is not known if the Magothy Aquifer is confined in this area, though the

northern extent of the Gardiners Clay is present in the general area. Although a site specific seepage velocity

was not be calculated, using a typical range of 0.5 to 2 ft per day, and a retardation factor of 1.3 for PCE,

sufficient time would have elapsed since the release for the plume to encounter either wellfield, though no such

impact has occurred.

The Village of Rockville Centre wells are located on the west side of Mill River about 1,500 feet south-southwest of

the site, in the approximate direction of groundwater flow. Both of the RC wells are used on a routine basis by the

Village along with a 0.75 million gallon (MG) storage tank also located at the well field. Water quality data

obtained from the NCDH for these wells indicate that PCE and its breakdown products have not been detected

in well N5194 over the course of its available sampling history (11/77 - 3/01). Two detections of PCE have been

noted in well N5195 over its available sample history (4/81- 12/02) which included 59 analysis rounds. PCE was

detected once in 1983 and again in 1990 at a maximum concentration of 8 ppb. Based on the results, it appears

that these detections are anomalous and not associated with an on-going source of contamination.

The two wells operated by Long Island American Water (LIAW) are located northwest of Smith Pond,

approximately 1,800 feet from the site in an up-gradient (with respect to groundwater flow) direction. Water

quality data obtained from the NCDH for these wells indicate that in the past 20 years (54 sampling rounds) PCE

was detected once, (1 ppb - 12/19/77) and TCE was detected twice (11 ppb - 12/19/77, 2 ppb - 8/21/80) in Well

N5556. During this same period of time Well N7521 also had one detection of PCE (2 ppb - 8/25/83) and two

detections of TCE (2 ppb - 11/20/78, 1 ppb - 8/21/80). The appearance of one or two isolated detections of these

compounds is inconsistent with a continuing source of contamination. In addition, the LIAW wells are positioned

upgradient (northwest), of the site while the dissolved VOC plume is migrating in the opposite direction (south).

All public supply wells in Nassau and Suffolk Counties are routinely tested for contaminants (including VOCs) to

assure compliance with State and Federal water quality standards.

The planned off-site (OU2) investigation is intended to provide additional characterization to more accurately

determine if significant exposure pathways exist.

4.5.2 Smith Pond and Mill River - Surface Water

A groundwater elevation map, which includes data from five monitoring wells present at the site, indicates that

shallow groundwater at the site flows toward the south-southwest toward the southern end of Smith Pond.

Shallow groundwater samples collected near the western and southern property boundaries, generally confirm

that a shallow PCE plume is migrating off-site in a south-southwesterly direction. Assuming the plume continues

migrating in a southwesterly direction, it appears likely that it will encounter Smith Pond and/or Mill River.

Based on limited groundwater elevation data for monitoring wells MW-7, MW-8 and MW-9, deep groundwater

beneath the clay layer in the northern portion of the site flows southwest toward Smith Pond/Mill River. Due to the

lack of accurate construction details for supply and diffusion wells present at the site, these wells could not be

used in determination of deep groundwater flow at the site.

Further evaluation of both the shallow and the deep groundwater flow will be completed under the planned off-

site (OU2) investigation to provide additional characterization to more accurately determine if significant

exposure pathways exist.

4.5.3 Vapor Intrusion

The depth to groundwater at, and in the vicinity of, the subject property is relatively shallow; therefore potential

vapor intrusion is a concern for downgradient properties affected by the shallow PCE plume migrating from the

There are two potential shallow plume migration pathways downgradient of the subject property;

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

groundwater flow may shift slightly to the west and discharge to Smith Pond and/or Mill River or it may travel

south-southwest, approximately parallel to Mill River. If the plume discharges to the pond or river, the only

structures it will pass under are the MTA Long Island Bus Depot, a vacant church building and commercial properties on the

north side of Sunrise Highway. If the plume continues southward parallel to the river, it may encounter a residential

area south of S. Village Avenue, approximately 1,750 feet south of the subject property.

Although elevated PCE concentrations were detected in soil vapor samples collected at the southern property

boundary, exposure from VOCs in groundwater to ambient air assumes that VOCs present in on-site and near-site

groundwater migrate approximately 1,750 feet to the nearest residence with minimal attenuation, transfer to the

vapor phase and enter residences through pores and cracks in their foundations.

The planned off-site (OU2) investigation is intended to provide additional characterization to more accurately

determine if significant exposure pathways exist.

Quality Assurance/Quality Control 4.6

The overall quality assurance quality control (QA/QC) objective for the field investigation was to develop and

implement procedures that provide data of known and documented quality. QA/QC characteristics for data

include precision, accuracy, representativeness, completeness, and comparability. The purpose of the QA/QC activities developed for this site were to verify the integrity of the work performed and data collected is of the

appropriate type and quality for the intended use.

4.6.1 QA/QC Samples

To assess the adequacy of the sample collection and decontamination procedures performed in the field,

QA/QC samples were collected and analyzed throughout the field sampling program. In general, QA/QC

samples confirmed that the procedures performed in the field were consistent and acceptable. Reported

detections in the trip and field blanks did not impact the interpretation of sample data. QA/QC samples included

trip blanks, field blanks, blind duplicates, matrix spike (MS), and matrix spike duplicates (MSD). Types and

frequencies of field QA/QC samples are listed below.

Type

Frequency

Trip Blank

One per cooler (when VOC samples collected)

Field Blank

One per day per matrix sampled

Blind Duplicate

One per 20 samples per matrix

Matrix Spike/Matrix Spike Duplicate

One per 20 samples per matrix

During the project, a total of twelve trip blanks were submitted and analyzed. Trip blanks accompanied

environmental samples whenever VOCs were collected.

Targeted analytes were not detected above the laboratory MDL in field blank or trip blank samples submitted for analysis, indicating that sample collection procedures and/or ambient conditions are unlikely to have impacted

environmental samples collected from the site during implementation of the Supplemental RI.

QA/QC sample data are summarized in Table 18 through Table 24.

4.6.2 Data Usability and Validation

A Data Validation Report and a Data Usability Summary Report (DUSR) were prepared by Stone Environmental,

Inc. (Stone) of Montpelier, Vermont. A copy of the DUSR (with the Data Validation Report included as an

attachment) is included as **Appendix G**.

Data Validation

Full data validation was performed on 5% of the data generated or one sample per Sample Delivery Group

(SDG), whichever was greater. Remaining data received a summary validation as detailed in the DUSR. The

findings and recommendations of the Data Validation Report (included as Attachment C to the DUSR) are

summarized as follows:

Both vials for groundwater samples PWG-VP-2008-01 (96-100), PWG-VP-2008-02 (56-60), PWG-VP-2008-02 (96-100)

and PWG-VP-2008-03 (96-100) were received with a large headspace. The validator recommended that results

for all compounds in these samples be considered estimated (J, UJ qualifiers).

Due to unacceptable %D values in the associated calibration standards, the validator classified the following

results as estimated (J, UJ qualifiers):

Chloromethane, bromomethane, isopropyl benzene, 1,2,3-trichloropropane and naphthalene in samples

PWG-VP-2008-02 (16-20) and PWG-VP-2008-04 (36-40).

Dichlorodifluoromethane, chloromethane carbon disulfide, isopropyl benzene and p-diethyl benzene in

samples PWG-GW-2008-04 and PWG-GW-2008-24 (PWG-GW-2008-24 was collected as a blind duplicate

of PWG-GW-2008-04).

Isophorone, 1,4-dichlorobenzene, 2,4-dinitrotoluene, 3-nitroaniline and 4-nitroaniline in samples PWG-SB-

2008-01@5-10 and PWG-SB-2008-21@5-10 (PWG-SB-2008-21@5-10 was collected as a blind duplicate of

PWG-SB-2008-21@5-10).

• Dichlorodifluoromethane and 1,2,3-trichloropropane in samples PWG-DW-2008-15@7-7.5 and PWG-DW-

2008-100@7-7.5 (PWG-DW-2008-100@7-7.5 was collected as a blind duplicate of PWG-DW-2008-15@7-7.5).

Dichlorodifluoromethane, carbon disulfide, vinyl acetate and 1,2,3-trichloropropane in sample PWG-DW-

2008-34@5.5-6.

Dichlorodifluoromethane, chloromethane, bromomethane and isopropyl benzene in sample DIFFW-01.

Dichlorodifluoromethane, chloromethane, 2-butanone, acetone and isopropyl benzene in sample DIFFW-

04.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

Due to poor MS/MSD and duplicate recoveries in SDG L0813344 for metals and mercury analyses, several

compounds exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N"

and "*" qualifiers on compounds that exceeded the criteria. As a result of the recovery failures, results flagged by

the laboratory with an "N" or "*" were classified as estimated (J, UJ qualifiers) by the validator in samples PWG-

DW-2008-15@7-7.5 and PWG-DW-2008-100@7-7.5 (PWG-SB-2008-21@5-10 was collected as a blind duplicate of

PWG-SB-2008-21@5-10).

Due to poor MS/MSD and duplicate recoveries in SDG L0813447 for metals and mercury analyses, several

compounds exhibited recoveries outside the acceptance windows. The laboratory appropriately applied "N"

qualifiers on compounds that exceeded the criteria. As a result of the recovery failures, results flagged by the

laboratory with an "N" were classified as estimated (J, UJ qualifiers) by the validator in sample PWG-DW-2008-

34@5.5-6.

Based on poor reproducibility in the organic field duplicate pairs, the validator classified the following results as

estimated (J, UJ qualifiers):

• 4-4'-DDT in samples PWG-SB-2008-01@5-10 and PWG-SB-2008-21@5-10 (PWG-SB-2008-21@5-10 was

collected as a blind duplicate of PWG-SB-2008-21@5-10).

Cis-1,2-dichloroethene, trichloroethene, vinyl chloride, fluoranthene and pyrene in samples PWG-DW-

2008-15@7-7.5 and PWG-DW-2008-100@7-7.5 (PWG-DW-2008-100@7-7.5 was collected as a blind

duplicate of PWG-DW-2008-15@7-7.5).

Acetone, 2-butanone, n-butylbenzene, isopropyl benzene and 2-methylnaphthalene in sample PWG-DW-

2008-34@5.5 -6.

Vinyl chloride in DIFFW-01.

Based on poor reproducibility in the inorganic field duplicate pairs, the validator classified the following results as

estimated (J, UJ qualifiers):

Aluminum, arsenic, barium, calcium, copper, lead, mercury, vanadium and zinc in samples PWG-SB-2008-

01@5-10 and PWG-SB-2008-21@5-10 (PWG-SB-2008-21@5-10 was collected as a blind duplicate of PWG-

SB-2008-21@5-10).

Silver in sample PWG-DW-2008-34@5.5 -6.

Although acetone and methylene chloride were not detected above the reporting limit in volatile organic

analysis (VOA) method blanks, chromatographic peaks were observed in raw data for these compounds in

associated method blanks. As such, the validator recommends that caution be used in the results of these

compounds as they are common laboratory contaminants and low concentrations observed in soil samples may

no be site related.

Data Usability

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

The DUSR was prepared in accordance with USEPA Region II SOPs for validating organic and inorganic analyses and was based on a review of each SDG case narrative and full Data Validation Report (detailed above). The findings and recommendations of the DUSR are summarized as follows:

- Laboratory deliverables were received in accordance with the work plan and general reporting requirements of NYSDEC Analytical Services Protocol. Deviations from acceptable QC specifications were discussed in detail in case narratives and data were flagged with laboratory qualifiers, where appropriate.
- Due to the need for dilutions or reanalysis due to QC outliers, multiple data sets were provided for some samples. Per the DUSR, in the case of dilution analyses, the more concentrated analysis is replaced with the appropriate concentration from the dilution analysis; in the case of reanalysis original results are considered for use as estimated values (U, UJ qualifiers).
- The completeness level attained for the analysis of field samples was greater than 95%. For all data, the overall quality of data is acceptable and all results, as qualified, are considered usable.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

5.1.1 Source Areas

Previous investigations performed at the site have identified PCE and its degradation products in soils beneath the southwest portion of the warehouse building. The results of the March 2004 RI confirmed the findings of previous investigations identifying significant shallow soil contamination limited to an area approximately 40 feet by 60 feet and deeper contamination covering an area roughly 180 feet by 160 feet beneath the southwest portion of the southern warehouse building. PCE impacted soil was also identified at the surface of the clay layer outside of the

building at the north end of the western parking area.

Analytical data for soil samples collected from six source area delineation soil borings installed as part of this Supplemental RI appears to confirm the conclusions of the March 2004 RI indicating that the source area for PCE contamination at the site is limited to the area beneath the southwest portion of the warehouse building. Based upon field observations, installation of additional step out borings was not warranted. PCE and its degradation products were not detected at concentrations in excess of their respective Unrestricted Use SCOs in soil samples

collected from outside the perimeter of the presumed source area (SB-2008-09 through SB-2008-14).

The presence of elevated PCE concentrations in soil beneath the southwest portion of the warehouse building is acting as a continuing source of contamination to the shallow groundwater. Based upon a review of the recent and historic data, no source area was located in the northern portion, to the north of the Parcel Line

(N83°50′53″E), of the property.

5.1.2 Soil

The geophysical survey, test pit excavation and dye/flush testing performed as part of the Supplemental RI identified twenty previously unknown storm water drainage structures and one previously unknown industrial leaching pool. No evidence indicating the storm water drainage structures had received discharges from within

the build was identified.

PCE and its degradation products were detected at concentrations below their respective Unrestricted Use SCOs in samples collected from ten storm water drainage structures (DW-03, 06, 07(SD_3), 10, 15, 16, 17, 18, 19 & SD-1) and one industrial leaching pool (LP-01). With the exception of LP-01, all of these structures are classified as storm water drainage structures that received surface runoff and were not connected to drains from within the building. Leaching pool LP-01 was a buried structure, with no cover to grade, and it only received discharge from a drain within the southwestern corner of the building. Based on the locations of the structures impacted with PCE, in the western and southern parking lot areas, the fairly low concentrations of PCE detected and the shallow groundwater table at the site, it appears likely that low level PCE impact in these structures is related to groundwater impact at the site. PCE and its degradation products were not detected at concentrations exceeding their respective Unrestricted Use SCOs in samples collected from subsurface drainage structures at the subject site.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

A total 26 storm water (DW-01, DW-02, DW-07, DW-10, DW-11, DW-14, DW-17, DW-19, DW-20, DW-21, DW-23, DW-

24, DW-26, DW-28, DW-30, DW-31, DW-32, DW-33, DW-34, DW-35, DW-36, DW-37, DW-38, DW-39, DW-40, & DW-43)

drainage structures and one industrial leaching pool (LP-1) at the site were determined to be impacted with

VOCs other than PCE and its degradation products, SVOCs and/or metals at concentrations exceeding their

respective Unrestricted Use SCOs. The compounds detected are typically associated with run-off from parking

areas.

5.1.3 Groundwater

The March 2004 RI identified a shallow groundwater plume of PCE and its degradation products emanating from

the source area beneath the southwestern portion of the warehouse building. PCE concentrations in the source

area were reported at or above the pure product solubility, providing evidence of DNAPL in this area. At that

time, the plume appeared to be migrating south toward the MTA Long Island Bus Depot. PCE was detected at

concentrations as high as 28,000 ppb at the southern property boundary and 8,600 ppb at the western property

boundary.

Analytical data for fourteen shallow groundwater samples collected as part of this Supplemental RI confirmed the

findings of the March 2004 RI, identifying a plume of PCE and its degradation products in shallow groundwater at

the site.

It appears that the plume of impacted shallow groundwater originating from the source area beneath the

southwestern portion of the warehouse building may currently be migrating off-site to the south.

Elevated concentrations of PCE and/or its degradation products were detected in nineteen of 30 groundwater

samples collected from below the clay layer present at the site. In deep groundwater, peak concentrations of

PCE were detected at a depth of approximately 36 to 40 feet below grade at VP-02, adjacent to the southern

property boundary. PCE was not detected in groundwater samples from VP-04, which was the vertical profile

located furthest to the east. PCE and its degradation products were not detected in monitoring wells (MW-7, MW-

8 and MW-9) located in the northern portion of the site, which were screened beneath the clay layer.

Based on the historic use of the property, plume(s) originating at the site may have been in transit for 30 to 36

years, starting sometime prior to 1978. The extent of off site groundwater impact will be determined by the off-site

(OU2) investigation.

In addition to VOCs, samples collected from each of the five monitoring wells present at the site (MW-1, MW-2,

MW-4, MW-5 and MW-6) were also analyzed for SVOCs, metals, pesticides and PCBs. SVOCs, pesticides and PCBs

were not detected at concentrations exceeding the laboratory MDL in shallow groundwater samples collected

from the site. One or more metal, including aluminum, arsenic, beryllium, cadmium, chromium, iron, lead,

magnesium, manganese, mercury and nickel, were detected at a concentration exceeding its NYSDEC AWQS in

each of the shallow groundwater samples submitted for analysis. Due to the turbidity of the groundwater samples

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

collected, and the possibility that metals detected at elevated concentrations were related to suspended solids

in the samples rather than actual dissolved metals impact, monitoring wells MW-4, MW-5 and MW-6 were re-

sampled and laboratory filtered samples were analyzed for dissolved metals content. Elevated metals concentrations were not detected in filtered samples, indicating that previously identified metals impact was

likely related to suspended solids in the samples rather than actual dissolved metals impact.

5.1.4 Soil Vapor

Elevated PCE concentrations were detected in four of twelve soil-vapor samples collected from the site. PCE

and/or its degradation products were detected at concentrations exceeding their respective USEPA Guidance

Value (as listed for the 10-5 risk level) in soil-vapor samples collected at sampling points SG-2008-03, SG-2008-09,

SG-2008-11 and SG-2008-12. With the exception of SG-2008-12, each of the soil-vapor samples was collected

adjacent to the proposed IRM excavation area. Soil-vapor sample SG-2008-11, the soil-vapor sample collected

nearest the proposed excavation area exhibited the highest PCE concentration detected at 1,680,000 ug/m3.

5.2 Recommendations

The Brownfield Cleanup Program defines the investigation/cleanup responsibilities required of the volunteer

applicant and those assigned to the responsible party and/or the NYSDEC. Recommendations for further

investigation and remediation, as detailed below, are grouped accordingly.

Potential remedial activities to address on-site soil and groundwater impact will be detailed in a Remedial Work

Plan for the site, to be prepared in accordance with the NYSDEC Draft Brownfield Cleanup Program Guide (May

2004), NYSDEC 6 NYCRR Part 375-1 (December 14, 2006), and NYSDEC Draft DER-10 Technical Guidance for Site

Investigation and Remediation (December 25, 2002).

5.2.1 Responsible Party

Delineation of Off-Site Groundwater Impact

The results of this Supplemental RI demonstrate that groundwater impact in excess of NYSDEC AWQS extends off

site to the south and west of the subject property both above and, to a lesser extent below the clay confining

layer. Based on the historic use of the property, impacted groundwater may have been in transit for 30 to 36

years, starting sometime prior to 1978. The off-site downgradient extent of the plume will be investigated under the

OUIII off-site Remedial Investigation.

Delineation of Off-Site Soil Vapor Impact

PCE was detected in soil vapor in samples collected adjacent to the southern property boundary. The off site

extent of soil vapor impact should be further investigated under the OU II Off-Site Remedial Investigation.

5.2.2 Volunteer

Subsurface Drainage Structure Remediation and Closure

VOCs, SVOCs and/or metals were detected at concentrations exceeding their respective Unrestricted Use SCOs

in samples collected from 25 of 42 storm water drainage structures and the sole industrial wastewater leaching

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com

pool present at the subject property. Impacted structures should be remediated in accordance with USEPA

Underground Injection Control (UIC) Program procedures and abandoned if no longer needed.

Groundwater

VOCs, SVOCs and/or metals were detected at concentrations exceeding their respective NYSDEC AWQS at 16

locations throughout the southwestern corner of the site, both above and, and to a lesser extent, below the clay.

However, no VOCs were detected above AWQS in samples collected from the northern portion of the property,

to the north of the Parcel Line (see Figure 7), and a second round of laboratory filtered groundwater samples

showed a decrease in metals concentrations below AWQS. The upcoming IRM will address VOC impacted

groundwater through extensive dewatering and chemical oxidant treatment. The need for additional treatment,

of impacted groundwater in the southwestern corner of the site, will be evaluated under the Remedial Action

Work Plan for the site.

Interim Remedial Measure

Based on previous characterizations of the source area beneath the building, which identified DNAPL and sorbed

phase VOCs below the water table, the RI report recommended implementation of an Interim Remedial Measure

(IRM) to remove the source of groundwater impact from the southwestern corner of the site. PWGC submitted to

NYSDEC a proposed IRM consisting of the installation extraction of product recovery wells to recover mobile

DNAPL on top of the clay layer, followed by soil excavation within the primary source area. The IRM was

approved by the NYSDEC in May 2006 and later amended with NYSDEC approval in April 2009.

Based on previous investigations, it appeared that the topography of the clay surface beneath the building

formed a bowl shape in the vicinity of soil boring B3, which could potentially restrict the movement of mobile

DNAPL away from the source area. As such, the IRM called for the installation of DNAPL recovery wells in this

area. Since it was expected that the amount of mobile DNAPL would be limited, event based recovery methods

(e.g., product bailing) were recommended rather than the installation of an automated recovery system. The

intended purpose of removing mobile DNAPL was to reduce the possibility of DNAPL migration during soil

excavation.

The IRM specified the excavation and disposal of approximately 9,000 cubic yards of impacted soil from the site

(in conjunction with dewatering activities) to eliminate the bulk of the presumed source area followed by the

application of chemical oxidants to treat residual PCE impact.

To date, six DNAPL recovery wells have been installed within the source area beneath the southwestern portion of

the warehouse building and product recovery has been implemented. The following phases of the IRM, including

dewatering, soil excavation and off-site disposal, chemical oxidant injections, and backfilling are scheduled to be

implemented in the coming months. Following the completion of the IRM, field observations, endpoint analytical

results and site activities will be summarized in a Remedial Action Work Plan (RAWP). The RAWP will also detail

remedial technologies and methods to address any residual PCE impact or newly identified environmental areas

if concern as detailed in this Supplemental Remedial Investigation Report.

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716

Future Site Development Activities

The results of the investigation indicate that there are no areas of contaminated soil, groundwater or soil vapor impact in the northern portion of the site (north of the Parcel Line). In light of these findings, there is no evidence from an engineering standpoint as to why, upon NYSDEC approval of this Supplemental Remedial Investigation Report, site development activities, including the start of construction of the planned garage structure and other components of the planned development, including the residential apartment building, should not commence in the northern portion of the site at the same time that remediation is taking place in the southern portion of the site. Consistent with sound engineering practice, a vapor mitigation system will be incorporated into the building design. Any subsurface drainage structures which may be disturbed during or otherwise need to be abandoned for upcoming construction activities, will be properly remediated, if necessary, and abandoned in accordance with USEPA UIC Program procedures.

Following completion of the IRM, additional information will be available to determine what if any, additional remedial activities and/or engineering controls may be warranted in the southwestern portion of the site. Based upon the contaminants observed during this and previous investigations, it is anticipated that additional remedial measures may be warranted in the southern portion of the site. Appropriate remedial alternatives will be detailed in the RAWP to be submitted to the Department after completion of the IRM.

6.0 REFERENCES

EcolSciences, Inc., Phase I Environmental Site Assessment for 80-100 Banks Avenue, Rockville Centre, New York,

March 28, 2002

EcolSciences, Inc., Phase II Environmental Investigation Report for 80-100 Banks Avenue, Rockville Centre, New

York, January 2004

Melick-Tully and Associates, Inc., Preliminary Soils and Foundation Investigation Report, 80-100 Banks Avenue,

Rockville Centre, New York, April 4, 2002

NYSDEC, Division of Environmental Remediation, Draft Brownfield Program Cleanup Guide, April 4, 2002

NYSDEC, Division of Environmental Remediation, 6 NYCRR Part 375, Environmental Remediation Programs,

December 14, 2006.

NYSDEC, Division of Environmental Remediation, Draft DER-10, Technical Guidance for Site Investigation and

Remediation, December 2002

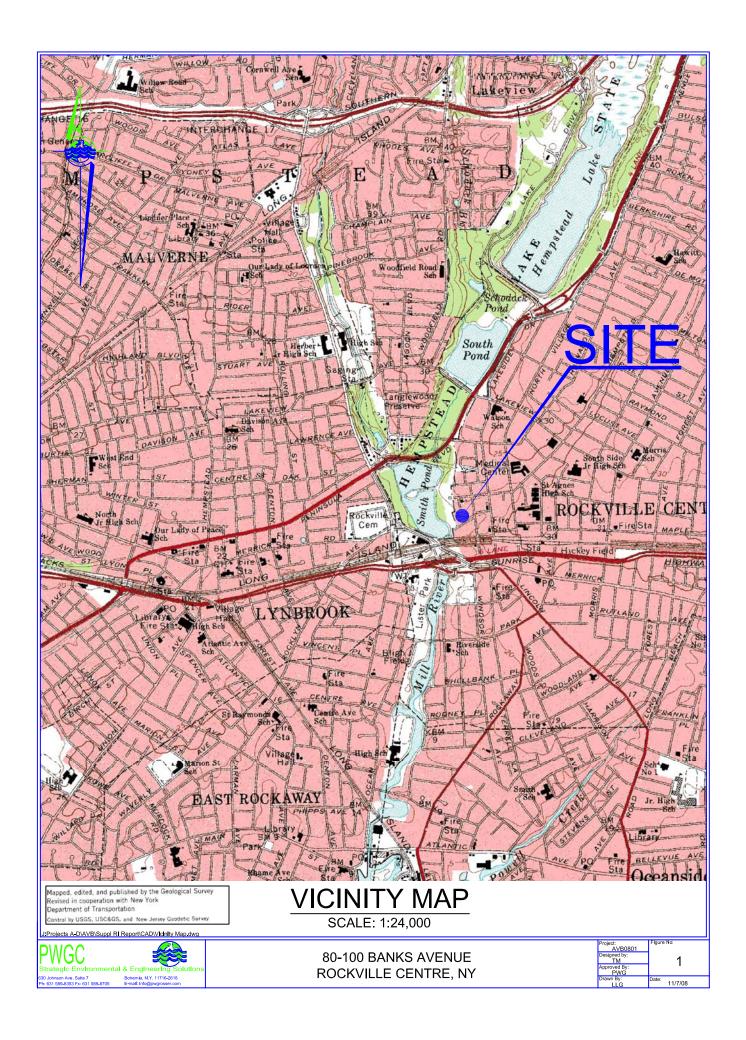
NYSDEC, Division of Environmental Remediation, Technical and Administrative Guidance Memorandum (TAGM)

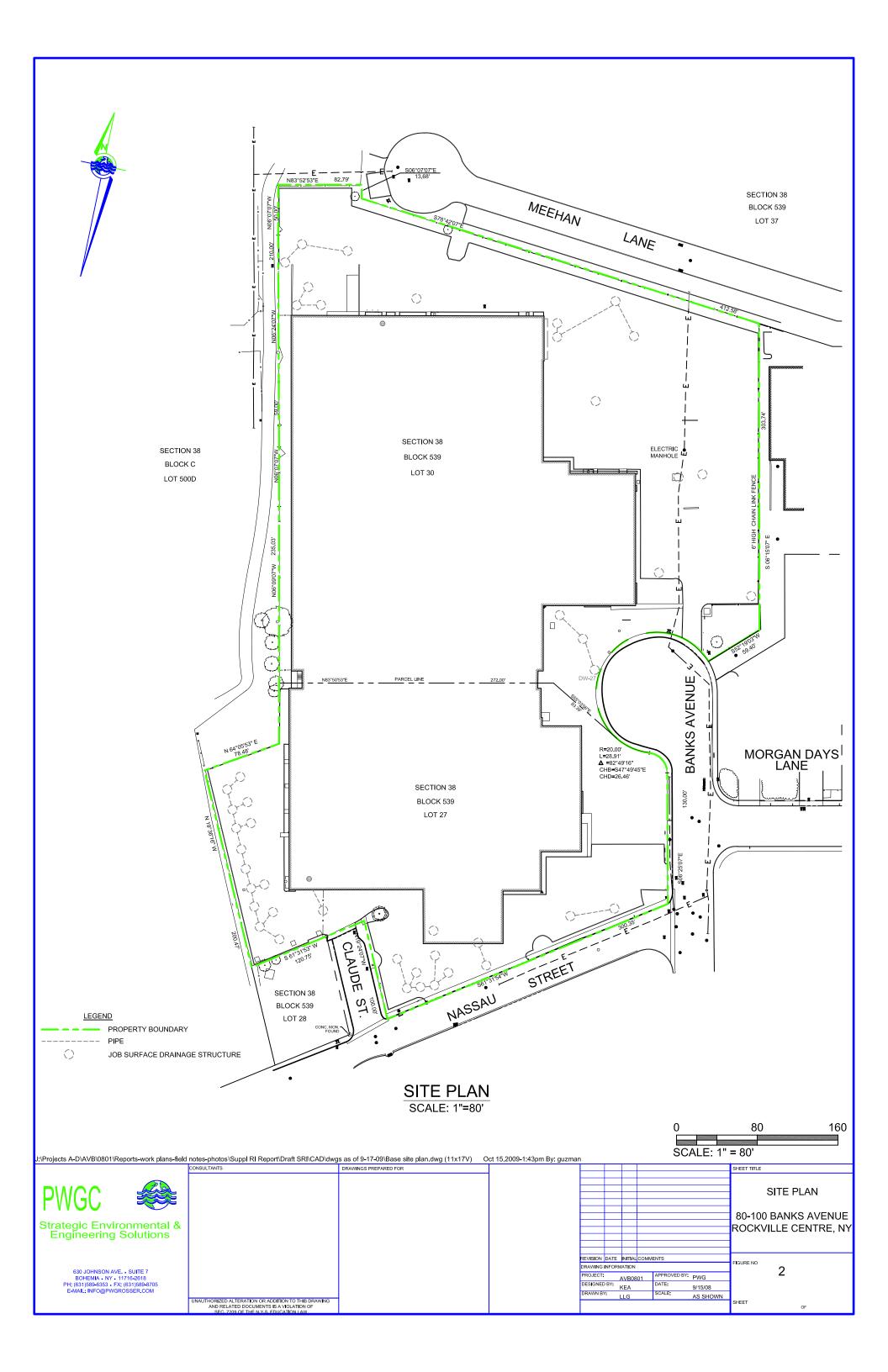
#4046 Determination of Soil Cleanup Objectives and Soil Cleanup Levels. January 24, 1994

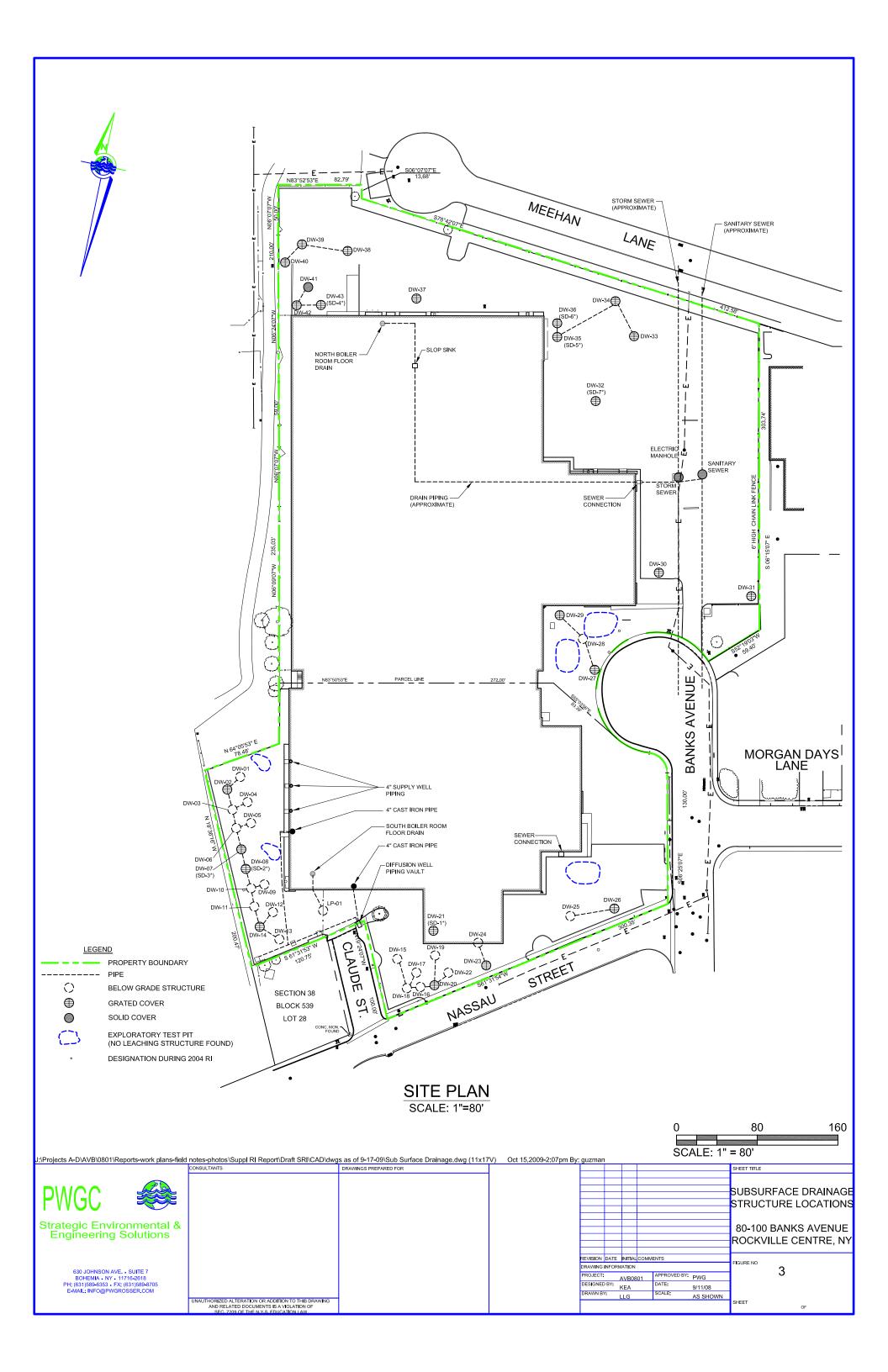
NYSDEC, Division of Water, Technical and Operational Guidance Series (TOGS) 1:1:1, Ambient Water Quality

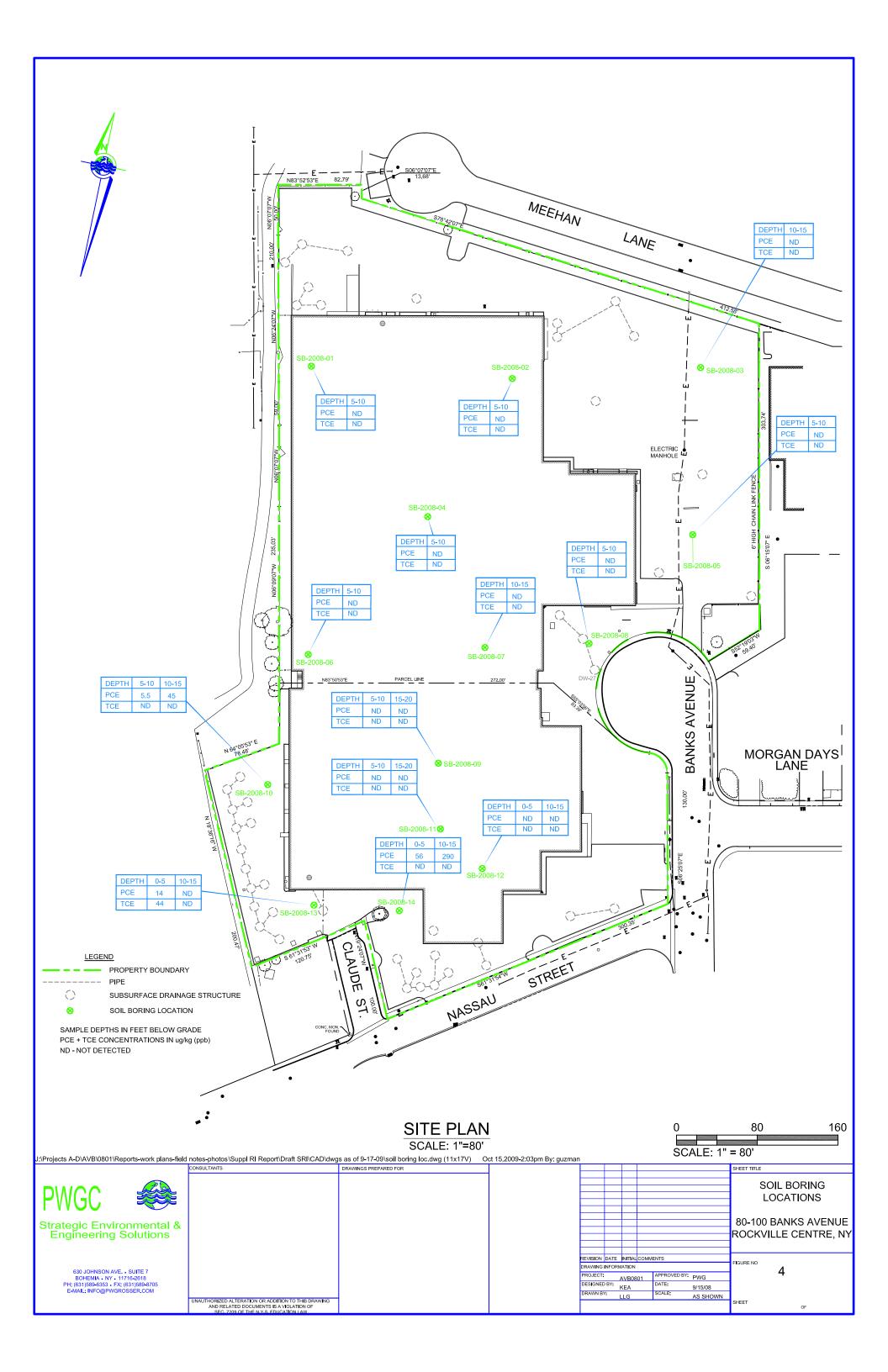
Standards and Guidance Values and Groundwater Effluent Limitations, June 1998, April 2000 Addendum

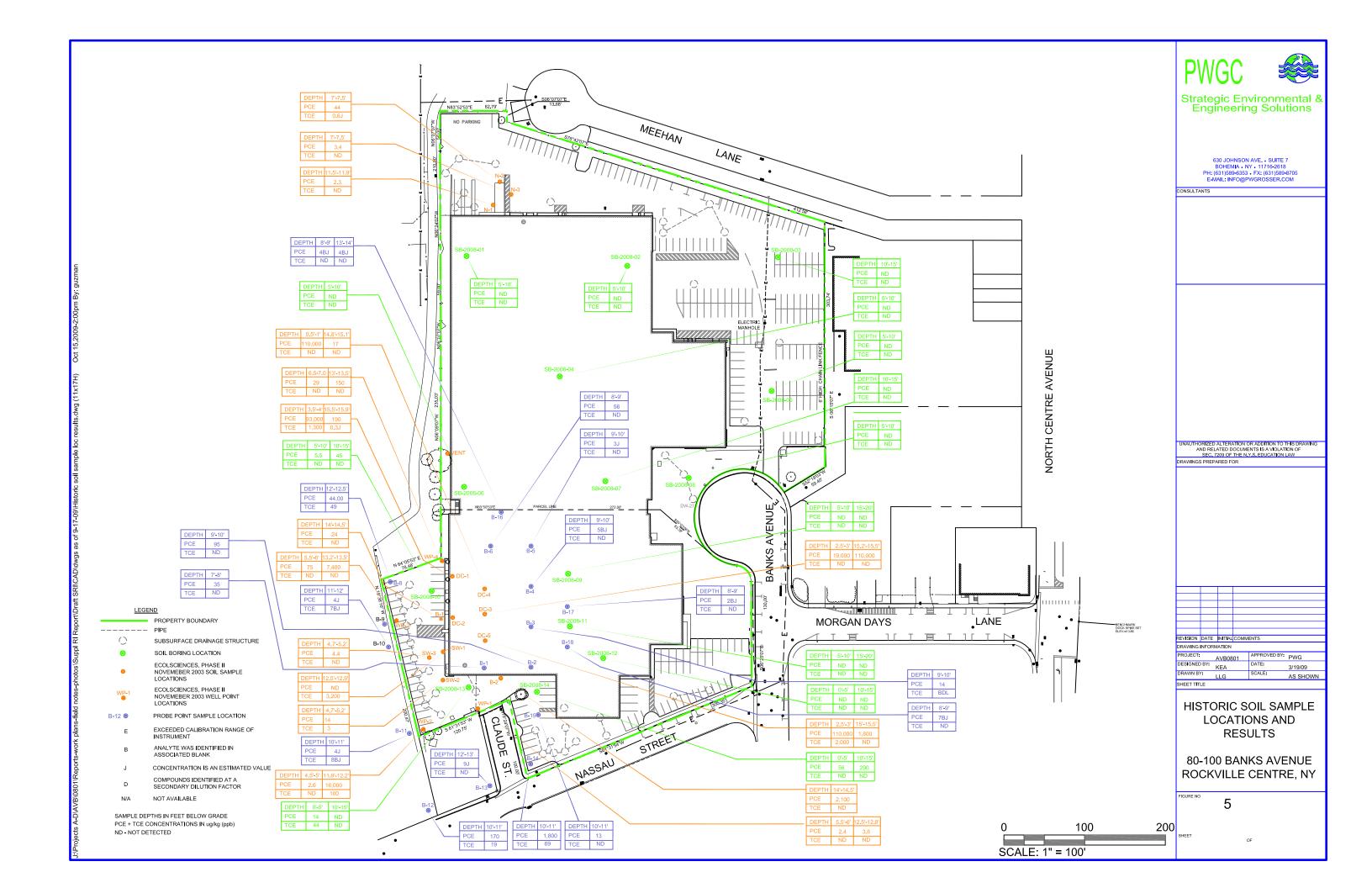
P.W. Grosser Consulting, Inc. September, 2004. Remedial Investigation Report, 80-100 Banks Avenue, Rockville

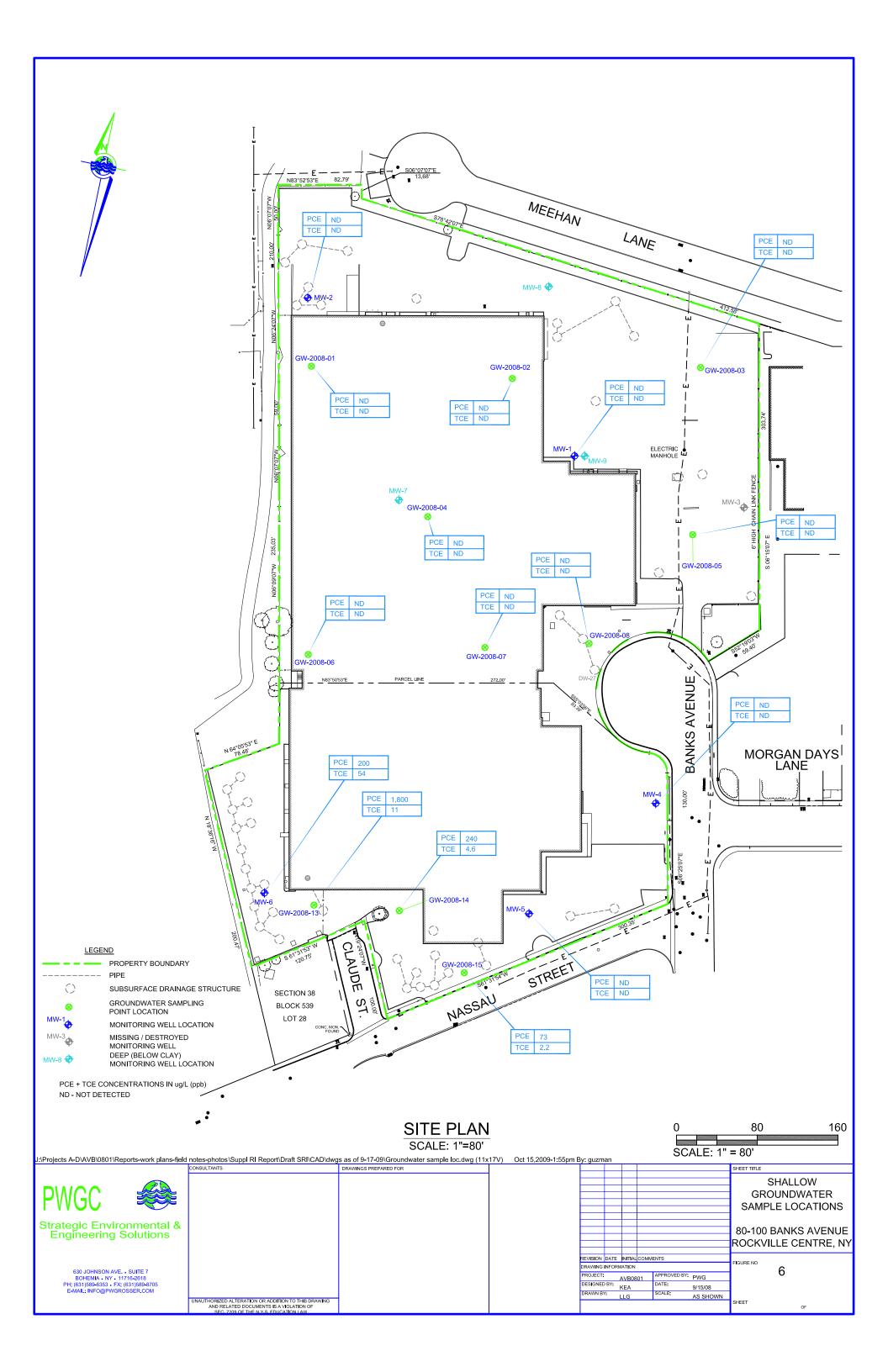

Centre, New York

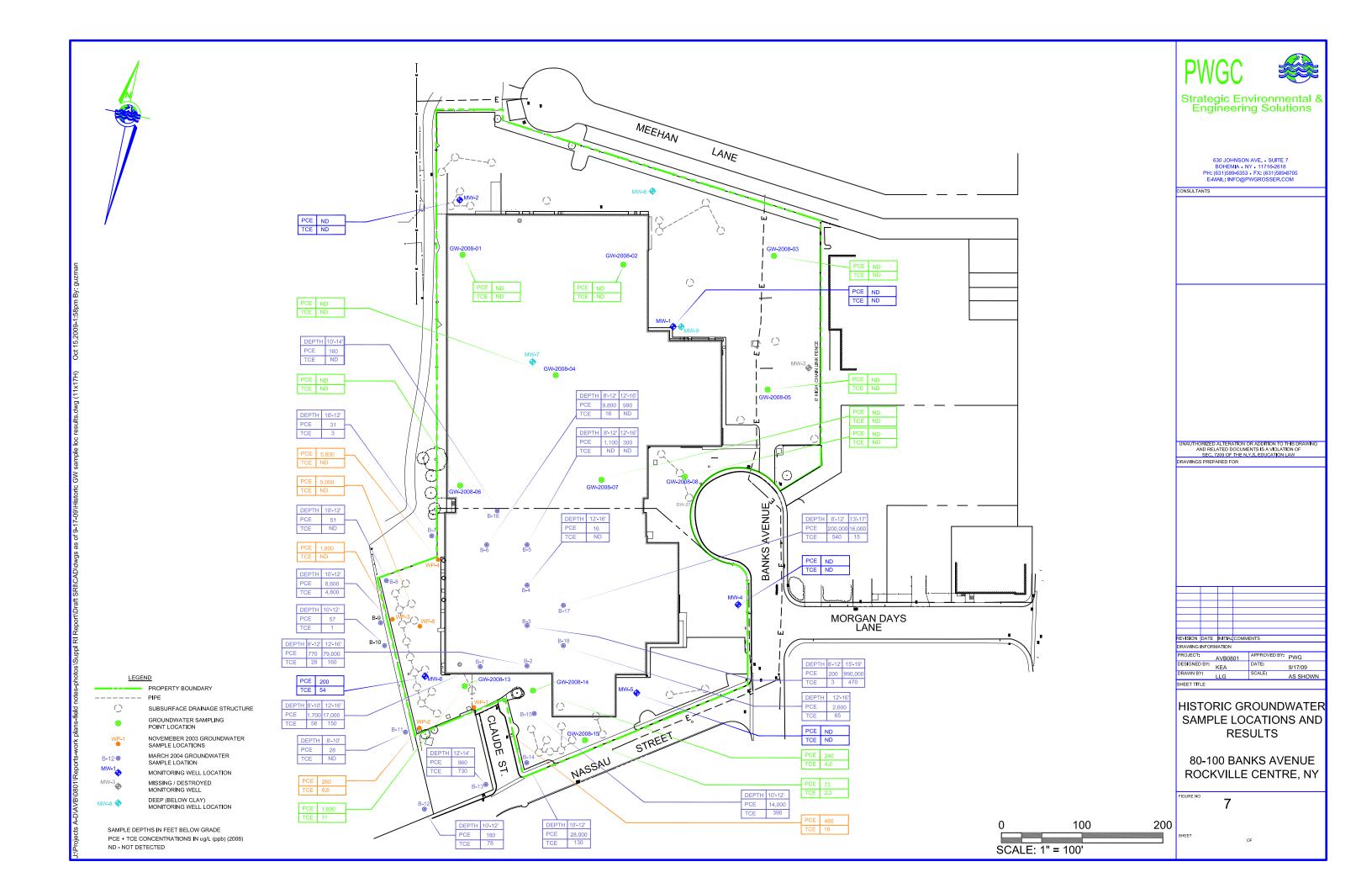

P.W. Grosser Consulting, Inc. September, 2004. Proposed Interim Remedial Measure, 80-100 Banks Avenue,

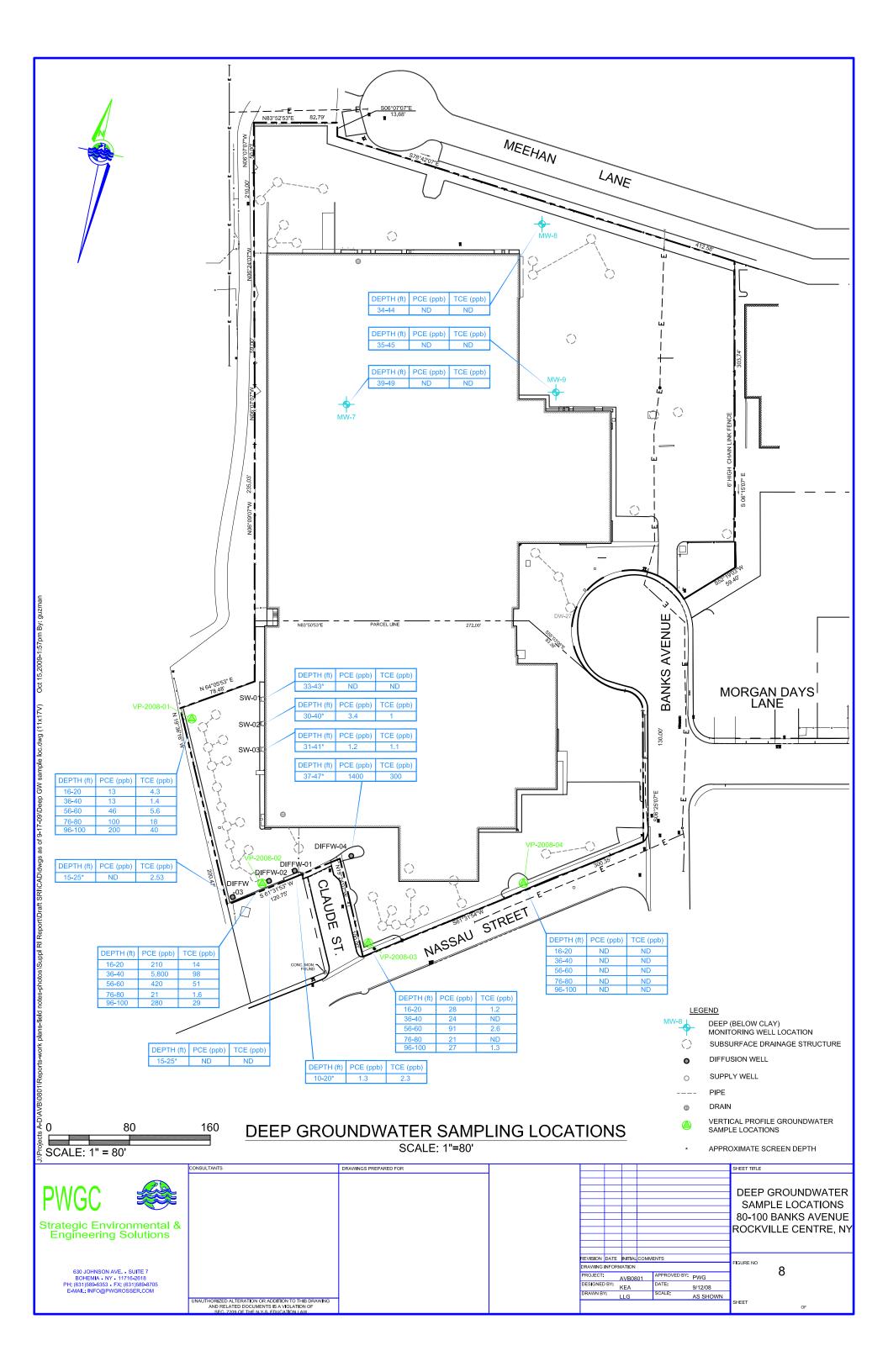

Rockville Centre, New York.

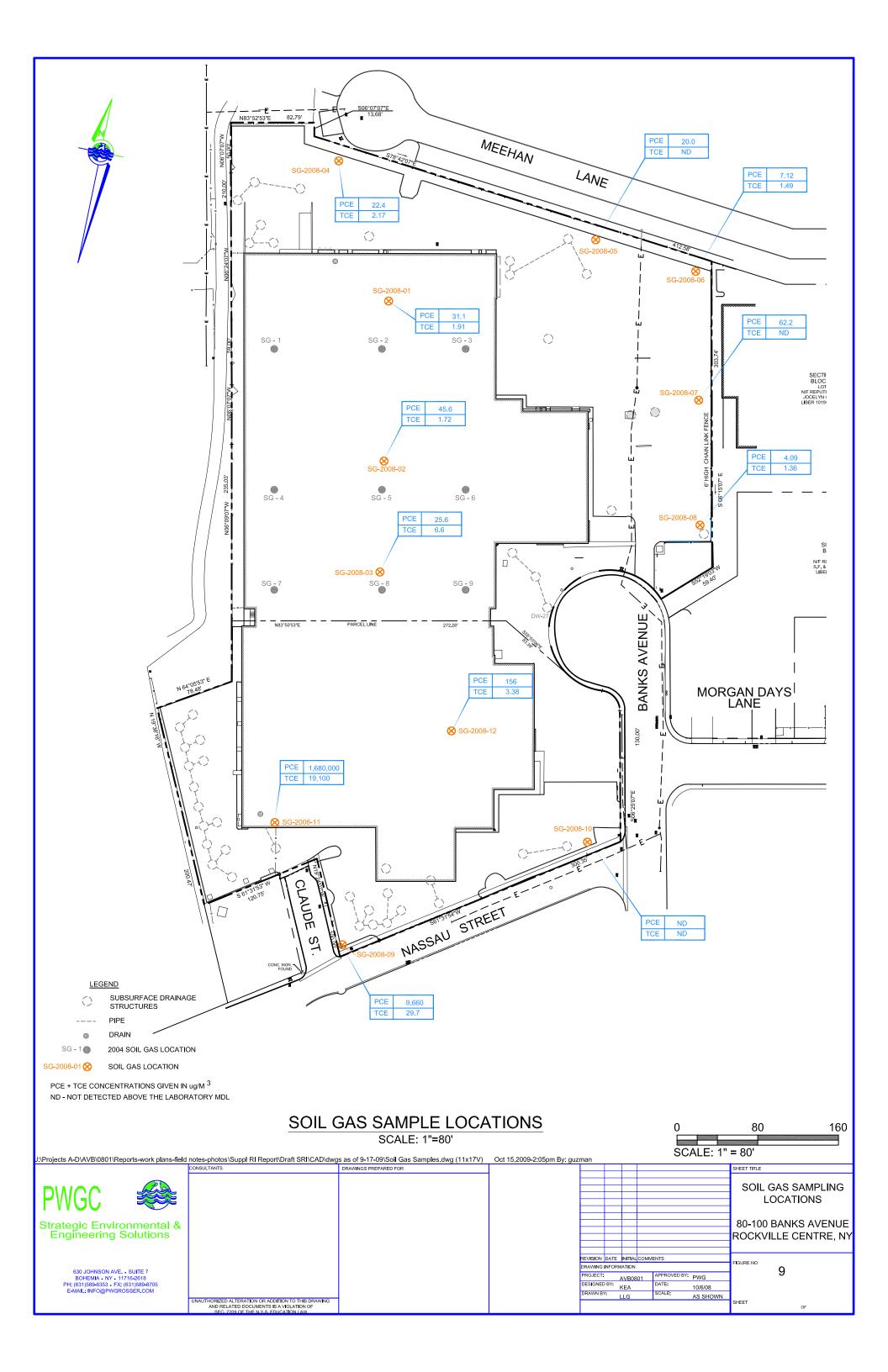

P.W. Grosser Consulting, Inc • P.W. Grosser Consulting Engineer & Hydrogeologist, PC 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Seattle, WA • Greensboro, NC

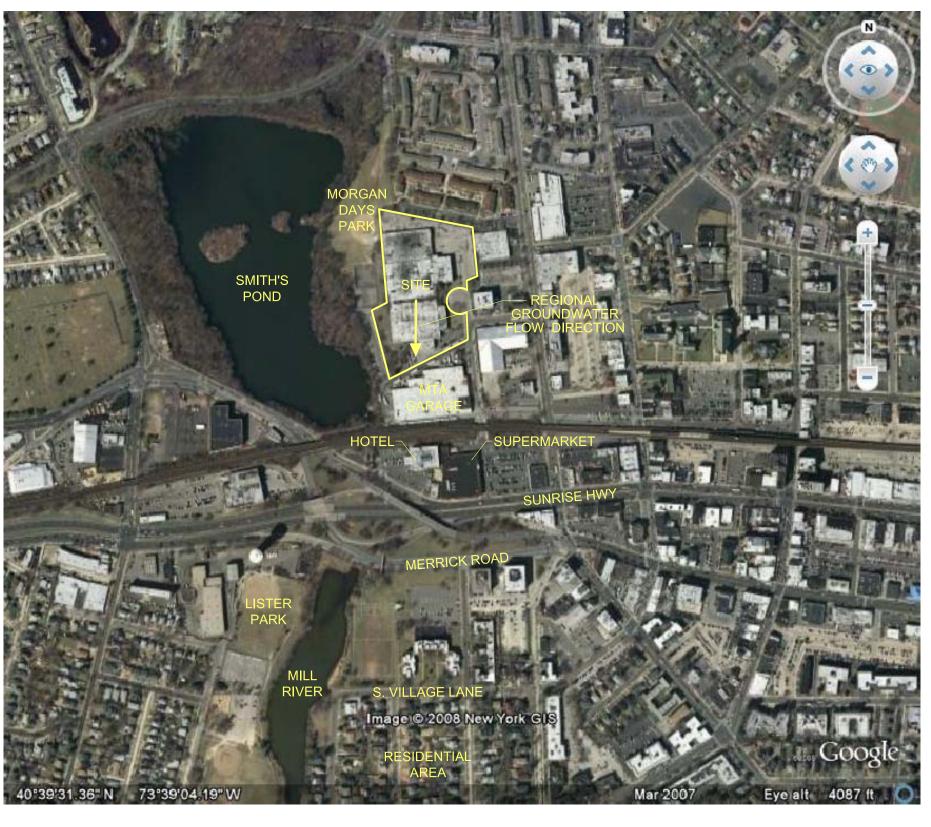

FIGURES

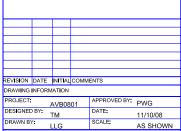











PWGC

Strategic Environmental & Engineering Solutions

630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PH: (631)589-6353 • FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM

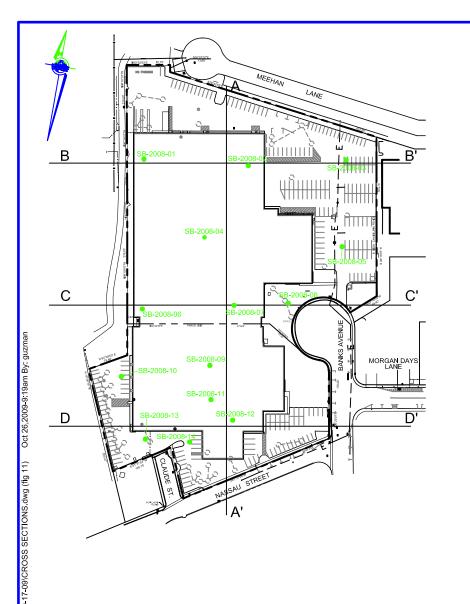
NSULTANTS

UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC, 7209 OF THE N.Y.S, EDUCATION LAW RAWINGS PREPARED FOR

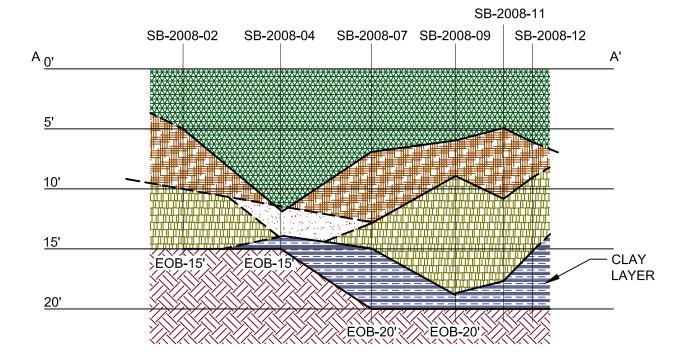
SURROUNDING LAND USE

80-100 BANKS AVENUE ROCKVILLE CENTRE, NY

IGURE NO 10


1,000

500


SCALE: 1" = 500'

ET

AERIAL MAP
SCALE: 1"=500'

EOB

CROSS SECTION A-A' SCALE = 1:8

CROSS SECTION B-B'

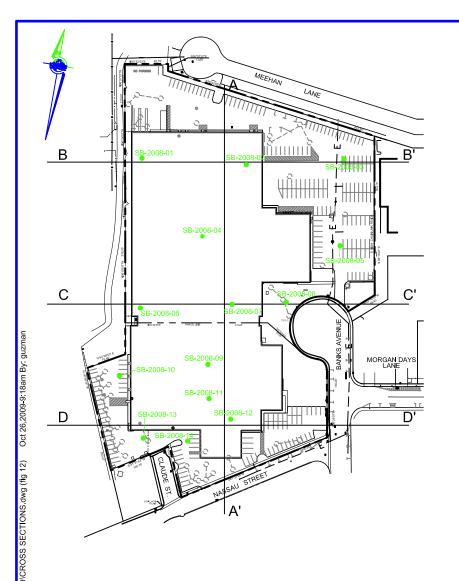
Strategic Environmental & Engineering Solutions 630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PH: (631)589-6353 • FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM AUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC. 7209 OF THE N.Y.S. EDUCATION LAW WINGS PREPARED FOR

REVISION DATE INITIAL COMMENTS

DRAWING INFORMATION

PROJECT: AVB0801 APPROVED BY: PWG

DESIGNED BY: TM DATE: 9/14/09


DRAWN BY: LLG SCALE: AS SHOW

SHEET TITLE

GEOLOGIC CROSS SECTIONS

80-100 BANKS AVENUE ROCKVILLE CENTER, NY

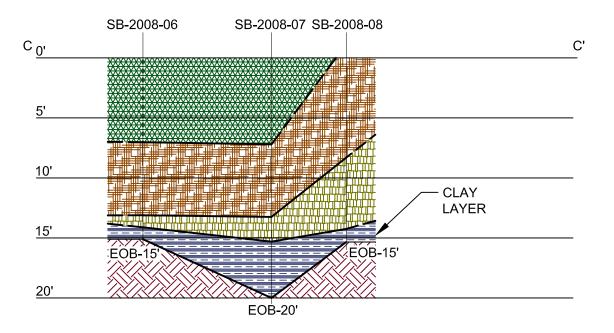
gure no 11

LEGEND

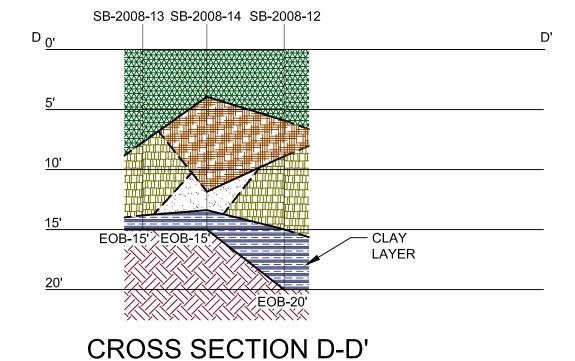
SILTY SAND

NOT SAMPLED

END OF BORING

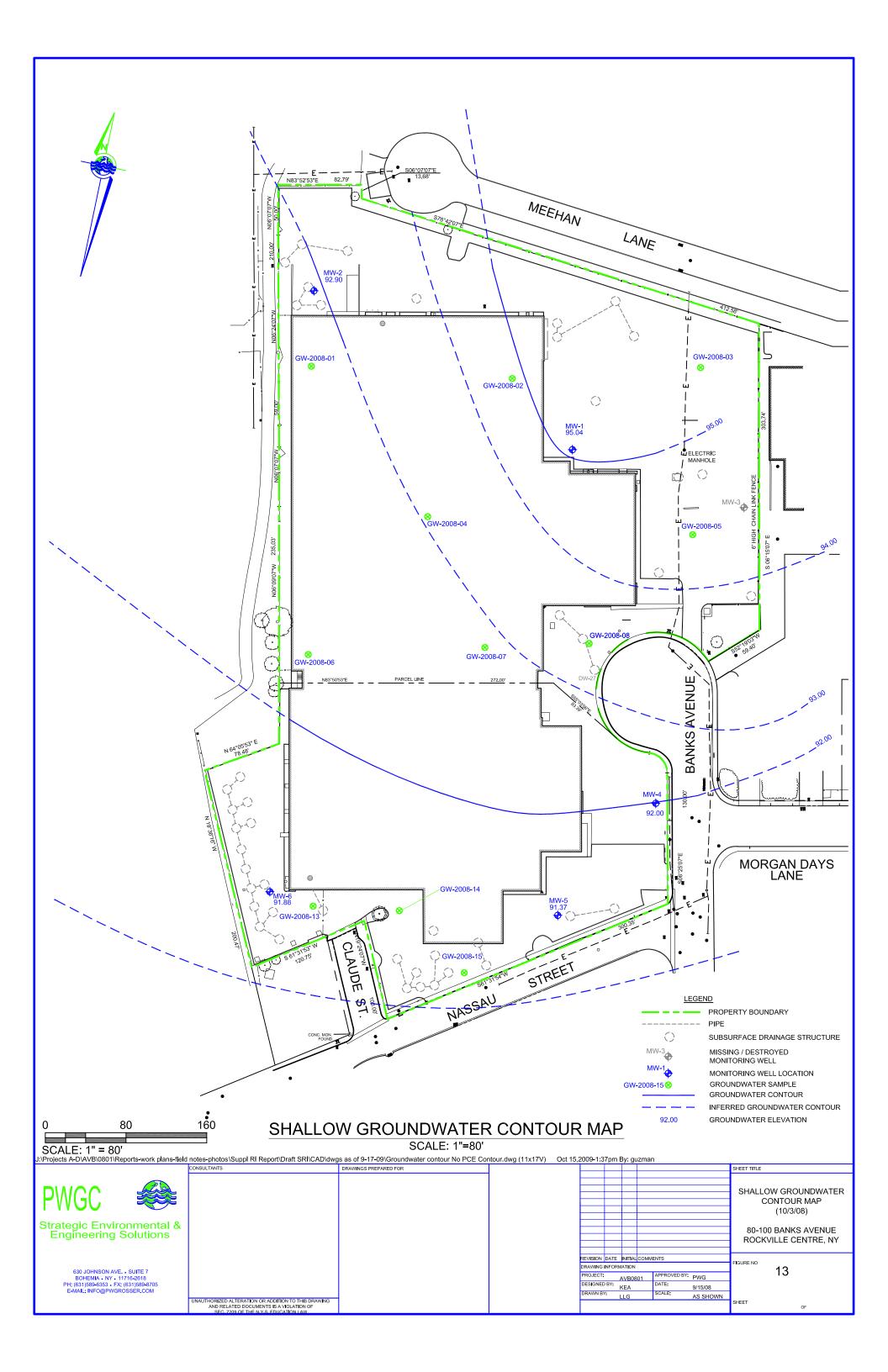

CLAY

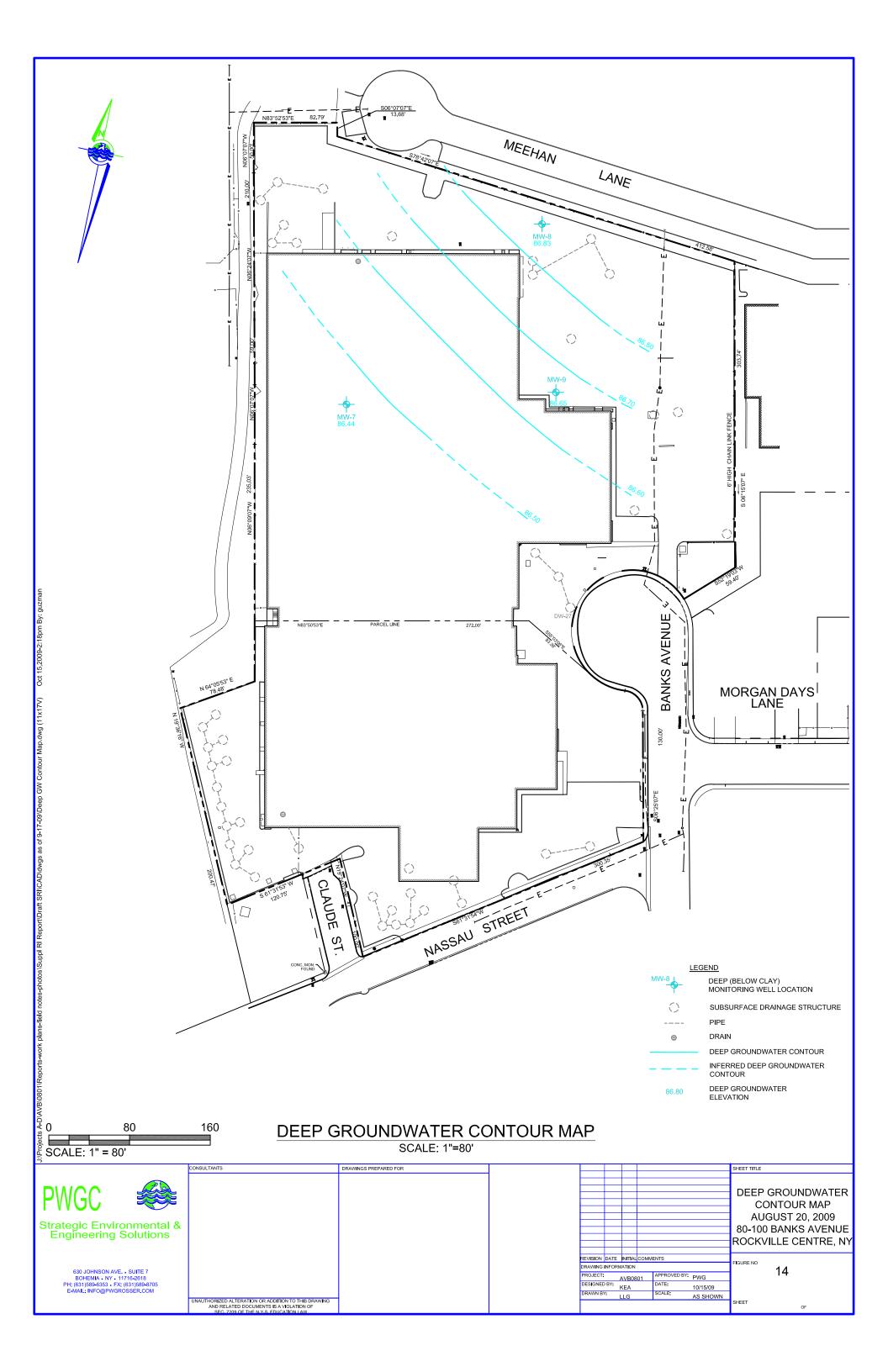
EOB


GRAVEL/SAND/SILT MIXTURE

POORLY GRADED SAND

WELL GRADED SAND




CROSS SECTION C-C'

SCALE = 1:8

Strategic Environmental & Engineering Solutions 630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PH: (631)589-6353 • FX: (631)589-8705 E-MAIL: INFO@PWGROSSER.COM NAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC, 209 OF THE N.Y.S. EDUCATION LAW WINGS PREPARED FOR REVISION DATE INITIAL COMMENTS DRAWING INFORMATION PROJECT: AVB0801 APPROVED B
DESIGNED BY: TM DATE:
SCALE: DRAWN BY: LLG SCALE: GEOLOGIC **CROSS SECTIONS** 80-100 BANKS AVENUE ROCKVILLE CENTER, NY 12

TABLES

Table 1
Subsurface Drainage Structure Construction Details
Former Darby Drugs Distribution Center

Structure ID	Alternate ID(1)	Finished to	Depth to	Depth to	Total Depth to	Inside	Liquids	Solid	PID
		Grade	Buried Cover	Bottom from	Bottom from	Diameter of	Present ⁽²⁾	Bottom	Response ⁽³⁾
				Buried Cover	Grade	Structure			
			(feet)	(feet)	(feet)	(feet)	(feet)		(ppm)
DW-01		No	2.5	4.75	7.25	8	3	No	0.0
DW-02		Yes	-	-	5.25	8	3	No	0.0
DW-03		No	3	5.25	8.75	8	4	No	0.0
DW-04		No	1.75	5.5	7.25	8	3	No	0.0
DW-05		No	2.75	4	6.75	10	2.25	No	0.0
DW-06		No	2.25	4.5	6.75	8	2.5	No	0.0
DW-07	SD-3	Yes	-	-	6.75	8(4)	3	No	0.0
DW-08	SD-2	Yes	-	-	5.25	8(4)	1.75	No	0.0
DW-09		No	1.75	5	6.75	10	2.25	No	0.0
DW-10		No	1.5	4.75	6.25	10	1.75	No	0.0
DW-11		No	2.25	4.5	6.75	10	2.5	No	0.0
DW-12		No	2.25	5	7.25	10	2.75	No	0.0
DW-13		No	3.25	4	7.25	10	3	No	0.0
DW-14		Yes	-	-	6	8(4)	2.5	No	0.0
DW-15		No	3.25	3.75	7	10	3.25	No	0.0
DW-16		No	2.5	3	5.5	8	1	No	0.0
DW-17		No	2	3.5	5.5	10	1.25	No	0.0
DW-18		Yes	-	-	4	8	0.5	No	0.0
DW-19		No	1.5	3	4.5	8 8 ⁽⁴⁾	0.5	No	0.0
DW-20		Yes	-	-	4.5		0.75	No	0.0
DW-21	SD-1	Yes	-	-	5	4	1	No	NS
DW-22		No	3.5	1.75	5.25	8	0.75	No	0.0
DW-23		Yes	-	-	3	8	0.5	No	0.0
DW-24		No	2	4	6	8	1.25	No	0.0
DW-25		No	2.5	3.25	5.75	8	1.75	No	0.0
DW-26		Yes	-	-	4.25	10 8 ⁽⁴⁾	1.75	No	0.0
DW-27		Yes	-	-	12.5	8(4)	9.5	No	0.0
DW-28		No	3	9	12	8(4)	7	No	0.4
DW-29		Yes	-	-	10	8(4)	5	No	0.0
DW-30		Yes	-	-	8.5	8 ⁽⁴⁾	2	No	0.0
DW-31	5.73	Yes	-	-	8	8(4)	3	No No	0.0
DW-32	SD-7	Yes	-	-	10 7		2 0.5	No	NS 0.0
DW-33		Yes	-	-		10 8 ⁽⁴⁾		No No	
DW-34	CD.F	Yes	-	-	5.5	8(4)	1	No	1.0
DW-35	SD-5 SD-6	Yes	-	-	4	8(4)	0.5	No No	NS NS
DW-36 DW-37	3D-0	Yes Yes	-	-	3 11	8(4)	5.5	No No	NS 0.0
DW-37		Yes	-	-	7	8(4)	2	No	1.0
DW-38		Yes	-	-	8.5	10	0.5	No No	0.0
DW-39					6	8	0.5	No	0.0
DW-40		Yes Yes	-	-	9	8	0	No No	0.0
DW-41		Yes	-	-	5	2	0	Yes	0.0
DW-42	SD-4	Yes	-	-	6	2 8 ⁽⁴⁾	1	No	NS
LP-01	3D-4								
LP-01		No	3	4.75	7.75	10	1.75	No	0.0

¹Structure ID during implementation of 2004 Remedial Investigation

 $^{{}^4\!}Approximate\ volume\ of\ liquids\ present\ within\ structure\ during\ sample\ collection\ (9/8/08\ \&\ 9/10/08)}$

³Highest PID response recorded during sample collection (9/8/08 & 9/10/08)

⁴Estimated diameter

Table 2

Monitoring/Supply/Diffusion Well Elevation and Construction Details
Former Darby Drugs Distribution Center

Well Designation	Well Use	Well Diameter	Total	Casing	10/3/2008	10/3/2008	8/20/2009	8/20/2009
			Depth	Elevation	DTW	GW Elevation	DTW	GW Elevation
		(inches)	(feet)	(feet)	(feet)	(feet)	(feet)	(feet)
MW-1	Monitoing/Observation	2	18.06	103.56	8.52	95.04	**	**
MW-2	Monitoing/Observation	2	18.04	99.47	6.57	92.90	**	**
MW-3	Monitoing/Observation	2	NA	102.97	**	**	**	**
MW-4	Monitoing/Observation	2	19.39	99.08	7.08	92.00	7.24	91.84
MW-5	Monitoing/Observation	2	19.89	97.76	6.39	91.37	6.79	90.97
MW-6	Monitoing/Observation	2	19.40	97.39	5.51	91.88	5.93	91.46
MW-7	Monitoing/Observation	2	50.92	96.83	**	**	10.39	86.44
MW-8	Monitoing/Observation	2	44.24	96.85	**	**	10.02	86.83
MW-9	Monitoing/Observation	2	46.35	96.79	**	**	10.14	86.65
GW-2008-01	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-02	Temporary Sampling Point	0.5	14.00*	NA	11.00*	NA	NA	NA
GW-2008-03	Temporary Sampling Point	0.5	16.00*	NA	12.00*	NA	NA	NA
GW-2008-04	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-05	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-06	Temporary Sampling Point	0.5	15.00*	NA	11.00*	NA	NA	NA
GW-2008-07	Temporary Sampling Point	0.5	19.00*	NA	11.00*	NA	NA	NA
GW-2008-08	Temporary Sampling Point	0.5	14.00*	NA	12.00*	NA	NA	NA
GW-2008-13	Temporary Sampling Point	0.5	13.00*	NA	9.00*	NA	NA	NA
GW-2008-14	Temporary Sampling Point	0.5	13.00*	NA	9.00*	NA	NA	NA
GW-2008-15	Temporary Sampling Point	0.5	13.00*	NA	9.00*	NA	NA	NA
SW-01	Supply	8	43.30	NA	3.80	NA	3.85	NA
SW-02	Supply	8	40.04	NA	4.20	NA	NA	NA
SW-03	Supply	8	41.64	NA	3.74	NA	NA	NA
DIFFW-01	Diffusion	4	19.82	NA	6.78	NA	6.81	NA
DIFFW-02	Diffusion	4	25.40	NA	5.73	NA	NA	NA
DIFFW-03	Diffusion	4	25.11	NA	6.34	NA	NA	NA
DIFFW-04	Diffusion	4	47.00	NA	7.40	NA	NA	NA

NA - Not available

^{*} Approximate measurement

^{**} Well missing/destroyed/not installed

SAMPLING DATE STATE STAT	3-2008-05
Section Sect	196-01
Vashibe Capinals by ISFA BXSS	/2008 -10
Enchange 470	
Section 1960 100,000 31 U 2.6 U 3.2 U 2.6 U 3.5	U
Institute Technological	U
13.0 Enchlorocheme	U
1.1.1.2-InterChizonethane	U
11.1-Inchroroentame	U
11.1-Inchroroentame	
11.22-Entencharcethane	U
11.2-lichlorochane	U
1.10-Chickropropene	U
12.3 Inchloroperagene	U
12.2-Inchloropropane	U
1.2.4.Firchforobenzene	U
1,2,4-Inchlorobenzene	U
1.2-Dibromo-3-chioropropane	U
1.2-Dichomoethane	U
1.2 Dichlorobenzene	U
1,2-Dichlorogehane	U
1,2-Dichloropropane	U
1,3,5-frimethytbenzene 8,400 52,000 15 U 13 U 16 U 13 U 15 13,3-frimethytbenzene 2,400 49,000 15 U 13 U 16 U 13 U 15 15 13,3-frimethytpenzene NS NS NS 15 U 13 U 16 U 13 U 15 14,5-fribertopenzene NS NS NS 15 U 13 U 16 U 13 U 15 14,5-fribertopenzene 1,800 13,000 15 UJ 13 U 16 U 13 U 15 14,5-fribertopenzene NS NS NS 12 U 10 U 13 U 16 U 13 U 15 15 U 12 12,5-fribertopenzene NS NS NS 12 U 10 U 13 U 16 U 13 U 15 15 U 12 15 U 15 U 15 U U 15 U U U U U U U U U	U
1.3-Dichloropropane NS NS 15 U 13 U 16 U 13 U 15 1.4-Dichlorobenzene 1,800 13,000 15 UJ 13 U 16 U 13 U 15 2.2-Dichloropropane NS NS 12 U 10 U 13 U 10 U 12 2-Butanone 120 100,000 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS NS 31 U 26 U 32 U 26 U 30 4-Ethyltoluene NS NS 31 U 26 U 32 U 26 U 30 4-Ethyltoluene NS NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U </td <td>U</td>	U
1.4-Dichlorobenzene 1,800 13,000 15 UJ 13 U 16 U 13 U 15 1.4-Dichlorobenzene NS NS 12 U 10 U 13 U 10 U 12 U 10 U 13 U 16 U 13 U 16 U 13 U 12 U 15 U 13 U 16 U 13 U 16 U 13 U 16 U 13 U 26 U 30 24 U 26 U 32 U 26 U 30 24 Hexanone NS NS NS 11 U 10 U 13 U 26 U 32 U 26 U 30 24 U 26 U 32 U 26 U 30 Acetone NS NS NS 31 U	U
1.4-Diethylbenzene NS NS 12 U 10 U 13 U 10 U 12 2.2-Dichloropropane NS NS 15 U 13 U 16 U 13 U 126 U 30 2-Hexanone 120 100,000 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS NS 31 U 26 U 30 4-Ethyldulene NS NS NS 12 U 10 U 13 U 10 U 12 4-Methyl-2-pentanone NS NS NS 31 U 26 U 32 U 26 U 30 Acestone 50 100,000 31 U 26 U 32 U 26 U 30 Berzene 60 4,800 3.1 U 26	U
2.2-Dichloropropane	U
2-Butanone 120 100,000 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS 31 U 26 U 32 U 26 U 30 2-Hexanone NS NS NS 31 U 26 U 32 U 26 U 30 4-Methyl-2-pentanone NS NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U 26 U 32 U 26 U 30 Acrylonlirile NS NS NS 31 U 26 U 32 U 26 U 30 Acrylonlirile NS NS NS 31 U 26 U 32 U 26 U 30 Acrylonlirile NS NS NS 31 U 26 U 32 U 26 U 30 Bernzene 60 4,800 3.1 U 26 U 32 U 26 U 3 Bromobenzene NS NS NS 15 U 13 U 16 U 13 U 15 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 15 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 16 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 16 Bromochloromethane NS NS NS 12 U 10 U 11 U 11 U 12 Bromomethane NS NS NS 12 U 10 U 10 U 11 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 12 U 10 U 10 U 13 U 10 U 12 Bromochloromethane NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6 Carbon disulfide NS NS NS 31 U 26 U 32 U 26 U 30 Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene NS NS NS 15 U 13 U 16 U 13 U 16 Chloroform NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6. Chloroform NS NS NS 15 U 13 U 16 U 13 U 16 Chloroform NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Chloromethane NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6.0 U 3 Chloromethane NS NS NS 15 U 13 U 16 U 13 U 16 Chloroform NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS NS 31 U 2.6 U 3.2	U
### Activition NS	U
4-Methyl-2-pentanone NS NS 31 U 26 U 32 U 26 U 30 Acetone 50 100,000 31 U 26 U 32 U 26 U 30 Acrylonitrile NS NS 31 U 26 U 32 U 26 U 30 Bernene 60 4,800 3.1 U 26 U 32 U 26 U 30 Bromobenzene NS NS NS 15 U 13 U 16 U 13 U 15 Bromochloromethane NS NS NS 15 U 13 U 16 U 13 U 15 Bromochloromethane NS NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Bromodethane NS NS NS	U
Acetone	U
Acrylonitrile	U
Benzene	U
Bromobenzene	U
Bromodichloromethane	U
Bromoform	U
Bromomethane	U
Carbon disulfide NS NS 31 U 26 U 32 U 26 U 30 Carbon tetrachloride 760 2,400 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene NS NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6.0 3.0 U 4.5 0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	U
Carbon tetrachloride 760 2,400 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chlorobenzene NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6.0 U 3.8 U 4.7 U 3.8 U 4.5 Chloromethane NS NS 15 U 13 U 16 U 13 U 15 cls-1,3-Dichloropropene NS NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3.2 U 2.6 U 3.2 U 2.6 U 3.2 U	U
Chlorobenzene 1,100 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Chloroethane NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6. Chloroform 370 49,000 4.6 U 3.8 U 4.7 U 3.8 U 4.5 Chloromethane NS NS 15 U 13 U 16 U 13 U 15 cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3. Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 31 U	U
Chloroform 370 49,000 4.6 U 3.8 U 4.7 U 3.8 U 4.5 Chloromethane NS NS 15 U 13 U 16 U 13 U 15 Cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3 Dichlorodifluoromethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3.0 Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS NS 15	U
Chloromethane NS NS 15 U 13 U 16 U 13 U 15 cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS 31 U 2.6 U 32 U 2.6 U 30 Dichlorodifluoromethane NS NS 31 U 2.6 U 32 U 2.6 U 30 Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS NS 15 U 13 U 16 U 13 U 15 Kopropylbenzene NS NS 3.1	U
cis-1,3-Dichloropropene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromochloromethane NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Dibromomethane NS NS 31 U 2.6 U 3.2 U 2.6 U 30 Dichlorodiffluoromethane NS NS 31 U 2.6 U 3.2 U 2.6 U 3.0 Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS NS 15 U 13 U 16 U 13 U 15 Isopropylbenzene NS NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Melthyl tert butyl ether 930	U
Dibromochloromethane	U
Dibromomethane	U
Ethylbenzene 1,000 41,000 3.1 U 2.6 U 3.2 U 2.6 U 3 Hexachlorobutadiene NS NS 15 U 13 U 16 U 13 U 15 Isopropylbenzene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Methyl tert butyl ether 930 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6 W 3.2 U 2.6 U 30 Methylene chloride 50 100,000 31 U 2.6 U 3.2 U 2.6 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Hexachlorobutadiene NS NS 15 U 13 U 16 U 13 U 15 Isopropylbenzene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3 Methyl tert butyl ether 930 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6 Methylene chloride 50 100,000 31 U 26 U 32 U 26 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Isopropylbenzene	U
Methyl tert butyl ether 930 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6 Methylene chloride 50 100,000 31 U 26 U 32 U 26 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Methylene chloride 50 100,000 31 U 26 U 32 U 26 U 30 Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Naphthalene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
	U
n-Butylbenzene 12,000 NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
n-Propylbenzene 3,900 100,000 15 U 13 U 16 U 13 U 15	U
o-Chlorotoluene NS NS 15 U 13 U 16 U 13 U 15 o-Xylene 260 100,000 6.2 U 5.1 U 6.3 U 5.1 U 6	U
p/m-Xylene 260 100,000 15 U 13 U 16 U 13 U 15	U
p-Chlorotoluene NS NS 3.1 U 2.6 U 3.2 U 2.6 U 3	U
p-isopropyltoluene NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6	U
sec-Butylbenzene 11,000 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Styrene NS NS 6.2 U 5.1 U 6.3 U 5.1 U 6 tott Putulborgopo 5,900 NS 15 U 12 U 16 U 12 U 15	U
tert-Butylbenzene 5,900 NS 15 U 13 U 16 U 13 U 15 Toluene 700 100,000 4.6 U 3.8 U 4.7 U 3.8 U 4.5	
trans-1,3-Dichloropropene NS 100,000 3.1 U 2.6 U 3.2 U 2.6 U 3	U
Trichlorofluoromethane NS NS 15 U 13 U 16 U 13 U 15	U
Vinyl acetate NS NS 31 U 26 U 32 U 26 U 30	U

All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted	Restricted	PWG-SB-2008	-06	PWG-SB-200	8-07	PWG-SB-200	8-08	PWG-SB-20	08-09	PWG-SB-20	08-09
LAB SAMPLE ID	sco'	Residential SCO ²	L0813196-1		L0813196-		L0813196-		L0813196		L0813196	
Sampling date Sample depth (ft.)		300	9/3/2008 5-10		9/4/2008 10-15		9/3/200 5-10	В	9/5/200 5-10	18	9/5/200 15-20	
Volatile Organics by EPA 8260B												
Tetrachloroethene	1,300	19,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Trichloroethene cis-1,2-Dichloroethene	470	21,000	3.1	U	3	U	2.9	U	2.7	U	3	U
trans-1,2-Dichloroethene	250 190	100,000	3.1 4.6	U	3 4.5	U	2.9	U	2.7 4.1	U	3 4.5	U
1,1-Dichloroethene	330	100,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Vinyl chloride	20	900	6.2	U	6	U	5.8	U	5.4	U	6	U
1,1,1,2-Tetrachloroethane	NS	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	680 NS	100,000 NS	3.1	U	3	U	2.9	U	2.7	U	3	U
1,1,2-Trichloroethane	NS NS	NS	4.6	U	4.5	U	4.4	U	4.1	U	4.5	U
1,1-Dichloroethane	270	26,000	4.6	U	4.5	U	4.4	U	4.1	U	4.5	U
1,1-Dichloropropene	NS	NS	15	U	15	U	14	U	14	U	15	U
1,2,3-Trichlorobenzene	NS	NS	15	U	15	U	14	U	14	U	15	U
1,2,3-Trichloropropane	NS	NS NS	31 12	U	30 12	U	29 12	U	27 11	U	30 12	U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	NS NS	NS	15	U	15	U	14	U	14	U	15	U
1,2,4-Trimethylbenzene	3,600	52,000	15	U	15	U	14	U	14	U	15	U
1,2-Dibromo-3-chloropropane	NS	NS	15	U	15	U	14	U	14	U	15	U
1,2-Dibromoethane	NS	NS	12	U	12	U	12	U	11	U	12	U
1,2-Dichlorobenzene	1,100	100,000	15	U	15	: ⊂	14	U	14	υ.	15	U
1,2-Dichloroethane 1,2-Dichloropropane	20 NS	3,100 NS	3.1 11	U	3 10	U	2.9	U	2.7 9.5	U	3 10	U
1,3,5-Trimethylbenzene	NS 8,400	52,000	15	U	15	U	10	U	9.5	U	10	U
1,3-Dichlorobenzene	2,400	49,000	15	U	15	U	14	U	14	U	15	U
1,3-Dichloropropane	NS	NS	15	U	15	U	14	U	14	U	15	U
1,4-Dichlorobenzene	1,800	13,000	15	U	15	U	14	U	14	U	15	U
1,4-Diethylbenzene	NS	NS	12	U	12	U	12	U	11	U	12	U
2,2-Dichloropropane 2-Butanone	NS 120	NS 100,000	15 31	U	15 30	U	14 29	U	14 27	U	15 30	U
2-Hexanone	NS	NS	31	U	30	U	29	U	27	U	30	U
4-Ethyltoluene	NS	NS	12	U	12	U	12	U	11	U	12	U
4-Methyl-2-pentanone	NS	NS	31	U	30	U	29	U	27	U	30	U
Acetone	50	100,000	31	U	30	U	29	U	27	U	30	U
Acrylonitrile	NS 60	NS 4,800	31	U	30	U	29	U	27	U	30	U
Benzene Bromobenzene	NS NS	4,800 NS	15	U	15	U	14	U	14	U	15	U
Bromochloromethane	NS	NS	15	U	15	U	14	U	14	U	15	U
Bromodichloromethane	NS	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
Bromoform	NS	NS	12	U	12	U	12	U	11	U	12	U
Bromomethane	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
Carbon disulfide Carbon tetrachloride	NS 760	NS 2,400	31	U	30	U	29	U	27	U	30	U
Chlorobenzene	1,100	100,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Chloroethane	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
Chloroform	370	49,000	4.6	U	4.5	U	4.4	U	4.1	U	4.5	U
Chloromethane	NS	NS	15	U	15	U	14	U	14	U	15	U
cis-1,3-Dichloropropene Dibromochloromethane	NS NS	NS NS	3.1	U	3	U	2.9	U	2.7	U	3	U
Dibromocniorometnane Dibromomethane	NS NS	NS NS	3.1	U	30	U	2.9	U	2.7	U	30	U
Dichlorodifluoromethane	NS	NS	31	U	30	U	29	U	27	U	30	U
Ethylbenzene	1,000	41,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Hexachlorobutadiene	NS	NS	15	U	15	U	14	U	14	U	15	U
Isopropylbenzene	NS 030	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
Methyl tert butyl ether Methylene chloride	930 50	100,000	6.2	U	6 30	U	5.8 29	U	5.4 27	U	6 30	U
Naphthalene	NS NS	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
n-Butylbenzene	12,000	NS	3.1	U	3	U	2.9	U	2.7	U	3	U
n-Propylbenzene	3,900	100,000	15	U	15	U	14	U	14	U	15	U
o-Chlorotoluene	NS	NS	15	U	15	U	14	U	14	U	15	U
o-Xylene n/m-Xylene	260 260	100,000	6.2 15	U	6 15	U	5.8 14	U	5.4 14	U	6 15	U
p/m-Xylene p-Chlorotoluene	NS NS	100,000 NS	3.1	U	3	U	2.9	U	2.7	U	3	U
p-Isopropyltoluene	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
sec-Butylbenzene	11,000	100,000	3.1	U	3	U	2.9	U	2.7	U	3	U
Styrene	NS	NS	6.2	U	6	U	5.8	U	5.4	U	6	U
tert-Butylbenzene	5,900	NS 400,000	15	U	15	: ⊂	14	U	14		15	U
Toluene trans-1,3-Dichloropropene	700 NS	100,000	4.6 3.1	U	4.5	U	4.4 2.9	U	4.1 2.7	U	4.5	U
Trichlorofluoromethane	NS NS	100,000 NS	3. I 15	U	15	U	2.9	U	14	U	15	U
Vinyl acetate	NS	NS	31	U	30	U	29	U	27	U	30	U
•			•									

All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Enviro

 $^{\prime}$ Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, I

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

LAB SAMPLE ID SAMPLING DATE SAMPLE DEPTH (ft.) Volatile Organics by EPA 82608 Tetrachloroethene Trichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene Vinyl chloride	1,300 470 250	Residential SCO ²	L0813196-3 9/5/2008 5-10		L0813196-: 9/5/2008 10-15		L0813196 9/5/200 5-10		L0813196 9/5/200		L0813196 9/5/200	
SAMPLE DEPTH (ft.) Volatile Organics by EPA 8260B Tetrachloroethene Trichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene	470							8		18		18
Volatile Organics by EPA 8260B Tetrachloroethene Trichloroethene trans-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene	470	10.000							15-20		5-10	
Trichloroethene cls-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene	470	10.000										
cis-1,2-Dichloroethene trans-1,2-Dichloroethene 1,1-Dichloroethene			5.5		45		2.6	U	3.3	C	2.8	U
trans-1,2-Dichloroethene 1,1-Dichloroethene		21,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
1,1-Dichloroethene	190	100,000	4.8	U	4.6	U	4	U	4.9	U	4.3	U
Vinyl chloride	330	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
	20	900	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	NS 680	NS 100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
1,1,2,2-Tetrachloroethane	NS NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
1,1,2-Trichloroethane	NS	NS	4.8	U	4.6	U	4	U	4.9	U	4.3	U
1,1-Dichloroethane	270	26,000	4.8	U	4.6	U	4	U	4.9	U	4.3	U
1,1-Dichloropropene	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2,3-Trichlorobenzene	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	NS NS	NS NS	32 13	U	31 12	U	26 11	U	33 13	U	28 11	U
1,2,4-Trichlorobenzene	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2,4-Trimethylbenzene	3,600	52,000	16	U	15	U	13	U	16	U	14	U
1,2-Dibromo-3-chloropropane	NS	NS	16	U	15	U	13	U	16	U	14	U
1,2-Dibromoethane	NS	NS	13	U	12	U	11	U	13	U	11	U
1,2-Dichlorobenzene	1,100	100,000	16 3.2	U	15 3.1	U	13 2.6	U	16 3.3	U	14	U
1,2-Dichloroethane 1,2-Dichloropropane	20 NS	3,100 NS	3.2	U	3.1	U	9.3	U	3.3	U	2.8 9.9	U
1,3,5-Trimethylbenzene	8,400	52,000	16	U	15	U	13	U	16	U	14	U
1,3-Dichlorobenzene	2,400	49,000	16	U	15	U	13	U	16	U	14	U
1,3-Dichloropropane	NS	NS	16	U	15	U	13	U	16	U	14	U
1,4-Dichlorobenzene	1,800	13,000	16	U	15	U	13	U	16	U	14	U
1,4-Diethylbenzene 2,2-Dichloropropane	NS NS	NS NS	13 16	U	12 15	U	11 13	U	13 16	U	11 14	U
2-Butanone	120	100,000	32	U	31	U	26	U	33	U	28	U
2-Hexanone	NS	NS	32	U	31	U	26	U	33	U	28	U
4-Ethyltoluene	NS	NS	13	U	12	U	11	U	13	U	11	U
4-Methyl-2-pentanone	NS	NS	32	U	31	U	26	U	33	U	28	U
Acetone	50 NS	100,000 NS	32 32	U	31 31	U	26 26	U	33	U	28 28	U
Acrylonitrile Benzene	60	4,800	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Bromobenzene	NS	NS	16	U	15	U	13	U	16	U	14	U
Bromochloromethane	NS	NS	16	U	15	U	13	U	16	U	14	U
Bromodichloromethane	NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Bromoform	NS	NS	13	U	12	U	11	U	13	U	11	U
Bromomethane Carbon disulfide	NS NS	NS NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7 28	U
Carbon tetrachloride	760	2,400	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Chlorobenzene	1,100	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Chloroethane	NS	NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
Chloroform	370	49,000	4.8	U	4.6	U	4	U	4.9	U	4.3	U
Chloromethane	NS	NS	16	U	15	U	13	U	16	U	14	U
cis-1,3-Dichloropropene Dibromochloromethane	NS NS	NS NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Dibromomethane	NS	NS	32	U	31	U	26	U	33	U	28	U
Dichlorodifluoromethane	NS	NS	32	U	31	U	26	U	33	U	28	U
Ethylbenzene	1,000	41,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Hexachlorobutadiene	NS	NS	16	U	15	U	13	U	16	U	14	U
Isopropylbenzene Methyl tert butyl ether	NS 930	NS 100,000	3.2 6.4	U	3.1 6.2	U	2.6 5.3	U	3.3 6.6	U	2.8 5.7	U
Methylene chloride	50	100,000	32	U	31	U	26	U	33	U	28	U
Naphthalene	NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
n-Butylbenzene	12,000	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
n-Propylbenzene	3,900	100,000	16	U	15	: ⊂	13		16		14	U
o-Chlorotoluene o-Xylene	NS 260	NS 100,000	16 6.4	U	15 6.2	U	13 5.3	U	16 6.6	U	14 5.7	U
p/m-Xylene	260	100,000	16	U	15	U	13	U	16	U	5.7	U
p-Chlorotoluene	NS	NS	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
p-lsopropyltoluene	NS	NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
sec-Butylbenzene	11,000	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Styrene	NS F 000	NS	6.4	U	6.2	U	5.3	U	6.6	U	5.7	U
tert-Butylbenzene Toluene	5,900 700	NS 100,000	16 4.8	U	15 4.6	U	13	U	16 4.9	U	14 4.3	U
trans-1,3-Dichloropropene	NS NS	100,000	3.2	U	3.1	U	2.6	U	3.3	U	2.8	U
Trichlorofluoromethane	NS	NS	16	U	15	U	13	U	16	U	14	U
Vinyl acetate	NS	NS	32	U	31	U	26	U	33	U	28	U

All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Enviro

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, I

- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted	Restricted	PWG-SB-200	8-12	PWG-SB-2008	8-13	PWG-SB-20	08-13	PWG-SB-20	008-14	PWG-SB-20	08-14
LAB SAMPLE ID	sco'	Residential SCO ²	L0813196-3		L0813196-2		L0813196		L081319		L0813196	
Sampling date Sample depth (ft.)		300	9/5/2008 10-15		9/4/2008 5-10	;	9/4/200 10-15	18	9/4/20 0-5	08	9/4/200 10-15	
Volatile Organics by EPA 8260B			10-15		5-10		10-15		0-5		10-15	
Tetrachloroethene	1,300	19,000	3.1	U	14		44		56		290	
Trichloroethene	470	21,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
cis-1,2-Dichloroethene	250	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
trans-1,2-Dichloroethene	190	100,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
1,1-Dichloroethene	330	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Vinyl chloride	20	900	6.2	U	6.4	U	6.4	U	5.3	U	13	U
1,1,1,2-Tetrachloroethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,1,1-Trichloroethane	680	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,1,2,2-Tetrachloroethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,1,2-Trichloroethane 1,1-Dichloroethane	NS 270	NS 26,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
1,1-Dichloropropene	NS NS	26,000 NS	15	U	16	U	16	U	13	U	33	U
1,2,3-Trichlorobenzene	NS	NS	15	U	16	U	16	U	13	U	33	U
1,2,3-Trichloropropane	NS	NS	31	U	32	U	32	U	26	U	66	U
1,2,4,5-Tetramethylbenzene	NS	NS	12	U	13	U	13	U	11	U	26	U
1,2,4-Trichlorobenzene	NS	NS	15	U	16	U	16	U	13	U	33	U
1,2,4-Trimethylbenzene	3,600	52,000	15	U	16	U	16	U	13	U	33	U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	NS NS	NS NS	15 12	U	16	U	16 13	U	13	U	33 26	U
1,2-Dibromoethane 1,2-Dichlorobenzene	NS 1,100	NS 100,000	12 15	U	13 16	U	13 16	U	11	U	26 33	U
1,2-Dichloroethane	20	3,100	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
1,2-Dichloropropane	NS	NS	11	U	11	U	11	U	9.3	U	23	U
1,3,5-Trimethylbenzene	8,400	52,000	15	U	16	U	16	U	13	U	33	U
1,3-Dichlorobenzene	2,400	49,000	15	U	16	U	16	U	13	U	33	U
1,3-Dichloropropane	NS	NS	15	U	16	U	16	U	13	U	33	U
1,4-Dichlorobenzene 1,4-Diethylbenzene	1,800 NS	13,000 NS	15 12	U	16 13	U	16 13	U	13 11	U	33 26	U
2,2-Dichloropropane	NS NS	NS NS	15	U	16	U	16	U	13	U	33	U
2-Butanone	120	100,000	31	U	32	U	32	U	26	U	66	U
2-Hexanone	NS	NS	31	U	32	U	32	U	26	U	66	U
4-Ethyltoluene	NS	NS	12	U	13	U	13	U	11	U	26	U
4-Methyl-2-pentanone	NS	NS	31	U	32	U	32	U	26	U	66	U
Acetone	50	100,000	31	U	32	U	32	U	26	U	66	U
Acrylonitrile	NS	NS 4,800	31	U	32	U	32	U	26 2.6	U	66	U
Benzene Bromobenzene	60 NS	4,800 NS	15	U	16	U	16	U	13	U	6.6	U
Bromochloromethane	NS	NS	15	U	16	U	16	U	13	U	33	U
Bromodichloromethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Bromoform	NS	NS	12	U	13	U	13	U	11	U	26	U
Bromomethane	NS	NS	6.2	U	6.4	U	6.4	С	5.3	С	13	U
Carbon disulfide	NS	NS	31	U	32	U	32	U	26	U	66	U
Carbon tetrachloride Chlorobenzene	760	2,400 100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Chloroethane	1,100 NS	NS	6.2	U	6.4	U	6.4	U	5.3	U	13	U
Chloroform	370	49,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
Chloromethane	NS	NS	15	U	16	U	16	U	13	U	33	U
cis-1,3-Dichloropropene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Dibromochloromethane	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Dibromomethane	NS	NS	31	U	32	U	32	U	26	U	66	U
Dichlorodifluoromethane Ethylbenzene	NS 1,000	NS 41,000	31	U	32	U	3.2	U	26	U	66	U
Hexachlorobutadiene	NS	41,000 NS	15	U	16	U	16	U	13	U	33	U
Isopropylbenzene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Methyl tert butyl ether	930	100,000	6.2	U	6.4	U	6.4	U	5.3	U	13	U
Methylene chloride	50	100,000	31	U	32	U	32	U	26	U	66	U
Naphthalene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
n-Butylbenzene	12,000	NS 400,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
n-Propylbenzene o-Chlorotoluene	3,900 NS	100,000 NS	15 15	U	16 16	U	16 16	U	13 13	U	33	U
o-Xylene	260	100,000	6.2	U	6.4	U	6.4	U	5.3	U	13	U
p/m-Xylene	260	100,000	15	U	16	U	16	U	13	U	33	U
p-Chlorotoluene	NS	NS	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
p-Isopropyltoluene	NS	NS	6.2	U	6.4	U	6.4	U	5.3	U	13	U
sec-Butylbenzene	11,000	100,000	3.1	U	3.2	U	3.2	U	2.6	U	6.6	U
Styrene	NS 5 888	NS	6.2	U	6.4	U	6.4	U	5.3	U	13	U
tert-Butylbenzene Toluene	5,900	NS 100,000	15	U	16	U	16	U	13	U	33	U
	700	100,000	4.6	U	4.8	U	4.8	U	4	U	9.9	U
		100 000	2.1	11	2.7	11	3 3	11	2.6	11	6.6	
trans-1,3-Dichloropropene Trichlorofluoromethane	NS NS	100,000 NS	3.1 15	U	3.2 16	U	3.2 16	U	2.6 13	U	6.6	U

All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Enviro

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, I

- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Sample ID Lab Sample ID Sampling Date Sample Depth (fl.)	Unrestricted SCO ¹	Restricted Residential SCO ²	PWG-SB-200 L0813196- 9/4/2008 5-10	20	PWG-SB-200 L0813196- 9/3/200 5-10	05	PWG-SB-200 L0813196- 9/5/2008 5-10	30	PWG-SB-201 L0813196 9/4/200 10-15	
Semivolatile Organics by EPA 8270C										
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	1600 410	U	1600 390	U	1700 430	U	1400 350	U
1,2,4-Irichlorobenzene 1,2-Dichlorobenzene	NS NS	NS NS	410	U	390	U	430	U	350	U
1,3-Dichlorobenzene	NS NS	NS	410	U	390	U	430	U	350	U
1,4-Dichlorobenzene	NS	NS	410	UJ	390	U	430	U	350	U
2,4,5-Trichlorophenol	NS	NS	410	U	390	U	430	U	350	U
2,4,6-Trichlorophenol	NS	NS	410	U	390	U	430	U	350	U
2,4-Dichlorophenol	NS	NS	820	U	780	U	850	U	710	U
2,4-Dimethylphenol	NS	NS	410	U	390	U	430	U	350	U
2,4-Dinitrophenol	NS	NS	1600	U	1600	U	1700	U	1400	U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS NS	NS NS	410 410	UJ	390 390	U	430	U	350 350	U
2-Chloronaphthalene	NS NS	NS NS	410	U	460	U	510	U	420	U
2-Chlorophenol	NS NS	NS	490	U	460	U	510	U	420	U
2-Methylnaphthalene	NS	NS	410	U	390	U	430	U	350	U
2-Methylphenol	NS	NS	490	U	460	U	510	U	420	U
2-Nitroaniline	NS	NS	410	U	390	U	430	U	350	U
2-Nitrophenol	NS	NS	1600	U	1600	U	1700	U	1400	U
3,3'-Dichlorobenzidine	NS	NS	820	U	780	U	850	U	710	U
3-Methylphenol/4-Methylphenol	NS	NS	490	U	460	U	510	U	420	U
3-Nitroaniline	NS	NS	410	UJ	390	U	430	U	350	U
4,6-Dinitro-o-cresol	NS NS	NS NS	1600	U	1600 390	U	1700 430	U	1400 350	U
4-Bromophenyl phenyl ether 4-Chloroaniline	NS NS	NS NS	410 410	U	390 390	U	430	U	350 350	U
4-Chlorophenyl phenyl ether	NS NS	NS NS	410	U	390	U	430	U	350	U
4-Nitroaniline	NS NS	NS	580	UJ	540	U	600	U	500	U
4-Nitrophenol	NS	NS	820	U	780	U	850	U	710	U
Acenaphthene	20,000	100,000	410	U	390	U	430	U	350	U
Acenaphthylene	100,000	100,000	410	U	390	U	430	U	350	U
Acetophenone	NS	NS	1600	U	1600	U	1700	U	1400	U
Anthracene	100,000	100,000	410	U	390	U	430	U	350	U
Benzo(a)anthracene	1,000	1,000	410	U	390	U	430	U	350	U
Benzo(a)pyrene	1,000	1,000	410	U	390	U	430	U	350	U
Benzo(b)fluoranthene	1,000	1,000	410 410	U	390 390	U	430	U	350 350	U
Benzo(ghi)perylene Benzo(k)fluoranthene	800	3,900	410	U	390	U	430	U	350	U
Benzoic Acid	NS	3,900 NS	4100	U	3900	U	4300	U	3500	U
Benzyl Alcohol	NS NS	NS	820	U	780	U	850	U	710	U
Biphenyl	NS	NS	410	U	390	U	430	U	350	U
Bis(2-chloroethoxy)methane	NS	NS	410	U	390	U	430	U	350	U
Bis(2-chloroethyl)ether	NS	NS	410	U	390	U	430	U	350	U
Bis(2-chloroisopropyl)ether	NS	NS	410	U	390	U	430	U	350	U
Bis(2-Ethylhexyl)phthalate	NS	NS	820	U	780	U	850	U	710	U
Butyl benzyl phthalate	NS	NS	410	U	390	U	430	U	350	U
Carbazole	NS	NS	410	U	390	U	430	U	350	U
Chrysene	1,000	3,900	410	U	390	U	430	U	350	U
Di-n-butylphthalate	NS	NS NS	410 410	U	390 390	U	430 430	U	350 350	U
Di-n-octylphthalate Dibenzo(a,h)anthracene	NS 330	330	410	U	390	U	430	U	350	U
Dibenzofuran	NS NS	NS NS	410	U	390	U	430	U	350	U
Diethyl phthalate	NS	NS	410	U	390	U	430	U	350	U
Dimethyl phthalate	NS	NS	410	U	390	U	430	U	350	U
Fluoranthene	100,000	100,000	410	U	390	U	430	U	350	U
Fluorene	30,000	100,000	410	U	390	U	430	U	350	U
Hexachlorobenzene	NS	NS	410	U	390	U	430	U	350	U
Hexachlorobutadiene	NS	NS	820	U	780	U	850	U	710	U
Hexachlorocyclopentadiene	NS	NS	820	U	780	U	850	U	710	U
Hexachloroethane	NS	NS 500	410	U	390	U	430	U	350	U
Indeno(1,2,3-cd)Pyrene	500 NS	500 NS	410 410	U	390 390	U	430	U	350 350	U
Isophorone n-Nitrosodi-n-propylamine	NS NS	NS NS	410	UJ	390	U	430	U	350	U
Naphthalene	12,000	100,000	410	U	390	U	430	U	350	U
Nitrobenzene	NS	NS	410	U	390	U	430	U	350	U
NitrosoDiPhenylAmine(NDPA)/DPA	NS	NS	1200	U	1200	U	1300	U	1100	U
P-Chloro-M-Cresol	NS	NS	410	U	390	U	430	U	350	U
Pentachlorophenol	800	6,700	1600	U	1600	U	1700	U	1400	U
Phenanthrene	100,000	100,000	410	U	390	U	430	U	350	U
Phenol	330	100,000	580	U	540	U	600	U	500	U
Pyrene	100,000	100,000	410	U	390	U	430	U	350	U
Semivolatile Organics by EPA 8270C-Si		A-10		Ξ.,						
2-Chloronaphthalene	NS NS	NS NS	16 16	U	16 16	U	17	U	14	U
2-Methylnaphthalene Acenaphthene	NS 20,000			U		U	17	U	14	U
Acenaphthylene	100,000	100,000	16 16	U	16 16	U	17	U	14	U
Anthracene	100,000	100,000	16	U	16	U	17	U	14	U
Benzo(a)anthracene	1,000	1,000	48		16	U	17	U	14	U
Benzo(a)pyrene	1,000	1,000	64		16	U	17	U	14	U
Benzo(b)fluoranthene	1,000	1,000	58		16	U	17	U	14	U
Benzo(ghi)perylene	100,000	100,000	51		16	U	17	U	14	U
Benzo(k)fluoranthene	800	3,900	58		16	U	17	U	14	U
Chrysene	1,000	3,900	55		16	U	17	U	14	U
Dibenzo(a,h)anthracene	3,300	330	16	U	16	U	17	U	14	U
Fluoranthene	100,000	100,000	120		16	U	17	U	14	U
Fluorene	30,000	100,000	16	U	16	U	17	U	14	L
Hexachlorobenzene	NS NC	NS NC	66	U	62	U	68	U	57 35	L
Hexachlorobutadiene Hexachloroethane	NS NS	NS NS	41 66	U	39 62	U	43 68	U	35 57	U
Hexacnioroetnane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	52	U	16	U	17	U	14	U
Naphthalene	12,000	100,000	16	U	16	U	17	U	14	U
Pentachlorophenol	800	6,700	66	U	62	U	68	U	57	U
	100,000	100,000	47	-	16	U	17	U	14	L
Phenanthrene										

Notes:
All concentrations are µg/kg (ppb)

**Identificed Use Sol Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Resticted-Residential Sol Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**U - Analyte not detected above the laboratory MDL

**J - Estimated value

**NS - No standard established

**Sold text indicates compounds above the laboratory MDL

**Green highlighting indicates exceedance of Unrestricted Use SCO

**Yellow highlighting indicates exceedance of Restricted Residential SCO

Table 5

Soil Sample Analytical Data Summary Pesticides/PCBs/Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-SB-200		PWG-SB-20	00 00	PWG-SB-20	09 10	PWG-SB-200	0 1/
LAB SAMPLE ID	SCO'	Residential	L0813196		L0813196		L0813196		L0813196-	
	333	SCO ²								
SAMPLING DATE		300	9/4/200	8	9/3/200	18	9/5/200	או	9/4/2008	5
SAMPLE DEPTH (ft.)			5-10		5-10		5-10		10-15	
Organochlorine Pesticides by EPA		12222	4.10		0.00		4.07		0.55	
4,4'-DDD	3.3	13000	4.12	U	3.88	U	4.27	U	3.55	U
4,4'-DDE	3.3	8900	4.12	U	3.88	U	4.27	U	3.55	U
4,4'-DDT	3.3	7900	4.73	J	3.88	U	4.27	U	3.55	U
Aldrin	5	97	4.12	U	3.88	U	4.27	U	3.55	U
Alpha-BHC	20	480	4.12	U	3.88	U	4.27	U	3.55	U
Beta-BHC	36	360	4.12	U	3.88	U	4.27	U	3.55	U
Chlordane	94	4200	41.2	U	38.8	U	42.7	U	35.5	U
Delta-BHC	40	100000	4.12	U	3.88	U	4.27	U	3.55	U
Dieldrin	5	200	4.12	U	3.88	U	4.27	U	3.55	U
Endosulfan I	2400	24000	4.12	U	3.88	U	4.27	U	3.55	U
Endosulfan II	2400	24000	4.12	U	3.88	U	4.27	U	3.55	U
Endosulfan sulfate	2400	24000	4.12	U	3.88	U	4.27	U	3.55	U
Endrin	14	11000	4.12	U	3.88	U	4.27	U	3.55	U
Endrin ketone	NS	NS	4.12	U	3.88	U	4.27	U	3.55	U
Heptachlor	42	2100	4.12	U	3.88	U	4.27	U	3.55	U
Heptachlor epoxide	NS	NS	4.12	U	3.88	U	4.27	U	3.55	U
Lindane	100	1300	4.12	U	3.88	U	4.27	U	3.55	U
Methoxychlor	NS	NS	16.5	U	15.5	U	17.1	U	14.2	U
trans-Chlordane	NS	NS	4.12	U	3.88	U	4.27	U	3.55	U
Polychlorinated Biphenyls by EPA	8082									
Aroclor 1016	100	1000	41.2	U	38.8	U	42.7	U	35.5	U
Aroclor 1221	100	1000	41.2	U	38.8	U	42.7	U	35.5	U
Aroclor 1232	100	1000	41.2	U	38.8	U	42.7	U	35.5	C
Aroclor 1242	100	1000	41.2	U	38.8	C	42.7	U	35.5	\Box
Aroclor 1248	100	1000	41.2	U	38.8	C	42.7	U	35.5	U
Aroclor 1254	100	1000	41.2	U	38.8	С	42.7	U	35.5	U
Aroclor 1260	100	1000	41.2	U	38.8	U	42.7	U	35.5	U
Total Metals										
Aluminum	NS	NS	4700		2500		1100		4000	
Antimony	NS	NS	2.9	UJ	2.8	U	3	U	2.5	U
Arsenic	13	16	2.2		1.8		1		1.1	
Barium	350	400	40		14		3		19	
Beryllium	7.2	72	0.29	U	0.28	U	0.3	U	0.25	U
Cadmium	2.5	4.3	0.58	U	0.56	U	0.6	U	0.5	U
Calcium	NS	NS	1000	J	92		64		350	
Chromium	30	180	6.4	J	4.7		3.2		4.2	
Cobalt	NS	NS	2.8		9		1.2	U	1	U
Copper	50	270	9.4		5.8		1.2		3.3	
Iron	NS	NS	7500		6900		2500		3800	
Lead	63	400	87	J	2.8	U	3	U	21	
Magnesium	NS	NS	690	J	340		80		380	
Manganese	1600	2000	100	J	650		7.8		55	
Mercury	0.18	0.81	0.1	J	0.09	U	0.09	U	0.09	U
Nickel	30	310	5.2		5.6		1.5	U	2.3	
Potassium	NS	NS	320		240		150	U	150	
Selenium	3.9	180	1.2	U	1.1	U	1.2	U	1	U
Silver	2	180	0.58	U	0.56	U	0.6	U	0.5	U
Sodium	NS	NS	120	U	110	U	120	U	100	U
Thallium	NS	NS	1.2	U	1.1	U	1.2	U	1	U
Vanadium	NS	NS	9.3		7.5		3.4		6.2	
Zinc	109	10000	58	J	25		6.5		26	
ļ				-						

Notes:

Pesticides & PCBs concentrations are µg/kg (ppb)

Metals concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted SCO ¹	Restricted	PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-20		PWG-DW-200		PWG-DW-200		PWG-DW-2008-07	PWG-DW-2008-09
Lab Sample ID Sampling date	300	Residential SCO ²	L0813344 9/8/200		L0813344 9/8/200		L0813344 9/8/200		L0813344- 9/8/200		L0813344-0 9/8/2008	8	L0813344-0 9/8/2008		L0813344-10 9/8/2008	L0813344-12 9/8/2008
SAMPLE DEPTH (ft.)			7.25-7.7		5.25-5.7		8.75-9.2		7.25-7.7		6.75-7.25		6.75-7.25		6.75-7.25	6.75-7.25
Volatile Organics by EPA 8260B			7.20 7.7		5.25 6.7		0.70 7.2	_	7.20 7.7		0.70 7.20		0.75 7.25		0.70 7.20	0.70 7.20
Tetrachloroethene	1,300	19,000	3	U	3.2	U	7.6		3.2	U	2.9	U	6.6		6.4	3.1 U
Trichloroethene	470	21,000	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	3.1 U
cis-1,2-Dichloroethene	250	100,000	3	U	3.2	U	4.4		3.2	U	2.9	U	3	U	3.4 U	
trans-1,2-Dichloroethene	190	100,000	4.5	U	4.7	U	4.7	U	4.9	U	4.4	U	4.5	U	5.1 U	
1,1-Dichloroethene	330	100,000	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
Vinyl chloride	20	900	6	U	6.3	U	6.2	U	6.5	U	5.8	U	6	U	6.8 U	6.2 U
1,1,1,2-Tetrachloroethane	NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	3.1 U
1,1,1-Trichloroethane	680	100,000	7.5		9.5		13		3.2	С	2.9	U	3	U	3.4 U	
1,1,2,2-Tetrachloroethane	NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
1,1,2-Trichloroethane	NS	NS	4.5	U	4.7	U	4.7	U	4.9	U	4.4	U	4.5	U	5.1 U	
1,1-Dichloroethane	270	26,000	4.5	U	5.1		7.2		4.9	U	4.4	U	4.5	U	5.1 U	
1,1-Dichloropropene 1,2,3-Trichlorobenzene	NS NS	NS NS	15 15	U	16 16	U	16 16	U	16 16	U	14 14	U	15 15	U	17 U	
1,2,3-Trichloropropane	NS NS	NS	30	U	32	U	31	U	32	U	29	U	30	U	34 U	
1,2,4,5-Tetramethylbenzene	NS	NS	12	U	13	U	12	U	13	U	12	U	12	U	24	12 U
1,2,4-Trichlorobenzene	NS	NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
1,2,4-Trimethylbenzene	3,600	52,000	15	U	16	U	16	U	16	U	14	U	15	U	60	15 U
1,2-Dibromo-3-chloropropane	NS	NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	15 U
1,2-Dibromoethane	NS	NS	12	U	13	U	12	U	13	U	12	U	12	U	14 U	
1,2-Dichlorobenzene	1,100	100,000	15	U	16	U	16	U	16	С	14	U	15	U	17 U	
1,2-Dichloroethane	20	3,100	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
1,2-Dichloropropane	NS 0.400	NS F2.000	10	U	11	U	11	U	11	U	10	U	10	U	12 U	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	8,400 2,400	52,000 49,000	15 15	U	16 16	U	16 16	U	16 16	U	14 14	U	15 15	U	62 17 U	15 U
1,3-Dichloropropane	2,400 NS	49,000 NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
1,4-Dichlorobenzene	1,800	13,000	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
1,4-Diethylbenzene	NS	NS	12	U	13	U	12	U	13	U	12	U	12	U	16	12 U
2,2-Dichloropropane	NS	NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
2-Butanone	120	100,000	30	U	32	U	31	U	32	U	29	U	30	U	34 U	31 U
2-Hexanone	NS	NS	30	U	32	U	31	U	32	U	29	U	30	U	34 U	31 U
4-Ethyltoluene	NS	NS	12	U	13	U	12	U	13	U	12	U	12	U	48	12 U
4-Methyl-2-pentanone	NS	NS	30	U	32	U	31	U	32	U	29	U	30	U	34 U	
Acetone	50	100,000	30	U	32	U	31	U	32	U	29	U	30	U	48	31 U
Acrylonitrile Benzene	NS 60	NS 4,800	30	U	32	U	31	U	32	U	29	U	30	U	34 U 3.4 U	
Bromobenzene	NS	4,800 NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
Bromochloromethane	NS	NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
Bromodichloromethane	NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
Bromoform	NS	NS	12	U	13	U	12	U	13	U	12	U	12	U	14 U	12 U
Bromomethane	NS	NS	6	U	6.3	U	6.2	U	6.5	U	5.8	U	6	U	6.8 U	6.2 U
Carbon disulfide	NS	NS	30	U	32	U	31	U	32	U	29	U	30	U	34 U	
Carbon tetrachloride	760	2,400	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
Chlorobenzene	1,100	100,000	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
Chloroethane Chloroform	NS 370	NS 49,000	6 4.5	U	6.3 4.7	U	6.2 4.7	U	6.5 4.9	U	5.8 4.4	U	6 4.5	U	6.8 U 5.1 U	
Chloromethane	NS NS	49,000 NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
cis-1,3-Dichloropropene	NS NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
Dibromochloromethane	NS	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
Dibromomethane	NS	NS	30	U	32	U	31	U	32	U	29	U	30	U	34 U	
Dichlorodifluoromethane	NS	NS	30	U	32	U	31	U	32	U	29	U	30	U	34 U	
Ethylbenzene	1,000	41,000	3	U	3.2	U	3.1	U	3.2	С	2.9	U	3	U	3.4 U	
Hexachlorobutadiene	NS	NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
Isopropylbenzene	NS 020	NS 100,000	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	39	3.1 U
Methyl tert butyl ether Methylene chloride	930 50	100,000	6 30	U	6.3	U	6.2	U	6.5	U	5.8 29	U	6 30	U	6.8 U	
Naphthalene	NS NS	NS	30	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	
n-Butylbenzene	12,000	NS	3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	37	3.1 U
n-Propylbenzene	3,900	100,000	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
o-Chlorotoluene		NS	15	U	16	U	16	U	16	U	14	U	15	U	17 U	
	NS		6	U	6.3	U	6.2	U	6.5	U	5.8	U	6	U	6.8 U	6.2 U
o-Xylene	NS 260	100,000	Ü			- 11	16	U	16	U	14	U	4.5			15 U
o-Xylene p/m-Xylene	260 260	100,000	15	U	16	U							15	U	17 U	
o-Xylene p/m-Xylene p-Chlorotoluene	260 260 NS	100,000 NS	15 3	U	3.2	U	3.1	U	3.2	U	2.9	U	3	U	3.4 U	3.1 U
o-Xylene p/m-Xylene p-Chlorotoluene p-Isopropyltoluene	260 260 NS NS	100,000 NS NS	15 3 6	U	3.2 6.3	U	3.1 6.2	U	3.2 6.5	U	2.9 5.8	U	3	U	3.4 U 230	3.1 U
o-Xylene p/m-Xylene p-Chlorotaluene p-Isopropyltaluene sec-Butylbenzene	260 260 NS NS 11,000	100,000 NS NS 100,000	15 3 6 3	U U	3.2 6.3 3.2	U U U	3.1 6.2 3.1	U	3.2 6.5 3.2	U	2.9 5.8 2.9	U U U	3 6 3	U U	3.4 U 230 3.4 U	3.1 U 6.2 U 3.1 U
o-Xylene p/m-Xylene p-Chlorotoluene p-Isopropyttoluene sec-Butylbenzene Styrene	260 260 NS NS 11,000	100,000 NS NS 100,000 NS	15 3 6 3 6	U U U	3.2 6.3 3.2 6.3	U U U	3.1 6.2 3.1 6.2	U U	3.2 6.5 3.2 6.5	U U	2.9 5.8 2.9 5.8	U U U	3 6 3 6	U U U	3.4 U 230 3.4 U 6.8 U	3.1 U 6.2 U 3.1 U 6.2 U
o-Xylene p/m-Xylene p-Chlorotoluene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene	260 260 NS NS 11,000 NS 5,900	100,000 NS NS 100,000 NS NS	15 3 6 3 6 15	U U U U	3.2 6.3 3.2 6.3 16	U U U U	3.1 6.2 3.1 6.2 16	U U U	3.2 6.5 3.2 6.5 16	U U U	2.9 5.8 2.9 5.8 14	U U U U	3 6 3 6 15	U U U U	3.4 U 230 3.4 U 6.8 U 17 U	3.1 U 6.2 U 3.1 U 6.2 U 15 U
o-Xylene p/m-Xylene p-Chlorotoluene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene Toluene	260 260 NS NS 11,000	100,000 NS NS 100,000 NS	15 3 6 3 6	U U U	3.2 6.3 3.2 6.3	U U U	3.1 6.2 3.1 6.2	U U	3.2 6.5 3.2 6.5	U U	2.9 5.8 2.9 5.8	U U U	3 6 3 6	U U U	3.4 U 230 3.4 U 6.8 U	3.1 U 6.2 U 3.1 U 6.2 U 15 U 4.6 U
o-Xylene p/m-Xylene p-Chlorotoluene p-Isopropyltoluene sec-Butylbenzene Styrene tert-Butylbenzene	260 260 NS NS 11,000 NS 5,900	100,000 NS NS 100,000 NS NS	15 3 6 3 6 15 4.5	U U U U	3.2 6.3 3.2 6.3 16 4.7	U U U U U	3.1 6.2 3.1 6.2 16 4.7	U U U	3.2 6.5 3.2 6.5 16 4.9	U U U U	2.9 5.8 2.9 5.8 14 4.4	U U U U	3 6 3 6 15 4.5	U U U U	3.4 U 230 3.4 U 6.8 U 17 U 5.1 U	3.1 U 6.2 U 3.1 U 6.2 U 15 U 4.6 U 3.1 U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID	Unrestricted	Doctriotod	DWC DW 30	000 10	PWG-DW-20	000 11	DINC DIN 30	000 10	DINC DIN 3	000 12	DIVIC DIVI 20	000 14	DIMC DIM 30	000 1E	DINC DIN 20	00.16	PWG-DW-2008-1
SAMPLE ID LAB SAMPLE ID	Unrestricted SCO ¹	Restricted Residential	PWG-DW-20 L0813344		L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344-		L0813344-22
Sampling date		SCO ²	9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/2008		9/8/2008
Sample Depth (ft.)			6.25-6.7		6.75-7.2		7.25-7.7		7.25-7.7	75	6-6.5		7-7.5		5.5-6		5.5-6
Volatile Organics by EPA 8260B																	
Tetrachloroethene	1,300	19,000	20		3.1	U	3	U	2.9	U	3.6	U	120		30		190
Trichloroethene	470 250	21,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	11 28	J	2.9	U	14
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	190	100,000	5.3	U	3.1 4.7	U	4.5	U	4.4	U	3.6 5.4	U	4.5	J	3.0 4.4	U	86 4.6 L
1,1-Dichloroethene	330	100,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Vinyl chloride	20	900	7	U	6.2	U	6	U	5.8	U	7.2	U	26	J	5.8	U	6.1 L
-																	I.
1,1,1,2-Tetrachloroethane	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
1,1,1-Trichloroethane	680	100,000	3.5	U	5.3		3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
1,1,2,2-Tetrachloroethane	NS	NS	3.5 5.3	U	3.1 4.7	U	3 4.5	U	2.9	U	3.6 5.4	U	3	U	2.9	U	3 L
1,1,2-Trichloroethane 1,1-Dichloroethane	NS 270	NS 26,000	5.3	U	4.7	U	4.5	U	4.4	U	5.4	U	4.5 4.5	U	4.4	U	4.6 L
1,1-Dichloropropene	NS NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
1,2,3-Trichlorobenzene	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
1,2,3-Trichloropropane	NS	NS	35	U	31	U	30	U	29	U	36	U	30	UJ	29	U	30 L
1,2,4,5-Tetramethylbenzene	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 L
1,2,4-Trichlorobenzene	NS	NS	18	U	16		15	U	14		18	U	15	U	14	U	15 L
1,2,4-Trimethylbenzene	3,600	52,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	NS NS	NS NS	18 14	U	16 12	U	15 12	U	14 12	U	18 14	U	15 12	U	14 12	U	15 L
1,2-Dichlorobenzene	1,100	100,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	12 C
1,2-Dichloroethane	20	3,100	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
1,2-Dichloropropane	NS	NS	12	U	11	U	10	U	10	U	13	U	10	U	10	U	11 L
1,3,5-Trimethylbenzene	8,400	52,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
1,3-Dichlorobenzene	2,400	49,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
1,3-Dichloropropane	NS 1,800	NS 13,000	18 18	U	16	U	15 15	U	14 14	U	18 18	U	15 15	U	14 14	U	15 L
1,4-Dichlorobenzene 1,4-Diethylbenzene	1,800 NS	13,000 NS	18	U	16 12	U	12	U	12	U	14	U	12	U	12	U	15 L
2,2-Dichloropropane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
2-Butanone	120	100,000	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 L
2-Hexanone	NS	NS	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 L
4-Ethyltoluene	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 L
4-Methyl-2-pentanone	NS	NS	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 L
Acetone Acrylonitrile	50 NS	100,000 NS	67 35	U	31 31	U	30 30	U	29 29	U	42 36	U	30 30	U	29 29	U	30 L
Benzene	60	4,800	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Bromobenzene	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
Bromochloromethane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
Bromodichloromethane	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Bromoform	NS	NS	14	U	12	U	12	U	12	U	14	U	12	U	12	U	12 L
Bromomethane	NS	NS	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 L
Carbon disulfide Carbon tetrachloride	NS 760	NS 2,400	35 3.5	U	31	U	30	U	29	U	36 3.6	U	30	U	29	U	30 L
Chlorobenzene	1,100	100,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Chloroethane	NS	NS	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 L
Chloroform	370	49,000	5.3	U	4.7	U	4.5	U	4.4	U	5.4	U	4.5	U	4.4	U	4.6 L
Chloromethane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
cis-1,3-Dichloropropene	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Dibromochloromethane	NS NS	NS NS	3.5 35	U	3.1	U	3	U	2.9	U	3.6	U	3 30	U	2.9	U	3 L 30 L
Dibromomethane Dichlorodifluoromethane	NS NS	NS NS	35 35	U	31	U	30 30	U	29	U	36 36	U	30	UJ	29	U	30 L
Ethylbenzene	1,000	41,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Hexachlorobutadiene	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
Isopropylbenzene	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Methyl tert butyl ether	930	100,000	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 L
Methylene chloride	50	100,000	35	U	31	U	30	U	29	U	36	U	30	U	29	U	30 L
Naphthalene n Putulbonzono	NS 12,000	NS NS	3.5 3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
n-Butylbenzene n-Propylbenzene	3,900	NS 100,000	3.5 18	U	3.1 16	U	3 15	U	14	U	3.6 18	U	3 15	U	2.9	U	3 L 15 L
o-Chlorotoluene	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
o-Xylene	260	100,000	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 L
p/m-Xylene	260	100,000	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L
p-Chlorotoluene	NS	NS	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
p-Isopropyltoluene	NS 11.000	NS 100,000	7	U	6.2	U	6	U	5.8	U	7.2	U	6	U	5.8	U	6.1 L
sec-Butylbenzene	11,000	100,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	3 L
Styrene tert-Rutylhenzene	NS 5,900	NS NS	18	U	6.2 16	U	6 15	U	5.8 14	U	7.2 18	U	6 15	U	5.8 14	U	6.1 L
tert-Butylbenzene Toluene	700	100,000	5.3	U	4.7	U	4.5	U	4.4	U	25	U	4.5	U	4.4	U	4.6 L
trans-1,3-Dichloropropene	NS	100,000	3.5	U	3.1	U	3	U	2.9	U	3.6	U	3	U	2.9	U	4.6 C
		,				-								-		-	
Trichlorofluoromethane	NS	NS	18	U	16	U	15	U	14	U	18	U	15	U	14	U	15 L

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ ²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

0.4.4.RU.S.ID			DIVIO DIVI 00	200.40	2000 2000	200.40	2000 2000		SING BILLS		81410 8141 88		BUILD BUILD		Buo Buo	000.05	SW0 SW0	2000.01
SAMPLE ID LAB SAMPLE ID	Unrestricted SCO ¹	Restricted Residential	PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-20 L0813344		PWG-DW-2 L0813344		PWG-DW-2 L0813344		PWG-DW-20 L0813344	
SAMPLING DATE	333	SCO ²	9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/200		9/8/20		9/8/200	
SAMPLE DEPTH (ft.)			4-4.5		4.5-5		4.5-5		5.25-5.7		3-3.5		6-6.5		5.75-6.		4.25-4.7	
Volatile Organics by EPA 8260B																		
Tetrachloroethene	1,300	19,000	18		82		3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Trichloroethene	470	21,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
cis-1,2-Dichloroethene	250	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
trans-1,2-Dichloroethene	190	100,000	4.8	U	4.5	U	5.3	U	4.3	U	4.7	U	5	U	4.7	U	4.5	U
1,1-Dichloroethene	330	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Vinyl chloride	20	900	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
1,1,1,2-Tetrachloroethane	NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
1,1,1-Trichloroethane	680	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
1,1,2,2-Tetrachloroethane	NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
1,1,2-Trichloroethane	NS	NS	4.8	U	4.5	U	5.3	U	4.3	U	4.7	U	5	U	4.7	U	4.5	U
1,1-Dichloroethane	270	26,000	4.8	U	4.5	U	5.3	U	4.3	U	4.7	U	5	U	4.7	U	4.5	U
1,1-Dichloropropene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,2,3-Trichlorobenzene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,2,3-Trichloropropane	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
1,2,4,5-Tetramethylbenzene	NS NS	NS NS	13	U	12	U	14	U	11	U	13	U	13	U	12	U	12	U
1,2,4-Trichlorobenzene	NS 3,600	NS 52,000	16 16	U	15 15	U	18 18	U	14 14	U	16 16	U	17 17	U	16 16	U	15 15	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	3,600 NS	52,000 NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,2-Dibromoethane	NS NS	NS NS	13	U	12	U	14	U	11	U	13	U	13	U	12	U	12	U
1,2-Dichlorobenzene	1,100	100,000	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,2-Dichloroethane	20	3,100	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
1,2-Dichloropropane	NS	NS	11	U	10	U	12	U	10	U	11	U	12	U	11	U	10	U
1,3,5-Trimethylbenzene	8,400	52,000	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,3-Dichlorobenzene	2,400	49,000	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,3-Dichloropropane	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,4-Dichlorobenzene	1,800	13,000	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
1,4-Diethylbenzene	NS	NS	13	U	12	U	14	U	11	U	13	U	13	U	12	U	12	U
2,2-Dichloropropane	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
2-Butanone	120	100,000	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
2-Hexanone	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
4-Ethyltoluene 4-Methyl-2-pentanone	NS NS	NS NS	13 32	U	12 30	U	14 35	U	11 29	U	13 32	U	13 33	U	12 31	U	12 30	U
Acetone	50	100,000	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Acrylonitrile	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Benzene	60	4,800	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Bromobenzene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
Bromochloromethane	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
Bromodichloromethane	NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Bromoform	NS	NS	13	U	12	U	14	U	11	U	13	U	13	U	12	U	12	U
Bromomethane	NS	NS	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
Carbon disulfide	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Carbon tetrachloride	760	2,400	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Chlorobenzene	1,100	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Chloroethane	NS	NS	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
Chloroform	370	49,000	4.8	U	4.5	U	5.3	U	4.3	U	4.7	U	5	U	4.7	U	4.5	U
Chloromethane	NS NS	NS NS	16 3.2	U	15 3	U	18 3.5	U	14 2.9	U	16 3.2	U	17 3.3	U	16 3.1	U	15	U
cis-1,3-Dichloropropene Dibromochloromethane	NS NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Dibromomethane	NS NS	NS	3.2	U	30	U	3.5	U	2.7	U	32	U	33	U	3.1	U	30	U
Dichlorodifluoromethane	NS	NS	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Ethylbenzene	1,000	41,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Hexachlorobutadiene	NS	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
Isopropylbenzene	NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
Methyl tert butyl ether	930	100,000	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
Methylene chloride	50	100,000	32	U	30	U	35	U	29	U	32	U	33	U	31	U	30	U
Naphthalene	NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
n-Butylbenzene	12,000	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
n-Propylbenzene	3,900	100,000	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
o-Chlorotoluene	NS 260	NS 100,000	16 6.4	U	15	U	18 7	U	14 5.7	U	16 6.3	U	17 6.7	U	16 6.2	U	15	U
o-Xylene n/m-Xylene	260	100,000	16	U	6 15	U	18	U	14	U	16	U	17	U	16	U	6 15	U
p/m-Xylene p-Chlorotoluene	NS NS	NS	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
p-Isopropyltoluene	NS NS	NS NS	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
sec-Butylbenzene	11,000	100,000	3.2	U	3	U	3.5	U	2.9	U	3.2	U	3.3	U	3.1	U	3	U
	NS NS	NS	6.4	U	6	U	7	U	5.7	U	6.3	U	6.7	U	6.2	U	6	U
Styrene																		
Styrene	5,900	NS	16	U	15	U	18	U	14	U	16	U	17	U	16	U	15	U
		NS 100,000	16 4.8	U	15 4.5	U	18 5.3	U	14 4.3	U	16 4.7	U	17 5	U	16 4.7	U	15 4.5	U
Styrene tert-Butylbenzene	5,900																	
Styrene tert-Butylbenzene Toluene	5,900 700	100,000	4.8	U	4.5	U	5.3	U	4.3	U	4.7	U	5	U	4.7	U	4.5	U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ ²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

SAMPLE ID LAB SAMPLE ID	Unrestricted SCO ¹	Restricted Residential	PWG-DW-20 L0813447-		PWG-DW-20 L0813447-		PWG-DW-20 L0813447		PWG-DW-2008-37 L0813447-09								
SAMPLING DATE	300	SCO ²	9/10/200		9/10/200		9/10/200		9/10/200		9/10/200		9/10/20		9/10/20		9/10/2008
SAMPLE DEPTH (ft.)			12.5-13		12-12.5		10-10.5		8.5-9		8-8.5		7-7.5		5.5-6		11-11.5
Volatile Organics by EPA 8260B																	
Tetrachloroethene	1,300	19,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Trichloroethene	470 250	21,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	190	100,000	3.2 4.8	U	3.7 5.5	U	3.3 4.9	U	5.1 7.6	U	3.7 5.5	U	3.6 5.4	U	3.8 5.7	U	4.6 U 6.9 U
1,1-Dichloroethene	330	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Vinyl chloride	20	900	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
1,1,1,2-Tetrachloroethane	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	680 NS	100,000 NS	3.2	U	3.7	U	3.3	U	5.1 5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1,1,2-Trichloroethane	NS	NS	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
1,1-Dichloroethane	270	26,000	4.8	U	5.5	U	4.9	U	7.6	U	5.5	U	5.4	U	5.7	U	6.9 U
1,1-Dichloropropene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2,3-Trichlorobenzene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2,3-Trichloropropane	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	UJ	46 U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	13 16	U	15 18	U	13 16	U	20 26	U	15 18	U	14 18	U	15 19	U	18 U 23 U
1,2,4-Trimethylbenzene	3,600	52,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2-Dibromo-3-chloropropane	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2-Dibromoethane	NS	NS	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
1,2-Dichlorobenzene	1,100	100,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,2-Dichloroethane	20 NG	3,100	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	NS 8,400	NS E2 000	11	U	13	U	12	U	18	U	13	U	13	U	13 19	U	16 U
1,3-Dichlorobenzene	2,400	52,000 49,000	16 16	U	18	U	16 16	U	26 26	U	18 18	U	18 18	U	19	U	23 U 23 U
1,3-Dichloropropane	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,4-Dichlorobenzene	1,800	13,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
1,4-Diethylbenzene	NS	NS	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
2,2-Dichloropropane	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
2-Butanone	120	100,000	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
2-Hexanone 4-Ethyltoluene	NS NS	NS NS	32 13	U	37 15	U	33 13	U	51 20	U	37 15	U	36 14	U	38 15	U	46 U
4-Methyl-2-pentanone	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Acetone	50	100,000	32	U	37	U	33	U	70		37	U	43		48	_	67
Acrylonitrile	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Benzene	60	4,800	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	С	4.6 U
Bromobenzene	NS	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
Bromochloromethane Bromodichloromethane	NS NS	NS NS	16 3.2	U	18 3.7	U	16 3.3	U	26 5.1	U	18 3.7	U	18 3.6	U	19 3.8	U	23 U 4.6 U
Bromoform	NS	NS	13	U	15	U	13	U	20	U	15	U	14	U	15	U	18 U
Bromomethane	NS	NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
Carbon disulfide	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	UJ	46 U
Carbon tetrachloride	760	2,400	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Chlorobenzene	1,100	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Chloroethane Chloroform	NS 370	NS 49,000	6.4 4.8	U	7.4 5.5	U	6.6 4.9	U	10 7.6	U	7.4 5.5	U	7.2 5.4	U	7.6 5.7	U	9.2 U 6.9 U
Chloromethane	NS NS	49,000 NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
cis-1,3-Dichloropropene	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Dibromochloromethane	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Dibromomethane	NS	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Dichlorodifluoromethane	NS 1,000	NS	32	U	37	U	33	U	51	U	37	U	36	U	38	UJ	46 U
Ethylbenzene Hexachlorobutadiene	1,000 NS	41,000 NS	3.2 16	U	3.7	U	3.3 16	U	5.1 26	U	3.7	U	3.6 18	U	3.8	U	4.6 U
Isopropylbenzene	NS NS	NS NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Methyl tert butyl ether	930	100,000	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
Methylene chloride	50	100,000	32	U	37	U	33	U	51	U	37	U	36	U	38	U	46 U
Naphthalene	NS	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
n-Butylbenzene	12,000	NS	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
n-Propylbenzene o-Chlorotoluene	3,900 NS	100,000 NS	16 16	U	18	U	16 16	U	26 26	U	18 18	U	18 18	U	19 19	U	23 U 23 U
o-Chlorotoluene o-Xylene	NS 260	NS 100,000	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
p/m-Xylene	260	100,000	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
p-Chlorotoluene	NS	NS	3.2	U	3.7	U	3.3	U	11		3.7	U	3.6	U	3.8	U	4.6 U
p-Isopropyltoluene	NS	NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
sec-Butylbenzene	11,000	100,000	3.2	U	3.7	U	3.3	U	5.1	U	3.7	U	3.6	U	3.8	U	4.6 U
Styrene	NS	NS	6.4	U	7.4	U	6.6	U	10	U	7.4	U	7.2	U	7.6	U	9.2 U
tert-Butylbenzene	5,900	NS	16	U	18	U	16	U	26	U	18	U	18	U	19	U	23 U
	700	100 000							7 /							11	
Toluene	700 NS	100,000	4.8 3.2	U	5.5 3.7	U	4.9	U	7.6 5.1	U	5.5 3.7	U	5.4 3.6	U	5.7 3.8	U	6.9 U 4.6 U
	700 NS NS	100,000 100,000 NS	4.8 3.2 16	U	5.5 3.7 18	U	4.9 3.3 16	U	7.6 5.1 26	U	5.5 3.7 18	U	5.4 3.6 18	U	5.7 3.8 19	U U	4.6 U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ ²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 6 Leaching Structure Soil/Sediment Sample Analytical Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-38	PWG-DW-2008-39	PWG-DW-2008-40	PWG-DW-2008-41	PWG-LP-2008-01	PWG-LP-2008-01
LAB SAMPLE ID	SCO1	Residential SCO ²	L0813447-11 9/10/2008	L0813447-12	L0813447-13 9/10/2008	L0813447-14	L0813344-20	L0814755-01
Sampling date Sample Depth (ft.)		300	9/10/2008 7-7.5	9/10/2008 8.5-9	9/10/2008 6-6.5	9/10/2008 9-9.5	9/8/2008 7.75-8.25	10/3/2008 9-11
Volatile Organics by EPA 8260B			1-1.5	8.3-7	0-0.5	7-7.5	7.75-8.25	7-11
Tetrachloroethene	1,300	19,000	15 U	3.6 U	2.7 U	3.2 U	120	4.9
Trichloroethene	470	21,000	15 U	3.6 U	2.7 U	3.2 U	8.7	3.3 U
cis-1,2-Dichloroethene	250	100,000	15 U	3.6 U	2.7 U	3.2 U	5.3	3.3 U
trans-1,2-Dichloroethene	190	100,000	22 U	5.4 U	4.1 U	4.7 U	4.4 U	4.9 U
1,1-Dichloroethene Vinyl chloride	330 20	100,000	15 U 29 U	3.6 U 7.1 U	2.7 U 5.5 U	3.2 U 6.3 U	2.9 U 5.9 U	3.3 U 6.6 U
viriyi chionde	20	900	29 0	7.1 0	5.5 0	6.5 0	5.9 0	6.6 U
1,1,1,2-Tetrachloroethane	NS	NS	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
1,1,1-Trichloroethane	680	100,000	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
1,1,2,2-Tetrachloroethane	NS	NS	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
1,1,2-Trichloroethane 1,1-Dichloroethane	NS 270	NS 26,000	22 U 22 U	5.4 U 5.4 U	4.1 U 4.1 U	4.7 U	4.4 U 4.4 U	4.9 U 4.9 U
1,1-Dichloroetnane	NS NS	26,000 NS	74 U	5.4 U	4.1 U	4.7 U	4.4 U	4.9 U
1,2,3-Trichlorobenzene	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
1,2,3-Trichloropropane	NS	NS	150 U	36 U	27 U	32 U	29 U	33 U
1,2,4,5-Tetramethylbenzene	NS	NS	230	14 U	11 U	13 U	12 U	13 U
1,2,4-Trichlorobenzene	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
1,2,4-Trimethylbenzene	3,600	52,000	74 U	18 U	14 U	16 U	15 U	16 U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	NS NS	NS NS	74 U 59 U	18 U	14 U	16 U	15 U 12 U	16 U
1,2-Dibromoetnane 1,2-Dichlorobenzene	1,100	100,000	74 U	14 U	11 U	13 U	12 U	16 U
1,2-Dichloroethane	20	3,100	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
1,2-Dichloropropane	NS	NS	51 U	12 U	9.6 U	11 U	10 U	12 U
1,3,5-Trimethylbenzene	8,400	52,000	74 U	18 U	14 U	16 U	15 U	16 U
1,3-Dichlorobenzene	2,400	49,000	74 U	18 U	14 U	16 U	15 U	16 U
1,3-Dichloropropane	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
1,4-Dichlorobenzene 1,4-Diethylbenzene	1,800 NS	13,000 NS	74 U 340	18 U	14 U	16 U	15 U 12 U	16 U
2,2-Dichloropropane	NS NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
2-Butanone	120	100,000	150 U	36 U	27 U	32 U	29 U	33 U
2-Hexanone	NS	NS	150 U	36 U	27 U	32 U	29 U	33 U
4-Ethyltoluene	NS	NS	59 U	14 U	11 U	13 U	12 U	13 U
4-Methyl-2-pentanone	NS	NS	150 U	36 U	27 U	32 U	29 U	33 U
Acetone	50	100,000	320 150 U	74 36 U	27 U 27 U	32 U 32 U	29 U 29 U	33 U
Acrylonitrile Benzene	NS 60	NS 4,800	150 U	36 U	2.7 U	3.2 U	2.9 U	3.3 U
Bromobenzene	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
Bromochloromethane	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
Bromodichloromethane	NS	NS	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
Bromoform	NS	NS	59 U	14 U	11 U	13 U	12 U	13 U
Bromomethane	NS	NS NS	29 U 150 U	7.1 U 36 U	5.5 U 27 U	6.3 U 32 U	5.9 U 29 U	6.6 U
Carbon disulfide Carbon tetrachloride	NS 760	2,400	150 U	36 U	2.7 U	3.2 U	2.9 U	3.3 U
Chlorobenzene	1,100	100,000	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
Chloroethane	NS	NS	29 U	7.1 U	5.5 U	6.3 U	5.9 U	6.6 U
Chloroform	370	49,000	22 U	5.4 U	4.1 U	4.7 U	4.4 U	4.9 U
Chloromethane	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
cis-1,3-Dichloropropene	NS	NS	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
Dibromochloromethane Dibromomethane	NS NS	NS NS	15 U 150 U	3.6 U	2.7 U 27 U	3.2 U	2.9 U 29 U	3.3 U
Dichlorodifluoromethane	NS NS	NS	150 U	36 U	27 U	32 U	29 U	33 U
Ethylbenzene	1,000	41,000	15 U	5	2.7 U	3.2 U	2.9 U	3.3 U
Hexachlorobutadiene	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
Isopropylbenzene	NS	NS	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
Methyl tert butyl ether	930	100,000	29 U	7.1 U	5.5 U	6.3 U	5.9 U	6.6 U
Methylene chloride	50 NS	100,000 NS	150 U	36 U	27 U 2.7 U	32 U 3.2 U	29 U 2.9 U	33 U 3.3 U
Naphthalene n-Butylbenzene	NS 12,000	NS NS	140 15 U	3.6 U	2.7 U 2.7 U	3.2 U 3.2 U	2.9 U	3.3 U
n-Propylbenzene	3,900	100,000	370	18 U	14 U	16 U	15 U	16 U
o-Chlorotoluene	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
o-Xylene	260	100,000	29 U	7.1 U	5.5 U	6.3 U	5.9 U	6.6 U
p/m-Xylene	260	100,000	74 U	18 U	14 U	16 U	15 U	16 U
p-Chlorotoluene	NS	NS	110	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
p-Isopropyltoluene sec-Butylbenzene	NS 11,000	NS 100,000	29 U 57	7.1 U 3.6 U	5.5 U 2.7 U	6.3 U 3.2 U	5.9 U 2.9 U	6.6 U 3.3 U
Styrene	NS	NS	29 U	7.1 U	5.5 U	6.3 U	2.9 U	6.6 U
tert-Butylbenzene	5,900	NS	74 U	18 U	14 U	16 U	15 U	16 U
Toluene	700	100,000	42	5.4 U	4.1 U	4.7 U	4.4 U	4.9 U
trans-1,3-Dichloropropene	NS	100,000	15 U	3.6 U	2.7 U	3.2 U	2.9 U	3.3 U
Trichlorofluoromethane	NS	NS	74 U	18 U	14 U	16 U	15 U	16 U
Vinyl acetate	NS	NS	150 U	36 U	27 U	32 U	29 U	33 U

Notes: All concentrations are µg/kg (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environ

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, EI

U - Analyte not detected above the laboratory MDL J - Estimated value

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	08-01	PWG-DW-200	08-02	PWG-DW-200	08-03	PWG-DW-2008	3-04	PWG-DW-2008-	05	PWG-DW-2008	-06	PWG-DW-2008-0	17	PWG-DW-2008-09
LAB SAMPLE ID		Residential SCO ²	L0813344-0		L0813344-0						L0813344-08		L0813344-09				
Sampling date Sample depth (ft.)		300	9/8/2008 7.25-7.75		9/8/2008 5.25-5.75		9/8/2008 8.75-9.25		9/8/2008 7.25-7.75		9/8/2008 6.75-7.25		9/8/2008 6.75-7.25		9/8/2008 6.75-7.25		9/8/2008 6.75-7.25
Semivolatile Organics by EPA 8270C																	
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	1,600 400	U	8,400 2,100	U	1,700 420	U	1,700 430	U		U	1,600 400	U		U U	8,200 U 2,000 U
1,2-Dichlorobenzene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	NS NS	NS NS	400 400	U	2,100 2,100	U	420 420	U	430 430	U		U	400 400	U		U U	2,000 U 2,000 U
2,4,5-Trichlorophenol	NS NS	NS NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2,4,6-Trichlorophenol	NS	NS	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
2,4-Dichlorophenol	NS	NS	790	U	4,200	U	830	U	860	U		U	790	U		U	4,100 U
2,4-Dimethylphenol 2,4-Dinitrophenol	NS NS	NS NS	400 1.600	U	2,100 8.400	U	420 1.700	U	430 1.700	U		U	400 1.600	U		U U	2,000 U 8.200 U
2,4-Dinitrotoluene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2,6-Dinitrotoluene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2-Chloronaphthalene 2-Chlorophenol	NS NS	NS NS	480 480	U	2,500 2.500	U	500 500	U	520 520	U		U	480 480	U		U U	2,500 U 2.500 U
2-Methylnaphthalene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
2-Methylphenol	NS	NS	480	U	2,500	U	500	U	520	U		U	480	U		U	2,500 U
2-Nitrophopol	NS NS	NS NS	400 1.600	U	2,100 8,400	U	420 1.700	U	430 1,700	U		U	400 1.600	U		U	2,000 U 8,200 U
2-Nitrophenol 3,3'-Dichlorobenzidine	NS NS	NS NS	790	U	4,200	U	830	U	860	U		U	790	U		U	4,100 U
3-Methylphenol/4-Methylphenol	NS	NS	480	U	2,500	U	500	U	520	U		U	480	U		U	2,500 U
3-Nitroaniline	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	NS NS	NS NS	1,600 400	U	8,400 2,100	U	1,700 420	U	1,700 430	U		U	1,600 400	U		U	8,200 U 2,000 U
4-Chloroaniline	NS NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		IJ	2,000 U
4-Chlorophenyl phenyl ether	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
4-Nitroaniline 4-Nitrophenol	NS NS	NS NS	560 790	U	3,000 4,200	U	580 830	U	610 860	U		U	560 790	U		U	2,900 U 4,100 U
Acenaphthene	20000	100000	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Acenaphthylene	100000	100000	400	U	2,100	U	420	U	430	U	390	U	400	U		U	2,000 U
Acetophenone Anthracene	NS 100000	NS 100000	1,600	U	8,400 2.100	U	1,700 420	U	1,700	U		U	1,600	U		U	8,200 U 2.000 U
Benzo(a)anthracene	1000	1000	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Benzo(a)pyrene	1000	1000	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Benzo(b)fluoranthene	1000	1000	400 400	U	2,100	U	420 420	U	430 430	U		U	400 400	U		U	2,000 U 2,000 U
Benzo(ghi)perylene Benzo(k)fluoranthene	800	3900	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Benzoic Acid	NS	NS	4,000	U	21,000	U	4,200	U	4,300	U		U	4,000	U		U	20,000 U
Benzyl Alcohol	NS	NS	790	U	4,200	U	830	U	860	U		U	790	U		U	4,100 U
Biphenyl Bis(2-chloroethoxy)methane	NS NS	NS NS	400 400	U	2,100 2,100	U	420 420	U	430 430	U		U	400 400	U		U	2,000 U 2.000 U
Bis(2-chloroethyl)ether	NS	NS	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Bis(2-chloroisopropyl)ether	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Bis(2-Ethylhexyl)phthalate	NS NS	NS NS	790 400	U	4,200 2,100	U	830 420	U	860 430	U		U	790 400	U		U	4,100 U 2,000 U
Butyl benzyl phthalate Carbazole	NS NS	NS NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Chrysene	1000	3900	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
Di-n-butylphthalate	NS	NS	400 400	U	2,100	U	420	U	430	U		U	400 400	U		U	2,000 U 2,000 U
Di-n-octylphthalate Dibenzo(a,h)anthracene	NS 330	NS 330	400	U	2,100 2,100	U	420 420	U	430 430	U		U		U		U	2,000 U 2,000 U
Dibenzofuran	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Diethyl phthalate	NS	NS	400	:	2,100	: ⊂	420	U	430	: ⊂		U	400	U		U	2,000 U
Dimethyl phthalate Fluoranthene	NS 100000	NS 100000	400 400	U	2,100 2,100	U	420 420	U	430 430			U	400 400	U		U	2,000 U 2,000 U
Fluorene	30000	100000	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Hexachlorobenzene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Hexachlorobutadiene Hexachlorocyclopentadiene	NS NS	NS NS	790 790	U	4,200 4,200	U	830 830	U	860 860	c c		U		U		U	4,100 U 4,100 U
Hexachloroethane	NS	NS	400	U	2,100	U	420	U	430	U		U		U		U	2,000 U
Indeno(1,2,3-cd)Pyrene	500	500	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Isophorone n-Nitrosodi-n-propylamine	NS NS	NS NS	400 400	U	2,100 2,100	U	420 420	U	430 430	U		U	400 400	U		U	2,000 U 2,000 U
Naphthalene	12000	100000	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
Nitrobenzene	NS	NS	400	U	2,100	U	420	U	430	U		U	400	U		U	2,000 U
NitrosoDiPhenylAmine(NDPA)/DPA P-Chloro-M-Cresol	NS NS	NS NS	1,200	U	6,300 2,100	U	1,200 420	U	1,300	C C		U	1,200	U		U	6,200 U 2.000 U
Pentachlorophenol	800	6700	1,600	U	8,400	U	1,700	U	1,700	U		U	1,600	U		U	8,200 U
Phenanthrene	100000	100000	400	U	2,100	U	420	U	430	U	390	U	400	U	4,600	U	2,000 U
Phenol	330 100000	100000 100000	560 400	U	3,000	U	580	U	610 430	U		U	560	U		U	2,900 U 2,000 U
Pyrene Semivolatile Organics by EPA 8270C-SI		100000	400	U	2,100	U	420	U	430	U	J7U	U	400	U	4,000	_	2,000 U
2-Chloronaphthalene	NS	NS	79	U	840	U	83	U	86	U		U	16	U		U	820 U
2-Methylnaphthalene	NS 20000	NS 100000	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Acenaphthene Acenaphthylene	20000 100000	100000	79 79	U	840 840	U	83	U	86 86	U		U		U		U U	820 U 820 U
Anthracene	100000	100000	79	U	840	U	83	U	86	U	78	U	16	U	1,800	U	820 U
Benzo(a)anthracene	1000	1000	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000 1000	1000	79 79	U	840 840	U	83 83	U	86 86	U		U	16 16	U		U	820 U 820 U
Benzo(ghi)perylene	10000	100000	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Benzo(k)fluoranthene	800	3900	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Chrysene Dihenzo(a h)anthracene	1000 3300	3900 330	79 79		840 840	U	83 83	U	86 86	c c		U		U		U	820 U 820 U
Dibenzo(a,h)anthracene Fluoranthene	100000	100000	170	U	840	U	83	U	86	U		U	30	U		U	820 U
Fluorene	30000	100000	79	U	840	U	83	U	86	U	78	U	16	U	1,800	U	820 U
Hexachlorobenzene	NS NC	NS	320	U	3,400	U	330	U	350	U		U	63	U		U	3,300 U
Hexachlorobutadiene Hexachloroethane	NS NS	NS NS	200 320	U	2,100 3,400	U	210 330	U	220 350	U		U	40 63	U		U	2,000 U 3,300 U
Indeno(1,2,3-cd)Pyrene	500	500	79	U	840	U	83	U	86	U		U	16	U		U	820 U
Naphthalene	12000	100000	79	U	840	U	83	U	86	U		U		U		U	820 U
Pentachlorophenol Phenanthrene	800 100000	6700 100000	320 79	U	3,400 840	U	330 83	U	350 86	U		U	63 16	U		U	3,300 U 820 U
Pyrene Pyrene	100000	100000	170	U	840	U	83	U	86	U		U	32	U		U	820 U
*						-		-		-		-		_			

Notes:
All concentrations are µg/kg (ppb)

**Unrestriced Use Solf Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Unrestriced Use Solf Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Unrestriced Residential Solf Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

**Unrestriced Residential Remediation Programs, December 2006

**Unre

SAMPLE ID LAB SAMPLE ID	Unrestricted SCO ¹	Restricted Residential SCO ²	PWG-DW-200 L0813344-		PWG-DW-200 L0813344-1		PWG-DW-200 L0813344-		PWG-DW-2008- L0813344-16	13	PWG-DW-2008 L0813344-17	-14	PWG-DW-200 L0813344-1		PWG-DW-2008-16 L0813344-21	PWG-DW-2008-17 L0813344-22
SAMPLING DATE SAMPLE DEPTH (ft.)		300	9/8/2008 6.25-6.75		9/8/2008 6.75-7.25		9/8/2008 7.25-7.75		9/8/2008 7.25-7.75		9/8/2008 6-6.5		9/8/2008 7-7.5		9/8/2008 5.5-6	9/8/2008 5.5-6
Semivolatile Organics by EPA 8270C 1,2,4,5-Tetrachlorobenzene	NS	NS	9,400	U	1,700	U	1,600	U	1,600	U	3,900	U	1,600	U	1,600 U	3,200 U
1,2,4-Trichlorobenzene	NS	NS	2,300	: ⊂	420	U	400			U	970	U	400		390 U	810 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	NS NS	NS NS	2,300 2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
1,4-Dichlorobenzene	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
2,4,5-Trichlorophenol	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	NS NS	NS NS	2,300 4,700	U	420 830	U	400 800	U		U	970 1,900	U	400 790	U	390 U 780 U	810 U 1,600 U
2,4-Dimethylphenol	NS NS	NS NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
2,4-Dinitrophenol	NS	NS	9,400	U	1,700	U	1,600	U		U	3,900	U	1,600	U	1,600 U	3,200 U
2,4-Dinitrotoluene	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
2,6-Dinitrotoluene 2-Chloronaphthalene	NS NS	NS NS	2,300 2,800	U	420 500	U	400 480	U		U	970 1,200	U	400 480	U	390 U 460 U	810 U 980 U
2-Chlorophenol	NS	NS	2,800	U	500	U	480	U		U	1,200	U	480	U	460 U	980 U
2-Methylnaphthalene	NS	NS	2,300	U	420	U	400	U	390	U	970	U	400	U	390 U	810 U
2-Methylphenol	NS	NS	2,800	U	500	U	480			U	1,200	U	480	С	460 U	980 U
2-Nitroaniline 2-Nitrophenol	NS NS	NS NS	2,300 9,400	U	420 1,700	U	400 1,600	U		U	970 3,900	U	400 1,600	U	390 U 1,600 U	810 U 3,200 U
3.3'-Dichlorobenzidine	NS NS	NS NS	4.700	U	830	U	800	U		U	1.900	U	790	U	780 U	1,600 U
3-Methylphenol/4-Methylphenol	NS	NS	2,800	U	500	U	480	U	460	U	1,200	U	480	U	460 U	980 U
3-Nitroaniline	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
4,6-Dinitro-o-cresol	NS NS	NS NC	9,400 2.300	U	1,700	U	1,600	U		U	3,900	U	1,600	U	1,600 U 390 U	3,200 U
4-Bromophenyl phenyl ether 4-Chloroaniline	NS NS	NS NS	2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
4-Chlorophenyl phenyl ether	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
4-Nitroaniline	NS	NS	3,300	U	580	U	560	U	540	U	1,400	U	560	U	540 U	1,100 U
4-Nitrophenol	NS	NS	4,700	U	830	U	800	U		U	1,900	U	790	U	780 U	1,600 U
Acenaphthene Acenaphthylene	20000 100000	100000 100000	2,300 2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
Acetophenone	100000 NS	100000 NS	9,400	U	1,700	U	1,600	U		U	3,900	U	1,600	UJ	1,600 U	3,200 U
Anthracene	100000	100000	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Benzo(a)anthracene	1000	1000	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Benzo(a)pyrene	1000	1000	2,300	U	420	U	400	С		U	970	U	400	С	390 U	810 U
Benzo(b)fluoranthene Benzo(qhi)perylene	1000	1000	2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
Benzo(k)fluoranthene	800	3900	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Benzoic Acid	NS	NS	23,000	U	4,200	U	4,000	U	3,900	U	9,700	U	4,000	U	3,900 U	8,100 U
Benzyl Alcohol	NS	NS	4,700	U	830	U	800	U		U	1,900	U	790	U	780 U	1,600 U
Biphenyl	NS	NS	2,300	U	420	U	400	: =		U	970	U	400	U	390 U	810 U
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	NS NS	NS NS	2,300 2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
Bis(2-chloroisopropyl)ether	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Bis(2-Ethylhexyl)phthalate	NS	NS	4,700	U	830	U	800	U	780	U	1,900	U	790	U	780 U	2,000
Butyl benzyl phthalate	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Carbazole Chrysene	NS 1000	NS 3900	2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
Di-n-butylphthalate	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Di-n-octylphthalate	NS	NS	2,300	U	420	U	400	U	390	U	970	U	400	U	390 U	810 U
Dibenzo(a,h)anthracene	330	330	2,300	U	420	U	400			U	970	U	400	С	390 U	810 U
Dibenzofuran Diethyl phthalate	NS NS	NS NS	2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	U	390 U	810 U 810 U
Dimethyl phthalate	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Fluoranthene	100000	100000	2,300	U	420	U	400	U	390	U	970	U	400	U	390 U	810 U
Fluorene	30000	100000	2,300	U	420	U	400	С		U	970	U	400	С	390 U	810 U
Hexachlorobenzene Hexachlorobutadiene	NS NS	NS NS	2,300 4.700	U	420 830	U	400 800	U		U	970 1.900	U	400 790	U	390 U 780 U	810 U 1,600 U
Hexachlorocyclopentadiene	NS	NS	4,700	U	830	U	800	U		U	1,900	U	790	U	780 U	1,600 U
Hexachloroethane	NS	NS	2,300	U	420	U	400	U	390	U	970	U	400	U	390 U	810 U
Indeno(1,2,3-cd)Pyrene	500	500	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Isophorone n-Nitrosodi-n-propylamine	NS NS	NS NS	2,300	U	420 420	U	400 400	U		U	970 970	U	400 400	ے 2	390 U	810 U 810 U
n-Nitrosodi-n-propylamine Naphthalene	NS 12000	NS 100000	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
Nitrobenzene	NS	NS	2,300	U	420	U	400	U		U	970	U	400	U	390 U	810 U
NitrosoDiPhenylAmine(NDPA)/DPA	NS	NS	7,000	U	1,200	U	1,200	U	1,200	U	2,900	U	1,200	U	1,200 U	2,400 U
P-Chloro-M-Cresol	NS goo	NS 4700	2,300	U	420	U	400	U	390	U	970	U	400	U	390 U	810 U
Pentachlorophenol Phenanthrene	800 100000	6700 100000	9,400 2,300	U	1,700 420	U	1,600 400	U		U	3,900 970	U	1,600 400	U	1,600 U	3,200 U 810 U
Phenol	330	100000	3,300	U	580	U	560	U		U	1,400	U	560	U	540 U	1,100 U
Pyrene	100000	100000	2,300	U	420	U	400	U	390	U	970	U	400	U	390 U	810 U
Semivolatile Organics by EPA 8270C-SI		*10					**									
2-Chloronaphthalene 2-Methylnaphthalene	NS NS	NS NS	190 190	U	33	U	32 32	U		U	970 970	U	79 79	U	78 U	810 U 810 U
Acenaphthene	20000	100000	190	U	33	U	32	U		U	970	U	79	U	78 U	810 U
Acenaphthylene	100000	100000	190	U	33	U	32	U	16	U	970	U	79	U	78 U	810 U
Anthracene	100000	100000	190	U	33	U	32	U		U	970	U	79	U	78 U	810 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000 1000	190 190		33	U	32 32	U		U	970 970	U	79 79		78 U	810 U 810 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	190 190	U	33	U	32	U		U	970 970	U	79	U	78 U	810 U 810 U
Benzo(ghi)perylene	100000	100000	190	U	33	U	32	U		U	970	U	79	U	78 U	810 U
Benzo(k)fluoranthene	800	3900	190	U	33	U	32	U	16	U	970	U	79	U	78 U	810 U
Chrysene	1000	3900	190	U	33	U	32	U		U	970	U	79	U	78 U	810 U
Dibenzo(a,h)anthracene	3300	330	190	U	33	U	32	U		U	970	U	79	U	78 U	810 U
Fluoranthene Fluorene	100000 30000	100000 100000	190 190	U	33	U	64 32	U	32 16	U	970 970	U	79 79	UJ	160 78 U	810 U 810 U
Hexachlorobenzene	NS	NS	750	U	130	U	130	U		U	3,900	U	320	U	310 U	3,200 U
Hexachlorobutadiene	NS	NS	470	U	83	U	80	U	39	U	2,400	U	200	U	190 U	2,000 U
Hexachloroethane	NS	NS	750	U	130	U	130	U		U	3,900	U	320	U	310 U	3,200 U
	500	500	190	U	33	U	32	U	16	U	970	U	79	U	78 U	810 U
Indeno(1,2,3-cd)Pyrene				- 11	22		22	- 11		11						
Indeno(1,2,3-cd)Pyrene Naphthalene	12000	100000	190	U	33 130	U	32 130	U	16	U	970	U	79	U	78 U	810 U
Indeno(1,2,3-cd)Pyrene	12000	100000		U		U	32 130 32	U	16 62			U			78 U	810 U

Notes:
All concentrations are µg/kg (ppb)
'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
'Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	08-18	PWG-DW-20	08-19	PWG-DW-20	08-20	PWG-DW-20	08-22	PWG-DW-200	8-23	PWG-DW-200	8-24	PWG-DW-2008	-25	PWG-DW-2008-26
LAB SAMPLE ID		Residential SCO ⁺	L0813344-		L0813344-		L0813344-		L0813344-		L0813344-		L0813344-2		L0813344-29		L0813344-30
Sampling date Sample depth (ft.)			9/8/2008 4-4.5		9/8/2008 4.5-5	3	9/8/2008 4.5-5	3	9/8/2008 5.25-5.75		9/8/2008 3-3.5		9/8/2008 6-6.5		9/8/2008 5.75-6.25		9/8/2008 4.25-4.75
Semivolatile Organics by EPA 8270C																	
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	NS NS	NS NS	3,400 850	U	3,200 790	U	19,000 4,700	U	1,500 380	U	8,400 2,100	U	1,800 440	U	1,700 420	U	7,900 U 2,000 U
1,2-Dichlorobenzene	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
1,3-Dichlorobenzene	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
1,4-Dichlorobenzene 2.4.5-Trichlorophenol	NS NS	NS NS	850 850	U	790 790	U	4,700	U	380 380	U	2,100	U	440 440	U	420 420	U	2,000 U 2.000 U
2,4,6-Trichlorophenol	NS NS	NS NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2,4-Dichlorophenol	NS	NS	1,700	U	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
2,4-Dimethylphenol	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	NS NS	NS NS	3,400 850	U	3,200 790	U	19,000 4,700	U	1,500 380	U	8,400 2,100	U	1,800 440	U	1,700 420	U	7,900 U 2,000 U
2,6-Dinitrotoluene	NS NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2-Chloronaphthalene	NS	NS	1,000	U	950	U	5,600	U	460	U	2,500	U	530	U	500	U	2,400 U
2-Chlorophenol	NS	NS	1,000		950	U	5,600	U	460	U	2,500	U	530	U	500	U	2,400 U
2-Methylnaphthalene 2-Methylphenol	NS NS	NS NS	850 1,000	U	790 950	U	4,700 5,600	U	380 460	U	2,100 2,500	U	440 530	U	420 500	U	2,000 U 2,400 U
2-Nitroaniline	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
2-Nitrophenol	NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
3,3'-Dichlorobenzidine	NS	NS	1,700	U	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
3-Methylphenol/4-Methylphenol 3-Nitroaniline	NS NS	NS NS	1,000 850	U	950 790	U	5,600 4,700	U	460 380	U	2,500 2,100	U	530 440	U	500 420	U	2,400 U 2,000 U
4,6-Dinitro-o-cresol	NS	NS	3,400	U	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
4-Bromophenyl phenyl ether	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
4-Chlorophopul phopul other	NS NC	NS NC	850	= =	790	υ.	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS NS	NS NS	850 1,200	U	790 1,100	U	4,700 6,600	U	380 540	U	2,100 3,000	U	440 620	U	420 580	U	2,000 U 2,800 U
4-Nitrophenol	NS	NS	1,700	U	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
Acenaphthene	20000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Acetaphthylene Acetaphenene	100000	100000	850	= =	790	U	4,700	U	380	U	2,100	U	1 900	U	420	U	2,000 U
Acetophenone Anthracene	NS 100000	NS 100000	3,400 850	U	3,200 790	U	19,000 4,700	U	1,500 380	U	8,400 2,100	U	1,800 440	U	1,700 420	U	7,900 U 2,000 U
Benzo(a)anthracene	1000	1000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Benzo(a)pyrene	1000	1000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Benzo(b)fluoranthene Benzo(ghi)perylene	1000	1000 100000	850 850	U	790 790	U	4,700	U	380 380	U	2,100	U	440 440	U	420 420	U	2,000 U 2,000 U
Benzo(k)fluoranthene	800	3900	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Benzoic Acid	NS	NS	8,500	U	7,900	U	47,000	U	3,800	U	21,000	U	4,400	U	4,200	U	20,000 U
Benzyl Alcohol	NS	NS	1,700	О	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
Biphenyl Bis(2-chloroethoxy)methane	NS NS	NS NS	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U 2.000 U
Bis(2-chloroethyl)ether	NS NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Bis(2-chloroisopropyl)ether	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Bis(2-Ethylhexyl)phthalate	NS	NS	1,700	U	1,600	U	12,000	U	770 380	U	4,200	U	890 440	U	830	U	4,000 U
Butyl benzyl phthalate Carbazole	NS NS	NS NS	850 850	U	790 790	U	4,700 4,700	U	380	U	2,100 2,100	U	440	U	420 420	U	2,000 U 2,000 U
Chrysene	1000	3900	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Di-n-butylphthalate	NS	NS	850	С	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Di-n-octylphthalate Dibenzo(a,h)anthracene	NS 330	NS 330	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U 2,000 U
Dibenzofuran	NS NS	NS NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Diethyl phthalate	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Dimethyl phthalate	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Fluoranthene Fluorene	100000 30000	100000	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U 2,000 U
Hexachlorobenzene	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Hexachlorobutadiene	NS	NS	1,700	U	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
Hexachlorocyclopentadiene	NS	NS	1,700	U	1,600	U	9,400	U	770	U	4,200	U	890	U	830	U	4,000 U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U 2,000 U
Isophorone	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
n-Nitrosodi-n-propylamine	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Naphthalene Nitrobenzene	12000 NS	100000 NS	850 850	U	790 790	U	4,700 4,700	U	380 380	U	2,100 2,100	U	440 440	U	420 420	U	2,000 U 2,000 U
NitrosoDiPhenylAmine(NDPA)/DPA	NS NS	NS NS	2,600	U	2,400	U	14,000	U	1,100	U	6,300	U	1,300	U	1,200	U	6,000 U
P-Chloro-M-Cresol	NS	NS	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Pentachlorophenol	800	6700	3,400	: ⊂	3,200	U	19,000	U	1,500	U	8,400	U	1,800	U	1,700	U	7,900 U
Phenanthrene Phenol	100000 330	100000	850 1,200	U	790 1,100	U	4,700 6,600	U	380 540	U	2,100 3,000	U	440 620	U	420 580	U	2,000 U 2,800 U
Pyrene	100000	100000	850	U	790	U	4,700	U	380	U	2,100	U	440	U	420	U	2,000 U
Semivolatile Organics by EPA 8270C-SI																	
2-Chloronaphthalene	NS NS	NS NS	850 850	= =	16 16	U	1,900	U	31 31	U	840 840	U	89 89	U	17 17	U	790 U
2-Methylnaphthalene Acenaphthene	NS 20000	NS 100000	850 850	U	16 16	U	1,900	U	31	U	840 840	U	89 89	U	17	U	790 U
Acenaphthylene	100000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Anthracene	100000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Benzo(a)anthracene	1000	1000	850 850	U	18 36		1,900	U	31	U	840 840	U	89 89	U	17 17	U	790 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	850 850	U	36 32		1,900	U	31	U	840 840	U	89 89	U	17	U	790 U
Benzo(ghi)perylene	100000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Benzo(k)fluoranthene	800	3900	850	U	34		1,900	U	31	U	840	U	89	U	17	U	790 U
Chrysene Dibonzo(a h) anthracono	1000	3900	850	= =	16	-,1	1,900	U	31	U	840	U	89	U	17	U	790 U
Dibenzo(a,h)anthracene Fluoranthene	3300 100000	330 100000	850 850	U	16 53	U	1,900	U	31 31	U	840 840	U	89 170	U	17 17	U	790 U
Fluorene	30000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Hexachlorobenzene	NS	NS	3,400	U	63	U	7,500	U	120	U	3,400	U	360	U	67	U	3,200 U
Hexachlorobutadiene	NS NC	NS	2,100	U	40	U	4,700	U	77	U	2,100	U	220	U	42	U	2,000 U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	3,400 850	U	63 16	U	7,500 1,900	U	120 31	U	3,400 840	U	360 89	U	67 17	U	3,200 U
Naphthalene	12000	100000	850	U	16	U	1,900	U	31	U	840	U	89	U	17	U	790 U
Pentachlorophenol	800	6700	3,400	U	63	U	7,500	U	120	U	3,400	U	360	U	67	U	3,200 U
	100000	100000	850	U	16		1,900	U	31	U	840	U	89	U	17	U	790 U
Phenanthrene Pyrene	100000	100000	850	U	49		1,900	U	31	U	840	U	210	-	17	U	790 U

Page 3 of 5

Notes:
All concentrations are µg/kg (ppb)
'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
'Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

SAMPLE ID	Unrestricted	Restricted	PWG-DW-20	no 27	PWG-DW-20	10 20	PWG-DW-200	10.20	PWG-DW-2008	30	PWG-DW-2008-3	PWG-DW-2008	0 22	PWG-DW-2008-34	PWG-DW-2008-37
LAB SAMPLE ID	SCO'	Residential	L0813447-		L0813447-		L0813447-0		L0813447-05		L0813447-06	L0813447-0		L0813447-08	L0813447-09
SAMPLING DATE			9/10/200		9/10/200		9/10/200		9/10/2008		9/10/2008	9/10/2008		9/10/2008	9/10/2008
SAMPLE DEPTH (ft.) Semivolatile Organics by EPA 8270C			12.5-13		12-12.5		10-10.5		8.5-9		8-8.5	7-7.5		5.5-6	11-11.5
1,2,4,5-Tetrachlorobenzene	NS	NS	1,700	U	2,000	U	1,800	U	41,000	U	20,000 L		U	30,000 U	120,000 U
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	NS NS	NS NS	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U	31,000 U 31,000 U
1,3-Dichlorobenzene	NS NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
1,4-Dichlorobenzene	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
2,4,5-Trichlorophenol	NS	NS	430 430	U	490	U	440 440	U	10,000	U	4,900 L		U	7,600 U 7.600 U	31,000 U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	NS NS	NS NS	430 850	U	490 980	U	880	U	10,000	U	4,900 L 9,800 L		U	7,600 U 15,000 U	31,000 U 62,000 U
2,4-Dimethylphenol	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
2,4-Dinitrophenol	NS	NS	1,700	U	2,000	U	1,800	U	41,000	U	20,000 L		U	30,000 U	120,000 U
2,4-Dinitrotoluene 2,6-Dinitrotoluene	NS NS	NS NS	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U	31,000 U 31,000 U
2-Chloronaphthalene	NS NS	NS	510	U	590	U	530	U	12,000	U	5,900 L		U	9,100 U	37,000 U
2-Chlorophenol	NS	NS	510	U	590	U	530	U	12,000	U	5,900 L		U	9,100 U	37,000 U
2-Methylnaphthalene	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L			7,600 UJ	31,000 U
2-Methylphenol 2-Nitroaniline	NS NS	NS NS	510 430	U	590 490	U	530 440	U	12,000	U	5,900 L 4,900 L		U	9,100 U 7,600 U	37,000 U 31,000 U
2-Nitrophenol	NS	NS	1,700	U	2,000	U	1,800	U	41,000	U	20,000 L		U	30,000 U	120,000 U
3,3'-Dichlorobenzidine	NS	NS	850	U	980	U	880	U	20,000	U	9,800 L		U	15,000 U	62,000 U
3-Methylphenol/4-Methylphenol 3-Nitroaniline	NS NS	NS NS	510 430	U	590	U	530 440	U	12,000	U	5,900 L		U	9,100 U 7.600 U	37,000 U
4,6-Dinitro-o-cresol	NS NS	NS NS	1,700	U	490 2,000	U	1,800	U	41,000	U	4,900 L 20,000 L		U	7,600 U 30,000 U	31,000 U 120,000 U
4-Bromophenyl phenyl ether	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L	7,200	U	7,600 U	31,000 U
4-Chloroaniline	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS NS	NS NS	430 600	U	490 690	U	440 610	U	10,000	U	4,900 L 6,900 L		U	7,600 U 11,000 U	31,000 U 43,000 U
4-Nitrophenol	NS NS	NS NS	850	U	980	U	880	U	20,000	U	9,800 L		U	15,000 U	43,000 U
Acenaphthene	20000	100000	430	U	490	U	440	U	10,000	U	4,900 L	7,200	U	7,600 U	31,000 U
Acetaphopopo	100000	100000 NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Acetophenone Anthracene	NS 100000	NS 100000	1,700 430	U	2,000 490	U	1,800 440	U	41,000 10,000	U	20,000 L 4,900 L		U	30,000 U 7,600 U	120,000 U 31,000 U
Benzo(a)anthracene	1000	1000	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Benzo(a)pyrene	1000	1000	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Benzo(b)fluoranthene	1000	1000	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U 7.600 U	31,000 U 31,000 U
Benzo(ghi)perylene Benzo(k)fluoranthene	800	3900	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Benzoic Acid	NS	NS	4,300	U	4,900	U	4,400	U	100,000	U	49,000 L		U	76,000 U	310,000 U
Benzyl Alcohol	NS	NS	850	U	980	U	880	U	20,000	U	9,800 L		U	15,000 U	62,000 U
Biphenyl	NS NS	NS NS	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U 7,600 U	31,000 U 31,000 U
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	NS NS	NS NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Bis(2-chloroisopropyl)ether	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Bis(2-Ethylhexyl)phthalate	NS	NS	850	U	980	U	880	U	23,000		9,800 L			15,000 U	62,000 U
Butyl benzyl phthalate Carbazole	NS NS	NS NS	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U	31,000 U 31,000 U
Chrysene	1000	3900	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Di-n-butylphthalate	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Di-n-octylphthalate	NS	NS 330	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Dibenzo(a,h)anthracene Dibenzofuran	330 NS	NS NS	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U	31,000 U 31,000 U
Diethyl phthalate	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Dimethyl phthalate	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Fluoranthene Fluorene	100000 30000	100000	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U	31,000 U 31,000 U
Hexachlorobenzene	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Hexachlorobutadiene	NS	NS	850	U	980	U	880	U	20,000	U	9,800 L	14,000	U	15,000 U	62,000 U
Hexachlorocyclopentadiene	NS	NS	850	U	980	U	880	U	20,000	U	9,800 L			15,000 UJ	62,000 U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	430 430	U	490 490	U	440 440	U	10,000	U	4,900 L 4,900 L		U	7,600 U	31,000 U 31,000 U
Isophorone	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 UJ	31,000 U
n-Nitrosodi-n-propylamine	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Naphthalene Nitrobenzene	12000 NS	100000 NS	430 430	U	490	U	440 440	U	10,000	U	4,900 L		U	7,600 U 7.600 U	31,000 U
Nitrobenzene NitrosoDiPhenylAmine(NDPA)/DPA	NS NS	NS NS	1,300	U	490 1,500	U	1,300	U	31,000	U	4,900 L 15,000 L		U	7,600 U 23,000 U	31,000 U 92,000 U
P-Chloro-M-Cresol	NS	NS	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	31,000 U
Pentachlorophenol	800	6700	1,700	U	2,000	U	1,800	U	41,000	U	20,000 L		U	30,000 U	120,000 U
Phenanthrene Phenol	100000 330	100000	430 600	U	490 690	U	440 610	U	10,000	U	4,900 L 6,900 L		U	7,600 U 11,000 U	31,000 U 43,000 U
Pyrene	100000	100000	430	U	490	U	440	U	10,000	U	4,900 L		U	7,600 U	43,000 U
Semivolatile Organics by EPA 8270C-SI	M		•									·			
2-Chloronaphthalene	NS NC	NS NS	17	U	98	U	88	U	2,700	U	2,000 L		U	2,000 U	2,500 U
2-Methylnaphthalene Acenaphthene	NS 20000	NS 100000	17 17	U	98 98	U	88 88	U	2,700 2,700	U	2,000 L 2,000 L		U	11,000 2,000 U	2,500 U 2,500 U
Acenaphthylene	100000	100000	17	U	98	U	88	U	2,700	U	2,000 L		U	2,000 U	2,500 U
Anthracene	100000	100000	17	U	98	U	88	U	2,700	U	2,000 L	1,900	U	2,000 U	2,500 U
Benzo(a)anthracene	1000	1000	17	U	98	U	88	U	2,700 5,400	U	2,000 L 2.000 L		C C	2,000 U 2.000 U	2,500 U 2,500 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	17 17	U	210 180		88	U	5,400		2,000 L		U	2,000 U	2,500 U 2,500 U
Benzo(ghi)perylene	100000	100000	17	U	98	U	88	U	5,900		2,000 L		U	2,000 U	2,500 U
Benzo(k)fluoranthene	800	3900	17	U	180		88	U	4,900		2,000 L		U	2,000 U	2,500 U
Chrysene Dibenzo(a,h)anthracene	1000 3300	3900 330	17 17	U	98 98	U	88 88	U	2,700 2,700	U	2,000 L 2,000 L		U	2,000 U 2,000 U	2,500 U 2,500 U
postikoja, njalili li acerie	100000	100000	17	U	220	U	88	U	6,700	U	2,000 L	1,900	U	2,000 U	2,500 U 4,800
Fluoranthene		100000	17	U	98	U	88	U	2,700	U	2,000 L	1,900	U	2,000 U	2,500 U
	30000	100000			390	U	350	U	11.000	U	7,800 L	7,700	U	8,100 U	9,900 U
Fluoranthene Fluorene Hexachlorobenzene	30000 NS	NS	68	U						_			_		
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene	30000 NS NS	NS NS	43	U	240	U	220 350	U	6,800	U	4,900 L	4,800	U	5,000 U	6,200 U
Fluoranthene Fluorene Hexachlorobenzene	30000 NS	NS				U	220 350 88	U U	6,800 11,000 2,700	U U		4,800 7,700	U		6,200 U 9,900 U 2,500 U
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane	30000 NS NS NS	NS NS NS	43 68	U	240 390	U	350	U	11,000	U	4,900 L 7,800 L	4,800 7,700 1,900	U	5,000 U 8,100 U	9,900 U
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane indeno(1,2,3-cd)Pyrene Naphthalene Pentachlorophenol	30000 NS NS NS 500 12000	NS NS NS 500 100000 6700	43 68 17 17 68	U U U	240 390 98 98 390	U U U	350 88 88 350	U U U	11,000 2,700 2,700 11,000	U U U	4,900 L 7,800 L 2,000 L 2,000 L 7,800 L	4,800 7,700 1,900 1,900 7,700	U U U	5,000 U 8,100 U 2,000 U 2,000 U 8,100 U	9,900 U 2,500 U 2,500 U 9,900 U
Fluoranthene Fluorene Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Indeno(1,2.3-cd)Pyrene Naphthalene	30000 NS NS NS 500 12000	NS NS NS 500 100000	43 68 17 17	U U U	240 390 98 98	U U	350 88 88	U U	11,000 2,700 2,700	U U U	4,900 L 7,800 L 2,000 L 2,000 L	4,800 7,700 1,900 1,900 7,700	U	5,000 U 8,100 U 2,000 U 2,000 U	9,900 U 2,500 U 2,500 U

Notes:
All concentrations are µg/kg (ppb)
'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
'Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

SAMRLE ID LAR SAMPLE ID SAMPLING DATE SAMPLE DEPHI (IT) SAMPLE DEPHI (IT) SAMPLE DEPHI (IT) SEMPLOATED SAMPLE DEPHI (IT) 1.2.4.5.1.6trachlorobenzene 1.2.4.Dichlorobenzene 1.3.Dichlorobenzene 1.4.Dichlorobenzene 2.4.5.Tichlorophenol 2.4.4.Dichlorophenol 2.4.Dichlorophenol 2.4.Dichlorophenol 2.4.Dichlorophenol 2.4.Dichlorophenol	NS NS	Restricted Residential SCO ²	PWG-DW-2008-38 L0813447-11 9/10/2008 7-7.5	PWG-DW-2008-39 L0813447-12 9/10/2008	PWG-DW-2008-40 L0813447-13 9/10/2008	PWG-DW-2008-41 L0813447-14 9/10/2008	L0813344-20 9/8/2008	PWG-LP-2008-01 10/3/2008 L0814755-01
SAMRE DEPTH (ft.) Semivolatile Organics by EPA 8270C 1,2,4,5-fetrachlorobenzene 1,2,4-filchlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 2,4-5-filchlorophenol 2,4-5-filchlorophenol 2,4-Dimetrylphenol 2,4-Dimetrylphenol	NS				9/10/2008	9/10/2008	9/8/2008	
1.2.4.5-letrachlorobenzene 1.2-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.3-Dichlorobenzene 1.4-Dichlorobenzene 2.4.5-lirichlorophenol 2.4.5-lirichlorophenol 2.4-Dichlorophenol 2.4-Dichlorophenol	NS				6-6.5		7.75-8.25	9-11
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4-5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dichlorophenol	NS	NS	29,000 U	28,000 U	7,300 U	1,700 U	1,600 U	1.800 U
1,3-Dichlorobenzene 1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
1,4-Dichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol		NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2.4,5-Trichlorophenol 2.4,6-Trichlorophenol 2.4-Dichlorophenol 2.4-Dimethylphenol	NS NS	NS NS	7,400 U 7.400 U	7,100 U 7.100 U	1,800 U 1.800 U	420 U 420 U	390 U 390 U	440 U
2,4-Dichlorophenol 2,4-Dimethylphenol	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2,4-Dimethylphenol	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
	NS NS	NS NS	15,000 U 7.400 U	14,000 U 7.100 U	3,700 U 1.800 U	840 U 420 U	780 U 390 U	880 U 440 U
	NS NS	NS NS	7,400 U 29.000 U	28,000 U	1,800 U 7.300 U	1.700 U	390 U 1,600 U	440 U 1.800 U
2,4-Dinitrotoluene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2,6-Dinitrotoluene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2-Chloronaphthalene 2-Chlorophenol	NS NS	NS NS	8,800 U 8,800 U	8,600 U 8,600 U	2,200 U 2,200 U	510 U	470 U 470 U	530 U
2-Chlorophenoi 2-Methylnaphthalene	NS NS	NS NS	8,800 U 7,400 U	7,100 U	1,800 U	510 U 420 U	470 U 390 U	440 U
2-Methylphenol	NS	NS	8,800 U	8,600 U	2,200 U	510 U	470 U	530 U
2-Nitroaniline	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
2-Nitrophenol 3,3'-Dichlorobenzidine	NS NS	NS NS	29,000 U 15,000 U	28,000 U 14,000 U	7,300 U 3,700 U	1,700 U 840 U	1,600 U 780 U	1,800 U 880 U
3-Methylphenol/4-Methylphenol	NS	NS NS	8,800 U	8,600 U	2,200 U	510 U	470 U	530 U
3-Nitroaniline	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
4,6-Dinitro-o-cresol	NS	NS	29,000 U	28,000 U	7,300 U	1,700 U	1,600 U	1,800 U
4-Bromophenyl phenyl ether 4-Chloroaniline	NS NS	NS NS	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
4-Chlorophenyl phenyl ether	NS NS	NS NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
4-Nitroaniline	NS	NS	10,000 U	10,000 U	2,600 U	590 U	550 U	610 U
4-Nitrophenol	NS	NS 100000	15,000 U	14,000 U	3,700 U	840 U	780 U	880 U
Acenaphthene Acenaphthylene	20000 100000	100000	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
Acetophenone	NS	NS	29,000 U	28,000 U	7,300 U	1,700 U	1,600 U	1,800 U
Anthracene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzo(a)anthracene	1000	1000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	7,400 U 7.400 U	7,100 U 7.100 U	1,800 U 1,800 U	420 U	390 U	440 U
Benzo(ghi)perylene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzo(k)fluoranthene	800	3900	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Benzoic Acid	NS NS	NS NS	74,000 U 15.000 U	71,000 U 14.000 U	18,000 U 3,700 U	4,200 U 840 U	3,900 U 780 U	4,400 U 880 U
Benzyl Alcohol Biphenyl	NS NS	NS NS	7,400 U	14,000 U 7,100 U	3,700 U 1,800 U	420 U	780 U 390 U	880 U 440 U
Bis(2-chloroethoxy)methane	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Bis(2-chloroethyl)ether	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Bis(2-chloroisopropyl)ether	NS NS	NS NS	7,400 U 15,000 U	7,100 U 200.000	1,800 U 3,700 U	420 U 840 U	390 U 780 U	440 U 880 U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	NS	NS NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Carbazole	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Chrysene	1000	3900	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Di-n-butylphthalate Di-n-octylphthalate	NS NS	NS NS	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U 420 U	390 U	440 U
Dibenzo(a,h)anthracene	330	330	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Dibenzofuran	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Diethyl phthalate	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Dimethyl phthalate Fluoranthene	NS 100000	NS 100000	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U	390 U	440 U
Fluorene	30000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Hexachlorobenzene	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Hexachlorobutadiene	NS	NS	15,000 U	14,000 U	3,700 U	840 U	780 U	880 U
Hexachlorocyclopentadiene Hexachloroethane	NS NS	NS NS	15,000 U 7,400 U	14,000 U 7,100 U	3,700 U 1,800 U	840 U 420 U	780 U 390 U	880 U 440 U
Indeno(1,2,3-cd)Pyrene	500	500	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Isophorone	NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
n-Nitrosodi-n-propylamine Naphthalene	NS 12000	NS 100000	7,400 U 7,400 U	7,100 U 7,100 U	1,800 U 1,800 U	420 U	390 U	440 U
Nitrobenzene	12000 NS	NS	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
NitrosoDiPhenylAmine(NDPA)/DPA	NS	NS	22,000 U	21,000 U	5,500 U	1,300 U	1,200 U	1,300 U
P-Chloro-M-Cresol	NS	NS 1700	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Pentachlorophenol Phenanthrene	800 100000	6700 100000	29,000 U 7,400 U	28,000 U 7,100 U	7,300 U 1,800 U	1,700 U 420 U	1,600 U 390 U	1,800 U 440 U
Phenol	330	100000	10,000 U	10,000 U	2,600 U	420 U	550 U	610 U
Pyrene	100000	100000	7,400 U	7,100 U	1,800 U	420 U	390 U	440 U
Semivolatile Organics by EPA 8270C-SIN		B.100	2.005	1.000	1.500	04		10
2-Chloronaphthalene 2-Methylnaphthalene	NS NS	NS NS	2,000 U 2,400	1,900 U 1,900 U	1,500 U	84 U	16 U	18 U
Acenaphthene	20000	100000	2,400 U	1,900 U	1,500 U	84 U	16 U	18 U
Acenaphthylene	100000	100000	2,000 U	1,900 U	1,500 U	84 U	47	18 U
Anthracene Bonze(a) anthracene	100000	100000	2,000 U	1,900 U	1,500 U	84 U	17	18 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000	2,000 U 4,200	1,900 U 1,900 U	1,500 U 1,500 U	84 U 84 U	96 120	18 U
Benzo(b)fluoranthene	1000	1000	3,900	3,300	1,500 U	84 U	110	18 U
Benzo(ghi)perylene	100000	100000	4,500	1,900 U	1,500 U	84 U	100	18 U
Benzo(k)fluoranthene	800	3900	4,000	3,300	1,500 U	84 U	100	18 U
Chrysene Dibenzo(a,h)anthracene	1000 3300	3900 330	2,000 U	1,900 U	1,500 U 1,500 U	84 U 84 U	77 49	18 U
Fluoranthene	100000	100000	5,700	4,300	1,500 U	84 U	75	18 U
Fluorene	30000	100000	2,000 U	1,900 U	1,500 U	84 U	16 U	18 U
Hexachlorobenzene	NS	NS	7,800 U	7,600 U	5,900 U	340 U	63 U	70 U
Hexachlorobutadiene Hexachloroethane	NS NS	NS NS	4,900 U 7,800 U	4,800 U 7,600 U	3,700 U 5,900 U	210 U 340 U	39 U 63 U	44 U 70 U
Indeno(1,2,3-cd)Pyrene	NS 500	NS 500	4,800 U	1,900 U	1,500 U	340 U	91	70 U
Naphthalene	12000	100000	2,000 U	1,900 U	1,500 U	84 U	16 U	18 U
Pentachlorophenol Phenanthrene	800	6700	7,800 U	7,600 U	5,900 U	340 U	63 U	70 U
	100000 100000	100000	2,600 5,800	1,900 U 4,500	1,500 U 1,500 U	84 U 84 U	16 U	18 U

Notes:
All concentrations are µg/kg (ppb)
I'unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Envir
Restlicted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375
U - Analyte not detected above the laboratory MDL
J - Estimated value
NS - No standard established
Bold text indicates compounds above the laboratory MDL
Green highlighting indicates exceedance of Unrestricted Use SCO
Yellow highlighting indicates exceedance of Restricted Residential SCC

Table 8

Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-0	1 PWG-DW-2008-	-02	PWG-DW-2008-0	3 F	PWG-DW-20	08-04	PWG-DW-200	8-05	PWG-DW-20	08-06	PWG-DW-2	008-07	PWG-DW-2	008-09
LAB SAMPLE ID	SCO'	Residential	9/8/2008	9/8/2008		9/8/2008		9/8/200	8	9/8/2008		9/8/2008	3	9/8/20		9/8/200	08
SAMPLING DATE		SCO²	L0813344-04	L0813344-05		L0813344-06		L0813344-	-07	L0813344-0	08	L0813344-	09	L081334	4-10	L0813344	4-12
SAMPLE DEPTH (ft.)			7.25-7.75	5.25-5.75		8.75-9.25		7.25-7.7	5	6.75-7.25		6.75-7.25		6.75-7.	25	6.75-7.2	25
Total Metals																	
Aluminum	NS	NS	4,300	2,600		1,300		1,400		1,200		1,100		1,400		2,500	
Antimony	NS	NS	2.7	J 2.9	U	2.9 L	J	3.2	U	2.7	U	2.9	U	3.2	U	3	U
Arsenic	13	16	3.6	0.83		0.69		0.84		1.1		0.8		0.82		0.77	
Barium	350	400	28	9.8		5.2		9.7		17		12		7.8		9.7	
Beryllium	7.2	72	0.27	J 0.29	U	0.29 L	J	0.32	U	0.27	U	0.29	U	0.32	U	0.3	U
Cadmium	2.5	4.3	2.5	0.58	U	0.58 L	J	0.64	U	0.53	U	0.57	U	0.64	U	0.59	U
Calcium	NS	NS	6,700	24,000		560		3,600		8,900		14,000		13,000		230	
Chromium	30	180	14	2.3		2.7		3.6		2.3		2		9.2		6.3	
Cobalt	NS	NS	2.6	3.3		1.2 L	J	1.3	U	1.1	С	1.1	U	1.3	U	1.2	U
Copper	50	270	54	18		4.6		5.1		3.1		5.6		14		4.9	
Iron	NS	NS	5,300	6,700		1,800		3,000		2,400		2,000		2,400		3,600	
Lead	63	400	470	20		30		35		32		26		60		21	
Magnesium	NS	NS	4,400	15,000		520		2,100		5,700		8,600		8,800		460	
Manganese	1600	2000	37	58		13		20		34		29		26		13	
Mercury	0.18	0.81	0.21	0.1	U	0.09 L	J	0.09	U	0.09	С	0.09	U	0.11	U	0.1	С
Nickel	30	310	11	3.6		2		2.1		1.4		1.6		3.7		3	
Potassium	NS	NS	260	220		140 L	J	160	U	130	С	140	U	170		150	С
Selenium	3.9	180	1.1	J 1.2	U	1.2 L	J	1.3	U	1.1	С	1.1	U	1.3	U	1.2	С
Silver	2	180	1.2	0.58	U	0.58 L	J	0.64	U	0.53	U	0.57	U	0.64	U	0.59	U
Sodium	NS	NS	110	150		120 L	J	130	U	110	С	110	U	130	U	120	С
Thallium	NS	NS	1.1	J 1.2	U	1.2 L	J	1.3	U	1.1	U	1.1	U	1.3	U	1.2	U
Vanadium	NS	NS	31	24		4.1		5.6		3.2		3.1		9.3		9.9	
Zinc	109	10000	250	120		29		45		21		31		110		78	

Notes:

All concentrations are mg/kg (ppm)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-10	PWG-DW-20	NR-11	PWG-DW-200	18-12	PWG-DW-200	NR-13	PWG-DW-200	ng.14	PWG-DW-200	18-15	PWG-DW-20	N8-16	PWG-DW-2008-17
LAB SAMPLE ID	SCO'	Residential	9/8/2008	9/8/2008		9/8/2008		9/8/2008		9/8/2008		9/8/2008		9/8/200		9/8/2008
SAMPLING DATE		SCO ²	L0813344-13	L0813344-		L0813344-1		L0813344-		L0813344-		L0813344-		L0813344-		L0813344-22
SAMPLE DEPTH (ft.)			6.25-6.75	6.75-7.25		7.25-7.75		7.25-7.75		6-6.5		7-7.5		5.5-6		5.5-6
Total Metals										2 2.2						
Aluminum	NS	NS	3,000	1,900		3,000		1,500		2,300		1,700	J	1,600		3,700
Antimony	NS	NS	3.3 U	2.9	U	3	U	2.8	U	3.5	U	2.8	J	2.7	U	2.8 U
Arsenic	13	16	1.3	1.6		1.2		1.1		0.95		1.3	J	1.5		3.2
Barium	350	400	18	15		48		16		13		16	J	20		32
Beryllium	7.2	72	0.33 U	0.29	U	0.3	U	0.28	U	0.35	U	0.28	U	0.27	U	0.28 U
Cadmium	2.5	4.3	1	0.58	U	0.59	U	0.57	U	0.7	U	0.57	U	0.54	U	0.56 U
Calcium	NS	NS	53,000	14,000		17,000		7,000		10,000		6,600	J	33,000		8,200
Chromium	30	180	7.3	6.5		5.7		2.5		6.4		5.2		3.1		12
Cobalt	NS	NS	1.5	1.2		1.5		1.1	U	2.8		1.1	U	1.4		2.1
Copper	50	270	25	14		6		3.1		22		4.7	J	5.8		20
Iron	NS	NS	5,000	2,700		4,600		2,400		6,200		4,600	J	3,200		7,700
Lead	63	400	82	70		42		26		65		36	J	51		160
Magnesium	NS	NS	32,000	8,500		12,000		3,900		6,300		2,900	J	19,000		5,400
Manganese	1600	2000	87	29		47		31		43		47		53		58
Mercury	0.18	0.81	0.42	0.31		0.1	U	0.09	U	0.13		0.09	UJ	0.08	U	0.17
Nickel	30	310	5.9	3.8		2.6		1.4		4.7		2	J	2.8		6
Potassium	NS	NS	210	160		620		140	U	180	U	140	U	220		240
Selenium	3.9	180	1.3 U	1.2	U	1.2	U	1.1	U	1.4	С	1.1	U	1.1	U	1.1 U
Silver	2	180	0.65 U	0.58	U	0.59	U	0.57	U	0.7	С	0.57	U	0.54	U	0.56 U
Sodium	NS	NS	130 U	120	U	120	U	110	U	170		110	U	110	U	110 U
Thallium	NS	NS	1.3 U	1.2	U	1.2	U	1.1	U	1.4	U	1.1	UJ	1.1	U	1.1 U
Vanadium	NS	NS	12	8.9		8.6		3.8		21		5.9	J	4.8		14
Zinc	109	10000	170	69		42		24		100		35	J	47		140

Notes:

All concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted U

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-18	PWG-DW-2008-19	PWG-DW-2008-20	PWG-DW-2008-22	PWG-DW-2008-23	PWG-DW-2008-24	PWG-DW-2008-25	PWG-DW-2008-26
LAB SAMPLE ID	SCO'	Residential	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008	9/8/2008
SAMPLING DATE		SCO²	L0813344-23	L0813344-24	L0813344-25	L0813344-26	L0813344-27	L0813344-28	L0813344-29	L0813344-30
SAMPLE DEPTH (ft.)			4-4.5	4.5-5	4.5-5	5.25-5.75	3-3.5	6-6.5	5.75-6.25	4.25-4.75
Total Metals										
Aluminum	NS	NS	1,500	2,500	4,500	2,200	1,400	2,800	16,000	1,100
Antimony	NS	NS	3 U	2.8 U	3.4 U	2.6 U	3 U	3.1 U	3 U	2.9 U
Arsenic	13	16	0.76	1.6	1.6	7.2	1	1.4	3	0.58 U
Barium	350	400	7.9	24	46	6.9	10	6.2	43	7.3
Beryllium	7.2	72	0.3 U	0.28 U	0.34 U	0.34	0.3 U	0.31 U	0.3 U	0.29 U
Cadmium	2.5	4.3	0.6 U	0.56 U	3.3	0.53 U	0.61 U	0.61 U	0.6 U	0.58 U
Calcium	NS	NS	31,000	7,200	10,000	11,000	13,000	3,400	3,900	6,400
Chromium	30	180	7.8	6.8	22	26	10	7.2	20	4.7
Cobalt	NS	NS	2.3	1.4	4.6	1.7	2	1.2 U	4.4	1.6
Copper	50	270	42	12	73	6.1	170	13	14	11
Iron	NS	NS	6,000	5,000	10,000	15,000	7,600	4,400	24,000	3,600
Lead	63	400	44	120	960	12	67	37	13	14
Magnesium	NS	NS	18,000	4,000	6,700	7,200	8,300	2,300	5,200	4,000
Manganese	1600	2000	64	38	89	34	58	15	130	34
Mercury	0.18	0.81	0.1 U	0.09 U	1.1	0.09 U	0.13	0.29	0.1 U	0.1 U
Nickel	30	310	5.4	3.5	17	3.8	13	4	12	2.3
Potassium	NS	NS	150 U	180	320	130	180	150 U	1300	150 U
Selenium	3.9	180	1.2 U	1.1 U	1.3 U	1 U	1.2 U	1.2 U	1.2 U	1.2 U
Silver	2	180	0.6 U	0.56 U	0.67 U	0.53 U	0.61 U	0.61 U	0.6 U	0.58 U
Sodium	NS	NS	120 U	110 U	300	100 U	120 U	120 U	120 U	120 U
Thallium	NS	NS	1.2 U	1.1 U	1.3 U	2.1 U	1.2 U	1.2 U	2.4 U	1.2 U
Vanadium	NS	NS	19	8.4	43	14	12	10	31	17
Zinc	109	10000	50	110	340	24	180	54	37	54

Notes:

All concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted U

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-2008-		PWG-DW-2008	3-28	PWG-DW-20	08-29	PWG-DW-20	08-30	PWG-DW-20	08-31	PWG-DW-20	08-33	PWG-DW-20	08-34	PWG-DW-200	8-37
LAB SAMPLE ID	sco'	Residential	L0813447-02		L0813447-03		L0813447-	04	L0813447-	-05	L0813447-	-06	L0813447-		L0813447-	-08	L0813447-0	9
Sampling date		SCO⁴	9/10/2008		9/10/2008		9/10/200	8	9/10/200	8	9/10/200	8	9/10/200	8	9/10/200	8	9/10/2008	
Sample Depth (ft.)			12.5-13		12-12.5		10-10.5		8.5-9		8-8.5		7-7.5		5.5-6		11-11.5	
Total Metals																		
Aluminum	NS	NS	15,000		12,000		2,100		7,000		5,400		2,300		4,200		9,600	
Antimony	NS	NS	3.2	U	3.4	U	3	U	5	U	3.6	U	3.6	U	3.7	UJ	4.2	U
Arsenic	13	16	0.9		2.1		0.61	U	1.1		1.3		0.92		1.3		4.2	
Barium	350	400	37		41		9.3		74		35		21		41		58	
Beryllium	7.2	72	0.36		0.45		0.3	U	0.5	U	0.36	U	0.36	U	0.37	U	0.42	U
Cadmium	2.5	4.3	0.63		2.2		0.61	U	4		1.2		0.84		1.8		6.3	
Calcium	NS	NS	520		760		130		20,000		4,700		12,000		14,000		3,100	
Chromium	30	180	15		14		3.2		120		29		30		39	J	91	
Cobalt	NS	NS	4		5.7		1.2	U	6.2		2.6		1.8		3		5.5	
Copper	50	270	13		30		6.9		96		24		24		35	J	240	
Iron	NS	NS	16,000		11,000		2,500		10,000		7,400		3,700		7,900		11,000	
Lead	63	400	10		160		36		970		520		210		300	J	890	
Magnesium	NS	NS	3,200		1,200		340		9,900		3,200		7,300		8,300		2,200	
Manganese	1600	2000	120		66		15		110		54		36		54	J	64	
Mercury	0.18	0.81	0.1	U	0.12	U	0.1	U	0.85		0.59		0.27		4.1		1.6	
Nickel	30	310	14		15		3.4		34		14		9.7		14		42	
Potassium	NS	NS	1100		480		160		540		340		200		300		650	
Selenium	3.9	180	1.3	U	1.4	U	1.2	U	2	U	1.4	U	1.4	U	1.5	U	2.5	
Silver	2	180	0.63	U	0.68	U	0.61	U	1.3		0.72	U	0.72	U	4.4		2.9	
Sodium	NS	NS	130	U	140	U	120	U	3200		140	U	140	U	150	U	170	U
Thallium	NS	NS	1.3	U	1.4	U	1.2	U	2	U	1.4	U	1.4	U	1.5	U	1.7	U
Vanadium	NS	NS	27		30		5.3		58		33		22		26		70	
7inc	109	10000	61		210		64		480		240		170		270		730	

Notes:

All concentrations are mg/kg (ppm)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted U

Table 8 Leaching Structure Soil/Sediment Sample Analytical Data Summary Total Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	PWG-DW-200	8-38	PWG-DW-20	08-39	PWG-DW-200	8-40	PWG-DW-20	08-41	PWG-LP-20	08-01	PWG-LP-20	08-01
LAB SAMPLE ID	sco'	Residential	L0813447-	11	L0813447-	-12	L0813447-1		L0813447-	14	9/8/200	18	10/3/20	08
Sampling date		SCO ²	9/10/2008		9/10/200	18	9/10/2008	3	9/10/200	18	L0813344		L0814755	-01
Sample Depth (ft.)			7-7.5		8.5-9		6-6.5		9-9.5		7.75-8.2	25	9-11	
Total Metals														
Aluminum	NS	NS	2,600		2,900		2,400		820		1,500		1,500	
Antimony	NS	NS	3.5	U	3.3	U	2.5	U	3.1	С	2.8	U	3.2	U
Arsenic	13	16	1		0.91		0.51		0.62	С	1.1		0.64	U
Barium	350	400	24		24		15		1.8		12		9.6	
Beryllium	7.2	72	0.35	U	0.33	U	0.25	U	0.31	U	0.28	U	0.32	U
Cadmium	2.5	4.3	0.77		1.4		0.82		0.62	U	0.56	U	0.64	U
Calcium	NS	NS	28,000		16,000		16,000		170		710		440	
Chromium	30	180	25		30		13		4		5.6		6.9	
Cobalt	NS	NS	2.3		2.3		2		1.2	U	2		1.3	U
Copper	50	270	33		39		12		3.6		160		36	
Iron	NS	NS	5,900		4,600		5,300		1,300		10,000		6,600	
Lead	63	400	120		170		90		5		59		23	
Magnesium	NS	NS	18,000		10,000		10,000		120		700		410	
Manganese	1600	2000	77		49		85		3.4		66		33	
Mercury	0.18	0.81	0.37		0.45		1		0.17		0.1		0.1	U
Nickel	30	310	9.2		11		7.8		1.5		5.4		3	
Potassium	NS	NS	330		340		260		150	U	140	U	160	U
Selenium	3.9	180	1.4	U	1.3	U	1	U	1.2	U	1.1	U	1.3	U
Silver	2	180	0.98		0.7		0.76		0.62	U	0.56	U	0.64	U
Sodium	NS	NS	140	U	130	U	100	U	120	U	110	U	130	U
Thallium	NS	NS	1.4	U	1.3	U	1	U	1.2	U	1.1	U	1.3	U
Vanadium	NS	NS	25		26		13		2.1		3.8		6	
Zinc	109	10000	270		390		160		18		360		120	

Notes:

All concentrations are mg/kg (ppm)

Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Pa

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYC

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL Green highlighting indicates exceedance of Unrestricted U

Table 9

Historical Storm Drain Soil/Sediment Sample Analytical Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

			•	0111101	Daiby Diugs	Distrib	ation conte									
SAMPLE ID	Unrestricted	Restricted	SD-1		SD-2		SD-3		SD-4		SD-5		SD-€		SD-	7
LAB SAMPLE ID	sco'	Residential	240847.		240847.0		240847.		240847.		240847.		240847		240847	
SAMPLING DATE		SCO ²	3/3/200	04	3/3/200)4	3/3/200	04	3/3/200	04	3/3/200	04	3/3/20	004	3/3/20	004
SAMPLE DEPTH (ft.)																
Volatile Organics by EPA 8260B																
Tetrachloroethene	1,300	19,000	20		7.2	U	1,100		6.8	U	6.8	U	6.7	U	6.9	U
Trichloroethene	470	21,000	24		7.2	U	36		6.8	U	6.8	U	6.7	U	6.9	U
cis-1,2-Dichloroethene	250	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
trans-1,2-Dichloroethene	190	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1-Dichloroethene	330	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Vinyl chloride	20	900	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1 1 1 Triphleresibons	/00	100,000	7./		7.0		7.0		/ 0				/ 7		/ 0	- 11
1,1,1-Trichloroethane	680 NC	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1,2,2-Tetrachloroethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1,2-Trichloroethane	NS	NS 24 ago	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1-Dichloroethane	270 NG	26,000 NG	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,1-Dichloropropene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2,3-Trichlorobenzene	NS	NS	7.6	U		U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2,3-Trichloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2,4-Trichlorobenzene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2,4-Trimethylbenzene	3,600	52,000	7.6	U	7.2	U	22		840		6.8	U	6.7	U	6.9	U
1,2-Dibromo-3-chloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2-Dibromoethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2-Dichlorobenzene	1,100	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2-Dichloroethane	20	3,100	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,2-Dichloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,3,5-Trimethylbenzene	8,400	52,000	7.6	U	7.2	U	8.7		1,200		6.8	U	6.7	U	6.9	U
1,3-Dichlorobenzene	2,400	49,000	7.6	U	7.2	U	48		6.8	U	6.8	U	6.7	U	6.9	U
1,3-Dichloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
1,4-Dichlorobenzene	1,800	13,000	7.6	U	7.2	U	120		48		6.8	U	6.7	U	6.9	U
2,2-Dichloropropane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Acetone	50	100,000	110		72	U	72	U	68	U	68	U	67	U	69	U
Benzene	60	4,800	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Bromobenzene	NS	NS	7.6	U	7.2	U	7.2	U	25		6.8	U	6.7	U	6.9	U
Bromodichloromethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Bromoform	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Carbon tetrachloride	760	2,400	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Chlorobenzene	1,100	100,000	7.6	U	7.2	U	7.2	U	55		6.8	U	6.7	U	6.9	U
Chloroform	370	49,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
cis-1,3-Dichloropropene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Dibromochloromethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Dibromomethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Ethylbenzene	1,000	41,000	7.6	U	7.2	U	23		370		6.8	U	6.7	U	6.9	U
Hexachlorobutadiene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Isopropylbenzene	NS	NS	7.6	U	7.2	U	7.2	U	300		6.8	U	6.7	U	6.9	U
Methylene chloride	50	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Naphthalene	NS	NS	7.6	U	7.2	U	7.2	U	89		6.8	U	6.7	U	6.9	U
n-Propylbenzene	3,900	100,000	7.6	U	7.2	U	10		750		6.8	U	6.7	U	6.9	U
o-Xylene	260	100,000	11		7.2	U	13		110		6.8	U	6.7	U	6.9	U
p/m-Xylene	260	100,000	7.6	U	14	U	36		160		14	U	13	U	14	U
p-Chlorotoluene	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
p-Isopropyltoluene	NS	NS	14		7.2	U	140		440		6.8	U	6.7	U	6.9	
sec-Butylbenzene	11,000	100,000	7.6	U	7.2	U	7.2	U	480		6.8	U	6.7	U	6.9	U
Styrene	NS	NS	7.6	U	7.2	U	7.2	U	63		6.8	U	6.7	U	6.9	U
tert-Butylbenzene	5,900	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Toluene	700	100,000	7.6	U	7.2	U	7.2	U	160		20		6.7	U	13	
trans-1,3-Dichloropropene	NS	100,000	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U
Trichlorofluoromethane	NS	NS	7.6	U	7.2	U	7.2	U	6.8	U	6.8	U	6.7	U	6.9	U

Notes:

All concentrations are µg/kg (ppb)

 ${}^{\text{'}}\text{Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006}$

'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 10

Historical Storm Drain Soil/Sediment Sample Analytical Data Summary Semi-Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	SD-1	SD-2		SD-3		SD-4		SD-5		SD-6		SD-7	
LAB SAMPLE ID	SCO'	Residential	240847.01	240847.02		240847.03		240847.04		3D-5 240847.05		240847.0		240847.0	27
SAMPLING DATE		SCO ²	3/3/2004	3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/200	
SAMPLE DEPTH (ft.)		300	3/3/2004	3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/2004		3/3/200	4
Semivolatile Organics by EPA 8270C									_						
1,2,4-Trichlorobenzene	NS	NS	450 U	43	U	430	U	410 U	1	41	U	40	U	420	U
1,2-Dichlorobenzene	NS NS	NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
1,3-Dichlorobenzene	NS NS	NS	450 U	43	U	430	U	410 U	_	41	U	40	U	420	U
1,4-Dichlorobenzene	NS	NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
2,4-Dinitrotoluene	NS NS	NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
2,6-Dinitrotoluene	NS NS	NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
2-Chloronaphthalene	NS	NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
2-Methylnaphthalene	NS	NS	450 U	43	U	430	U	520	-	41	U	40	U	420	U
3,3'-Dichlorobenzidine	NS NS	NS	4,500 U	430	U	4,300	U	4,100 U	+	410	U	400	U	420	U
4-Bromophenyl phenyl ether	NS NS	NS	4,500 U	430	U	430	U	410 U	_	410	U	400	U	420	U
4-Chlorophenyl phenyl ether	NS NS	NS NS	450 U	43	U	430	U	410 U	_	41	U	40	U	420	U
Acenaphthene	20,000	100,000	450 U	43	U	430	U	410 U		41	U	40	U	420	U
Acenaphthylene	100,000	100,000	450 U	43	U	430	U	410 U		41	U	40	U	420	U
Anthracene	100,000	100,000	450 U	43	U	430	U	410 U	_	88	U	40	U	420	U
Benzo(a)anthracene	1.000	1,000	450 U	43	U	430	U	520	+	240		75	U	420	U
Benzo(a)pyrene	1,000	1,000	450 U	43	U	430	U	410 U		120		40	U	420	U
Benzo(b)fluoranthene	1,000	1,000	450 U	43	U	430	U	410 U		150		40	U	420	U
	100.000	100.000	450 U	43	U	430	U	560		110		40	U	420	U
Benzo(ghi)perylene	800		450 U	43	U	430	U	410 U	-	150		40	U	420	U
Benzo(k)fluoranthene Bis(2-chloroethyl)ether	NS	3,900 NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
* * * * * * * * * * * * * * * * * * * *	NS NS	NS NS	450 U	43	U	430	U	410 U	_	41	U	40	U	420	U
Bis(2-chloroisopropyl)ether	NS NS	NS NS	6,500	220	U	16.000	U	22.000	-	2.600	U	760	U	1.100	U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	NS NS	NS NS	7,700	43	U	860		4,000	-	2,600		240		420	U
Carbazole	NS NS	NS	450 U	43	U	430	U	4,000 410 U	+	41	U	40	U	420	U
Chrysene	1.000	3,900	450 U	43	U	430	U	730	-	280	U	72	U	420 490	- 0
,	1,000 NS	3,900 NS	450 U	43	U	430	U	2.100	-	41	U	40	U	420	U
Di-n-butylphthalate Di-n-octylphthalate	NS NS	NS NS	450 U	43	U	430	U	1,600	-	41	U	40	U	780	- 0
Dibenzo(a,h)anthracene	330	330	450 U	43	U	430	U	410 U		47	U	40	U	420	U
Dibenzofuran	NS NS	NS NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
Diethyl phthalate	NS NS	NS NS	27,000	43	U	430	U	1,800	-	42	U	40	U	420	U
Dimethyl phthalate	NS NS	NS	450 U	43	U	430	U	410 U	+	42	U	40	U	420	U
Fluoranthene	100.000	100.000	450 U	43	U	480	U	970		340	U	68	U	420	U
Fluorene	30,000	100,000	450 U	43	U	430	U	440	+	43		40	U	420	U
Hexachlorobenzene	30,000 NS	NS	450 U	43	U	430	U	410 U		43	U	40	U	420	U
Hexachlorobutadiene	NS NS	NS	450 U	43	U	430	U	410 U	_	41	U	40	U	420	U
Hexachlorocyclopentadiene	NS NS	NS NS	4.500 U	430	U	4.300	U	4.100 U	_	410	U	400	U	420	U
Hexachloroethane	NS NS	NS	4,500 U	430	U	430	U	4,100 U		410	U	400	U	420	U
Indeno(1,2,3-cd)Pyrene	500	500	450 U	43	U	430	U	480		120	U	40	U	420	U
Isophorone	NS NS	NS NS	450 U	43	U	430	U	480 410 U	+	41	U	40	U	420	IJ
Naphthalene	12.000	100.000	450 U	43	U	430	U	410 U	_	41	U	40	U	420	U
Nitrobenzene	12,000 NS	NS	450 U	43	U	430	U	410 U		41	U	40	U	420	U
NitrosoDiPhenylAmine(NDPA)/DPA	NS NS	NS NS	450 U	43	U	430	U	410 U	_	41	U	40	U	420	U
Phenanthrene	100.000	100.000	450 U	43	U	510	U	2.100	+	360	U	67	U	420 67	U
	100,000	100,000	450 U	43	U	1.000		3,400	-	41	U	250		420	U
Pyrene	100,000	100,000	45U U	43	U	1,000		3,400	- 1	41	U	250		420	U

Notes:

All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006
'Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

- U Analyte not detected above the laboratory MDL
- J Estimated value
- NS No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 11
Storm Drain Soil/Sediment Sample Analytical Data Summary
Metals

Former Darby Drugs Distribution Center

SAMPLE ID	Unrestricted	Restricted	SD-1	SD-2	SD-3	SD-4	SD-5	SD-6	SD-7
LAB SAMPLE ID	SCO1	Residential	240847.01	240847.02	240847.03	240847.04	240847.05	240847.06	240847.07
Sampling date		SCO²	3/3/2004	3/3/2004	3/3/2004	3/3/2004	3/3/2004	3/3/2004	3/3/2004
SAMPLE DEPTH (ft.)									
Total Metals									
Arsenic	13	16	0.76 U	1.2	1.1	1.9	0.68 U	0.67 U	1.1
Barium	350	400	58	14	48	19	49	23	13
Chromium	30	180	94	6.5	42	44	31	19	35
Cadmium	2.5	4.3	2.9	0.72 U	6.4	2.2	0.68 U	0.75	1.4
Lead	63	400	360	38	720	180	130	89	330
Mercury	0.18	0.81	0.23	0.017	0.19	2.9	0.051	1.5	0.04
Selenium	3.9	180	3.3	0.58 U	1.2	0.55 U	0.54 U	0.53 U	0.56 U
Silver	2	180	0.76 U	0.72 U	0.87	4.4	0.68 U	0.67 U	0.82

Notes:

All concentrations are mg/kg (ppm)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

⁴Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

	AMOC!		_														
Sample ID Lab Sample ID	AWQS'	PWG-GW-2008-0 L0813196-22	01	PWG-GW-200 L0813196-0		PWG-GW-2008-0 L0813196-04	03	PWG-GW-200 L0813196-1		PWG-GW-20 L0813196		PWG-GW-20 L0813196-		PWG-GW-20 L0813196-		PWG-GW-20 L0813196	
SAMPLING DATE		9/4/2008		9/3/2008		9/3/2008		9/3/2008		9/3/200		9/3/2008		9/4/200		9/3/200	
SAMPLE DEPTH (ft.)		77 47 2000		7/3/2000		7/3/2000		7/3/2000		7/3/200	Ü	77 37 2000		77 47 200		7/3/200	50
Volatile Organics by EPA 8260B																	
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,1,2-Tetrachloroethane	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5		U	0.5	U		U	0.5	U	0.5 0.75	U	0.5	U	0.5	U	0.5 0.75	U
1,1-Dichloroethane	5		U	0.75	U		U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04		U	5	U		U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.0006		U	2	U		U	2	U	2	U	2	U	2	U	2	U
1,2-Dichlorobenzene	3		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1		U	1.8	U		U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3 5		U	2.5	U		U	2.5	U	2.5	U	2.5 2.5	U	2.5	U	2.5	U
1,3-Dichloropropane 1,4-Dichlorobenzene	3		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS NS		U	2.5	U		U	2.5	UJ	2.5	U	2.5	U	2.5	U	2.5	U
2,2-Dichloropropane	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*		U	5	U		U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	50*		U	5	U		U	5	U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2	U	2	U	2	U	2	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	1		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromochloromethane	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane Bromoform	50* 50*		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromomethane	5		U	1	U		U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS		U	5	U		U	5	UJ	5	U	5	U	5	U	5	U
Carbon tetrachloride	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromomethane	5		U	5	U		U	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5		U	5	U		U	5	UJ	5	U	5	U	5	U	5	U
Ethylbenzene	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5		U	0.6	U		U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5		U	0.5	U		U	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether Methylene chloride	10 5		U	1 5	U		U	5	U	1 5	U	1 5	U	1 5	U	1 5	U
Naphthalene	10*		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Butylbenzene	5		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Propylbenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Chlorotoluene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5		U	1	U		U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
p-Chlorotoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
p-lsopropyltoluene	5	1	U	1	U	1	U	1	U	1	U	1	U	1	U	1	U
sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene	5		U	1	U		U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5		U	2.5	U		U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5		U	0.75	С		U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	0.4		U	0.5	U		U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichlorofluoromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Vinyl acetate	NS	5	U	5	С	5	U	5	U	5	U	5	U	5	U	5	U

Notes:

All units are µg/L (ppb)

'Class GA Amblent Water Quality Standard (AWOS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

Montage Mont	CANADIE ID	AWQS'	DIME CIM 200	0.10	BMC CM 30	20.14	DIMC CIM 2000	1.1.5	140/1		A 0 M 2		NA) A .		N 40 47 5		1007
Company of the Comp	SAMPLE ID LAR SAMPLE ID	AWQ3							MW-1	18	MW-2		MW-4 10/3/200		MW-5		MW-6 10/6/2008
Washington State Washington Washingt																	
Proceduremente 5																	
Description Section	Volatile Organics by EPA 8260B																
Modern Company																	
Mary 1962																	
International	·																
Mindefinition																	
1.1.1 Sementione 3 13 U 03 U 03 U 05																	
11.12/2016/com/com/com/com/com/com/com/com/com/com	viriyi chionae	2	20	U	Į.	U	ı ı	U	'	U	'	U	ļ	U	'	U	20 0
11.23 Enteroscharbene 9 10 U 030 U 0	1,1,1,2-Tetrachloroethane	5	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
11.12 Technolomore	1,1,1-Trichloroethane	5	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
11 DEFINITION CONTINUES 15	1,1,2,2-Tetrachloroethane	5	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
10-15-15-16-16-16-16-16-16-16-16-16-16-16-16-16-		1	15	U	0.75		0.75		0.75		0.75	U	0.75	U	0.75	U	
19.35 Interviewpospone																	
12.3-1-februsy-dependence																	
1.4.5 Frommer 1																	
12.4-Interroberomene																	
1.54 Himmorphemo																	
1.2 Determone-protection 1.2 Determone-prote																	
Section of the color of the c																	
12-Dehtopotenteme																	
1.5 Define proposement 1 35																	
13.5 15.6	1,2-Dichloroethane	0.6	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
Section Sect	1,2-Dichloropropane	· ·															
September S	1,3,5-Trimethylbenzene			U	2.5	U		U			2.5			U	2.5	U	
Section Sect																	
14 Delity Delity Delity Company 15 Delity Delit																	
25 De Informerpropone S 50																	
Section Sect																	
Service Serv																	
Efflytiolarine																	
Medity-2-pertanone																	
Acetone																	
Entenneme		50*	100	U	5	U	5	U	5	U	5	U	5	U	5	U	
Sembeneme	Acrylonitrile	5	100	U	5	U	5	U	5	U	5	U	5	U	5	U	100 U
Expandichioromethane	Benzene	1	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
Semedichicknomethane	Bromobenzene																
Semondorm																	
Experimentation S 20																	
Carbon disultide																	
Carbon tetrachloride 5 10 U 0.5 U 10 U 0.5 U 10 U 0.5 U 0.5 U 0.5 U 10 U 0.5 U 10 U 0.5 U 0.5 U 0.5 U 0.5 U 10 U 10 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U																	
Chicordename																	
Chioroethane 5 20 U 1 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 20 U Chioroform 7 15 U 0.75 U 0.																	
Chloromethane 5 5 50 U 2.5 U 50 U																	
Cis-1,3-Dichioropropene	Chloroform	7	15	U	0.75	U	0.75	U	0.75	U	0.75		0.75	U	0.75	U	15 U
Dibromochloromethane	Chloromethane	5	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50 U
Dibromomethane	cis-1,3-Dichloropropene	0.4	10	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	10 U
Dichlorodifluoromethane	Dibromochloromethane				0.5	U	0.5				0.5		0.5		0.5		
Ethylbenzene 5 10 U 0.5 U 10 L 10 U 12 U 10 0.6 U 0.5		_			-		_								-		
Hexachlorobutadiene																	
Sopropylbenzene 5																	
Methyl tert butyl ether 10 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 100 U 0.5																	
Methylene chloride 5 100 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 100 U 100 U 0.5 U																	
Naphthalene 10° 10 U 0.5 U 10 L 10 U 10 L 10 U 10 L 10 U 10 U 10																	
n-Butylbenzene 5 10 U 0.5 U 10 L 0.7 Propylbenzene 5 5 50 U 2.5 U																	
o-Chlorotoluene 5 5 50 U 2.5 U 50 U 2.5 U 50 U																	
O-Xylene 5 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U	n-Propylbenzene	5	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50 U
p/m-Xylene 5 50 U 2.5 U 0.5	o-Chlorotoluene	5	50	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	50 U
p-Chlorotoluene 5 10 U 0.5 U 10 0																	
p-isopropyltoluene 5 20 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 1 U 20 U sec-Butylbenzene 5 10 U 0.5 U 10 U 0.5 U 10 U 1																	
Sec-Butylbenzene 5 10 U 0.5 U 10 U 10 U 0.5 U 0.5 U 0.5 U 10 U 10 U 0.5 U 0.5 U 10 U 11 U 2.5 U 0.75 U 0.75 U 0.75	<u>'</u>																
Styrene 5 20 U 1 U 2.5 U 0.75 U 0.5 </td <td></td>																	
tert-Butylbenzene 5 50 U 2.5 U 50 U																	
Toluene 5 15 U 0.75 U 15 U																	
trans-1,3-Dichloropropene 0.4 10 U 0.5 U 10 U 0.5 U 10 U 10 U 11 U 10 U 11 U 11 U 11 U 1																	
Trichlorofluoromethane 5 50 U 2.5 U 50 U 50 U																	
Designed to the first of the fi	Vinyl acetate	NS NS	100	U	5	U	5	U	5	U	5	U	5	U	5	U	100 U

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY:1998

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M

Yellow highlighting indicates exceedance of Ambient $\boldsymbol{\mathsf{V}}$

SAMPLE ID	AWQS'	DIFFW-01	DIFFW-0	2	DIFFW-03	DIFFW-0	04	SW-01		SW-02		SW-03		MW-7	7
LAB SAMPLE ID		10/6/2008	10/6/200		10/6/2008	L0814991		L0814991		L0814991		L0814991-	04	L0911697	7-04
Sampling date		L0814755-07	L0814755-	-08	L0814755-09	10/8/20	08	10/7/20	08	10/8/200	08	10/8/200	8	8/20/200	009
Sample Depth (ft.)															
Volatile Organics by EPA 8260B						_									
Tetrachloroethene	5	1.3	0.5	U	0.5 L	1,400		0.5	U	3.4		1.2		0.5	U
Trichloroethene	5	2.3	0.5	U	0.53	300		0.5	U	1		1.1		0.5	U
cis-1,2-Dichloroethene	5	32	7.7		21	1,800		0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75 U 0.5 U	0.75	U	0.75 L	38 25	U	0.75 0.5	U	0.75	U	0.75	U	0.75 0.5	U
1,1-Dichloroethene Vinyl chloride	2	0.5 U	1	U	0.5 L		U	0.5	U	0.5	U	0.5	U	1	U
Viriyi Chilonde	2	1 03	'	U	1 0	30	U	'	U	'	U	'	- 0		- 0
1,1,1,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	1	0.75 U	0.75	U	0.75 L	38	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75 U	0.75	U	0.75 L	38	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	5 0.04	2.5 U 2.5 U	2.5 2.5	U	2.5 L 2.5 L	120 120	U	2.5	U	2.5 2.5	U	2.5	U	2.5 2.5	U
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.004	2.5 U	2.5	U	2.5 L	100	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	3	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8 U	1.8	U	1.8 L	88	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
2,2-Dichloropropane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*	5 U	5	U	5 L		UJ	5	U	5	U	5	U	5	U
2-Hexanone	50*	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS FO*	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
Acetone	50* 5	5 U	5	U	5 L	250 250	U	5	U	5	U	5	U	5 5	U
Acrylonitrile Benzene	1	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
Bromochloromethane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2 U	2	U	2 L	100	U	2	U	2	U	2	U	2	U
Bromomethane	5	1 UJ	1	U	1 L	50	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5 U	5	U	5 L	250	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1 U	1	U	1 L		U	1	U	1	U	1	U	1	U
Chloroform	7	0.75 U	0.75	U	0.75 L		U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5 UJ	2.5	U	2.5 L		UJ	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4 50*	0.5 U	0.5	U	0.5 L	25 25	U	0.5 0.5	U	0.5	U	0.5	U	0.5 0.5	U
Dibromochloromethane Dibromomethane	50*	0.5 U	0.5	U	0.5 L		U	0.5 5	U	0.5 5	U	0.5	U	0.5 5	U
Dichlorodifluoromethane	5	5 UJ	5	U	5 L		UJ	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6 U	0.6	U	0.6 L		U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5 UJ	0.5	U	0.5 L		UJ	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	7.8	1	U	1 L		U	1.1	-	1	U	1	U	1	U
Methylene chloride	5	5 U	5	U	5 L		U	5	U	5	U	5	U	5	U
Naphthalene	10*	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	2.5	U
n-Butylbenzene	5	0.5 U	0.5	U	0.5 L	25	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Propylbenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	0.5	U
o-Chlorotoluene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1 U	1	U	1 L		C	1	С	1	U	1	U	1	U
p/m-Xylene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	1	U
p-Chlorotoluene	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	2.5	U
p-Isopropyltoluene	5	1 U	1 0.5	U	1 L		U	1	U	1	U	0.5	U	0.5	U
sec-Butylbenzene	5	0.5 U	0.5	U	0.5 L		U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene tert-Butylbenzene	5	2.5 U	2.5	U	2.5 L		U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75 U	0.75	U	1.1	38	U	0.75	U	0.75	U	0.75	U	0.75	U
	0.4	0.75 U	0.75	U	0.5 L		U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1.3-Dichloropropene															
trans-1,3-Dichloropropene Trichlorofluoromethane	5	2.5 U	2.5	U	2.5 L	120	U	2.5	U	2.5	U	2.5	U	2.5	U

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY:

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient V Green highlighting indicates exceedence of Ambient V

LAB SAMPLE ID		L0911697		L0911697	
SAMPLING DATE		8/20/20	09	8/20/20	09
SAMPLE DEPTH (ft.) Volatile Organics by EPA 8260B					
Tetrachloroethene	5	0.5	U	0.5	l
Trichloroethene	5	0.5	U	0.5	l
cis-1,2-Dichloroethene	5	0.5	U	0.5	Į
trans-1,2-Dichloroethene	5	0.75	U	0.75	l
1,1-Dichloroethene	5	0.5	U	0.5	l
Vinyl chloride	2	1	U	1	Į
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	l .
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	- 1
.,.,=,=	5	0.5	U	0.5	ı
1,1,2-Trichloroethane 1.1-Dichloroethane	1 5	0.75 0.75	U	0.75	l
1,1-Dichloropropene	5	2.5	U	2.5	_
1,2,3-Trichlorobenzene	5	2.5	U	2.5	
1,2,3-Trichloropropane	0.04	5	U	5	
1,2,4,5-Tetramethylbenzene	5	2	U	2	
1,2,4-Trichlorobenzene	5	2.5	U	2.5	
1,2,4-Trimethylbenzene	5	2.5	U	2.5	-
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	-
1,2-Dibromoethane	0.0006	2	U	2	- 1
1,2-Dichlorobenzene	3	2.5	U	2.5	
1,2-Dichloroethane	0.6	0.5	U	0.5	
1,2-Dichloropropane	1	1.8	U	1.8	
1,3,5-Trimethylbenzene	5	2.5	U	2.5	
1,3-Dichlorobenzene	3	2.5	U	2.5	
1,3-Dichloropropane	5	2.5	U	2.5	
1,4-Dichlorobenzene	3	2.5	U	2.5	
1,4-Diethylbenzene	NS	2	U	2	
2,2-Dichloropropane	5	2.5	U	2.5	
2-Butanone 2-Hexanone	50* 50*	5 5	U	5	
I-Ethyltoluene	NS NS	2	U	2	
4-Methyl-2-pentanone	NS NS	5	U	5	
Acetone	50*	5	U	5	
Acrylonitrile	5	5	U	5	
Benzene	1	0.5	U	0.5	
Bromobenzene	5	2.5	U	2.5	
Bromochloromethane	5	2.5	U	2.5	
Bromodichloromethane	50*	0.5	U	0.5	
Bromoform	50*	2	U	2	
Bromomethane	5	1	U	1	
Carbon disulfide	NS	5	U	5	
Carbon tetrachloride	5	0.5	U	0.5	
Chlorobenzene	5	0.5	U	0.5	
Chloroethane	5	1	U	1	
Chloroform	7	0.75	U	0.75	
Chloromethane	5	2.5	U	2.5	
cis-1,3-Dichloropropene Dibromochloromethane	0.4	0.5	U	0.5	
Dibromocniorometnane Dibromomethane	50*	0.5	U	0.5	
Dichlorodifluoromethane	5	5 5	U	5	
thylbenzene	5	0.5	U	0.5	
Hexachlorobutadiene	0.5	0.6	U	0.6	
sopropylbenzene	5	0.5	U	0.5	
Methyl tert butyl ether	10	1	U	1	
Methylene chloride	5	5	U	5	
Vaphthalene	10*	2.5	U	2.5	
n-Butylbenzene	5	0.5	U	0.5	
n-Propylbenzene	5	0.5	U	0.5	
o-Chlorotoluene	5	2.5	U	2.5	
o-Xylene	5	1	U	1	
o/m-Xylene	5	1	U	1	
o-Chlorotoluene	5	2.5	U	2.5	
o-Isopropyltoluene	5	0.5	U	0.5	
ec-Butylbenzene	5	0.5	U	0.5	
Styrene	5	1	U	1	
ert-Butylbenzene	5	2.5	U	2.5	
oluene	5	0.75	U	0.75	
rans-1,3-Dichloropropene	0.4	0.5	U	0.5	
richlorofluoromethane	5	2.5	U	2.5	
Vinyl acetate	NS				

Notes:

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NY!

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient V Green highlighting indicates exceedence of Ambient V

SAMPLE ID	AWQS'	MW-1		MW-2		MW-4		MW-5		MW-6		DIFFW-01		SW-01	
LAB SAMPLE ID								L0814755-0				L0814755-07		L0814991-0	
Sampling date Sample depth (ft.)		10/3/20	US	10/3/200	18	10/3/200	18	10/6/200	8	10/6/200	38	10/6/2008		10/7/2008	3
Semivolatile Organics by EPA 8270C 1,2,4,5-Tetrachlorobenzene	5	20	U	20	U	20	U	19	U	19	U	19	U	4.9	U
1,2,4-Trichlorobenzene	5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	3	4.9 4.9	U	4.9 4.9	U	4.9	U	4.8 4.8	U	4.8	U		U U	4.9 4.9	U
1,4-Dichlorobenzene	3	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
2,4,5-Trichlorophenol	1	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	4.9 9.8	U	4.9 9.8	U	4.9 9.9	U	4.8 9.7	U	4.8 9.7	U		U	4.9 9.8	U
2,4-Dimethylphenol	1	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	29	U
2,4-Dinitrophenol 2,4-Dinitrotoluene	1 5	29 5.9	U	29 5.9	υ	30 5.9	U	29 5.8		29 5.8			U	4.9	U
2,6-Dinitrotoluene	5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	5.9	U
2-Chloronaphthalene	10*	5.9	U	5.9	U	5.9	U	5.8	U	5.8	U		U	4.9	U
2-Chlorophenol 2-Methylnaphthalene	NS NS	5.9	U	5.9 4.9	U	5.9 4.9	U	5.8 4.8	U	5.8 4.8	U		U	4.9	U
2-Methylphenol	NS	5.9	U	5.9	U	5.9	U	5.8	U	5.8	U	5.7	U	15	U
2-Nitroaniline 2-Nitrophenol	5 1	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
3,3'-Dichlorobenzidine	5	49	U	49	U	49	U	48	U	48	U		U	9.8	U
3-Methylphenol/4-Methylphenol	NS	5.9	U	5.9	U	5.9	U	5.8	U	5.8	U		U	4.9	U
3-Nitroaniline 4,6-Dinitro-o-cresol	5 NS	4.9 20	U	4.9	U	4.9	U	4.8	U	4.8	U		U U	4 9	U
4-Bromophenyl phenyl ether	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	5.9	U
4-Chloroaniline 4-Chlorophenyl phenyl ether	5 NS	4.9 4.9	U	4.9 4.9	U	4.9	U	4.8	U	4.8	U		U U	4.9 5.9	U
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS 5	6.8	U	6.8	U	6.9	U	6.8	U	6.8	U		U	4.9	U
4-Nitrophenol	1	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	6.8	U
Acenaphthene Acenaphthylene	20* NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	20 4.9	U
Acetophenone	NS	20	U	20	U	20	U	19	U	19	U	19	U	4.9	U
Anthracene Benzo(a)anthracene	50* 0.002*	4.9 4.9	U	4.9 4.9	U	4.9 4.9	U	4.8 4.8	U	4.8	U		U	49 4.9	U
Benzo(a)pyrene	0.002*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Benzo(b)fluoranthene	0.002*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	4.9	U
Benzo(ghi)perylene Benzo(k)fluoranthene	NS 0.002*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
Benzoic Acid	0.002 NS	49	U	49	U	49	U	48	U	48	U		UJ.	4.9	U
Benzyl Alcohol	NS	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	6.8	U
Biphenyl Bis(2-chloroethoxy)methane	5 5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9 5.9	U
Bis(2-chloroethyl)ether	1	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Bis(2-chloroisopropyl)ether	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	5 50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	6.8	U
Carbazole	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Chrysene Dibenzo(a,h)anthracene	0.002* NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U U	4.9	U
Dibenzofuran	NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	4.9	U
Diethyl phthalate Dimethyl phthalate	50* 50*	4.9 4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Di-n-butylphthalate	50	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	9.8	U
Di-n-octylphthalate	50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Fluoranthene Fluorene	50* 50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Hexachlorobenzene	0.04	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	4.9	U
Hexachlorobutadiene Hexachlorocyclopentadiene	0.5 5	9.8 29	U	9.8	U	9.9	U	9.7	U	9.7	U		IJ	4.9	U
Hexachloroethane	5	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	49	U
Indeno(1,2,3-cd)Pyrene	0.002*	6.8	U	6.8	U	6.9	U	6.8	U	6.8	U		U	4.9	U
Isophorone Naphthalene	50* 10*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U U	5.9 4.9	U
Nitrobenzene	0.4	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U	4.8	U	20	U
NitrosoDiPhenylAmine(NDPA)/DPA	50* NS	15 4.9	U	15 4.9	U	15 4.9	U	14	U	14 4.8	U		U	4.9	U
n-Nitrosodi-n-propylamine P-Chloro-M-Cresol	NS NS	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Pentachlorophenol	1	9.8	U	9.8	U	9.9	U	9.7	U	9.7	U		U	4.9	U
Phenanthrene Phenol	50* 1	4.9 6.8	U	4.9 6.8	U	4.9 6.9	U	4.8	U	4.8 6.8	U		U	4.9	U
Pyrene	50*	4.9	U	4.9	U	4.9	U	4.8	U	4.8	U		U	4.9	U
Semivolatile Organics by EPA 8270C-SI 2-Chloronaphthalene	M 10*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U	0.19	U	0.19	
2-Chloronaphthalene 2-Methylnaphthalene	10* NS	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Acenaphthene	20*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U	0.19	U	0.19	U
Acenaphthylene Anthracene	NS 50*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(a)anthracene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(a)pyrene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002* NS	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Benzo(k)fluoranthene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Chrysene	0.002*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Dibenzo(a,h)anthracene	NS 50*	0.2	U	0.2	U	0.2	U	0.19	= =	0.19	= =		U	0.48	U
Fluoranthene Fluorene	50* 50*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.19	U
Hexachlorobenzene	0.04	0.78	U	0.78	U	0.79	U	0.78	U	0.78	U	0.76	U	0.19	U
Hexachlorobutadiene	0.5	0.49	U	0.49	U	0.49	U	0.48	U	0.48	U		U	0.19	U
Hexachloroethane Indeno(1,2,3-cd)Pyrene	5 0.002*	0.78	U	0.78	U	0.79	U	0.78	U	0.78	U		U	0.19	U
Naphthalene	10*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U	0.19	U	0.19	U
Pentachlorophenol	1	0.78	U	0.78	U	0.79	U	0.78	U	0.78	U		U	0.78	U
Phenanthrene Pyrene	50* 50*	0.2	U	0.2	U	0.2	U	0.19	U	0.19	U		U	0.78	U
, j.c.i.o	30	U.Z	U	U.Z	U	U.Z	U	0.19	U	J. 19	U	0.19	J	U.19	U

'Class GA Ambient Water Quality Standard (AWGS), NYSDEC Technical and Operation

Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Vellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

Notes:
All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater I

Table 14 Groundwater Sample Analytical Data Summary Pesticides/PCBs/Metals Former Darby Drugs Distribution Center

SAMPLE ID	AWQS'	MW-1	MW-2	MW-4	MW-5	MW-6	DIFFW-01	SW-01	SW-01	MW-4	MW-5	MW-6	DW-1
LAB SAMPLE ID		L0814755-02	L0814755-03	L0814755-04	L0814755-05	L0814755-06	L0814755-07	L0814991-02 R1	L0911697-05	L0911697-10	L0911697-09	L0911697-06	L0911697-08
SAMPLING DATE		10/3/2008	10/3/2008	10/3/2008	10/6/2008	10/6/2008	10/6/2008	10/7/2008	8/20/2009	8/20/2009	8/20/2009	8/20/2009	8/20/2009
Sample Depth (ft.)													
Organochlorine Pesticides by EPA 808		1	1			1							
4,4'-DDD	0.3	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
4,4'-DDE	0.2	0.041 U		0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
4,4'-DDT	0.2	0.041 U		0.046 U	0.043 U	0.041 U	0.043 U	0.206 U	NA	NA	NA	NA	NA
Aldrin	NS	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.103 U	NA	NA	NA	NA	NA
Alpha-BHC	0.01	0.021 U		0.023 U	0.021 U	0.021 U	0.021 U	0.206 U	NA	NA NA	NA NA	NA	NA NA
Beta-BHC	0.04	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.103 U	NA	NA	NA	NA	NA
Chlordane Delta-BHC	0.05	0.206 U 0.021 U	0.2 U 0.02 U	0.228 U 0.023 U	0.213 U 0.021 U	0.206 U 0.021 U	0.213 U 0.021 U	0.103 U 0.206 U	NA NA	NA NA	NA NA	NA NA	NA NA
	0.004	0.021 U		0.023 U	0.021 U				NA NA	NA NA	NA NA		
Dieldrin Endosulfan I	0.004 NS	0.041 U		0.046 U	0.043 U	0.041 U 0.021 U	0.043 U 0.021 U	0.103 U 0.206 U	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II	NS NS	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.103 U	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan sulfate	NS NS	0.041 U		0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulari sullate Endrin	NS NS	0.041 U		0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin ketone	5	0.041 U	0.04 U	0.046 U	0.043 U	0.041 U	0.043 U	0.103 U	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor	0.04	0.021 U	0.04 U	0.023 U	0.021 U	0.021 U	0.043 U	0.103 U	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor epoxide	0.03	0.021 U		0.023 U	0.021 U	0.021 U	0.021 U	1.03 U	NA	NA NA	NA NA	NA NA	NA NA
Lindane	0.05	0.021 U	0.02 U	0.023 U	0.021 U	0.021 U	0.021 U	0.206 U	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor	35	0.206 U	0.2 U	0.228 U	0.213 U	0.206 U	0.213 U	0.103 U	NA	NA NA	NA NA	NA NA	NA NA
trans-Chlordane	NS	0.021 U		0.023 U	0.021 U	0.021 U	0.021 U	1.03 U	NA	NA	NA	NA	NA
Polychlorinated Biphenyls by EPA 8082		0.021	0.02	0.020	0.021	0.021	0.021	1.00	101	10.1	101	101	10.1
Aroclor 1016	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1221	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1232	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1242	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1248	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1254	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Aroclor 1260	0.09	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	NA	NA	NA	NA	NA
Total Metals													
Aluminum	NS	190,000	630	10,000	58,000	190,000	2,100	140	0.10 U	0.10 U	0.10 U	0.10 U	0.10 U
Antimony	3	50 U		50 U	0.050 U	0.050 U	0.050 U	0.050 U	0.050 U				
Arsenic	25	291	7	50	40	177	100 U	10 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Barium	1000	576	10 U	39	158	428	62	19	0.037	0.015	0.01 U	0.01 U	0.013
Beryllium	3*	8	5 U	5 U	5 U	13	5 U	5 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Cadmium	5	11	5 U	5 U	5 U	13	9	5 U	0.005 U	0.005 U	0.005 U	0.005 U	0.005 U
Calcium	NS	57,000	13,000	17,000	18,000	49,000	20,000	14,000	15	19	6.6	14	11
Chromium	50	400	10 U	20	120	380	40	10 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Cobalt	NS 200	198 312		20 U	44 113	184 333	34 726	20 U	0.020 U	0.020 U	0.020 U 0.010 U	0.020 U 0.010 U	0.020 U 0.010 U
Copper Iron	300	360,000	10 U	11 150,000	160,000	520,000	340,000	39,000	0.061 0.05 U	0.010 U	0.010 U 0.05 U	0.010 U 0.09	0.010 U 0.05 U
Lead	25	394	10 U	150,000	349	254	12	20	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Magnesium	35000*	54,000	2,600	16,000	24,000	78,000	15,000	12,000	9.2	15	3.0	4.8	5.0
Manganese	3000	5,130	280	795	1,330	6,810	4,740	366	0.404	0.818	0.162	0.417	0.055
Mercury	0.7	2.7	0.2 U	0.2 U	0.8	1.1	0.2	0.2 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U
Nickel	100	341	25 U	25 U	110	420	25 U	25 U	0.005 U	0.0002 U	0.005 U	0.005 U	0.0052 U
Potassium	NS	16,000	2.500 U	3,800	7,300	21,000	4,200	3,000	2.5	2.5 U	2.5 U	2.5 U	3.5
Selenium	10	10 U	10 U	10 U	10 U	10 U	10 U	10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
Silver	50	7 U	7 U	7 U	7 U	7 U	7 U	7 U	0.007 U	0.007 U	0.007 U	0.007 U	0.007 U
Sodium	20000	15,000	2,000 U	30,000	7,000	7,500	25,000	29,000	24	35	7.7	6.6	20
Thallium	0.5*	20 U	20 U	20 U	20 U	20 U	20 U	20 U	0.020 U	0.020 U	0.020 U	0.020 U	0.020 U
Vanadium	NS	602	10 U	30	194	679	10 U	10 U	0.010 U	0.010 U	0.010 U	0.010 U	0.010 U
	2000*	1,320	50 U	217	740	1,700	670	87	0.412	0.050 U	0.050 U	0.050 U	0.050 U

Notes:

All units are µg/L (ppb)

1 Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

U - Analyte not detected above the laboratory MDL

NS - No standard established

NA- Not analyzed

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

J - Estimated value

SAMPLE ID	AWQS'	PWG-VP-20		PWG-VP-20		PWG-VP-200		PWG-VP-200		PWG-VP-20	
Lab sample id Sampling date		L0812904- 8/29/200		L0812904- 8/29/200		L0812904- 8/29/200		L0812904- 8/29/200		L0812904 8/29/20	
Sample Depth (ft.)		16-20	18	8/29/200 36-40	JB	8/29/200 56-60	18	76-80	В	8/29/20 96-100	
Volatile Organics by EPA 8260B											
Tetrachloroethene	5	13		13		46		100		200	J
Trichloroethene cis-1,2-Dichloroethene	5	4.3 1.2		0.5	U	5.6 0.5	U	18 0.82		40 14	J
trans-1,2-Dichloroethene	5	0.75	U	0.5	U	0.75	U	0.82	U	1.5	UJ
1,1-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Vinyl chloride	2	1	U	1	U	1	U	1	U	2	UJ
	-	0.5		0.5		0.5		0.5			
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	1.5	UJ
1,1-Dichloroethane	5	1.0		0.75	U	0.75	U	0.75	U	1.5	UJ
1,1-Dichloropropene 1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ UJ
1,2,3-Trichloropropane	0.04	5	U	5	U	5	U	5	U	10	UJ
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	4	UJ
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	5 4	UJ
1,2-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	3.5	UJ
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U	2.5 2.5	U	5 5	UJ UJ
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	4	UJ
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
2-Butanone 2-Hexanone	50* 50*	10	U	16	U	5	U	5 5	U	10 10	UJ
4-Ethyltoluene	NS	2	U	2	U	2	U	2	U	4	UJ
4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	10	UJ
Acetone	50*	13		11		5		12		32	J
Acrylonitrile Benzene	5 1	5 0.5	U	5 0.5	U	5 0.5	U	5 0.5	U	10 1	UJ UJ
Bromobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Bromoform	50*	2	U	2	U	2	U	2	U	4	UJ
Bromomethane Carbon disulfide	5 NS	1 5	U	1 5	U	1 5	U	1 5	U	2 10	UJ UJ
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Chloroethane	5	1	C	1	U	1	U	1	U	2	UJ
Chloroform	7	0.75 2.5	U	0.75 2.5	U	0.75 2.5	U	0.75 2.5	U	1.5 5	UJ
Chloromethane cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Dibromomethane	5	5	U	5	U	5	U	5	U	10	UJ
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	10	UJ
Ethylbenzene Hexachlorobutadiene	5 0.5	0.5	U	0.5	U	0.5	U	0.5	U	1 1.2	UJ UJ
Isopropylbenzene	5	0.5	U	0.5	U	0.6	U	0.5	U	1.2	UJ
Methyl tert butyl ether	10	1	U	1	U	1	U	1.1		2	UJ
Methylene chloride	5	5	U	5	U	5	U	5	U	10	UJ
Naphthalene n Butylbonzono	10* 5	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	5 1	UJ
n-Butylbenzene n-Propylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
o-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
o-Xylene	5	1	U	1	U	1	U	1	U	2	UJ
p/m-Xylene	5	1		1		1		1	U	2	UJ
p-Chlorotoluene	5	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	5 1	UJ UJ
p-Isopropyltoluene sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	1	UJ
Styrene	5	1	U	1	U	1	U	1	U	2	UJ
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	5	UJ
Toluene	5	0.75		0.75		0.75		0.75	U	1.5	UJ
trans-1,3-Dichloropropene Trichlorofluoromethane	0.4	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	1 5	UJ UJ
Vinyl acetate	NS NS	5	U	5	U	5	U	5	U	10	UJ
			-		-		-		-	-	

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

SAMPLE ID	AWQS'	PWG-VP-20	08-02	PWG-VP-200	08-02	PWG-VP-20	08-02	PWG-VP-20	08-02	PWG-VP-20	08-02
LAB SAMPLE ID		L0812904		L0812904-		L0812904		L0812904		L0812904	
SAMPLING DATE		8/28/200	08	8/28/200	8	8/28/20	08	8/28/20	08	8/28/20	08
Sample Depth (ft.)		16-20		36-40		56-60		76-80		96-100	
Volatile Organics by EPA 8260B											
Tetrachloroethene	5	210		5,800		420	J	21		280	J
Trichloroethene	5	14		98		51	J	1.6		29	J
cis-1,2-Dichloroethene	5	500		50	U	210	J	7.5		110	J
trans-1,2-Dichloroethene 1,1-Dichloroethene	5	7.9 2.5	U	75 50	U	5.7 1.2	J	1.5	U	1.5	UJ UJ
Vinyl chloride	2	100	U	100	U	4.7	J	2	U	2	UJ
Viriyi chilohac	2	100		100		4.7	,			2	03
1,1,1,2-Tetrachloroethane	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,1,1-Trichloroethane	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,1,2,2-Tetrachloroethane	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,1,2-Trichloroethane	1	3.8	U	75	U	1.9	UJ	1.5	U	1.5	UJ
1,1-Dichloroethane	5	3.8	U	75	U	1.9	UJ	1.5	U	1.5	UJ
1,1-Dichloropropene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2,3-Trichlorobenzene	5 0.04	12 25	UJ	250 500	U	6.2	UJ	5 10	U	5 10	UJ
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	5	10	U	200	U	5	UJ	4	U	4	UJ
1,2,4,5-retrametry/benzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2,4-Trimethylbenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2-Dibromo-3-chloropropane	0.04	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2-Dibromoethane	0.0006	10	U	200	U	5	UJ	4	U	4	UJ
1,2-Dichlorobenzene	3	12	U	250	U	6.2	UJ	5	U	5	UJ
1,2-Dichloroethane	0.6	2.5	U	50	U	1.2	UJ	1	U	1	UJ
1,2-Dichloropropane	1	8.8	U	180	U	4.4	UJ	3.5	U	3.5	UJ
1,3,5-Trimethylbenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,3-Dichlorobenzene	3	12	U	250	U	6.2	UJ	5	U	5	UJ
1,3-Dichloropropane	5	12	U	250	U	6.2	UJ	5	U	5	UJ
1,4-Dichlorobenzene	3	12	U	250	U	6.2	UJ	5	U	5	UJ UJ
1,4-Diethylbenzene 2,2-Dichloropropane	NS 5	10 12	U	200 250	U	6.2	UJ UJ	5	U	4 5	UJ
2-Butanone	50*	25	U	500	U	12	UJ	21	U	10	UJ
2-Hexanone	50*	25	U	500	U	12	UJ	10	U	10	UJ
4-Ethyltoluene	NS	10	U	200	U	5	UJ	4	U	4	UJ
4-Methyl-2-pentanone	NS	25	U	500	U	12	UJ	10	U	10	UJ
Acetone	50*	28		500	U	23	J	71		36	J
Acrylonitrile	5	25	U	500	U	12	UJ	10	U	10	UJ
Benzene	1	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Bromobenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
Bromochloromethane	5	12	U	250	U	6.2	UJ	5	U	5	UJ
Bromodichloromethane Bromoform	50* 50*	2.5 10	U	50 200	U	1.2	UJ	1 4	U	1 4	UJ
Bromomethane	5	5	UJ	100	U	2.5	UJ	2	U	2	UJ
Carbon disulfide	NS	25	U	500	U	12	UJ	10	U	10	UJ
Carbon tetrachloride	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Chlorobenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Chloroethane	5	5	U	100	U	2.5	UJ	2	U	2	UJ
Chloroform	7	3.8	U	75	U	1.9	UJ	1.5	U	1.5	UJ
Chloromethane	5	12	UJ	250	U	6.2	UJ	5	U	5	UJ
cis-1,3-Dichloropropene	0.4	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Dibromochloromethane	50*	2.5	U	50	U	1.2	UJ	1	U	1	UJ
Dibromomethane	5	25	U	500	U	12	UJ	10	U	10	UJ
Dichlorodifluoromethane	5	25 2.5	U	500	U	1.2	UJ	10	U	10	nn nn
Ethylbenzene Hexachlorobutadiene	0.5	3	U	50 60	U	1.5	UJ	1.2	U	1.2	UJ
Isopropylbenzene	5	2.5	UJ	50	U	1.2	UJ	1	U	1	UJ
Methyl tert butyl ether	10	5	U	100	U	2.5	UJ	2	U	2	UJ
Methylene chloride	5	25	U	500	U	12	UJ	10	U	10	UJ
Naphthalene	10*	12	UJ	250	U	6.2	UJ	5	U	5	UJ
n-Butylbenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
n-Propylbenzene	5	2.5	U	50	U	1.2	UJ	1	U	1	UJ
o-Chlorotoluene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
o-Xylene	5	5	U	100	U	2.5	UJ	2	U	2	UJ
p/m-Xylene	5	5	U	100	U	2.5	UJ	2	U	2	UJ
p-Chlorotoluene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
p-Isopropyltoluene	5	2.5	U	50 50	U	1.2	UJ	1	U	1	UJ UJ
sec-Butylbenzene Styrene	5	2.5	U	100	U	2.5	UJ	2	U	2	UJ
tert-Butylbenzene	5	12	U	250	U	6.2	UJ	5	U	5	UJ
-	5	3.8	U	75	U	1.9	UJ	1.5		1.5	UJ
loiuene		0.0	Ü	, .		11.7		1.0		2	
Toluene trans-1,3-Dichloropropene	0.4	2.5	U	50	U	1.2	UJ	1	U	1	UJ
	0.4	2.5 12	U	50 250	U	6.2	N)	5	U	1 5	UJ UJ

Notes:

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NY:Guidance Values and Groundwater Effluent Limitations, June 1998

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M

Yellow highlighting indicates exceedance of Ambient $\mbox{\tt W}$

SAMPLE ID LAB SAMPLE ID SAMPLING DATE	AWQS'	PWG-VP-200 L0812845	-06	PWG-VP-200 L0812845-		PWG-VP-20 L0812845 8/27/200	-08	PWG-VP-200 L0812845		PWG-VP-20 L0812904	-02
Sampling date Sample Depth (ft.)		8/27/200 16-20	18	8/27/200 36-40	18	8/2//200 56-60	38	8/27/200 76-80	18	8/28/200 96-100	
Volatile Organics by EPA 8260B											
Tetrachloroethene	5	28		24		91		21		27	J
Trichloroethene cis-1,2-Dichloroethene	5	1.2		0.5	U	2.6 8.3		0.5 1.2	U	1.3 8.8	J
trans-1,2-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
1,1-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	UJ
<u> </u>											
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	0.04 5	5 2	U	5	U	5	U	5	U	5	UJ UJ
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2-Dibromoethane	0.0006	2	U	2	U	2.	U	2	U	2	UJ
1,2-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,2-Dichloroethane 1,2-Dichloropropane	0.6	0.5 1.8	U	0.5	U	0.5	U	0.5	U	0.5	UJ
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	2	UJ
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
2-Butanone 2-Hexanone	50* 50*	6.4 5	U	5	U	5	U	5	U	5	UJ UJ
4-Ethyltoluene	NS NS	2	U	2	U	2	U	2	U	2	UJ
4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	UJ
Acetone	50*	26		5	U	5	U	5	U	7.1	J
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	UJ
Benzene	1	0.5	U	0.5	U	0.69		0.5	U	0.5	UJ
Bromobenzene Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ UJ
Bromodichloromethane	5 50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Bromoform	50*	2	U	2	U	2	U	2	U	2	UJ
Bromomethane	5	1	U	1	U	1	U	1	U	1	UJ
Carbon disulfide	NS	5	U	5	U	5	U	5	U	5	UJ
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Chlorobenzene Chloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	UJ
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Dibromomethane	5	5	U	5	U	5	U	5	U	5	UJ
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	UJ
Ethylbenzene Hexachlorobutadiene	5 0.5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
Isopropylbenzene	5	0.5	U	0.5	U	0.88	- 0	1.3		0.5	UJ
Methyl tert butyl ether	10	1	U	1	U	5.5		1	U	1	UJ
Methylene chloride	5	5	U	5	U	5	U	5	U	5	UJ
Naphthalene	10*	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
n-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
n-Propylbenzene o-Chlorotoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
o-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
p/m-Xylene	5	1	U	1	U	1	U	1	U	1	UJ
p-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
p-Isopropyltoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	UJ
	5	0.5	U	1.3		0.5	U	1.2		0.5	UJ
sec-Butylbenzene			U	1	U	1	U	1	U	1	UJ
Styrene	5	1									
Styrene tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	UJ
Styrene tert-Butylbenzene Toluene	5 5	2.5 0.75	U	2.5 0.75	U	2.5 1		2.5 0.75	U	2.5 1.1	J
Styrene tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5		2.5	

Notes: All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient $\mbox{\tt W}$

SAMPLE ID LAB SAMPLE ID	AWQS'	PWG-VP-200 L0812845-		PWG-VP-200 L0812845-		PWG-VP-200 L0812845-		PWG-VP-200 L0812845		PWG-VP-20 L0812845	
Sampling date Sample depth (ft.)		8/26/200 16-20	8	8/26/200 36-40	8	8/26/200 56-60	8	8/26/200 76-80	18	8/27/20 96-100	
Volatile Organics by EPA 8260B		16-20		30-40		30-00		76-60		90-100	
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5	U	0.5	C	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	5	0.5 0.75	U	0.5 0.75	U	0.5 0.75	U	0.5 0.75	U	0.5 0.75	U
1,1-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U
			·								
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	5	0.5 0.5	U	0.5	U	0.5	U	0.5	U	0.5 0.5	U
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	5 0.04	2.5 5	U	2.5 5	UJ	2.5 5	U	2.5 5	U	2.5 5	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5		2.5		2.5	U	2.5	U	2.5	U
1,2-Dibromoethane 1,2-Dichlorobenzene	0.0006	2 2.5	U	2.5	U	2 2.5	U	2.5	U	2 2.5	U
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane 1,4-Dichlorobenzene	5 3	2.5 2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2.3	U	2.3	U	2.3	U	2.3	U	2.3	U
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*	5	U	5	U	5	U	5	U	18	
2-Hexanone	50* NS	5	U	5	U	5	U	5	U	5	U
4-Ethyltoluene 4-Methyl-2-pentanone	NS	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	8.9		5	U	49	
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U
Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	0.56	U
Bromobenzene Bromochloromethane	5	2.5 2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1	U	1	UJ	1	U	1	U	1	U
Carbon disulfide Carbon tetrachloride	NS 5	5 0.5	U	5 0.5	U	5 0.5	U	5 0.5	U	5 0.5	U
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene Dibromochloromethane	0.4 50*	0.5 0.5	U	0.5	U	0.5	U	0.5 0.5	U	0.5 0.5	U
Dibromomethane	5	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6	U	0.6	UJ	0.6	U	0.6	U	0.6	U
Isopropylbenzene Methyl tert butyl ether	5 10	0.5	U	0.5	O)	0.5	U	0.5	U	0.5	U
Methylene chloride	5	5	U	5	U	5	U	5	U	5	U
Naphthalene	10*	2.5	U	2.5	UJ	2.5	U	2.5	U	2.5	U
n-Butylbenzene	5	0.5		0.5		0.5	U	0.5	U	0.5	U
n-Propylbenzene o-Chlorotoluene	5	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U
o-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
p/m-Xylene	5	1	U	1	U	1	U	1	U	1	U
p-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
p-Isopropyltoluene	5	0.5		0.5		0.5	U	0.5	U	0.5	U
sec-Butylbenzene Styrene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75	U	0.75	U	0.75	U	0.75	U	1.3	
trans-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichlorofluoromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Vinyl acetate	NS	5	U	5	U	5	U	5	U	5	U

Notes: All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NY

- * Guidance Value
- U Analyte not detected above the laboratory MDL
- J Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M Yellow highlighting indicates exceedance of Ambient $\ensuremath{\mathrm{V}}$

SAMPLE ID	Target	PWG-SG-200	08-01	PWG-SG-2008-0	2	PWG-SG-2008	3-03	PWG-SG-200	08-04	PWG-SG-20	008-05	PWG-SG-20	008-06
Sampling date:	Shallow	9/10/08		9/10/08		9/10/08		9/10/08		9/10/0		9/10/0	
LAB SAMPLE ID:	Soil-Gas	L0813541-	01	L0813541-02		L0813541-0	3	L0813541-	04	L0813541	-05	L0813541	-06
SAMPLE DEPTH:	Concentration(1)	5.5'		5.5'		5.5'		5.5'		5.5'		5.5'	
Volatile Organics by TO-15													
Tetrachloroethene	81	31.1		45.6		26.5		22.4		20.0		7.12	
Trichloroethene	2.2	1.91		1.72		6.6		2.17		10.7	U	1.49	
cis-1,2-Dichloroethene	350	0.792	U	0.792 l	J	0.792	U	0.792	U	7.92	U	0.792	U
trans-1,2-Dichloroethene	700	0.792	U	0.792 l	J	0.792	U	0.792	U	7.92	U	0.792	U
1,1-Dichloroethene	NS	0.792	U	0.792 l	J	0.792	U	0.792	U	7.92	U	0.792	U
Vinyl chloride	28	0.511	U	0.511 l	J	0.511	U	0.511	U	5.11	U	0.511	U
										1			
1,1,2,2-Tetrachloroethane	4.2	1.37	U		J	1.37	U	1.37	U	13.7	U	1.37	U
1,1,1-Trichloroethane	22,000	1.33		27.7		9.81		1.09	U	10.9	U	1.09	U
1,1,2-Trichloroethane	15	1.09	U		J	1.09	U	1.09	U	10.9	U	1.09	U
1,1-Dichloroethane	9.4	0.809	U		J	0.809	U	0.809	U	8.09	U	0.809	U
1,2,4-Trichlorbenzene	NS	1.48	U		J	1.48	U	1.48	U	14.8	U	1.48	U
1,2,4-Trimethylbenzene	60	5.5		5.56		7.86		4.72		9.82	U	4.9	
1,2-Dibromoethane	1.1	1.54	U		J	1.54	U	1.54	U	15.4	U	1.54	U
1,2-Dichlorobenzene	2,000	1.2	U		J	1.2	U	1.2	U	12	U	1.2	U
1,2-Dichloroethane	9.4	0.809	U		J	0.809	U	0.809	U	8.09	U	0.809	U
1,2-Dichloropropane	40	0.924	U		J	0.924	U	0.924	U	9.24	U	0.924	U
1,3,5-Trimethybenzene	60	2.28		2.56		3.32		2.28		9.82	U	2.23	
1,3-Butadiene	0.87	0.442	U		J	0.442	U	0.442	U	4.42	U	0.442	U
1,3-Dichlorobenzene	1,100	1.2	U		J	1.2	U	1.2	U	12	U	1.2	U
1,4-Dichlorobenzene	8,000	36.7		38.2		48.2		35.5		17.3		34.1	
1,4-Dioxane	NS	0.72	U	0.72 l	J	0.72	U	0.72	U	7.2	U	0.72	U
2,2,4-Trimethylpentane	NS	0.934	U	0.934 l	J	0.934	U	0.934	U	9.34	U	0.934	U
2-Butanone	10,000	2.84		3.01		4.14		37.1		421		40.1	
2-Hexanone	NS	0.819	U	0.819 l	J	0.819	U	9.32		9.46		12.2	
3-Chloropropene	NS	0.626	U	0.626 l	J	0.626	U	0.626	U	6.26	U	0.626	U
4-Ethyltoluene	NS	0.982	С	0.982 l	J	1.14		0.982	U	9.82	U	0.982	U
4-Methyl-2-pentanone	800	0.819	С	0.819 l	J	0.819	U	0.819	U	8.19	U	0.819	U
Acetone	3,500	16.7		16		24		114		1900		108	
Benzene	31	0.638	U	0.638 l	J	0.638	U	0.828		6.38	U	0.638	U
Benzyl chloride	50	1.03	С	1.03 l	J	1.03	U	1.03	U	10.3	U	1.03	U
Bromodichloromethane	14	1.34	U	1.34 l	J	1.34	U	1.34	U	13.4	U	1.34	U
Bromoform	220	2.06	U	2.06 l	J	2.06	U	2.06	U	20.6	U	2.06	U
Bromomethane	50	0.776	U	0.776 l	J	0.776	U	0.776	U	7.76	U	0.776	U
Carbon disulfide	7,000	0.789		0.622 l	J	3.02		0.715		6.22	U	0.622	U
Carbon tetrachloride	16	1.26	U	1.26 l	J	1.26	U	1.26	U	12.6	U	1.26	U
Chlorobenzene	600	0.92	U	0.92 l	J	0.92	U	0.92	U	9.2	U	0.92	U
Chloroethane	100,000	0.527	U	0.527 l	J	0.527	U	0.527	U	5.27	U	0.527	U
Chloroform	11	0.976	U	5.72		21.5		1.94		9.76	U	0.976	U
Chloromethane	240	0.413	U	0.413 l	J	0.42		0.413	U	4.13	U	0.413	U
cis-1,3-Dichloropropene	NS	0.907	U	0.907 l	J	0.907	U	0.907	U	9.07	U	0.907	U
Cyclohexane	NS	0.942		0.965		1.95		1.37		6.88	U	1.05	
Dibromochloromethane	10	1.7	U	1.7 l	J	1.7	U	1.7	U	17	U	1.7	U
Dichlorodifluoromethane	2,000	5.34		4.78		9.56		3.46		9.88	U	2.78	
Ethanol	NS	8.78		11.8		17		18.2		206		18	
Ethyl Acetate	320,000	1.8	U		J	1.8	U	1.8	U	18	U	1.8	U
Ethylbenzene	220	2.55		3.06		3.95		3.86		8.68	U	7.92	
Freon-113	300,000	1.53	U		J	1.66		1.65		15.3	U	1.53	U
Freon-114	NS	1.79			J	1.96		1.4	U	14	U	1.4	U
Hexachlorobutadiene	11	0.819	U		J	0.887		1.21		8.19	U	1.49	
Isopropanol	NS	2.13	U		J	2.13	U	2.13	U	21.3	U	2.13	U
Methylene chloride	520	1.23	U		J	1.23	U	3.75		130		2.74	
Methyl tert butyl ether	30,000	0.72	U		J	0.72	U	0.72	U	7.2	U	0.72	U
p/m-Xylene	70,000	1.74	U		J	1.74	U	1.74	U	17.4	U	1.74	U
o-Xylene	70,000	0.704	U		J	1.42	-	0.872	-	7.04	U	0.909	- 0
Heptane	NS	3.53	U	3.88	_	5.16		5		8.68	U	9.74	
n-Hexane	2,000	8.63		9.6	-	12.2		12		17.4	U	26.3	
Propylene	2,000 NS	0.344	U		J	2.1		3.28		270	U	2.92	
	10,000	4.03	U	4.14 U	J	5.05		3.28 4.62		8.51	U	3.9	
Styrene							- 11						U
Tetrahydrofuran	NS 4 000	0.589	U		J	0.589	U	0.589	U	5.89	U	0.589	U
Toluene	4,000	7.34		8.22		10.9		10.7		14.1		11	
trans-1,3-Dichloropropene	NS	0.907	U		J	0.907	U	0.907	U	9.07	U	0.907	U
Trichlorofluoromethane	7,000	2.52		6.38		18.3		4.62		11.2	U	1.83	
Vinyl acetate	2,000	0.704	U		J	0.704	U	0.704	U	7.04	U	0.704	U
Vinyl bromide	NS	0.874	U	0.874 l	J	0.874	U	0.874	U	8.74	U	0.874	U

Notes: All units are ug/m³

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Yellow highlighting indicates exceedence of USEPA Target Shallow Soil Gas Concentration

⁽¹⁾ Target Shallow Soil Gas Concentrations, USEPA Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soil (Subsurface Vapor Intrusion Guidance) Table 2b Risk = 1 x 10⁻⁵

U - Analyte not detected at or above the reporting limit

J - Estimated value

NS - No standard or guidance value established

SAMPLE ID	Target	PWG-SG-2008	3-07	PWG-SG-2008-08	PWG-SC	G-2008-09	PWG-SG-20	08-10	PWG-SG-20	008-11	PWG-SG-20	08-12
SAMPLING DATE:	Shallow	9/10/08		9/10/08		0/08	9/10/0		9/10/0		9/10/08	
LAB SAMPLE ID:	Soil-Gas	L0813541-0		L0813541-08		8541-09	L0813541		L0813541		L0813541	
SAMPLE DEPTH:	Concentration(1)	5.5'		5.5'		5.5'	5.5'		5.5'		5.5'	
Volatile Organics by TO-15												
Tetrachloroethene	81	62.2		4.09	9660	0	13.6	U	1680000		156	
Trichloroethene	2.2	10.7	U	1.36	29.7		10.7	U	19100		3.38	
cis-1,2-Dichloroethene	350	7.92	U	0.792 U	19.8		7.92	U	33500		0.792	U
trans-1,2-Dichloroethene	700	7.92	U	0.792 U	19.8		7.92	U	1340		0.792	U
1,1-Dichloroethene	NS	7.92	U	0.792 U	19.8		7.92	U	205	U	0.792	U
Vinyl chloride	28	5.11	U	0.511 U	12.8		5.11	U	132	U	0.511	U
,									l			
1,1,2,2-Tetrachloroethane	4.2	13.7	U	1.37 U	34.3	3 U	13.7	U	355	U	1.37	U
1,1,1-Trichloroethane	22,000	10.9	U	1.09 U	27.2	2 U	10.9	U	282	U	16.8	
1,1,2-Trichloroethane	15	10.9	U	1.09 U	27.2	2 U	10.9	U	282	U	1.09	U
1,1-Dichloroethane	9.4	8.09	U	0.809 U	20.2	2 U	8.09	U	209	U	0.809	U
1,2,4-Trichlorbenzene	NS	14.8	U	1.48 U	37.1	l U	14.8	U	384	U	1.48	U
1,2,4-Trimethylbenzene	60	9.82	U	3.88	24.6	5 U	9.82	U	254	U	5.95	
1,2-Dibromoethane	1.1	15.4	U	1.54 U	38.4	1 U	15.4	U	397	U	1.54	U
1,2-Dichlorobenzene	2,000	12	U	1.2 U	30	U	12	U	311	U	1.2	U
1,2-Dichloroethane	9.4	8.09	U	0.809 U	20.2	2 U	8.09	U	209	U	0.809	U
1,2-Dichloropropane	40	9.24	U	0.924 U	23.1	I U	9.24	U	239	U	0.924	U
1,3,5-Trimethybenzene	60	9.82	U	1.85	24.6	5 U	9.82	U	254	U	2.71	
1,3-Butadiene	0.87	4.42	U	0.442 U	11	U	4.42	U	114	U	0.442	U
1,3-Dichlorobenzene	1,100	12	U	1.2 U	30	U	12	U	311	U	1.2	U
1,4-Dichlorobenzene	8,000	22.8		24.3	30	U	20.1		311	U	40.1	
1,4-Dioxane	NS	7.2	U	0.72 U	18	U	7.2	U	186	U	0.72	U
2,2,4-Trimethylpentane	NS	9.34	U	0.934 U	23.3	3 U	9.34	U	241	U	0.934	U
2-Butanone	10,000	749		12.4	388		299		152	U	2.82	
2-Hexanone	NS	22.8		3.84	20.5	5 U	9.18		212	U	0.819	U
3-Chloropropene	NS	6.26	U	0.626 U	15.6		6.26	U	162	U	0.626	U
4-Ethyltoluene	NS	9.82	U	0.982 U	24.6		9.82	U	254	U	0.982	U
4-Methyl-2-pentanone	800	8.19	U	0.819 U	20.5		8.19	U	212	U	0.819	U
Acetone	3,500	3870		36	2280		1630		307	U	16.2	
Benzene	31	6.38	U	0.638 U	16	U	6.38	U	165	U	0.638	U
Benzyl chloride	50	10.3	U	1.03 U	25.9		10.3	U	268	U	1.03	U
Bromodichloromethane	14	13.4	U	1.34 U	33.5		13.4	U	346	U	1.34	U
Bromoform	220	20.6	U	2.06 U	51.6		20.6	U	534	U	2.06	U
Bromomethane	50	7.76	U	0.776 U	19.4		7.76	U	201	U	0.776	U
Carbon disulfide	7,000	6.22	U	0.622 U	15.6		6.22	U	161	U	0.622	U
Carbon tetrachloride	16	12.6	U	1.26 U	31.4		12.6	U	325	U	1.26	U
Chlorobenzene	600	9.2	U	0.92 U	23	U	9.2	U	238	U	0.92	U
Chloroethane	100,000	5.27	U	0.527 U	13.2		5.27	U	136	U	0.527	U
Chloroform	11	9.76	U	0.976 U	24.4		9.76	U	362	U	1.25	- 0
Chloromethane	240	4.13	U	0.413 U	10.3		4.13	U	107	U	0.413	U
cis-1,3-Dichloropropene	NS NS	9.07	U	0.413 U	22.7		9.07	U	234	U	0.413	U
Cyclohexane	NS	6.88	U	0.907	17.2		6.88	U	178	U	1.07	U
*	10	17	U	1.7 U	42.6		17	U	440	U	1.07	U
Dibromochloromethane Dichlorodifluoromethane	2,000	9.88	U	2.95	24.7		9.88	U	256	U	3.55	U
Ethanol	2,000 NS	455	U	8.23	24.7		136	U	1220	U	17.5	
Ethyl Acetate	320,000	18	U	1.8 U	45	U	18	U	466	U	17.3	U
Ethylbenzene	220	8.68	U	3.18	21.7		8.68	U	224	U	2.93	U
Freon-113	300,000	15.3	U	1.53 U	38.3		15.3	U	869	U	1.53	U
										- 11		U
Freon-114	NS	14	U	1.4 U	34.9		14	U	361	U	1.4	U
Hexachlorobutadiene	11	8.19	U	0.819 U	20.5		8.19	U	212	U	0.819	U
Isopropanol	NS	21.3	U	2.13 U	53.3		21.3	U	551	U	2.13	
Methylene chloride	520	232		1.28	185		26.9		318	U	1.23	U
Methyl tert butyl ether	30,000	7.2	U	0.72 U	18	U	7.2	U	186	U	0.72	U
p/m-Xylene	70,000	17.4	U	3.08	43.4		17.4	U	449	U	1.74	U
o-Xylene	70,000	7.04	U	1.02	17.6		7.04	U	182	U	0.704	U
Heptane	NS	8.68	U	4.11	21.7		8.68	U	224	U	3.8	
n-Hexane	2,000	22.7		10	43.4		17.4	U	449	U	9.3	
Propylene	NS	390		1.64	406		163		88.9	U	0.344	U
Styrene	10,000	8.51	U	3.02	21.3		8.51	U	220	U	4.36	
Tetrahydrofuran	NS	5.89	U	0.589 U	14.7		5.89	U	152	U	0.589	U
Toluene	4,000	10.6		7.07	18.8		10.9		195	U	7.76	
trans-1,3-Dichloropropene	NS	9.07	U	0.907 U	22.7		9.07	U	234	U	0.907	U
Trichlorofluoromethane	7,000	11.2	U	1.88	28.1		11.2	U	290	U	2.72	
Vinyl acetate	2,000	7.04	U	0.704 U	17.6	5 U	7.04	U	182	U	0.704	U
Vinyl bromide	NS	8.74	U	0.874 U	21.8	3 U	8.74	U	226	U	0.874	U

Notes: All units are ug/m³

⁽¹⁾Target Shallow Soil Gas Concentrations, USEPA Draft Guida Guidance) Table 2b Risk = 1 x 10⁻⁵

U - Analyte not detected at or above the reporting limit

J - Estimated value

NS - No standard or guidance value established

Bold text indicates compounds above the laboratory MDL Yellow highlighting indicates exceedence of USEPA Target SI

Table 17Public Supply Well Construction Details
Former Darby Drugs Distribution Center

Water District	Well No.	Distance	Aquifer	Status	Depth	Screen Depth	Capacity	Layer?	Well Pos.
Rockville Centre Village	N-00050	1,303	Magothy	NU	513	442	1100	Unk.	downgradient
Rockville Centre Village	N-05194	1,540	Magothy	YR	515	455	1200	Unk.	downgradient
Rockville Centre Village	N-05195	1,658	Magothy	YR	505	444	1200	Unk.	downgradient
Long Island Water	N-05656	1,895	Magothy	YR	495	445	1390	Unk.	crossgradient
Long Island Water	N-07521	1,824	Magothy	YR	555	445	1400	Unk.	crossgradient

Public Supply Wells within 1/2 mile upgradient/crossgradient or 1 mile downgradient of the site

NA = Not Applicable

YR = Year Round

NU = Not in Use

SS = Seasonal

AB = Abandoned

SAMPLE TYPE	AWQS'	Blind C	uplicate			Blind Du	nlicate		Blind Duplic	ate	Field Bla	nk	Field Blar	nk
SAMPLE ID		PWG-GW-2008-04	PWG.GW.20	08.24	DIFFW-0		DIFFW-10	00	DUP-01	aic	FB-01	HK	FB090308 (0	
LAB SAMPLE ID		L0813196-11	L0813196		L0814755-		L0814755-		L0911697-0		L0812845		L0813196-	
Sampling date		9/3/2008	9/3/200	8	10/6/200	8	10/6/200	8	8/20/200		8/26/200	08	9/3/2008	8
Sample Depth (ft.)											Groundwa	ater	Groundwa	ater
Volatile Organics by EPA 8260B														
Tetrachloroethene Trichloroethene	5	0.5 U	0.5	U	1.3		1.3 2.3		0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5 U	0.5	U	32		32		0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	2	1 U	1	U	1	U	1.6		1	U	1	U	1	U
1,1,1,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	5	0.5 U 0.75 U	0.5 0.75	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1-Dichloroethane	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5 U	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2 U	2	U	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.0006	2 U	2	U	2	U	2	U	2	U	2	U	2	U
1,2-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8 U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5	2.5 U 2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2 U	2	U	2	U	2	U	2	U	2	U	2	U
2,2-Dichloropropane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2 U	2	U	2	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	5	0.5 U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U
Bromobenzene Bromochloromethane	5	2.5 U 2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2 U	2	U	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromochloromethane Dibromomethane	50* 5	0.5 U	0.5 5	U	0.5 5	U	0.5	U	0.5	U	0.5 5	U	0.5	U
Dichlorodifluoromethane	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6 U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	1 U	1	U	7.8		8		1	U	1	U	1	U
Methylene chloride	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	10*	0.5 U	0.5	U	0.5	U	0.5	U	2.5	U	2.5	U	0.5	U
n-Butylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Propylbenzene	5	2.5 U	0.5	U	2.5	U	2.5	U	0.5	U	0.5	U	2.5	U
o-Chlorotoluene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene p-Chlorotoluene	5	2.5 U 0.5 U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5	U	2.5	U	2.5 0.5	U
p-Isopropyltoluene	5	0.5 U	0.5	U	1	U	1	U	0.5	U	0.5	U	1	U
sec-Butylbenzene	5	0.5 U	0.5	U	0.5	U	1	U	0.5	U	0.5	U	0.5	U
Styrene	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
										_				
Trichlorofluoromethane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U

All units are µg/L (ppb)

Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Ju

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

SAMPLE TYPE	AWQS'	Field Blank	Field Blar	nk	Field Blar	ık	Field Blar	nk	Field Blan	k	Field Bla	nk	Field Blar	nk
SAMPLE ID		FB090308 (SOIL)	FB090408(0		FB090408 (S		FB090508 (S		FB090808		FB100308		FIELD BLA	
LAB SAMPLE ID		L0813196-07	L0813196		L0813196-		L0813196-		9/8/2008		L0814755		L0911697-	
Sampling date Sample Depth (ft.)		9/3/2008 Soil	9/4/200 Groundwa		9/4/2008 Soil	3	9/5/2008 Soil	8	L0813344-0 Soil		10/3/20 Groundw		8/20/200 Groundwa	
Volatile Organics by EPA 8260B		3011	Groundwa	itei	3011		3011		3011		Glouriaw	atei	Glouriawa	itei
Tetrachloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Vinyl chloride	2	1 U	1	U	1	U	1	U	1	U	1	U	1	U
1,1,1,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	1	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5 U	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene	5 5	2 U 2.5 U	2.5	U	2.5	U	2.5	U	2 2.5	U	2 2.5	U	2.5	U
1,2,4-Tricnlorobenzene 1,2,4-Trimethylbenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromo-3-chloropropane	0.04	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.0006	2 U	2	U	2	U	2	U	2	U	2	U	2	U
1,2-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8 U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene 2,2-Dichloropropane	NS 5	2 U 2.5 U	2.5	U	2.5	U	2.5	U	2 2.5	U	2 2.5	U	2.5	U
2-Butanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
4-Ethyltoluene	NS	2 U	2	U	2	U	2	U	2	U	2	U	2	U
4-Methyl-2-pentanone	NS	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	1	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5 2.5	U	2.5	U	2.5	U
Bromochloromethane Bromodichloromethane	5 50*	2.5 U 0.5 U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	0.5	U	2.5 0.5	U	2.5 0.5	U
Bromoform	50*	2 U	2	U	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Chloroform	7	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5 0.4	2.5 U 0.5 U	2.5	U	2.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U	2.5 0.5	U
cis-1,3-Dichloropropene Dibromochloromethane	0.4 50*	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromomethane	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6 U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	1 U	1	U	1	U	1	U	1	U	1	U	1	U
Methylene chloride	5	5 U	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene	10*	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U
n-Butylbenzene n-Propylbenzene	5 5	0.5 U 2.5 U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5 2.5	U	0.5	U
o-Chlorotoluene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene	5	2.5 U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	1	U
p-Chlorotoluene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5	U
p-Isopropyltoluene	5	1 U	1	U	1	U	1	U	1	U	1	U	0.5	U
sec-Butylbenzene	5	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene	5	1 U	1	U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5	2.5 U	2.5	C	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75 U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
trans-1,3-Dichloropropene	0.4	0.5 U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichlorofluoromethane Vinyl acetate	5 NS	2.5 U	2.5	U	2.5	U	2.5 5	U	2.5 5	U	2.5 5	U	2.5	U
	· INO			U	ວ	U	o o	U	່	U	ູ	U	ວ	U

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NYIne 1998

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{M}}$

Yellow highlighting indicates exceedance of Ambient $\tt W$ Green highlighting indicates exceedence of Ambient $\tt W$

^{*} Guidance Value

Table 19 Groundwater QA/QC Sample Data Summary Semi-Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE TYPE	AWQS'		Blind Du			Field Bla	
SAMPLE ID LAB SAMPLE ID		DIFFW-0 L0814755		DIFFW-1 L0814755		FB100308 L0814755	
Sampling date		10/6/200		10/6/20		10/3/20	
SAMPLE DEPTH (ft.) Semivolatile Organics by EPA 8270C							
1,2,4,5-Tetrachlorobenzene 1,2,4-Trichlorobenzene	5 5	19 4.8	U	20 5	U	20 5	U
1,2-Dichlorobenzene	3	4.8	U	5	U	5	U
1,3-Dichlorobenzene 1,4-Dichlorobenzene	3	4.8 4.8	U	5	U	5 5	U
2,4,5-Trichlorophenol	1	4.8	U	5	U	5	U
2,4,6-Trichlorophenol 2,4-Dichlorophenol	1	4.8 9.5	U	5 10	U	5 10	U
2,4-Dimethylphenol	1	9.5	U	10	U	10	U
2,4-Dinitrophenol 2,4-Dinitrotoluene	1 5	28 5.7	U	30 6	U	30 6	U
2,6-Dinitrotoluene	5	4.8	U	5	U	5	U
2-Chloronaphthalene 2-Chlorophenol	10* NS	5.7 5.7	U	6	U	6	U
2-Methylnaphthalene	NS NS	4.8	U	5	U	5	U
2-Methylphenol 2-Nitroaniline	NS 5	5.7 4.8	U	6	U	6 5	U
2-Nitrophenol	1	19	U	20	U	20	Ĺ
3,3'-Dichlorobenzidine 3-Methylphenol/4-Methylphenol	5 NS	48 5.7	U	50 6	U	50 6	U
3-Nitroaniline	5	4.8	U	5	U	5	U
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	NS NS	19 4.8	U	20 5	U	20 5	L
4-Chloroaniline	5	4.8	U	5	U	5	ι
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS 5	4.8 6.7	U	5 7	U	5 7	L
4-Nitrophenol	1	9.5	U	10	U	10	l
Acenaphthene Acenaphthylene	20* NS	4.8 4.8	U	5	U	5	L
Acetophenone	NS	19	U	20	U	20	ι
Anthracene Benzo(a)anthracene	50* 0.002*	4.8	U	5	U	5	L
Benzo(a)pyrene	0.002*	4.8	U	5	U	5	Ĺ
Benzo(b)fluoranthene Benzo(ghi)perylene	0.002* NS	4.8	U	5	U	5	L
Benzo(k)fluoranthene	0.002*	4.8	U	5	U	5	l
Benzoic Acid Benzyl Alcohol	NS NS	48 9.5	U	50 10	U	50 10	l
Biphenyl	5	4.8	U	5	U	5	l
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	5	4.8	U	5	U	5	l
Bis(2-chloroisopropyl)ether	NS	4.8	U	5	U	5	ι
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	5 50*	4.8	U	5	U	5	l
Carbazole	NS	4.8	U	5	U	5	ι
Chrysene Dibenzo(a,h)anthracene	0.002* NS	4.8	U	5	U	5	l l
Dibenzofuran	NS	4.8	U	5	U	5	ι
Diethyl phthalate Dimethyl phthalate	50* 50*	4.8	U	5	U	5	l
Di-n-butylphthalate	50	4.8	U	5	U	5	l
Di-n-octylphthalate Fluoranthene	50* 50*	4.8	U	5	U	5	l l
Fluorene	50*	4.8	U	5	U	5	ι
Hexachlorobenzene Hexachlorobutadiene	0.04	4.8 9.5	U	5 10	U	5 10	l l
Hexachlorocyclopentadiene	5	28	U	30	U	30	ι
Hexachloroethane Indeno(1,2,3-cd)Pyrene	5 0.002*	4.8 6.7	U	5 7	U	5 7	l
Isophorone	50*	4.8	U	5	U	5	l
Naphthalene Nitrobenzene	10* 0.4	4.8	U	5	U	5	l
NitrosoDiPhenylAmine(NDPA)/DPA	50*	14	U	15	U	15	l
n-Nitrosodi-n-propylamine P-Chloro-M-Cresol	NS NS	4.8	U	5	U	5	l l
Pentachlorophenol	1	9.5	U	10	U	10	l
Phenanthrene Phenol	50* 1	4.8 6.7	U	5 7	U	7	l l
Pyrene	50*	4.8	U	5	U	5	l
Semivolatile Organics by EPA 8270C-SII 2-Chloronaphthalene	M 10*	0.19	U	0.2	U	0.2	l
2-Methylnaphthalene	NS	0.19	U	0.2	U	0.2	l
Acenaphthene Acenaphthylene	20* NS	0.19	U	0.2	U	0.2	l l
Anthracene	50*	0.19	U	0.2	U	0.2	l
Benzo(a)anthracene Benzo(a)pyrene	0.002*	0.19	U	0.2	U	0.2	l l
Benzo(b)fluoranthene	0.002*	0.19	U	0.2	U	0.2	l
Benzo(ghi)perylene Benzo(k)fluoranthene	NS 0.002*	0.19	U	0.2	U	0.2	-
Chrysene	0.002*	0.19	U	0.2	U	0.2	ι
Dibenzo(a,h)anthracene	NS FOR	0.19	U	0.2	U	0.2	-
Fluoranthene	50* 50*	0.19	U	0.2	U	0.2	-
Hexachlorobenzene	0.04	0.76	U	0.8	U	0.8	
Hexachlorobutadiene	0.5	0.48	U	0.5	U	0.5	
Hexachloroethane Indeno(1,2,3-cd)Pyrene	5 0.002*	0.76	U	0.8	U	0.8	- 1
Naphthalene	10*	0.19	U	0.2	U	0.2	l
Pentachlorophenol	1 50*	0.76 0.19	U	0.8	U	0.8	l
Phenanthrene	1 30"		U	0.2	U		l

Notes:
All units are µg/L (ppb)

*Class GA Ambient Water Quality Standard (AWOS), NYSDEC Technical and Operational Guidance Series (TOGS) 1

*Culdance Value

U - Analyte not detected above the laboratory MDL

J - Stimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

Table 20

Groundwater QA/QC Sample Data Summary Pesticides/PCBs/Metals Former Darby Drugs Distribution Center

SAMPLE TYPE	AWQS ¹	В	ıplicate		Blind Duplic	ate	Field Bank		
SAMPLE ID		DIFFW-0		DIFFW-10	0	DUP-02		FB100308-	01
LAB SAMPLE ID		L0814755-	07	L0814755-1	10	L0911697-	07	L0814755-	11
Sampling date		10/6/200	8	10/6/2008		8/20/200	9	10/3/200	8
SAMPLE DEPTH (ft.)									
Organochlorine Pesticides by EPA 8081	A								
4,4'-DDD	0.3	0.043	U	0.045	U	NA		0.053	U
4,4'-DDE	0.2	0.043	U	0.045	U	NA		0.053	U
4,4'-DDT	0.2	0.043	U	0.045	U	NA		0.053	U
Aldrin	NS	0.021	U	0.023	U	NA		0.026	U
Alpha-BHC	0.01	0.043	U	0.023	U	NA		0.026	U
Beta-BHC	0.04	0.021	U	0.023	U	NA		0.026	U
Chlordane	0.05	0.021	U	0.227	U	NA		0.263	U
Delta-BHC	0.04	0.043	U	0.023	U	NA		0.026	U
Dieldrin	0.004	0.021	U	0.045	U	NA		0.053	U
Endosulfan I	NS	0.043	U	0.023	U	NA		0.026	U
Endosulfan II	NS	0.021	U	0.045	U	NA		0.053	U
Endosulfan sulfate	NS	0.021	U	0.045	U	NA		0.053	U
Endrin	NS	0.021	U	0.045	U	NA		0.053	U
Endrin ketone	5	0.043	U	0.045	U	NA		0.053	U
Heptachlor	0.04	0.021	U	0.023	U	NA		0.026	U
Heptachlor epoxide	0.03	0.213	U	0.023	U	NA		0.026	U
Lindane	0.05	0.043	U	0.023	U	NA		0.026	U
Methoxychlor	35	0.021	U	0.227	U	NA		0.263	U
trans-Chlordane	NS	0.213	U	0.023	U	NA		0.026	U
Polychlorinated Biphenyls by EPA 8082									
Aroclor 1016	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1221	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1232	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1242	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1248	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1254	0.09	0.1	U	0.1	U	NA		0.1	U
Aroclor 1260	0.09	0.1	U	0.1	U	NA		0.1	U
Total Metals	•								
Aluminum	NS	2,100		1,800		0.10	U	100	U
Antimony	3	50	U	50	U	0.050	U	50	U
Arsenic	25	100	U	100	U	0.005	U	5	U
Barium	1000	62		60		0.013		10	U
Beryllium	3*	5	U	5	U	0.005	U	5	U
Cadmium	5	9		7		0.005	U	5	U
Calcium	NS	20,000		20,000		11		100	U
Chromium	50	40		30		0.01	U	10	U
Cobalt	NS	34		30		0.020	U	20	U
Copper	200	726		622		0.010	U	10	U
Iron	300	340,000		300,000		0.05	U	50	U
Lead	25	12		11		0.010	U	10	U
Magnesium	35000*	15,000		15,000		5.0		100	U
Manganese	300	4,740		4,370		0.057		10	U
Mercury	0.7	0.2		0.2	U	0.0002	U	0.2	U
Nickel	100	25	U	25	U	0.025	U	25	U
Potassium	NS	4,200		4,100		3.4		2,500	U
Selenium	10	10	U	10	U	0.01	U	10	U
		7	U	7	U	0.007	U	7	U
Silver	50	7	U						
Silver Sodium	50 20000	25,000	U	25,000		21		2,000	U
			U		U		U		U
Sodium	20000	25,000		25,000		21		2,000	

Notes:

All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, June 1998

- U Analyte not detected above the laboratory MDL
- J Estimated value
- NS No standard established
- NA Not analyzed

Bold text indicates compounds above the laboratory $\ensuremath{\mathsf{MDL}}$

Yellow highlighting indicates exceedance of Ambient Water Quality Standard

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

Table 21 Soil QA/QC Sample Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE TYPE	Unrestricted	Restricted	Plind D	ıplicate	Plind D	uplicate	Plind D	uplicate	Plind C	Ouplicate
SAMPLE ID	SCO'	Residential	PWG-SB-2008-01	PWG.SB.2008.21	PWG-SB-2008-12	PWG.SB.2008.22	PWG-DW-2008-15	PWG-DW-2008-100	PWG-DW-2008-34	PWG-DW-2008-101
LAB SAMPLE ID		SCO ²	L0813196-20	L0813196-21	L0813196-36	L0813196-37	L0813344-18	L0813344-19	L0813447-08	L0813447-10
SAMPLING DATE			9/4/2008	9/4/2008	9/5/2008	9/5/2008	9/8/2008	9/8/2008	9/10/2008	9/10/2008
SAMPLE DEPTH (ft.)			5-10	5-10	5-10	5-10	7-7.5	7-7.5	5.5-6	5.5-6
Volatile Organics by EPA 8260B Tetrachloroethene	1,300	19,000	3.1 U	2.6 U	2.8 U	2.7 U	120	110	3.8 U	3.9 U
Trichloroethene	470	21,000	3.1 U	2.6 U	2.8 U	2.7 U	11	3 U	3.8 U	
cis-1,2-Dichloroethene	250	100,000	3.1 U	2.6 U	2.8 U	2.7 U	28	3 U	3.8 U	
trans-1,2-Dichloroethene	190	100,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	5.8 U
1,1-Dichloroethene	330	100,000	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Vinyl chloride	20	900	6.2 U	5.2 U	5.7 U	5.4 U	26	6 U	7.6 U	7.8 U
1,1,1,2-Tetrachloroethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	3.9 U
1,1,1-Trichloroethane	680	100,000	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
1,1,2,2-Tetrachloroethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
1,1,2-Trichloroethane	NS	NS	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	5.8 U
1,1-Dichloroethane	270	26,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	
1,1-Dichloropropene	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	NS NS	NS NS	15 U 31 U	13 U 26 U	14 U 28 U	13 U 27 U	15 U 30 U	15 U 30 U	19 U 38 U	
1,2,4,5-Tetramethylbenzene	NS NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
1,2,4-Trichlorobenzene	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2,4-Trimethylbenzene	3,600	52,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2-Dibromo-3-chloropropane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,2-Dibromoethane	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
1,2-Dichlorobenzene	1,100	100,000	15 U 3.1 U	13 U	14 U 2.8 U	13 U	15 U	15 U	19 U	
1,2-Dichloroethane 1,2-Dichloropropane	20 NS	3,100 NS	3.1 U	2.6 U 9.1 U	2.8 U 9.9 U	2.7 U 9.4 U	3 U	3 U	3.8 U	
1,3,5-Trimethylbenzene	8,400	52,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,3-Dichlorobenzene	2,400	49,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,3-Dichloropropane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,4-Dichlorobenzene	1,800	13,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
1,4-Diethylbenzene	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
2,2-Dichloropropane 2-Butanone	NS 120	NS 100,000	15 U 31 U	13 U 26 U	14 U 28 U	13 U 27 U	15 U 30 U	15 U 30 U	19 U 38 U	
2-Hexanone	NS NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
4-Ethyltoluene	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	
4-Methyl-2-pentanone	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	39 U
Acetone	50	100,000	31 U	26 U	28 U	27 U	30 U	30 U	48	190
Acrylonitrile	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
Benzene Bromobenzene	60 NS	4,800 NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U 15 U	3.8 U	
Bromochloromethane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
Bromodichloromethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Bromoform	NS	NS	12 U	10 U	11 U	11 U	12 U	12 U	15 U	16 U
Bromomethane	NS	NS	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
Carbon disulfide	NS	NS	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
Carbon tetrachloride Chlorobenzene	760 1,100	2,400 100,000	3.1 U 3.1 U	2.6 U 2.6 U	2.8 U 2.8 U	2.7 U 2.7 U	3 U	3 U	3.8 U	
Chloroethane	NS NS	NS	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
Chloroform	370	49,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	
Chloromethane	NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
cis-1,3-Dichloropropene	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Dibromochloromethane	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Dibromomethane Dichlorodifluoromethane	NS NS	NS NS	31 U	26 U	28 U 28 U	27 U 27 U	30 U	30 U	38 U	
Ethylbenzene	1,000	41,000	3.1 U	2.6 U	2.8 U	2.7 U	30 U	30 U	3.8 U	
Hexachlorobutadiene	NS NS	NS NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
Isopropylbenzene	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
Methyl tert butyl ether	930	100,000	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
Methylene chloride	50	100,000	31 U	26 U	28 U	27 U	30 U	30 U	38 U	
Naphthalene n-Butylhenzene	NS 12,000	NS NS	3.1 U 3.1 U	2.6 U	2.8 U 2.8 U	2.7 U 2.7 U	3 U	3 U	3.8 U	
n-Butylbenzene n-Propylbenzene	3,900	NS 100,000	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
o-Chlorotoluene	3,900 NS	NS	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
o-Xylene	260	100,000	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
p/m-Xylene	260	100,000	15 U	13 U	14 U	13 U	15 U	15 U	19 U	
p-Chlorotoluene	NS	NS	3.1 U	2.6 U	2.8 U	2.7 U	3 U	3 U	3.8 U	
p-Isopropyltoluene	NS 11.000	NS 100,000	6.2 U	5.2 U	5.7 U	5.4 U	6 U	6 U	7.6 U	
sec-Butylbenzene Styrene	11,000 NS	100,000 NS	3.1 U 6.2 U	2.6 U 5.2 U	2.8 U 5.7 U	2.7 U 5.4 U	3 U	3 U	3.8 U 7.6 U	
			15 U	13 U	14 U	13 U	15 U	15 U	19 U	
tert-Butylbenzene	5,900	IN2								
tert-Butylbenzene Toluene	5,900 700	NS 100,000	4.6 U	3.9 U	4.3 U	4 U	4.5 U	4.5 U	5.7 U	5.8 U
	700 NS	100,000 100,000	4.6 U 3.1 U	3.9 U 2.6 U	4.3 U 2.8 U	4 U 2.7 U	3 U	3 U	3.8 U	3.9 U
Toluene	700	100,000	4.6 U	3.9 U	4.3 U	4 U				3.9 U 20 U

Notes: All concentrations are µg/kg (ppb)

'Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 200t

NS - No standard established Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

ÉResticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2004

U - Analyte not detected above the laboratory MDL

J - Estimated value

SAMPLE TYPE	Unrestricted	Restricted	Blind D	uplicate	Blind D	uplicate	Blind Du	plicate
SAMPLE ID		Residential SCO ²	PWG-SB-2008-01	PWG-SB-2008-21	PWG-DW-2008-15		PWG-DW-2008-34	
LAB SAMPLE ID SAMPLING DATE			L0813196-20 9/4/2008	9/4/2008 L0813196-21	L0813344-18 9/8/2008	L0813344-19 9/8/2008	L0813447-08 9/10/2008	L0813447-10 9/10/2008
SAMPLE DEPTH (ft.)			5-10	5-10	7-7.5	7-7.5	5.5-6	5.5-6
Semivolatile Organics by EPA 8270C 1,2,4,5-Tetrachlorobenzene	NS	NS	1600 U	1400 U	1,600 U	1,600 U	30,000 U	31,000 U
1,2,4-Trichlorobenzene	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
1,2-Dichlorobenzene 1,3-Dichlorobenzene	NS NS	NS NS	410 U	350 U	400 U 400 U	400 U	7,600 U 7,600 U	7,800 U 7.800 U
1,4-Dichlorobenzene	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	NS NS	NS NS	410 U	350 U 350 U	400 U	400 U	7,600 U 7,600 U	7,800 U 7,800 U
2,4-Dichlorophenol	NS NS	NS NS	820 U	690 U	790 U	800 U	15,000 U	16,000 U
2,4-Dimethylphenol	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
2,4-Dinitrophenol 2,4-Dinitrotoluene	NS NS	NS NS	1600 U 410 U	1400 U 350 U	1,600 U 400 U	1,600 U 400 U	30,000 U 7,600 U	31,000 U 7,800 U
2,6-Dinitrotoluene	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
2-Chloronaphthalene	NS	NS	490 U	420 U	480 U	480 U	9,100 U	9,400 U
2-Chlorophenol 2-Methylnaphthalene	NS NS	NS NS	490 U 410 U	420 U 350 U	480 U 400 U	480 U 400 U	9,100 U 7.600 U	9,400 U 8,600
2-Methylphenol	NS	NS	490 U	420 U	480 U	480 U	9,100 U	9,400 U
2-Nitrophonel	NS NC	NS NC	410 U	350 U	400 U	400 U	7,600 U	7,800 U
2-Nitrophenol 3,3'-Dichlorobenzidine	NS NS	NS NS	1600 U 820 U	1400 U 690 U	1,600 U	1,600 U 800 U	30,000 U 15,000 U	31,000 U 16,000 U
3-Methylphenol/4-Methylphenol	NS	NS	490 U	420 U	480 U	480 U	9,100 U	9,400 U
3-Nitroaniline 4,6-Dinitro-o-cresol	NS NS	NS NS	410 U 1600 U	350 U 1400 U	400 U 1,600 U	400 U 1,600 U	7,600 U 30,000 U	7,800 U 31,000 U
4-Bromophenyl phenyl ether	NS NS	NS NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
4-Chloroaniline	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
4-Chlorophenyl phenyl ether 4-Nitroaniline	NS NS	NS NS	410 U 580 U	350 U 490 U	400 U 560 U	400 U 560 U	7,600 U 11,000 U	7,800 U 11,000 U
4-Nitrophenol	NS NS	NS NS	820 U	490 U	790 U	800 U	11,000 U	11,000 U
Acenaphthene	20000	100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Acenaphthylene Acetophenone	100000 NS	100000 NS	410 U 1600 U	350 U 1400 U	400 U 1,600 U	400 U 1,600 U	7,600 U 30.000 U	7,800 U 31.000 U
Anthracene	100000	100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Benzo(a)anthracene	1000	1000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Benzo(a)pyrene Benzo(b)fluoranthene	1000	1000	410 U	350 U 350 U	400 U	400 U 400 U	7,600 U 7,600 U	7,800 U 7,800 U
Benzo(ghi)perylene	100000	100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Benzo(k)fluoranthene	800	3900	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Benzoic Acid Benzyl Alcohol	NS NS	NS NS	4100 U 820 U	3500 U 690 U	4,000 U 790 U	4,000 U 800 U	76,000 U 15,000 U	78,000 U 16,000 U
Biphenyl	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Bis(2-chloroethoxy)methane	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	NS NS	NS NS	410 U	350 U	400 U 400 U	400 U	7,600 U 7.600 U	7,800 U 7,800 U
Bis(2-Ethylhexyl)phthalate	NS	NS	820 U	690 U	790 U	800 U	15,000 U	16,000 U
Butyl benzyl phthalate	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Carbazole Chrysene	NS 1000	NS 3900	410 U	350 U	400 U	400 U	7,600 U 7.600 U	7,800 U 7,800 U
Di-n-butylphthalate	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Di-n-octylphthalate	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Dibenzo(a,h)anthracene Dibenzofuran	330 NS	330 NS	410 U	350 U	400 U	400 U	7,600 U 7,600 U	7,800 U 7,800 U
Diethyl phthalate	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Dimethyl phthalate Fluoranthene	NS 100000	NS 100000	410 U	350 U	400 U	400 U	7,600 U 7,600 U	7,800 U 7,800 U
Fluorene	30000	100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Hexachlorobenzene	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Hexachlorobutadiene Hexachlorocyclopentadiene	NS NS	NS NS	820 U 820 U	690 U	790 U	800 U	15,000 U 15,000 U	16,000 U 16,000 U
Hexachloroethane	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Indeno(1,2,3-cd)Pyrene	500	500	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Isophorone n-Nitrosodi-n-propylamine	NS NS	NS NS	410 U	350 U	400 U	400 U	7,600 U 7,600 U	7,800 U 7,800 U
Naphthalene	12000	100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Nitrobenzene	NS	NS	410 U	350 U	400 U	400 U	7,600 U	7,800 U
NitrosoDiPhenylAmine(NDPA)/DPA P-Chloro-M-Cresol	NS NS	NS NS	1200 U 410 U	1000 U 350 U	1,200 U 400 U	1,200 U 400 U	23,000 U 7,600 U	23,000 U 7,800 U
Pentachlorophenol	800	6700	1600 U	1400 U	1,600 U	1,600 U	30,000 U	31,000 U
Phenanthrene	100000	100000	410 U	350 U	400 U	400 U	7,600 U	7,800 U
Phenol Pyrene	330 100000	100000	580 U 410 U	490 U 350 U	560 U 400 U	560 U 400 U	11,000 U 7,600 U	11,000 U 7,800 U
Semivolatile Organics by EPA 8270C-SI								
2-Chloronaphthalene	NS	NS	16 U	14 U		80 U		2,100 U
2-Methylnaphthalene Acenaphthene	NS 20000	NS 100000	16 U	14 U	79 U 79 U	80 U	11,000 2,000 U	13,000 2,100 U
Acenaphthylene	100000	100000	16 U	14 U	79 U	80 U	2,000 U	2,100 U
Anthracene	100000	100000	16 U	14 U	79 U	80 U	2,000 U	2,100 U
Benzo(a)anthracene Benzo(a)pyrene	1000	1000	48 64	40 53	79 U	80 U	2,000 U 2,000 U	2,100 U 2,100 U
Benzo(b)fluoranthene	1000	1000	58	50	79 U	80 U	2,000 U	2,100 U
Benzo(ghi)perylene	100000	100000	51	43	79 U	80 U	2,000 U	2,100 U
Benzo(k)fluoranthene Chrysene	800 1000	3900 3900	58 55	48 45	79 U	80 U	2,000 U 2,000 U	2,100 U 2,100 U
Dibenzo(a,h)anthracene	3300	330	16 U	14 U	79 U	80 U	2,000 U	2,100 U
Fluoranthene	100000	100000	120	99	79 U	150	2,000 U	2,100 U
Fluorene Hexachlorobenzene	30000 NS	100000 NS	16 U	14 U 56 U	79 U 320 U	80 U 320 U	2,000 U 8,100 U	2,100 U 8,300 U
Hexachlorobutadiene	NS	NS	41 U	35 U	200 U	200 U	5,000 U	5,200 U
Hexachloroethane	NS 500	NS EOO	66 U	56 U	320 U	320 U	8,100 U	8,300 U 2.100 U
Indeno(1,2,3-cd)Pyrene Naphthalene	500 12000	500 100000	52 16 U	44 14 U	79 U	80 U	2,000 U 2,000 U	2,100 U 2,100 U
i i							8,100 U	8,300 U
Pentachlorophenol	800	6700	66 U	56 U	320 U	320 U		
Pentachlorophenol Phenanthrene Pyrene	100000 100000	100000 100000	47 120	56 93	79 U	80 U 160	2,000 U	2,100 U 2,100 U

Notes:
All concentrations are µg/kg (ppb)
**Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006
**Gesticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006
**U - Analyte not detected above the laboratory MDL
**J - Estimated value
**NS - No standard established
**Boil dext indicates compounds above the laboratory MDL
**Green highlighting indicates exceedance of Unrestricted Use SCO
**Yellow highlighting indicates exceedance of Restricted Residential SCO

Table 23 Soil QA/QC Sample Data Summary Pesticides/PCBs/Metals Former Darby Drugs Distribution Center

SAMPLE TYPE	Unrestricted	Restricted	Rline	d Di	uplicate	Blind D	uplicate	Blind D	uplicate
SAMPLE ID	SCO'	Residential	PWG-SB-2008-0		PWG-SB-2008-21	PWG-DW-2008-15	PWG-DW-2008-100		PWG-DW-2008-101
LAB SAMPLE ID		SCO ²	L0813196-20		9/4/2008	L0813344-18	L0813344-19	L0813447-08	L0813447-10
SAMPLING DATE			9/4/2008		L0813196-21	9/8/2008	9/8/2008	9/10/2008	9/10/2008
SAMPLE DEPTH (ft.)									
			5-10		5-10	7-7.5	7-7.5	5.5-6	5.5-6
Organochlorine Pesticides by EPA 8081		10000	4.40		0.47			***	***
4,4'-DDD	3.3	13000	4.12	U	3.47 U		NA	NA	NA
4,4'-DDE	3.3	8900	4.12	U	3.47 U		NA	NA	NA
4,4'-DDT	3.3	7900	4.73		3.47 U		NA	NA	NA
Aldrin	5	97	4.12	U	3.47 U		NA	NA	NA
Alpha-BHC	20	480	4.12	U	3.47 U		NA	NA	NA
Beta-BHC	36	360	4.12	U	3.47 U		NA	NA	NA
Chlordane	94	4200	41.2	U	34.7 U		NA	NA	NA
Delta-BHC	40	100000	4.12	U	3.47 U	NA	NA	NA	NA
Dieldrin	5	200	4.12	С	3.47 U	NA	NA	NA	NA
Endosulfan I	2400	24000	4.12	\subset	3.47 U	NA	NA	NA	NA
Endosulfan II	2400	24000	4.12	\subset	3.47 U	NA	NA	NA	NA
Endosulfan sulfate	2400	24000	4.12	U	3.47 U	NA	NA	NA	NA
Endrin	14	11000	4.12	U	3.47 U	NA	NA	NA	NA
Endrin ketone	NS	NS	4.12	U	3.47 U	NA	NA	NA	NA
Heptachlor	42	2100	4.12	U	3.47 U	NA	NA	NA	NA
Heptachlor epoxide	NS	NS	4.12	U	3.47 U	NA	NA	NA	NA
Lindane	100	1300	4.12	U	3.47 U	NA	NA	NA	NA
Methoxychlor	NS	NS	16.5	U	13.9 U	NA	NA	NA	NA
trans-Chlordane	NS	NS	4.12	U	3.47 U	NA	NA	NA	NA
Polychlorinated Biphenyls by EPA 8082									
Aroclor 1016	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Aroclor 1221	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Aroclor 1232	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Aroclor 1242	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Aroclor 1248	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Aroclor 1254	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Aroclor 1260	100	1000	41.2	U	34.7 U	NA	NA	NA	NA
Total Metals									
Aluminum	NS	NS	4700		2900	1,700	2,100	4,200	3,900
Antimony	NS	NS	2.9	U	2.5 U	2.8 U	2.8 U	3.7 U	3.8 U
Arsenic	13	16	2.2		1.2	1.3	1.4	1.3	1.1
Barium	350	400	40		20	16	15	41	33
Beryllium	7.2	72	0.29	U	0.25 U	0.28 U	0.28 U	0.37 U	0.38 U
Cadmium	2.5	4.3	0.58	U	0.5 U	0.57 U	0.56 U	1.8	1.6
Calcium	NS	NS	1000		500	6,600	6,400	14,000	11,000
Chromium	30	180	6.4		4.9	5.2	4.5	39	28
Cobalt	NS	NS	2.8		2.4	1.1 U	1.2	3	2.6
Copper	50	270	9.4		5.6	4.7	5.6	35	41
Iron	NS	NS	7500		6400	4,600	4,600	7,900	6,100
Lead	63	400	87		30	36	32	300	270
Magnesium	NS	NS	690		560	2,900	3,900	8,300	6,300
Manganese	1600	2000	100		88	47	34	54	60
Mercury	0.18	0.81	0.1		0.25	0.09 U	0.09 U	4.1	4.6
Nickel	30	310	5.2		4.5	2	2.2	14	13
Potassium	NS	NS	320		260	140 U	140 U	300	250
Selenium	3.9	180	1.2	U	1 U		1.1 U	1.5 U	1.5 U
Silver	2	180	0.58	U	0.5 U		0.56 U	4.4	0.98
Sodium	NS	NS	120	U	100 U		110 U	150 U	150 U
Thallium	NS	NS	1.2	U	1 U		1.1 U	1.5 U	1.5 U
Vanadium	NS	NS	9.3	-	6.3	5.9	8.3	26	25
Zinc	109	10000	58		24	35	34	270	300
L			L				1		

Notes:

All concentrations are $\mu g/kg$ (ppb)

¹Unrestriced Use Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

²Resticted-Residential Soil Cleanup Objectives (SCO) 6 NYCRR Part 375, Environmental Remediation Programs, December 2006

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory MDL

Green highlighting indicates exceedance of Unrestricted Use SCO

Table 24 Trip Blank Sample Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	AWQS'	TD 01		TD 02		TB0003	20	TROCOCO	1	TD00000	0.2	TD00100	00
LAB SAMPLE ID	AWQS	TB-01 L0812845-	09	TB-02 L0812904		TB09030 L0813196		TB090808 L0813344-		TB09080 L0813344		TB09100 L0813447	
SAMPLING DATE		8/21/200		8/21/20		8/19/20		9/8/200		8/21/20		9/10/20	
Sample Depth (ft.)													
Volatile Organics by EPA 8260B													
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Trichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
cis-1,2-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,2-Dichloroethene 1,1-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Vinyl chloride	2	1	U	1	U	1	U	1	U	0.5	U	1	U
viriyi erilonde	2				Ü		Ü	· ·	Ü		Ü		
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,1,2-Trichloroethane	1	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloroethane	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,3-Trichloropropane	0.04	5	U	5	U	5	U	5	U	5	U	5	U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U	2	U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dibromoethane	0.006	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
1,2-Dichloropropane	1	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U	1.8	U
1,3,5-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	2	U	2	U
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
2-Butanone	50* 50*	5	U	5	U	5	U	5	U	5	U	5	U
2-Hexanone 4-Ethyltoluene	NS	5 2	U	5	U	2	U	5	U	2	U	5 2	U
4-Methyl-2-pentanone	NS NS	5	U	5	U	5	U	5	U	5	U	5	U
Acetone	50*	5	U	5	U	5	U	5	U	5	U	5	U
Acrylonitrile	5	5	U	5	U	5	U	5	U	5	U	5	U
Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Bromoform	50*	2	U	2	U	2	U	2	U	2	U	2	U
Bromomethane	5	1	U	1	U	1	U	1	U	1	U	1	U
Carbon disulfide	NS	5	U	5	U	5	U	5	U	5	U	5	U
Carbon tetrachloride	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chlorobenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Chloroethane Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Dibromomethane	5	5	U	5	U	5	U	5	U	5	U	5	U
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	U	5	U
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Hexachlorobutadiene	0.5	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U
Isopropylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Methyl tert butyl ether	10	1	U	1	U	1	U	1	U	1	U	1	U
Methylene chloride	5	5	U	5	U	5	U	5	U	5	U	5	U
Naphthalene n Butulbanzana	10*	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
n-Butylbenzene n-Propylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5 2.5	U	0.5 2.5	U
o-Chlorotoluene	5	0.5 2.5	U	0.5 2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
o-Xylene	5	1	U	1	U	1	U	1	U	1	U	1	U
p/m-Xylene	5	1	U	1	U	2.5	U	2.5	U	2.5	U	2.5	U
p-Chlorotoluene	5	2.5	U	2.5	U	0.5	U	0.5	U	0.5	U	0.5	U
p-Isopropyltoluene	5	0.5	U	0.5	U	1	U	1	U	1	U	1	U
sec-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
Styrene	5	1	U	1	U	1	U	1	U	1	U	1	U
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U
Toluene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U
	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U
trans-1,3-Dichloropropene													
trans-1,3-Dichloropropene Trichlorofluoromethane Vinyl acetate	5 NS	2.5 5	U	2.5 5	U	2.5 5	U	2.5 5	U	2.5 5	U	2.5 5	U

Notes:

All units are µg/L (ppb)

'Class GA Ambient Water Quality Standard (AWQS), NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1, Ambient Water Quality Standards and Guidance Values are

NS - No standard established

Bold text indicates compounds above the laboratory MDL

 $\label{thm:continuous} \textbf{Yellow highlighting indicates exceedance of Ambient Water Quality Standard}$

Green highlighting indicates exceedence of Ambient Water Quality Guidance Value

^{*} Guidance Value

U - Analyte not detected above the laboratory MDL

J - Estimated value

Table 24 Trip Blank Sample Data Summary Volatile Organic Compounds Former Darby Drugs Distribution Center

SAMPLE ID	AWQS'	TB100308	01	TB100308	03	TB100608-	U3	TB100608-	04	TB100608	OE.	TB100708-0	11	TRIP BLANK
LAB SAMPLE ID		L0814755		L0814755		L0814755		L0814755-		L0814755		L0814991-0		L0911697-12
SAMPLING DATE		10/3/200	08	10/3/200	08	10/6/200	18	10/6/200	8	10/6/200		10/7/2008		8/20/2009
SAMPLE DEPTH (ft.)														
Volatile Organics by EPA 8260B														
Tetrachloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Trichloroethene cis-1.2-Dichloroethene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
trans-1,2-Dichloroethene	5	0.5	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.5 U
1,1-Dichloroethene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U
Vinyl chloride	2	1	U	1	U	1	U	1	U	1	U	1	U	1 U
										<u> </u>				
1,1,1,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
1,1,1-Trichloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
1,1,2,2-Tetrachloroethane	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
1,1,2-Trichloroethane	5	0.75 0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U 0.75 U
1,1-Dichloroethane 1,1-Dichloropropene	5	2.5	U	2.5	U	2.5	U	2.5	U	0.75 2.5	U	2.5	U	2.5 U
1,2,3-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,2,3-Trichloropropane	0.04	5	U	5	U	5	U	5	U	5	U	5	U	5 U
1,2,4,5-Tetramethylbenzene	5	2	U	2	U	2	U	2	U	2	U	2	U	2 U
1,2,4-Trichlorobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,2,4-Trimethylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,2-Dibromo-3-chloropropane	0.04	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,2-Dibromoethane	0.0006	2	U	2	U	2	U	2	U	2	U	2	U	2 U
1,2-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,2-Dichloroethane	0.6	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
1,2-Dichloropropane 1,3,5-Trimethylbenzene	1 5	1.8 2.5	U	1.8 2.5	U	1.8	U	1.8 2.5	U	1.8 2.5	U	1.8 2.5	U	1.8 U 2.5 U
1.3-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,3-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,4-Dichlorobenzene	3	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
1,4-Diethylbenzene	NS	2	U	2	U	2	U	2	U	2	U	2	U	2 U
2,2-Dichloropropane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
2-Butanone	50*	5	U	5	U	5	U	5	U	5	U	5	U	5 U
2-Hexanone	50*	5	U	5	U	5	U	5	U	5	U	5	U	5 U
4-Ethyltoluene	NS	2	U	2	U	2	U	2	U	2	U	2	U	2 U
4-Methyl-2-pentanone	NS Fot	5	U	5	U	5	U	5	U	5	U	5	U	5 U
Acetone	50* 5	5 5	U	5	U	5	U	5	U	5	U	5	U	5 U
Acrylonitrile Benzene	1	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Bromobenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
Bromochloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
Bromodichloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Bromoform	50*	2	U	2	U	2	U	2	U	2	U	2	U	2 U
Bromomethane	5	1	U	1	U	1	U	1	U	1	U	1	U	1 U
Carbon disulfide	NS	5	U	5	U	5	U	5	U	5	U	5	U	5 U
Carbon tetrachloride	5	0.5 0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Chlorobenzene Chloroethane	5	0.5	U	1	U	0.5	U	0.5	U	0.5	U	1	U	0.5 U
Chloroform	7	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U
Chloromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
cis-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Dibromochloromethane	50*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Dibromomethane	5	5	U	5	U	5	U	5	U	5	U	5	U	5 U
Dichlorodifluoromethane	5	5	U	5	U	5	U	5	U	5	U	5	U	5 U
Ethylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Hexachlorobutadiene	0.5	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6	U	0.6 U
Isopropylbenzene Methyl tert butyl ether	5 10	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Methylene chloride	5	5	U	5	U	5	U	5	U	5	U	5	U	5 U
Naphthalene	10*	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5 U
n-Butylbenzene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
n-Propylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	0.5 U
o-Chlorotoluene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
o-Xylene	5	1	U	1	U	1	U	1	U	1	U	1	U	1 U
p/m-Xylene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	1 U
p-Chlorotoluene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	2.5 U
p-Isopropyltoluene	5 5	1 0.5	U	0.5	U	0.5	U	0.5	U	1 0.5	U	0.5	U	0.5 U
sec-Butylbenzene Styrene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
tert-Butylbenzene	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
Toluene	5	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75	U	0.75 U
trans-1,3-Dichloropropene	0.4	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Trichlorofluoromethane	5	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5	U	2.5 U
Vinyl acetate	NS	5	U	5	U	5	U	5	U	5	U	5	U	5 U
		·	_	· <u> </u>		· <u> </u>		· <u></u>		· <u></u>		· <u> </u>	_	

Notes: All units are µg/L (ppb)

¹Class GA Ambient Water Quality Standard (AWQS), NYId Groundwater Effluent Limitations, June 1998

U - Analyte not detected above the laboratory MDL

J - Estimated value

NS - No standard established

Bold text indicates compounds above the laboratory M

Yellow highlighting indicates exceedance of Ambient W

^{*} Guidance Value